
MicroEJ Documentation

MicroEJ Corp.

Jul 02, 2025
Copyright 2008-2024, MicroEJ Corp. Content in this space is free for read and redistribute. Except if otherwise stated,

modification is subject to MicroEJ Corp prior approval. MicroEJ is a trademark of MicroEJ Corp. All other trademarks and
copyrights are the property of their respective owners.

CONTENTS

1 Navigation 2

2 Useful Links 3

3 Useful Resources 4
3.1 MicroEJ Glossary . 4
3.2 Overview . 6

3.2.1 What is MicroEJ? . 6
3.2.2 MICROEJ VEE . 6
3.2.3 MICROEJ SDK . 7
3.2.4 Executable Build Workflow . 8

3.3 Getting Started . 9
3.3.1 VEE Ports for Evaluation . 9
3.3.2 VEE Port Examples . 48

3.4 SDK 6 User Guide . 61
3.4.1 Installation . 62
3.4.2 Licenses . 70
3.4.3 Sentinel License Management . 81
3.4.4 Scope and Limitations . 88
3.4.5 Create a Project . 88
3.4.6 Import a Project . 105
3.4.7 Select a VEE Port . 108
3.4.8 Run on Simulator . 111
3.4.9 Build an Executable . 120
3.4.10 Run on Device . 122
3.4.11 Select a Kernel . 124
3.4.12 Build a Feature file . 125
3.4.13 Build a Virtual Device . 129
3.4.14 Add a Dependency . 132
3.4.15 Test a Project . 134
3.4.16 Publish a Project . 151
3.4.17 Development Tools . 152
3.4.18 VEE Port . 202
3.4.19 Manage Versioning . 214
3.4.20 Manage Resolution Conflicts . 214
3.4.21 Migrate an SDK 5 Project . 216
3.4.22 Module Natures . 230
3.4.23 Troubleshooting . 245
3.4.24 Tutorials . 253
3.4.25 How-to Guides . 262

i

3.4.26 Appendices . 285
3.4.27 Changelog . 292
3.4.28 Migration Notes . 308

3.5 Application Developer Guide . 312
3.5.1 MicroEJ Runtime . 314
3.5.2 SOAR . 360
3.5.3 SOAR Output Files . 363
3.5.4 Virtual Device . 368
3.5.5 MicroEJ Classpath . 368
3.5.6 Application Resources . 375
3.5.7 Standalone Application . 376
3.5.8 Sandboxed Application . 408
3.5.9 Character Encoding . 414
3.5.10 Limitations . 416
3.5.11 GitHub Repositories . 417
3.5.12 Module Repositories . 422
3.5.13 Libraries . 424
3.5.14 Development Tools . 680

3.6 VEE Porting Guide . 725
3.6.1 Introduction . 725
3.6.2 MicroEJ Architecture . 730
3.6.3 MicroEJ Packs . 772
3.6.4 BSP Connection . 774
3.6.5 VEE Port Qualification . 781
3.6.6 Core Engine . 787
3.6.7 Advanced Event Tracing . 801
3.6.8 Multi-Sandbox . 802
3.6.9 Tiny-Sandbox . 812
3.6.10 Native Interface Mechanisms . 813
3.6.11 External Resources Loader . 818
3.6.12 Serial Communications . 821
3.6.13 Graphical User Interface . 832
3.6.14 Vector Graphics . 1142
3.6.15 Networking . 1186
3.6.16 Bluetooth . 1191
3.6.17 Audio . 1192
3.6.18 MicroAI . 1193
3.6.19 Event Queue . 1194
3.6.20 File System . 1194
3.6.21 GNSS . 1198
3.6.22 Hardware Abstraction Layer . 1199
3.6.23 Device Information . 1202
3.6.24 Security . 1203
3.6.25 Watchdog Timer . 1204
3.6.26 SystemView . 1212
3.6.27 Simulation . 1226
3.6.28 Appendices . 1259

3.7 Kernel Developer Guide . 1327
3.7.1 Overview . 1327
3.7.2 Kernel Creation . 1330
3.7.3 Kernel APIs . 1336
3.7.4 Runtime Environment . 1340
3.7.5 Kernel UID . 1346
3.7.6 Sandboxed Application Lifecycle . 1347

ii

3.7.7 Define a Security Policy . 1347
3.7.8 Kernel and Features Communication . 1353
3.7.9 Multi-Sandbox Enabled Libraries . 1358
3.7.10 Setup a KF Test Suite . 1364
3.7.11 Kernel Linking . 1370
3.7.12 Application Linking . 1373

3.8 VEE Wear User Guide . 1379
3.8.1 VEE Wear Framework . 1381
3.8.2 Android Compatibility Kit . 1386
3.8.3 iOS Compatibility Kit . 1398
3.8.4 Offloading . 1400
3.8.5 VEE Script . 1401

3.9 VEE Energy User Guide . 1403
3.10 Training Courses . 1404

3.10.1 For Beginners . 1404
3.10.2 For Application Developers . 1413
3.10.3 For VEE Developers . 1457
3.10.4 For Kernel Developers . 1501
3.10.5 Graphical User Interface . 1510
3.10.6 Connectivity . 1527
3.10.7 For DevOps . 1528

3.11 SDK 5 User Guide . 1540
3.11.1 Installation . 1542
3.11.2 Licenses . 1562
3.11.3 Standalone Application . 1575
3.11.4 Sandboxed Application . 1588
3.11.5 Module Repository . 1598
3.11.6 Select a VEE Port . 1603
3.11.7 Module Natures . 1604
3.11.8 Debug an Application . 1616
3.11.9 Development Tools . 1625
3.11.10 IDE . 1675
3.11.11 SDK Version . 1680
3.11.12 MicroEJ Module Manager . 1682
3.11.13 VEE Port . 1703
3.11.14 How-to Guides . 1723
3.11.15 Release Notes . 1724
3.11.16 SDK Distribution Changelog . 1725
3.11.17 SDK Changelog . 1728
3.11.18 Build Types per SDK . 1748
3.11.19 Migration Notes . 1755

3.12 Get Support . 1757
3.13 About MicroEJ . 1757

iii

MicroEJ Documentation,

Welcome to the MicroEJ developer documentation.

MicroEJ (pronounced “micro-EDGE”) turns any electronic product or ‘things’ into smart things, MicroEJ tools and
libraries enable you to easily create efficient and feature complete applications for embedded devices. MicroEJ
leverages a runtime environment called VEE (Virtual Execution Environment) to simplify and secure embedded
development.

CONTENTS 1

overview/vee.html

CHAPTER

ONE

NAVIGATION

Browse the following chapters to familiarize yourself and understand the principles of development with MicroEJ
Technology.

• TheMicroEJ Glossary chapter describes MicroEJ terminology.

• The Overview chapter introduces MicroEJ products and technology.

• The Getting Started is the best way to start your journey with MicroEJ’s technology. Set up a development
environment and start coding!

• The SDK 6 User Guide chapter presents MICROEJ SDK 6, the Software Development Kit for developing new
projects.

• The Application Developer Guide presents how to develop a Java or JavaScript application on MICROEJ VEE
(Virtual Execution Environment).

• The VEE Porting Guide teaches you how to integrate MICROEJ VEE into a C Board Support Package as well as
simulation configurations.

• The Kernel Developer Guide introduces you to advanced concepts, such as partial updates and dynamic app
life cycle workflows.

• The VEEWearUser Guide addresses the development of smartwatch applications using VEEWear, specifically
designed for low-power MCU and MPU.

• The Training Courses chapter offers online courses to help you learn the essentials of Firmware development
using MICROEJ SDK.

2

CHAPTER

TWO

USEFUL LINKS

• Resources Hub: gathers all useful resources for developers on a daily basis.

• Forum: provides announcements to keep up to date in MicroEJ technology releases. It also provides many
topics that could answer your questions when developing on MicroEJ technology.

• Browse MicroEJ Module Repositories to look for dependencies:

– Central Repository Modules.

– Developer Repository Modules.

– SeeModule Repositories for more information.

• Licenses Server

3

https://repository.microej.com/index.php
https://forum.microej.com/
https://repository.microej.com/modules/
https://forge.microej.com/ui/native/microej-developer-repository-release/
https://license.microej.com/

CHAPTER

THREE

USEFUL RESOURCES

• SDK6 Cheat Sheet: a must-have when working with MICROEJ SDK6.

• MicroEJ GitHub: provides several pinned repositories, a must-have to get started.

3.1 MicroEJ Glossary

Add-On Library
An Add-On Library is a pure Managed Code (Java, Javascript, Managed C, etc.) library. It runs over one or
more Foundation Libraries.

Abstraction Layer
An Abstraction Layer is the native code (C, asm, etc.) that implements a Foundation Library’s low-level APIs
over a board support package (BSP) or a C library.

Application
An Application is a software program that runs on a MICROEJ VEE.

Standalone Application
A Standalone Application is themain application that is executed byMICROEJ VEE. It is linked
statically to produce a Mono-Sandbox Executable.

Sandboxed Application
A Sandboxed Application is an Application that can run over a Multi-Sandbox Executable. It is
linked dynamically.

Kernel Application
A Kernel Application is a Standalone Application that implements the ability to be extended
to produce a Multi-Sandbox Executable.

Architecture
An Architecture is a software package that includes the Core Engine port to a target instruction set and a C
compiler, core FoundationLibraries ([EDC], [BON], [SNI], [KF]) and theSimulator. Architectures aredistributed
either as evaluation or production version.

Core Engine
The Core Engine, also named MEJ32, is a scalable 32-bit core for resource-constrained embedded devices.
It is delivered in various flavors, mostly as a binary software package. The Core Engine allows applications
written in various languages to run in a safe container.

Executable
An Executable is the result of the binary link of a Standalone Application with a VEE Port. It can be pro-
grammed into the flash memory of a device.

4

https://github.com/MicroEJ/
https://developer.microej.com/managed-code/
https://developer.microej.com/mej32-virtual-machine-for-embedded-systems/

MicroEJ Documentation,

Mono-Sandbox Executable
A Mono-Sandbox Executable is an Executable that implements an unmodifiable set of func-
tions.

Multi-Sandbox Executable
A Multi-Sandbox Executable is an Executable that implements the ability to be extended, by
exposing a Runtime Environment and amemory space to link Sandboxed Applications.

Foundation Library
A Foundation Library is a library that provides core or hardware-dependent functionalities. A Foundation
Library combines Managed Code (Java, Javascript, managed-C, etc.) and low-level APIs (C, asm, etc.) im-
plemented by one or more Abstraction Layers through a native interface (SNI).

MICROEJ SDK
MICROEJ SDK is a comprehensive tools suite for developers to build VEE Ports for their devices, create Appli-
cations, build Executable, and run Virtual Devices.

MICROEJ VEE
MICROEJ VEE is an applications container. VEE stands for Virtual Execution Environment, and refers to the
first implementation that embeds a virtual 32-bit processor, hence the term “Virtual”. MICROEJ VEE runs on
any OS/RTOS commonly used in embedded systems (FreeRTOS, QP/C, uc/OS, ThreadX, embOS, Mbed OS,
Zephyr OS, VxWorks, PikeOS, Integrity, Linux, QNX, …) and can also run without RTOS (bare-metal) or pro-
prietary RTOS. MICROEJ VEE includes the small MEJ32, alongwith awide range of libraries (Add-On Libraries
and Foundation Libraries).

Mock
AMock is amockup of a board support package (BSP) capability thatmimics a hardware functionality for the
Simulator.

Runtime Environment
A Runtime Environment is a custom set of APIs exposed by a Multi-Sandbox Executable, designed to sup-
port the development and execution of compatible Sandboxed Applications. It typically serves as the base
component for building an ecosystem of applications within a specific domain.

Simulator
The Simulator allows running Applications on a target hardware simulator on the developer’s desktop com-
puter. The Simulator runs one or more Mock that mimics the hardware functionality. It enables developers
to develop their Applications without the need of hardware.

VEE Port
A VEE Port is an implementation of MICROEJ VEE tailored to run on a particular device (hardware board in-
cluding both the processor and the peripherals). It integrates an Architecture, one or more Foundation Li-
braries with their respective Abstraction Layers, and the board support package (BSP). It also includes asso-
ciated Mocks for the Simulator.

Virtual Device
A Virtual Device is a software package that includes the simulation part of an Executable: runtime, libraries
and application(s). It can be run on any desktop computer without the need of the SDK.

3.1. MicroEJ Glossary 5

https://developer.microej.com/managed-code/

MicroEJ Documentation,

3.2 Overview

3.2.1 What is MicroEJ?

MicroEJ (pronounced “micro-EDGE”) is a software vendor of cost-driven solutions for embedded and IoT devices.

The MicroEJ solution is made up of two products:

• MICROEJ VEE (Virtual Execution Environment) is an application container for resource-constrained embed-
ded devices running on microcontrollers or microprocessors. It allows devices to run multiple and mixed
managed code (Java, JavaScript, …) and C software applications.

• MICROEJ SDK allows developers to develop applications in Managed Code and deploy them to
resource-constrained devices, such as microcontrollers.

The following video demonstrates the typical development process using MICROEJ SDK 6 Simulator:

3.2.2 MICROEJ VEE

MICROEJ VEE provides a fully configurable set of services that can be expanded, including but not limited to:

• a secure multi-application framework,

• a GUI framework (includes widgets),

• a network framework with security (SSL/TLS, HTTPS, REST, MQTT,…),

• a storage framework (file system),

• a Java Cryptography Architecture (JCA) implementation.

Fig. 1: MICROEJ VEE Overview

For more information about our Supported Processor Architectures, visit the Supported Hardware page.

3.2. Overview 6

https://developer.microej.com/supported-hardware/

MicroEJ Documentation,

3.2.3 MICROEJ SDK

MICROEJ SDK offers a comprehensive toolset to build the software for embedded devices.

The SDK covers two levels in device software development:

• Device integration and porting (adapting MICROEJ VEE to run on the target device).

• Application development.

Using the SDK, an application developer is able to:

• Develop and test applications on the Simulator.

• Deploy the application locally on the device.

• Package and publish the application on a repository or an application store, enabling remote end users to
install it on their devices.

The SDK produces two versions of the application build:

• An Executable binary to be deployed on the device. It includes MICROEJ VEE, all device drivers and a specific
set of functionalities useful for application developers targeting this device.

• A Virtual Device which is used as a device simulator by application developers, acting as a bridge to other
stakeholders, including marketing teams, translators, and project managers.

Fig. 2: SDK Workflow Overview

The following diagram outlines the SDK content. Please refer to the SDK 6 User Guide chapter for more details on
the SDK and its usage.

3.2. Overview 7

MicroEJ Documentation,

Fig. 3: SDK Ecosystem Overview

3.2.4 Executable Build Workflow

AnExecutable isbuilt fromseveral input resourcesand tools. Eachcomponenthasdependenciesand requirements
that must be carefully respected in order to build an Executable.

3.2. Overview 8

MicroEJ Documentation,

3.3 Getting Started

Welcome! Follow this step-by-step instructional guide to get started with MICROEJ SDK (Software Development
Kit) and MICROEJ VEE (Virtual Execution Environment). Learn how to create apps and build a VEE Port by taking
advantage of interactive tutorials and extensive technical documentation.

Before youget started, be sure tounderstand the fundamentals aboutMICROEJVEE, and take a look at our glossary
page to familiarize yourselves with MicroEJ key terminology.

What you will do:

• Choose a starter kit in the tables below

• Install MICROEJ SDK

• Watch the Get Started Tutorial

• Get Started with MICROEJ VEE

What you will learn:

• How to run an app using a Virtual Device.

• How to run an app on a real development board.

• Discover more examples and guided tutorials to go further with MicroEJ technology.

3.3.1 VEE Ports for Evaluation

These VEE ports are ideal to evaluate MicroEJ’s technology. They include the latest versions of MicroEJ software
components as much as possible. In case you cannot get hands on your desired starter kit, please contact us, we
may help to find hardware for you.

3.3. Getting Started 9

https://developer.microej.com/microej-vee-virtual-execution-environment/
https://docs.microej.com/en/latest/glossary.html
https://docs.microej.com/en/latest/glossary.html
https://developer.microej.com/virtual-devices/

MicroEJ Documentation,

i.MX RT1170 Evaluation Kit

i.MX 93 Evaluation Kit

STM32F7508-DK Discovery Kit

i.MX RT1170 Evaluation Kit

During this Getting Started, you will learn to:

• Run an Application on the i.MX RT1170 Evaluation Kit Virtual Device.

• Run the same Application on your i.MX RT1170 Evaluation Kit.

In case you are not familiar with MicroEJ, please visit Discover MicroEJ to understand the principles of our technol-
ogy.

Prerequisites

This Getting Started is separated in twomain parts.

The first part consists of running a demo application on the Virtual Device. All you need is:

• An Internet connection to access Github repositories &Module Repositories.

• MICROEJ SDK 6 (installed during Environment Setup).

The second part consists of running the same demo application on your device. For that, you will need:

• An i.MX RT1170 EVKB Evaluation Kit, available here.

• An RK055HDMIPI4MA0 display panel, available here.

• The MCUXPresso SDK to build the BSP and flash the board. You will be guided on how to install this tool
later.

• The West command line tool from the Zephyr project. You will be guided on how to install this tool later.

3.3. Getting Started 10

https://developer.microej.com/discover-microej/
https://www.nxp.com/design/design-center/development-boards-and-designs/i-mx-evaluation-and-development-boards/i-mx-rt1170-evaluation-kit:MIMXRT1170-EVKB
https://www.nxp.com/part/RK055HDMIPI4MA0

MicroEJ Documentation,

Environment Setup

To follow this Getting Started, you need to:

• Install MICROEJ SDK 6.

• Get the VEE Port sources from Github.

Install MICROEJ SDK 6

Install MICROEJ SDK 6 by following Installation instructions.

IntelliJ IDEA is used in this Getting Started, but feel free to use your favorite IDE.

Install West

West is a Zephyr tool for multiple repository management systems. It will be used to fetch the code and its depen-
dencies.

• Install West by following Installing west instructions (tested with west 1.2.0).

• Check that the tool has been properly installed by running the command: west --version , it should print the
west version you installed.

Get the i.MX RT1170 VEE Port project

For this Getting Started, the NXP i.MX RT1170 Evaluation Kit VEE Port will be used.

It contains the sources of the VEE Port which will be necessary to build and run applications on the simulator and
on the device. The VEE Port also includes some applications samples which will be used in this Getting Started.

You can download the i.MX RT1170 VEE Port using the following commands:

mkdir nxpvee-mimxrt1170-prj
cd nxpvee-mimxrt1170-prj
west init -m https://github.com/nxp-mcuxpresso/nxp-vee-imxrt1170-evk .
west update

Warning: The toolchain requires the path to the VEE Port sources to be as short as possible and contain no
whitespace or non-ASCII character. It is recommended to clone the repository as close as possible to your file
system root.

Set up the i.MX RT1170 VEE Port project on your IDE

Import the Project

The first step is to import the i.MX RT1170 VEE Port into your IDE:

Note: If you are using another IDE than IntelliJ IDEA, please have a look at Import a Project section.

3.3. Getting Started 11

https://docs.zephyrproject.org/latest/develop/west/index.html
https://docs.zephyrproject.org/latest/develop/west/install.html
https://github.com/nxp-mcuxpresso/nxp-vee-imxrt1170-evk

MicroEJ Documentation,

• If you are on the Welcome Screen, click on the Open button. Otherwise click either on File > Open…

or on File > New > Project From Existing Sources… .

• Select the nxp-vee-imxrt1170-evk directory locatedwhere youdownloaded it and click on the OK button.

• If you are asked to choose a project model, select Gradle and click on the Create button.

The Gradle project should now be imported in IntelliJ IDEA, your workspace contains the following projects:

3.3. Getting Started 12

MicroEJ Documentation,

Accept the MICROEJ SDK EULA

Youmay have to accept the SDK EULA if you haven’t already done it, please have a look at SDK EULA Acceptation.

Run an Application on the Virtual Device

In this example, wewill run the animatedMascot Application, which is available as an example sample in the i.MX
RT1170 VEE Port.

In order to execute the animatedMascot Application on the Virtual Device, the SDK provides the
runOnSimulator Gradle task.

Note: If you are using another IDE than IntelliJ IDEA, please have a look at the Run on Simulator section.

• In the Gradle view, navigate to nxpvee-mimxrt1170-evk > apps > animatedMascot > Tasks > microej .

Double-click on the runOnSimulator task.

3.3. Getting Started 13

MicroEJ Documentation,

The Virtual Device starts and executes the animatedMascot application.

3.3. Getting Started 14

MicroEJ Documentation,

3.3. Getting Started 15

MicroEJ Documentation,

Well Done!

Now you know how to run an application on a Virtual Device.

If you want to learn how to run an application on your i.MX RT1170 Evaluation Kit, you can continue this Getting
Started: Run an Application on the i.MX RT1170 Evaluation Kit.

Otherwise, learn how toModify the Java Application.

Run an Application on the i.MX RT1170 Evaluation Kit

To deploy the animatedMascot application on your board, you will have to:

• Setup your Environment (Toolchain, flashing tool, hardware setup).

• Request a 30 days Evaluation License and install an activation key.

• Build the Executable and Flash it on the board.

Environment Setup

This chapter takes approximately one hour and will take you through the steps to set up your board and build the
BSP.

MCUXPresso SDK Setup

Install MCUXPresso SDK

• Download and install MCUXpresso Installer.

• Once installed, open it.

• Select MCUXpresso SDK Developer and LinkSever and click Install:

3.3. Getting Started 16

https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/Dependency-Installation

MicroEJ Documentation,

• Once done, a green tick appears next to the installed packages:

Add GNU ARM Embedded Toolchain Environment variable

MCUXpresso Installer installs a GNU ARM Embedded Toolchain in the $user/.mcuxpressotools folder.

ARMGCC_DIR must be set as an environment variable and point to the toolchain directory. To do so:

• Open the Edit the system environment variables application on Windows.

• Click on the Environment Variables… button.

• Click on the New… button under the User variables section.

• Set Variable Name to ARMGCC_DIR .

• Set Variable Value to the toolchain directory (e.g. C:\Users\MicroEJ\.mcuxpressotools\
arm-gnu-toolchain-13.2.Rel1-mingw-w64-i686-arm-none-eabi).

• Click on the Ok button until it closes Edit the system environment variables application.

3.3. Getting Started 17

MicroEJ Documentation,

Install Make

Make is the tool that will generate the Executable based on the files generated by CMake. It will also be used to
flash the board. Under the Download section, you can select the Setup program for the complete package,
except sources.

By default, it will automatically addMake to your path. If not, you canmanually add the GnuWin32\bin folder to
your path.

Check that the tool has been properly installed:

Add the Flashing Tool Environment variable

• Open the Edit the system environment variables application on Windows.

• Click on the Environment Variables… button.

• Select Path variable under the User variables section and edit it.

• Click on New and point to the LinkServer_{version} folder located where you installed LinkServer (e.g.
C:\nxp\LinkServer_1.6.133).

Hardware Setup

Set up the NXP i.MX RT1170 EVKB:

3.3. Getting Started 18

https://gnuwin32.sourceforge.net/packages/make.htm

MicroEJ Documentation,

Fig. 4: NXP i.MX RT1170 EVKB Hardware Setup

• Check that the dip switches (SW1) are set to OFF, OFF, ON, and OFF.

• Connect a micro-USB cable to J86 to power the board.

• You can connect a 5V power supply to J43 if you need to use the display

The USB connection is used as a serial console for the SoC, as a CMSIS-DAP debugger, and as a power input for the
board.

The VEE Port uses the virtual UART from the i.MX RT1170 EVKB USB port. A COM port is automatically mounted
when the board is plugged into a computer using a USB cable. All board logs are available through this COM port.

The COM port uses the following parameters:

Baudrate Data bits Parity bits Stop bits Flow control
115200 8 None 1 None

You can have a look at your application logs with an RS232 Terminal (e.g. Termite).

3.3. Getting Started 19

https://www.compuphase.com/software_termite.htm

MicroEJ Documentation,

Congratulations! You have finished setting up your environment. You are now ready to discover how to build and
flash a MicroEJ application.

Build the Executable for i.MX RT1170 Evaluation Kit

In order to build the Executable of the animatedMascot Application, the SDK provides the buildExecutable
Gradle task.

Note: If you are using another IDE than IntelliJ IDEA, please have a look at Build an Executable section. Come back
to this page if you need to activate an Evaluation License.

• Double-click on the buildExecutable task in the Gradle tasks view.

• The build stops with a failure.

• Go to the top project in the console view and scroll up to get the following error message:

• Copy the UID. It will be required to activate your Evaluation license.

Request your Evaluation License:

• Request your Evaluation license by following the Request your Activation Key instructions. You will be asked
to fill the machine UID field with the UID you copied before.

• When you have received your activation key by email, drop it in the license directory by following the Install
the License Key instructions (drop the license key zip file to the ~/.microej/licenses/ directory).

Now your Evaluation license is installed, you can relaunch your application build by double-clicking on the
buildExecutable task in the Gradle tasks view. It may take some time.

The Gradle task deploys the Application in the BSP and then builds the BSP using Make.

The animatedMascot application is built and ready tobe flashedon i.MXRT1170EvaluationKit once thehardware
setup is completed.

Flash the Application on the i.MX RT1170 Evaluation Kit

In order to flash the animatedMascot Application on i.MX RT1170 Evaluation Kit, the application provides the
runOnDevice Gradle task.

Note: If you are using another IDE than IntelliJ IDEA, please have a look at Run on Device section.

• Double-click on the runOnDevice task in the Gradle tasks view. It may take some time.

3.3. Getting Started 20

MicroEJ Documentation,

Once the firmware is flashed, you should see the animatedMascot running on your board.

Modify the Java Application

With MicroEJ, it is easy to modify and test your Java application on the Virtual Device.

We will modify the simpleGFX Application which is available as an example sample in the i.MX RT1170 VEE Port.

The simpleGFX Application can be executed on the Virtual Device with the he runOnSimulator Gradle task:

3.3. Getting Started 21

MicroEJ Documentation,

• Open SimpleGFXWidget.java file located in the src/main/java/com/nxp/example/simplegfx folder.

• The rectangles colors are set line 22, replace the following lines:

private static final int NXP_ORANGE = 0xF9B500;
private static final int NXP_BLUE = 0x0EAFE0;
private static final int NXP_GREEN = 0x69CA00;

by

private static final int NXP_ORANGE = Colors.RED;
private static final int NXP_BLUE = Colors.BLUE;
private static final int NXP_GREEN = Colors.GREEN;

• Relaunch the application on the Virtual Device:

Going Further

You have now successfully executed a MicroEJ application on an embedded device, so what’s next?

If you are an application developer, you can continue to explore MicroEJ’s APIs and functionalities by running and
studying our samples at GitHub:

Foundation Libraries Eclasspath IoT
This project gathers all the ba-
sic examples of the foundation li-
braries.

This project gathers all the exam-
ples of eclasspath.

This project gathers simple appli-
cations using net libraries.

https://github.com/MicroEJ/
Example-Foundation-Libraries

https://github.com/MicroEJ/
Example-Eclasspath

https://github.com/MicroEJ/
Example-IOT

3.3. Getting Started 22

https://github.com/MicroEJ/Example-Foundation-Libraries
https://github.com/MicroEJ/Example-Foundation-Libraries
https://github.com/MicroEJ/Example-Eclasspath
https://github.com/MicroEJ/Example-Eclasspath
https://github.com/MicroEJ/Example-IOT
https://github.com/MicroEJ/Example-IOT

MicroEJ Documentation,

You can also learn how to build bigger and better applications by reading our Application Developer Guide.

If you are an embedded engineer, you could look at our VEE port examples at GitHub. And to learn how to create
custom VEE Ports, you can read our VEE Porting Guide.

You can also follow the Kernel Developer Guide for more information on our multi-application framework or read
about our powerful wearable solution called VEE Wear.

Last but not least, you can choose to learn about specific topics by following one of our many Training Courses
ranging from how to easily debug applications to setting up a Continuous Integration process and a lot of things in
between.

i.MX93 Evaluation Kit

During this Getting Started, you will learn to:

• Run an Application on the i.MX93 Evaluation Kit Virtual Device.

• Run the same Application on your i.MX93 Evaluation Kit.

If you need to becomemore familiar withMicroEJ, please visit DiscoverMicroEJ to understand the principles of our
technology.

Prerequisites

Note: This Getting Started has been tested on Windows 10 & 11 with a WSL distribution Ubuntu 22.04. Also note
that examples used in this Getting Started could depend on older tools and libraries. Most notably our dependency
manager plugin (using Gradle) could be an older version.

This Getting Started is separated into twomain parts.

The first part consists in running a demo application on the Virtual Device. All you need is:

• An Internet connection to access Github repositories &Module Repositories.

• MICROEJ SDK 6 (installed during Environment Setup).

The second part consists in running the same demo application on your device. For that, you will need:

• An i.MX93 Evaluation Kit, available here.

• An HDMI display with touchscreen connected with an IMX-MIPI-HDMI adapter.

– This getting started has been tested with a MageDok T080A.

• A prebuild Yocto Linux image, with all necessary linux packages preinstalled.

• A Yocto SDK, to cross compile an sample application.

3.3. Getting Started 23

https://github.com/microej?q=vee&type=all&language=&sort=
https://developer.microej.com/discover-microej/
https://gradle.org/
https://www.nxp.com/design/design-center/development-boards/i-mx-evaluation-and-development-boards/i-mx-93-evaluation-kit:i.MX93EVK
https://www.nxp.com/part/IMX-MIPI-HDMI
https://store.magedok.com/collections/portable-monitors/products/8-inch-1280-720-resolution-touch-monitor-t080a

MicroEJ Documentation,

Environment Setup

To follow this Getting Started, you need to:

• Install MICROEJ SDK 6.

• Get the Example-Java-Widget from Github.

Install MICROEJ SDK 6

Install MICROEJ SDK 6 by following the Installation instructions. IntelliJ IDEA is used on this Getting Started, but
feel free to use your favorite IDE.

Get Example-Java-Widget

For this Getting Started, the Example-Java-Widget Application will be used. You can download it using the fol-
lowing command:

git clone -b 8.1.1 https://github.com/MicroEJ/Example-Java-Widget.git

Note: If you don’t have Git installed, you can download the source code directly from our GitHub repository. Then
you can click on: Code > Download ZIP .

Set up the Application on your IDE

Import the Project

The first step is to import the Example-Java-Widget Application into your IDE:

Note: If you are using an IDE other than IntelliJ IDEA, please have a look at Import a Project section.

• If you are in the Welcome Screen, click on the Open button. Otherwise, click either on File > Open…

or on File > New > Project From Existing Sources… .

• Select the Example-Java-Widget directory locatedwhere you downloaded it and click on the OK button.

3.3. Getting Started 24

https://github.com/MicroEJ/Example-Java-Widget/tree/1.0.0

MicroEJ Documentation,

• If you are asked to choose a project model, select Gradle .

• Click on the Create button.

The Gradle project should now be imported into IntelliJ IDEA. Your workspace contains the following projects:

3.3. Getting Started 25

MicroEJ Documentation,

Select the VEE Port

In the Gradle build file build.gradle.kts , replace the VEE dependency microejVEE with the i.MX93, like this:

dependencies {
microejVee(”com.microej.veeport.imx93:vee-port:3.0.2”)

}

For more information about how to select a VEE Port please refer to the following section: Select a VEE Port.

Accept the MICROEJ SDK EULA

Youmay have to accept the SDK EULA if you haven’t already done so, please have a look at SDK EULA Acceptation.

Run an Application on the Virtual Device

To execute the Example-Java-Widget Application on the Virtual Device, the SDK provides the Gradle

runOnSimulator task.

Note: If you are using another IDE than IntelliJ IDEA, please have a look at the Run on Simulator section.

• Double-click on the runOnSimulator task in the Gradle tasks view. It may take a few seconds.

3.3. Getting Started 26

MicroEJ Documentation,

The Virtual Device starts and executes the Example-Java-Widget application.

3.3. Getting Started 27

MicroEJ Documentation,

Well done!

Now you know how to run an application on a Virtual Device.

If youwant to learn how to run an application on your i.MX93 Evaluation Kit, you can continue this Getting Started:
Run an Application on i.MX93 Evaluation Kit.

Otherwise, learn how toModify the Java Application.

3.3. Getting Started 28

MicroEJ Documentation,

Run an Application on i.MX93 Evaluation Kit

To deploy Example-Java-Widget application on your board, you will have to:

• Set up your environment (toolchain, hardware setup).

• Request a 30 days Evaluation License and install an activation key.

• Build the Executable.

• Run the Executable on board.

Environment Setup

This chapter takes approximately one hour and will take you through the steps to build a VEE Executable and set
up the evaluation kit.

Install the Yocto SDK

The Executable is built using a Yocto SDK. It contains the following:

• The C toolchain.

• The cross-compiled libraries.

• All the necessary headers (libc, but also the headers of the kernel and the libraries installed in the firmware
rootfs).

• An environment setup script (to set $CC, $LD, $SDKSYSROOT variables).

To install the Yocto SDK, use the following commands in WSL or Linux:

$ curl -O https://repository.microej.com/packages/yocto/i.MX93EVK/2024-04-30-IMX93-oecore-x86_64-
→˓armv7at2hf-neon-vfpv4-toolchain-nodistro-1.0.0.sh
$ chmod +x 2024-04-30-IMX93-oecore-x86_64-armv7at2hf-neon-vfpv4-toolchain-nodistro-1.0.0.sh
$./2024-04-30-IMX93-oecore-x86_64-armv7at2hf-neon-vfpv4-toolchain-nodistro-1.0.0.sh
MicroEJ: 32-bit userspace + 64-bit kernel SDK installer version nodistro.0
==
Enter target directory for SDK (default: /usr/local/oecore-x86_64):
You are about to install the SDK to ”/usr/local/oecore-x86_64”. Proceed [Y/n]? Y
[sudo] password for xxxxx:
Extracting SDK...done
Setting it up...done
SDK has been successfully set up and is ready to be used.
Each time you wish to use the SDK in a new shell session, you need to source the environment setup script e.g.
$. /usr/local/oecore-x86_64/environment-setup-armv7at2hf-neon-vfpv4-oemllib32-linux-gnueabi
$. /usr/local/oecore-x86_64/environment-setup-cortexa55-oe-linux

The installation path can then be used to build the VEE Executable.

3.3. Getting Started 29

MicroEJ Documentation,

Install Required Packages

Some additionnal packageswill be required in order to build an executable. Run the following command (either in
Linux or WSL):

sudo apt-get update && sudo apt-get install dos2unix make

Flash the image on an SD card

The Linux image is available here: Yocto WIC Image for iMX93

For this getting started we use a Linux image flashed on an SD card.

Linux

To flash the image on Linux, use the following command (assuming the SDCard device is /dev/mmcblk0):

bmaptool copy lib32-core-image-microej-microej-imx93.wic.gz /dev/mmcblk0

Windows

To flash the image on Windows, do the following:

• Install Rufus: https://rufus.ie/en/.

• Extract the .wic file from the archive lib32-core-image-microej-microej-imx93.wic.gz .

• Select your SD card device in the list at the top (see example of configuration below).

• Select your .wic file by clicking on SELECT

• Finally click on START at the bottom and wait for the process to finish.

3.3. Getting Started 30

https://repository.microej.com/packages/yocto/i.MX93EVK/2024-05-24-IMX93-lib32-core-image-microej-microej-imx93-1.0.2.wic.gz
https://rufus.ie/en/

MicroEJ Documentation,

3.3. Getting Started 31

MicroEJ Documentation,

Hardware Setup

To setup the hardware you will need to connect the following on the EVK:

• A USB C cable for the power (provided with the EVK).

• A USB C cable for the serial port.

• A USB C cable for the touchscreen device.

• A RJ45 cable to access the network.

• An HDMI cable connected to the IMX-HDMI-MIPI adapter.

The serial port is used to connect to a shell, it uses the following parameters:

Baudrate Data bits Parity bits Stop bits Flow control
115200 8 None 1 XON/XOFF

To connect to the shell enter the login root .

3.3. Getting Started 32

MicroEJ Documentation,

Configure boot

By default, the i.MX93 evaluation kit will boot from the eMMC. To change the boot mode to micro SD, set the DIP
switch BMODE to 0100 , i.e. SW1301-2 set to 1 .

Insert the flashed SD card and boot the device. After a few seconds, the displaywill show the IMX93 Getting Started
Welcome page. If no display is attached, information such as device IP address and documentation link will also
be printed in the logs.

LVDS display support

This Getting Started has been testedwith anHDMI displaywith a 1280x720 resolution. If youwant to use the official
display instead (the DY1212W-4856) you will need to reconfigure the device tree:

• Boot your i.MX93 Evaluation Kit.

• Stop the booting process to access the U-boot menu by pressing a key on the serial console.

• In the U-boot menu, run the following commands:

setenv fdtfile imx93-11x11-evk-boe-wxga-lvds-panel.dtb
saveenv
boot

• After the boot has completed you can test the display with: modetest -M imx-drm -s 35@33:1280x800-60.
03 .

Congratulations! You have finished the setup of your environment. You are now ready to discover how to build and
run a MicroEJ application.

Build the Executable for i.MX93 Evaluation Kit

Tobuild the Executable of the Example-Java-Widget Application, the SDKprovides the buildExecutable Gradle
task.

Note: If you are using an IDE other than IntelliJ IDEA, please have a look at the Build an Executable section. Come
back to this page if you need to activate an Evaluation License.

• Before using this task, youwill have to configure some environment variables that depend on the OS you are
using.

– To do so, right-click on buildExecutable then Modify Run Configuration... .

– Fill in your variables in Environment variables , each one separated by a semicolon (see screenshot):

∗ If you changed the default Yocto SDK installation path, set the following environment variable

· APP_SDK_INSTALL : Path to the Yocto SDK (by default /usr/local/oecore-x86_64/)

∗ When using Windows with WSL, set the WSL distribution name, which you can get with the com-
mand wsl –list in Windows terminal

· WSL_DISTRIBUTION_NAME : Nameof theWSLdistribution if usingWindows (by default
Ubuntu).

3.3. Getting Started 33

https://www.nxp.com/design/design-center/development-boards-and-designs/i-mx-evaluation-and-development-boards/dy1212w-4856:DY1212W-4856

MicroEJ Documentation,

• Double-click on the buildExecutable task in the Gradle tasks view.

• The build stops with a failure.

• Go to the top project in the console view and scroll up to get the following error message:

• Copy the UID. It will be required to activate your Evaluation license.

Request your Evaluation License:

• You can request your Evaluation license by following the Request your Activation Key instructions. Youwill be
asked to fill in the machine UID you just copied.

• When you have received your activation key by email, drop it in the license directory by following the Install
the License Key instructions (drop the license key zip file to the ~/.microej/licenses/ directory).

Now your Evaluation license is installed, you can relaunch your application build by double-clicking on the
buildExecutable task in the Gradle tasks view. It may take some time.

The Gradle task deploys the Application in the BSP and then builds the BSP using Make.

3.3. Getting Started 34

MicroEJ Documentation,

The Example-Java-Widget application is built and ready tobe flashedon i.MX93EvaluationKit once thehardware
setup is completed.

Run the Application on the i.MX93 Evaluation Kit

To run the Example-Java-Widget Application on i.MX93 Evaluation Kit, the application provides the Gradle

runOnDevice task.

Note: If you are using another IDE than IntelliJ IDEA, please have a look at the Run on Device section.

• Before using this task, you will have to configure the device IP Address in the environment variables.

– To do so, right-click on runOnDevice then Modify Run Configuration... .

– Fill in your variables in Environment variables , each one separated by a semicolon:

∗ SSH_USER=root

∗ SSH_HOSTNAME : IP address of the i.MX93 Evaluation Kit.

∗ APP_SDK_INSTALL : Path to the Yocto SDK (by default /usr/local/oecore-x86_64/).

∗ WSL_DISTRIBUTION_NAME : Name of the WSL distribution if using Windows (by default
Ubuntu).

• Double-click on the runOnDevice task in the Gradle tasks view. It may take some time.

3.3. Getting Started 35

MicroEJ Documentation,

Once the application is running, you should see the Example-Java-Widget on your board.

Modify the Java Application

With MicroEJ, it is easy to modify and test your Java application on the Virtual Device.

For example, we canmodify the color of the items in the main page list.

• Open MainPage.java located in the src/main/java/com/microej/demo/widget/main/MainPage.java
folder

• Odd items background color is set line 74, replace the following line:

style.setBackground(new GoToBackground(GRAY));

with

style.setBackground(new GoToBackground(Colors.CYAN));

• Follow Run an Application on the Virtual Device instructions to launch themodified application on the Virtual
Device.

3.3. Getting Started 36

MicroEJ Documentation,

Going Further

You have now successfully executed a MicroEJ application on an embedded device so what’s next?

If you are an application developer you can continue to explore MicroEJ’s APIs and functionalities by running and
studying our samples at GitHub:

Foundation Libraries Eclasspath IoT
This project gathers all the ba-
sic examples of the foundation li-
braries.

This project gather all the exam-
ples of eclasspath.

This project gathers simple appli-
cations using net libraries.

https://github.com/MicroEJ/
Example-Foundation-Libraries

https://github.com/MicroEJ/
Example-Eclasspath

https://github.com/MicroEJ/
Example-IOT

You can also learn how to build bigger and better applications by reading our Application Developer Guide.

If you are an embedded engineer you could look at our VEE port examples at GitHub. And to learn how create
custom VEE ports you can read our VEE Porting Guide.

You can also follow the Kernel Developer Guide for more information on our multi-application framework or read
about our powerful wearable solution called VEE Wear.

Last but not least you can choose to learn about specific topics by following one of our many Training Courses
ranging from how to easily debug application to setting up a Continuous Integration process and a lot of things in
between.

STM32F7508-DK Evaluation Kit

During this Getting Started, you will learn to:

• run an Application on the STM32F7508-DK Evaluation Kit Virtual Device,

• run the same Application on your STM32F7508-DK Evaluation Kit.

In case you are not familiar with MicroEJ, please visit Discover MicroEJ to understand the principles of our technol-
ogy.

Prerequisites

Note: This Getting Started has been tested on Windows 10. Also note that examples used in this Getting Started
could depend on older tools and libraries. Most notably our dependency manager plugin (using Gradle) could be
an older version.

This Getting Started is separated in twomain parts.

The first part consists of running an MVC demo application on the Virtual Device. All you need is:

• An Internet connection to access Github repositories &Module Repositories.

• MICROEJ SDK 6 (installed during Environment Setup).

• The Example-Foundation-Libraries samples at GitHub. Download or clone the project here.

The second part consists of running the same demo application on your device. For that you will need:

• STM32F7508-DK Evaluation Kit, available here.

3.3. Getting Started 37

https://github.com/MicroEJ/Example-Foundation-Libraries
https://github.com/MicroEJ/Example-Foundation-Libraries
https://github.com/MicroEJ/Example-Eclasspath
https://github.com/MicroEJ/Example-Eclasspath
https://github.com/MicroEJ/Example-IOT
https://github.com/MicroEJ/Example-IOT
https://github.com/microej?q=vee&type=all&language=&sort=
https://developer.microej.com/discover-microej/
https://gradle.org/
https://github.com/MicroEJ/Example-Foundation-Libraries/tree/51.0.0
https://www.st.com/en/evaluation-tools/stm32f7508-dk.html

MicroEJ Documentation,

• You will be guided on how to install STM32CubeIDE later.

Environment Setup

To follow this Getting Started, you need to:

• Install MICROEJ SDK 6.

• Get the Example-Foundation-Libraries from GitHub.

Install MICROEJ SDK 6

Install MICROEJ SDK 6 by following Installation instructions. Android Studio Hedgehog is used on this Getting
Started but feel free to use your favorite IDE.

Set up the Application on your IDE

Import the Project

The first step is to import the Application into your IDE:

Note: If you are using an IDE other than Android Studio, please have a look at Import a Project section.

• If you are in the Welcome Screen, click on the Open button. Otherwise click either on File > Open… .

• Select the Example-Foundation-Libraries directory locatedwhere youdownloaded it and click on the OK
button.

3.3. Getting Started 38

MicroEJ Documentation,

The Gradle project should now be imported in Android Studio, your workspace contains the following project in
the Projects view:

3.3. Getting Started 39

MicroEJ Documentation,

3.3. Getting Started 40

MicroEJ Documentation,

Accept the MICROEJ SDK EULA

Youmay have to accept the SDK EULA if you haven’t already done it, please have a look at SDK EULA Acceptation.

Run an Application on the Virtual Device

We will be using the microui.mvc Application as the sample to test the VEE port simulation execution (you can
choose another example it’ll work similarly). In order to execute the microui.mvc Application on the Virtual
Device, the SDK provides the Gradle runOnSimulator task.

Note: If you are using an IDE other than Android Studio, please have a look at Run on Simulator section.

• Double-click on the runOnSimulator task in the Gradle tasks view. It may take few seconds.

3.3. Getting Started 41

MicroEJ Documentation,

The Virtual Device starts and executes the microui.mvc application.

3.3. Getting Started 42

MicroEJ Documentation,

Well Done!

Now you know how to run an application on a Virtual Device.

If youwant to learnhow to runanapplicationon your STM32F7508-DKEvaluationKit, you can continue this Getting
Started: Run an Application on STM32F7508-DK Evaluation Kit.

Otherwise, learn how toModify the Java Application.

3.3. Getting Started 43

MicroEJ Documentation,

Run an Application on STM32F7508-DK Evaluation Kit

To deploy microui.mvc application on your board, you will have to:

• Setup your Environment (IDE, flashing-tool, hardware setup).

• Request a 30 days Evaluation License and install an activation key.

• Build the Executable.

• Flash the board.

Environment Setup

This chapter takes approximately one hour and will take you through the steps to set up your board and build the
BSP.

Install the STM32CubeIDE software

Please install the following:

• The STM32CubeIDE version 1.9.0 for STM32F7508-DK, available here.

• The STM32CubeProgrammer utility program, available here.

Be aware that we need the 1.9.0 version of the STM32CubeIDE, also please install the IDE and programmer to the
default installation folders, it will simplify future steps.

Hardware Setup

• Check the jumpers configuration on JP1, you only want the 5V link jumper to be bridged.

• Connect the micro-USB cable to CN14 to power the board.

The USB connection is used as a serial link, a ST-Link probe, and a power input for the board all at once.

The COM port uses the following parameters:

Baudrate Data bits Parity bits Stop bits Flow control
115200 8 None 1 None

You can have a look at your application logs with an RS232 Terminal (e.g. Termite).

Congratulations! You have finished the setup of your environment. You are now ready to discover how to build and
flash a MicroEJ application.

3.3. Getting Started 44

https://www.st.com/en/development-tools/stm32cubeide.html
https://www.st.com/en/development-tools/stm32cubeprog.html
https://www.compuphase.com/software_termite.htm

MicroEJ Documentation,

Build the Executable for the STM32F7508-DK Evaluation Kit

In order to build the Executable of the microui.mvc Application, the SDK provides the buildExecutable Gradle
task.

Note: If you are using an IDE other than Android Studio, please have a look at Build an Executable section. Come
back on this page if you need to activate an Evaluation License.

• Double-click on the buildExecutable task in the Gradle tasks view.

• The build stops with a failure.

• Go to the top project in the console view and scroll up to get the following error message:

• Copy the UID. It will be required to activate your Evaluation license.

Request your Evaluation License:

• Request your Evaluation license by following the Request your Activation Key instructions. You will be asked
to fill the machine UID field with the UID you copied before.

• When you have received your activation key by email, drop it in the license directory by following the Install
the License Key instructions (drop the license key zip file to the ~/.microej/licenses/ directory).

Now your Evaluation license is installed, you can relaunch your application build by double-clicking on the
buildExecutable task in the Gradle tasks view. It may take some time.

The Gradle task deploys the Application in the BSP and then builds the BSP using Make.

The microui.mvc application isbuilt and ready tobe flashedonSTM32F7508-DKEvaluationKitonce thehardware
setup is completed.

Flash the Application on the STM32F7508-DK Evaluation Kit

In order to flash the microui.mvc Application on the STM32F7508-DK Evaluation Kit, the application provides the
Gradle runOnDevice task.

Note: If you are using an IDE other than Android Studio, please have a look at Run on Device section.

• Double-click on the runOnDevice task in the Gradle tasks view. It may take some time.

3.3. Getting Started 45

MicroEJ Documentation,

Once the firmware is flashed, you should see the microui.mvc running on your board.

Modify the Java Application

With MicroEJ, it is easy to modify and test your Java application on the Virtual Device.

For example, we could modify the color used in the pie chart.

• Open the PieView file located in the src/main/java/com/microej/example/foundation/microui/mvc
folder.

• The pie char color is set at line 12, replace the following line:

public static final int COLOR_CONTENT = 0x2fc19c; // green

by

public static final int COLOR_CONTENT = 0x800080; // purple

3.3. Getting Started 46

MicroEJ Documentation,

• Follow Run an Application on the Virtual Device instructions to launch themodified application on the Virtual
Device.

Here is the modified application running in simulation:

Going Further

You have now successfully executed a MicroEJ application on an embedded device so what’s next?

If you are an application developer you can continue to explore MicroEJ’s APIs and functionalities by running and
studying our samples at GitHub:

Foundation Libraries Eclasspath IoT
This project gathers all the ba-
sic examples of the foundation li-
braries.

This project gather all the exam-
ples of eclasspath.

This project gathers simple appli-
cations using net libraries.

https://github.com/MicroEJ/
Example-Foundation-Libraries

https://github.com/MicroEJ/
Example-Eclasspath

https://github.com/MicroEJ/
Example-IOT

You can also learn how to build bigger and better applications by reading our Application Developer Guide.

If you are an embedded engineer you could look at our VEE port examples at GitHub. And to learn how create
custom VEE ports you can read our VEE Porting Guide.

You can also follow the Kernel Developer Guide for more information on our multi-application framework or read
about our powerful wearable solution called VEE Wear.

Last but not least you can choose to learn about specific topics by following one of our many Training Courses
ranging from how to easily debug application to setting up a Continuous Integration process and a lot of things in
between.

3.3. Getting Started 47

https://github.com/MicroEJ/Example-Foundation-Libraries
https://github.com/MicroEJ/Example-Foundation-Libraries
https://github.com/MicroEJ/Example-Eclasspath
https://github.com/MicroEJ/Example-Eclasspath
https://github.com/MicroEJ/Example-IOT
https://github.com/MicroEJ/Example-IOT
https://github.com/microej?q=vee&type=all&language=&sort=

MicroEJ Documentation,

3.3.2 VEE Port Examples

These VEE ports are provided as-is. They can include libraries that are not the latest version. Choose your VEE port
by clicking on the links below.

i.MX RT595 Evaluation Kit

All VEE Port source code examples can be found at GitHub.

i.MX RT595 Evaluation Kit

During this Getting Started, you will learn to run:

• run an Application on the i.MX RT595 Evaluation Kit Virtual Device,

• run the same Application on your i.MX RT595 Evaluation Kit.

In case you are not familiar with MicroEJ, please visit Discover MicroEJ to understand the principles of our technol-
ogy.

Prerequisites

Note: ThisGettingStartedhasbeen testedonWindows 10& 11. Alsonote that examplesused in thisGettingStarted
could depend on older tools and libraries. Most notably our dependency manager plugin (using Gradle) could be
an older version.

This Getting Started is separated in twomain parts.

The first part consists of running a demo application on the Virtual Device. All you need is:

• An Internet connection to access Github repositories &Module Repositories.

• MICROEJ SDK 6 (installed during Environment Setup).

The second part consists of running the same demo application on your device. For that you will need:

• i.MX RT595 Evaluation Kit, available here.

• G1120B0MIPI display panel, available here,

• A GNU ARM Embedded Toolchain, Cmake and Make are needed to build the BSP. You will be guided on how
to install the toolchain later.

• LinkServer tool to flash the board. You will be guided on how to install this tool later.

3.3. Getting Started 48

https://github.com/MicroEJ/?q=VEE&type=all&language=&sort=
https://developer.microej.com/discover-microej/
https://gradle.org/
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-rt595-evaluation-kit:MIMXRT595-EVK
https://www.nxp.com/part/G1120B0MIPI

MicroEJ Documentation,

Environment Setup

To follow this Getting Started, you need to:

• Install MICROEJ SDK 6.

• Get the Demo-Wearable-VG from Github.

Install MICROEJ SDK 6

Install MICROEJ SDK 6 by following Installation instructions. IntelliJ IDEA is used on this Getting Started but feel
free to use your favorite IDE.

Get Demo-Wearable-VG

For this Getting Started, the Demo-Wearable-VG Applicationwill be use. You can download it using the following
command:

git clone -b 2.0.0 https://github.com/MicroEJ/Demo-Wearable-VG.git

Note: If you don’t have Git installed, you can download the source code directly from our GitHub repository. Then
you can click on : Code > Download ZIP .

Set up the Application on your IDE

Import the Project

The first step is to import the Demo-Wearable-VG Application into your IDE:

Note: If you are using another IDE than IntelliJ IDEA, please have a look at Import a Project section.

• If you are in the Welcome Screen, click on the Open button. Otherwise click either on File > Open…

or on File > New > Project From Existing Sources… .

• Select the Demo-Wearable-VG directory located where you downloaded it and click on the OK button.

3.3. Getting Started 49

https://github.com/MicroEJ/Demo-Wearable-VG/tree/2.0.0

MicroEJ Documentation,

• If you are asked to choose a project model, select Gradle .

• Click on the Create button.

The Gradle project should now be imported in IntelliJ IDEA, your workspace contains the following projects:

3.3. Getting Started 50

MicroEJ Documentation,

Accept the MICROEJ SDK EULA

Youmay have to accept the SDK EULA if you haven’t already done it, please have a look at SDK EULA Acceptation.

Run an Application on the Virtual Device

In order to execute the Demo-Wearable-VG Application on the Virtual Device, the SDK provides the Gradle
runOnSimulator task.

Note: If you are using another IDE than IntelliJ IDEA, please have a look at Run on Simulator section.

• Double-click on the runOnSimulator task in the Gradle tasks view. It may takes few seconds.

3.3. Getting Started 51

MicroEJ Documentation,

The Virtual Device starts and executes the Demo-Wearable-VG application.

3.3. Getting Started 52

MicroEJ Documentation,

Note: If you want to knowmore about the use of the Demo-Wearable-VG , please have a look at its README.md
file.

3.3. Getting Started 53

https://github.com/MicroEJ/Demo-Wearable-VG/blob/2.0.0/watch-vg/README.md

MicroEJ Documentation,

Well Done!

Now you know how to run an application on a Virtual Device.

If you want to learn how to run an application on your i.MX RT595 Evaluation Kit, you can continue this Getting
Started: Run an Application on i.MX RT595 Evaluation Kit.

Otherwise, learn how toModify the Java Application.

Run an Application on i.MX RT595 Evaluation Kit

To deploy Demo-Wearable-VG application on your board, you will have to:

• Setup your Environment (Toolchain, flashing-tool, hardware setup).

• Request a 30 days Evaluation License and install an activation key.

• Build the Executable.

• Flash the board.

Environment Setup

This chapter takes approximately one hour and will take you through the steps to set up your board and build the
BSP.

Install the C Toolchain

The C toolchain must be installed, it is composed of the GNU ARM Embedded Toolchain, CMake and Make.

Note: This Getting Started has been tested with the following configuration:

• GNU ARM Embedded Toolchain version 10.3 2021.10 .

• CMake version 3.26.5 .

• Make version 3.81 .

Later versions may or may not work, andmay needmodification to the Getting Started steps.

Install GNU ARM Embedded Toolchain

The toolchain is the GNU ARM Embedded Toolchain.

At the end of the installation, it will ask you to complete the Setup of the wizard, choose the following options:

3.3. Getting Started 54

https://developer.arm.com/downloads/-/gnu-rm

MicroEJ Documentation,

Once installed, ARMGCC_DIR must be set as an environment variable and point to the toolchain directory. To
do so:

• Open the Edit the system environment variables application on Windows.

• Click on the Environment Variables… button.

• Click on the New… button under the User variables section.

• Set Variable Name to ARMGCC_DIR .

• Set Variable Value to the toolchain directory (e.g. C:\Program Files (x86)\GNU Arm Embedded
Toolchain\10 2021.10).

• Click on the Ok button until it closes Edit the system environment variables application.

Install CMake

CMake is the application used by the build system to generate the firmware.

During the installation, it will ask you if you wish to add CMake to your system Path, add it at least to the current
user system path. If youmissed it, you canmanually add CMake/bin folder to your path.

Install Make

Make is the tool that will generate the executable based on the files generated by CMake. It will also be used to
flash the board. Under Download section, you can select the Setup program for the complete package, except
sources.

By default, it will automatically addMake to your path. If not, you canmanually add GnuWin32\bin folder to your
path.

3.3. Getting Started 55

https://cmake.org/download/
https://gnuwin32.sourceforge.net/packages/make.htm

MicroEJ Documentation,

Install the Flashing Tool

Note: This Getting Started has been tested with LinkServer version 1.2.45 .

Later versions may or may not work, andmay needmodification to the Getting Started steps.

LinkServer is needed to flash the board.

Once installed, LinkServer_xxx/binaries folder must be set on your Path. To do so:

• Open the Edit the system environment variables application on Windows.

• Click on the Environment Variables… button.

• Select Path variable under the User variables section and edit it.

• Click on New and point to the binaries folder located where you installed LinkServer (e.g. nxp/
LinkServer_1.2.45/binaries).

Hardware Setup

3.3. Getting Started 56

https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/linkserver-for-microcontrollers:LINKERSERVER

MicroEJ Documentation,

Setup the i.MX RT595 Evaluation Kit:

• Check that the dip switches (SW7) are set to OFF, OFF and ON (ISP0, ISP1, ISP2).

• Ensure jumpers JP18 and JP19 are closed.

• Remove jumper JP4.

• Connect the micro-USB cable to J40 to power the board.

The USB connection is used as a serial console for the SoC, as a CMSIS-DAP debugger, and as a power input for the
board.

A COM port is automaticallymountedwhen the board is plugged into a computer using a USB cable. All board logs
are available through this COM port.

The COM port uses the following parameters:

Baudrate Data bits Parity bits Stop bits Flow control
115200 8 None 1 None

You can have a look at your application logs with an RS232 Terminal (e.g. Termite).

Congratulations! You have finished the setup of your environment. You are now ready to discover how to build and
flash a MicroEJ application.

Build the Executable for i.MX RT595 Evaluation Kit

In order to build the Executable of the Demo-Wearable-VG Application, the SDK provides the buildExecutable
Gradle task.

Note: If you are using another IDE than IntelliJ IDEA, please have a look at Build an Executable section. Come back
on this page if you need to activate an Evaluation License.

• Double-click on the buildExecutable task in the Gradle tasks view.

• The build stops with a failure.

• Go to the top project in the console view and scroll up to get the following error message:

• Copy the UID. It will be required to activate your Evaluation license.

Request your Evaluation License:

3.3. Getting Started 57

https://www.compuphase.com/software_termite.htm

MicroEJ Documentation,

• Request your Evaluation license by following the Request your Activation Key instructions. You will be asked
to fill the machine UID field with the UID you copied before.

• When you have received your activation key by email, drop it in the license directory by following the Install
the License Key instructions (drop the license key zip file to the ~/.microej/licenses/ directory).

Now your Evaluation license is installed, you can relaunch your application build by double-clicking on the
buildExecutable task in the Gradle tasks view. It may take some time.

The Gradle task deploys the MicroEJ application in the BSP and then builds the BSP using Make.

Warning: OnWindows, the build may fail because of file path length limit exceeded with following error mes-
sage:

arm-none-eabi-gcc.exe: fatal error: no input Files

In this case, shorten the build directory path in ./watch-vg/build.gradle.kts :

buildDir = file(”C:/Demo-Wearable-VG/build”)

The Demo-Wearable-VG application is built and ready to be flashed on i.MX RT595 Evaluation Kit once the hard-
ware setup is completed.

Flash the Application on the i.MX RT595 Evaluation Kit

In order to flash the Demo-Wearable-VG Application on i.MX RT595 Evaluation Kit, the application provides the
Gradle runOnDevice task.

Note: If you are using another IDE than IntelliJ IDEA, please have a look at Run on Device section.

• Double-click on the runOnDevice task in the Gradle tasks view. It may take some time.

3.3. Getting Started 58

MicroEJ Documentation,

Once the firmware is flashed, you should see the Demo-Wearable-VG running on your board.

Modify the Java Application

With MicroEJ, it is easy to modify and test your Java application on the Virtual Device.

For example, we could modify the color of the date on the Flower Watchface that is shown at the startup of the
application.

• Open FlowerWatchface.java file located in the watchface-flower/src/main/java/com/microej/demo/watch/watchface/flower
folder.

• On the renderDate method, replace the following line:

g.setColor(style.getColor());

by

3.3. Getting Started 59

MicroEJ Documentation,

g.setColor(Colors.GREEN);

• Follow Run an Application on the Virtual Device instructions to launch themodified application on the Virtual
Device.

Here is the modified application running in simulation:

Going Further

You have now successfully executed a MicroEJ application on an embedded device so what’s next?

If you are an application developer you can continue to explore MicroEJ’s APIs and functionalities by running and
studying our samples at GitHub:

Foundation Libraries Eclasspath IoT
This project gathers all the ba-
sic examples of the foundation li-
braries.

This project gather all the exam-
ples of eclasspath.

This project gathers simple appli-
cations using net libraries.

https://github.com/MicroEJ/
Example-Foundation-Libraries

https://github.com/MicroEJ/
Example-Eclasspath

https://github.com/MicroEJ/
Example-IOT

You can also learn how to build bigger and better applications by reading our Application Developer Guide.

If you are an embedded engineer you could look at our VEE port examples at GitHub. And to learn how create
custom VEE ports you can read our VEE Porting Guide.

You can also follow the Kernel Developer Guide for more information on our multi-application framework or read
about our powerful wearable solution called VEE Wear.

3.3. Getting Started 60

https://github.com/MicroEJ/Example-Foundation-Libraries
https://github.com/MicroEJ/Example-Foundation-Libraries
https://github.com/MicroEJ/Example-Eclasspath
https://github.com/MicroEJ/Example-Eclasspath
https://github.com/MicroEJ/Example-IOT
https://github.com/MicroEJ/Example-IOT
https://github.com/microej?q=vee&type=all&language=&sort=

MicroEJ Documentation,

Last but not least you can choose to learn about specific topics by following one of our many Training Courses
ranging from how to easily debug application to setting up a Continuous Integration process and a lot of things in
between.

3.4 SDK 6 User Guide

MICROEJ SDK 6 provides the tools to write applications for MicroEJ-ready devices and run them on a virtual (sim-
ulated) or real device. The capability to execute an application in a simulated environment allows to quickly test
changes done in the application code and hence provides a short development feedback loop.

Since the purpose of the SDK is to develop for targeted MCU/MPU computers (IoT, wearable, etc.), it is a
cross-development tool. But unlike standard low-level cross-development tools, the SDK offers unique services
like hardware simulation. Used with your favorite IDE (Eclipse or IntelliJ IDEA), it provides a complete develop-
ment environment to create your applications:

Fig. 5: MicroEJ Application Development Overview

The SDK is composed of the following main elements:

• Gradle plugins, the plugins to compile and package MicroEJ modules with Gradle, a popular module and
buildmanager. Gradle provides a Command Line Interface and a complete integrationwith all themost used
IDEs.

• Architecture, the software package that includes theMEJ32 port to a target instruction set and a C compiler,
SOAR, core libraries and Simulator. SeeMicroEJ Architecture section for more details.

The SDK is licensed under the SDK End User License Agreement (EULA). The following figure shows a detailed view
of the elements.

3.4. SDK 6 User Guide 61

https://gradle.org/

MicroEJ Documentation,

Fig. 6: SDK Detailed View

3.4.1 Installation

This chapter will guide you through the installation process of the SDK on yourworkstation. First check the System
Requirements before proceeding.

System Requirements

• Hardware

– Intel x64 (Dual-core i5 minimum), ARM or macOS AArch64 (M1) processor

– 4GB RAM (minimum)

– 16GB Disk (minimum)

• Operating Systems

– Windows 11 or Windows 10 with Intel x64 or ARM chip

– Linux distributions (tested on Ubuntu 20.04, 22.04 and 24.04)

– macOS x86_64 with Intel chip

– macOS aarch64 with M1 chip

• Java Runtime Environment

– JDK 11 or higher LTS version (11 , 17 or 21) - Eclipse Temurin Distributions

3.4. SDK 6 User Guide 62

MicroEJ Documentation,

Check your JDK version

The SDK requires a JDK 11 or a higher LTS version to be installed and:

• The JAVA_HOME environment variable set to the path of a JDK.

OR

• The java executable of a JDK available in the PATH .

If the JAVA_HOME is set to a JDK, make sure that it is a JDK 11 or a higher LTS version.

If the JAVA_HOME is not set, make sure a JDK executable is available in the PATH environment variable. To
check, run java -version in a terminal:

$ java -version
openjdk version ”11.0.15” 2022-04-19
OpenJDK Runtime Environment Temurin-11.0.15+10 (build 11.0.15+10)
OpenJDK 64-Bit Server VM Temurin-11.0.15+10 (build 11.0.15+10, mixed mode)

If you don’t have a JDK installed, you can download and install one from Adoptium.

Configure Repositories

In order to use the SDKGradle plugins andmodules in your project, the Central andDeveloper repositoriesmust be
configured. There are several ways to declare repositories. To get started, you can declare them globally to make
them available in all your projects:

• Create the folder $USER_HOME/.gradle/init.d if it does not exist.

• Download and copy this file in the previously created folder.

At this stage, you can already build a project from the command line, for example, by executing the command ./
gradlew build at the root of theproject. But let’s continue the installationprocess tohavea completedevelopment
environment.

Note: This configuration makes MicroEJ Central and Developer repositories available to every project. If you
have several repositories configuration specific to certainprojects, youcan refer tomultiple repository configuration
how-to

SDK EULA Acceptation

The use of MICROEJ SDK 6 requires to accept the SDK EULA.

The acceptance can be done at the project level or system-wide. For a system-wide acceptance, we recommend to
define the accept-microej-sdk-eula-v3-1c system property in a gradle.properties file in your Gradle User Home
folder $USER_HOME/.gradle/gradle.properties :

systemProp.accept-microej-sdk-eula-v3-1c=YES

Refer to SDK EULA Acceptation section of Licenses to getmore information about SDK EULA, and alternative config-
urations.

3.4. SDK 6 User Guide 63

https://adoptium.net/temurin/releases/

MicroEJ Documentation,

Install the IDE

Using an IDE is highly recommended for developing MicroEJ projects, making the developmentmore comfortable
and increasing productivity. The following IDEs are supported:

• IntelliJ IDEA (Community or Ultimate edition) - Minimum supported version is 2021.2 .

• Android Studio - Minimum supported version is Hedgehog - 2023.1.1 .

• Eclipse IDE for Java Developers - Versions from 2022-03 to 2024-06 are supported.

• Visual Studio Code - Minimum supported version is 1.89.0 .

Follow their respective documentation to install one of them.

Install the IDE Plugins

Once your favorite IDE is installed, plugins must be installed to develop MicroEJ Applications.

IntelliJ IDEA

Android Studio

Eclipse

Visual Studio Code

Follow these steps to install the latest stable version of the MicroEJ plugin for IntelliJ IDEA:

• In IntelliJ IDEA, open the Settings window (menu File > Settings… on Windows and Linux, menu

IntelliJ IDEA > Settings… onmacOS).

• Go to the Languages & Frameworks > Kotlin menu.

• Uncheck Enable K2 .

Fig. 7: Disable K2 in IntelliJ IDEA

• Go to Plugins menu.

• In the search field, type MicroEJ :

3.4. SDK 6 User Guide 64

https://www.jetbrains.com/idea/
https://developer.android.com/studio
https://www.eclipse.org/downloads/packages/
https://code.visualstudio.com/download

MicroEJ Documentation,

Fig. 8: IntelliJ IDEA Plugin Installation

• Click on the Install button.

• In the upcoming Third-Party Plugins Notice window, click on the Accept button.

Fig. 9: IntelliJ IDEA Plugin Installation - Third-Party Plugins Notice

• Click on the Restart IDE button.

To install the snapshot version of the MicroEJ plugin, please refer toHow To Install MicroEJ Plugin Snapshot Version
on Android Studio or IntelliJ IDEA.

Warning: If thewhole Gradle build file is red (in error), check that K2 is disabled and invalidate the caches. See
Gradle Build Files (*.kts) Errors in IntelliJ IDEA for more details.

Follow these steps to install the latest stable version of the MicroEJ plugin for Android Studio:

• In Android Studio, open the Settings window (menu File > Settings… on Windows and Linux, menu

Android Studio > Settings… onmacOS).

• Go to Plugins menu.

• In the search field, type MicroEJ for Android Studio :

3.4. SDK 6 User Guide 65

MicroEJ Documentation,

Fig. 10: Android Studio Plugin Installation

• Click on the Install button.

• In the upcoming Third-Party Plugins Notice window, click on the Accept button.

Fig. 11: Android Studio Plugin Installation - Third-Party Plugins Notice

• Click on the Restart IDE button.

Warning: There used to be a unique plugin for both Android Studio and IntelliJ IDEA. Each IDE nowhas its own
dedicated plugin, so if the IntelliJ IDEA MicroEJ plugin has been previously installed, you should uninstall it
and install MicroEJ for Android Studio instead.

Follow these steps to install the latest stable version of the MicroEJ plugin for Eclipse:

• In Eclipse, go to Help > Eclipse Marketplace… .

• In the search field, type MicroEJ and press Enter:

3.4. SDK 6 User Guide 66

MicroEJ Documentation,

Fig. 12: Eclipse Plugin Installation - Marketplace

• Click on the Install button.

• Accept the license agreement and click on the Finish button.

• In the upcoming Trust Authorities window, check the https://repository.microej.com item
and click on the Trust Selected button.

3.4. SDK 6 User Guide 67

MicroEJ Documentation,

Fig. 13: Eclipse Plugin Installation - Trust Authorities

• In the upcoming Trust Artifacts window, check the Unsigned item and click on

Trust Selected button.

Fig. 14: Eclipse Plugin Installation - Trust Artifacts

• In the upcoming window, click on the Restart Now button.

MicroEJ does not provide a dedicated extension for VSCode, butMicrosoftprovides a extension that brings a useful
collection of extensions for Java called Extension Pack for Java. To install this extension:

• In Visual Studio Code, open the Extensions tab (Ctrl+Shift+X)

3.4. SDK 6 User Guide 68

https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-java-pack

MicroEJ Documentation,

• In the search field, type extension pack for Java :

Fig. 15: VS Code Java Extensions Installation

• Click on the Install button of the extension

This extension is compatible with MicroEJ development, but requires a specific version to be fully functional. Fol-
low these steps to setup Visual Studio Code:

• Go to the Installed extensions.

• Right-click on the Language Support for Java(TM) by Red Hat extension.

• Click on Install Specific Version

3.4. SDK 6 User Guide 69

MicroEJ Documentation,

• Select version 1.32.0 .

• Once installed, click on the Restart Extensions button.

• If you already opened a Java project in your IDE:

– Click on the Java status in the bottom bar.

– Select the Clean Workspace Cache ... action in the upcoming menu.

– In the upcoming popup in the bottom-right corner, click on the Reload and delete button.

Warning: Unlike other supported IDEs (Android Studio/IntelliJ IDEA/Eclipse), there is noMicroEJ plugin which
removes the JDK dependency. As a result, IntelliSense may propose classes and methods from the JDK which
are not present in your project dependencies.

3.4.2 Licenses

SDK EULA

MICROEJ SDK is licensed under the SDK EndUser License Agreement (EULA). The following figure shows a detailed
view of the elements.

Fig. 16: SDK Detailed View

3.4. SDK 6 User Guide 70

https://code.visualstudio.com/docs/editor/intellisense
https://repository.microej.com/licenses/sdk/LAW-0011-LCS-MicroEJ_SDK-EULA-v3.1C.txt

MicroEJ Documentation,

Commercial Component License

One of themain features of MICROEJ SDK is to download, install and linkmodules with MICROEJ VEE to produce a
binary Executable for a target device. Modules provided by MicroEJ Corp. are hosted in various repositories, each
distributed under specific license terms detailed in its respective LICENSE.txt file. Some of these modules are
licensed under the Commercial Component License. The Commercial Component license extends the SDK EULA
terms by adding specific requirements and restrictions related to production deployment.

License Manager Overview

Architectures are distributed in two different versions:

• Evaluation Architectures, associated with a software license key. They can be downloaded at https://
repository.microej.com/modules/com/microej/architecture/.

• Production Architectures, associated with a hardware license key stored on a USB dongle. They can be re-
quested to our support team.

The license manager is provided with Architectures and then integrated into VEE Ports.

License Check

The table below summarizes where the license is checked.

Application Run on
Simulator
(Virtual
Device)

Build on De-
vice

Documentation Link

Application containing a Java main class NO YES Run on Device
Application containing a Feature class NO NO Application Linking

SDK EULA Acceptation

The use of MICROEJ SDK 6 requires to accept the SDK EULA. If the SDK EULA is not accepted, the followingmessage
is displayed when executing a Gradle task:

> The MICROEJ SDK End-User License Agreement (EULA) must be accepted before it can start.
The license terms for this product can be downloaded from
https://repository.microej.com/licenses/sdk/LAW-0011-LCS-MicroEJ_SDK-EULA-v3.1C.txt
You can accept the EULA by setting the system property systemProp.accept-microej-sdk-eula-v3-1c=YES in a␣

→˓gradle.properties file
- in your Gradle User Home folder ($USER_HOME/.gradle/),
- or in the root folder of your project,

or specifying the -Daccept-microej-sdk-eula-v3-1c=YES command line option,
or setting the ACCEPT_MICROEJ_SDK_EULA_V3_1C=YES environment variable.

As mentioned in the message, there are several ways to accept the SDK EULA:

• define the accept-microej-sdk-eula-v3-1c systemproperty in a gradle.properties filewith the systemProp.
prefix:

systemProp.accept-microej-sdk-eula-v3-1c=YES

3.4. SDK 6 User Guide 71

https://repository.microej.com/licenses/sdk/LAW-0988-LCS-CommercialComponents-1.1-A.txt
https://repository.microej.com/modules/com/microej/architecture/
https://repository.microej.com/modules/com/microej/architecture/

MicroEJ Documentation,

This can be in the gradle.properties of your Gradle User Home folder (located by default at
$USER_HOME/.gradle/gradle.properties), or in the gradle.properties file at the root of your project for
example.

• define the accept-microej-sdk-eula-v3-1c system property in the command line:

./gradlew build -Daccept-microej-sdk-eula-v3-1c=YES

• set the ACCEPT_MICROEJ_SDK_EULA_V3_1C environment variable to YES .

Evaluation Licenses

This sectionshouldbeconsideredwhenusingEvaluationArchitectures,whichusesoftware licensekeys. Amachine
UID needs to be provided to activate an Evaluation license on the MicroEJ Licenses Server. Themachine UID is a 16
hexadecimal digits number.

Get your Machine UID

If your VEE Port is defined in the build.gradle.kts of your project, themachine UIDwill be displayedwhen building
an Executable.

[INFO] Launching in Evaluation mode. Your UID is XXXXXXXXXXXXXXXX.
[ERROR] Invalid license check (No license found).

Request your Activation Key

• Go to MicroEJ Licenses Server https://license.microej.com.

• Click on Create a new account link.

• Create your account with a valid email address. You will receive a confirmation email a few minutes after.
Click on the confirmation link in the email and log in with your new account.

• Click on Activate a License .

• Set Product P/N: to 9PEVNLDBU6IJ .

• Set UID: to the machine UID you copied before.

• Click on Activate .

• The license is being activated. You should receive your activation by email in less than 5 minutes. If not,
please contact our support team.

• Once received by email, save the attached zip file that contains your activation key.

3.4. SDK 6 User Guide 72

https://license.microej.com

MicroEJ Documentation,

Install the License Key

The license key zip file must be simply dropped to the ~/.microej/licenses/ directory (create it if it doesn’t exist).

Fig. 17: MicroEJ Shared Licenses Directory

Check Activation

This section contains instructions that will allow you to verify that your Evaluation license has been properly in-
stalled.

Note: The command line tool requires Architecture 8.3.0 or higher.

To get more details on installed Evaluation licenses, proceed with the following steps:

1. Open a terminal.

2. Change directory to an Evaluation VEE Port.

3. Execute the command:

java -Djava.library.path=resources/os/[OS_NAME] -jar licenseManager/licenseManagerKeyHardware.jar

with OS_NAME set to Windows64 for WindowsOS, Linux64 for Linux OS, Mac formacOS x86_64 (Intel
chip) or MacA64 for macOS aarch64 (M1 chip).

You should get something similar to the following output:

[DEBUG] ===== MicroEJ Evaluation License Debug Tool =====
[DEBUG] => UID: 39B7C108972A5C36.
[DEBUG] => Please specify a license directory containing 'keysHardware.txt'

This step is sufficient if youwant to check themachine’sUID. For ananalysis of the available licenses, proceed
with the following steps.

4. Build your Executablewith verbose mode enabled.

5. Retrieve in the logs the path to the licenses directory by searching for -Dlicenses.working.
dir=[path_to_license_dir] .

6. Execute the same command than before with the path to the licenses directory as argument:

java -Djava.library.path=resources/os/[OS_NAME] -jar licenseManager/licenseManagerKeyHardware.jar␣
→˓[path_to_license_dir]

You should get something similar to the following output:

[DEBUG] ===== MicroEJ Evaluation License Debug Tool =====
[DEBUG] => UID: 39B7C108972A5C36.
[DEBUG] => Detected MicroEJ License HQB48-VCQDQ-I7QDL-IAZUF - valid until YYYY-MM-DD.
[DEBUG] ===== SUCCESS =====

3.4. SDK 6 User Guide 73

MicroEJ Documentation,

Now the list of detected licenses and their validity are dumped.

Troubleshooting

Machine UID has changed

This canoccurwhen thehardware configurationof themachine is changed (especiallywhen thenetwork interfaces
have changed).

In this case, you can either request a new activation key for this new UID or go back to the previous hardware
configuration.

Production Licenses

This section should be considered when using Production Architectures, which use hardware license keys stored
on a USB dongle.

Fig. 18: MicroEJ USB Dongle

Note: If your USB dongle has been provided to you by your sales representative and you don’t have received an
activation certificate by email, itmay be a pre-activated dongle. Then you can skip the activation steps and directly
jump to the Check Activation section.

Request your Activation Key

• Go to license.microej.com.

• Click on Create a new account link.

• Create your account with a valid email address. You will receive a confirmation email a few minutes after.
Click on the confirmation link in the email and login with your new account.

• Click on Activate a License .

• Set Product P/N: to The P/N on the activation certificate.

• Enter your UID: serial number printed on the USB dongle label (8 alphanumeric char.).

• Click on Activate and check the confirmation message.

• Click on Confirm your registration .

3.4. SDK 6 User Guide 74

https://license.microej.com/

MicroEJ Documentation,

• Enter the Registration Code provided on the activation certificate.

• Click on Submit .

• Your Activation Key will be sent to you by email as soon as it is available (12 business hours max.).

Note: You can check the My Products page to verify your product registration status, the Activation Key avail-
ability, and download the Activation Key when available.

Once the Activation Key is available, download and save the Activation Key ZIP file to a local directory.

Activate your USB Dongle

This section contains instructions that will allow you to flash your USB dongle with the proper activation key.

You shall ensure that the following prerequisites are met :

• Your operating system is Windows

• The USB dongle is plugged and recognized by your operating system (see Troubleshooting section)

• Nomore than one USB dongle is plugged into the computer while running the update tool

• The update tool is not launched from a network drive or a USB key

• The activation key you downloaded is the one for the dongle UID on the sticker attached to the dongle (each
activation key is tied to the unique hardware ID of the dongle).

You can then proceed to the USB dongle update:

• Unzip the Activation Key file to a local directory

• Enter the directory just created by your ZIP extraction tool.

• Launch the executable program.

• Accept running the unsigned software if requested (Windows 10/11)

• Click on the Update button (no password needed)

3.4. SDK 6 User Guide 75

MicroEJ Documentation,

Fig. 19: Dongle Update Tool

• On success, an Update successfully message shall appear. On failure, an Error key or no proper rockey
message may appear.

Fig. 20: Successful Dongle Update

Check Activation

This section contains instructions that will allow you to verify that your USB dongle has been properly activated.

To get more details on connected USB dongle(s), run the debug tool as following:

1. Open a terminal.

2. Change directory to a Production VEE Port.

3. Execute the command:

Architecture v8.1.0 or higher

Architecture v8.0.0 or lower

3.4. SDK 6 User Guide 76

MicroEJ Documentation,

java -Djava.library.path=resources/os/[OS_NAME] -jar licenseManager/licenseManagerProduct.jar

java -Djava.library.path=resources/os/[OS_NAME] -jar licenseManager/licenseManagerUsbDongle.jar

with OS_NAME set to Windows64 for Windows OS, Linux64 for Linux OS, Mac for macOS x86_64 (Intel chip)
or MacA64 for macOS aarch64 (Apple Silicon chip).

If your USB dongle has been properly activated, you should get the following output:

[DEBUG] ===== MicroEJ Dongle Debug Tool =====
[DEBUG] => Detected dongle UID: XXXXXXXX.
[DEBUG] => Dongle UID has valid MicroEJ data: XXXXXXXX (only the first one is listed).
[DEBUG] => Detected MicroEJ License XXXXX-XXXXX-XXXXX-XXXXX - valid until YYYY-
→˓MM-DD.
[DEBUG] ===== SUCCESS =====

USB Dongle on GNU/Linux

For GNU/Linux Users (Ubuntu at least), by default, the dongle access has not been granted to the user, you have to
modify udev rules. Please create a /etc/udev/rules.d/91-usbdongle.rules file with the following contents:

ACTION!=”add”, GOTO=”usbdongle_end”
SUBSYSTEM==”usb”, GOTO=”usbdongle_start”
SUBSYSTEMS==”usb”, GOTO=”usbdongle_start”
GOTO=”usbdongle_end”

LABEL=”usbdongle_start”

ATTRS{idVendor}==”096e” , ATTRS{idProduct}==”0006” , MODE=”0666”

LABEL=”usbdongle_end”

Then, restart udev: sudo /etc/init.d/udev restart

You can check that the device is recognized by running the lsusb command. The output of the command should
contain a line similar to the one below for each dongle: Bus 002 Device 003: ID 096e:0006 Feitian Technologies,
Inc.

USB Dongle with Docker on Linux

If you use the SDK Docker image on a Linux host to build an Executable, the donglemust bemapped to the Docker
container. First, it requires to add a symlink on the dongle by following the instructions of the USB Dongle on
GNU/Linux section but with this /etc/udev/rules.d/91-usbdongle.rules file:

ACTION!=”add”, GOTO=”usbdongle_end”
SUBSYSTEM==”usb”, GOTO=”usbdongle_start”
SUBSYSTEMS==”usb”, GOTO=”usbdongle_start”
GOTO=”usbdongle_end”

LABEL=”usbdongle_start”

ATTRS{idVendor}==”096e” , ATTRS{idProduct}==”0006” , MODE=”0666” , SYMLINK+=”microej_dongle
→˓”

(continues on next page)

3.4. SDK 6 User Guide 77

https://hub.docker.com/r/microej/sdk

MicroEJ Documentation,

(continued from previous page)

LABEL=”usbdongle_end”

Then the symlink has to bemapped in the Docker container by adding the following option in the Docker container
creation command line:

--device /dev/microej_dongle:/dev/bus/usb/999/microej_dongle

The /dev/microej_dongle symlink can bemapped to any device path as long as it is in /dev/bus/usb .

USB Dongle with WSL

Note: The following steps have been tested on WSL2 with Ubuntu 22.04.2 LTS.

To use a USB dongle with WSL, you first need to install usbipd following the steps described in Microsoft WSL doc-
umentation:

First, check that WSL2 is installed on your system. If not, install it or update it following Microsoft Documentation

Then, you need install usbipd-win v4.0.0 or higher on Windows from usbipd-win Github repository.

And then, install usbipd and update hardware database inside you WSL installation:

sudo apt install linux-tools-generic hwdata
sudo update-alternatives --install /usr/local/bin/usbip usbip /usr/lib/linux-tools/*-generic/usbip 20

Add the udev rule described in USB Dongle on GNU/Linux, and restart udev:

sudo /etc/init.d/udev restart

Ensure your USB dongle is plugged, then start a PowerShell terminal in administrator mode.

List the connected devices with the following command:

usbipd.exe list

You should see your USB dongle connected with VID:PID==096e:0006 :

PS C:\Users\user> usbipd list
Connected:
BUSID VID:PID DEVICE STATE
2-6 0c45:674c Integrated Webcam, Integrated IR Webcam, USB DFU Not shared
2-8 0a5c:5843 Dell ControlVault w/ Fingerprint Touch Sensor, Microsoft ... Not shared
2-10 8087:0033 Intel(R) Wireless Bluetooth(R) Not shared
3-1 0bda:8153 Realtek USB GbE Family Controller Not shared
4-6 413c:c010 Dell DA310 Not shared
6-4 096e:0006 USB Input Device Not shared
6-6 046d:0819 USB Video Device, USB Audio Device Not shared
7-1 045e:0084 USB Input Device Not shared
7-2 04d9:1400 USB Input Device Not shared
7-3 10d5:55a2 USB Input Device Not shared

Here the BUSID is 6-4 .

Bind and attach the dongle to WSL:

3.4. SDK 6 User Guide 78

https://learn.microsoft.com/en-us/windows/wsl/connect-usb#install-the-usbipd-win-project
https://learn.microsoft.com/en-us/windows/wsl/connect-usb#install-the-usbipd-win-project
https://learn.microsoft.com/en-us/windows/wsl/install
https://github.com/dorssel/usbipd-win/releases

MicroEJ Documentation,

usbipd.exe bind --busid <BUSID>
usbipd.exe attach --wsl --busid <BUSID>

Open a bash terminal in your WSL instance, and check the USB dongle is successfully mounted with the following
command:

lsusb

You should see your USB dongle connected with ID 096e:0006 :

Bus 002 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub
Bus 001 Device 002: ID 096e:0006 Feitian Technologies, Inc. HID Dongle (for OEMs - manufacturer string is

→˓”OEM”)
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Note: You’ll need to follow these steps each time you system is rebooted or the dongle is plugged/unplugged.

Troubleshooting

This section contains instructions to check that your operating system correctly recognizes your USB dongle.

Windows Troubleshooting

• If the dongle activation failed with No rockey message, check there is one and only one dongle recognized
with the following hardware ID :

HID\VID_096E&PID_0006&REV_0201

Go to the Device Manager > Human Interface Devices and check among the USB Input Device entries

that the Details > Hardware Ids property match the ID mentioned before.

• If the dongle activation was successful with Update successfully message but the license does not appear
in the SDK or is not updated, try to activate again by starting the executable with administrator privileges:

• If the following errormessage is thrownwhenbuilding anExecutable, either thedongle plugged is a verbatim
dongle or it has not been successfully activated:

Invalid license check (Dongle found is not compatible).

3.4. SDK 6 User Guide 79

MicroEJ Documentation,

VirtualBox Troubleshooting

In a VirtualBox virtual machine, USB drives must be enabled to be recognized correctly. Make sure to enable the
USB dongle by clicking on it in the VirtualBox menu Devices > USB .

To make this setting persistent, go to Devices > USB > USB Settings… and add the USB dongle in the

USB Devices Filters list.

WSL Troubleshooting

Check that your dongle is attached to WSL from PowerShell:

usbipd.exe list

You should have a line saying Attached - Ubuntu :

PS C:\Users\sdkuser> usbipd.exe list
BUSID VID:PID DEVICE STATE
2-1 096e:0006 USB Input Device Attached - Ubuntu
2-6 0c45:6a10 Integrated Webcam Not attached
2-10 8087:0026 Intel(R) Wireless Bluetooth(R) Not attached
3-1 045e:0823 USB Input Device Not attached
3-4 046d:c31c USB Input Device Not attached

In you WSL console, the dongle must also be recognized. Ckeck by using lsusb :

skduser@host:~/workspaces/docs$ lsusb
Bus 002 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub
Bus 001 Device 003: ID 096e:0006 Feitian Technologies, Inc. HID Dongle (for OEMs - manufacturer␣
→˓string is ”OEM”)
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

This might not be sufficient. If you’re still facing license issues, restart udev, abd attach your dongle to WSL once
again.

Note: Hibernation may have unattached your dongle. Reload udev, unplug/plug your dongle and attach it from
PowerShell.

Remote USB Dongle Connection

When the dongle cannot be physically plugged to themachine running the SDK (cloud builds, virtualization, miss-
ing permissions, …), it can be configured using USB redirection over IP network.

There aremany hardware and software solutions available on themarket. Among others, this has been testedwith
https://www.net-usb.com/ and https://www.virtualhere.com/. Please contact our support team for more details.

3.4. SDK 6 User Guide 80

https://www.net-usb.com/
https://www.virtualhere.com/

MicroEJ Documentation,

3.4.3 Sentinel License Management

In addition to single-workstation license based on a hardware dongle, MICROEJ SDK supports floating licenses
based on Thales Sentinel LDK solution.

This chapter contains instructions that will allow you to setup Sentinel environment and activate your license.

There are two installation flows:

1. If you are a System Administrator, setup the Sentinel Floating License Server on a host machine.

2. If you are a Developer, proceed with the setup of the Sentinel client for the SDK.

Note: Floating License requires Architecture 8.1.0 or higher (Production only).

Setup the Sentinel Floating License Server

This section contains instructions for the System Administrator to setup the Sentinel Floating License Server.

• Choose amachine tohost the Sentinel Floating LicenseServer. Thehostmachinemust be choosenwith care,
as its fingerprint will be required to generate the license file. Especially, you have to choose a host machine
that is accessible through the network to all your developer workstations.

3.4. SDK 6 User Guide 81

MicroEJ Documentation,

Install the Sentinel LDK Run-time Environment (RTE) for License Server

Sentinel LDK Run-time Environment enables your protected software to run by communicating with Sentinel pro-
tection keys.

First, download Sentinel_RTE_Installation-1.1.0.zip file. It contains installer for Windows, macOS and Linux.

Installation for Windows

• Get haspdinst_37102.exe file

• Type haspdinst_37102.exe -i in the command line. The installation or upgrade process is performed auto-
matically. A message is displayed informing you that the Sentinel LDK Run-time Environment was success-
fully installed

Note: To uninstall Sentinel RTE, type haspdinst_37102.exe -r in the command line. A message is displayed
informing you that the Sentinel LDK Run-time Environment was successfully removed.

Installation for Linux

Get aksusbd_37102-10.12.1.tar.gz file and extract it. The installation packages are in the directory pkg , as root
enter the following command:

• For RedHat, SUSE, or CentOS 64-bit Intel systems: rpm -i aksusbd-10.12.1.x86_64.rpm

• For Ubuntu or Debian 64-bit Intel systems: dpkg -i aksusbd_10.12-1_amd64.deb

• Copy aksusbd-10.12.1/haspvlib_37102.so and aksusbd-10.12.1/haspvlib_x86_64_37102.so to /var/
hasplm directory

Note: All install/uninstall commands must be executed with root rights. On Ubuntu, prefix the commands with
the sudo command. On other Linux distributions, use the su utility to become root in the terminal window.

Configure the License Server

• On the host machine, open a web browser.

• Browse http://<server-ip-address>:1947 to open the Sentinel Admin Control Center.

• Go to Sentinel Keys tab and click on Fingerprint button to download the *.c2v file.

3.4. SDK 6 User Guide 82

https://docs.sentinel.thalesgroup.com/ldk/rte.htm
https://repository.microej.com/packages/sentinel/Sentinel_RTE_Installation-1.1.0.zip

MicroEJ Documentation,

• The *.c2v file stands for Customer to Vendor. Send this file to your MicroEJ sales representative.

• Wait until MicroEJ prepares your license key. Then you will receive a .v2c file. The *.v2c file stands for
Vendor to Customer.

• On the host machine, go back to the Sentinel Admin Control Center.

• Click on Update/Attach tab.

• Click on Select File… button and browse the .v2c file.

• Click on Apply File button.

In Sentinel Keys tab, you should see the successfully installed license key:

• Configure the host machine to open the IP port 1947 for TCP, UDP, TCP6, UDP6.

• Optionally, you can set a printable name for the Sentinel Floating License Server that will be displayed on
the Developer workstation license list.

– Go to Configuration > Basic Settings tab.

– Update the Machine Name text field (e.g. central-sentinel-server).

– Click on Submit button.

Your Sentinel Floating License Server is successfully configured. All you have to do is to share the host machine IP
address to your MicroEJ Developers.

Setup the Developer Workstation

This section contains instructions for the MicroEJ Developer to setup its workstation in order to connect a Sentinel
Floating License Server.

First, download Sentinel_RTE_Installation-1.1.0.zip file. It contains installer for Windows, macOS and Linux. Sen-
tinel LDK Run-time Environment enables your protected software to run by communicating with Sentinel protec-
tion keys.

Installation for Windows

• Get haspdinst_37102.exe file

3.4. SDK 6 User Guide 83

https://repository.microej.com/packages/sentinel/Sentinel_RTE_Installation-1.1.0.zip
https://docs.sentinel.thalesgroup.com/ldk/rte.htm
https://docs.sentinel.thalesgroup.com/ldk/rte.htm

MicroEJ Documentation,

• Type haspdinst_37102.exe -i in the command line. The installation or upgrade process is performed auto-
matically. A message is displayed informing you that the Sentinel LDK Run-time Environment was success-
fully installed

• Put MicroEJ_library\hasp_windows_x64_37102.dll file in the system folder (%SystemRoot%\
system32) if you have administrator rights on your machine. Otherwise drop the
hasp_windows_x64_37102.dll file beside java.exe executable of the Java Development Kit (JDK)
used to run the SDK.

Note: To restart RTE, go to Services window and restart Sentinel LDK License Manager service. To uninstall
Sentinel RTE, type haspdinst_37102.exe -r in the command line. A message is displayed informing you that the
Sentinel LDK Run-time Environment was successfully removed.

Then you can continue with the Remote Floating License Server section.

Installation for Linux

Note: All install/uninstall commands must be executed with root rights. On Ubuntu, prefix the commands with
the sudo command. On other Linux distributions, use the su utility to become root in the terminal window.

Get aksusbd_37102-10.12.1.tar.gz file and extract it. The installation packages are in the directory pkg , as root
enter the following command:

• For RedHat, SUSE, or CentOS 64-bit Intel systems: rpm -i aksusbd-10.12.1.x86_64.rpm

• For Ubuntu or Debian 64-bit Intel systems: dpkg -i aksusbd_10.12-1_amd64.deb

• Copy aksusbd-10.12.1/haspvlib_37102.so and aksusbd-10.12.1/haspvlib_x86_64_37102.so to /var/
hasplm directory

• Get MicroEJ_library/libhasp_linux_x86_64_37102.so file and copy it in a directory of your choice

• Set LD_LIBRARY_PATH variable with command export LD_LI-
BRARY_PATH=<directory_of_libhasp_file>:$LD_LIBRARY_PATH (just the directory, not
with the file name). This modification has to be setup at session startup (e.g: using ~/.bashrc or ~/.profile
files) to ensure that OS is properly configured before running the SDK.

Note: If you use the Sentinel RTE on WSL (Windows Subsystem for Linux): you can set the service to start on boot
by creating the file /etc/wsl.conf and add these lines to it:

[boot]
command=”service aksusbd start”

You can check the service status with the command sudo service aksusbd status

Then you can continue with the Remote Floating License Server section.

Installation for MacOS

• Get Sentinel_Runtime_37102.tar file

• In SentinelRuntimeInstaller.framework/Versions/A/Resources/ double-click on Sentinel_Runtime.pkg

• Double-click the Install Sentinel Runtime Environment disk image icon. The installer wizard is launched

3.4. SDK 6 User Guide 84

MicroEJ Documentation,

• Follow the instructions of the installer wizard until the installation is complete. The first time that you run
Admin Control Center and submit configuration changes, hasplmd creates configuration files in /private/
etc/hasplm/

• Get MicroEJ_library/hasp_darwin_37102.dylib file and copy it in a directory of your choice

• Set DYLD_LIBRARY_PATH variable with command export DYLD_LI-
BRARY_PATH=<your_directory>:$DYLD_LIBRARY_PATH . This modification has to be setup at
session startup (e.g: using .bashrc file) to ensure that OS is properly configured before running the SDK.

Note: To restart the daemons, on a terminal, go to /Library/LaunchDaemons/ and launch sudo launchctl load
com.aladdin.aksusbd.plist and sudo launchctl load com.aladdin.hasplmd.plist

Then you can continue with the Remote Floating License Server section.

Add Remote Floating License Server

From Sentinel Admin Control Center

• On the developer workstation, open a web browser.

• Browse http://localhost:1947 to open the Sentinel Admin Control Center (if you work with WSL read note
below).

• Go to Configuration > Access to Remote License Managers .

• Check Allow Access to Remote Licenses .

• Uncheck Broadcast Search for Remote Licenses .

• In Remote License Search Parameters , add the Floating License Server IP address that should have been
shared by your System Administrator.

• Click on Submit button.

• Your computer should now have access to the licenses configured on the Floating License Server. In
Sentinel Keys tab, you should see the license key provided by your Floating License Server (e.g. cen-
tral-sentinel-server).

3.4. SDK 6 User Guide 85

http://localhost:1947

MicroEJ Documentation,

Note: If you use WSL (Windows Subsystem for Linux) localhost refers to your Windows localhost and not to your
WSL instance. First, on WSL, create /etc/hasplm/hasplm.ini file and add accremote = 1 line to it. Then on WSL
terminal, launch hostname -I command, copy the first IP address and use it instead of localhost in your browser
(e.g. http://172.30.106.171:1947/).

From Command Line

• On Linux: update or create the file hasplm.ini in /etc/hasplm or hasp_37102.ini in ~/.hasplm (if you
have not installed RTE as root).

• OnWindows: edit %CommonProgramFiles(x86)%\Aladdin Shared\HASP\hasplm.ini file.

Then add to the .ini file the following lines:

[REMOTE]
broadcastsearch = 0
serversearchinterval = 30
serveraddr = <license_server_IP>

• Restart the service.

Running in a container

If you want to configure a CI (Continuous integration) runner you can follow one of these two solutions:

• Either create a Docker image with the RTE installed inside, see Installation for Linux section.

• Or install and configure the RTE on the host and run the Docker container with these options:

-v /var/hasplm:/var/hasplm:ro -v /home/<host_user>/.hasplm:/home/<container_user>/.
→˓hasplm:ro -e LD_LIBRARY_PATH=/var/hasplm

Runtime Installation Instructions and Troubleshooting

Check Activation with the Command Line Tool

To verify access to the Sentinel license on theworkstationwhere the SDK executes, run the debug tool as following:

1. Open a terminal

2. Change directory to a Production VEE Port

3. Execute the command:

java -Djava.library.path=resources/os/[OS_NAME] -jar licenseManager/licenseManagerProduct.
→˓jar

3.4. SDK 6 User Guide 86

http://172.30.106.171:1947/

MicroEJ Documentation,

with OS_NAME set to Windows64 for Windows OS, Linux64 for Linux OS, Mac for macOS
x86_64 (Intel chip) or MacA64 for macOS aarch64 (M1 chip).

If your Sentinel license has been properly activated, you should get the following output:

[DEBUG] ===== MicroEJ Sentinel Debug Tool =====
[DEBUG] => Detected Sentinel License Key ID: XXXXXXXXXXXXXXXX.
[DEBUG] => Detected MicroEJ License valid until YYYY-MM-DD.
[DEBUG] ===== SUCCESS =====

Troubleshooting

Sentinel API dynamic library not found (code 400)

The following error occurred when the library hasp_[os]_37102.[ext] has not been found. Please refer to Setup
the Developer Workstation.

Specifically, if you are on Linux:

• check the library is readable with the command file libhasp_linux_x86_64_37102.so .

• check the LD_LIBRARY_PATH environment variable is properly set before launchingMICROEJSDK. IfMICROEJ
SDK is launched from a desktop application, it must have been set in the ~/.profile file.

Sentinel key not found (code 7)

The following error occurred when there is no Sentinel license available. Go to http://localhost:1947/int/devices.
html and check your Sentinel licenses. You should see at least one installed license key:

Make sure you correctly configured the access to the Sentinel Floating License Server. Please refer to Add Remote
Floating License Server.

No Administrator Privileges on Developer Workstation

Sentinel LDKRTE installation requires administrator privileges and facilitates the setupof thenetwork server. How-
ever, it is not necessary to be installed on the developer workstation in case of floating licenses. See this documen-
tation for more details. If you are in such situation, please can contact our support team.

3.4. SDK 6 User Guide 87

http://localhost:1947/int/devices.html
http://localhost:1947/int/devices.html
https://docs.sentinel.thalesgroup.com/ldk/LDKdocs/SPNL/LDK_SLnP_Guide/Distributing/Distributing_LDK/RTE_when_required.htm
https://docs.sentinel.thalesgroup.com/ldk/LDKdocs/SPNL/LDK_SLnP_Guide/Distributing/Distributing_LDK/RTE_when_required.htm
https://www.microej.com/contact/#form_2

MicroEJ Documentation,

3.4.4 Scope and Limitations

The SDK 6 covers all the SDK 5 features, except:

• Build of Foundation Libraries, Packs and Offline Repositories.

• Launch of some MicroEJ tools, such as the Kernel Metadata Generator.

If you need these features, you have to use the SDK 5.

It is also important to note the following SDK 5 / SDK 6 compatibility rules:

• Libraries produced with SDK 6 can be fetched by SDK 5 projects.

• SDK 6 VEE Port cannot be used by SDK 5 Applications and Libraries.

• Architecture 8.1 is recommended to have full support on the SDK 6 features (especially to Debugwith IntelliJ
IDEA and Android Studio).

• SDK 6 Virtual Device cannot be used by SDK 5 Applications.

• SDK 5 Virtual Device cannot be used to build the Virtual Device of a SDK 6 Application (augmented Virtual
Device).

3.4.5 Create a Project

This chapter explains the different ways to create a new Application, Library or Mock project. If you want to create
a VEE Port project, refer to the Create a VEE Port section.

Note: The different project creation systems do not produce exactly the same project content and structure. Es-
pecially, the IntelliJ IDEA wizard produces a simple project whereas the Android Studio, Command Line Interface
and Eclipse wizards create multi-projects builds. Both structures (single and multi projects) can be used, the rec-
ommended one depends on the context (components, size of the project, …). Refer to the official Gradle docu-
mentation for more information.

IntelliJ IDEA

Android Studio

Eclipse

Visual Studio Code

Command Line Interface

The creation of a project with IntelliJ IDEA is done as follows:

• Click on File > New > Project… .

• Select MicroEJ in Generators list on the left panel.

• Fill the name of the project in the Name field.

• Select the location of the project in the Location field.

• Select the project type. If there is no button for your project type, click on Other button and select it in the
drop-down list.

• If you selected Application project type, you can check This is a kernel application checkbox if your
Application is a Kernel.

3.4. SDK 6 User Guide 88

https://docs.gradle.org/current/userguide/multi_project_builds.html
https://docs.gradle.org/current/userguide/multi_project_builds.html

MicroEJ Documentation,

• Fill the version of the artifact to publish in the Version field.

• Fill the group of the artifact to publish in the Group field.

• Fill the name of the artifact to publish in the Artifact field.

• Select the JVM used by Gradle in the JDK combobox.

• Check the Add sample code checkbox.

• Click on Create button.

Fig. 21: Project Creation in IntelliJ IDEA

Note: The Gradle project created by the wizard uses Gradle Wrapper with Gradle version 8.10.2 . Refer to the
Gradle Wrapper section for more information.

Note: By default, IntelliJ IDEA automatically saves any file change, but requires the user to explicitly trigger the
reloadofaGradleprojectwhen its configurationhaschanged. Therefore,when theconfigurationofaGradleproject
has been updated, you have to click on the reload icon button which appears on the right of the editor:

Fig. 22: Gradle Project reload in IntelliJ IDEA

3.4. SDK 6 User Guide 89

MicroEJ Documentation,

You can also configure IntelliJ IDEA to automatically reload a Gradle project after a change. Refer to the How To
Automatically reload a Gradle project section for more information.

Warning: When reloading your Gradle project, the build can fail if the SDK EULA has not been accepted. In that
case, you must set the ACCEPT_MICROEJ_SDK_EULA_V3_1C environment variable to YES and
restart IntelliJ IDEA. For more information about SDK EULA, refer to the Licenses chapter.

When the Gradle project is loaded, it should compile successfully, without any error. You can then learn how to
launch the build of the project, or how to run it on the Simulator in the case of an Application.

The creation of a project with Android Studio is done as follows:

• Click on File > New > Project… .

• Select Generic > NewMicroEJ project .

Fig. 23: Project Creation in Android Studio

• Click on the Next button.

• Fill the name of the project in the Name field.

• Fill the package name of the project in the Package name field.

3.4. SDK 6 User Guide 90

MicroEJ Documentation,

• Select the location of the project in the Save location field.

• Keep the default Android SDK in the Minimum SDK field.

• Select Kotlin for the Build configuration language field.

Note: Groovy build script DSL is not officially supported by the SDK, so the project created by the Wizard uses
Kotlin regardless of the language selected by the user.

Fig. 24: Project Creation in Android Studio

• Click on Next button.

• Fill the group of the artifact to publish in the Group field.

• Fill the version of the artifact to publish in the Version field.

• Select the project type in the drop-down list.

• If you selected Application project type, you can check This is a kernel application checkbox if your
Application is a Kernel.

• Click on Finish button.

3.4. SDK 6 User Guide 91

MicroEJ Documentation,

Fig. 25: Project Creation in Android Studio

• Change the view from Android to Project in the selectbox at the top of the project’s files tree:

Fig. 26: Project View in Android Studio

Note: If you do not use the last version of Android Studio, make sure that Gradle Wrapper uses at least Gradle
version 8.6 . Refer to the Gradle Wrapper section for more information.

The project created by the wizard is a multi-project with a single subproject (named app). The type of this sub-
project is the type that has previously been chosen.

3.4. SDK 6 User Guide 92

MicroEJ Documentation,

Note: By default, Android Studio automatically saves any file change, but requires the user to explicitly trigger
the reload of a Gradle project when its configuration has changed. Therefore, when the configuration of a Gradle
project has been updated, you have to click on the Sync Now actionwhich appears on the top-right of the editor:

Fig. 27: Gradle Project reload in Android Studio

You can also configure Android Studio to automatically reload a Gradle project after a change. Refer to the How To
Automatically reload a Gradle project section for more information.

Warning: When reloading your Gradle project, the build can fail if the SDK EULA has not been accepted. In that
case, you must set the ACCEPT_MICROEJ_SDK_EULA_V3_1C environment variable to YES and
restart Android Studio. For more information about SDK EULA, refer to the Licenses chapter.

When the Gradle project has been reloaded, it should compile successfully, without any error. You can then learn
how to launch the build of the project, or how to run it on the Simulator in the case of an Application.

The creation of a project with Eclipse is done as follows:

• Click on File > New > Project… .

• Select MicroEJ > <Type> project depending on your project type and click on the Next button.

3.4. SDK 6 User Guide 93

MicroEJ Documentation,

Fig. 28: Project Type Selection in Eclipse

• Fill the name of the project in the Name field, for example My Project .

• Fill the group of the artifact to publish in the Organization field.

• Fill the name of the artifact to publish in the Module field.

• Fill the version of the artifact to publish in the Revision field.

• If you selected Application module type, you can check This is a kernel application checkbox if your
Application is a Kernel.

• Click on Finish button.

3.4. SDK 6 User Guide 94

MicroEJ Documentation,

Fig. 29: Application Creation in Eclipse

Note: The Gradle project created by the wizard uses Gradle Wrapper with Gradle version 8.10.2 . Refer to the
Gradle Wrapper section for more information.

Warning: When reloading your Gradle project, the build can fail if the SDK EULA has not been accepted. In that
case, you must set the ACCEPT_MICROEJ_SDK_EULA_V3_1C environment variable to YES and
restart Eclipse. For more information about SDK EULA, refer to the Licenses chapter.

When the Gradle project is loaded, it should compile successfully, without any error. You can then learn how to
launch the build of the project, or how to run it on the Simulator in the case of an Application.

The creation of a project with Visual Studio Code is done as follows:

• Select View > Command Palette… .

• Run the Git: Clone command in the Command Palette.

Fig. 30: Command Palette in VS Code

3.4. SDK 6 User Guide 95

MicroEJ Documentation,

• Depending on the type of your project, fill the URI of the corresponding Github template repository in the
Search Bar. The available templates are:

– Application Project Template

– Add-On Library Project Template

– Mock Project Template

– Runtime Environment Template

– Java SE Library Template

• Click on Clone from URL .

Fig. 31: Search Bar in VS Code

• In the upcoming popup, choose a folder and click on the Select as Repository Destination button.

• When the Gradle project is loaded, select Terminal > New Terminal .

• In the integrated terminal, run the following commandat the root of theproject to remove theGit Repository:

Windows

Linux/macOS

rm -r -Force .git*

rm -rf .git*

• Rename the project and change its group and version in the build.gradle.kts build script.

The creation of a project via Command Line Interface is done as follows:

• Depending on the type of your project, retrieve theURI of the correspondingGithub template repository. The
available templates are:

– Application Project Template

– Add-On Library Project Template

– Mock Project Template

– Runtime Environment Template

– Java SE Library Template

• Clone the repository:

git clone <template-repository>

• Remove the Git Repository from the project:

Windows

Linux/macOS

3.4. SDK 6 User Guide 96

https://github.com/MicroEJ/Tool-Project-Template-Application/tree/1.5.0
https://github.com/MicroEJ/Tool-Project-Template-Add-On-Library/tree/1.5.0
https://github.com/MicroEJ/Tool-Project-Template-Mock/tree/1.5.0
https://github.com/MicroEJ/Tool-Project-Template-Runtime-Environment/tree/1.4.0
https://github.com/MicroEJ/Tool-Project-Template-JavaSE-Library/tree/1.4.0
https://github.com/MicroEJ/Tool-Project-Template-Application/tree/1.5.0
https://github.com/MicroEJ/Tool-Project-Template-Add-On-Library/tree/1.5.0
https://github.com/MicroEJ/Tool-Project-Template-Mock/tree/1.5.0
https://github.com/MicroEJ/Tool-Project-Template-Runtime-Environment/tree/1.4.0
https://github.com/MicroEJ/Tool-Project-Template-JavaSE-Library/tree/1.4.0

MicroEJ Documentation,

rm -r -Force .git*

rm -rf .git*

• Rename the project and change its group and version in the build.gradle.kts build script.

Configure a Project

The SDK allows to build several types of modules. Each type has its own Gradle plugin and configuration options.
Refer to the module type you want to build to configure your project:

• Application

• Add-On Library

• Mock

• Java SE Library

• Runtime Environment

Application Project

• Add the com.microej.gradle.application plugin in the build.gradle.kts file:

plugins {
id(”com.microej.gradle.application”) version ”1.3.0”

}

Note: The java plugin must not be added since it is automatically applied by the MicroEJ plugin.

• Create the Java main class in the src/main/java folder.

• Define the property applicationEntryPoint in the microej configuration block of the build.gradle.kts file.
It must be set to the Full Qualified Name of the Application main class, for example:

microej {
applicationEntryPoint = ”com.mycompany.Main”

}

Refer to the pageModule Natures for a complete list of the available MicroEJ natures and their corresponding plu-
gins.

Add-On Library Project

• Add the com.microej.gradle.addon-library plugin in the build script:

plugins {
id(”com.microej.gradle.addon-library”) version ”1.3.0”

}

3.4. SDK 6 User Guide 97

MicroEJ Documentation,

Note: The java plugin must not be added since it is automatically applied by the MicroEJ plugin.

Refer to the pageModule Natures for a complete list of the available MicroEJ natures and their corresponding plu-
gins.

Mock

• Add the com.microej.gradle.mock plugin in the build script:

plugins {
id(”com.microej.gradle.mock”) version ”1.3.0”

}

Note: The java plugin must not be added since it is automatically applied by the MicroEJ plugin.

Refer to the VEE Porting Guide Mock chapter for how to develop a Mock.

Refer to the pageModule Natures for a complete list of the available MicroEJ natures and their corresponding plu-
gins.

Java SE Library Project

• Add the com.microej.gradle.jse-library plugin in the build script:

plugins {
id(”com.microej.gradle.jse-library”) version ”1.3.0”

}

Note: The java plugin must not be added since it is automatically applied by the MicroEJ plugin.

Refer to the pageModule Natures for a complete list of the available MicroEJ natures and their corresponding plu-
gins.

Runtime Environment Project

• Add the com.microej.gradle.runtime-environment plugin in the build script:

plugins {
id(”com.microej.gradle.runtime-environment”) version ”1.3.0”

}

Note: The java plugin must not be added since it is automatically applied by the MicroEJ plugin.

Refer to the pageModule Natures for a complete list of the available MicroEJ natures and their corresponding plu-
gins.

3.4. SDK 6 User Guide 98

MicroEJ Documentation,

Create a subproject in an existing project

This section explains the different ways to add amodule to an existing project.

Warning: If you want to add a MicroEJ module to a non MicroEJ project, for example an Android project,
you must configure the repositories before creating the module. If the repositories used by your project are
centralized in the settings.gradle.kts file of the project, the MicroEJ repositories defined in this file must be

added to your settings.gradle.kts file.

IntelliJ IDEA

Android Studio

Eclipse

Visual Studio Code

The creation of a module with IntelliJ IDEA is done as follows:

• Click on File > New > Module… .

• Select MicroEJ in Generators list on the left panel.

• Fill the name of the module in the Name field.

• Select the location of the module in the Location field.

• Select the module type. If there is no button for your module type, click on Other button and select it in
the drop-down list.

• If you selected Application module type, you can check This is a kernel application checkbox if your
Application is a Kernel.

• Fill the version of the artifact to publish in the Version field.

• Fill the group of the artifact to publish in the Group field.

• Fill the name of the artifact to publish in the Artifact field.

• Select the JVM used by Gradle in the JDK combobox.

• Check the Add sample code checkbox.

• Click on Create button.

3.4. SDK 6 User Guide 99

https://docs.gradle.org/current/userguide/declaring_repositories_adv.html#sub:centralized-repository-declaration

MicroEJ Documentation,

Fig. 32: Module Creation in IntelliJ IDEA

The creation of a module with Android Studio is done as follows:

• Click on File > New > NewModule… .

• Select MicroEJ Module in Templates list on the left panel.

• Fill the name of the module in the Name field.

• Fill the group of the artifact to publish in the Group field.

• Fill the version of the artifact to publish in the Version field.

• Select the module type in the drop-down list.

• If you selected Application module type, you can check This is a kernel application checkbox if your
Application is a Kernel.

• Click on Finish button.

3.4. SDK 6 User Guide 100

MicroEJ Documentation,

Fig. 33: Module Creation in Android Studio

The creation of a module with Eclipse is done as follows:

• Right-click on your project and click on New > Folder .

• Select your project as parent folder.

• Fill the name of the module in the Folder name field.

• Click on Finish button.

3.4. SDK 6 User Guide 101

MicroEJ Documentation,

Fig. 34: Module Creation in Eclipse

• Right-click on your newly created folder and click on New > File .

• Enter build.gradle.kts in the File name field.

• Click on Finish button and open the build.gradle.kts file.

• Configure your module depending on its type.

• Declare the dependencies required by your project in the dependencies block. For example:

dependencies {
implementation(”ej.api:edc:1.3.7”)

}

• Open the settings.gradle.kts file of your project and add the following content:

include(”<module_name>”)

Note: By default, Eclipse requires the user to explicitly trigger the reload of a Gradle project when its content has
changed. Therefore, when the content of a Gradle project has been updated, you have to right-click on the project,
then click on Gradle and Refresh Gradle Project :

3.4. SDK 6 User Guide 102

MicroEJ Documentation,

Fig. 35: Gradle Project reload in Eclipse

You can also configure Eclipse to automatically reload a Gradle project after a change. Refer to the How To Auto-
matically reload a Gradle project section for more information.

• Right-click on the newly created module and click on New > Source Folder .

• Enter src/main/java in the Folder name field.

• Click on Finish button.

3.4. SDK 6 User Guide 103

MicroEJ Documentation,

Fig. 36: Source Folder Creation in Eclipse

• Follow the same steps to create the src/main/resources , src/test/java and src/test/resources folders.

The creation of a module with Visual Studio Code is done as follows:

• If the Explorer view is not already opened, open it by selecting View > Open View… > Explorer .

• Right-click in the Explorer view and click on New Folder… .

• Fill the name of the module and press Enter .

• Create a new build.gradle.kts file by right-clicking on your newly created folder and clicking on New File…
.

• Configure your module depending on its type.

• Declare the dependencies required by your module in the dependencies block. For example:

dependencies {
implementation(”ej.api:edc:1.3.7”)

}

• Open the settings.gradle.kts file of your project and add the following content:

include(”<module_name>”)

• Create the src/main/java folder by right-clicking on the newly created module and clicking on
New Folder… .

• Follow the same steps to create the src/main/resources , src/test/java and src/test/resources folders.

3.4. SDK 6 User Guide 104

MicroEJ Documentation,

Gradle Wrapper

It is recommended to use the Gradle Wrapper to execute a build. The Wrapper is a script that ensures that the
required version of Gradle is downloaded and used during the build of a project.

When creating a project following one of the project creation systems described in the Create a Project section, the
Wrapper files are automatically generated in the gradle/wrapper folder of the project. It is also possible to add
the Wrapper to an existing project. This requires to install the Gradle distribution, then to execute the wrapper
task with:

gradle wrapper

The Gradle version used by the project can then be updated in the gradle/wrapper/gradle-wrapper.properties
file. The SDK requires Gradle 8.6 or higher:

distributionUrl=https\://services.gradle.org/distributions/gradle-8.6-bin.zip

To use the Wrapper during a build, use gradlew or ./gradlew depending on your OS instead of gradle in the
command line:

Windows

Linux

gradlew build

./gradlew build

In the following chapters of the documentation, the Linux command ./gradlew is used in all examples to execute
a build.

Refer to the official Gradle documentation for more information about the Wrapper.

3.4.6 Import a Project

This chapter explains how to import a project in an IDE.

IntelliJ IDEA

Android Studio

Eclipse

In order to import an existing Gradle project in IntelliJ IDEA, follow the following steps:

• If you are in the Welcome Screen, click on the Open button. Otherwise click either on File > Open…

or on File > New > Project From Existing Sources… .

• Select the root directory of the project and click on the OK button.

3.4. SDK 6 User Guide 105

https://gradle.org/install/
https://docs.gradle.org/current/userguide/gradle_wrapper.html

MicroEJ Documentation,

Fig. 37: Project Import in IntelliJ IDEA

• If you are asked to choose a project model, select Gradle .

• Click on the Create button.

The Gradle project should now be opened in IntelliJ IDEA.

In order to import an existing Gradle project in Android Studio, follow the following steps:

• If you are in the Welcome Screen, click on the Open button. Otherwise click either on File > Open…

or on File > Import Project… .

• Select the root directory of the project and click on the OK button.

3.4. SDK 6 User Guide 106

MicroEJ Documentation,

Fig. 38: Project Import in Android Studio

The Gradle project should now be opened in Android Studio.

In order to import an existing Gradle project in Eclipse, follow these steps:

• Click on File > Import… .

• Select the project type Gradle > Existing Gradle Project and click on the Next button.

Fig. 39: Project Type Selection in Eclipse

3.4. SDK 6 User Guide 107

MicroEJ Documentation,

• Select the root directory of the project.

Fig. 40: Project root folder in Eclipse

• Click on the Next button and finally on the Finish button.

The Gradle project should now be opened in Eclipse.

3.4.7 Select a VEE Port

Building or running an Application or a Test Suite with the SDK requires a VEE Port.

Use one of the following available options to provide it to your project.

Note: Declaring a VEE Port in project dependencies only applies to the current project. This configuration is not
fetched transitively by consumer projects. Especially when configuring the VEE Port to test a library project, appli-
cation projects depending on this library will not “see” this test VEE Port, they must configure a VEE Port on their
own and are free to use a different one.

3.4. SDK 6 User Guide 108

MicroEJ Documentation,

Using a Module Dependency

When your VEE Port is published in an artifact repository, you can define the VEE Port by declaring a module de-
pendency in the build.gradle.kts file, with the microejVee configuration:

dependencies {
microejVee(”com.mycompany:myveeport:1.0.0”)

}

and by setting the Architecture Usage of the VEE Port.

This is generally the case for developers focused on Application and Library development. They don’t have (and
don’t need) the VEE Port project locally, they only need to use it.

Note: For dependencies stored in an Ivy repository, Gradle fetches them with the configuration de-
fault . If several artifacts are published with this configuration, the build will fail because it doesn’t
know which artifact to choose. You can select the right artifact by adding information on the one to
fetch in the artifact block, for example:

microejVee(”com.mycompany:myveeport:1.0.0”) {
artifact {

name = ”artifact-name”
type = ”zip”

}
}

This will select the artifact with the name artifact-name and with the type zip .

Refer to the Gradle documentation to learn all the options to select dependencies.

VEE Port project inside amulti-project

When the VEE Port project is in the same multi-project than the component which needs it (an Application for
example), the VEE Port project should be declared as a project dependency.

For example if the multi-project contains an Application subproject named my-app and a VEE Port subproject
called vee-port , the VEE Port projectmust be declared as a dependency in the build.gradle.kts file of the my-app
subproject as follows:

dependencies {

microejVee(project(”:vee-port”))

}

and the Architecture Usage of the VEE Port must be set.

The VEE Port will be automatically built when it is required by the Application. For example when running the
Application on the Simulator (with the runOnSimulator task) or when building the Application Executable (with
the buildExecutable), the VEE Port will be built before executing the requested task.

3.4. SDK 6 User Guide 109

https://docs.gradle.org/current/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html

MicroEJ Documentation,

Local VEE Port project outside amulti-project

When the Application or the Library which needs the VEE Port is not is the same multi-project than the VEE Port,
the VEE Port project can be imported thanks to the Gradle Composite Build feature.

This allows to consider the VEE Port project as part of the Application project, so all changes done to the VEE Port
are automatically considered when building or running the Application.

This is done by adding the following line in the settings.gradle.kts file of the Application project:

includeBuild(”[vee-port-project-absolute-path]”)

Then declaring the VEE Port as a dependency in the build.gradle.kts file of the Application project:

dependencies {

microejVee(”com.mycompany:vee-port:1.0.0”)

}

The dependency must use the module notation (”group:name:version”), where the group and namematch with
the ones declared in the VEE Port project. The group is defined in the build.gradle.kts file of the vee-port project
by the group property. The name is defined in the settings.gradle.kts file when the vee-port project is included.
For example, the name of the VEE Port is my-custom-vee-port if the vee-port subproject is included with:

include(”my-custom-vee-port”)
project(”:my-custom-vee-port”).projectDir = file(”vee-port”)

Otherwise the name of the subproject folder is used, so vee-port in the recommended structure.

Using a Local VEE Port Directory

When your VEE Port is available in a local directory, you can use it by declaring a file dependency in the build.
gradle.kts file, with the microejVee configuration:

dependencies {
microejVee(files(”C:\\path\\to\\my\\veePort\\source”))

}

This is generally the case when the VEE Port has been built locally

• in SDK 6, by executing the buildVeePort Gradle task on the VEE Port project. In this case, the VEE Port
directory is located at build/veePort/source in the project.

• in SDK 5, by executing a Build Module on the VEE Port configuration project. In this case, the VEE Port is a
sibling folder of the VEE Port configuration project, named after the VEE Port name.

Note: This file, aswell as other Gradle configuration files, respects the Java properties file convention: theOSpath
must use the UNIX path convention (path separator is /). TheWindows pathsmust have been convertedmanually
replacing \ by / or by \\ .

3.4. SDK 6 User Guide 110

https://docs.gradle.org/current/userguide/composite_builds.html

MicroEJ Documentation,

Using a Local VEE Port Archive

Whenyour VEEPort is available locally as anarchive file (.zip or .vde), you canuse it bydeclaring a file dependency
in the build.gradle.kts file, with the microejVee configuration:

dependencies {
microejVee(files(”C:\\path\\to\\my\\veePort\\file.zip”))

}

This is generally the case when

• the VEE Port has been built locally in SDK 6, by executing the buildVeePort Gradle task on the VEE Port
project. In this case, the VEE Port archive is located at build/veePort.zip in the project.

• the VEE Port has been built and published in SDK 5. In this case, the VEE Port archive is available in an artifact
repository and can be downloadedmanually to be used in your Application or Library project.

Note: The legacy JPF format of a VEE Port is not supported anymore in the SDK 6. If you want to use a VEE Port
.jpf file, you have to use the SDK 5.

Architecture Usage Selection

When the selected VEE Port is fetched froma repository or is a subproject of amulti-project, the default Architecture
Usage is eval (nomatter what is configured in the VEE Port project). It is possible to change the Architecture Usage
in theprojectwhichneeds it (anApplication for example) by setting the architectureUsage property in the microej
block in the build.gradke.kts file:

microej {
architectureUsage = ”prod”

}

Set the property to prod to use a Production Architecture and to eval to use an Evaluation Architecture. If not set,
the eval value is used.

Warning: When the VEE Port is a local archive or folder (microejVee(files(...))), the Architecture Usage is
defined when the VEE Port is built and can no longer be changed. In SDK 6 (with the buildVeePort task), the
ArchitectureUsage is defined by setting the architectureUsage property in the build.gradke.kts file of the VEE
Port project.

3.4.8 Run on Simulator

In order to execute an Application on the Simulator, the SDK provides the Gradle runOnSimulator task. The
prerequisites of this task are:

• The Application EntryPoint must be configured, as described in Configure a Project.

• The target VEEmust be defined:

– If your VEE is a VEE Port, refer to the Select a VEE Port page to know the different ways to provide a VEE
Port for a module project.

– If your VEE is a Kernel, refer to the Select a Kernel page to know the different ways to provide a Kernel
for a module project.

3.4. SDK 6 User Guide 111

MicroEJ Documentation,

Once these prerequisites are fulfilled, the Application can be started with the Simulator:

IntelliJ IDEA / Android Studio

Eclipse

Visual Studio Code

Command Line Interface

By double-clicking on the runOnSimulator task in the Gradle tasks view:

Warning: Android Studio does not allow to runmultiple Gradle tasks in parallel. If you still want to execute sev-
eral Gradle tasks simultaneously, you can launch them froma terminalwith theGradle CommandLine Interface
(CLI).

By double-clicking on the runOnSimulator task in the Gradle tasks view:

3.4. SDK 6 User Guide 112

MicroEJ Documentation,

By double-clicking on the runOnSimulator task in the Gradle tasks view:

From the command line interface:

$./gradlew runOnSimulator

With a simple Hello World Application, the output should be:

=============== [Initialization Stage] ===============
=============== [Converting fonts] ===============
=============== [Converting images] ===============
=============== [Launching on Simulator] ===============
Hello World!
=============== [Completed Successfully] ===============

SUCCESS

Warning: The execution of the runOnSimulator task can fail if the SDK EULA has not been accepted. In
that case, you can set the ACCEPT_MICROEJ_SDK_EULA_V3_1C environment variable to YES and

3.4. SDK 6 User Guide 113

MicroEJ Documentation,

restart your IDE or you can define the accept-microej-sdk-eula-v3-1c System property by creating a custom
configuration. For more information about SDK EULA, refer to the Licenses chapter.

Verbose Mode

If you needmore information about the execution of the Application with the Simulator, the verbosemode can be
enabled by using the --info Gradle option:

./gradlew runOnSimulator --info

Debug on Simulator

The SDK allows to run an Application with the Simulator in debug mode by setting the project property debug.
mode to true when executing the runOnSimulator task:

./gradlew runOnSimulator -P”debug.mode”=true

The debugmode is activated on the port 12000 by default. The port can be changed by using the project Property
debug.port :

./gradlew runOnSimulator -P”debug.mode”=true -P”debug.port”=8000

Once started, the Simulator waits for the connection of a debugger.

If you want to connect the IDE debugger:

IntelliJ IDEA / Android Studio

Eclipse

Visual Studio Code

Warning: IntelliJ IDEA and Android Studio need an Architecture 8.1 or higher for debugmode.

• Add a breakpoint in your Application code.

• Click on Run > Edit Configurations… .

• Click on + button (Add New Configuration).

• Select Remote JVM Debug .

• Click on the New launch configuration button.

• Give a name to the launcher in the Name field.

• Set the debug host and port.

• Click on the Debug button.

• Add a breakpoint in your Application code.

• Click on Run > Debug Configurations… .

• Select Remote Java Application .

3.4. SDK 6 User Guide 114

MicroEJ Documentation,

• Click on the New launch configuration button.

• Give a name to the launcher in the Name field.

• Set the debug host and port.

• Click on the Debug button.

Warning: VS Code needs an Architecture 8.1 or higher for debugmode.

• Add a breakpoint in your Application code.

• Click on the Run and Debug (Ctrl+Shift+D) icon on the right panel.

• Click on create a launch.json file in the opened panel.

3.4. SDK 6 User Guide 115

MicroEJ Documentation,

• Click on the Java entry proposed in the search field.

• Click on Add Configuration button

3.4. SDK 6 User Guide 116

MicroEJ Documentation,

• Select {} Java: Attach to Remote Program entry in the popup list.

• Set localhost as hostName and the port (default is 1200) in the generated json.

3.4. SDK 6 User Guide 117

MicroEJ Documentation,

• Select Attach to Remote Program in the selection box of the launcher.

• Click on the Start button

The debugger should connect to the Simulator and you should be able to debug your Application.

3.4. SDK 6 User Guide 118

MicroEJ Documentation,

Generate Code Coverage

To generate the Code Coverage files (.cc), invoke the :runOnSimulator task as follow:

./gradlew :runOnSimulator -D”microej.option.s3.cc.thread.period=15” -D”microej.option.s3.cc.activated=true”

Option Name: s3.cc.thread.period

Description:

It specifies the period between the generation of .cc files.

Note: If the application is abruptly ended (for example with Ctrl-C) before the the first period, no .cc files are
generated.

Option Name: s3.cc.activated

Description

Set to true to enable the generation of Code Coverage files, don’t define the property to disable the generation.

Generate Heap Dump

Option Name: s3.inspect.heap

Description:

Set to true to enable a dump of the heap each time the System.gc() method is called by theMicroEJ Application.
The .heap files are generated in build/output/application/heapDump/ .

Use the Heap Viewer to visualize the .heap files.

Run several Applications on Simulator

When a Multi-Sandbox Kernel is provided, it is possible to execute your Application on the Simulator along with
additional Applications. To run an additional Application on the Simulator, the Application must be declared as a
dependency of the project:

• When the Application is published in an artifact repository, you canuse it by declaring aModule dependency:

dependencies {
microejApplication(”com.mycompany:myapp:1.0.0”)

}

• When the Application is a subproject of a multi-project, you can use it by declaring a Project dependency in
the build.gradle.kts file, with the microejApplication configuration:

dependencies {
microejApplication(project(”:myApplication”))

}

• You can also use the ApplicationWPK file directly by declaring a File dependency in the build.gradle.kts file,
with the microejApplication configuration:

dependencies {
microejApplication(files(”C:\\path\\to\\my\\application.wpk”))

}

3.4. SDK 6 User Guide 119

MicroEJ Documentation,

Warning:

• Onlymodules with the Application Module Nature can be declared this way (modules built with the com.
microej.gradle.application plugin). Declaring a module with another Module Nature would make the
build fail.

3.4.9 Build an Executable

In order to build the Executable of an Application, the SDK provides the Gradle buildExecutable task. The prereq-
uisites to use this task are:

• The Application EntryPoint must be configured, as described in Configure a Project.

• A target VEE Port that uses an Architecture version 7.17 minimummust be defined. Refer to the Select a VEE
Port page to know the different ways to provide a VEE Port for a module project.

Once these prerequisites are fulfilled, the Executable can be built:

Android Studio / IntelliJ IDEA

Eclipse

Visual Studio Code

Command Line Interface

By double-clicking on the buildExecutable task in the Gradle tasks view:

Warning: Android Studio does not allow to runmultiple Gradle tasks in parallel. If you still want to execute sev-
eral Gradle tasks simultaneously, you can launch them froma terminalwith theGradle CommandLine Interface
(CLI).

3.4. SDK 6 User Guide 120

MicroEJ Documentation,

By double-clicking on the buildExecutable task in the Gradle tasks view:

By double-clicking on the buildExecutable task in the Gradle tasks view:

From the command line interface:

$./gradlew buildExecutable

In case of Full BSP Connection, the Executable file is generated in the build/application/executable folder of the
project.

Trigger Executable Build by Default

The Executable of an Application is not built and published by default (when launching a ./gradlew build or a
./gradlew publish for example). This default behavior can be changed by adding the produceExecutableDuring-
Build() method in the microej configuration block of the Gradle build file of the project:

microej {
produceExecutableDuringBuild()

}

3.4. SDK 6 User Guide 121

MicroEJ Documentation,

3.4.10 Run on Device

The SDK allows to deploy an Application on a Device thanks to the Gradle runOnDevice task. The prerequisites
of this task are:

• The Application EntryPoint must be configured, as described in Configure a Project.

• The target VEE Portmust be defined. Refer to the Select a VEEPort page to know the differentways to provide
a VEE Port for a module project.

• The Device must be connected to the developer’s computer.

• The configuration required by the VEE Port must be set. Refer to the VEE Port documentation to check the
required configuration.

Once these prerequisites are fulfilled, the Application can be deployed on the Device:

IntelliJ IDEA / Android Studio

Eclipse

Visual Studio Code

Command Line Interface

By double-clicking on the runOnDevice task in the Gradle tasks view:

Warning: Android Studio does not allow to runmultiple Gradle tasks in parallel. If you still want to execute sev-
eral Gradle tasks simultaneously, you can launch them froma terminalwith theGradle CommandLine Interface
(CLI).

By double-clicking on the runOnDevice task in the Gradle tasks view:

3.4. SDK 6 User Guide 122

MicroEJ Documentation,

By double-clicking on the runOnDevice task in the Gradle tasks view:

From the command line interface:

$./gradlew runOnDevice

The build should be successful and the output should end with:

Execution of script '<RUN_SCRIPT_PATH>' done.
BUILD SUCCESSFUL

where RUN_SCRIPT_PATH is the absolute path to the run.[sh|bat] script of the VEE Port.

The Application Executable is now deployed on the Device.

3.4. SDK 6 User Guide 123

MicroEJ Documentation,

Deploying the Executable without building it

Whenexecuting the runOnDevice task, theExecutable is always rebuilt, even if nothinghas changed in theproject.
This ensures that the Executable is always up-to-date, no matter if the BSP has changed or not.

If you want to deploy the Executable on the device without building it (so simply deploying the Executable file
already available in the project build folder), you can exclude the buildExecutable task:

$./gradlew runOnDevice -x buildExecutable

Youcanexecute suchacommand in IDEsby creating customconfigurations, as explained inHowToCreateaCustom
Configuration in the IDE.

3.4.11 Select a Kernel

Building the Feature file of an Application with the SDK requires a Kernel.

Use one of the following available options to provide it to your project.

Using a Module Dependency

When your Kernel is published in an artifact repository, you can define the Kernel by declaring a module depen-
dency in the build.gradle.kts file, with the microejVee configuration:

dependencies {
microejVee(”com.mycompany:mykernel:1.0.0”)

}

Using a Project Dependency

When your Kernel is a subproject of a multi-project, you can define the Kernel by declaring a project dependency
in the build.gradle.kts file, with the microejVee configuration:

dependencies {
microejVee(project(”:mykernel”))

}

Using a Local Kernel

When your Kernel has been built locally, you can use its Virtual Device and its Executable by declaring a file depen-
dency in the build.gradle.kts file, with the microejVee configuration:

dependencies {
microejVee(files(”C:\\path\\to\\my\\kernel\\virtual\\device”, ”C:\\path\\to\\my\\kernel\\executable.out”))

}

Note: This file, aswell as other Gradle configuration files, respects the Java properties file convention: theOSpath
must use the UNIX path convention (path separator is /). TheWindows pathsmust have been convertedmanually
replacing \ by / or by \\ .

3.4. SDK 6 User Guide 124

MicroEJ Documentation,

3.4.12 Build a Feature file

To build the Feature file (.fo) of an Application, the SDK provides the Gradle buildFeature task. The prerequisites
to use this task are:

• The Application EntryPoint must be configured, as described in Configure a Project.

• A Multi-Sandbox Kernel must be defined. Refer to the Select a Kernel page to learn how to provide a Kernel
for a module project.

Once these prerequisites are fulfilled, the Feature file can be built:

IntelliJ IDEA / Android Studio

Eclipse

Visual Studio Code

Command Line Interface

By double-clicking on the buildFeature task in the Gradle tasks view:

Warning: Android Studio does not allow to runmultiple Gradle tasks in parallel. If you still want to execute sev-
eral Gradle tasks simultaneously, you can launch them froma terminalwith theGradle CommandLine Interface
(CLI).

By double-clicking on the buildFeature task in the Gradle tasks view:

3.4. SDK 6 User Guide 125

MicroEJ Documentation,

By double-clicking on the buildFeature task in the Gradle tasks view:

From the command line interface:

$./gradlew buildFeature

The Feature file is generated in the build/application/feature folder of the project.

Trigger Feature Build by Default

The Feature of an Application is not built and published by default (when launching a ./gradlew build or a ./
gradlew publish for example). Thisdefault behavior canbechangedbyadding the produceFeatureDuringBuild()
method in the microej configuration block of the Gradle build file of the project:

microej {
produceFeatureDuringBuild()

}

3.4. SDK 6 User Guide 126

MicroEJ Documentation,

Build a Feature file from aWPK

The SDK provides the Gradle buildFeatureFromWPK task which allows to build a Feature file from theWPK of an
Application. The prerequisites to use this task are:

• The WPKmust be defined:

– When the WPK is published in an artifact repository, you can use it by declaring a Module dependency:

dependencies {
microejApplication(”com.mycompany:myapp:1.0.0”)

}

– When the WPK is built by a subproject of a multi-project, you can use it by declaring a Project depen-
dency in the build.gradle.kts file, with the microejApplication configuration:

dependencies {
microejApplication(project(”:myApplication”))

}

– When theWPK is available locally, you can use it by declaring a File dependency in the build.gradle.kts
file, with the microejApplication configuration:

dependencies {
microejApplication(files(”C:\\path\\to\\my\\application.wpk”))

}

• A Multi-Sandbox Kernel must be defined. Refer to the Select a Kernel page to learn how to provide a Kernel
for a module project.

Once these prerequisites are fulfilled, the Feature file can be built:

IntelliJ IDEA / Android Studio

Eclipse

Visual Studio Code

Command Line Interface

By double-clicking on the buildFeatureFromWPK task in the Gradle tasks view:

3.4. SDK 6 User Guide 127

MicroEJ Documentation,

Warning: Android Studio does not allow to runmultiple Gradle tasks in parallel. If you still want to execute sev-
eral Gradle tasks simultaneously, you can launch them froma terminalwith theGradle CommandLine Interface
(CLI).

By double-clicking on the buildFeatureFromWPK task in the Gradle tasks view:

By double-clicking on the buildFeatureFromWPK task in the Gradle tasks view:

From the command line interface:

$./gradlew buildFeatureFromWPK

The Feature file is generated in the build/application/wpkFeature folder of the project.

3.4. SDK 6 User Guide 128

MicroEJ Documentation,

3.4.13 Build a Virtual Device

In order to build the Virtual Device of an Application, the SDK provides the Gradle buildVirtualDevice task. Refer
to the Virtual Device page for more information about the Virtual Device.

The prerequisites to use the buildVirtualDevice task are:

• The Application EntryPoint must be configured, as described in Configure a Project.

• A target VEE that uses an Architecture version 7.17 minimummust be defined:

– If your VEE is a VEE Port, refer to the Select a VEE Port page to know the different ways to provide a VEE
Port for a module project.

– If your VEE is a Kernel, refer to the Select a Kernel page to know the different ways to provide a Kernel
for a module project.

Once these prerequisites are fulfilled, the Virtual Device can be built:

IntelliJ IDEA / Android Studio

Eclipse

Visual Studio Code

Command Line Interface

By double-clicking on the buildVirtualDevice task in the Gradle tasks view:

Warning: Android Studio does not allow to runmultiple Gradle tasks in parallel. If you still want to execute sev-
eral Gradle tasks simultaneously, you can launch them froma terminalwith theGradle CommandLine Interface
(CLI).

By double-clicking on the buildVirtualDevice task in the Gradle tasks view:

3.4. SDK 6 User Guide 129

MicroEJ Documentation,

By double-clicking on the buildVirtualDevice task in the Gradle tasks view:

From the command line interface:

$./gradlew buildVirtualDevice

When the build is completed, the Virtual Device is available in the build/virtualDevice folder of the project.

Note: If the provided VEE is a Kernel, the generated Virtual Device is an augmented version of the Kernel Virtual
Device, in which the Application is set as a Pre-Installed Application.

The Virtual Device can then be used to run an Application on the Simulator for example.

3.4. SDK 6 User Guide 130

MicroEJ Documentation,

Add a Pre-Installed Application in a Virtual Device

When building a Virtual Device for a Kernel, Applications can be pre-installed inside. These Applications can be
loaded and started when the Kernel starts for example.

To install an Application in a Virtual Device for a Kernel, you must declare the Application as a dependency of the
project:

• When the Application is published in an artifact repository, you canuse it by declaring aModule dependency:

dependencies {
microejApplication(”com.mycompany:myapp:1.0.0”)

}

• When the Application is a subproject of a multi-project, you can use it by declaring a Project dependency in
the build.gradle.kts file, with the microejApplication configuration:

dependencies {
microejApplication(project(”:myApplication”))

}

• You can also use the ApplicationWPK file directly by declaring a File dependency in the build.gradle.kts file,
with the microejApplication configuration:

dependencies {
microejApplication(files(”C:\\path\\to\\my\\application.wpk”))

}

Warning:

• Onlymodules with the Application Module Nature can be declared this way (modules built with the com.
microej.gradle.application plugin). Declaring a module with another Module Nature would make the
build fail.

• The VEE Port used to create the Virtual Device has to be a Multi-Sandbox VEE Port to support the load of
these pre-installed Applications.

Add a Kernel API in a Virtual Device

When building a Virtual Device for a Kernel, the Kernel must define the set of classes, methods and static fields all
applications are allowed to use. This can be done by declaring Kernel APIs as a dependency in the build file:

dependencies {
implementation(”com.microej.kernelapi:edc:1.2.0”)

}

3.4. SDK 6 User Guide 131

MicroEJ Documentation,

Add a Runtime Environment in a Virtual Device

When building a Virtual Device for a Kernel, the set of classes, methods and static fields allowed to be used by all
applications can be defined by declaring a Runtime Environment as a dependency in the build file:

dependencies {
microejRuntimeEnvironment(”com.mycompany:myruntime-environment:1.0.0”)

}

The transitive dependencies of the Runtime Environment are then embedded in the Virtual Device.

Add a Tool in a Virtual Device

When building a Virtual Device, it is possible to define additional MicroEJ Tools to install inside, by adding a de-
pendency with the microejTool configuration. For example, to install the Local Deployment Socket tool, add the
following dependency to the build file of the project:

dependencies {
microejTool(”com.microej.tool.kernel:localdeploy-extension:1.0.0”)

}

Trigger Virtual Device Build by Default

The Virtual Device of an Application is not built and published by default (when launching a ./gradlew build or a
./gradlew publish for example). This default behavior can be changed by adding the produceVirtualDeviceDur-
ingBuild() method in the microej configuration block of the Gradle build file of the project:

microej {
produceVirtualDeviceDuringBuild()

}

3.4.14 Add a Dependency

A project generally relies on other components such as libraries. These components have to be declared as depen-
dencies of the build to be used by the project. This declaration is done in the dependencies block of the build.
gradle.kts file. For example, to add the EDC library as a dependency:

dependencies {
implementation(”ej.api:edc:1.3.5”)

}

Configurations

Every dependency declared for a Gradle project applies to a specific scope. For example some dependencies
should be used for compiling source code whereas others only need to be available at runtime. Gradle represents
the scope of a dependency with the help of a configuration. In the above example, the implementation configu-
ration is used.

Since the MicroEJ Gradle plugins extend the Gradle Java and Java Library plugins, they inherits from their config-
urations, but they also adds their own configurations. Let’s have a look at the mostly used configurations:

• implementation (fromGradle Java plugin) : Dependencies used by the project at compile time and runtime.

3.4. SDK 6 User Guide 132

MicroEJ Documentation,

• api (from Gradle Java Library plugin) : Same as the implementation configuration, except that the depen-
dency is also exposed to the consumers of your project.

• testImplementation (from Gradle Java plugin) : Dependencies used by the test classes of the project. This
configuration extends the implementation configuration, so it inherits from all the dependencies declared
with the implementation configuration.

• microejVee : VEE Port, Virtual Device or Kernel used by the project for build and test.

• testMicroejVee : VEE Port, Virtual Device or Kernel used by the project for test only.

Here is an example of dependencies declaration for a project:

dependencies {
implementation(”ej.library.runtime:basictool:1.7.0”)

testImplementation(”ej.library.test:junit:1.11.0”)

microejVee(”com.microej.platform.esp32.esp-wrover-kit-v41:HDAHT:1.8.0”)
}

In this example, the ej.library.runtime:basictool module is used at compile time and runtime, the ej.library.
test:junit module is used for the tests compilation and execution, and the com.microej.platform.esp32.
esp-wrover-kit-v41:HDAHT module is the VEE Port used for build and test.

For an exhaustive list of the available configurations and more details on how to manage dependencies, refer to
the following official documentations:

• Declaring dependencies

• Java plugin

• Java Library plugin

Version

The version declared in the dependencies of a build file are explicit:

• Release version: to depend on a released version of a module, the exact fixed version must be used (e.g.,
1.0.0).

• Snapshot version: to depend on a snapshot version (-RC) of amodule, the versionmust be declared explic-
itly with the -RC+ suffix (e.g., 1.0.0-RC+).

Note: This is an important change compared to the SDK 5. In the SDK 5, using a fixed version (e.g., 1.0.0) fetched
the release version (e.g., 1.0.0) if it existed, or a snapshot version (e.g., 1.0.0-RCxxx) otherwise. This is not the
case anymore in the SDK 6.

3.4. SDK 6 User Guide 133

https://docs.gradle.org/current/userguide/declaring_dependencies.html
https://docs.gradle.org/current/userguide/java_plugin.html#sec:java_plugin_and_dependency_management
https://docs.gradle.org/current/userguide/java_library_plugin.html#sec:java_library_separation

MicroEJ Documentation,

Version Check

In order to reduce the risk ofmistakes, a check is done during the resolution process on the declared dependencies
versions. The dependencies versions must start with digits and be followed by a dot, otherwise the build fails. For
example, when declaring a dependency on edc with a version x1.3.5 instead of 1.3.5 :

dependencies {
implementation(”ej.api:edc:x1.3.5”)

}

the following error is raised:

* What went wrong:
Execution failed for task ':dependencies'.
> The version of the dependency ”ej.api:edc” is not correct: ”x1.3.5”. It must start with digits, followed by a dot.

It is possible to disable this check by setting the dependenciesVersionsCheckEnabled property of the microej
configuration block to false in the project build file:

microej {
dependenciesVersionsCheckEnabled = false

}

Dependencies Repositories

Gradle needs to know in which repositories the modules must be fetched and published. The SDK 6 installation
process provides a Gradle Init Script to declare the MicroEJ public repositories. You can declare other repositories,
either in the same Gradle Init Script and in any other location supported by Gradle. Refer to the official documen-
tation for more information on repositories configuration.

It is important to note that the declaration order of the repositoriesmatters. Gradle requests the repositories in the
order they are declared and stops as soon as it finds a matching version.

3.4.15 Test a Project

The SDK provides the capabilities to implement and run tests for a project. It relies on the standard JUnit API.

There are different types of tests:

• Test on the Simulator

• Test on a device

• Test on a Java SE VM

Each type of test is detailed in the next sections.

3.4. SDK 6 User Guide 134

https://docs.gradle.org/current/userguide/declaring_repositories.html
https://docs.gradle.org/current/userguide/declaring_repositories.html
https://repository.microej.com/modules/ej/library/test/junit/

MicroEJ Documentation,

JUnit Compliance

The SDK relies on JUnit, the most popular Java testing framework, to define and execute the tests. It supports a
subset of JUnit 4, namely the annotations: @After , @AfterClass , @Before , @BeforeClass , @Ignore , @Test .

Each test case entry point must be declared using the org.junit.Test annotation (@Test before a method decla-
ration). Refer to JUnit documentation to get details on the usage of other annotations.

Gradle Integration

Tests are configured and launched by Gradle. Gradle provides 2 ways to configure tests in a project:

• By using the built-in Test task, as described in Testing in Java & JVM projects.

• By using the new JVM Test Suite plugin, as described in The JVM Test Suite Plugin.

The JVM Test Suite plugin provides an enhancedmodel to declaremultiple groups of automated testsuites, and
is therefore the recommended way to configure your tests. The next sections use the JVM Test Suite plugin to
explain how to configure and run tests, but the same results can be achieved with the Test task.

Test on Simulator

Tests can be executed on the Simulator. They are run on a target VEE Port and generate a JUnit XML report.

Executing tests on the Simulator allows to check the behavior of the code in an environment similar to the target
device but without requiring the board. This solution is therefore less constraining andmore portable than testing
on the board.

Configure the Testsuite

The configuration of the testsuites of a project must be defined inside the following block in the build.gradle.kts
file:

testing {
suites { // (1)

val test by getting(JvmTestSuite::class) { // (2)
microej.useMicroejTestEngine(this) // (3)

dependencies { // (4)
implementation(project())
implementation(”ej.api:edc:1.3.5”)
implementation(”ej.library.test:junit:1.11.0”)

}
}

}
}

This piece of configuration is the minimum configuration required to define a testsuite on the Simulator:

• (1) : configures all the testsuites of the project.

• (2) : configures the built-in test suite provided by Gradle. Use this testsuite to configure the tests on the
Simulator.

• (3) : declares that this testsuite uses the MicroEJ Testsuite Engine. By default, the MicroEJ Testsuite Engine
executes the tests on the Simulator.

3.4. SDK 6 User Guide 135

https://junit.org/junit4/
https://junit.org/junit4/
https://docs.gradle.org/current/userguide/java_testing.html
https://docs.gradle.org/current/userguide/jvm_test_suite_plugin.html

MicroEJ Documentation,

• (4) : adds the dependencies required by the tests. The first line declares a dependency to the code of the
project. The second line declares a dependency on the edc Library. The third line declares a dependency to
the JUnit API used to annotate Java Test classes. Finally the fourth line declares a dependency to a required
JUnit library.

Warning: With SDK 6 prior to 1.1.0 , junit-platform-launcher must be added as a test dependency:

implementation(”org.junit.platform:junit-platform-launcher:1.8.2”)

Configure the VEE

The VEE used to execute the tests must be declared in the project dependencies, with the microejVee or the test-
MicroejVee configuration (refer to Select a VEE Port for more details on the selection capabilities). A VEE declared
with the microejVee configuration is used to run the Application, as well as to execute the testsuites. The microe-
jVee is generally used in Application projects, since the tests should run on the same Application target VEE:

dependencies {
...
microejVee(”com.mycompany:vee-port:1.0.0”)

}

A VEE declaredwith the testMicroejVee configuration is used only for the testsuites. It is recommended in Library
projects, since they don’t need a VEE to run, the VEE is scoped for the tests only:

dependencies {
...
testMicroejVee(”com.mycompany:vee-port:1.0.0”)

}

As a summary, the rules are:

• Only one VEEmust be declared globally.

• If the VEE is declaredwith microejVee , it is used to run the Application (if it is an Application) and to execute
the tests.

• If the VEE is declared with testMicroejVee , it is only used to execute the tests.

Warning: Declaring a VEE in project dependencies only applies to the current project. This configuration is not
fetched transitively by consumer projects. But it is highly recommended to scope the VEE to its usage since this
behavior is aimed to change in a future version. Especially when configuring the VEE to test a Library project, it
is recommended to use testMicroejVee .

3.4. SDK 6 User Guide 136

MicroEJ Documentation,

Create a Test Class

The SDK provides a JUnit library containing the subset of the supported JUnit API: ej.library.test:junit . Before
creating the Test class, make sure this library is declared in the testsuite dependencies:

testing {
suites {

val test by getting(JvmTestSuite::class) {
...
dependencies {

implementation(”ej.library.test:junit:1.11.0”)
}
...

}
}

}

The test class can now be created in the src/test/java folder. This can be donemanually or with IDEmenu:

IntelliJ IDEA / Android Studio

Eclipse

Visual Studio Code

• right-click on the src/test/java folder.

• select New > Java Class , then press Alt + Insert and select Test Method .

• right-click on the src/test/java folder.

• select New > Other… > Java > JUnit > New JUnit Test Case .

• right-click on the src/test/java folder in JAVA PROJECTS view.

• select the + icon (New…) > Class , then enter the test class name you want to create.

Note: Gradle allows to define alternative folders for test sources but it would require additional configuration, so
it is recommended to stick with the src/test/java folder.

Execute the Tests

Once the testsuite is configured, it can be run thanks to the test Gradle task. This task is bound to the check and
the build Gradle lifecycle tasks, which means that the tests are also executed when launching one of these tasks.

IntelliJ IDEA / Android Studio

Eclipse

Visual Studio Code

Command Line Interface

In order to execute the testsuite from IntelliJ IDEA or Android Studio, double-click on the task in the Gradle tasks
view:

3.4. SDK 6 User Guide 137

MicroEJ Documentation,

Fig. 41: Run Gradle test task from IntelliJ IDEA / Android Studio

In order to execute the testsuite from Eclipse, double-click on the task in the Gradle tasks view:

Fig. 42: Run Gradle test task from Eclipse

Warning: By right-clickingona test class file, themenuproposes Gradle Test and JUnit Test in the Run As
entry.

Fig. 43: Run test as Gradle test in a class right-click menu

Always use the Run > Gradle Test entry.

In order to execute the testsuite from VS Code, double-click on the task in the Gradle tasks view:

3.4. SDK 6 User Guide 138

MicroEJ Documentation,

Fig. 44: Run Gradle test task from Visual Studio Code

Warning: Test start buttons (represented as green triangle) may appear on the left side of class and method
definitions.

Fig. 45: Green triangles are test start buttons

Running tests from these buttons may fail because they do not use the Gradle Runner by default. To run a test
with Gradle, right-click on the green triangle and select Execute Using Profile…

Fig. 46: Right-click menu on test start buttons

and then select Delegate Test to Gradle .

Fig. 47: Run test class or test method with Gradle

In order to execute the testsuite from the Command Line Interface, execute this command:

3.4. SDK 6 User Guide 139

MicroEJ Documentation,

$./gradlew test

Generate Code Coverage

To generate the Code Coverage files (.cc) for each test, configure the test suite as follows:

testing {
suites {

val test by getting(JvmTestSuite::class) {

...

targets {
all {

testTask.configure {
doFirst {

systemProperties[”microej.testsuite.properties.s3.cc.activated”] = ”true”
systemProperties[”microej.testsuite.properties.s3.cc.thread.period”] = ”15”

}
}

}
}

}
}

}

Then, to generate an HTML report, see Code Coverage Analyzer.

Filter the Tests

Gradle automatically executes all the tests located in the test source folder. If you want to execute only a subset of
these tests, Gradle provides 2 solutions:

• Filtering configuration in the build script file.

• Filtering option in the command line.

The tests filtering configuration must be done in the filter block of the test task:

testing {
suites {
val test by getting(JvmTestSuite::class) {

...

targets {
all {

testTask.configure {
filter {

includeTestsMatching(”com.mycompany.*”)
}

}
}

}
}

(continues on next page)

3.4. SDK 6 User Guide 140

MicroEJ Documentation,

(continued from previous page)

}
}

This example tells Gradle to run the tests located in the com.mycompany package only. Other methods are avail-
able for test filtering, such as excludeTestsMatching to exclude tests. Refer to the TestFilter documentation for
the complete list of available filtering methods.

Gradle also allows to filter the tests from the command line directly, thanks to the --tests option. For example, to
execute only the tests from the class MyTestClass , run this command:

./gradlew test --tests MyTestClass

This can be convenient to quickly execute one test, without requiring a change in the build script file.

Note: The test class referenced by the --tests option is executed only if it is not excluded in the test configuration
in the build.gradle.kts file. Therefore, make sure to adpat your test configuration when using this option.

Refer to the Gradle Test filtering documentation for more details on how to filter the tests and on the available
patterns.

Warning: At themoment, only class-level filtering is supported. Thismeans that, for instance, it is not possible
to run a single test method within a test class.

Test on Device

The SDK allows to execute a testsuite on a device. This requires to:

• Have a VEE Port which implements the BSP Connection.

• Have a device connected to your workstation both for programming the Executable and getting the output
traces. Consult your VEE Port specific documentation for setup.

• Start the Serial to Socket Transmitter tool if the VEE Port does not redirect execution traces.

The configuration is similar to the one used to execute a testsuite on the Simulator.

1. Follow the instructions to setup a testsuite on the Simulator.

2. In the build script file, replace the line:

microej.useMicroejTestEngine(this)

by:

microej.useMicroejTestEngine(this, TestTarget.EMB)

3. Add the import statement at the beginning of the file:

import com.microej.gradle.plugins.TestTarget

4. Add the required properties as follows:

3.4. SDK 6 User Guide 141

https://docs.gradle.org/current/javadoc/org/gradle/api/tasks/testing/TestFilter.html
https://docs.gradle.org/current/userguide/java_testing.html#test_filtering

MicroEJ Documentation,

val test by getting(JvmTestSuite::class) {
microej.useMicroejTestEngine(this, TestTarget.EMB)

targets {
all {

testTask.configure {
doFirst {

systemProperties = mapOf(
// Enable the build of the Executable
”microej.testsuite.properties.deploy.bsp.microejscript” to ”true”,
”microej.testsuite.properties.microejtool.deploy.name” to ”deployToolBSPRun”,

// Configure the TCP/IP address and port if the VEE Port Run script does not redirect␣
→˓execution traces

”microej.testsuite.properties.testsuite.trace.ip” to ”localhost”,
”microej.testsuite.properties.testsuite.trace.port” to ”5555”,
// Tell the testsuite engine that the VEE Port Run script redirects execution traces.
// Uncomment this line and comment the 2 lines above if the VEE Port supports it.
//”microej.testsuite.properties.launch.test.trace.file” to ”true”

)
}

}
}

}
}

The properties are:

• microej.testsuite.properties.deploy.bsp.microejscript : enables the build of the Executable. It is required.

• microej.testsuite.properties.microejtool.deploy.name : name of the tool used to deploy the Executable to
the board. It is required. It is generally set to deployToolBSPRun .

• microej.testsuite.properties.launch.test.trace.file : enables the redirection of the traces in file. If the VEE
Port does not have this capability, the Serial to Socket Transmitter tool must be used to redirect the traces to
a socket.

• microej.testsuite.properties.testsuite.trace.ip : TCP/IP address used by the Serial to Socket Transmitter tool
to redirect traces from the board. This property is only required if the VEE Port does not redirect execution
traces.

• microej.testsuite.properties.testsuite.trace.port : TCP/IP port used by the Serial to Socket Transmitter tool
to redirect traces from the board. This property is only required if the VEE Port does not redirect execution
traces.

Any other property can be passed to the Test Engine by prefixing it by microej.testsuite.properties. . For example,
to set the the Immortal heap size:

systemProperties = mapOf(
”microej.testsuite.properties.core.memory.immortal.size” to ”8192”,
...

)

3.4. SDK 6 User Guide 142

MicroEJ Documentation,

Test on Java SE VM

The SDK allows to run tests on a Java SE VM. This can be useful, for example, when the usage of mock libraries like
Mockito is needed (this kind of library is not supported by the MicroEJ Core Engine).

There is nothing specific related toMicroEJ to run tests on a Java SE VM. Follow the Gradle documentation to setup
such tests. As an example, here is a typical configuration to execute the tests located in the src/test/java folder:

testing {
suites {

val test by getting(JvmTestSuite::class) {
useJUnitJupiter()

dependencies {
runtimeOnly(”org.junit.platform:junit-platform-launcher:1.8.2”)

}
}

}
}

If you want to use Mockito, add it in the testsuite dependencies:

testing {
suites {

val test by getting(JvmTestSuite::class) {
useJUnitJupiter()

dependencies {
implementation(”org.mockito:mockito-core:4.11.0”)
runtimeOnly(”org.junit.platform:junit-platform-launcher:1.8.2”)

}
}

}
}

Then you can use it in your test classes:

import org.junit.jupiter.api.Test;
import org.mockito.Mockito;

import static org.junit.jupiter.api.Assertions.assertNotNull;

public class MyTest {
@Test
public void test() {

MyClass mock = Mockito.mock(MyClass.class);

assertNotNull(mock);
}

}

3.4. SDK 6 User Guide 143

https://docs.gradle.org/current/userguide/jvm_test_suite_plugin.html
https://site.mockito.org/

MicroEJ Documentation,

Test Suite Reports

SDK 6 1.1.0 and higher

SDK 6 1.0.0 and below

Once a testsuite is completed, the JUnit HTML report is generated in the module project location build/reports/
tests/<testsuite>/index.html .

Fig. 48: Example of JUnit HTML Report

Once a testsuite is completed, the JUnit XML report is generated in the module project location build/testsuite/
output/<date>/testsuite-report.xml .

Fig. 49: Example of MicroEJ Test Suite XML Report

3.4. SDK 6 User Guide 144

MicroEJ Documentation,

XML report file can also be opened In Eclipse in the JUnit View. Right-click on the file > Open With > JUnit View
:

Fig. 50: Example of MicroEJ Test Suite XML Report in JUnit View

Publish Test Suite Reports

Starting from SDK 6 1.2.0 , it is possible to publish an archive file containing all testsuite reports of a project. By
default, the tests are not executed when publishing a project, so you must explicitly run your testsuite to publish
the reports:

./gradlew test publish

The published archive file contains the HTML and XML reports of all testsuites that have been executed. If your
project containsmultiple testsuites, you must execute each testsuite whose report must be published:

./gradlew testOnSim testOnJavaSE publish

You can also bind the check task to all your testsuites in the build.gradle.kts file of your project:

tasks.named(”check”) {
dependsOn(”testOnSim”, ”testOnJavaSE”)

}

and execute the check task when publishing the project:

./gradlew check publish

Mixing tests

The SDK allows to define multiple testsuites on different targets. For example, you can configure a testsuite to run
tests on the Simulator and a testsuite to run tests on a device.

Configuringmultiple testsuites is almost only amatter of aggregating the testsuite declarations documented in the
previous sections, as described in the Gradle documentation.

3.4. SDK 6 User Guide 145

https://docs.gradle.org/current/userguide/jvm_test_suite_plugin.html#sec:declare_an_additional_test_suite

MicroEJ Documentation,

Mixing tests on the Simulator and on a device

If you need to define a testsuite to run on the Simulator and a testsuite to run on a device, the only point to take
care is related to the tests source location, because:

• Gradle automatically uses the testsuite name to know the tests source folder to use. For example, for a test-
suite named test (the built-in testsuite), the folder src/test/java is used, and for a testsuite named testOn-
Device , the folder src/testOnDevice/java is used.

• Tests classes executed by the MicroEJ Test Engine on the Simulator and on device are not directly the tests
source classes. The SDK generates new tests classes, based on the original ones, but compliant with the
MicroEJ Test Suitemechanism. This process assumes by default that the tests classes are located in the src/
test/java folder.

Therefore:

• It is recommended touse thebuilt-in test testsuite for either the tests on theSimulator or the tests ondevice.
This avoids extra configuration to change the location of the tests source folder.

• The tests source folder of the other testsuite must be changed to use the src/test/java folder as well:

testing {
suites {

val test by getting(JvmTestSuite::class) {
microej.useMicroejTestEngine(this)

dependencies {
implementation(project())
implementation(”ej.library.test:junit:1.11.0”)

}
}

val testOnDevice by registering(JvmTestSuite::class) {
microej.useMicroejTestEngine(this, TestTarget.EMB)

sources {
java {

setSrcDirs(listOf(sourceSets.getByName(SourceSet.TEST_SOURCE_SET_NAME).java))
}
resources {

setSrcDirs(listOf(sourceSets.getByName(SourceSet.TEST_SOURCE_SET_NAME).resources))
}

}

dependencies {
implementation(project())
implementation(”ej.library.test:junit:1.11.0”)

}

targets {
all {
testTask.configure {

doFirst {
systemProperties = mapOf(

”microej.testsuite.properties.deploy.bsp.microejscript” to ”true”,
”microej.testsuite.properties.microejtool.deploy.name” to ”deployToolBSPRun”,
”microej.testsuite.properties.testsuite.trace.ip” to ”localhost”,
”microej.testsuite.properties.testsuite.trace.port” to ”5555”

)
(continues on next page)

3.4. SDK 6 User Guide 146

MicroEJ Documentation,

(continued from previous page)

}
}

}
}

}
}

}

The important part is the sources block of the testOnDevice testsuite. This allows to use the src/test/java and
src/test/resources folders as the tests source folders.

With this configuration, all tests are executed on both the Simulator and the device. If you want to have different
tests for each testsuite, it is recommended to separate the tests in different packages. For example the tests on
the Simulator could be in src/test/java/com/mycompany/sim and the tests on the device could be in src/test/
java/com/mycompany/emb . Then you use the test filtering capabilities to configure which package to run in
which testsuite:

testing {
suites {

val test by getting(JvmTestSuite::class) {
...

targets {
all {
testTask.configure {

...

filter {
includeTestsMatching(”com.mycompany.sim.*”)

}
}

}
}

}

val testOnDevice by registering(JvmTestSuite::class) {
...

targets {
all {
testTask.configure {

...

filter {
includeTestsMatching(”com.mycompany.emb.*”)

}
}

}
}

}
}

}

3.4. SDK 6 User Guide 147

MicroEJ Documentation,

Mixing tests on the Simulator and on a Java SE VM

Defining tests on the Simulator and on a Java SE VM is only a matter of aggregating the configuration of each test-
suite:

testing {
suites {

val test by getting(JvmTestSuite::class) {
microej.useMicroejTestEngine(this)
...

}

val testOnJavaSE by registering(JvmTestSuite::class) {
useJUnitJupiter()

dependencies {
runtimeOnly(”org.junit.platform:junit-platform-launcher:1.8.2”)

}

...
}

}
}

As explained in the previous section, it is recommended to use the built-in test testsuite for the tests on the Sim-
ulator since it avoids adding confguration to change the tests sources folder. With this configuration, tests on the
Simulator are located in the src/test/java folder, and tests on a Java SE VM are located in the src/testOnJavaSe/
java folder.

Configure the Testsuite Engine

Theengineused toexecute the testsuiteprovides a set of configurationparameters that canbedefinedwithSystem
Properties. For example, to set the timeout of the tests:

• In the command line with -D :

./gradlew test -Dmicroej.testsuite.timeout=120

• In the build script file:

testing {
suites {

val test by getting(JvmTestSuite::class) {
...

targets {
all {

testTask.configure {
...

doFirst {
systemProperties = mapOf(

”microej.testsuite.timeout” to ”120”
)

}
}

(continues on next page)

3.4. SDK 6 User Guide 148

MicroEJ Documentation,

(continued from previous page)

}
}

}
}

}

The following configuration parameters are available:

Name Description Default

microej.testsuite.
timeout

The time in seconds before a test is considered as failed.
Set it to 0 to disable the timeout. 60

microej.testsuite.
jvmArgs

The arguments to pass to the Java SE VM started for each
test.

Not set

microej.testsuite.
lockPort

The localhost port used by the framework to synchronize
its execution with other frameworks on same computer.
Synchronization is not performed when this port is 0 or
negative.

0

microej.testsuite.retry.
count

A test execution may not be able to produce the success
trace for an external reason, for example an unreliable
harness script that may lose some trace characters or
crop the end of the trace. For all these unlikely reasons,
it is possible to configure the number of retries before a
test is considered to have failed.

0

microej.testsuite.retry.
if

Regular expression checked against the test output to
retry the test. If the regular expression is found in the
test output, the test is retried (up to the value of microej.
testsuite.retry.count).

Not set

microej.testsuite.retry.
unless

Regular expression checked against the test output to
retry the test. If the regular expression is not found in the
test output, the test is retried (up to the value of microej.
testsuite.retry.count).

Not set

microej.testsuite.
verbose.level

Verbose level of the testsuite output. Available values are
error , warning , info , verbose and debug .
Deprecated since version 1.2.0: The testsuite verbose
level follows Gradle log level.

info

microej.testsuite.
status.pattern

since ‘1.3.0‘ Pattern to change test passed (default is .
:[|PASSED|]:.) and failed (default is .:[|FAILED|]:.)
tags in testsuite logs. These tags are catched by the test-
suite engine to determine if a test has passed or failed.
The {} placeholder in the pattern will be replaced by
PASSED or FAILED respectively in order to discrimi-
nate these tags from other test logs.

.:[|{}|]:.

3.4. SDK 6 User Guide 149

MicroEJ Documentation,

Inject Application Options

Standalone Application Options can be defined to configure the Application or Library being tested. They can be
defined globally, to be applied on all tests, or specifically to a test.

Inject Application Options Globally

In order to define an Application Option globally, it must be prefixed by microej.testsuite.properties. and passed
as a System Property, either in the command line or in the build script file. For example, to inject the property
core.memory.immortal.size :

• In the command line with -D :

./gradlew test -Dmicroej.testsuite.properties.core.memory.immortal.size=8192

• In the build script file:

testing {
suites {

val test by getting(JvmTestSuite::class) {
...

targets {
all {

testTask.configure {
...

doFirst {
systemProperties = mapOf(

”microej.testsuite.properties.core.memory.immortal.size” to ”8192”
)

}
}

}
}

}
}

}

Inject Application Options For a Specific Test

In order to define an Application Option for a specific test, it must be set in a file with the same name as the test
case file, but with the .properties extension instead of the .java extension. The file must be put in the src/test/
resources folder and within the same package than the test file.

For example, to inject an Application Option for the test class MyTest located in the com.mycompany package,
a MyTest.properties file must be created. Its path must be: src/test/resources/com/mycompany/MyTest.
properties .

Application Options defined in this file do not require the microej.testsuite.properties. prefix.

Note: If the testsuite is configured to execute main classes (thanks to the parameter TestMode.MAIN):

microej.useMicroejTestEngine(this, TestTarget.SIM, TestMode.MAIN)

3.4. SDK 6 User Guide 150

MicroEJ Documentation,

the properties filemust be named after themain class. If themain class has been generated froma JUnit test class,
its class name is prefixed by _AllTests_ .

Test Suite Advanced Configuration

Configure a VEE by Test Suite

The VEE declared in the project dependencies with the microejVee or the testMicroejVee configuration (refer
to Configure the VEE for more details) is used to execute all test suites. If your project contains a test suite other
than the built-in test test suite, it is also possible to run the test suite on a dedicated VEE. To define a VEE for your
custom testsuite, youmust:

• Create a new <testsuite_name>MicroejVee configuration depending on your test suite name in the build.
gradle.kts file of your project. For example:

configurations.create(”testOnDeviceMicroejVee”) {
isCanBeConsumed = false
isCanBeResolved = false
isTransitive = false

}

• Declare the VEE in the project dependencies with your new configuration:

dependencies {
...
”testOnDeviceMicroejVee”(”com.mycompany:vee-port:1.0.0”)

}

3.4.16 Publish a Project

Publishing is the process by which the built artifacts of a module is made available to other modules or any other
systems.

The requirements to publish a module are:

• Defining the name of the module. It is set by default to the name of the module folder, and can be changed
in the settings.gradle.kts file located at the root of the module, thanks to the property rootProject.name :

rootProject.name = ”myModule”

• Defining the group and version properties. They can be set in the build.gradle.kts file:

group = ”com.mycompany”
version = ”1.0.0”

Warning: Refer toManage Versioning page to know how to version your module.

• Declaring a maven publication repository. This can be done in the build file for example, with:

3.4. SDK 6 User Guide 151

MicroEJ Documentation,

publishing {
repositories {

maven {
name = ”mavenPublish”
url = uri(”https://my.server/repository”)

}
}

}

Refer to the official documentation for more information on publication repositories.

Then the publication of a module to a repository is achieved by executing the publish task:

$./gradlew publish

The following artifacts are automatically published:

• Themain artifact, which is the JAR file for Application and Add-On Library natures.

• The README.md file.

• The CHANGELOG.md file.

• The LICENSE.txt file.

• The ASSEMBLY_EXCEPTION.txt file.

• The Gradle module descriptor file.

• The Ivy descriptor file (to allow SDK 5 project to fetch it).

• The WPK file, if the project is an Application.

Note: Ivy descriptor publication can be disabled. You can refer to disable Ivy Descriptor publication How-to page if
you don’t need to publish Ivy descriptor.

3.4.17 Development Tools

MicroEJ provides a number of tools to assistwith various aspects of development. These tools are either command
line tools or Eclipse IDE plugins.

Command line tools

Command line tools can be executed using the Gradle task execTool .

The format of the task is as follow:

./gradlew execTool --name=TOOL_NAME --toolProperty=PROPERTY=”VALUE” --
→˓toolProperty=PROPERTY=”VALUE” ...

The task required option --name is used to describe the name of the tool to execute. The options --toolProperty
are used to configure the tool’s options.

Note: The task options can also be defined in your IDE by creating a new Configuration. For more information,
you can refer to How To Create a Custom Configuration in the IDE.

In addition, the tool’s options can be defined in configuration/tools/TOOL_NAME.properties .

3.4. SDK 6 User Guide 152

https://docs.gradle.org/current/userguide/publishing_maven.html#publishing_maven:repositories

MicroEJ Documentation,

The following sections describe the command line tools and their options:

Stack Trace Reader

Principle

Stack Trace Reader is a MicroEJ tool that reads and decodes the MicroEJ stack traces. When an exception occurs,
the Core Engine prints the stack trace on the standard output System.out . The class names, non-required types
names(see Types), and method names obtained are encoded with a MicroEJ internal format. This internal format
prevents embedding all class names andmethod names in the executable image to save somememory space. The
Stack Trace Reader tool allows you to decode the stack traces by replacing the internal class names and method
names with their real names. It also retrieves the line numbers in the Application.

Functional Description

The Stack Trace Reader reads the debug information from the fully linked ELF file (the ELF file that contains the
Core Engine, the other libraries, the BSP, the OS, and the compiled Application). It prints the decoded stack trace.

WhenMulti-Sandbox capability is enabled, the Stack TraceReader can simultaneously decodeheterogeneous stack
traces with lines owned by different Sandboxed Applications and the Kernel. Lines owned by the Kernel can be
decoded with the Executable debug information file (optionally made available by your Kernel provider).

Usage

Tip: If you don’t have an Application to test yet, you can create an Application project with the following example
main class:

package com.mycompany;

public class MyApp {
public static void main(String[] args) {

System.out.println(”Hello, World!”);
new Exception().printStackTrace();

}
}

On successful deployment (by executing the runOnDevice task), the Application is started on the device and the
trace is dumped on the standard output.

MicroEJ START
Hello, World!
Exception in thread ”main” @C:0x8070c30@

at @C:0x8070c60@.@M:0x8075850:0x807585a@
at @C:0x8070c30@.@M:0x80769a4:0x80769ba@
at @C:0x8070c30@.@M:0x807857c:0x8078596@
at @C:0x8070c00@.@M:0x8074e04:0x8074e1a@
at @C:0x8070ce0@.@M:0x807601c:0x807603c@
at @C:0x806fe10@.@M:0x807779c:0x80777b0@
at @C:0x8070c00@.@M:0x8077b40:0x8077b4c@
at @C:0x8070c00@.@M:0x80779b0:0x80779bb@

3.4. SDK 6 User Guide 153

MicroEJ Documentation,

Decoding an Application stack trace depends on the SDK 6 version used in the project.

In an Application project

SDK 6 1.1.0 and higher

SDK 6 1.0.0 and below

If you have an Application project andwant to decode a stack trace for this Application, you can execute the tool in
the project.

Follow these steps:

• Make sure to build the Executable before executing the tool, by running either the buildExecutable or the
runOnDevice task. The Executable file produced by the Application project is automatically used if it exists.

• When the Executable of the Application project is built, execute the stackTraceReader task, either fromyour
IDE, or as a command line:

./gradlew stackTraceReader

• When themessage [INFO] Paste the MicroEJ core engine stack trace here. is displayed, paste theencoded
stacktrace into the console. The Stack Trace Reader immediately displays the decoded stack trace:

=============== [MicroEJ Core Engine Trace] ===============
console:
[INFO] Paste the MicroEJ core engine stack trace here.

MicroEJ START
Hello, World!
Exception in thread ”main” @C:0x8070c30@

at @C:0x8070c60@.@M:0x8075850:0x807585a@
at @C:0x8070c30@.@M:0x80769a4:0x80769ba@
at @C:0x8070c30@.@M:0x807857c:0x8078596@
at @C:0x8070c00@.@M:0x8074e04:0x8074e1a@
at @C:0x8070ce0@.@M:0x807601c:0x807603c@
at @C:0x806fe10@.@M:0x807779c:0x80777b0@
at @C:0x8070c00@.@M:0x8077b40:0x8077b4c@
at @C:0x8070c00@.@M:0x80779b0:0x80779bb@

MicroEJ START
Hello, World!
Exception in thread ”main” java.lang.Throwable

at java.lang.System.getStackTrace(Unknown Source)
at java.lang.Throwable.fillInStackTrace(Throwable.java:82)
at java.lang.Throwable.<init>(Throwable.java:32)
at java.lang.Thread.dumpStack(Thread.java:573)
at com.microej.Main.main(Main.java:22)
at java.lang.MainThread.run(Thread.java:855)
at java.lang.Thread.runWrapper(Thread.java:464)
at java.lang.Thread.callWrapper(Thread.java:449)

The Stack Trace Reader tool interacts with the console by default. See the Configure chapter to learn about the
other modes and configurations available.

If you have an Application project andwant to decode a stack trace for this Application, you can execute the tool in
the project.

Follow these steps:

3.4. SDK 6 User Guide 154

MicroEJ Documentation,

• Make sure to build the Executable before executing the tool, by running either the buildExecutable or the
runOnDevice task.

• When the Executable of the Application project is built, execute the execTool task:

Warning: This tool requires to use Gradle 8.8maximum. If you want to use a higher Gradle version, upgrade
the SDK 6 version used in the project to 1.1.0 minimum and use the stackTraceReader task.

./gradlew execTool --name=stackTraceDecrypter \
--toolProperty=proxy.connection.connection.type=”console” \
--toolProperty=application.file=”../../application/executable/application.out” \
--toolProperty=additional.application.files=”” \
--console plain

Note: It is also possible to create a custom task of type ExecToolTask dedicated to the Stack Trace Reader. Refer
to the How To Create Custom ExecTool Task chapter for more information.

Paste the previous trace dump into the console. The output of the Stack Trace Reader is the following:

=============== [MicroEJ Core Engine Trace] ===============
console:
[INFO] Paste the MicroEJ core engine stack trace here.

MicroEJ START
Hello World from Gradle!
Exception in thread ”main” @C:0x8070c30@

at @C:0x8070c60@.@M:0x8075850:0x807585a@
at @C:0x8070c30@.@M:0x80769a4:0x80769ba@
at @C:0x8070c30@.@M:0x807857c:0x8078596@
at @C:0x8070c00@.@M:0x8074e04:0x8074e1a@
at @C:0x8070ce0@.@M:0x807601c:0x807603c@
at @C:0x806fe10@.@M:0x807779c:0x80777b0@
at @C:0x8070c00@.@M:0x8077b40:0x8077b4c@
at @C:0x8070c00@.@M:0x80779b0:0x80779bb@

MicroEJ START
Hello World from Gradle!
Exception in thread ”main” java.lang.Throwable

at java.lang.System.getStackTrace(Unknown Source)
at java.lang.Throwable.fillInStackTrace(Throwable.java:82)
at java.lang.Throwable.<init>(Throwable.java:32)
at java.lang.Thread.dumpStack(Thread.java:573)
at com.microej.Main.main(Main.java:22)
at java.lang.MainThread.run(Thread.java:855)
at java.lang.Thread.runWrapper(Thread.java:464)
at java.lang.Thread.callWrapper(Thread.java:449)

3.4. SDK 6 User Guide 155

MicroEJ Documentation,

Custom Executable File Location

SDK 6 1.1.0 and higher

SDK 6 1.0.0 and below

If you want to decode a stack trace of a different Executable file than the Application project one, youmust set the
application.file System Property to define the Executable file location:

./gradlew stackTraceReader -D”application.file”=”/path/to/my/application.out”

As shown in the above example, you can define the location of the Executable file with the application.file prop-
erty:

./gradlew execTool --name=stackTraceDecrypter \
--toolProperty=proxy.connection.connection.type=”console” \
--toolProperty=application.file=”../../application/executable/application.out” \
--toolProperty=additional.application.files=”” \
--console plain

Configure

SDK 6 1.1.0 and higher

SDK 6 1.0.0 and below

The Stack Trace Reader tool uses by default the console to communicate with the device, but this can be changed
by setting the stackTraceReaderConnectionMode property in the microej block in the build.gradle.kts file:

microej {
stackTraceReaderConnectionMode = ”file”
stackTraceReaderFilePath = ”/path/to/input/file”
stackTraceReaderFileResultPath = ”/path/to/output/file”

}

Eachmode has dedicated additional options. The list of the available modes, with their dedicated options, are:

• console (default mode) : use the standard input/output.

• file
[use files.]

– stackTraceReaderFilePath : Path to the file containing the encoded stack trace.

– stackTraceReaderFileResultPath : Path to the output file for the decoded stack trace.

• uart (Not yet available) : use Serial communication.

• socket
[use a socket.]

– stackTraceReaderSocketAddress : IP address.

– stackTraceReaderSocketPort : IP port.

For example, here is the configuration to use the socket mode on the address 192.168.1.17 and the port 4000 :

microej {
stackTraceReaderConnectionMode = ”socket”
stackTraceReaderUartPort = ”192.168.1.17”

(continues on next page)

3.4. SDK 6 User Guide 156

MicroEJ Documentation,

(continued from previous page)

stackTraceReaderUartBaudRate = ”4000”
}

The Stack Trace Reader tool uses by default the console to communicate with the device, but this can be changed
by setting the proxy.connection.connection.type property:

./gradlew execTool --name=stackTraceDecrypter \
--toolProperty=proxy.connection.connection.type=”file” \
--toolProperty=application.file=”../../application/executable/application.out” \
--toolProperty=additional.application.files=”” \
--console plain

Eachmode has dedicated additional options. The list of the available modes, with their dedicated options, are:

• console (default mode) : use the standard input/output.

• file
[use files.]

– pcboardconnection.file.path : Path to the file containing the encoded stack trace.

– pcboardconnection.result.file : Path to the output file for the decoded stack trace.

• uart (Not yet available) : use Serial communication.

• socket
[use a socket.]

– pcboardconnection.socket.address : IP address.

– pcboardconnection.socket.port : IP port.

Code Coverage Analyzer

Principle

The Simulator features an option to output .cc (Code Coverage) files that represent the use rate of functions of an
application. It traces how the opcodes are really executed.

Functional Description

TheCodeCoverageAnalyzer scans theoutput .cc files, andoutputs anHTML report to ease theanalysis ofmethods
coverage. The HTML report is available in a folder named htmlReport in the same folder as the .cc files.

Dependencies

In order towork properly, the CodeCoverageAnalyzer should input the .cc files (SeeGenerate CodeCoverage). The
.cc files rely on the classpath used during the execution of the Simulator to the Code Coverage Analyzer. Therefore
the classpath is considered to be a dependency of the Code Coverage Analyzer.

3.4. SDK 6 User Guide 157

MicroEJ Documentation,

Installation

This tool is a built-in Architecture tool.

Use

A MicroEJ tool is available to launch the Code Coverage Analyzer tool. The tool name is Code Coverage Analyzer.

Two levels of code analysis are provided, the Java level and the bytecode level. Also provided is a view of the fully
or partially covered classes and methods. From the HTML report index, just use hyperlinks to navigate into the
report and source / bytecode level code.

./gradlew execTool --name=codeCoverageAnalyzer \
--toolProperty=cc.dir=”/MODULE_PATH/build/output/com.company.Main/cc/” \
--toolProperty=cc.includes=”com.company.*” \
--toolProperty=cc.excludes=”” \
--toolProperty=cc.src.folders=”/MODULE_PATH/src” \
--toolProperty=cc.html.dir=”/MODULE_PATH/cc”

Note: It is also possible to create a custom task of type ExecToolTask dedicated to the Code Coverage Analyzer.
Refer to the How To Create Custom ExecTool Task chapter for more information.

Options

Option: *.cc files folder

Option Name: cc.dir

Description:

Specify a folder which contains the cc files to process (*.cc).

Option: Source Folders

Option Name: cc.src.folders

Description:

A list of folders to the source files.

Option: HTML Dir

Option Name: cc.html.dir

Description:

The output directory for the HTML report.

3.4. SDK 6 User Guide 158

MicroEJ Documentation,

Option: Includes

Option Name: cc.includes

Description:

List packages and classes to include to code coverage report (; separated). If no package/class is specified, all
classes found in the project classpath will be analyzed.

Examples:

packageA.packageB.* : includes all classes which are in package packageA.packageB

packageA.packageB.className : includes the class packageA.packageB.className

Option: Excludes

Option Name: cc.excludes

Description:

List packages and classes to exclude to code coverage report (; separated). If no package/class is specified, all
classes found in the project classpath will be analyzed.

Examples:

packageA.packageB.* : excludes all classes which are in package packageA.packageB

packageA.packageB.className : excludes the class packageA.packageB.className

IDE tools

Eclipse IDE tools are graphical tools which are available as Eclipse plugins: Memory Map Analyzer, Heap Analyzer
and Font Designer.

Follow these steps to install the latest stable version of these tools:

• Install Eclipse IDE for Java Developers - Minimum supported version is 2022-03 .

• In Eclipse, go to Help > Eclipse Marketplace… .

• In the Find field, type MicroEJ Tools , then press Enter .

• Click on the Install button of the MicroEJ Tools plugin.

• Accept the license, then click on the Finish button.

• In the upcoming Trust Artifacts window, check the Unsigned item and click on

Trust Selected button.

3.4. SDK 6 User Guide 159

https://www.eclipse.org/downloads/packages/

MicroEJ Documentation,

Fig. 51: Eclipse Plugin Installation - Trust Artifacts

• In the upcoming window, click on the Restart Now button.

The following sections describe the IDE tools and their options:

Memory Map Analyzer

Principle

When the Executable of an Application is built, a Memory Map file is generated. This file can be visualized with the
MemoryMap Analyzer, an Eclipse IDE plug-in. It displays thememory consumption of different features in the RAM
and ROM.

3.4. SDK 6 User Guide 160

MicroEJ Documentation,

Fig. 52: Memory Map Analyzer Process

Use

When the Executable file of an Application has been produced, the Memory Map file is available at build/
application/object/soar/<main-class-full-name>.map .

3.4. SDK 6 User Guide 161

MicroEJ Documentation,

Fig. 53: Memory Map File

You can visualize it by following these steps:

• Make sure the Eclipse IDE is installed with the required plugin, then launch it.

• Click on File > Open File… .

• Select the Memory Map file.

3.4. SDK 6 User Guide 162

MicroEJ Documentation,

Fig. 54: Consult Full Memory

You can select an item (or several) to show thememory used by this item(s) on the right, or select All to show the
memory used by all items. This special item performs the same action as selecting all items in the list.

You can also select an item in the list, and expand it to see all symbols used by the item. This view is useful in
understanding why a symbol is embedded.

Fig. 55: Detailed View

3.4. SDK 6 User Guide 163

MicroEJ Documentation,

Troubleshooting

Memory Map Analyzer may fail while opening a Memory Map file saying Could not read this file.

Fig. 56: Error displayed when Memory Map file could not be read

This may happen if the Memory Map Analyzer cannot find a VEE Port to interpret the Memory Map file. To
workaround this, you can open your Memory Map file with a text editor and add the following line:

<property name=”jpf.dir” value=”/path/to/your/vee”/>

If a line defining the jpf.dir already exists, check if the value corresponds to a valid path.

Note: The path must be the directory of a built VEE Port. If you build a Kernel Application, the VEE Port will be
available in the build/vee directory of your Gradle project.

Heap Dumper & Heap Analyzer

Introduction

Heap Dumper is a tool that allows to get a snapshot of the heap of an Application running on the Simulator or on a
device.

The Heap Analyzer is a set of tools to help developers understand the contents of theManaged heap and find prob-
lems such as memory leaks. For its part, the Heap Analyzer IDE plugin is able to visualize dump files. It helps you
analyze their contents thanks to the following features:

• memory leaks detection

• objects instances browse

• heap usage optimization (using immortal or immutable objects)

3.4. SDK 6 User Guide 164

MicroEJ Documentation,

The Heap

The heap is a memory area used to hold Java objects created at runtime. Objects persist in the heap until they are
garbage collected. An object becomes eligible for garbage collection when there are no longer any references to it
from other objects.

Heap Dump

Aheapdump is an XML file (with the .heap extension) that provides a snapshot of the heap contents at themoment
the file is created. It contains a list of all the instances of both class and array types that exist in the heap. For each
instance, it records:

• The time at which the instance was created

• The thread that created it

• Themethod that created it

For instances of class types, it also records:

• The class

• The values in the instance’s non-static fields

For instances of array types, it also records:

• The type of the contents of the array

• The contents of the array

For each referenced class type, it records the values in the static fields of the class.

Heap Analyzer Tools

The Heap Analyzer is an Eclipse IDE plugin that adds three tools to the MicroEJ environment.

Tool name Number of
input files

Purpose

Heap Viewer 1 Shows what instances are in the heap, when they were created,
and attempts to identify problem areas

Progressive
Heap Usage

1 or more Shows how the number of instances in the heap has changed over
time

Compare 2 Compares two heap dumps, showing which objects were created,
or garbage collected, or have changed values

3.4. SDK 6 User Guide 165

MicroEJ Documentation,

Heap Dumper

The Heap Dumper generates .heap files. There are two implementations: - the one integrated to the Simulator: it
directly dumps .heap files from the Managed heap. - the Heap Dumper tool: it generates .heap files from .hex
files that must be manually retrieved from the device.

The heap dump should be performed after a call to System.gc() to exclude discardable objects.

Simulator

In order to generate a Heap dump of an Application running on the Simulator:

• Set the s3.inspect.heap Application properties to true .

• Update your Application code to call the System.gc() method where you need a Heap dump.

• run the Application on the Simulator.

When the System.gc() method is called:

• if it is called from the Application, the .heap file is generated in the build/output/<fqnMainClass>/
heapDump/ folder of the project, where <fqnMainClass> is the Fully Qualified Name of the Application
Main class, for example (com.mycompany.Main).

• if it is called from a test class, the .heap file is generated in the build/testsuite/output/<buildDate>/
bin/<fqnMainClass>/heapDump/ folder of the project, where <fqnMainClass> is the Fully Qualified
Name of the generated Main class and <buildDate> is the date of the test execution, for example (build/
testsuite/output/20240625-1605-24/bin/com.mycompany._AllTests_MyTest/heapDump/).

Device

In order to generate a Heap dump of an Application running on a device:

• Update your Application code to call the System.gc() method where you need a Heap dump.

• Build the Executable and deploy it on the device.

• Start a debug session.

• Add a breakpoint to LLMJVM_on_Runtime_gc_done Core Engine hook. This function is called by the
Core Engine when System.gc() method is done. Alternatively, if you are experiencing out of memory errors,
you can directly add a breakpoint to the LLMJVM_on_OutOfMemoryError_thrown Core Engine hook.

• Resume the execution until the breakpoint is reached. You are now ready to dump the memory. Next steps
are:

– Retrieve the hex file from the device

– Extract the Heap dump from the hex file

Note: Core Engine hooks may have been inlined by the third-party linker. If the symbol is not accessible to the
debugger, youmust declare them in your VEE Port:

void LLMJVM_on_Runtime_gc_done(){
//No need to add code to the function

}

void LLMJVM_on_OutOfMemoryError_thrown(){
(continues on next page)

3.4. SDK 6 User Guide 166

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#gc--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#gc--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#gc--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#gc--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#gc--

MicroEJ Documentation,

(continued from previous page)

//No need to add code to the function
}

Retrieve the .hex file from the device

If you are in a Mono-Sandbox context, you only have to dump the Core Engine heap section. Here is an example of
GDB commands:

b LLMJVM_on_Runtime_gc_done
b LLMJVM_on_OutOfMemoryError_thrown
continue
dump ihex memory heap.hex &_java_heap_start &_java_heap_end

You now have the .hex file and need to extract the Heap dump.

If you are in a Multi-Sandbox context, the following sections must be dumped additionally:

• the installed features table.

dump ihex memory &java_features_dynamic_start &java_features_dynamic_end

• the installed features sections. These are specific to your VEE Port, depending on the LLKERNEL implemen-
tation <LLKF-API-SECTION>.

dump ihex memory <installed features_start_adress> <installed features_end_adress>

To simplify the dump commands, you can also consider the following options :

– either dump the entire memory where microej runtime and code sections are linked,

– or generate the VEEmemory dump script which will dump all the required sections instead.

Note: In a Mono-Sandbox context, use 1_java_heap.hex .

In a Multi-Sandbox context, merge (at least) 1_java_heap.hex and 9_installed_features.hex with:

Command Prompt

PowerShell

Bash

copy /b 1_java_heap.hex + 9_installed_features.hex memory.hex

Get-Content 1_java_heap.hex, 9_installed_features.hex | Set-Content memory.hex

cat 1_java_heap.hex 9_installed_features.hex > memory.hex

3.4. SDK 6 User Guide 167

MicroEJ Documentation,

Extract the Heap dump from the .hex file

In order to extract the Heap dump from an .hex file, run the execTool Gradle task with the tool name heap-
DumperPlatform :

./gradlew execTool --name=heapDumperPlatform \
--toolProperty=output.name=”application.heap” \
--toolProperty=application.filename=”../../executable/application/application.out” \
--toolProperty=heap.filename=”/path/to/memory.hex” \
--toolProperty=additional.application.filenames=”” \
--console plain

If you are in a Multi-Sandbox context, you have to include the .fodbg files and additional hex files:

./gradlew execTool --name=heapDumperPlatform \
--toolProperty=output.name=”application.heap” \
--toolProperty=application.filename=”../../executable/application/application.out” \
--toolProperty=heap.filename=”/path/to/memory.hex” \
--toolProperty=additional.application.filenames=”/path/to/app1.fodbg;/path/to/app2.fodbg...” \
--toolProperty=additional.memory.filenames=”/path/to/additonal1.hex;/path/to/additional2.hex...” \
--console plain

Note: It is also possible to create a custom task of type ExecToolTask dedicated to the heapDumperPlatform
tool. Refer to the How To Create Custom ExecTool Task chapter for more information.

You can find the list of available options below:

Name Description Default

application.
filename

Specify the full path of the Executable file, a full linked ELF
file.

Not set

additional.
application.
filenames

Specify the full path of Feature files with debug information
(.fodbg files).

Not set

heap.
filename

Specify the full path of heap memory dump, in Intel Hex for-
mat.

Not set

additional.
memory.
filenames

Specify the full path of additional memory files in Intel Hex
format (Installed Feature areas, Dynamic Features table,…).

Not set

output.
name

Name of the extracted Heap dump file.
application.heap

3.4. SDK 6 User Guide 168

MicroEJ Documentation,

Heap Viewer

To open the Heap Viewer tool, select a heap dump XML file in the Package Explorer , right-click on it and select

Open With > Heap Viewer

Alternatively, right-click on it and select Heap Analyzer > Open heap viewer .

This will open a Heap Viewer tool window for the selected heap dump1.

The Heap Viewer works in conjunction with two views:

1. The Outline view

2. The Instance Browser view

These views are described below.

The Heap Viewer tool has three tabs, each described below.

Outline View

The Outline view shows a list of all the types in the heap dump, and for each type shows a list of the instances of
that type. When an instance is selected it also shows a list of the instances that refer to that instance. The Outline
view is opened automatically when an Heap Viewer is opened.

Fig. 57: Outline View
1 Although this is an Eclipse editor, it is not possible to edit the contents of the heap dump.

3.4. SDK 6 User Guide 169

MicroEJ Documentation,

Instance Browser View

The Instance Browser view opens automatically when a type or instance is selected in the Outline view. It has two
modes, selected using the buttons in the top right corner of the view. In Fields mode it shows the field values for
the selected type or instance, andwhere those fields hold references it shows the fields of the referenced instance,
and so on. In Reference mode it shows the instances that refer to the selected instance, and the instances that
refer to them, and so on.

Fig. 58: Instance Browser View - Fields mode

Fig. 59: Instance Browser View - References mode

3.4. SDK 6 User Guide 170

MicroEJ Documentation,

Heap Usage Tab

The Heap usage page of the Heap Viewer displays four bar charts. Each chart divides the total time span of the
heap dump (from the time stamp of the earliest instance creation to the time stamp of the latest instance creation)
into a number of periods along the x axis, and shows, by means of a vertical bar, the number of instances created
during the period.

• The top-left chart shows the total number of instances created in each period, and is the only chart displayed
when the Heap Viewer is first opened.

• When a type or instance is selected in the Outline view the top-right chart is displayed. This chart shows the
number of instances of the selected type created in each time period.

• When an instance is selected in the Outline view the bottom-left chart is displayed. This chart shows the
number of instances created in each time period by the thread that created the selected instance.

• When an instance is selected in the Outline view the bottom-right chart is displayed. This chart shows the
number of instances created in each time period by the method that created the selected instance.

Fig. 60: Heap Viewer - Heap Usage Tab

Clicking on the graph area in a chart restricts the Outline view to just the types and instances that were created
during the selected time period. Clicking on a chart but outside of the graph area restores the Outline view to

3.4. SDK 6 User Guide 171

MicroEJ Documentation,

showing all types and instances2.

The button Generate graphViz file in the top-right corner of the Heap Usage page generates a file compatible with
graphviz (www.graphviz.org).

The section Heap Usage Monitoring shows how to compute the maximum heap usage.

Dominator Tree Tab

The Dominator tree page of the Heap Viewer allows the user to browse the instance reference tree which contains
the greatest number of instances. This can be useful when investigating a memory leak because this tree is likely
to contain the instances that should have been garbage collected.

The page contains two tree viewers. The top viewer shows the instances that make up the tree, starting with the
root. The left column shows the ids of the instances – initially just the root instance is shown. The Shallow instances
column shows the number of instances directly referenced by the instance, and the Referenced instances column
shows the total number of instances below this point in the tree (all descendants).

Thebottomviewergroups the instances thatmakeup the treeeither according to their type, the thread that created
them, or the method that created them.

Double-clicking an instance in either viewer opens the Instance Browser view (if not already open) and shows de-
tails of the instance in that view.

2 The Outline can also be restored by selecting the All types and instances option on the drop-down menu at the top of the
Outline view.

3.4. SDK 6 User Guide 172

MicroEJ Documentation,

Fig. 61: Heap Viewer - Dominator Tree Tab

Leak Suspects Tab

The Leak suspects page of the Heap Viewer shows the result of applying heuristics to the relationships between
instances in the heap to identify possible memory leaks.

The page is in three parts.

• The top part lists the suspected types (classes). Suspected types are classes which, based on numbers of
instances and instance creation frequency, may be implicated in a memory leak.

• Themiddle part lists accumulation points. An accumulation point is an instance that references a high num-
ber of instances of a type that may be implicated in a memory leak.

• The bottom part lists the instances accumulated at an accumulation point.

3.4. SDK 6 User Guide 173

MicroEJ Documentation,

Fig. 62: Heap Viewer - Leak Suspects Tab

Progressive Heap Usage

To open the Progressive Heap Usage tool, select one or more heap dump XML files in the Package Explorer ,

right-click and select Heap Analyzer > Show progressive heap usage

This tool is much simpler than the Heap Viewer described above. It comprises three parts.

• The top-right part is a line graph showing the total number of instances in the heap over time, based on the
creation times of the instances found in the heap dumps.

• The left part is a pane with three tabs, one showing a list of types in the heap dump, another a list of threads
that created instances in the heap dump, and the third a list of methods that created instances in the heap
dump.

• The bottom-left is a line graph showing the number of instances in the heap over time restricted to those
instances that match with the selection in the left pane. If a type is selected, the graph shows only instances
of that type; if a thread is selected the graph shows only instances created by that thread; if a method is
selected the graph shows only instances created by that method.

3.4. SDK 6 User Guide 174

MicroEJ Documentation,

Fig. 63: Progressive Heap Usage

Compare Heap Dumps

The Compare tool compares the contents of two heap dump files. To open the tool select two heap dump XML files
in the Package Explorer, right-click and select Heap Analyzer > Compare

The Compare tool shows the types in the old heap on the left-hand side, and the types in the new heap on the
right-hand side, andmarks the differences between them using different colors.

Types in the old heapdumpare colored red if there are one ormore instances of this typewhich are in the old dump
but not in the new dump. Themissing instances have been garbage collected.

Types in the new heap dump are colored green if there are one or more instances of this type which are in the new
dump but not in the old dump. These instances were created after the old heap dumpwas written.

Clicking to the right of the type name unfolds the list to show the instances of the selected type.

3.4. SDK 6 User Guide 175

MicroEJ Documentation,

Fig. 64: Compare Heap Dumps

The combo box at the top of the tool allows the list to be restricted in various ways:

• All instances – no restriction.

• Garbage collected and new instances – showonly the instances that exist in the old heap dumpbut not in the
new dump, or which exist in the new heap dump but not in the old dump.

• Persistent instances – show only those instances that exist in both the old and new dumps.

• Persistent instanceswith value changed– showonly those instances that exist inboth theoldandnewdumps
and have one or more differences in the values of their fields.

3.4. SDK 6 User Guide 176

MicroEJ Documentation,

Instance Fields Comparison View

TheCompare toolworks in conjunctionwith the InstanceFieldsComparisonview,whichopensautomaticallywhen
an instance is selected in the tool.

The view shows the values of the fields of the instance in both the old and new heap dumps, and highlights any
differences between the values.

Fig. 65: Instance Fields Comparison view

Font Designer

Principle

The Font Designer module is a graphical tool (Eclipse plugin) that runs within the MicroEJ IDE used to build and
edit .ejf fonts. It stores fonts in a VEE Port independent format.

3.4. SDK 6 User Guide 177

MicroEJ Documentation,

Functional Description

Fig. 66: Font Generation

Create an EJF Font

To create an EJF font, follow the steps below:

1. Open the Eclipse wizard: File > New > Other… > MicroEJ > MicroEJ Font .

2. Select a directory and a name.

3. Click Finish.

Once the font is created, a new editor is opened: the MicroEJ Font Designer.

Edit an EJF Font

You can edit your font with the MicroEJ Font Designer (by double-clicking on a *.ejf file or after running the new
MicroEJ Font wizard).

This editor is divided into three main parts:

• The top left part manages the main font properties.

• The top right part manages the character to embed in your font.

• The bottom part allows you to edit a set of characters or an individual character.

Main Properties

Themain font properties are:

• font size: height and width (in pixels).

• baseline (in pixels).

• space character size (in pixels).

• styles and filters.

• identifiers.

Refer to the following sections for more information about these properties.

3.4. SDK 6 User Guide 178

MicroEJ Documentation,

Font Height

A font has a fixed height. This height includes the white pixels at the top and at the bottom of each character
simulating line spacing in paragraphs.

Fig. 67: Font Height

Font Width: Proportional and Monospace Fonts

Amonospace font is a font in which all characters have the samewidth. For example a ! representationwill be the
samewidth as a w (they will be in the same size rectangle of pixels). In a proportional font, a w will be wider than
a ! .

A monospace font usually offers a smaller memory footprint than a proportional font because the Font Designer
does not need to store the size of each character. As a result, this option can be useful if the difference between the
size of the smallest character and the biggest one is small.

Baseline

Characters have a baseline: an imaginary line on top of which the characters seem to stand. Note that characters
can be partly under the line, for example, g or } .

Fig. 68: The Baseline

Space Character

The Space character (0x20) is a specific character because it has no filled pixels. From the Main Properties Menu
you can fix the space character size in pixels.

Note: When the font is monospace, the space size is equal to the font width.

3.4. SDK 6 User Guide 179

MicroEJ Documentation,

Styles

FontDesigner allows creatinga font file that holds several combinationsof built-in styles (styleshardcoded inpixels
map) and runtime styles (styles rendered dynamically at runtime). However, since MicroUI 3, a MicroUI font holds
only one style: PLAIN , BOLD , ITALIC or BOLD + ITALIC .

Font Designer features three drop-downs, one for each of BOLD , ITALIC , and UNDERLINED . Each
drop-down has three options: None , Built-in and Dynamic . The font options must be adjusted to be com-
patible with MicroUI 3:

• The style option Dynamic (that targets the runtime style) is forbidden; select None instead.

• The syle UNDERLINED is forbidden; select None instead.

The styles options Built-in tag the font as bold, italic, or bold and italic. Adjust the styles options according to the
font:

• The font is a plain font: select None option for each style.

• The font is a bold font: select Built-in for the style bold and None for the other styles.

• The font is an italic font: select Built-in for the style italic and None for the other styles.

• The font is a bold and italic font: select Built-in for the styles bold and italic and None for UNDERLINED
.

Warning: When a font holds a dynamic style or when the style UNDERLINED is not None , an error at
MicroEJ application compile-time is thrown (incompatible font file).

Identifiers

A number of identifiers can be attached to an EJF font. At least one identifier is required to specify the font. Identi-
fiers are amechanism for specifying the contents of the font – the set or sets of characters it contains. The identifier
may be a standard identifier (for example, LATIN) or a user-defined identifier. Identifiers are numbers, but standard
identifiers, which are in the range 0 to 80, are typically associated with a handy name. A user-defined identifier is
an identifier with a value of 81 or higher.

Character List

The list of characters can be populated through the import button, which allows you to import characters from
system fonts, images or another EJF font.

Import from System Font

This page allows you to select the system font to use (left part) and the range of characters. There are predefined
ranges of characters below the font selection, as well as a custom selection picker (for example 0x21 to 0xfe for
Latin characters).

The right part displays the selected characters with the selected font. If the background color of a displayed char-
acter is red, it means that the character is too large for the defined height, or in the case of a monospace font, it
means the character is too high or too wide. You can then adjust the font properties (font size and style) to ensure
that characters will not be truncated.

When your selection is done, click the Finish button to import this selection into your font.

3.4. SDK 6 User Guide 180

MicroEJ Documentation,

Import from Images

This page allows the loading of images from a directory. The images must be named as follows: 0x[UTF-8].
[extension] .

When your selection is done, click the Finish button to import the images into your font.

Character Editor

When a single character is selected in the list, the character editor is opened.

Fig. 69: Character Editor

3.4. SDK 6 User Guide 181

MicroEJ Documentation,

Properties

You can define specific properties, such as left and right space, or index. You can also draw the character pixel by
pixel - a left-click in the grid draws the pixel, a right-click erases it.

The changes are not saved until you click the Apply button. When changes are applied to a character, the editor
shows that the font has changed, so you can now save it.

The same part of the editor is also used to edit a set of characters selected in the top right list. You can then edit
the common editable properties (left and right space) for all those characters at the same time.

Anti-Aliased Fonts

By default, when characters are imported from a system font, each pixel is either fully opaque or fully transparent.
Fully opaque pixels show as black squares in the character grid in the right-hand part of the character editor; fully
transparent pixels show as white squares.

However, the pixels stored in an ejf file can take one of 256 grayscale values. A fully-transparent pixel has the value
255 (the RGB value for white), and a fully-opaque pixel has the value 0 (the RGB value for black). These grayscale
values are shown in parentheses at the endof the text in the Current alpha fieldwhen themouse cursor hovers over
a pixel in the grid. That field also shows the transparency level of the pixel, as a percentage, where 100% means
fully opaque.

It is possible to achieve better-looking characters by using a combination of fully-opaque and partially-transparent
pixels. This technique is called anti-aliasing. Anti-aliased characters can be imported from system fonts by check-
ing the anti aliasing box in the import dialog. The & character shown in the screenshot abovewas imported using
anti aliasing, and you can see the various gray levels of the pixels.

When the Font Generator converts an ejf file into the raw format used at runtime, it can create fonts with charac-
ters that have 1, 2, 4 or 8 bits-per-pixel (bpp). If the raw font has 8 bpp, then no conversion is necessary and the
characters will render with the same quality as seen in the character editor. However, if the raw font has less than
8 bpp (the default is 1 bpp) any gray pixels in the input file are compressed to fit, and the final rendering will be of
lower quality (but less memory will be required to hold the font).

It is useful to be able to see the effects of this compression, so the character editor provides radio buttons that allow
the user to preview the character at 1, 2, 4, or 8 bpp. Furthermore, when 2, 4 or 8 bpp is selected, a slider allows the
user to select the transparency level of the pixels drawn when the leftmouse button is clicked in the grid.

Character Pixmap

This view allows to previewing and editing the character’s pixels. The closer the pixel’s color is to black, the more
opaque the encoded opacity will be.

Left or right click on a pixel to draw or erase it.

3.4. SDK 6 User Guide 182

MicroEJ Documentation,

Preview

You can preview your font by pressing the Preview... button, which opens the Preview wizard. In the Preview
wizard, press the Select File button, and select a text file which contains text that you want to see rendered using
your font. Characters that are in the selected text file but not available in the font will be shown as red rectangles.

3.4. SDK 6 User Guide 183

MicroEJ Documentation,

Fig. 70: Font Preview

3.4. SDK 6 User Guide 184

MicroEJ Documentation,

Removing Unused Characters

In order to reduce the size of a font file, you can reduce the number of characters in your font to be only those
characters used by your application. To do this, create a file which contains all the characters used by your appli-
cation (for example, concatenating all your NLS files is a good starting point). Then open the Preview wizard as
described above, selecting that file. If you select the check box Delete unused on finish, then those characters
that are in the font but not in the text file will be deleted from the font when you press the Finish button, leaving
your font containing theminimumnumber of characters. As this fontwill contain only characters used by a specific
application, it is best to prepare a “complete” font, and then apply this technique to a copy of that font to produce
an application specific cut-down version of the font.

Use an EJF Font

An EJF Font must be converted to a format which is specific to the targeted VEE Port. The Font Generator tool
performs this operation for all fonts specified in the list of fonts configured in the application launch.

Dependencies

No dependency.

Installation

The Font Designer module is already installed in the MicroEJ SDK5.

Use

Create a new ejf font file or open an existing one in order to open the Font Designer plugin.

Local Deployment Socket

Principle

The Local Deployment Socket is a tool that allows to transfer an Application on the device over a network connec-
tion.

Functional Description

The Local Deployment Socket builds the Application Feature file (.fo) and upload it on the device identified by its
IP address. On the device, it is the job of the Kernel Application that receives the Feature file to install and to run
the Application.

3.4. SDK 6 User Guide 185

MicroEJ Documentation,

Use

./gradlew execTool --name=localDeploymentSocket \
--toolProperty=application.main.class=”com.mycompany.MyFeature” \
--toolProperty=kernel.filename=”[path_to_application.out]” \
--toolProperty=board.server.host=”10.0.0.171” \
--toolProperty=board.server.port=”4000” \
--toolProperty=board.timeout=”120000” \
--toolProperty=use.storage=”true”

Note: It is also possible to create a custom task of type ExecToolTask dedicated to the Local Deployment Socket.
Refer to the How To Create Custom ExecTool Task chapter for more information.

Options

Option: Application Feature Class

Option Name: application.main.class

Required?: Yes

Description:

Specify the entry-point as the full qualified name of the Application to deploy.

Option: Kernel Executable

Option Name: kernel.filename

Required?: Yes

Description:

Specify the Kernel Executable to use for building the Application Feature file.

Option: Server Host

Option Name: board.server.host

Required?: Yes

Description:

The IP of the target device.

3.4. SDK 6 User Guide 186

MicroEJ Documentation,

Option: Server Port

Option Name: board.server.port

Required?: Yes

Description:

The TCP port on which the Kernel listens (usually 4000).

Option: Timeout

Option Name: board.timeout

Required?: Yes

Description:

If there is no activity within the defined timeout period (in seconds), the tool will disconnect from the device.

Option: Use Storage

Option Name: use.storage

Required?: Yes

Description:

A boolean describingwhether to use the storage to store the Application or not. Refer to the Kernel documentation
to find out the correct setting.

Serial to Socket Transmitter

Principle

The MicroEJ Serial to Socket Transmitter is a tool which transfers all bytes from a serial port to a TCP client or TCP
server.

It is typically used to transfer the output traces of a testsuite executed on a device.

Use

To start transfering data from the COM8 serial port to the port 5555 , execute the execTool task as followed:

./gradlew execTool --name=serialToSocketTransmitter \
--toolProperty=serail.to.socket.comm.port=”COM8” \
--toolProperty=serail.to.socket.comm.baudrate=”115200” \
--toolProperty=serail.to.socket.server.port=”5555” \
--console plain

3.4. SDK 6 User Guide 187

MicroEJ Documentation,

Run Serial to Socket Transmitter with Custom Task

To simplify the use of the Serial to Socket Transmitter, it is also possible to create a custom task in the build.gradle.
kts file of your project as follows:

• Import the ExecToolTask and LoadVeeTask classes:

import com.microej.gradle.tasks.ExecToolTask
import com.microej.gradle.tasks.LoadVeeTask

• Create a new task of type ExecToolTask :

val loadVee = tasks.withType(LoadVeeTask::class).named(”loadVee”)
val mainSourceSet = project.extensions.getByType(SourceSetContainer::class).getByName(SourceSet.
→˓MAIN_SOURCE_SET_NAME)

tasks.register<ExecToolTask>(”serialToSocketTransmitter”) {
group = ”microej”
veeDir.set(loadVee.flatMap { it.loadedVeeDir })
resourcesDirectories.from(mainSourceSet.output.resourcesDir, layout.buildDirectory.dir(”generated/

→˓microej-app-wrapper/resources”))
classesDirectories.from(mainSourceSet.output.classesDirs, layout.buildDirectory.dir(”generated/microej-

→˓app-wrapper/classes”))
classpathFromConfiguration.from(project.configurations.getByName(”runtimeClasspath”))

toolName = ”serialToSocketTransmitter”
toolProperties.putAll(mapOf(

”serail.to.socket.comm.port” to ”COM8”,
”serail.to.socket.comm.baudrate” to ”115200”,
”serail.to.socket.server.port” to ”5555”

))
}

• The custom task can then be executed:

$./gradlew serialToSocketTransmitter

Options

Serial Port

Option Name: serail.to.socket.comm.port

Default value: COM0

Description: Defines the COM port:

Windows - COM1 , COM2 , ... , COM*n*

Linux - /dev/ttyS0 , /dev/ttyUSB0 , ... , /dev/ttyS*n* , /dev/ttyUSB*n*

3.4. SDK 6 User Guide 188

MicroEJ Documentation,

Baudrate

Option Name: serail.to.socket.comm.baudrate

Default value: 115200

Available values:

9600

38400

57600

115200

Description: Defines the COM baudrate.

Socket Port

Option Name: serail.to.socket.server.port

Default value: 5555

Description: Defines the TCP server port.

Null Analysis

NullPointerException thrownat runtime is oneof themost commoncauses for failureof Javaprograms. Allmodern
IDEs provide a Null Analysis tool which can detect such programming errors (misuse of potential null Java values)
at compile-time.

Principle

The Null Analysis tool is based on Java annotations. Each Java field, method parameter and method return value
must be marked to indicate whether it can be null or not.

Once the Java code is annotated, the IDEmust be configured to enable Null Analysis detection.

Java Code Annotation

MicroEJ defines its own annotations:

• @NonNullByDefault: Indicates that all fields, method return values or parameters can never be null in the
annotatedpackageor type. This rule canbeoverriddenoneachelementbyusing the @Nullable annotation.

• @Nullable: Indicates that a field, local variable, method return value or parameter can be null.

• @NonNull: Indicates that a field, local variable, method return value or parameter can never be null.

MicroEJ recommends to annotate the Java code as follows:

• In each Java package, create a package-info.java file and annotate the Java package with @NonNullBy-
Default . This is a common good practice to deal with non null elements by default to avoid undesired
NullPointerException. It enforces the behavior which is already widely outlined in Java coding rules.

3.4. SDK 6 User Guide 189

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/NullPointerException.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/annotation/NonNullByDefault.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/annotation/Nullable.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/annotation/NonNull.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/NullPointerException.html

MicroEJ Documentation,

@ej.annotation.NonNullByDefault
package com.mycompany;

• In eachJava type, annotateall fields,methods returnvaluesandparameters that canbenullwith @Nullable .
Usually, this information is already available as textual information in the field ormethod Javadoc comment.
The following example of code shows where annotations must be placed:

@Nullable
public Object thisFieldCanBeNull;

@Nullable
public Object thisMethodCanReturnNull() {
return null;

}

public void thisMethodParameterCanBeNull(@Nullable Object param) {

}

IDE Configuration

Requirements

The project must depend at least on the version 1.3.6 of the ej.api:edc module:

dependencies {
implementation(”ej.api:edc:1.3.6”)

}

Project configuration

IntelliJ IDEA / Android Studio

Eclipse

Follow these steps to enable the Null Analysis tool in IntelliJ IDEA and Android Studio:

• Go to File > Settings… .

• Go to Editor > Inspections .

• Open the category Java > Probable Bugs > Nullability problems > @NotNull/@Nullable problems .

• In the Options panel, scroll down and click on the Configure Annotations… button.

3.4. SDK 6 User Guide 190

MicroEJ Documentation,

• In the Nullable tab, click on the + button.

• Type ej.annotation.Nullable and select the listed class.

3.4. SDK 6 User Guide 191

MicroEJ Documentation,

• Select ej.annotation.Nullable in the Nullable annotations list.

• Go to the NotNull tab and repeat the same steps with the ej.annotation.NonNull class.

• Click on the OK button.

• Change the Severity field to Error .

• Check the Report @NotNull parameters overriding non-annotated option.

3.4. SDK 6 User Guide 192

MicroEJ Documentation,

• Check and select the category Java > Probable Bugs > Nullability problems > Return of ‘null’ .

• Change the Severity field to Error .

• Select the category Java > Probable Bugs > Nullability problems >

Return value is outside of declared range .

• Change the Severity field to Error .

3.4. SDK 6 User Guide 193

MicroEJ Documentation,

• Select the category Java > Probable Bugs > Nullability and data flow problems .

• Change the Severity field to Error .

• Check and select the category Java > Probable Bugs > Nullability problems >

@NotNull field is not initialized .

• Change the Severity field to Error .

• Uncheck the Ignore fields which could be initialized implicitly option.

• Uncheck the Ignore fields initialized in setUp() method option.

• Check and select the category Java > Javadoc > Missing’package-info.java’ .

• Change the Severity field to Error .

3.4. SDK 6 User Guide 194

MicroEJ Documentation,

For more details, refer to the official documentation on Configure nullability annotations.

To enable the Null Analysis tool in Eclipse, a project must be configured as follows:

• In the Package Explorer, right-click on the module project and select Properties ,

• Navigate to Java Compiler > Errors/Warnings ,

• In the Null analysis section, configure options as follows:

3.4. SDK 6 User Guide 195

https://www.jetbrains.com/help/idea/annotating-source-code.html#configure-nullability-annotations

MicroEJ Documentation,

• Click on the Configure… link to configure MicroEJ annotations:

– ej.annotation.Nullable

– ej.annotation.NonNull

– ej.annotation.NonNullByDefault

3.4. SDK 6 User Guide 196

MicroEJ Documentation,

• In the Annotations section, check Suppress optional errors with ‘@SuppressWarnings’ option:

3.4. SDK 6 User Guide 197

MicroEJ Documentation,

This option allows to fully ignore Null Analysis errors in advanced cases using @SuppressWarnings(”null”)
annotation.

If you havemultiple projects to configure, you can then copy the content of the .settings folder to an othermodule
project.

3.4. SDK 6 User Guide 198

MicroEJ Documentation,

Fig. 71: Null Analysis Settings Folder

Warning: You may lose information if your target module project already has custom parameterization or if it
was created with another SDK version. In case of any doubt, please configure the options manually or merge
with a text file comparator.

Launching Null Analysis

While Eclipse automatically launchesNull Analysis on thewhole project and reports all the problems found, IntelliJ
IDEA and Android Studio launch the Null Analysis only on the currently open file. In order to launch an Analysis of
the full project:

• Go to Code > Inspect Code .

• Check the Whole project option.

• Uncheck the Include test sources option.

• Click on Analyze .

3.4. SDK 6 User Guide 199

MicroEJ Documentation,

Disabling Analysis for Test Folder

IntelliJ IDEA / Android Studio

Eclipse

The Analysis of the test folder can be disabled by unchecking the option Include test sources when launching a
Code Inspection:

The Null Analysis can be automatically disabled in test folder by using the eclipse-wtp Gradle plugin:

• In the build.gradle.kts plugin of the project, add the eclipse-wtp plugin:

plugins {
...
`eclipse-wtp`

}

• Then add the following snippet of code:

import org.gradle.plugins.ide.eclipse.model.AbstractClasspathEntry
import org.gradle.plugins.ide.eclipse.model.Classpath

eclipse.classpath.file {
whenMerged(Action<Classpath> {

entries.filter { entry ->
(entry.kind == ”src” && entry is AbstractClasspathEntry && entry.path == ”src/test/java”)

}.forEach { entry ->
(entry as AbstractClasspathEntry).entryAttributes[”ignore_optional_problems”] = ”true”

}
(continues on next page)

3.4. SDK 6 User Guide 200

MicroEJ Documentation,

(continued from previous page)

})
}

Adapth the path of your test folder accordingly.

Sharing Null Analysis IDE Configuration

IntelliJ IDEA / Android Studio

Eclipse

The configuration related to Null Analysis is located in the .idea/misc.xml and .idea/inspectionProfiles/* files.
In order to share them, they must be committed in your project source reposiory. For Git projects, if you decided
to not commit the IDE configuration files, these files can be excludedwith the following lines in the .gitignore file:

/.idea/*
!/.idea/misc.xml
!/.idea/inspectionProfiles/*

.. warning::

IntelliJ IDEA and Android Studio create a ``.gitignore`` file in the ``.idea`` folder.
You can remove it or adapt it to fit your needs.

The configuration related to Null Analysis is located in the .settings/org.eclipse.jdt.core.prefs file. In order to
share it, it must be committed in your project source reposiory. For Git projects, if you decided to not commit the
IDE configuration files, these files can be excluded with the following lines in the .gitignore file:

/.settings/*
!/.settings/org.eclipse.jdt.core.prefs

MicroEJ Libraries

Many libraries available on Central Repository are annotated with Null Analysis. If you are using a library which is
not yet annotated, please contact our support team.

For the benefit of Null Analysis, some APIs have been slightly constrained compared to the Javadoc description.
Here are some examples to illustrate the philosophy:

• System.getProperty(String key, String def) does not accept a null default value, which allows to ensure the
returned value is always non null .

• Collectionsof theJavaCollectionsFramework that canhold null elements (e.g. HashMap)donotaccept null
elements. This allows APIs to return null (e.g. HashMap.get(Object)) only when an element is not contained
in the collection.

Implementations are left unchanged and still comply with the Javadoc description whether the Null Analysis is
enabled or not. So if these additional constraints are not acceptable for your project, please disable Null Analysis.

3.4. SDK 6 User Guide 201

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#getProperty-java.lang.String-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/HashMap.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/HashMap.html#get-java.lang.Object-

MicroEJ Documentation,

3.4.18 VEE Port

Create a VEE Port

This section describes the steps to create a new VEE Port with the SDK, and options to connect it to an external
Board Support Package (BSP) as well as a third-party C toolchain.

Note: If you own a legacy VEE Port, you can either create your VEE Port again from scratch, or follow the Former
PlatformMigration chapter.

VEE Port Project Creation

The first step is to create a VEE Port configuration project:

IntelliJ IDEA

Android Studio

Eclipse

Visual Studio Code

Command Line Interface

• Click File > New > Project from Version Control… .

• Select Repository URL .

• Select Git as Version control.

• Fill the URL of the VEE Port Project Template Github Repository.

• Fill the Directory in which the Project Template must be cloned.

• Click on Clone button.

3.4. SDK 6 User Guide 202

https://github.com/MicroEJ/Tool-Project-Template-VEEPort/tree/1.3.0

MicroEJ Documentation,

Fig. 72: Version Control Window in IntelliJ IDEA

• When the Gradle project is loaded, rename the project and change its group and version in the build.gradle.
kts build script.

• Select View > Tool Windows > Terminal .

• In the integrated terminal, run the following commandat the root of theproject to remove theGit Repository:

Windows

Linux/macOS

rm -r -Force .git*

rm -rf .git*

• Click File > New > Project from Version Control… .

• Select Repository URL .

• Select Git as Version control.

• Fill the URL of the VEE Port Project Template Github Repository.

• Fill the Directory in which the Project Template must be cloned.

• Click on Clone button.

3.4. SDK 6 User Guide 203

https://github.com/MicroEJ/Tool-Project-Template-VEEPort/tree/1.3.0

MicroEJ Documentation,

Fig. 73: Version Control Window in Android Studio

• When the Gradle project is loaded, rename the project and change its group and version in the build.gradle.
kts build script.

• Select View > Tool Windows > Terminal .

• In the integrated terminal, run the following commandat the root of theproject to remove theGit Repository:

Windows

Linux/macOS

rm -r -Force .git*

rm -rf .git*

• Open a new terminal.

• Clone the VEE Port Project Template Github Repository:

git clone git@github.com:MicroEJ/Tool-Project-Template-VEEPort.git

• Remove the Git Repository from the project:

Windows

Linux/macOS

3.4. SDK 6 User Guide 204

https://github.com/MicroEJ/Tool-Project-Template-VEEPort/tree/1.3.0

MicroEJ Documentation,

rm -r -Force .git*

rm -rf .git*

• Rename the project and change its group and version in the build.gradle.kts build script.

• In Eclipse, click on File > Import… .

• Select the project type Gradle > Existing Gradle Project and click on the Next button.

Fig. 74: Project Type Selection in Eclipse

• Select the root directory of the project.

3.4. SDK 6 User Guide 205

MicroEJ Documentation,

Fig. 75: Project root folder in Eclipse

• Click on the Next button and finally on the Finish button.

• Select View > Command Palette… .

• Run the Git: Clone command in the Command Palette.

Fig. 76: Command Palette in VS Code

• Fill the URI of the VEE Port Project Template Github Repository in the Search Bar.

• Click on Clone from URL .

Fig. 77: Search Bar in VS Code

3.4. SDK 6 User Guide 206

https://github.com/MicroEJ/Tool-Project-Template-VEEPort/tree/1.3.0

MicroEJ Documentation,

• In the upcoming popup, choose a folder and click on the Select as Repository Destination button.

• When the Gradle project is loaded, rename the project and change its group and version in the build.gradle.
kts build script.

• Select Terminal > New Terminal .

• In the integrated terminal, run the following commandat the root of theproject to remove theGit Repository:

Windows

Linux/macOS

rm -r -Force .git*

rm -rf .git*

• Clone the VEE Port Project Template Github Repository:

git clone git@github.com:MicroEJ/Tool-Project-Template-VEEPort.git

• Remove the Git Repository from the project:

Windows

Linux/macOS

rm -r -Force .git*

rm -rf .git*

• Rename the project and change its group and version in the build.gradle.kts build script.

Architecture Selection

The next step is to select an Architecture compatible with your device instructions set and C compiler. A VEE Port
requires exactly one Architecture. MicroEJ Corp. provides MicroEJ Evaluation Architectures for most common in-
structions sets and compilers at https://repository.microej.com/modules/com/microej/architecture. Refer to the
chapter Architectures MCU / Compiler for the details of ABI and compiler options.

If the requested MicroEJ Architecture is not available for evaluation or to get a MicroEJ Production Architecture,
please contact your MicroEJ sales representative or our support team.

The VEE Port project template comes with a default Architecture, defined in the Version Catalog file located at
gradle/libs.versions.toml :

architecture = { group = ”com.microej.architecture.CM4.CM4hardfp_GCC48”, name = ”flopi4G25”, version = ”8.
→˓2.0” }

and referenced in the vee-port/build.gradle.kts file:

dependencies {

microejArchitecture(libs.architecture)

}

3.4. SDK 6 User Guide 207

https://github.com/MicroEJ/Tool-Project-Template-VEEPort/tree/1.3.0
https://repository.microej.com/modules/com/microej/architecture

MicroEJ Documentation,

If you want to use another Architecture, update the Version Catalog file accordingly.

The name of the Architecture dependency module needed for your VEE Port can be found in the chapter Archi-
tectures MCU / Compiler. Check the table of your corresponding Architecture and follow the link in the Module
column.

Warning: We recommend to use an Architecture 8.1 minimum to have full support on the SDK features.

For example, to declare the Architecture version 8.3.0 for Arm® Cortex®-M7 microcontrollers compiled with IAR
toolchain:

architecture = { group = ”com.microej.architecture.CM7.CM7hardfp_IAR83”, name = ”flopi7I36”, version = ”8.3.
→˓0” }

Runtime Capability

Depending on the selected Architecture, several Runtime Capabilities are available: mono , multi or tiny . The
Capability used for the VEE Port can be defined thanks to the com.microej.runtime.capability property in the
vee-port/configuration.properties file of the VEE Port Configuration project:

com.microej.runtime.capability=multi

Pack Import

MicroEJ Pack provides additional features on top of the MicroEJ Architecture such as Graphical User Interface or
Networking. This is the primary mechanism for augmenting the capabilities of a VEE Port.

A MicroEJ Pack is a group of related files (Foundation Libraries, scripts, link files, C libraries, Simulator Mock, tools,
etc.) that together provide all or part of a VEE Port capability.

A Pack can extend an Architecture with additional capabilities such as:

• Runtime Capability (e.g. Multi-Sandbox, External Resources Loader) ,

• Foundation Library Implementation (e.g. MicroUI, NET),

• Simulator (e.g. Front Panel Mock),

• Tool (e.g. MicroEJ Java H).

Note: MicroEJ Packs are optional. You can skip this section if you intend to integrate MicroEJ runtime only with
custom libraries.

To add a MicroEJ Pack, add it as a dependency of the VEE Port configuration project in the build.gradle.kts file:

dependencies {

// MicroEJ Architecture Specific Pack
microejPack(”com.microej.architecture.[ISA].[TOOLCHAIN]:[UID]-[NAME]-pack:[VERSION]”)

// MicroEJ Generic Pack
microejPack(”com.microej.pack.[NAME]:[NAME]-pack:[VERSION]”)

(continues on next page)

3.4. SDK 6 User Guide 208

MicroEJ Documentation,

(continued from previous page)

// Legacy MicroEJ Generic Pack
microejPack(”com.microej.pack:[NAME]:[VERSION]”)

}

For example, to declare theMicroEJ Architecture Specific Pack UI version 14.0.1 for MicroEJ Architecture flopi4G25
on Arm® Cortex®-M4microcontrollers compiled with GNU CC toolchain:

dependencies {

// MicroEJ Architecture Specific Pack
microejPack(”com.microej.architecture.CM4.CM4hardfp_GCC48:flopi4G25-ui-pack:14.0.1”)

}

To declare the MicroEJ Generic Pack Bluetooth version 2.1.0:

dependencies {

// MicroEJ Generic Pack
microejPack(”com.microej.pack.bluetooth:bluetooth-pack:2.1.0”)

}

And to declare the Legacy MicroEJ Generic Pack Net version 9.2.3:

dependencies {

// Legacy MicroEJ Generic Pack
microejPack(”com.microej.pack:net:9.2.3”)

}

Enabling/Disablingmodules of Legacy and Architecture Specific Packs

Architecture Specific Packs and Legacy Packs may contain multiple modules. They are all automatically installed
during the VEE Port build, but can de disabled individually by configuration. This is not the case for the Generic
Packs, which always contain only one module. Therefore, if you want to disable the module of a Generic Pack,
simply remove the Pack dependency.

The modules of the Architecture Specific Packs and Legacy Packs can be enabled/disabled in the vee-port/
configuration.properties file of the VEE Port Configuration project by adding the property com.microej.runtime.
<module>.<feature>.enabled=true|false for each module that must be enabled/disabled. The <feature> is
optional. When no feature is defined, the whole module is enabled/disabled. Here are some examples:

Disable the ”display_decoder_bmpm” feature of the ”ui” module of the Pack UI
com.microej.runtime.ui.display_decoder_bmpm.enabled=false

Disable the whole ”ssl” module of the Pack Net
com.microej.runtime.ssl.enabled=false

For a complete list of the properties allowing to enable/disable modules, refer to the VEE Port Project Template.

3.4. SDK 6 User Guide 209

https://repository.microej.com/modules/com/microej/architecture/CM4/CM4hardfp_GCC48/flopi4G25-ui-pack/14.0.1/
https://repository.microej.com/modules/com/microej/pack/bluetooth/bluetooth-pack/2.1.0/
https://repository.microej.com/modules/com/microej/pack/net/9.2.3/
https://github.com/MicroEJ/Tool-Project-Template-VEEPort/blob/1.3.0/vee-port/configuration.properties

MicroEJ Documentation,

Packs Configuration

Packs can be configured in the vee-port/configuration.properties file of the VEE Port Configuration project. Each
Pack provides a set of optionwhich follows the pattern name com.microej.pack.<module>.<option>=<value>
. Here are some examples:

Defines the number of bits per pixels the display device is using to render a pixel
com.microej.pack.display.bpp=argb8888

Defines the native file system user directory
com.microej.pack.fs.user.dir=/home/microej

Defines the native stack you want to use
com.microej.pack.net.stack=bsd

VEE Port Usage

Depending on your use case, there are different ways to use the VEE Port from an Application or a Library. All of
them are described in the Select a VEE Port page.

In a nutshell,

• When the VEE Port is intended to be used by developers not having the VEE Port project locally, it must be
published in a remote repository and fetched in dependencies by the developers. Refer to the VEE Port Publi-
cation section to learn how to publish a VEE Port.

• When the VEE Port project is available locally on the developers’ machine, it can be integrated in the build
flow of the Application or the Library. Depending on your project structure, refer to VEE Port project inside a
multi-project or Local VEE Port project outside amulti-project section.

VEE Port Customization

The VEE Port Configuration project can contain an optional vee-port/dropins folder. The full content of this folder
will be copied in the VEE Port during the build. Files in the dropins folder have the highest priority. If one file has
the same path and name as a file already installed in the VEE Port, the file from the dropins folder will be used in
the built VEE Port. This feature allows to add or overwrite libraries, tools, etc. into the VEE Port.

The dropins folder organization should respect the VEE Port files and folders organization. For instance, the tools
are located in the sub-folder tools . In order to see how the VEE Port files and folders are organized, launch a VEE
Port build without the dropins folder by executing the Gradle task buildVeePort . The built VEE Port is located in
the folder vee-port/build/vee . Then fill the dropins folder with additional features and build again the VEE Port
to get a customized VEE Port.

BSP Connection

In order to build the Executable of an Application, the BSP Connection must be configured. Refer to the BSP Con-
nection section for more details.

3.4. SDK 6 User Guide 210

MicroEJ Documentation,

VEE Port Publication

Publishing a VEE Port in a repository allows to make it easily available to any project.

To be able to publish a VEE Port, you have to make sure that the group and version properties are defined for
the VEE Port subproject. If you have created your VEE Port project from the template, they are defined in main
build.gradle.kts file:

allprojects {
group = ”com.mycompany.myboard”
version = ”0.1.0-RC”

}

You can adapt them to your need, or define themdirectly in the VEE Port subproject, in the vee-port/build.gradle.
kts file:

group = ”com.mycompany.myboard”
version = ”1.0.0”

Changing the group and version properties in the main build.gradle.kts file will affect all the subprojects,
whereas defining them in the vee-port/build.gradle.kts file will only affect the VEE Port subproject.

The name of the artifact can be defined in the settings.gradle.kts file with the rootProject.name property. It is
set by default to the folder name of the project.

Once these properties are defined, the publication of a VEE Port is done, as any other Gradle project, by executing
the publish task.

An important point to notice is that publishing a VEE Port does not publish the built VEE Port, it publishes all the
configuration and dropins of the project, as well as the BSPwhen it is configured in Full Connectionmode. The VEE
Port is then built on the fly when it is required (when building the Executable of an Application for example).

BSP Publication Filtering

If the VEE Port is configured in Full BSP Connection, the BSP is included in the VEE Port when it is published. Since
the BSP can be big and all the files are not necessary to build an Executable, the SDK allows to define properties in
the configuration.properties of the VEE Port project to filter the BSP files in publish:

• bsp.publication.includes.pattern : comma-separated list of Ant-style files and folders patterns to include in
the published VEE Port. By default all the files and folders are included.

• bsp.publication.excludes.pattern : comma-separated list of Ant-style files and folders patterns to exclude
from the published VEE Port. By default no files or folders are excluded.

Thepathsare relative to theBSP root folder (definedby the bsp.root.dir propertiesof the configuration.properties
file).

Here is an example which excludes 3 folders:

bsp.publication.includes.pattern=**/*
bsp.publication.excludes.pattern=**/VEE_PORT_EVAL/,**/WIN32/,**/Utilities/Media/

Refer to the Javadoc of the Gradle PatternFilterable class to have more details on the Ant-style patterns.

3.4. SDK 6 User Guide 211

https://github.com/MicroEJ/Tool-Project-Template-VEEPort/tree/1.3.0
https://docs.gradle.org/current/javadoc/org/gradle/api/tasks/util/PatternFilterable.html

MicroEJ Documentation,

Filtering the VEE Runtime Library

The SDK forbids the publication of the VEE Runtime Library when publishing a VEE Port. The following error is
raised in such a case:

SDK EULA does not allow to share MicroEJ Core IP in BSP source files: 'C:\Users\johndoe\my-project\vee-port\
→˓build\tmp\publishVeePort\bsp\vee\lib\microejruntime.a'.

The BSP Publication Filtering feature allows to filter this file before the publication by defining this property in the
configuration.properties file:

bsp.publication.excludes.pattern=**/microejruntime.a

Link-Time Option

It is possible to define custom Application options that can be passed to the BSP through an ELF symbol defined at
link-time, hence the term link-timeoption. This allows toprovideconfigurationoptions to theApplicationdeveloper
without the need to rebuild the BSP source code.

Todefine a link-timeoption, first choose anoptionnamewith only alphanumeric characters ([a-zA-Z][a-zA-Z0-9]*
without spaces).

Proceed with the following steps by replacing [my_option] with your option name everywhere:

• Create a folder inside your VEE Port Customization part (e.g: vee-port/dropins/scripts/init-[my_option])

• Create an Ant init script file and put it inside (e.g: vee-port/dropins/scripts/init-[my_option]/
init-[my_option].xml file). Here is the Ant init script file template content:

<project name=”[my_option]-init”>
<target name=”init/execution/[my_option]” extensionOf=”init/execution” if=”onBoard”>
<!-- Set option default value -->
<property name=”[my_option]” value=”0”/>

<!-- Create tmp dir -->
<local name=”link.files.dir”/>
<microejtempfile deleteonexit=”true” prefix=”link[my_option]” property=”link.files.dir”/>
<mkdir dir=”${link.files.dir}”/>
<!-- Get tmp link file name -->
<local name=”link.[my_option]”/>
<property name=”link.[my_option]” value=”${link.files.dir}/[my_option].lscf” />
<echoxml file=”${link.[my_option]}” append=”false”>
<lscFragment>
<defSymbol name=”[my_option]” value=”${[my_option]}” rootSymbol=”true”/>

</lscFragment>
</echoxml>
<!-- Add link file in linker's link files path -->
<augment id=”partialLink.lscf.path”>
<path location=”${link.files.dir}”/>
<path location=”${jpf.dir}/link”/>

</augment>
</target>

</project>

• In your BSP source code, define an ELF symbol [my_option] can then be used inside C files in your BSPwith:

3.4. SDK 6 User Guide 212

MicroEJ Documentation,

// Declare the symbol as an extern global
extern int [my_option];

void my_func(void){
// Get the symbol value
int [my_option]_value = ((int)(&[my_option]));

// Get the symbol value
if([my_option]_value == 1){
...

}
else{
...

}
}

Warning: A Link-time option should avoid to be set to 0 . Some third-party linkers consider such symbols as
undefined, even if they are declared.

Test a VEE Port

The SDK provides the capability to test a VEE Port. While you can create your own tests, MicroEJ provides a set of
tools and pre-defined projects aimed at simplifying the steps for validating VEE Ports in the form of the VEE Port
Qualification Tools (PQT) .

Please refer to the VEE Port Project Template README to learn how to setup and run this Qualification process.

Configure a Testsuite

The SDK allows to configure the Testsuite, as well as the Tests being executed. Refer to the Configure the Testsuite
Engine section to discover the configuration options.

Besides allowing to configure theTestsuite in the build.gradle.kts file of theTestsuite, the configurationproperties
can be defined in the config.properties file located at the root of the Testsuite project. For example:

The testsuite timeout (in seconds)
microej.testsuite.timeout=600

The number of times we'll retry a test if it fails
microej.testsuite.retry.count=1

Also, the configuration options used for each test can be defined in the validation/microej-testsuite-common.
properties file located at the root of the Testsuite project. For example:

Java memory settings
core.memory.immortal.memory=RAM
core.memory.immortal.size=64000

3.4. SDK 6 User Guide 213

https://github.com/MicroEJ/Tool-Project-Template-VEEPort/tree/1.3.0/vee-port/validation

MicroEJ Documentation,

3.4.19 Manage Versioning

The SDK 5 used a specific notation for the snapshot versions. Instead of using the -SNAPSHOT prefix (e.g., 1.0.
0-SNAPSHOT), it used the -RCxxx prefix, where xxx is the timestamp (e.g., 1.0.0-RC202212021535).

In order to be able to transition from SDK 5 to SDK 6 smoothly, it is recommended to continue to publish snapshot
versions with the -RCxxx prefix. This can be done by setting the Gradle module version with the -RC prefix. For
example:

version = ”1.0.0-RC”

The SDK will automatically append the timestamp to the version to keep the same notation than MMM. This way,
SDK 5 projects will be able to fetch modules published by the SDK 6.

Note: You are free to use any version number notation youwant, but you have to be aware that SDK 5 projects will
not be able to depend on snapshot modules published without the -RCxxx prefix.

3.4.20 Manage Resolution Conflicts

The MicroEJ Gradle plugin adds specific rules for compilation, building, resolving dependencies, versioning, and
publishing.

Gradle comes with a powerful dependency manager. One of its job is to resolve the conflicts in the dependency
graph, to determine which version should be added to the graph. By default, Gradle selects the highest version
amongst all the versions requested for a dependency. There are ways to influence the dependencies resolution,
but we believe additional rules should be added to provide a better and safer conflict resolution.

Note: You can learn more on the Gradle conflicts resolution and the way to configure it in the official documenta-
tion.

The MicroEJ Gradle plugin adds the 2 following rules:

• The resolution fails when a dependency is requestedwith 2 incompatible versions in the graph, according to
the Semantic Versioning specification. So, it means that if 2 versions do not have the same major version,
the build fails. For example, this dependency graphmakes the build fail because the moduleC dependency
is requested in 2 incompatible versions:

3.4. SDK 6 User Guide 214

https://docs.gradle.org/current/userguide/dependency_resolution.html
https://docs.gradle.org/current/userguide/dependency_resolution.html
https://semver.org/

MicroEJ Documentation,

rootModule

moduleA:1.0.0 moduleB:1.0.0

moduleC:2.0.0 moduleC:3.0.0

• The resolution fails when a transitive dependency is resolved with a higher minor version than the one de-
clared. For example, this dependency graph makes the build fails because the moduleA dependency is
resolved in version 1.1.0 (the highest one), which is higher than the direct declared version (1.0.0):

rootModule

moduleA:1.0.0 moduleB:1.0.0

moduleA:1.1.0

If you want to come back to the Gradle default behavior, these 2 rules can be disabled by setting the microejCon-

3.4. SDK 6 User Guide 215

MicroEJ Documentation,

flictResolutionRulesEnabled property of the microej configuration block to false in the project build file:

microej {
microejConflictResolutionRulesEnabled = false

}

3.4.21 Migrate an SDK 5 Project

Migrate an Application/Library Project

This page is the entry point to learn how to migrate an Application or a Library project created with the SDK 5 or
lower to the SDK 6. It covers the following items:

• Build descriptor file

• Configuration

• Build scripts

Build Descriptor File

The module.ivy file of the SDK 5 projectmust be replaced by a build.gradle.kts file and a settings.gradle.kts file.
The settings.gradle.kts contains the name of the project, whereas the build.gradle.kts file contains all the other
information (module type, group, version, …).

The following chapters describe how to convert the sections of the module.ivy file to the SDK 6 format.

Build Type

The SDK 5 build type defined in the module.ivy file with the ea:build tag is replaced by a plugin in the build.
gradle.kts file. For example, here is the block to add at the beginning of the file tomigrate a build-microej-javalib
SDK 5module:

plugins {
id(”com.microej.gradle.addon-library”) version ”1.3.0”

}

Themapping between the main SDK 5 build types and Gradle plugins is:

MMMBuild Type Gradle Plugin

build-microej-javalib com.microej.gradle.addon-library

build-application com.microej.gradle.application

build-firmware-singleapp com.microej.gradle.application

build-firmware-multiapp com.microej.gradle.application

build-std-javalib com.microej.gradle.jse-library

build-microej-mock com.microej.gradle.mock

build-runtime-api com.microej.gradle.runtime-environment

3.4. SDK 6 User Guide 216

MicroEJ Documentation,

Module Information

Themodule information defined by the info tag in the module.ivy file are split in the 2 following descriptor files:

• settings.gradle.kts

– The property rootProject.name replaces the module attribute.

• build.gradle.kts

– The property group replaces the organisation attribute.

– The property version replaces the revision attribute.

So for example, the following info tag:

<info organisation=”com.mycompany” module=”myProject” status=”integration” revision=”0.1.0”>

will be converted to:

Listing 1: settings.gradle.kts

rootProject.name = ”myProject”

Listing 2: build.gradle.kts

group = ”com.mycompany”
version = ”0.1.0”

Note: Refer toManage Versioning section for more information on the way to define the module version.

Dependencies

The dependencies tag in the module.ivy file is replaced by the dependencies block in the build.gradle.kts file.
Each dependency is tight to a Gradle configuration. For example, migrating a dependency used at compile time
and runtime should use the implementation configuration, so the following dependency:

<dependency org=”ej.api” name=”edc” rev=”1.3.5” />

will be converted to:

implementation(”ej.api:edc:1.3.5”)

wheras a dependency used for the tests only should use the testIplementation configuration, so the following
dependency:

<dependency conf=”test->*” org=”ej.library.test” name=”junit” rev=”1.7.1”/>

will be converted to:

testImplementation(”ej.library.test:junit:1.11.0”)

Also note that this will not resolve snapshot builds since versions are explicit in SDK 6, see this chapter for more
details. To resolve both snapshot and release versions, use [1.0.0-RC,1.0.0] instead of 1.0.0 .

3.4. SDK 6 User Guide 217

MicroEJ Documentation,

Note: If the dependency relates to another module of the same project, you may use a multi-project structure
instead (see Multi-Project Build Basics).

Refer to the Add a Dependency page to go further on the Gradle dependencies and configurations.

Tests

The SDK 5 supported only one testsuite by module. The SDK 6 allows to define multiple testsuites, with different
configurations. Therefore, the SDK 6 requires to explicitly configure the testsuites to execute.

• If your SDK 5 project executed tests on the Simulator (the most common case),

– Define the following testsuite in the build.gradle.kts file:

testing {
suites {

val test by getting(JvmTestSuite::class) {
microej.useMicroejTestEngine(this)

dependencies {
implementation(project())
implementation(”ej.api:edc:1.3.5”)
implementation(”ej.library.test:junit:1.11.0”)
implementation(”org.junit.platform:junit-platform-launcher:1.8.2”)

}
}

}
}

– Add the additional test dependencies, if any.

– Check that the test sources are located in the src/<testsuite-name>/java , so in src/test/java with
this default testsuite. Since this is the same folder used in SDK 5, there should be not change required
in your project.

– Adapt the pattern of the executed tests. It is defined in SDK 5 with the property test.run.includes.
pattern , and relied on the generated tests classes names, not the original ones. For example if you
want to execute only the MyTest test class, it was defined like this in SDK 5:

<ea:property name=”test.run.includes.pattern” value=”**/_AllTests_MyTest.class”/>

In SDK 6, it is based on the original tests classes and must be defined by the filter object of the test
task in the build.gradke.kts file. So it should be configured as follows:

testing {
suites {

val test by getting(JvmTestSuite::class) {

...

targets {
all {

testTask.configure {
filter {

includeTestsMatching(”MyTest”)
(continues on next page)

3.4. SDK 6 User Guide 218

https://docs.gradle.org/current/userguide/intro_multi_project_builds.html

MicroEJ Documentation,

(continued from previous page)

}
}

}
}

}
}

}

If the tests pattern was the following one (meaning “All test classes”):

<ea:property name=”test.run.includes.pattern” value=”**/_AllTests_*.class”/>

there is no need to add a filter, all tests classes are executed by default in SDK 6.

• If your SDK 5 project executed tests on the Device using the KF Testsuite (since it was the only way to execute
such tests with the SDK 5),

– If you really want to execute test projects with a Kernel and Sandboxed Applications on Device (formely
called KF Testsuite), refer to the Setup a KF Test Suite page.

– If you want to execute tests classes (like on the Simulator, but on the Device),

∗ Follow the steps to execute the tests on the Simulator.

∗ Replace the line microej.useMicroejTestEngine(this) by microej.useMicroejTestEngine(this,
TestTarget.EMB) .

∗ Add the import statement at the beginning of the file:

import com.microej.gradle.plugins.TestTarget

Refer to the Test a Project page to go further on the SDK 6 testsuites configurations.

Configuration Folder

The build folder located at the root of the project and containing the Application configuration properties is re-
placed by the configuration folder. This change is required since Gradle uses the build folder to store the gener-
ated files and artifacts (equivalent of the MMM target~ folder).

Specific Configuration

Some configuration options are available in SDK 6 in a different way than in SDK 5. This chapter goes through all
this specific configuration options.

You can refer to theModule Natures page for a complete list of configurations.

3.4. SDK 6 User Guide 219

MicroEJ Documentation,

Main class of Standalone Application

The main class of a Standalone Application is defined in SDK 5 with the property application.main.class in the
module.ivy file:

<ea:property name=”application.main.class” value=”com.mycompany.Main”/>

It must now be defined in SDK 6 by the applicationEntryPoint property of the microej block in build.gradke.kts
file:

microej {
applicationEntryPoint = ”com.mycompany.Main”

}

Feature Entry Point class of Sandboxed Application

The Feature Entry Point class of a Sandboxed Application is defined in SDK 5 with the property entryPoint in the
*.kf file:

entryPoint=com.mycompany.MyFeature

Itmust nowbe defined in SDK 6 by the applicationEntryPoint property of the microej block in the build.gradke.
kts file:

microej {
applicationEntryPoint = ”com.mycompany.MyFeature”

}

Example

This section gives an example of a migration from a SDK 5 Application project to SDK 6. Here are the projects
strucuture side by side:

SDK 5 Project SDK 6 Project

|- src
| |- main
| | |- java
| | |- resources
| |- test
| |- java
| |- resources
|- build
| |- common.properties
|- module.ivy
|- module.ant

|- src
| |- main
| | |- java
| | |- resources
| |- test
| |- java
| |- resources
|- configuration
| |- common.properties
|- build.gradle.kts
|- settings.gradle.kts

And here the migration from a module.ivy file to a build.gradle.kts file and a settings.gradle.kts file:

SDK 5 and lower

3.4. SDK 6 User Guide 220

MicroEJ Documentation,

Listing 3: module.ivy

<ivy-module version=”2.0” xmlns:ea=”http://www.easyant.org” xmlns:m=”http://ant.apache.org/ivy/extra”␣
→˓xmlns:ej=”https://developer.microej.com” ej:version=”2.0.0”>
<info organisation=”com.mycompany” module=”myProject” status=”integration” revision=”0.1.0”>

<ea:build organisation=”com.is2t.easyant.buildtypes” module=”build-application” revision=”9.2.+”>
<ea:property name=”test.run.includes.pattern” value=”**/_AllTests_*.class”/>

</ea:build>
</info>

<configurations defaultconfmapping=”default->default;provided->provided”>
<conf name=”default” visibility=”public” description=”Runtime dependencies to other artifacts”/>
<conf name=”provided” visibility=”public” description=”Compile-time dependencies to APIs provided by␣

→˓the platform”/>
<conf name=”platform” visibility=”private” description=”Build-time dependency, specify the platform to use

→˓”/>
<conf name=”documentation” visibility=”public” description=”Documentation related to the artifact␣

→˓(javadoc, PDF)”/>
<conf name=”source” visibility=”public” description=”Source code”/>
<conf name=”dist” visibility=”public” description=”Contains extra files like README.md, licenses”/>
<conf name=”test” visibility=”private” description=”Dependencies for test execution. It is not required for␣

→˓normal use of the application, and is only available for the test compilation and execution phases.”/>
<conf name=”microej.launch.standalone” visibility=”private” description=”Dependencies for standalone␣

→˓application. It is not required for normal use of the application, and is only available when launching the main␣
→˓entry point on a standalone MicroEJ launch.”/>
</configurations>

<publications>
<!-- keep this empty if no specific artifact to publish -->
<!-- must be here in order to avoid all configurations for the default artifact -->

</publications>

<dependencies>
<!--

Put your custom Runtime Environment dependency here. For example:

<dependency org=”com.company” name=”my-runtime-api” rev=”1.0.0” conf=”provided->runtimeapi” />
-->
<!--

Or put direct dependencies to MicroEJ libraries if your Application is not intended to run on a specific␣
→˓custom Runtime Environment.

-->
<dependency org=”ej.api” name=”edc” rev=”1.3.5” />
<dependency org=”ej.api” name=”kf” rev=”1.6.1” />

<dependency conf=”test->*” org=”ej.library.test” name=”junit” rev=”1.7.1”/>

<dependency org=”com.microej.platform.esp32.esp-wrover-kit-v41” name=”HDAHT” rev=”1.8.0” conf=
→˓”platform->default” transitive=”false”/>
</dependencies>

</ivy-module>

SDK 6

3.4. SDK 6 User Guide 221

MicroEJ Documentation,

Listing 4: settings.gradle.kts

rootProject.name = ”myProject”

Listing 5: build.gradle.kts

plugins {
id(”com.microej.gradle.application”) version ”1.3.0”

}

group = ”com.mycompany”
version = ”0.1.0”

dependencies {
implementation(”ej.api:edc:1.3.3”)
implementation(”ej.api:kf:1.6.1”)

testImplementation(”ej.library.test:junit:1.11.0”)

microejVee(”com.microej.platform.esp32.esp-wrover-kit-v41:HDAHT:1.8.2”)
}

Build Scripts

SDK 5 supports the use of the module.ant and override.module.ant to customize the build process. These files
are not supported anymore with Gradle. Instead, since Gradle build files are code, customizations can be applied
directly in the build files.

As an example, defining a property conditionnaly is done as follows in a module.ant file:

<target name=”my-project:define-properties” extensionOf=”compile”>
<condition property=”myProperty” value=”myValue”>

<not><equals arg1=”${anotherProperty}” arg2=”anotherValue”/></not>
</condition>

</target>

and as follows in a build.gradle.kts file:

var myProperty = ””
tasks.register(”defineProperties”) {

if(project.properties[”anotherProperty”] == ”anotherValue”) {
myProperty = ”myValue”

}
}

tasks.compileJava {
dependsOn(”defineProperties”)

}

3.4. SDK 6 User Guide 222

MicroEJ Documentation,

Migrate a VEE Port Project

This page explains how tomigrate an VEE Port project created with the SDK 5 or lower to the SDK 6.

Project Structure

Even if it is not mandatory, a VEE Port project is most of the time structured as a multi-project. Indeed, it gener-
ally contains other subprojects than the configuration module, for example a Front Panel or an Image Generator
subproject. It can also contains the BSP.

Whereas it was not necessarily structured as a meta-build in SDK 5, it is recommended to structure it as a
multi-project in SDK 6.

This brings to the following recommended structure for the VEE Port multi-project:

|- my-board-vee-port/
| |- bsp/
| |- demo-application/ (optional)
| | |- src/main/java/
| |- vee-port/
| | |- extensions/
| | | |- my-front-panel/ (optional)
| | | |- my-image-generator/ (optional)
| | | |- microui/ (optional)
| | | |- ...
| | |- validation/
| | | |- core/ (optional)
| | | |- fs/ (optional)
| | | |- ...
| | |- dropins/ (optional)
| | |- configuration.properties
| | |- build.gradle.kts
| |- settings.gradle.kts

This migration guide will go in details in each changes, but as a quick overview, here are the main changes com-
pared to SDK 5:

• All root modules have beenmoved under a vee-port folder, except for the BSP folder.

• The configuration module (*-configuration) is now the vee-port module, which includes configuration
properties, dropins folder, as well as the other modules required by the VEE Port.

• All configuration properties file have been gathered in the vee-port/configuration.properties (except for
microui).

• The specific components required by the VEE Port are now in the vee-port/extensions folder, such as Front
Panel or Image Generator modules.

• The MicroUI extension has beenmoved in the vee-port/extensions/microui folder.

3.4. SDK 6 User Guide 223

MicroEJ Documentation,

New Development Flow

With the SDK 5, the development flow consisted in 3 main steps:

• Make a change in one the VEE Port projects (for example *-configuration or *-fp).

• Build the VEE Port configuration project (*-configuration), which generates a built VEE Port in the sibling
folder.

• Run or build an Application (after defining the path to the VEE Port in the module.ivy file) on this VEE Port.

While this development flow is still possible with the SDK 6, the recommended approach is to make the Applica-
tion depend directly on the VEE Port project (the way to do it is detailed in the following sections). This allows to
automatically build the updated projects (VEE Port Configuration, Front Panel, Mock,…) when running or building
the Application. There is no need to build the VEE Port anymore before using it, Gradle does it for you. It automat-
ically detects that the VEE Port has changes and triggers the tasks to build the updated components, and only the
updated components. Therefore, the development flow in SDK 6 is now:

• Make a change in the VEE Port project.

• Run or build an Application on this VEE Port.

Settings Build File

A multi-project requires a settings.gradle.kts file located in the root folder. Its main purposes are to optionaly
define a name for themulti-project and to define its subprojects. Create this file and add this line with the name of
your choice:

rootProject.name = ”my-board-vee-port”

Configuration Subproject

The Configuration (*-configuration) subproject is still there, but it is recommended to name it vee-port . Follow
these steps to migrate it:

• Rename the folder to vee-port .

• Replace the module.ivy file by a build.gradle.kts file.

• Use the com.microej.gradle.veeport plugin in this file:

plugins {
id(”com.microej.gradle.veeport”) version ”0.19.0”

}

• Still in the build.gradle.kts file, define the group and version property, which respectively replace the
organisation and revision of the module.ivy file. For example:

group = ”com.mycompany”
version = ”0.1.0”

Note: Refer toManage Versioning section for more information on the way to define the module version.

3.4. SDK 6 User Guide 224

MicroEJ Documentation,

• Define the dependencies previously defined in the module.ivy file. In SDK 6, dependencies are defined in a
dependencies block in the build.gradle.kts file, and each type of VEE Port componentmust be definedwith
a dedicated configuration:

– Architecture: microejArchitecture

– Pack: microejPack

– Mock: microejMock

– Front Panel: microejFrontPanel

– Tool: microejTool

For example the Architecture defined like this in SDK 5:

<dependencies>
<dependency group=”com.microej.architecture.CM7.CM7hardfp_GCC48” name =”flopi7G26” rev=”8.1.1

→˓”>
<artifact name=”flopi7G26” m:classifier=”eval” ext=”xpf” />

</dependency>
</dependencies>

must be changed to this in build.gradle.kts file:

dependencies {
microejArchitecture(”com.microej.architecture.CM7.CM7hardfp_GCC48:flopi7G26:8.1.1”)

}

Note: Note that the Architecture usage (eval or prod) is not defined in the VEE Port configuration anymore.
It is now set by the project which consumes the VEE Port (for example an Application).

And the Pack defined like this in SDK 5:

<dependency group=”com.microej.pack” name =”fs” rev=”6.0.4” />

must be changed to this in SDK 6:

microejPack(”com.microej.pack:fs:6.0.4”)

• Create a configuration.properties file at the root of the vee-port folder.

• Move the property related to the Runtime Capability from the file mjvm/mjvm.properties to the vee-port/
configuration.properties file, then delete the mjvm/mjvm.properties file.

• Move all configuration properties related to the BSP (bsp/bsp.properties) into the vee-port/configuration.
properties file. Each property name must be prefixed by bsp.<name>. . For example, the microejapp.
relative.dir property must be moved as bsp.microejapp.relative.dir in the vee-port/configuration.
properties file.

• Move the microui folder (if it exists) into the vee-port/extensions folder.

• Move the configuration properties related to all the other Packs (fs/fs.properties , …) into the
vee-portconfiguration.properties file. Each property name must be prefixed by com.microej.pack.
<name>. , where <module> is the name of the Pack. For example, the bpp property de-
fined in the display/display.properties file must be moved as com.microej.pack.display.bpp in the
vee-portconfiguration.properties file.

• Deleteold configurationproperties files ((bsp/bsp.properties , display/display.properties , fs/fs.properties
, …) can be deleted.

3.4. SDK 6 User Guide 225

MicroEJ Documentation,

• Enable disable Packmodules if required, as described in Enabling/Disablingmodules of Legacy and Architec-
ture Specific Packs.

• Delete the .platform file located at the root of the Configuration subproject, since it is now obsolete.

• Delete all the other files related to SDK 5:

– module.ant

– override.module.ant

– module.properties

– configuration.xml

– build folder

• The dropins folderwas used as a destination folder for somegenerated files in SDK 5, so itmay containmore
than the committed files. So make sure to clean it to keep only committed files. This can be done with git
with the following command in the dropins folder:

git clean -xdf

Front Panel Project

The Front Panel is generally a subproject of the VEE Port multi-project. These steps must be followed to migrate a
Front Panel subproject:

• Move the Front Panel folder into the vee-port/extensions folder.

• Replace the module.ivy file by a build.gradle.kts file.

• Use the com.microej.gradle.mock-frontpanel plugin in this file:

plugins {
id(”com.microej.gradle.mock-frontpanel”)

}

• Define the dependencies previously defined in the module.ivy file. A Front Panel generally depends on
libraries, so they can be defined with the implementation configuration. For example to declare a depen-
dency on the Front Panel framework library, use:

implementation(”ej.tool.frontpanel:framework:1.1.0”)

Also note that the Front Panel library from the UI Pack must be declared with the name and extension :

implementation(”com.microej.pack.ui:ui-pack:14.0.1”) {
artifact {

name = ”frontpanel”
extension = ”jar”

}
}

• Include the Front Panel subproject in the multi-project in the settings.gradle.kts file:

include(”vee-port:front-panel”)
project(”:vee-port:front-panel”).projectDir = file(”vee-port/extensions/front-panel”)

• Make the VEE Port configuration subproject depend on the Front Panel subproject by adding a project de-
pendency in the vee-port/build.gradle.kts file:

3.4. SDK 6 User Guide 226

MicroEJ Documentation,

microejFrontPanel(project(”:vee-port:front-panel”))

Mock

If the VEE Port project contains Mock subprojects, they must be migrated by following these steps:

• Move the Mock folder into the vee-port/extensions folder.

• Replace the module.ivy file by a build.gradle.kts file.

• Use the com.microej.gradle.mock plugin in this file:

plugins {
id(”com.microej.gradle.mock”)

}

• Define the dependencies previously defined in the module.ivy file. A Mock generally depends on libraries,
so they can be defined with the implementation configuration.

• Include the Mock subproject in the multi-project in the settings.gradle.kts file:

include(”vee-port:mock”)
project(”:vee-port:mock”).projectDir = file(”vee-port/extensions/mock”)

• Make the VEE Port configuration subproject depend on theMock subproject by adding a project dependency
in the vee-port/build.gradle.kts file:

microejMock(project(”:vee-port:mock”))

• Delete all the files related to SDK 5:

– module.ant

– content/scripts/init-* folder

Tool Subproject

If the VEE Port project contains Tool subprojects (such as an Image Generator), theymust bemigrated by following
these steps:

• Move the Tool folder into the vee-port/extensions folder.

• Replace the module.ivy file by a build.gradle.kts file.

• Use the com.microej.gradle.j2se-library plugin in this file:

plugins {
id(”com.microej.gradle.j2se-library”)

}

• Define the dependencies previously defined in the module.ivy file. A Tool generally depends on libraries, so
they can be definedwith the implementation configuration. Note that when the Tool is an Image Generator
and depends on the Image Generator library from the UI Pack, the dependency must be declared with the
name and extension :

3.4. SDK 6 User Guide 227

MicroEJ Documentation,

implementation(”com.microej.pack.ui:ui-pack:14.0.1”) {
artifact {

name = ”imageGenerator”
extension = ”jar”

}
}

• Include the Tool subproject in the multi-project in the settings.gradle.kts file:

include(”vee-port:image-generator”)
project(”:vee-port:image-generator”).projectDir = file(”vee-port/extensions/image-generator”)

• Make the VEE Port subproject depend on the Tool subproject by adding a project dependency in the
vee-port/build.gradle.kts file:

microejTool(project(”:vee-port:image-generator”))

Testsuites Project

These steps must be followed to migrate the Testsuites:

• Move the Testsuite folder into the vee-port/validation folder.

Then for each Testsuite:

• Replace the module.ivy file by a build.gradle.kts file.

• Use the com.microej.gradle.testsuite plugin in this file:

plugins {
id(”com.microej.gradle.testsuite”)

}

• The testedVEEPortwasdefined inSDK5 in the config.properties file, with the target.platform.dir property.
In SDK 6, it is done by declaring the VEE Port Configuration project as a project dependency:

dependencies {
testMicroejVee(project(”:vee-port”))

}

and including the testsuite project in the settings.gradle.kts file of the multi-project:

include(”java-testsuite-runner-security”)
project(”:java-testsuite-runner-security”).projectDir = file(”validation/security/java-testsuite-runner-security
→˓”)

The second line is required when the testsuite subproject is not directly in a subfolder of the multi-project.
The path set as the value is relative to the root folder of the multi-project.

Once done, you can delete the target.platform.dir property in the config.properties file.

• define the testsuite in the build.gradle.kts file:

testing {
suites {

val test by getting(JvmTestSuite::class) {
microej.useMicroejTestEngine(this, TestTarget.EMB, TestMode.MAIN)

(continues on next page)

3.4. SDK 6 User Guide 228

MicroEJ Documentation,

(continued from previous page)

dependencies {
implementation(project()) // (1)
implementation(”ej.library.test:junit:1.11.0”) // (2)
implementation(”org.junit.platform:junit-platform-launcher:1.8.2”) // (3)

implementation(”ej.api:security:1.4.0”) // (4)
implementation(”com.microej.pack.security:security-1_4-testsuite:1.3.0”) // (4)

}
}

}
}

The testsuite dependencies must contain:

– the project (1)

– the JUnit libraries (2)

– the Foundation Library to test (3)

– the Testsuite related to the Foundation Library (4)

• The patterns of the included and excluded test classes was defined with the test.run.includes.pattern and
test.run.excludes.pattern properties in the config.properties file. There must be now defined directly in
the testsuite configuration in the build.gradle.kts file, by using the standard Gradle filter feature:

testing {
suites {

val test by getting(JvmTestSuite::class) {
microej.useMicroejTestEngine(this, TestTarget.EMB, TestMode.MAIN)

dependencies {
...

}

targets {
all {

testTask.configure {
filter {

excludeTestsMatching(”*AllTestClasses”)
excludeTestsMatching(”*SingleTest*”)
excludeTestsMatching(”*AllTests_MessageDigestTest”)
excludeTestsMatching(”*AllTests_KeyPairGeneratorTest”)

}
}

}
}

}
}

}

Refer to the Gradle documentation on test filtering for more details.

Once done, you can delete the test.run.includes.pattern and test.run.excludes.pattern properties in the
config.properties file.

• Delete all the files related to SDK 5:

– module.ant

3.4. SDK 6 User Guide 229

https://docs.gradle.org/current/userguide/java_testing.html#test_filtering

MicroEJ Documentation,

– override.module.ant

BSP

It is recommended to keep the BSP folder at the root of the multi-project. The paths to the BSP can be updated in
the VEE Port configuration (vee-port/configuration.properties) if necessary.

The ${project.parent.dir} variable can be used to refer to the project root folder. For example with the recom-
mended structure described at the beginning of this page (the bsp is at the root of the project), add this line in the
vee-port/configuration.properties file:

bsp.root.dir=${project.parent.dir}/bsp

Refer to the BSP Connection documentation for more details.

Wrap up

At the end of themigration, you should have a structure similar to the one presented at the beginning of this page.
The settings.gradle.kts should look like:

// Define the VEE Port mulit-project name
rootProject.name = ”my-board-vee-port”

// Include the subprojects
include(”vee-port”, ”vee-port:front-panel”, ”vee-port:mock”, ”vee-port:image-generator”, ”demo-application”)
include(”vee-port:validation:java-testsuite-runner-core”)
include(”vee-port:validation:java-testsuite-runner-fs”)

// Define the paths of the subprojects
project(”:vee-port:front-panel”).projectDir = file(”vee-port/extensions/front-panel”)
project(”:vee-port:image-generator”).projectDir = file(”vee-port/extensions/image-generator”)
project(”:vee-port:validation:java-testsuite-runner-core”).projectDir = file(”vee-port/validation/core/java-testsuite-
→˓runner-core”)
project(”:vee-port:validation:java-testsuite-runner-fs”).projectDir = file(”vee-port/validation/fs/java-testsuite-
→˓runner-fs”)

3.4.22 Module Natures

This page describes the most commonmodule natures as follows:

• Plugin Name: the build type name, derived from the module nature name: com.microej.gradle.
[NATURE_NAME] .

• Documentation: a link to the documentation.

• Tasks: tasks available from themodule nature, with the graph of their relationships.

• Configuration: properties that can be defined to configure the module. Properties are defined inside the
microej block of the build.gradle.kts file.

3.4. SDK 6 User Guide 230

MicroEJ Documentation,

Add-On Library

Plugin Name: com.microej.gradle.addon-library

Documentation: Libraries

Template: Add-On Library Project Template

Tasks:

This plugin adds the following tasks to your project:

• tasks of the Gradle Java plugin

• adp

• loadVee

• checkModule

• execTool

Legend

adp

checkModule

assemble

loadVee
execTool

build

check

test

classes testClassesprocessResources

compileJava

compileTestJava

processTestResources

javadoc

jar uploadArchives

MicroEJ taskJava plugin or Base plugin task

Configuration:

This module nature inherits from the configuration of all its tasks.

Application

Plugin Name: com.microej.gradle.application

Documentation: Standalone Application, Sandboxed Application, Kernel Developer Guide

Template: Application Project Template

Tasks:

This plugin adds the following tasks to your project:

• tasks of the Gradle Java plugin

• adp

• loadVee

• runOnSimulator

• checkModule

3.4. SDK 6 User Guide 231

https://github.com/MicroEJ/Tool-Project-Template-Add-On-Library/tree/1.5.0
https://docs.gradle.org/current/userguide/java_plugin.html
https://github.com/MicroEJ/Tool-Project-Template-Application/tree/1.5.0
https://docs.gradle.org/current/userguide/java_plugin.html

MicroEJ Documentation,

• buildApplicationObjectFile

• buildExecutable

• buildWPK

• buildVirtualDevice

• loadKernelExecutable

• buildFeature

• runOnDevice

• execTool

• generateApplicationWrapper

• compileWrapperJava

• buildFeatureFromWPK

Legend
adp

checkModule

assemble

loadKernelExecutable

loadVee

runOnSimulator

classes

buildWPKjavadoc

jar

buildApplicationObjectFile

buildExecutable

buildVirtualDevice

buildFeature

runOnDevice

execTool

generateApplicationWrapper

compileJava

compileWrapperJava

buildFeatureFromWPK

build

check

test

testClasses

processResources

compileTestJava

processTestResources

uploadArchives

MicroEJ taskJava plugin or Base plugin task

Java SE Library

Plugin Name: com.microej.gradle.jse-library

Template: Java SE Library Template

Tasks:

This plugin adds the following tasks to your project:

• tasks of the Gradle Java plugin

• checkModule

3.4. SDK 6 User Guide 232

https://github.com/MicroEJ/Tool-Project-Template-JavaSE-Library/tree/1.4.0
https://docs.gradle.org/current/userguide/java_plugin.html

MicroEJ Documentation,

Legend

checkModuleassemble

build

checktest
classes testClasses

compileJava

processResources

compileTestJava

processTestResources

javadoc

jar
uploadArchives

MicroEJ taskJava plugin or Base plugin task

Configuration:

This module nature inherits from the configuration of all its tasks.

Mock

Plugin Name: com.microej.gradle.mock

Documentation: Mock

Template: Mock Project Template

Tasks:

This plugin adds the following tasks to your project:

• tasks of the Gradle Java plugin

• checkModule

• buildMockRip

Legend

checkModuleassemble

buildMockRipjar

build

check
testclasses testClasses

compileJava

processResources

compileTestJava

processTestResources

javadoc

uploadArchives

MicroEJ taskJava plugin or Base plugin task

Configuration:

This module nature inherits from the configuration of all its tasks.

3.4. SDK 6 User Guide 233

https://github.com/MicroEJ/Tool-Project-Template-Mock/tree/1.5.0
https://docs.gradle.org/current/userguide/java_plugin.html

MicroEJ Documentation,

Runtime Environment

Plugin Name: com.microej.gradle.runtime-environment

Documentation: Runtime Environment

Template: Runtime Environment Template

Tasks:

This plugin adds the following tasks to your project:

• tasks of the Gradle Java plugin

• checkModule

• shrinkRuntimeEnvironment

• compileRuntimeEnvironment

• buildRuntimeEnvironmentJar

Legend

checkModuleassemble

buildRuntimeEnvironmentJar
compileRuntimeEnvironmentshrinkRuntimeEnvironment

build

check
testclasses

testClasses

compileJava

processResources

compileTestJava

processTestResources

javadoc

jar

uploadArchives
sourcesJar

MicroEJ taskJava plugin or Base plugin task

Configuration:

This module nature inherits from the configuration of all its tasks.

VEE Port

Plugin Name: com.microej.gradle.veeport

Documentation: VEE Porting Guide

Template: VEE Port Template

Tasks:

This plugin adds the following tasks to your project:

• checkModule

• buildVeePort

• buildVeePortConfiguration

3.4. SDK 6 User Guide 234

https://github.com/MicroEJ/Tool-Project-Template-Runtime-Environment/tree/1.4.0
https://docs.gradle.org/current/userguide/java_plugin.html
https://github.com/MicroEJ/Tool-Project-Template-VEEPort/tree/1.3.0

MicroEJ Documentation,

Legend

checkModuleassemble buildVeePortbuildVeePortConfiguration

buildcheck

MicroEJ taskBase plugin task

Configuration:

This module nature inherits from the configuration of all its tasks.

Tasks

This page describes the module nature tasks as follows:

• Description: description and link to the related documentation.

• Module Natures: list ofModule Natures using this task.

• Configuration: properties that can be defined to configure the task.

adp

Description: Executes the Addon Processors.

Inputs:

• The project directory

Outputs:

• Thedirectory for eachADPoutput type (build/adp/all/main/java , build/adp/all/main/resources , build/
adp/all/test/java , build/adp/all/test/resources)

Module Natures:

This task is used by the following module natures:

• Add-On Library

• Application

3.4. SDK 6 User Guide 235

MicroEJ Documentation,

loadVee

Description: Loads the VEE.

Inputs:

• The list of VEE archive files or folders.

Outputs:

• The directory where the VEE is copied/extracted (build/vee)

Module Natures:

This task is used by the following module natures:

• Add-On Library

• Application

The loadVee task is used internally by the SDK and it is not intended to be executed by the user.

runOnSimulator

Description: Executes the Application with the Simulator.

Inputs:

• The extracted VEE folder

• The project classpath which contains the MicroEJ dependent application classes and resources

• The Full Qualified Name of the Application main class or Feature class

• The folder containing the application configuration (configuration)

• The System properties

• The debugmode

• The debug port

Module Natures:

This task is used by the following module natures:

• Application

Configuration:

This task provides the following properties that can be defined in the microej extension:

Name Description Default

applicationEntryPoint
Full Qualified Name of themain class or the Feature class of the ap-
plication. This option is required.

Not set

For example:

microej {
applicationEntryPoint = ”com.company.Main”

}

3.4. SDK 6 User Guide 236

MicroEJ Documentation,

checkModule

Description: Checks the compliance of the module.

Inputs:

• The list of the checkers to execute, separated by comas. If not set, all the checkers are executed.

• The list of the checkers to skip, separated by comas.

Module Natures:

This task is used by the following module natures:

• Add-On Library

• Application

• Mock

• Runtime Environment

Configuration:

This task is not bound by default on any lifecycle task, which means that it should be called explicitly if it must be
executed.

This task provides the following properties that can be defined in the microej extension:

Name Description Default

checkers
Comma-separated list of the names of the checkers to execute. An
empty list means that all checkers are executed. ””

skippedCheckers
Comma-separated list of the names of the checkers to exclude. Only
one property of checkers and skippedCheckers can be defined. ””

checkersRootDir
Path of the directory to use as root directory for the checkers. Project

directory.

For example:

microej {
checkers = ”readme,license”

}

buildApplicationObjectFile

Description: Build the object file of the Application.

Inputs:

• The extracted VEE Port folder

• The project classpath which contains the MicroEJ dependent application classes and resources

• The Full Qualified Name of the Application EntryPoint

• The folder containing the application configuration (configuration)

Outputs:

• The object file (.o) of the Application and the archive of the build files (build/application/object/bsp/lib/
microejapp.o)

3.4. SDK 6 User Guide 237

MicroEJ Documentation,

• The Zip file containing the generated build files (build/application/applicationObjectBuildFiles.zip)

Module Natures:

This task is used by the following module natures:

• Application

The buildApplicationObjectFile task is used internally by the SDK and it is not intended to be executed by the
user.

buildExecutable

Description: Builds the Executable of an Application.

Inputs:

• The extracted VEE Port folder

• The folder containing the application configuration (configuration)

• The object file (.o) of the Application

Outputs:

• The directory in which the Executable file and the build files are generated (build/application/executable)

Module Natures:

This task is used by the following module natures:

• Application

buildWPK

Description: Builds the WPK of the Application.

Inputs:

• The Application name

• The Application version

• The Full Qualified Name of the Application main class or Feature class

• The Application JAR file

• The Application Javadoc

• The Jar files of the Application classpath

• The folder containing the application configuration (configuration)

Outputs:

• The WPK of the Application (build/libs/<application_name>.wpk)

Module Natures:

This task is used by the following module natures:

• Application

3.4. SDK 6 User Guide 238

MicroEJ Documentation,

buildVirtualDevice

Description: Builds the Virtual Device of an Application.

Inputs:

• The extracted VEE Port folder

• The WPK of the Application

• The project build classpath

• The WPK of the Applications that must be pre-installed in the Virtual Device

Outputs:

• The Zip file of the Virtual Device (build/libs/<application_name>-virtualDevice.zip)

Module Natures:

This task is used by the following module natures:

• Application

loadKernelExecutable

Description: Loads the Kernel Executable file.

Inputs:

• The list of Kernel Executable files.

Outputs:

• The loaded Kernel Executable file is copied (build/kernelExecutable/kernel.out)

Module Natures:

This task is used by the following module natures:

• Application

The loadKernelExecutable task is used internally by the SDK and it is not intended to be executed by the user.

buildFeature

Description: Builds the Feature file of an Application.

Inputs:

• The Kernel Virtual Device

• The folder containing the Kernel Executable file (build/kernelExecutable)

• The project classpath

• The path of the folder where the Feature file must be generated (build/application/feature)

Outputs:

• The generated Feature file (build/application/feature/application.fo)

• The Zip file containing the generated build files (build/libs/<application_name>-buildFiles.zip)

3.4. SDK 6 User Guide 239

MicroEJ Documentation,

Module Natures:

This task is used by the following module natures:

• Application

runOnDevice

Description: Runs the Executable on a Device.

Inputs:

• The extracted VEE Port folder

• The folder containing the Executable file (build/application/executable)

• The configuration file with all the properties set to launch the build of the Executable (build/properties/
target.properties)

Module Natures:

This task is used by the following module natures:

• Application

buildMockRip

Description: Builds the Mock RIP.

Inputs:

• The Mock JAR file

Outputs:

• the RIP file of the Mock (build/libs/<project_name>-<project_version>.rip)

Module Natures:

This task is used by the following module natures:

• Mock

execTool

Description: Runs the given MicroEJ Tool.

Inputs:

• The extracted VEE Port folder

• The configuration file with all the properties set to launch the application (build/properties/target.
properties)

• The folder containing the application configuration (configuration)

Options:

3.4. SDK 6 User Guide 240

MicroEJ Documentation,

Option Description

name Name of the Tool.

toolProperty Option of the Tool.

Module Natures:

This task is used by the following module natures:

• Add-On Library

• Application

generateApplicationWrapper

Description: Generates the Application Wrapper to be able to run the Application on a VEE Port and a Kernel.

Inputs:

• The Application EntryPoint

• The configuration directory of the project

• The project classpath which contains the MicroEJ dependent application classes and resources

Outputs:

• Thedirectory inwhich theWrapper Java class hasbeengenerated (build/generated/microej-app-wrapper/
java)

• The directory in which the Wrapper Kernel resources have been generated (build/generated/
microej-app-wrapper/kernel-resources)

• The directory in which the Wrapper Feature resources have been generated (build/generated/
microej-app-wrapper/feature-resources)

Module Natures:

This task is used by the following module natures:

• Application

The generateApplicationWrapper task is used internally by the SDK and it is not intended to be executed by the
user.

compileWrapperJava

Description: Compiles the Application Wrapper to be able to run the Application on a VEE Port and a Kernel.

Inputs:

• The directory containing the Wrapper Java class (build/generated/microej-app-wrapper/java)

Outputs:

• The directory in which the compiled wrapper class is generated (build/generated/microej-app-wrapper/
classes)

Module Natures:

This task is used by the following module natures:

3.4. SDK 6 User Guide 241

MicroEJ Documentation,

• Application

The compileWrapperJava task is used internally by the SDK and it is not intended to be executed by the user.

shrinkRuntimeEnvironment

Description: Shrinks the Java source files according to the provided Kernel APIs.

Inputs:

• Project Kernel API (src/main/resources/kernel.api)

• Project Java sources (src/main/java)

• The Kernel API files of the Runtime classpath.

Outputs:

• The directory in which shrunk Java sources are generated (build/runtimeEnvironment/shrunkSources)

Module Natures:

This task is used by the following module natures:

• Runtime Environment

The shrinkRuntimeEnvironment task is used internally by the SDK and it is not intended to be executed by the
user.

compileRuntimeEnvironment

Description: Compiles the Runtime Environment Kernel APIs.

Inputs:

• The directory in which shrunk Java sources are generated (build/runtimeEnvironment/shrunkSources)

• The project classpath

Outputs:

• The directory in which shrunk Java classes are generated (build/runtimeEnvironment/shrunkClasses)

Module Natures:

This task is used by the following module natures:

• Runtime Environment

The compileRuntimeEnvironment task is used internally by the SDK and it is not intended to be executed by the
user.

3.4. SDK 6 User Guide 242

MicroEJ Documentation,

buildRuntimeEnvironmentJar

Description: Builds the Runtime Environment Jar file.

Inputs:

• The directory in which shrunk Java classes are generated (build/runtimeEnvironment/shrunkClasses)

Outputs:

• TheJar fileof theRuntimeEnvironment (build/libs/<project_name>-<project_version>-runtime-environment.
jar)

Module Natures:

This task is used by the following module natures:

• Runtime Environment

The buildRuntimeEnvironmentJar task is used internally by the SDK and it is not intended to be executed by the
user.

buildFeatureFromWPK

Description: Builds the Feature binary file from a dependent Application.

Inputs:

• The Kernel Virtual Device

• The folder containing the Kernel Executable file (build/kernelExecutable)

• The WPK of the dependent Application

• The path of the folder where the Feature file must be generated (build/application/wpkFeature)

Outputs:

• The generated Feature file (build/application/wpkFeature/application.fo)

• The Zip file containing the generated build files (build/libs/wpkFeature-buildFiles.zip)

Module Natures:

This task is used by the following module natures:

• Application

buildVeePort

Description: Builds the VEE Port.

Inputs:

• The project configuration file (configuration.properties)

• The project dropins folder

• The project microui folder (extensions/microui)

• The project classpath which contains the Architecture, Packs, Mocks, Front Panels and Tools

Outputs:

3.4. SDK 6 User Guide 243

MicroEJ Documentation,

• The Zip file of the VEE Port (build/veePort.zip)

Module Natures:

This task is used by the following module natures:

• VEE Port

buildVeePortConfiguration

Description: Zips the VEE Port Configuration.

Inputs:

• The project configuration file (configuration.properties)

• The project dropins folder

• The project microui folder (extensions/microui)

• The project classpath which contains the Architecture, Packs, Mocks, Front Panels and Tools

Outputs:

• The Zip file of the VEE Port Configuration (build/<project_name>.zip)

Module Natures:

This task is used by the following module natures:

• VEE Port

Global Properties

The following properties are available in any module:

Name Description Default

microej-
Conflic-
tReso-
lution-
RulesEn-
abled

Boolean to enabled or disabled the MicroEJ conflict resolu-
tion rules. true

For example:

microej {
microejConflictResolutionRulesEnabled = false

}

3.4. SDK 6 User Guide 244

MicroEJ Documentation,

3.4.23 Troubleshooting

Java Compiler Version Issue

The SDK requires a JDK 11, so when a JDK 8 is used, the following kind of errors are raised:

• When fetching the MicroEJ Gradle plugin:

A problem occurred configuring root project 'myProject'.
> Could not resolve all files for configuration ':classpath'.
> Could not resolve com.microej.gradle.plugins:plugins:0.3.0.

Required by:
project : > com.microej.gradle.addon-library:com.microej.gradle.addon-library.gradle.plugin:0.3.

→˓0:20221118.151454-1
> No matching variant of com.microej.gradle.plugins:plugins:0.3.0:20221118.151454-1 was found. The␣

→˓consumer was configured to find a runtime of a library compatible with Java 8, packaged as a jar, and its␣
→˓dependencies declared externally, as well as attribute 'org.gradle.plugin.api-version' with value '7.4' but:

- Variant 'apiElements' capability com.microej.gradle.plugins:plugins:0.3.0 declares a library,␣
→˓packaged as a jar, and its dependencies declared externally:

- Incompatible because this component declares an API of a component compatible with␣
→˓Java 11 and the consumer needed a runtime of a component compatible with Java 8

- Other compatible attribute:
- Doesn't say anything about org.gradle.plugin.api-version (required '7.4')

- Variant 'javadocElements' capability com.microej.gradle.plugins:plugins:0.3.0 declares a␣
→˓runtime of a component, and its dependencies declared externally:

- Incompatible because this component declares documentation and the consumer needed␣
→˓a library

- Other compatible attributes:
- Doesn't say anything about its target Java version (required compatibility with␣

→˓Java 8)
- Doesn't say anything about its elements (required them packaged as a jar)
- Doesn't say anything about org.gradle.plugin.api-version (required '7.4')

- Variant 'runtimeElements' capability com.microej.gradle.plugins:plugins:0.3.0 declares a␣
→˓runtime of a library, packaged as a jar, and its dependencies declared externally:

- Incompatible because this component declares a component compatible with Java 11␣
→˓and the consumer needed a component compatible with Java 8

- Other compatible attribute:
- Doesn't say anything about org.gradle.plugin.api-version (required '7.4')

- Variant 'sourcesElements' capability com.microej.gradle.plugins:plugins:0.3.0 declares a␣
→˓runtime of a component, and its dependencies declared externally:

- Incompatible because this component declares documentation and the consumer needed␣
→˓a library

- Other compatible attributes:
- Doesn't say anything about its target Java version (required compatibility with␣

→˓Java 8)
- Doesn't say anything about its elements (required them packaged as a jar)
- Doesn't say anything about org.gradle.plugin.api-version (required '7.4')

• When using the MicroEJ Gradle plugin:

Cause: com/microej/gradle/plugins/MicroejApplicationGradlePlugin has been compiled by a more recent␣
→˓version of the Java Runtime (class file version 55.0), this version of the Java Runtime only recognizes␣
→˓class file versions up to 52.0

The solution is to use a JDK 11 or a higher LTS version (11 , 17 or 21) to fix this error:

• For the command line interface, make sure that a supported JDK version is defined in the PATH environ-
ment. To check, run java -version . You should see something like this:

3.4. SDK 6 User Guide 245

MicroEJ Documentation,

$ java -version
openjdk version ”11.0.14.1” 2022-02-08
OpenJDK Runtime Environment Temurin-11.0.14.1+1 (build 11.0.14.1+1)
OpenJDK 64-Bit Server VM Temurin-11.0.14.1+1 (build 11.0.14.1+1, mixed mode)

Alternatively, you can set the JAVA_HOME environment variable to point to the installation directory of
the JDK.

• For IntelliJ IDEA and Android Studio, go to File > Settings… > Build, Execution, Deployment >

Build Tools > Gradle , andmake sure the selected Gradle JVM is a supported JDK version:

Fig. 78: Project JDK in IntelliJ IDEA and Android Studio

Unresolved Dependency

If this kind of message appears when resolving plugins or modules dependencies:

* What went wrong:
Plugin [id: 'com.microej.gradle.application', version: '1.3.0'] was not found in any of the following sources:

or this kind:

* What went wrong:
Execution failed for task ':compileJava'.
> Could not resolve all files for configuration ':compileClasspath'.
> Could not find com.mycompany:mymodule:M.m.p.

Searched in the following locations:
- https://my-company-first-repository/com/mycompany/mymodule/M.m.p/kf-M.m.p.pom
- https://my-company-first-repository/com/mycompany/mymodule/M.m.p/ivy-M.m.p.xml
- https://my-company-second-repository/com/mycompany/mymodule/M.m.p/kf-M.m.p.pom
- https://my-company-second-repository/com/mycompany/mymodule/M.m.p/ivy-M.m.p.xml

Required by:
project :

First, check that either the requested plugin or module exists in your repository.

• If the plugin or module does not exist,

– if it is declared as a direct dependency, the module repository is not compatible with your source code.
You can either check if anothermodule version is available in the repository or add themissingmodule
to the repository.

– otherwise, this is likely a missing transitive module dependency. The module repository is not consis-
tent. Check the module repository andmake sure all the transitive dependencies exist.

• If themodule exists, this may be due to amissing repository in the configuration. Check that your repository
appears in the list of URLs below the error line:

3.4. SDK 6 User Guide 246

MicroEJ Documentation,

Searched in the following locations:

If the URL of your repository is not listed, add it to the list of the repositories.

• If the repository is correctly configured, this may be a network connection error. We can check in the debug
logs, by adding the --debug arguments in the Gradle command line.

Otherwise, if your module repository is an URL, check for an Invalid SSL Certificate issue.

Invalid SSL Certificate

If a dependency cannot be retrieved from a remote repository, thismay be due to amissing or incorrect SSL certifi-
cate. It can be checked in the debug logs, by adding the --debug and -Djavax.net.debug=all arguments in the
Gradle command line, for example:

./gradlew build --debug -Djavax.net.debug=all

If the SSL certificate is missing or incorrect, the following line should appear:

PKIX path building failed: sun.security.provider.certpath.SunCertPathBuilderException: unable to␣
→˓find valid certification path to requested target

This can be raised in several cases, such as:

• an artifact repository configured in the MicroEJ Module Manager settings using a self-signed SSL certificate
or a SSL certificate not trusted by the JDK.

• the requests to an artifact repository configured in the MicroEJ Module Manager settings are redirected to a
proxy server using a SSL certificate not trusted by the JDK.

In all cases, the SSL certificate (used by the artifact repository server or the proxy) must be added to the JDK trust
store that is running Gradle.

Before updating the SSL certificate, it is recommended to exit all your IDE projects and stop Gradle daemons (all
versions). One simple way is to list all Java processes and kill the ones named GradleDaemon :

./jps
12768
17792 GradleDaemon
16920
4712 Jps
1820 GradleDaemon

Also, if you don’t know which JDK is running Gradle, you can first fix the JDK used by Gradle by following How To
Define a Specific Java Home for Gradle.

Ask your System Administrator, or retrieve the SSL certificate and add it to the JDK trust store:

• on Windows

1. Install Keystore Explorer.

2. Start Keystore Explorer, and open file [JRE_HOME]/lib/security/cacerts or [JDK_HOME]/jre/
lib/security/cacerts with the password changeit . You may not have the right to modify this file. Edit
rights if needed before opening it or open Keystore Explorer with admin rights.

3. Click on Tools , then Import Trusted Certificate .

4. Select your certificate.

3.4. SDK 6 User Guide 247

https://docs.gradle.org/current/userguide/gradle_daemon.html#sec:stopping_an_existing_daemon
http://keystore-explorer.org/downloads.html

MicroEJ Documentation,

5. Save the cacerts file.

• on Linux/macOS

1. Open a terminal.

2. Make sure the JDK’s bin folder is in the PATH environment variable.

3. Execute the following command:

keytool -importcert -v -noprompt -trustcacerts -alias myAlias -file /path/to/the/certificate.pem -
→˓keystore /path/to/the/truststore -storepass changeit

If the problem still occurs, there should be a tracewhich indicates the beggining of the handshake phase of the SSL
negotiation:

2023-12-15T17:32:47.442+0100 [DEBUG] [org.apache.http.conn.ssl.SSLConnectionSocketFactory] Starting␣
→˓handshake

The error very probably occurs during this phase. There should be the following trace before the error:

Consuming server Certificate handshake message

The traces below this one indicates the SSL certificate (or the SSL certificates chain) presented by the server. This
certificate or one of the root or intermediate certificates must be added in the JDK truststore as explained previ-
ously.

Failing Resolution in adp Task

During the build of a project, the error Cannot locate module version for non-maven layout may be raised:

Execution failed for task ':adp'.
> Could not resolve all files for configuration ':addonProcessorClasspath'.

> Could not download binary-nls-processor-2.4.2.adp (com.microej.tool.addon.runtime:binary-nls-processor:2.
→˓4.2)

> Cannot locate module version for non-maven layout.
> Could not download js-processor-0.13.0.adp (com.microej.tool.addon.runtime:js-processor:0.13.0)

> Cannot locate module version for non-maven layout.
> Could not download junit-processor-1.7.1.adp (ej.tool.addon.test:junit-processor:1.7.1)

> Cannot locate module version for non-maven layout.

This is due to a wrong pattern in the declaration of the Ivy repositories. Check your Ivy repositories and make
sure the value of the artifact of the patternLayout block is set to [organisation]/[module]/[revision]/
[artifact]-[revision](-[classifier])(.[ext]) . For example:

ivy {
url = uri(”https://repository.microej.com/5/artifacts/”)
patternLayout {

artifact(”[organisation]/[module]/[revision]/[artifact]-[revision](-[classifier])(.[ext])”)
ivy(”[organisation]/[module]/[revision]/ivy-[revision].xml”)
setM2compatible(true)

}
}

3.4. SDK 6 User Guide 248

MicroEJ Documentation,

Missing Version for Publication

If the following message is displayed when publishing a module:

The project version must be defined.

It means the version property is missing and should be defined in the module build file. See Publish a Project for
more information.

Fail to load a VEE Port as dependency

When a VEE Port is defined as a dependency, the build of the project can fail with the following message:

> No 'release.properties' and 'architecture.properties' files found.
The given file <path/to/file> is not a VEE Port archive.

If the dependency is a valid VEE Port, this error probably means that several artifacts of the VEE Port have been
publishedwith the default Ivy configuration. To fix this issue, youcanselect the right artifactbyadding information
on the one to fetch in the artifact block, for example:

microejVee(”com.mycompany:myveeport:1.0.0”) {
artifact {

name = ”artifact-name”
type = ”zip”

}
}

This will select the artifact with the name artifact-name and with the type zip .

Slow Build because of File SystemWatching

In some cases, Gradle may take a lot of time to execute its build. One of the possible reasons is the file system
watching featurewhich allows Gradle to track any change on the file system. Depending on your environment, this
feature can impact the build execution time significantly. For example, when network drives are mapped and the
network connection experiences instability.

This feature can be disabled for a build by passing the --no-watch-fs option in the command line, for example:

./gradlew build --no-watch-fs

or for all builds by setting the following property in the $USER_HOME/.gradle/gradle.properties file:

org.gradle.vfs.watch=false

Missing Tasks in the Gradle view of Android Studio

In some cases, Android Studio may not build all the Gradle tasks, the Task list not built… message is displayed:

3.4. SDK 6 User Guide 249

MicroEJ Documentation,

To build all the Gradle tasks in Android Studio:

• Go to File > Settings > Experimental ,

• Enable the option: Configure all Gradle tasks during Gradle Sync (…) .

Back in the Gradle task view:

• Right-click on the project name,

• Select Reload Gradle Project .

Note: By default, all supported IDEs require the user to explicitly trigger the reload of a Gradle project when its
configuration has changed. However you can configure your IDE to automatically reload your project. Refer to the
How To Automatically reload a Gradle project section for more information.

3.4. SDK 6 User Guide 250

MicroEJ Documentation,

Code Detected as Unreachable in IntelliJ

When opening MicroEJ project with IntelliJ 2024.1 , code is displayed in grey (dead code style) after a call to a
MicroEJ Foundation API.

This happens because Foundation API dependencies do not include implementation code but only throw Run-
timeException . IntelliJ thus infers that the code that comes after is unreachable.

The detection of unreachable code can be disabled by going in Settings… > Editor > Inspections and

unchecking the option Unreachable code in Java > Probable bugs .

You can also disable unreachable code detection locally by using @SuppressWarnings(”UnreachableCode”) on
the method or on the class.

3.4. SDK 6 User Guide 251

MicroEJ Documentation,

Resolution Conflict with Testsuite Dependencies

When a project and its testsuite depend on different versions of the same dependency, the build of the project can
fail with the following message:

Execution failed for task ':adp'.
> Conflict(s) with a direct dependency for the following module(s):
- ej.api:kf : the resolved version is 1.7.0 whereas the direct dependency version is 1.4.4

To fix this issue, you must update the dependency of your testsuite to use the same version as the project depen-
dency:

dependencies {
implementation(”ej.api:edc:1.3.7”)
implementation(”ej.api:kf:1.7.0”)

}

testing {
suites {

val test by getting(JvmTestSuite::class) {
microej.useMicroejTestEngine(this)

dependencies {
implementation(project())
implementation(”ej.api:edc:1.3.7”)
implementation(”ej.api:kf:1.7.0”)
implementation(”ej.library.test:junit:1.11.0”)
implementation(”org.junit.platform:junit-platform-launcher:1.8.2”)

}
}

}
}

Gradle Build Files (*.kts) Errors in IntelliJ IDEA

Since version 2025.1 , the new Kotlin K2 compiler is enabled by default to compile Gradle build scripts. For now, it
requires a JDK in project’s classpath in order to interpret the build file successfully. MicroEJ projects do not have
JDK in classpath, the Gradle build scripts are thus fully marked in red with the following errors:

Cannot access 'Comparable' which is a supertype of 'KotlinBuildScript'. Check your module classpath for missing␣
→˓or conflicting dependencies.
Cannot access 'Object' which is a supertype of 'KotlinBuildScript'. Check your module classpath for missing or␣
→˓conflicting dependencies.

To fix this, you need to

• uncheck Enable K2 in Settings… > Languages & Frameworks > Kotlin

Fig. 79: Disable K2 in IntelliJ IDEA

3.4. SDK 6 User Guide 252

MicroEJ Documentation,

– Invalidate caches from Files > Invalidate Caches… andcheckall thecheckboxesas shown
below, and click on Invalidate and Restart

Fig. 80: Invalidate all the caches

3.4.24 Tutorials

Branding an Eclipse IDE

Eclipse IDE allows to create custom versions of its distribution. This can be very convenient if you need to redis-
tribute your own unique Eclise IDE version, customized to your brand.

This tutorial will guide you through the steps to create such a branded Eclipse IDE.

Install Eclipse and the MicroEJ Plugin

• Download the Eclipse IDE for RCP and RAP Developers Edition.

• Install and launch it.

• Install the MicroEJ plugin as described in the Eclipse tab of the Install the IDE Plugins chapter.

Create the Project

Once everything is installed, the first step is to create the project:

• Click on File > New > Plug-in Project .

• Fill the Project name field, for example my-branded-eclipse .

• Click on the Next button.

• Change the version, the name and the vendor if necessary.

3.4. SDK 6 User Guide 253

https://www.eclipse.org/downloads/packages/release/2023-09/r/eclipse-ide-rcp-and-rap-developers

MicroEJ Documentation,

Fig. 81: Creation of a Branding Eclipse Project

• Click on the Finish button.

• Create a folder named images at the root of the project. It will contain the branding resources described
later in this tutorial.

Configure the Product

• Right-click on the project, then click on New > Other… .

• Select Plug-in Development > Product Configuration .

• Click on the Next button.

• Set a file name, for example eclipse .

• Click on the Finish button. The Product configuration file should be created and opened now.

• In the Overview tab

– In the Product field, click on New… .

3.4. SDK 6 User Guide 254

MicroEJ Documentation,

– Set a value in the Product Name field, for example My Branded Eclipse .

– Select the project in the Defining Plug-in field.

– Set a value in the Product ID field, for example product .

– In the Application field, select org.eclipse.ui.ide.workbench .

– Click on the Finish button.

• In the Contents tab

– For each of the following terms, click on Add… , type the term in the field, then select all the items in
the list and click on the Add button:

jdt
microej
egit
buildship
mpc
mylyn
org.eclipse.ui.ide.application
<plugin-name> (``my-branded-eclipse`` for the example values used previously)

– Click on Add Required Plug-ins .

• In the Configuration tab

– Click on the Add Recommended… button.

– Click on the OK button.

• In the Launching tab

– If you want to change the default name of the Eclipse launch executable (defaults to eclipse), set the
Launcher Name field with the new name.

– If you want to change the icon files of the Eclipse launch executable file,

∗ Copy the image file(s) of the IDE launcher in the images folder. The image format depends on the
Operating System:

· icon.xpm for Linux

· icon.icns for macOS

· icon.ico file or icon.bmp files for Windows.

For Windows, if bmp files are used, it is required to provide one bmp file for each one of the
following resolutions: 16x16 (8-bit), 16x16 (32-bit), 32x32 (8-bit), 32x32 (32-bit), 48x48 (8-bit), 48x48
(32-bit), 256x256 (32-bit).

∗ Select the icon files for the targeted Operating Systems. Make sure the paths are the relative paths
from the project root folder.

• In the Splash tab

– If you want to change the default splash screen displayed at startup,

∗ Copy the image file of the splash screen at the root of the project. The following name and image
types are supported:

3.4. SDK 6 User Guide 255

MicroEJ Documentation,

· splash.png

· splash.jpg

· splash.jpeg

· splash.gif

· splash.bmp

The recommended size for the splash screen is 455x295.

∗ In the Plug-in field, click on the Browse… button.

∗ Select the plugin of the project (my-branded-eclipse in our example).

– If you want to change the splash screen behavior, adapt the other options in the Customization sec-
tion to your need. For example you may want to add a progress bar in the splash screen by checking
the option Add a progress bar .

• In the Branding tab (make sure the image paths are the relative paths from the project root folder)

– If you want to change the default application window icon (visible in the Windows dock for example),

∗ Copy the image files associated with the application window in the images folder. The image
format must be png , with one png file for each one of the following resolutions: 16x16, 32x32,
48x48, 64x64, 128x128, 256x256.

∗ For each field in the Window Images section, select the corresponding image.

– If you want to content of the About dialog (visible in Help > About…),

∗ Copy the About dialog image in the images folder. This imagemust be in png format and should
not exceed 500x330.

∗ In the About Dialog section, select the image and fill the text. The text is not shown if the image
exceeds 250x330.

3.4. SDK 6 User Guide 256

MicroEJ Documentation,

Fig. 82: Branding Tab of a Branding Eclipse Project

• Save the Product file.

• Go back to the Overview tab and click on Synchronize in the Testing section.

Your project should look like this at this stage:

3.4. SDK 6 User Guide 257

MicroEJ Documentation,

Fig. 83: Structure of a Branding Eclipse Project

Advanced Options

Eclipse provides several other options to customize an Eclipse Product that can be defined in the
plugin_customization.ini file located at the root of the project. Create this file if it does not exist in your
project.

Then you can define any option, for example to set the default perspective to the Java perspective:

org.eclipse.ui/defaultPerspectiveId=org.eclipse.jdt.ui.JavaPerspective

Here is a list of interesting options:

Name Description Default
org.eclipse.ui/SHOW_PROGRESS_ON_STARTUPShow progress bar in the splash screen.

false
org.eclipse.ui/default-
PerspectiveId

Perspective that the workbench opens initially.
org.
eclipse.ui.
resourcePerspective

3.4. SDK 6 User Guide 258

MicroEJ Documentation,

Export the Product

The final step is to export the project as an Eclipse Product:

• Open the build.properties file, andmake sure to select the Build tab.

• In the Binary Build section, select:

– META-INF folder

– plugin.xml file

– splash.bmp file

– images folder

– plugin_customization.ini file (if exists)

• Save your changes in the build.properties file.

• Right-click on the project, then click on Export… .

• Select Plug-in Developement > Eclipse product , then click on the Next button.

• In the Configuration field, select the .product file.

• In the Synchronization section, make sure the Synchronize before exporting option is checked.

• In the Directory field of the Destination section, select the destination folder.

• Click on the Finish button.

Once the process is done, you should find the new branded Eclipse IDE in the destination folder.

Creating and Using an Offline Repository

Developing MicroEJ projects requires the Gradle plugins used for the build, as well as the modules (Add-On Li-
braries, Foundation Libraries, …) used by the project code. All these artifacts must be available in artifact reposi-
tories.

MicroEJ provides them as online repositories which can be used directly, thanks to the configuration described in
the Configure Repositories section. However, it is not always possible to rely on these online repositories. Gradle
allows to use repositories packaged as a set of local folders and files, called Offline Repositories.

This tutorial explains how to create and use Offline Repositories for your MicroEJ project.

Offline Repository for the Gradle Plugins

The first step is tocreateanOfflineRepository for theGradleplugins. Theartifactsof theGradlepluginsareavailable
in the SDK 6 Forge repository.

• Go to the SDK 6 repository.

• Click on the Download button:

3.4. SDK 6 User Guide 259

https://forge.microej.com/ui/repos/tree/General/microej-sdk6-repository-release

MicroEJ Documentation,

Fig. 84: Download SDK 6 Gradle Plugins Repository

• In the upcoming popup, check the Include Checksum Files checkbox.

• Click on Download .

Now that the Offline Repository of the Gradle plugins has been retrieved, you can configure your projects to use it:

• Unzip the downloaded archive at the location of your choice, for example in the C:\sdk6-repository folder.

• Add the following repository definition at the beginning of your repositories configuration script:

fun RepositoryHandler.offlineMicroEjSdk() {
val sdk6Uri = uri(”C:\\sdk6-repository”)

/* Offline SDK 6 repository for Maven/Gradle modules */
maven {
name = ”offlineSDKRepositoryMaven”
url = sdk6Uri

}

/* Offline SDK 6 repository for Ivy modules */
ivy {
name = ”offlineSDKRepositoryMaven”
url = sdk6Uri
patternLayout {

artifact(”[organisation]/[module]/[revision]/[artifact]-[revision](-[classifier])(.[ext])”)
ivy(”[organisation]/[module]/[revision]/ivy-[revision].xml”)
setM2compatible(true)

}
}

}

• Add the previously created repository declaration inside the repositories block of both allprojects and plug-
inManagement blocks:

3.4. SDK 6 User Guide 260

MicroEJ Documentation,

allprojects {
repositories {
...
offlineMicroEjSdk()
...

}
}

pluginManagement {
repositories {
...
offlineMicroEjSdk()
...

}
}

Offline Repository for the Modules

There are 2 ways to create an Offline Repository containing the required modules:

• download an existing online repository.

• create a SDK 5 offline repository project to create a custom repository.

Download an existing online repository

A quick way to get an Offline Repository for the modules is to download an existing online repository. MicroEJ
provides severalmodule repositories, the main one being the Central Repository.

If this online repository, or anotherone, contains all themodule required for yourproject, download it. For example
for the Central Repository, go to its location and click on the Download button.

Now go to this section to configure your project to use it.

CustomOffline Repository

If you need a customOffline Repository (for example because the available online repositories does not contain all
themodules required by your project, or you want to control exactly what contains the repository), you can create
your own. This can be done only with SDK 5 for the moment, so refer to this page.

Once done, go to this section to configure your project to use it.

Use an Offline Modules Repository

When the Offline Repository of the modules has been retrieved or created, you can configure your projects to use
it:

• Unzip theOfflineRepository archiveat the locationof your choice, for example in the C:\modules-repository
folder.

• Add the following repositories declaration in your repositories configuration script, inside the repositories
block:

3.4. SDK 6 User Guide 261

https://forge.microej.com/ui/repos/tree/General/microej-central-repository-release

MicroEJ Documentation,

repositories {

...

maven {
name = ”offlineModulesRepositoryMaven”
url = uri(”C:\\modules-repository”)

}
ivy {

name = ”offlineModulesRepositoryIvy”
url = uri(”C:\\modules-repository”)
patternLayout {

artifact(”[organisation]/[module]/[revision]/[artifact]-[revision](-[classifier])(.[ext])”)
ivy(”[organisation]/[module]/[revision]/ivy-[revision].xml”)
setM2compatible(true)

}
}

...

}

3.4.25 How-to Guides

How To Define a Specific Java Home for Gradle

Bydefault, Gradleuses the JDKdefined in the JAVA_HOME environment variableor in the PATH . If youwant to
use a different JDKwithout changing the default JDK of your system, you can define the property org.gradle.java.
home in the Gradle Properties. Gradle Properties can be defined in the following locations, sorted by the highest
priority:

• command line, as set using -D .

• gradle.properties in the GRADLE_USER_HOME directory (defaults to $USER_HOME/.gradle).

• gradle.properties in the project directory, then its parent project directory up to the build root directory.

• gradle.properties in the Gradle installation directory.

If an option is configured in multiple locations, the first one found in any of these locations wins. Therefore, if you
want all your Gradle project to use a different JDK than the systemdefault JDK, you can add the following property
in the file $USER_HOME/.gradle/gradle.properties :

org.gradle.java.home=”C:\\path\\to\\the\\jdk”

How To Pass a Property to Project Build Script

It is sometimes needed to use properties to pass values to a project build script. This avoids to have hardcoded
values in the project sources.

Gradle allows to define System Properties with the command line thanks to the -D prefix:

$./gradlew build -DmyPropertyName=”myPropertyValue”

and use themwith the API providers.systemProperty(”myPropertyName”).get() .

3.4. SDK 6 User Guide 262

https://docs.gradle.org/current/userguide/build_environment.html#sec:gradle_configuration_properties

MicroEJ Documentation,

For example to define a local VEE Port directory, the project can be configured with:

dependencies {
microejVee(files(providers.systemProperty(”myVeePortPath”).get()))

}

and built with:

$./gradlew build -DmyVeePortPath=”C:\\path\\to\\my\\veePort\\directory”

The providers.systemProperty(”myPropertyName”) API returns a org.gradle.api.provider.Provider object,
which provides other capabilities like:

• defining a default value if the System Property does not exist: providers.
systemProperty(”myPropertyName”).getOrElse(”myDefaultValue”)

• returning null if the value does not exist: providers.systemProperty(”myPropertyName”).getOrNull() .

Warning: If the property to pass is an Application option, it must be prefixed by microej.option.* .

How To Skip a Gradle Task

When a task is executed, it is possible to skip one or more of the tasks on which the called task depends. For
example, you can skip the test task if you want to build a project without executing the tests.

If you want to skip a task, one of the following ways can be used :

• Add the -x or --exclude-task option in the command line:

./gradlew build -x test

The task is skipped for this execution only.

• Exclude the task in the build script of the project

project.gradle.startParameter.excludedTaskNames.add(”test”)

The task is never executed.

When one of these two ways is used, not only the task but also all the tasks on which it depends are skipped. For
example, if you choose to skip the test task, all the tasks which are used to produce the test runtime classpath are
also skipped.

Skip the task only

It is possible to skip a task but still execute the tasks on which it depends using one of the following ways :

• Disable the task in the build script of the project:

tasks.test {
enabled = false

}

The task is never executed.

• Define a predicate in the build script of the project:

3.4. SDK 6 User Guide 263

MicroEJ Documentation,

tasks.test {
val skipProvider = providers.gradleProperty(”skipTest”)
onlyIf {
!skipProvider.isPresent()

}
}

The task is skipped each time the predicate evaluates to false . In this example, the test task is not executed
if the skipTest property is added in the command line:

./gradlew build -PskipTest

How To Automatically reload a Gradle project

By default, regardless of the IDE that you are using (Android Studio, IntelliJ IDEA or Eclipse), the reload of a Gradle
project must be explicitly triggered by the user when the configuration of the project has changed. This allows to
avoid reloading the project too frequently, but the user must not forget to manually reload the project to apply
changes.

It is also possible to configure your IDE to automatically reload your Gradle project:

IntelliJ IDEA / Android Studio

Eclipse

The auto-reload of a Gradle project with IntelliJ IDEA / Android Studio can be enabled as follows:

• Click on File > Settings… .

• Go to Build, Execution, Deployment > Build Tools .

• Check the Reload changes in the build scripts option and check the Any changes option.

Fig. 85: Auto-reload option in IntelliJ IDEA / Android Studio

• Go to Languages & Frameworks > Kotlin > Kotlin Scripting .

• Check all the Auto Reload options.

3.4. SDK 6 User Guide 264

MicroEJ Documentation,

Fig. 86: Auto-reload Kotlin option in IntelliJ IDEA / Android Studio

The auto-reload of a Gradle project with Eclipse can be enabled as follows:

• Click on Window > Preferences > Gradle .

• Check the Automatic Project Synchronization option.

Fig. 87: Auto-reload option in Eclipse

3.4. SDK 6 User Guide 265

MicroEJ Documentation,

How To Add a Repository

TheSDK6 installationprocessasks to createaGradle Init Script file todeclaremodules andplugins repositories. You
may need to use additional repositories or replace the default ones, for example to fetch a module only available
in your company’s repository. This page presents the different options to do that.

If you needmore details on this topic, refer to the official Gradle documentation on repository declaration.

How To Add a Modules Repository

The different ways to add amodules repository are:

• add a repositories block in the build.gradle.kts file of the project:

repositories {
maven {
name = ”myModulesRepository”
url = uri(”https://my.company/my-modules-repository”)

}
}

The repositories defined here are fetched after the ones defined in the Gradle init script.

For a multi-project, the repositories must be declared in a build.gradle.kts file located in the root folder,
inside a subprojects block (or allprojects depending on your needs), to make them available in all the
subprojects:

subprojects {
repositories {
maven {
name = ”myModulesRepository”
url = uri(”https://my.company/my-modules-repository”)

}
}

}

• update the Gradle Init Script to add, replace or delete a repository. The version of this script provided in the
installation process is a recommended version to be applied to quickly setup an environment. However, it
can bemodified to adapt it to your need, especially for the list of repositories. The modules repositories are
defined in theblock settingsEvaluated > allprojects > repositories , andare applied to all theGradlebuilds
executed on the machine.

How To Add a Plugins Repository

The different ways to add a plugins repository are:

• add a pluginManagement > repositories block in the settings.gradle.kts file of the project or the
multi-project:

pluginManagement {
repositories {
maven {
name = ”myPluginsRepository”
url = uri(”https://my.company/my-plugind-repository”)

}
(continues on next page)

3.4. SDK 6 User Guide 266

https://docs.gradle.org/current/userguide/declaring_repositories.html

MicroEJ Documentation,

(continued from previous page)

}
}

The repositories defined here are fetched before the ones defines in the init script.

• update the Gradle Init Script to add, replace or delete a repository. The version of this script provided in
the installation process is a recommended version to be applied to quickly setup an environment. However,
it can be modified to adapt it to your need, especially for the list of repositories. The plugins repositories
are defined in the block settingsEvaluated > allprojects > pluginManagement > repositories , and are
applied to all the Gradle builds executed on the machine.

How To Configure Multiple Gradle Repositories

If you want to make MicroEJ repositories available only to some projects, here is an example of configuration:

• Create a folder repositories in $USER_HOME/.gradle/init.d .

• Move microej.init.gradle.kts to the repositories folder.

• Create anew repositories.init.gradle.kts file in $USER_HOME/.gradle/init.d with the following content:

val defaultRepository = ”myOtherRepo” // can be set to null
val selectedRepository = System.getProperty(”gradle.repository”) ?: defaultRepository

when (selectedRepository) {
”microejCentral” ->

apply {
from(”repositories/microej.init.gradle.kts”)

}
// ”myOtherRepo” ->
// apply {
// from(”repositories/other.gradle.kts”)
// }
}

• Add the following property to a gradle.properties file at the root of your SDK 6 projects:

systemProp.gradle.repository=microejCentral

This way, only projects defining the gradle.repository system property will use MicroEJ repositories. If you want
to activate these repositories by default, you can edit the defaultRepository in the repositories.init.gradle.kts
file.

Note: The name of the property gradle.repository is only given as exemple. You can choose the name you want
as long as the propety defined in your gradle.properties file and in repositories.init.gradle.kts is the same.

Warning: If you put a repository configuration file that endswith .gradle.kts at the root of $USER_HOME/.
gradle/init.d , it will be automatically loaded. Contrary towhat the official Gradle documentation says, the files
does not need to end with .init.gradle.kts . That is the reason why we recommend to put the files in a folder.
These files also need to end with .gradle.kts .

3.4. SDK 6 User Guide 267

MicroEJ Documentation,

How To Resolve Dependencies in the IDE

When contributing tomultiple interdependent projects, it is very convenient andmore productive to test a change
without rebuilding and publishing manually the updated projects.

Gradle allows to consider a local project as a dependency thanks to the Composite Build feature. For example, if
you have a project named myApplication , with the coordinates com.mycompany:myApplication:1.0.0 , and a
project named myLibrary , with the coordinates com.mycompany:myLibrary:1.0.0 , structured as follows:

|- myApplication
| |- src
| |- build.gradle.kts
| |- settings.gradle.kts
|- myLibrary
| |- src
| |- build.gradle.kts
| |- settings.gradle.kts

And the build.gradle.kts file of the myApplication project declaring a dependency to the myLibrary module:

dependencies {
implementation(”com.mycompany:myLibrary:1.0.0”)

}

Without any additional configuration, Gradle will try to fetch the com.mycompany:myLibrary:1.0.0 dependency
from the declared repositories. This means that when you do a change in the myLibrary project, it would require
to build and publish it, then refresh dependencies on the myApplication project to get the update. This is painful
and time consuming.

In order to avoid this, Gradle allows to consider the myLibrary build as part of the myApplication build,meaning
that when the myApplication project is built, the myLibrary project is also rebuilt if it has been changed, and is
used as the dependency. This can be configured by adding the following line in the settings.gradle.kts file of the
myApplication project:

includeBuild(”../myLibrary”)

The path given to the includeBuild method is the relative path of the project to include.

Warning: The includeBuild method should be used to declare a dependency between two autonomous
projects. To declare a dependency between two subprojects of a multi-project, a Project dependency must be
used. Refer to the Dependencies Between Subprojects of a Multi-Project section for more information.

Refer to the Official Gradle documentation on the Composite Build feature for more details.

Dependencies Between Subprojects of a Multi-Project

Gradle allows to declare dependencies between subprojects of amulti-project build by declaring a Project depen-
dency.

For example, if you have a multi-project named myProject composed of two subprojects myApplication and
myLibrary :

|- myProject
| |- myApplication

(continues on next page)

3.4. SDK 6 User Guide 268

https://docs.gradle.org/current/userguide/composite_builds.html
https://docs.gradle.org/current/userguide/declaring_dependencies.html#sub:project_dependencies
https://docs.gradle.org/current/userguide/composite_builds.html
https://docs.gradle.org/current/userguide/multi_project_builds.html
https://docs.gradle.org/current/userguide/declaring_dependencies.html#sub:project_dependencies
https://docs.gradle.org/current/userguide/declaring_dependencies.html#sub:project_dependencies

MicroEJ Documentation,

(continued from previous page)

| | |- src
| | |- build.gradle.kts
| |- myLibrary
| | |- src
| | |- build.gradle.kts
| |- settings.gradle.kts

You can declare a Project dependency in the build.gradle.kts file of the myApplication subproject to make it
depend on the myLibrary subproject:

dependencies {
implementation(project(”:myLibrary”))

}

When building the myApplication subproject, the myLibrary subproject is also rebuilt if it has been changed, so
contrary to a Module dependency (e.g. implementation(”com.mycompany:myLibrary:1.0.0”)), you don’t have
tomanually build and publish it, and then refresh dependencies on the myApplication project to get the update.

Refer to the Official Gradle documentation about the different kinds of dependencies for more details.

How To Install MicroEJ Plugin Snapshot Version on Android Studio or IntelliJ IDEA

If you want to test the version under development, the latest snapshot version of the plugin can be installed:

• In IntelliJ IDEA or Android Studio, go to File > Settings... .

• Go to Plugins menu.

• Click on the icon at the right of the Installed tab, then click on Manage Plugin Repositories .

Fig. 88: IntelliJ IDEA and Android Studio Plugin Repository

• Click on the + icon.

• Set the URL https://repository.microej.com/intellij-plugins/snapshots/updatePlugins.xml .

• Click on the OK button.

• Click on the Marketplace tab.

• In the search field, type MicroEJ :

3.4. SDK 6 User Guide 269

https://docs.gradle.org/current/userguide/declaring_dependencies.html#sec:dependency-types

MicroEJ Documentation,

Fig. 89: IntelliJ IDEA and Android Studio Snapshot Plugin Installation

• Click on the Install button.

• Click on the Restart IDE button.

How To Build a Project

Generally speaking, building a project means compiling the source files, executing the tests and generating the
module artifact. Depending on the nature of the project, the build can include other specific phases. Refer to the
Module Natures page for a complete description of the build phases.

The build of a project is done by executing the Gradle build task.

IntelliJ IDEA / Android Studio

Eclipse

Command Line Interface

It can be executed from IntelliJ IDEA or Android Studio by double-clicking on the build task in the Gradle tasks
view:

It can be executed from Eclipse by double-clicking on the build task in the Gradle tasks view:

3.4. SDK 6 User Guide 270

MicroEJ Documentation,

It can be executed with the command line interface:

$./gradlew build

Gradle stores the artifacts produced by the build in the build/libs folder.

Note: If the build fails with a message related to the Artifact Checker such as:

The Artifact Checker found the following problems:

Fix the listed problems or skip the Artifact Checker by adding the following line in the build script file:

project.gradle.startParameter.excludedTaskNames.add(”checkModule”)

How To Build and Deploy Object Files without Building the Executable

If you need to produce the object files of the Application, deploy them to the BSP, but delegate the build of
the Executable to another build system, call the buildExecutable task with the Application option deploy.bsp.
microejscript set to false :

./gradlew buildExecutable -Dmicroej.option.deploy.bsp.microejscript=false

You should see logs similar to the following ones:

=============== [Deployment] ===============
The application output file has been generated here: 'C:\Users\johndoe\my-project\my-app\build\application\
→˓object\SOAR.o'
=============== [Completed Successfully] ===============
VEE Port connected to BSP location 'C:\Users\johndoe\my-project\bsp' using platform option 'root.dir' in 'bsp/
→˓bsp.properties'.
=============== [Deployment] ===============
MicroEJ application (microejapp.o) has been deployed to: 'C:\Users\johndoe\my-project\bsp\vee\lib'.
MicroEJ library (microejruntime.a) has been deployed to: 'C:\Users\johndoe\my-project\bsp\vee\lib'.
MicroEJ header files (*.h) have been deployed to: 'C:\Users\johndoe\my-project\bsp\vee\inc'.
=============== [Completed Successfully] ===============

3.4. SDK 6 User Guide 271

MicroEJ Documentation,

How To Build an Executable With Multiple VEE Ports

When creating an Application, only one VEE Port must be defined to build an Executable. However, it is possible to
build an Executable for a list of VEE Ports by using a Gradle multi-project.

For example, if you want to build an Executable for two VEE Ports, you can create amulti-project composed of two
subprojects:

|- rootProject
| |- myApplicationVeePort1
| | |- src/main/java
| | |- src/main/resources
| | |- build.gradle.kts
| |- myApplicationVeePort2
| | |- build.gradle.kts
| |- settings.gradle.kts
| |- build.gradle.kts

• The myApplicationVeePort1 subproject is the Application project in which the first VEE Port is defined and
the applicationEntryPoint property is set to the Fully Qualified Name of your main class.

• The myApplicationVeePort2 subproject is an Application project that only contains a build.gradle.kts file
in which the second VEE Port is defined and the applicationEntryPoint property is set to the Fully Qualified
Name of your main class. To avoid having to duplicate the Source code of the Application, a SourceSet must
be defined to use the Source code of the myApplicationVeePort1 subproject:

sourceSets {
main {

java {
srcDirs(project(”:myApplicationVeePort1”).layout.projectDirectory.dir(”src/main/java”),

project(”:myApplicationVeePort1”).layout.projectDirectory.dir(”src/main/resources”))
}

}
}

• In the build.gradle.kts file of the multi-project, you can define the Gradle configuration that is common to
all subprojects to avoid duplicates, for example:

plugins {
id(”com.microej.gradle.application”) version ”1.3.0” apply false

}

subprojects {
apply(plugin = ”com.microej.gradle.application”)

val implementation by configurations

dependencies {
implementation(”ej.api:edc:1.3.5”)

}
}

• For each VEE Port, the Application configuration properties can be defined in the configuration folder of the
corresponding Application project.

The Executable of the Application can now be built for a VEE Port by executing the buildExecutable task on the
corresponding subproject:

3.4. SDK 6 User Guide 272

https://docs.gradle.org/current/userguide/multi_project_builds.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceSet.html

MicroEJ Documentation,

./gradlew myApplicationVeePort1:buildExecutable

To build the Executable for all VEE Ports, a new task can be created in the build.gradle.kts file of themulti-project:

tasks.create(”buildAllExecutables”)
subprojects {

rootProject.tasks.getByName(”buildAllExecutables”).dependsOn(”$path:buildExecutable”)
}

All Executables can now be built by executing the buildAllExecutables task:

./gradlew buildAllExecutables

For each VEE Port, the Executable is generated in the build/output/application folder of the corresponding sub-
project.

How To Create a Custom Configuration in the IDE

This chapter explains how to create a new Configuration in all the supported IDEs.

IntelliJ IDEA / Android Studio

Eclipse

Visual Studio Code

The creation of a new Configuration with IntelliJ IDEA / Android Studio is done as follows:

• Click on Run > Edit Configurations… .

• Click on + and Select Gradle .

• Fill the name of the new Configuration in the Name field.

• Add a task and an option or a property if needed in the Run dialog, for example runOnSimulator -Pdebug.
mode=true .

3.4. SDK 6 User Guide 273

MicroEJ Documentation,

Fig. 90: Configuration Creation in IntelliJ IDEA

• Click on OK .

• Select the newly created Configuration in the drop-down list in the Navigation bar and click on the run
button to launch it.

Fig. 91: Navigation bar in IntelliJ IDEA

• The Configuration can also be launched by double-clicking on it in the Gradle tasks view.

3.4. SDK 6 User Guide 274

MicroEJ Documentation,

Fig. 92: Gradle view in IntelliJ IDEA

The creation of a new Configuration with Eclipse is done as follows:

• Click on Run > Run Configurations… .

• Right-click on Gradle Task and click on New Configuration .

• Fill the name of the new Configuration in the Name field.

• Add a task’s name in the Gradle Tasks tab, for example runOnSimulator .

Fig. 93: Configuration Gradle Tasks tab in Eclipse

3.4. SDK 6 User Guide 275

MicroEJ Documentation,

• Go to the Project Settings tab.

• Check Override project settings .

• Add an option or a property as a Program Argument if needed, for example -Pdebug.mode=true .

Fig. 94: Configuration Project Settings tab in Eclipse

Warning: Some tasks require to define specific options to be executed. These options must be defined with
the task’s name in the Gradle Tasks tab. For example, to run the Local Deployment Socket, the execTool task
and its options must be specified:

3.4. SDK 6 User Guide 276

MicroEJ Documentation,

Fig. 95: Configuration execTool Task tab in Eclipse

• Click on Run to launch the Configuration.

The creation of a new Configuration with Visual Studio Code is done as follows:

• In the Gradle tasks view, right-Click on the task for which you want to create a new Configuration.

• Click on Pin Task With Args .

3.4. SDK 6 User Guide 277

MicroEJ Documentation,

Fig. 96: New Gradle Configuration in Visual Studio Code

• Fill the option or property in the Search Bar and press Enter .

Warning: All task optionsmust be definedwithoutquotes in Visual Studio Code. For example, to run the Local
Deployment Socket, the execTool task must be executed with the --name=localDeploymentSocket option.

If quotes are used (--name=”localDeploymentSocket”), Visual Studio Code does not correctly pass the option
to Gradle and the build fails with the following error:

> MicroEJ Tool '”localDeploymentSocket”' not found in <path\to\project>\build\vee\scripts\
Make sure that the correct MicroEJ VEE is selected.

• The newly created Configuration is available in the Gradle tasks view.

3.4. SDK 6 User Guide 278

MicroEJ Documentation,

Fig. 97: Pinned Configuration in Visual Studio Code

How To Use a FeatureEntryPoint class as my Application EntryPoint

An Application can require the use of advanced features, for example the FeatureEntryPoint.stop() method, in
order to communicate with a Kernel. To use such features, you must create a class implementing the ej.kf.
FeatureEntryPoint interface. The creation of a Feature class is done as follows:

• Create a new Application project, as described in Create a Project.

• Add the KFmodule in the dependencies block of the build.gradle.kts file of the project:

dependencies {
implementation(”ej.api:kf:1.7.0”)

}

• Create the Java class of the Feature EntryPoint in the src/main/java folder, for example:

package com.mycompany;

import ej.kf.FeatureEntryPoint;

public class MyFeature implements FeatureEntryPoint {
@Override
public void start() {
System.out.println(”Feature MyFeature started!”);

}

@Override
public void stop() {
System.out.println(”Feature MyFeature stopped!”);

}
}

• Define the property applicationEntryPoint in the microej configuration block of the build.gradle.kts file.
It must be set to the Full Qualified Name of the Feature class, for example:

3.4. SDK 6 User Guide 279

https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/FeatureEntryPoint.html#stop--

MicroEJ Documentation,

microej {
applicationEntryPoint = ”com.mycompany.MyFeature”

}

How To Disable Ivy Descriptor Publication

By default, SDK 6 adds an Ivy descriptor file to published artifacts in order for SDK 5 projects to be able to consume
the module (e.g. an application built with SDK 5 depending on a library published with SDK 6).

Disable Ivy Descriptor Publication by Default

If you don’t need SDK 5 backward compatibility, you can disable Ivy descriptor publication by setting the Gradle
property enable.ivy.descriptor.default=false .

This property can be set in a gradle.properties file in $USER_HOME/.gradle/ to apply it globally, or at the
root of the Gradle project to apply it at project level. It can also be passed to command line with -Penable.ivy.
descriptor.default=false option.

Force Ivy Descriptor Publication When Disabled by Default

Even when Ivy descriptor publication is globally disabled with the Gradle property, it can be forced in a project by
adding withIvyDescriptor() to the microej block in build.gradle.kts file:

microej {
withIvyDescriptor()

}

How To Check Dependencies Updates

To check if Gradle dependencies are up-to-date, you can use the Gradle Versions Plugin. This Gradle plugin lists all
the dependencies declared in the build.gradle.kts file, and tells whether they are up-to-date or if a new version is
available.

Configure the Project

Edit your build.grate.kts file to declare the Gradle Versions Plugin plugin in addition to the MicroEJ plugin:

plugins {
id(”com.microej.gradle.application”) version ”1.3.0”
id(”com.github.ben-manes.versions”) version ”0.51.0”

}

In order to be able to check dependencies, youmust disable Version Check option in the microej block:

microej {
...
dependenciesVersionsCheckEnabled = false

}

Some dependencies are automatically included by the MicroEJ Gradle plugin to compile the project with JDT:

3.4. SDK 6 User Guide 280

https://github.com/ben-manes/gradle-versions-plugin
https://github.com/ben-manes/gradle-versions-plugin

MicroEJ Documentation,

- org.eclipse.jdt:org.eclipse.jdt.compiler.apt:1.3.1000
- org.eclipse.jdt:org.eclipse.jdt.core:3.22.

These dependencies are not relevant for the report. To remove them, you can add the following snippet to the
build file:

tasks.withType<DependencyUpdatesTask> {
configurations.all {

exclude(group = ”org.eclipse.jdt”)
}

}

If your default Gradle configuration does not fetch plugins fromGradle Plugin Portal, you can add this repository to
settings.gradle.kts :

pluginManagement {
repositories {

gradlePluginPortal()
}

}

Generate the Report

Once these prerequisites are fulfilled, the report can be generated by calling the dependencyUpdates task in help
group:

IntelliJ IDEA / Android Studio

Eclipse

Visual Studio Code

Command Line Interface

By double-clicking on the dependencyUpdates task in the Gradle tasks view:

By double-clicking on the dependencyUpdates task in the Gradle tasks view:

3.4. SDK 6 User Guide 281

MicroEJ Documentation,

By double-clicking on the dependencyUpdates task in the Gradle tasks view:

From the command line interface:

$./gradlew dependencyUpdates

A simple text report is printed in the console and generated in build/dependenciesUpdates/report.txt . Report is
configurable in the plugin. Refer to the Report Format section of the plugin README.

Here is an example of report:

--
: Project Dependency Updates (report to plain text file)
--

The following dependencies are using the latest milestone version:
- com.github.ben-manes.versions:com.github.ben-manes.versions.gradle.plugin:0.51.0
- com.is2t.tools:application-repository:2.2.0

(continues on next page)

3.4. SDK 6 User Guide 282

https://github.com/ben-manes/gradle-versions-plugin/tree/v0.51.0?tab=readme-ov-file#report-format

MicroEJ Documentation,

(continued from previous page)

- com.microej.veeport.st.stm32f7508-dk:M5QNX_eval:2.2.0
- ej.library.eclasspath:stringtokenizer:1.2.0

The following dependencies exceed the version found at the milestone revision level:
- ej.library.ui:widget [5.2.0 <- 4.2.0]

The following dependencies have later milestone versions:
- com.microej.gradle.application:com.microej.gradle.application.gradle.plugin [0.15.0 -> 1.3.0]
- com.microej.test:junit-test-engine [0.2.2 -> 0.3.0]
- ej.api:drawing [1.0.2 -> 1.0.5]
- ej.api:edc [1.3.5 -> 1.3.7]
- ej.api:microui [3.1.0 -> 3.5.0]
- ej.library.eclasspath:collections [1.4.0 -> 1.4.2]
- ej.library.runtime:basictool [1.5.0 -> 1.7.0]
- ej.library.runtime:service [1.1.1 -> 1.2.0]
- ej.library.test:junit [1.7.1 -> 1.11.0]

Gradle release-candidate updates:
- Gradle: [8.3 -> 8.13]

How To Create Custom ExecTool Task

MicroEJ provides the Gradle execTool task that allows to execute all Command Line Tools. However, it is possible
to create a custom task of type ExecToolTask specific to a tool. This task can then be used to execute the tool
before or after another task when building your project for example.

You can create a new ExecToolTask in the build file of your project as follows:

• Import the ExecToolTask and LoadVeeTask classes:

import com.microej.gradle.tasks.ExecToolTask
import com.microej.gradle.tasks.LoadVeeTask

• Create a new task of type ExecToolTask :

val loadVee = tasks.withType(LoadVeeTask::class).named(”loadVee”)
val mainSourceSet = project.extensions.getByType(SourceSetContainer::class).getByName(SourceSet.
→˓MAIN_SOURCE_SET_NAME)

tasks.register<ExecToolTask>(”myCustomTask”) {
veeDir.set(loadVee.flatMap { it.loadedVeeDir })
resourcesDirectories.from(mainSourceSet.output.resourcesDir, layout.buildDirectory.dir(”generated/

→˓microej-app-wrapper/resources”))
classesDirectories.from(mainSourceSet.output.classesDirs, layout.buildDirectory.dir(”generated/microej-

→˓app-wrapper/classes”))
classpathFromConfiguration.from(project.configurations.getByName(”runtimeClasspath”))

toolName = ”microej_tool_name”
toolProperties.putAll(mapOf(

”property1” to ”value1”,
”property2” to ”value2”,
...

))
}

3.4. SDK 6 User Guide 283

MicroEJ Documentation,

Note: Only the toolName and toolProperties inputs are specific to the tool. The other task inputs are common
to all tasks of type ExecToolTask .

• The custom task can then be executed:

$./gradlew myCustomTask

As an example, here is how to create a task which calls the Local Deployment Socket tool:

import com.microej.gradle.tasks.ExecToolTask
import com.microej.gradle.tasks.LoadKernelExecutableTask
import com.microej.gradle.tasks.LoadVeeTask

plugins {
id(”com.microej.gradle.application”) version ”1.3.0”

}

group=”com.mycompany”
version=”1.0.0”

microej {
applicationEntryPoint = ”com.mycompany.MyFeature”

}

dependencies {
...
microejVee(”com.mycompany:myKernel:1.0.0”)
...

}

...

val loadVee = tasks.withType(LoadVeeTask::class).named(”loadVee”)
val loadKernelExecutable = tasks.withType(LoadKernelExecutableTask::class).named(”loadKernelExecutable”)
val mainSourceSet = project.extensions.getByType(SourceSetContainer::class).getByName(SourceSet.MAIN_
→˓SOURCE_SET_NAME)
val buildDirectory = layout.buildDirectory

tasks.register<ExecToolTask>(”localDeploy”) {
// These inputs are required for all custom tasks of type ”ExecToolTask”.
veeDir.set(loadVee.flatMap { it.loadedVeeDir })
resourcesDirectories.from(mainSourceSet.output.resourcesDir, buildDirectory.dir(”generated/microej-app-

→˓wrapper/resources”))
classesDirectories.from(mainSourceSet.output.classesDirs, buildDirectory.dir(”generated/microej-app-wrapper/

→˓classes”))
classpathFromConfiguration.from(project.configurations.getByName(”runtimeClasspath”))

// These inputs are specific to the Local Deployment Socket.
toolName = ”localDeploymentSocket”
inputs.file(loadKernelExecutable.flatMap { it.loadedKernelExecutableFile })
toolProperties.putAll(mapOf(

”application.main.class” to microej.applicationEntryPoint,
”board.server.host” to ”10.0.0.171”,
”board.server.port” to ”4000”,
”board.timeout” to ”120000”,
”use.storage” to ”true”

(continues on next page)

3.4. SDK 6 User Guide 284

MicroEJ Documentation,

(continued from previous page)

))

doFirst {
// Use the Executable of the Kernel provided as dependency to build the Feature file.
toolProperties[”kernel.filename”] = loadKernelExecutable.get().loadedKernelExecutableFile.get().asFile.

→˓absolutePath
}

}

You can then execute the task to build and deploy the Feature file of the Application:

$./gradlew localDeploy

3.4.26 Appendices

Virtual Device

This chapter describes the structure of a Virtual Device.

Structure

A Virtual Device is structured as follows:

|- virtualDevice
| |- installed-applications
| |- javaLibs
| |- MICROJVM
| |- main-application
| |- mocks
| |- options
| | |- target.properties
| |- resources
| |- S3
| |- scripts
| | |- init-vd
| | | |- vd-init.xml
| |- tools
| |- architecture.properties
| |- release.properties
| |- veePort.properties
| |- workbenchExtension*.jar

The Virtual Device contains the Simulation part files of the VEE Port used to build it:

• the javaLibs/ folder, that contains the Foundation Libraries which are common to MICROJVM and S3

• the linker/ folder, that contains the Linker jar files. This folder is not embedded in the Virtual Device if an
Architecture 8.0.0 is used

• the MICROJVM/ folder, that contains the VEE Port’s files required to build a Feature file (.fo)

• the mocks/ folder, that contains the Jar files of the mocks for Foundation Libraries

• the resources/ folder, that contains the OS specific libraries

• the S3/ folder, that contains the Simulator, HIL and Foundation Libraries specific to the Simulator

3.4. SDK 6 User Guide 285

MicroEJ Documentation,

• the scripts/ folder, that contains launch and initialization scripts

• the tools/ folder

• the workbenchExtension*.jar files

The following elements are also embedded in the Virtual Device:

• a Kernel Application, whose WPK file is extracted in the main-application folder of the Virtual Device

• the WPK files of pre-installed Applications that are extracted in their own folder, in the in-
stalled-applications/ folder that is empty by default

Note: Applications can only be pre-installed in a Multi-Sandbox Virtual Device. In case of a Mono-Sandbox Virtual
Device, the installed-applications/ folder is always empty.

• the options/target.properties , that contains the properties of the VEE Port used to build the Virtual Device

• the scripts/init-vd/vd-init.xml script, that allows to enable or not the Virtual Device. If the Virtual Device
is not enabled, the Application main class specified by the user is launched on the VEE Port

You can refer to the Build a Virtual Device page to know how to build a Virtual Device.

Dependencies Configurations

This chapter describes all the dependency configurations added to your project by the MicroEJ Gradle plugins.

Note: The MicroEJ Gradle plugins extend the Gradle Java and Java Library plugins. For more information about
the configurations inherited from those plugins, refer to the official documentation :

• Java plugin

• Java Library plugin

The following graph describes the dependency configurations. Use this legend to interpret the colors:

• Green background : Dependencies can be declared against this configuration

• Gray background : This configuration is for consumption by tasks only

• Blue background : A task

microejVee microejApplicationmicroejTool microejRuntimeEnvironment

microejApplicationClasspathmicroejVeeClasspath microejKernelExecutableClasspath virtualDeviceToolClasspath microejRuntimeEnvironmentCompileClasspath microejRuntimeEnvironmentRuntimeClasspath

loadVee

uses

loadKernelExecutable

uses

buildVirtualDevice

usesuses uses

compileJava

uses

compileTestJava

uses

javadoc

uses

buildApplicationObjectFile

uses

buildExecutable

uses

The MicroEJ Gradle plugins also define dependency configurations for internal use:

• antScriptLauncherClasspath , used by the buildVirtualDevice task

• addonProcessorClasspath , used by the adp task

• jdtCompilerClasspath , used by the Add-On Library and Application plugins

• wrapperClasspath , used by the compileJava task

3.4. SDK 6 User Guide 286

https://docs.gradle.org/current/userguide/java_plugin.html#sec:java_plugin_and_dependency_management
https://docs.gradle.org/current/userguide/java_library_plugin.html#sec:java_library_separation

MicroEJ Documentation,

• microejRuntimeEnvironmentFullRuntimeClasspath , used by the buildVirtualDevice, buildApplicationOb-
jectFile and buildExecutable tasks

• microejVeeFullClasspath , used by the loadVee task

Dependencies Configurations in a VEE Port Project

This section describes all the dependency configurations added to your VEE Port project by the MicroEJ Gradle
plugins.

The following graph describes the dependency configurations. Use this legend to interpret the colors:

• Green background: Dependencies can be declared against this configuration

• Gray background: This configuration is for consumption by tasks only

• Blue background: The tasks

microejArchitecture microejPack microejMock microejFrontPanel microejTool

api

implementation

microejArchitectureClasspath microejPackClasspath microejMockClasspath microejFrontPanelClasspath microejToolClasspath

apiClasspath

implementationClasspath

buildVeePort and buildVeePortConfiguration

uses uses uses uses uses uses uses

Variants

The MicroEJ Gradle plugins define a list of variants allowing to fetch the right component of a dependency based
on the consumer’s requirements. Each variant is configured with its own attributes. Refer to Attributes of a Variant
for more information about attributes.

Add-On Library

The Add-On Library plugin defines the following variants:

runtimeAndMockElements

This variant is used to fetch a Library and its dependencies when it is declared with the implementation or api
configuration in your VEE Port project. It is configured with the following attribute:

• the custom com.microej.veeport.artifact.usage attribute, set to default

3.4. SDK 6 User Guide 287

https://docs.gradle.org/current/userguide/variant_model.html

MicroEJ Documentation,

Application

The Application plugin defines the following variants:

microejWPK

This variant is used to fetch theWPKof anApplicationwhenadependency is declaredwith the microejApplication
configuration in your project. It is configured with the following attributes:

• the custom com.microej.artifact.element attribute, set to application-wpk

• the standard LibraryElement attribute, set to microej-wpk

microejExecutable

This variant is used to fetch the Executable of an Application when a dependency is declared with the microejVee
configuration in your project. It is configured with the following attributes:

• the custom com.microej.artifact.element attribute, set to executable

• the standard LibraryElement attribute, set to microej-executable

microejExecutableBuildFiles

This variant is used to publish the files generated when building the Executable of an Application. It is configured
with the following attribute:

• the custom com.microej.artifact.element attribute, set to executable-build-files

microejVirtualDevice

This variant is used to fetch theVirtualDeviceof anApplicationwhenadependency isdeclaredwith the microejVee
configuration in your project. It is configured with the following attributes:

• the custom com.microej.artifact.element attribute, set to virtual-device

• the standard LibraryElement attribute, set to microej-vee-port

microejFeatureBuildFiles

This variant is used to publish the files generatedwhen building the Feature of an Application. It is configuredwith
the following attribute:

• the custom com.microej.artifact.element attribute, set to feature-build-files

3.4. SDK 6 User Guide 288

MicroEJ Documentation,

Mock

TheMock plugin defines the following variants:

microejMockRip

This variant is used to fetch the RIP of aMockwhen a dependency is declaredwith the microejMock configuration
in your project. It is configured with the following attributes:

• the custom com.microej.veeport.artifact.usage attribute, set to default

• the standard LibraryElement attribute, set to microej-rip

Runtime Environment

The Runtime Environment plugin defines the following variants:

runtimeEnvironment

This variant is used to fetch the Runtime Environment Jar when a dependency is declared with the microejRun-
timeEnvironment configuration in your project. It is configured with the following attributes:

• the custom com.microej.artifact.element attribute, set to runtime-environment-api

• the standard LibraryElement attribute, set to microej-runtime-environment

VEE Port

The VEE Port plugin defines the following variants:

microejVeePort

This variant is used to fetch the VEE Port when it is declared with the microejVee configuration in your project. It
is configured with the following attributes:

• the custom com.microej.veeport.artifact.usage attribute, set to default

• the standard LibraryElement attribute, set to microej-vee-port

Attributes of a Variant

An attribute allows Gradle to select the right variant depending on the consumer’s requirements. They are two
types of attributes: standard attributes and custom attributes.

3.4. SDK 6 User Guide 289

MicroEJ Documentation,

Standard Attributes

The standard attributes are defined by Gradle. Such an attribute is mandatory so the resolution of a dependency
will fail if the producer did not define a variant with the attribute set to the same value. For example, if a VEE Port
is defined using the implementation configuration, the build fails because the consumer wants a Jar but the VEE
Port defines the LibraryElement attribute to microej-vee-port :

> Could not resolve all files for configuration ':runtimeClasspath'.
> Could not resolve com.mycompany:myVeePort:1.0.0.
Required by:

root project :
> No matching variant of com.mycompany:myVeePort:1.0.0 was found. The consumer was configured to find a␣

→˓library for use during runtime, compatible with Java 8, packaged as a jar, preferably optimized for standard␣
→˓JVMs, and its dependencies declared externally but:

- Variant 'microejVeePort' declares a library for use during runtime, compatible with Java 7, and its␣
→˓dependencies bundled (fat jar):

- Incompatible because this component declares a component, with the library elements 'microej-vee-port'␣
→˓and the consumer needed a component, packaged as a jar

- Other compatible attribute:
- Doesn't say anything about its target Java environment (preferred optimized for standard JVMs)

If no variant matches the consumer’s requirements, Gradle can select a compatible variant. To make a variant
compatible, the consumer must define a compatibility rule.

For example, this is the case for theMocks built with SDK 6 1.1.0 or below that are publishedwith the LibraryEle-
ment attribute set to microej-rip . To build a VEE Port from an Application, a compatibility rule is required to
ensure that the fetch of the VEE Port and its dependencies other than Mocks does not fail.

Custom Attributes

The custom attributes are defined by the user. These attributes are optional, so when resolving a dependency
Gradle selects the default variant of the dependency if the producer did not define a variant with the attribute set
to the same value.

For example, this is the case for the Mocks built with SDK 6 1.2.0 or higher that are published with the custom
com.microej.veeport.artifact.usage attribute. This attribute is optional, so when building a VEE Port from an Ap-
plication, the VEE Port and all its dependencies other than Mocks are correctly fetched without having to define a
compatiblity rule.

Warning: Starting fromSDK6 1.3.0 , both a customattribute and a standard attribute are usedwhen resolving
a MicroEJ dependency. The standard attribute is still defined to ensure that modules built with SDK 6 1.2.0
and below can be fetched by projects built with SDK 6 1.3.0 or higher. However, this attribute will be removed
in the next major version, so it is highly recommended to update your project to use latest SDK 6 plugins.

For more information about variants and attributes, refer to the official documentation.

3.4. SDK 6 User Guide 290

https://docs.gradle.org/current/userguide/variant_attributes.html#sec:abm-compatibility-rules
https://docs.gradle.org/current/userguide/variant_attributes.html

MicroEJ Documentation,

Application Wrapper

Theunification of the Application EntryPoints allows to build and run anApplication regardless of the VEEprovided
by theuser (aVEEPortoraKernel). Toensure thatanApplicationcan runondifferentkindsofVEE, awrapper class is
generated. For example, if yourApplicationEntryPoint is a class containinga public static void main(String[args])
method:

package com.mycompany;

public class MyClass {
public static void main(String[] args) {
System.out.println(”Hello World!”);

}
}

A wrapper class implementing the ej.kf.FeatureEntryPoint interface is created:

package com.mycompany;

import ej.kf.FeatureEntryPoint;

public class MyClassWrapper implements FeatureEntryPoint {
@Override
public void start() {
com.mycompany.MyClass.main(new String[0]);

}

@Override
public void stop() {
}

}

Then, the execution of the Application depends on the VEE provided in the build.gradle.kts file of your project:

• If a VEE Port or a Mono-Sandbox Kernel has been provided, the MyClass main class of the Application is
executed.

• If a Multi-Sandbox Kernel has been provided, the Application is executed as a Feature of the Kernel.

If your Application requires advanced features, it is also possible to use a FeatureEntryPoint class as Application
EntryPoint. In that case the created wrapper class is a class containing a public static void main(String[args])
method that calls the start() method of your Application EntryPoint class:

package com.mycompany;

public class MyClassWrapper {
public static void main(String[] args) {
new com.mycompany.MyClass.start();

}
}

In addition to the wrapper class, the following resource files are generated:

• The Feature Definition Files (feature.kf , feature.cert), to use your Application as a Sandboxed Application.

• The Kernel Definition Files (kernel.kf , kernel.cert), to use your Application as a Kernel Application.

You can also define your own Feature and Kernel Definition files if needed, refer to the Feature Definition Files sec-
tion for more information.

3.4. SDK 6 User Guide 291

MicroEJ Documentation,

Cheat Sheet

Download the Cheat Sheet for SDK 6

Java Lambdas

To support Java lambdas in the code of an Application, the SDK uses a forked version of RetroLambda.

RetroLambda is not compatible with the Java versions required by the SDK, so a Java 8 toolchain is internally used
by the SDK to manage Java lambdas.

By default Gradle will use the Java toolchain available locally, but it can be configured to automatically download
one by applying the Foojay Toolchains Plugin in the settings.gradle.kts file of your project:

plugins {
id(”org.gradle.toolchains.foojay-resolver-convention”).version(”0.9.0”)

}

This settings plugin downloads the first Java toolchain matching the specified requirements that it finds among
the JVM Vendors recognized by Gradle and unzips it in the $USER_HOME/.gradle/.jdks folder, so you do not
have to install one manually.

Note: A Java 8 toolchain is only required if the Java lambdas are enabled on your Application project. If it is not
the case, you do not need to apply the Foojay Toolchains Plugin .

Applied on a MicroEJ project, the plugin downloads the first Java 8 toolchain found, but it is possible to specify a
Vendor by configuring the Java toolchain in the build.gradle.kts file of your project if needed:

tasks.processMainLambdas.configure {
javaLauncher.set(javaToolchains.launcherFor {

languageVersion = JavaLanguageVersion.of(8)
vendor = JvmVendorSpec.ADOPTIUM

})
}

Note: For each source set defined in your project, a processXXXLambdas task exists. To modify the Java
toolchain, you must configure the task corresponding to the source set containing Java lambdas. For example,
if they are used in the src/main/java source set, the processMainLambdas task must be configured.

3.4.27 Changelog

[1.3.0] - 2025-06-19

Added

• Add license information in published POM file.

• Add a custom attribute to the variants of an Application, a VEE Port, a Mock and a Runtime Environment to
improve the resolution of MicroEJ dependencies.

• Add the stackTraceReader task to the Library plugin.

3.4. SDK 6 User Guide 292

https://github.com/luontola/retrolambda
https://github.com/gradle/foojay-toolchains
https://docs.gradle.org/current/userguide/toolchains.html#sec:precedence

MicroEJ Documentation,

• Support the declaration of Libraries with the microejPack configuration in a VEE Port.

• Add microejComponents task that prints MicroEJ commercial components dependency list in the console.

Changed

• Improve error message when the dependency defined with the microejApplication configuration is not an
Application.

• Clarify the message when a Library is not found in the VEE Port.

• Add tests on includeTestsMatching in tests filter.

Fixed

• Support build of WPK and Virtual Device when an include build is used for a dependent library.

• Failure when running a KF Testsuite defined in a subproject of a multi-project.

• Error message when the Application provided as VEE dependency is not a Kernel.

• Testsuite not executed again after switching test target (Simulator or Device).

• Build of Runtime Environment when it depends on an Addon Library project.

• Load of a VEE Port declared as a project dependency when its project does not use the same version as the
Application.

• Application options set with System.setProperty() not taken into account.

• Null Analysis check failure in Runtime Environment projects by adding back package-info.java files.

• Allow verbosemode on buildFeature task by setting systemproperty microej.option.execution.verbose to
true .

• Update junit-test-engine to fix test duration and stack traces.

• Compile on JDK instead of on dependencies only when the use of Java Lambdas is enabled.

• VEE Port dropins files not considered when related to RIP packs.

• Compilation errors when building a Runtime Environment with EDC 1.3.6+.

[1.2.0] - 2025-04-09

Added

• Allow to define the JVM used to launch the VD in the JAVA_HOME environment variable.

• Add POM and Gradle module files in generated Ivy descriptor file to allow to fetch them from a SDK 5 offline
repository.

• Remove the JDK from the classpath in the Eclipse and VS Code (when using RedHat’s Java Extension) IDE.

• Support the declaration of Mocks in an Application and in a Library.

• Support Kernel Application, Runtime Environment and VEE Port projects in Ivy descriptor.

• Publish testsuite reports if tests have been executed.

• Support Libraries as dependencies of a VEE Port.

3.4. SDK 6 User Guide 293

MicroEJ Documentation,

Changed

• Improve the error message when publishing the VEE Runtime Library.

• Improve the errormessagewhen project depends on a Kernel whose Virtual Device or Executable is missing.

• Display correctly the error message when the launch of a VEE Port script fails.

• Load the VEE used to build the project and the VEE used for tests in different folders.

Fixed

• Virtual Device launch fails on Windows with a custom Java absolute path.

• Kernel Javadoc contains Kernel sources instead of exposed APIs.

• Add only the JAR file to the variant of a Foundation Library published with MMM, to be compatible with the
SPDX Gradle plugin.

• Print test execution logs stdout instead of stderr.

• Mock not installed in the VEE Port built on the fly when running an Application.

• Make lambdas processing tasks fail when lambda processing fails.

[1.1.0] - 2025-02-28

Added

• Allow to execute a KF testsuite.

• Add a dedicated task to run the Stack Trace Reader.

• Allow to define VEE used for tests in the test classpath only.

Removed

• Removed deprecated com.microej.gradle.runtime-api and com.microej.gradle.j2se-library plugins.

Changed

• Improve testsuite report.

• Always generate fs.properties file when building a VEE Port to not make the Pack FS fail.

3.4. SDK 6 User Guide 294

MicroEJ Documentation,

Fixed

• Execute testsuite when there is no testsuite called test declared.

• VEE Port load issue with Gradle greater than 8.10 .

• Tool declared as dependency not installed in the augmented built Virtual Device of the Application project.

• Wrong location of the generated Application object file displayed when executing the buildApplicationOb-
jectFile task.

• Error message when a local Kernel whose Executable or Virtual Device does not exist is provided.

• User defined source sets are ignored by ADP.

• Error message when a Virtual Device is used to run tests on a device.

• RC versions not declared with the right version pattern in the generated Ivy descriptor.

• ADP not found when JUnit dependency is defined in custom testsuite.

• Error message when a VEE Project dependency is defined and the Gradle configuration-on-demand feature
is enabled.

• VEE Port scripts execution fails when the User Home folder contains a space.

• Failure when running tests defined in the default sources folder of a custom testsuite.

• Testsuite fails after upgrading from 0.15.0 to 1.0.0 without cleaning.

[1.0.0] - 2024-12-18

Added

• Allow to define the Artifact Checker root directory.

Changed

• Improve Gradle version error message to explain how to solve the issue.

• Improve SDK EULA acceptation error message.

• Reorganize Virtual Device structure to reduce the number of files at the root folder.

Fixed

• Fix compilation error during VEE Port build when fetching JDT Core library fromMaven Central.

• Exclude .gitkeep files from Java sources.

• Fix Application Wrapper class generation when Main class has no package.

• Do not force custom tool tasks to set an Application Entry Point.

• Include local JAR dependencies in classpaths.

• Fix error when building a WPK with a jar in a local repository.

• Support Addon Libraries in Runtime Environments.

• Wrong classpath when running an Application or a testsuite on device.

3.4. SDK 6 User Guide 295

MicroEJ Documentation,

[0.20.0] - 2024-10-23

Added

• Allow to build a Feature from aWPK and a Kernel.

• Allow to filter the BSP files included in a published VEE Port.

• Check that the MicroEJ Runtime Library is not in the BSP before publishing a VEE Port.

• Support the import of a VEE Port as an included build.

Changed

• Fail with clear error message when trying to build an Executable and provided Runtime API conflicts with
other dependency.

• Hide checkModule internal task.

• Use the original BSP when depending on a local VEE Port project in BSP Full Connection mode.

• Set Java source to 1.8 to be compatible with new IDEs versions, but keep 1.7 as the target version.

• Upgrade Gradle minimal supported version to 8.6 .

• Enable MicroEJ Java Hmodule by default when building a VEE Port.

• Deploy Application object files in BSP only if their content changed.

• Prevent flaky tests from causing build failure.

• Use “Runtime Environment” term instead of “Runtime API”.

• Use Java SE term instead of J2SE .

• Use version 2.2.0 of the microej-licenses library to check with the new SDK EULA 3.1-C.

• Do not produce Virtual Device by default during Application build.

Fixed

• Wrong path used for custom test properties files.

• Fix VEE Port build failure when using Architecture with deployment hook for Keil.

• Use the generated kernel.kf filewhen running anApplication on aMulti-Sandbox VEEPortwith the simulator.

• Generate again the kernel.kf file when the project version has changed.

• Failure when calling the local deploy tool because of missing generated KF file in the classpath.

• Setting com.microej.runtime.capability=multi does generate a Multi-Sandbox VEE Port when using an Ar-
chitecture 8.1 or higher.

3.4. SDK 6 User Guide 296

MicroEJ Documentation,

[0.19.0] - 2024-09-13

Added

• Allow to define properties of a testsuite project in the local.properties file.

• Display clear error message when trying to build a Feature with a Virtual Device built with a Mono-Sandbox
VEE Port.

Changed

• Application options must now add microej.option.* prefix to be defined as System properties.

• Load VEE Port MicroUI configuration files from the extensions/microui folder instead of the microui folder.

Fixed

• Projectnot configured tobuildwithJava 1.7when runtimeClasspathconfigurationhasalreadybeen resolved.

• Allow to produce feature files during the build in a multi-project with several feature projects.

• Use the providedRuntime API jar if it contains KF to compile theWrapper class instead of fetching KF to avoid
dependency resolution error with Offline repositories.

• Fail with readable error message when building a Runtime API with no Kernel API declared.

• VG Pack 1.6.0+ cannot be used for a VEE Port because it provides JAR artifacts on its default configuration
(besides the Pack RIP).

• Use the Runtime API provided by the Kernel to build an augmented Virtual Device.

[0.18.0] - 2024-08-22

Added

• Allow to build a VEE Port.

• Retry tests when they fail to avoid flaky tests (mainly due to license check) to fail the whole build.

• Support build incremental when using a published VEE Port with Full BSP Connection.

• Add the plugin com.microej.gradle.runtime-api to build a Runtime API.

• Allow to enable/disable the publication of the Ivy descriptor.

• Allow to run dependent applications on simulator (declared with microejApplication).

3.4. SDK 6 User Guide 297

MicroEJ Documentation,

Fixed

• Fix publication to add dependencies defined with MicroEJ configurations to the .module and .pom files.

• Comment the stop method of the generated Wrapper class to prevent potential Sonar issue.

• Fix MicroEJ Test Engine compatibility with Gradle 8.6 and higher.

• Allow to run a Virtual Device via its launchers on a JDK version higher than 11.

• Fix build failure onmulti-project with several applications depending on a kernel as project dependency.

• Some projects are not configured to be built with Java 1.7 when imported in Eclipse.

• Fix feature not found when launching a Virtual Device with installed applications.

[0.17.0] - 2024-05-30

Added

• Allow to add tools to a Virtual Device.

• Allow to fetch Runtime APIs with the microejRuntimeApi configuration.

Changed

• Merge the loadXXXConfiguration tasks with their matching task.

• Split buildExecutable in 2 tasks to support incremental build of the microejapp.o file.

• Make FeatureEntryPoint take priority over main method when generating the Application entryPoint wrap-
per.

Fixed

• Re-Generate the Application entrypoint wrapper if the entrypoint class is modified, if the applicationEntry-
Point property is changed or if the resources changed.

• Simplify Ant classpath when executing an Ant script to avoid too long classpath and support multiple Win-
dows drives.

• Append Applications provided with the microejApplication configuration to a Virtual Device.

• Make sure to always generate the Kernel certificate if it does not exist.

• Remove deprecated APIs used to generate Application certificates.

• Log filter in Ant scripts.

• Print last relevant logs as exception message when Ant script execution fails.

• Fix failing Javadoc generation when using EDC 1.3.6 and Null Analysis annotations.

• Make the generated Wrapper Feature class call the main method of the Application with an empty array as
parameter instead of null.

• GenerateApplication entrypointwrapper if the entrypoint class extends a class implementing the FeatureEn-
tryPoint interface.

3.4. SDK 6 User Guide 298

MicroEJ Documentation,

• Do not embed generated KF files in Application JAR to avoid switching in KFmode when executing an Appli-
cation on a VEE Port.

• Fix configurations used to fetch Kernels to avoid NPE during buildwhen a project is provided as dependency.

• Set ADP generated folders in the sourcesets to be detected by the IDEs.

• Make sure to copy the Assembly file in the BSP when it is generated.

[0.16.0] - 2024-03-18

Added

• Unify Application entryPoints.

• Allow to append an Application to a Virtual Device.

• Make execTool task available in library projects.

• Add a check on the dependencies versions format to reduce the risk of mistakes.

• Generate the Feature Definition Files and Kernel Definition Files of an Application.

Changed

• Rename applicationMainClass property to applicationEntryPoint .

• Hide MicroEJ internal tasks.

• Set the microej-testsuite.properties file as output of the loadTestApplicationConfiguration task instead
of its parent folder.

Fixed

• Load Kernel and Main Application properties when starting the Application on the Simulator.

• Can runmore than one simulator on the same Application on IntelliJ/Windows.

• Fix Addon-Processor not reexecuted when dependencies are updated.

• Do not execute tests when building the Executable of an Application.

• MicroEJ Test Engine compatibility with Gradle 8.6.

• Do not force the compilation of J2SE tests classes in Java 7.

• Generate Jar file when building a project containing all MicroEJ artifacts.

• Clean the working files before creating the WPK file to prevent failure if the task is not UP-TO-DATE.

3.4. SDK 6 User Guide 299

MicroEJ Documentation,

[0.15.0] - 2024-01-26

Added

• Unify microejVeePort and microejKernel configurations into microejVee .

• Add verification of dependencies checksums during build.

• Add the plugin com.microej.gradle.mock to build a Mock.

• Mention the system property to accept SDK EULA in error message.

Changed

• Task :execTool looks for a script named after the argument NAME with the following patterns in that order:
NAME, NAME.microejTool, NAME.microejLaunch.

• Align the behavior of the :buildFeature task with the localDeploymentSocket.microejLaunch script.

– output files are derived after “application” instead of “feature” (for example “application.fo”).

– the application.main.class is set to the entryPoint defined in the .kf of the application.

Fixed

• Upgrade to junit-test-engine 0.2.2 to fix failing tests using fonts.

• Handle Security Manager removal from JDK 18+ when executing MicroEJ VEE scripts.

• Support all MicroEJ VEE (VEE Ports & Kernel) for the task :execTool .

Removed

• Remove support of dropIns folder for MicroEJ VEE (VEE Port or Kernel) selection.

[0.14.0] - 2024-01-03

Added

• Add Jenkinsfile files to build and test with a JDK 17 and a JDK 21 (LTS versions).

Changed

• Do not build/publish an Executable or a Feature by default and add the produceExecutableDuringBuild()
and produceFeatureDuringBuild() methods to build them if needed.

• Set group and version for all projects, including the root project, in order to generate correctly the release
tag.

• Use version 2.1.0 of the microej-licenses library to check with the new SDK EULA 3.1-B.

3.4. SDK 6 User Guide 300

MicroEJ Documentation,

Fixed

• Fix the override behavior of the Application main class that was not consistent when -Dapplication.main.
class is used.

• Fix the Custom Ant Logger to display build errors without having to enable the verbose mode.

• Follow Gradle recommendation on resolvable and consumable configurations.

• Move the Custom Logger to a dedicatedmodule and use its jar instead of fetching the plugin when executing
VEE Port scripts to fix the tests failure during a release.

• Set Java Compiler encoding to UTF-8.

• Set Java Compliance level to 1.7 in JavaPluginExtension to fix the Cannot find the class file for java.lang.
invoke.MethodHandles error when opening a Gradle project in Eclipse.

• Fix wrong generated Virtual Device of an Application when the VEE Port changed.

• Bump source level for javadoc task to 1.8 to support JDK 21.

• Fix classpaths when using a Virtual Device to remove warnings about kf files not found.

• Make sure to close all opened streams.

• Fix Wrong java/lang/Object error when running an Application on the Simulator with a local repository.

• Fix No .kf file found for this feature classpath errormessage in logswhen running VDwith launcher script.

[0.13.0] - 2023-11-10

Added

• Add a check on EULA acceptation when using the MicroEJ Gradle plugin.

• Automatically publish the ASSEMBLY_EXCEPTION.txt file if it exists at the root of the project.

• Allow to publish the Feature file of an Application.

• Add :execTool task to execute Stack Trace Reader and Code Coverage Analyzer Tools provided by the se-
lected VEE Port or Kernel.

Fixed

• Fix warning during compilation because of non-existing file or folder (incorrect classpath: C:\\Users\\
user\\...\myProject\\build\\resources\\main).

• Fixwarning in SOARwhenbuilding an Executablewith Architecture 8.0.0 ([M59] - Classpath file [C:\Users\
user\...\myProject\build\resources\main] does not exist).

• Enable Ant verbose mode for VEE Port scripts when Gradle debug log level is enabled.

• Fix the build of a Feature when the provided Virtual Device does not contain the dynamicFeatureLink.
microejLaunch build script (Virtual Device built with SDK 5).

3.4. SDK 6 User Guide 301

MicroEJ Documentation,

[0.12.1] - 2023-10-16

Fixed

• Fix the issue with the microejKernel configuration that prevented IDEs from loading a project.

[0.12.0] - 2023-10-13

Added

• Allow to publish the Virtual Device of an Application.

• Allow to fetch a Virtual Device and an Executable with the microejKernel configuration.

Changed

• Add README, CHANGELOG and License files as publication artifacts in the generated ivy.xml file.

• Publish test report in Jenkins job.

• Set deploy.bsp.microejscript property to true by default to build the executable.

• Publish the Executable file as a variant.

• Rename the kernelFile property to kernelExecutableFile .

• Use File dependency instead of the veePortPath property to load a local VEE Port.

• Use File dependency instead of the kernelExecutableFile property to load a local Kernel Executable.

Fixed

• Fix unexpected fetch of the transitive dependencies of a VEE Port dependency (microejVeePort configura-
tion).

• Fix System properties defined in gradle.properties are ignored.

• Fix VEE Port launcher: temporary configuration file could prevent to launch a second time.

• Remove usage of deprecated API Project.getBuildDir().

• Fix the message when no executable are found by the runOnDevice task.

• Fix Executable not updated after a project change and a call to the buildExecutable task.

• Fix wrong order of tests classes and resources folder in the test classpath.

• Call VEE Port Ant script from a separate temporary directory to satisfy MicroEJ Architecture. This fixes spuri-
ous HIL timeouts when calling the runOnSimulator task.

• Fix Java process still running when Simulator is interrupted.

• Fix missing Nashorn dependencies when running a testsuite and when launching the launcher scripts to
make it work with JDK 17 and higher.

3.4. SDK 6 User Guide 302

MicroEJ Documentation,

[0.11.1] - 2023-09-22

Fixed

• Fix usage of a SNAPSHOT version of the junit-test-engine dependency.

[0.11.0] - 2023-09-22

Changed

• Use Gradle standard mechanism to support Multi-VEEPort instead of relying on an in-house feature.

[0.10.0] - 2023-09-13

Added

• Add a task runOnDevice to run the Executable on a Device.

• Support all JDK LTS versions higher or equals to version 11.

Fixed

• Allow to build a Feature file of an Application with a Virtual Device.

• Fix javadoc failure when the project contains a JDK class.

[0.9.0] - 2023-09-01

Added

• Allow to depend on local Application project (dependency with microejApplication configuration).

• Implement properties loading chain.

• Add launcher scripts to the Virtual Device.

Changed

• Move the vd-init.xml script in the template file instead of hardcoding it in the class.

• Remove the Application properties from options/application.properties file and rename file to target.
properties in Virtual Device.

• Merge veePortFiles and veePortDirs properties into the veePortPaths property.

• Addmissing Javadoc and clean the project.

3.4. SDK 6 User Guide 303

MicroEJ Documentation,

Fixed

• Fix resources generated by Addon Processors of type FolderKind.MainResources not processed.

• Fix root path used for relative VEE port path: use the project root directory.

• Fix the content of a WPK to remove the Foundation Libraries.

• Make sure .a and .o files of an Application are correct by always executing the buildExecutable task.

[0.8.0] - 2023-07-13

Added

• Allow to build the Virtual Device of an Application.

• Add checks to ensure that a Virtual Device can be used or not depending on the called task.

• Allow to build the Feature binary file of an Application.

Fixed

• Add the Application properties defined in the configuration folder to the WPK file.

[0.7.0] - 2023-06-26

Added

• Add Standard Java Library plugin (com.microej.gradle.j2se-library).

• Rename com.microej.gradle.library plugin to com.microej.gradle.addon-library .

Changed

• Unbind the checkModule task from the build task.

• Use version 0.1.1 of the MicroEJ JUnit Test Engine to fix error when test classes are not in a package.

• Use version 2.0.0 of the microej-licenses library to check with the new authorized licenses.

[0.6.0] - 2023-05-30

Added

• Allow to publish WPK file artifact.

• Allow to publish files generated by the buildExecutable task.

• Allow to define multiple testsuites in different environments (sim or J2SE).

• Allow to define a testsuite for tests on device.

3.4. SDK 6 User Guide 304

MicroEJ Documentation,

Changed

• Use Ivy descriptor content to know if a dependency is a Foundation Library or an Addon Processor Library.

• Optimize the loadVeePort task to reduce the time to load a VEE Port.

• Use a smaller VEE Port as dependency in tests to reduce the time to build.

• Remove JPF support.

• Check that the given file/directory is a VEE Port.

• Move Application properties to configuration folder instead of src/main/resources .

• Clean the Jenkins workspace after a successful build.

• Improve the checker on changelog files to support “-SNAPSHOT” suffix and “Unreleased” label.

• Remove the debugOnSimulator task and use a property to run an Application in debugmode.

Fixed

• Fix multiple VEE Ports error message in loadConfiguration task.

• Fix connection to a debugger and debug.port property.

• Fix StackOverflow error when building a project with cyclic dependencies.

[0.5.0] - 2023-03-24

Added

• Add Xlint checking.

• Add verification of using java 11 by user’s project.

• Allow to build the Executable file of an Application.

• Allow to build the WPK file of an Application.

• Allow to define multiple VEE Ports.

• Check that the project uses at least Gradle 8.0.

• Addmore tests on topological order in the Application classpath.

Changed

• Make the plugin compatible with Gradle 8.0 .

3.4. SDK 6 User Guide 305

MicroEJ Documentation,

[0.4.0] - 2023-01-27

Added

• Apply the Java Library Plugin to user’s project.

• Allow to load a VEE Port by dropping it in the dropIns folder.

Changed

• Optimise memory used by project.

• Remove the runArtifactChecker property, the Artifact Checker task must be executed explicitly.

• Hide compilation warnings in the adp and compileJava tasks.

Fixed

• Disable the warning on non-compatible version for Maven client.

• Fix loading new dependency when the build.gradle.kts file is updated.

• Fix too long classpath error when running the simulator on Windows.

[0.3.0] - 2022-12-09

Added

• Add feature to avoid loading the VEE Port when there is no test.

• Add the auto assembling project for runOnSimulator and debugOnSimulator tasks.

• Add the opportunity disable custom conflict resolution rules.

• Add the plugin com.microej.gradle.library to build an Addon Library.

• Generate and publish the Java sources jar.

• Generate and publish the Javadoc jar.

• Publish README.md , CHANGELOG.md and LICENSE.txt files if they exist in the project.

• Suffix version with timestamp when it ends with “-RC”.

• Make the build fail if a direct dependency is resolved with a higher minor version than the one declared.

• Add the checkModule task to check compliance of the module with MicroEJ rules.

• Add the execution of tests on the simulator.

• Add support for Mac M1.

• Build the plugin in Java 11.

• Add test to ensure that the dependencies are topologically sorted.

3.4. SDK 6 User Guide 306

MicroEJ Documentation,

Changed

• Remove automatic version conversion.

• Rename the Application plugin to com.microej.gradle.application .

• Change the publication plugin to publish Mavenmodules instead of Ivy modules.

• Use Ant Java API to launch the simulator to avoid requiring an Ant installation.

• Rename the runOnSim and debugOnSim tasks to runOnSimulator and debugOnSimulator .

• Use JDT compiler instead of javac.

• Isolate functional tests to keep a quick build.

Fixed

• VEE Port not reloaded when referenced by veePortDirPath and the VEE Port source folder is updated.

• Set Java source and target version to be recognized by IDEs.

• Make processResources task implicitly depend on ADP task to fix failures during runOnSimulator .

[0.2.0] - 2022-05-17

Changed

• Make the build fails when an ADP raises errors.

• Convert build scripts from Groovy to Kotlin .

[0.1.0] - 2022-05-03

Added

• Add the capability to load the platform from dependencies.

• Add the task debugOnSim to execute the application in debugmode in the simulator.

• Publish the sources jar of the plugin.

Fixed

• Extract ADP classpath JAR files into OS temp dir to avoid error on cleaning because of locks.

3.4. SDK 6 User Guide 307

MicroEJ Documentation,

3.4.28 Migration Notes

Note: When updating the plugin version, it is recommended to perform a clean on your project(s). For
multi-projects, run the clean command on the root project.

From 1.0.0 to 1.1.0

The following plugins have been removed:

• plugin com.microej.gradle.j2se-library , replaced by com.microej.gradle.jse-library .

• plugin com.microej.gradle.runtime-api , replaced by com.microej.gradle.runtime-environment .

From 0.19.0 to 0.20.0

This section applies if SDK 6 0.20.0 is used on a project that was created using SDK 6 0.19.0 or lower.

MinimumGradle version

Theminimum required version of Gradle is now 8.6. . Upgrade the Gradle Wrapper version of your project.

New SDK EULA

A new SDK EULA must be approved before using the SDK (version 3.1-C). Refer to SDK EULA Acceptation page to
learn how to approve it.

Plugins and Configurations renaming

The following plugins and configurations have been renamed:

• plugin com.microej.gradle.j2se-library to com.microej.gradle.jse-library .

• plugin com.microej.gradle.runtime-api to com.microej.gradle.runtime-environment .

• configuration microejRuntimeApi to microejRuntimeEnvironment .

The previous plugins and configurations are still supported but are deprecated and will be removed in the next
major version. It is recommended to update your project now.

Virtual Device Build

The Virtual Device of an Application is not built by default anymore when calling the build task. You can call the
buildVirtualDevice task to build it, or add the following code in your build.gradle.kts file to continue to build it
when calling the build task:

microej {
produceVirtualDeviceDuringBuild()

}

3.4. SDK 6 User Guide 308

https://docs.gradle.org/current/userguide/gradle_wrapper.html#sec:upgrading_wrapper

MicroEJ Documentation,

From 0.15.0 to 0.16.0

This section applies if SDK 6 0.16.0 is used on a project that was created using SDK 6 0.15.0 or lower.

Unification of Application EntryPoint

The creationof a SandboxedApplication andaStandaloneApplicationhavebeenunified. To create anApplication,
the following steps must be done:

• Create the Java main class in the src/main/java folder.

• Define the property applicationEntryPoint in the microej configuration block of the build.gradle.kts file.
It must be set to the Full Qualified Name of the Application main class:

microej {
applicationEntryPoint = ”com.mycompany.Main”

}

• Define a VEE (VEE Port or Kernel) by declaring a dependency in the build.gradle.kts file:

dependencies {
microejVee(”com.mycompany:myVee:1.0.0”)

}

If your Application requires the use of advanced features, youmust create a Feature class, for example:

package com.mycompany;

import ej.kf.FeatureEntryPoint;

public class MyFeature implements FeatureEntryPoint {

@Override
public void start() {
System.out.println(”Feature MyFeature started!”);

}

@Override
public void stop() {
System.out.println(”Feature MyFeature stopped!”);

}
}

and set the property applicationEntryPoint to the Full Qualified Name of the Feature class:

microej {
applicationEntryPoint = ”com.mycompany.MyFeature”

}

3.4. SDK 6 User Guide 309

MicroEJ Documentation,

Testsuite Execution

When upgrading from 0.15.0 to an higher version (up to 1.0.0), you may encounter the following error when
executing a testsuite:

Preparing the execution of tests with the MicroEJ JUnit test engine

org.junit.platform.commons.JUnitException: TestEngine with ID 'microej-junit-test-engine' failed to execute tests
at org.junit.platform.launcher.core.EngineExecutionOrchestrator.execute(EngineExecutionOrchestrator.java:113)
at org.junit.platform.launcher.core.EngineExecutionOrchestrator.execute(EngineExecutionOrchestrator.java:88)
...

Caused by: com.microej.testengine.TestEngineException: More than one VEE Port have been provided to run the␣
→˓testsuite
at com.microej.testengine.MicroejTestEngine.execute(MicroejTestEngine.java:203)
at org.junit.platform.launcher.core.EngineExecutionOrchestrator.execute(EngineExecutionOrchestrator.java:107)
... 29 more

Execute the clean task before executing the testsuite to solve this issue.

From 0.14.0 to 0.15.0

This section applies if SDK 6 0.15.0 is used on a project that was created using SDK 6 0.14.0 or lower.

Unification of VEE dependency declaration

The microejVeePort configuration, used todefineaVEEPort, and the microejKernel configuration, used todefine
a Kernel, have been unified into the microejVee configuration.

• To use a VEE Port or a Kernel published in an artifact repository, declare a Module dependency in the build.
gradle.kts file:

dependencies {
microejVee(”com.mycompany:myVee:1.0.0”)

}

• To use a VEE Port directory available locally, declare a file dependency in the build.gradle.kts file:

dependencies {
microejVee(files(”C:\\path\\to\\my\\veePort\\source”))

}

• To use a VEE Port archive available locally, declare a file dependency in the build.gradle.kts file:

dependencies {
microejVee(files(”C:\\path\\to\\my\\veePort\\file.zip”))

}

• Touse aKernel Virtual Device and Executable available locally, declare a file dependency in the build.gradle.
kts :

dependencies {
microejVee(files(”C:\\path\\to\\my\\kernel\\executable.out”, ”C:\\path\\to\\my\\kernel\\virtual\\

→˓device”))
}

3.4. SDK 6 User Guide 310

MicroEJ Documentation,

From 0.11.1 to 0.12.0

This section applies if SDK 6 0.12.0 is used on a project that was created using SDK 6 0.11.1 or lower.

Use of File Dependencies to Define a Local VEE Port or a Kernel Executable

The veePortPath and the kernelFile properties have been replaced by file dependencies.

• To use a VEE Port archive available locally, declare a file dependency in the build.gradle.kts file, with the
microejVeePort configuration:

dependencies {
microejVeePort(files(”C:\\path\\to\\my\\veePort\\file.zip”))

}

• To use a VEE Port directory available locally, declare a file dependency in the build.gradle.kts file, with the
microejVeePort configuration:

dependencies {
microejVeePort(files(”C:\\path\\to\\my\\veePort\\source”))

}

• To use a kernel Virtual Device and Executable available locally, declare a file dependency in the build.gradle.
kts file, with the microejKernel configuration:

dependencies {
microejKernel(files(”C:\\path\\to\\my\\kernel\\executable.out”, ”C:\\path\\to\\my\\kernel\\virtual\\

→˓device”))
}

From 0.10.0 to 0.11.0

This section applies if SDK 6 0.11.0 is used on a project that was created using SDK 6 0.10.0 or lower.

Gradle mechanism usage for Multiple VEE Ports Support

Using multiple VEE Ports in a project uses Gradle mechanism now instead of relying on in-house feature. This
implies: - the veePortPaths property has been renamed to veePortPath and accepts a String value:

microej {
veePortPath = ”C:\\path\\to\\my\\veePort\\source”

}

• the kernelFiles property has been renamed to kernelFile and accepts a String value:

microej {
kernelFile = ”C:\\path\\to\\my\\kernel\\file”

}

Refer to the How To Build an Executable With Multiple VEE Ports section to learn how to support multiple VEE Ports
using the Gradle mechanisms.

3.4. SDK 6 User Guide 311

MicroEJ Documentation,

From 0.8.0 to 0.9.0

This section applies if SDK 6 0.9.0 is used on a project that was created using SDK 6 0.8.0 or lower.

Merge of the veePortDirs and veePortFiles properties

The build properties veePortDirs and veePortFiles have been merged into a single property veePortPaths . To
define a local VEE Port, set the build property veePortPaths in the microej configuration block to the path of the
VEE Port file (.zip or .vde) or to the source folder of the VEE Port:

microej {
veePortPaths = listOf(”C:\\path\\to\\my\\veePort\\source”)

}

The veePortPaths property is defined as a list in order to provide multiple VEE Port files or source folders if it is
needed:

microej {
veePortPaths = listOf(”C:\\path\\to\\my\\veePort1\\source”, ”C:\\path\\to\\my\\veePort2\\file.zip”)

}

3.5 Application Developer Guide

The Application Developer Guide serves as a valuable reference for developing applications on MicroEJ, providing
essential concepts for MicroEJ application design.

In addition to this document, you can access a number of helpful resources such as:

• Developer resources at https://developer.microej.com/.

• Libraries from the MicroEJ Central Repository.

• Application Examples as source code fromMicroEJ Github Repositories.

• APIs Javadoc.

• Training Courses for Application Developers.

MicroEJ Applications are developedusing standard IntegratedDevelopment EnvironmentswithMICROEJ SDK. The
SDK allows you to run / debug / deploy Applications on a VEE Port.

Two kinds of applications can be developed: Standalone Applications and Sandboxed Applications.

A Standalone Application is the main Application that is directly linked to the C code to produce an Executable.

3.5. Application Developer Guide 312

https://developer.microej.com/
https://developer.microej.com/central-repository/
https://github.com/MicroEJ
https://repository.microej.com/javadoc/microej_5.x/apis/

MicroEJ Documentation,

A SandboxedApplication is anApplication that is partially linked, thendeployedandexecutedover aMulti-Sandbox
Executable.

3.5. Application Developer Guide 313

MicroEJ Documentation,

3.5.1 MicroEJ Runtime

Language

MicroEJ allows to develop Applications in the Java® Language Specification version 7 with some limitations, and
supports code extensions written in JavaScript.

Basically, Java source code is compiled by the Java compiler1 into the binary format specified in the JVM spec-
ification2. This binary code is linked by a tool named SOAR before execution: .class files and some other
application-related files (see Classpath chapter) are linked to produce the final binary file that the Core Enginewill
execute.

Note: When opened in the SDK 5, make sure that the Compiler Compliance Level of your project is set to 1.7 to
ensure the bytecode produced by the Java compiler is compatible with MicroEJ. The Compliance Level can be
changed from themenu: Window > Preferences > Java > Compiler .

Java Lambdas

Note: This feature is available for SDK 6 only and requires an Architecture version 8.0.0 or higher.

Starting fromSDK6 1.0.0 , it is possible to use Java lambdas in the codeof your Application. This feature is disabled
by default, you can enable it as follows:

• Apply the Foojay Toolchains Plugin in the settings.gradle.kts file of your project:

plugins {
id(”org.gradle.toolchains.foojay-resolver-convention”).version(”0.9.0”)

}

• Set the project property java.lambdas.enabled to true in command line with the -P argument:

$./gradlew runOnSimulator -Pjava.lambdas.enabled=true

or by adding it in the gradle.properties file of your project:

java.lambdas.enabled=true

Core Libraries

This section describes the core libraries which make up the runtime. Theses Foundation Libraries are tightly cou-
pled with the Core Engine.

1 The JDT compiler from the Eclipse IDE.
2 Tim Lindholm & Frank Yellin, The Java Virtual Machine Specification, Second Edition, 1999

3.5. Application Developer Guide 314

https://docs.oracle.com/javase/specs/jls/se7/jls7.pdf
https://github.com/gradle/foojay-toolchains

MicroEJ Documentation,

Embedded Device Configuration (EDC)

The Embedded Device Configuration specification defines theminimal standard runtime environment for embed-
ded devices.

This module is always required in the build path of an Application project; and all others libraries depend on it.
This library provides a set of options. Refer to the chapter Standalone Application Options which lists all available
options.

Specification Summary:

Java APIs
• java.io
• java.lang
• java.lang.annotation
• java.lang.ref
• java.lang.reflect
• java.util

Latest Version 1.3
Module Dependency SDK 6

SDK 5
implementation(”ej.api:edc:1.3.7”)

<dependency org=”ej.api” name=”edc” rev=”1.3.7” />

Module Location https://repository.microej.com/modules/ej/api/edc/

Beyond Profile (BON)

This profile defines a suitable and flexible approach to fully control bothmemory usage and startup sequences on
devices with limited memory resources, while remaining within the boundaries of Java semantics.

More precisely, it allows:

• Controlling the initialization sequence in a deterministic way.

• Defining persistent, immutable, read-only objects (thatmay be placed into non-volatile memory areas), and
which do not require copies to be made in RAM to bemanipulated.

• Defining immortal, read-write objects that are always alive.

• Accessing compile-time constants.

Read the Beyond Profile specification for more details.

Specification Summary:

3.5. Application Developer Guide 315

https://repository.microej.com/javadoc/microej_5.x/apis/java/io/package-summary.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/package-summary.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/annotation/package-summary.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/ref/package-summary.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/reflect/package-summary.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/package-summary.html
https://repository.microej.com/modules/ej/api/edc/

MicroEJ Documentation,

Java APIs ej.bon
Latest Version 1.4
Module Dependency SDK 6

SDK 5
implementation(”ej.api:bon:1.4.4”)

<dependency org=”ej.api” name=”bon” rev=”1.4.4” />

Module Location https://repository.microej.com/modules/ej/api/bon/

Simple Native Interface (SNI)

SNI provides a simple mechanism for implementing native Java methods in the C language.

SNI allows you to:

• Call a C function from a Java method.

• Share memory between C and Java using Immortal arrays (see the Beyond Profile (BON) to learn about im-
mortal objects).

SNI also provides some Java APIs to manipulate some data arrays between Java and the native (C) world.

Read the Simple Native Interface specification for more details.

Specification Summary:

Java APIs ej.sni
Latest Version 1.4
Module Dependency SDK 6

SDK 5
implementation(”ej.api:sni:1.4.3”)

<dependency org=”ej.api” name=”sni” rev=”1.4.3” />

Module Location https://repository.microej.com/modules/ej/api/sni/

Kernel & Features (KF)

The Kernel & Features semantic (KF) extends the runtime for managing Multi-Sandboxed Applications.

Read the Kernel & Features Specification (KF) for more details, theMulti-Sandbox capability of the Core Engine and
more generally the Kernel Developer Guide chapter.

Specification Summary:

3.5. Application Developer Guide 316

https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/package-summary.html
https://repository.microej.com/modules/ej/api/bon/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/sni/package-summary.html
https://repository.microej.com/modules/ej/api/sni/

MicroEJ Documentation,

Java APIs ej.kf
Latest Version 1.7
Module Dependency SDK 6

SDK 5
implementation(”ej.api:kf:1.7.0”)

<dependency org=”ej.api” name=”kf” rev=”1.7.0” />

Module Location https://repository.microej.com/modules/ej/api/kf/

Specifications

Beyond Profile Specification (BON)

Introduction

This document defines the Beyond Profile Specification (BON), which is designed specifically for devices with lim-
itedmemory resources. It introducesnewconcepts tailored to these constrainedenvironments,while still adhering
to the boundaries of Java semantics, hence the term “Beyond.”

BON mainly defines a suitable and flexible approach to fully control both memory usage and startup sequences.
More precisely, it allows:

• Controlling the initialization sequence in a deterministic way.

• Defining persistent immutable read-only objects (that may be placed into non-volatile memory areas), and
do not require copies to be made in ram to bemanipulated.

• Defining immortal read-write objects that are always alive.

BON also adds a set of useful utilities:

• Timers that allow to schedule one-time or cyclic activities. Such activities are Runnable objects that are
automatically scheduled by the timer.

• A platform time from amonotonic clock.

• Read-write ByteArray support according to the underlying processor endianness.

• ResourceBuffer support for random read access in a resource.

• Compile-time constants.

Specification Summary

Java APIs ej.bon
Latest Version 1.4
Module Dependency SDK 6

SDK 5
implementation(”ej.api:bon:1.4.4”)

<dependency org=”ej.api” name=”bon” rev=”1.4.4” />

Module Location https://repository.microej.com/modules/ej/api/bon/

3.5. Application Developer Guide 317

https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/package-summary.html
https://repository.microej.com/modules/ej/api/kf/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/ByteArray.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/ResourceBuffer.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/package-summary.html
https://repository.microej.com/modules/ej/api/bon/

MicroEJ Documentation,

Comments

Your comments about this specification are welcome. Please contact our support teamwith “BON” as subject.

Why BON ?

Many languages let software engineers define the memory management of their applications. One reason is that
most embedded devices have scarce physicalmemory, while being cost driven. On the other hand, it is well known
thatmemory allocation is one of themost difficult tasks to achieve efficiently as soon as the application usesmore
than a few objects.

In order to cope with these two contradictory issues, there are twomain approaches, each one at the extremity of
the possibility spectrum:

• Pre-allocate all of what is needed for the program to run, either statically (at compile-time) or dynamically
once and for all at system startup. While running, no extra allocation is done. This approach is often used for
Hard Real-Time systems when thememory consumption cannot be defined at compile-time through formal
analysis.

• Let the runtime systemmanage thememory, fully freeing the engineers from that task. This is done through
the use of garbage collectors. A huge number of different garbage collection policies are available and each
have their own benefits and drawbacks.

The BON specification extends the existing Java specification, which already defines:

• a heap where Java objects are stored. This heap is automatically managed by a garbage collector.

• a semantically immutable set of objects, the pool of intern String,

• how applications are initialized, even though it is quite a loose process where lazy initialization is permitted.
Intuitively, classes are initialized before any instance creation or access to its static variables (see Determin-
istic Initialization Order).

One of the newer trends in software involves designing simple solutions that are easy to understand and most
importantly easy tomanipulate andcontrol. Developersmustbeable tominimizedevelopment time, oftendealing
with smallmemory budgets for their application. Onmicrocontrollers, there ismuchmore read-onlymemory than
volatile memory.

First Example

The simple next example illustrates the use of big buffers. They aremade immortal in order to recycle themmanu-
ally while they represent themost critical ram consumption. This example alsomakes use of an immutable object,
an array of values that never changes during the lifetime of the device.

package example;

import ej.bon.*

public class Filter {
public static final int BufferSize = 4096;// 16k (an int is 32-bit)
public static int[][] Buffers;
public static int[] ValidValues;
static {

ValidValues =(int[])Immutables.get(”filter”);
}

(continues on next page)

3.5. Application Developer Guide 318

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/String.html

MicroEJ Documentation,

(continued from previous page)

static {
// Allocate the immortal pool of buffers. Only two Filters may
// be alive at the same time: ==> 32k of ram for two Filters
Buffers = new int[2][];
Buffers[0] = (int[])Immortals.setImmortal(new int[BufferSize]);
Buffers[1] = (int[])Immortals.setImmortal(new int[BufferSize]);

}

public int ptr;
public int[] buffer;

public Filter(){
// grab a buffer from the pool, or throw an exception
synchronized (Buffers){

for (int i = Buffers.length; --i >= 0;){
if (Buffers[i] != null){

buffer = Buffers[i];
ptr=-1;
Buffers[i] = null ;
break ;

}
}

}
if (buffer == null){

throw new OutOfMemoryError();
}

}

public void close(){
// recycle manually the immortal buffer: store it in

// global Buffers array pool
synchronized (Buffers){

for (int i = Buffers.length; --i >= 0;){
if (Buffers[i] == null){

Buffers[i] = buffer;
break;

}
}

}
}

public synchronized void insert(int value){
// only insert permitted values

if (ptr >= BufferSize) return; // full

for (int j = ValidValues.length; --j >= 0;){
if (value == ValidValues[j]){

buffer[++ptr] = value;
}

}
}

}

3.5. Application Developer Guide 319

MicroEJ Documentation,

Object Natures

The BON specification extends the Java semantic by defining three natures for objects:

• Immutable objects: persistent objects that are alive at system startup. Immutable objects are also referred
to as read-only objects, since they most probably reside in non-volatile memory. All together they form a
pre-existing world that exists on its own, just like the hardware does.

• Immortal objects: objects that do not move around in memory: they remain physically located in one mem-
ory location forever.

• Reclaimable objects: the regular objects managed by the Garbage Collector.

Although objects get a liveness nature, this is fully transparent for the application developer this is completely
transparent to the application developer, except for the restriction that writing to an immutable object is not al-
lowed.

Persistent Immutable Objects

Immutable objects are read-only objects. They are instances of any concrete class. Although they are immutable,
they adhere to all the Java object’s semantics. In particular, they hold a hash code, have a class and have amonitor
that a threadmay enter into.

There is no way for an immutable object to directly refer to a non-immutable object. References from immutable
objects always refer to other immutable objects. Writing into an immutable object (field write access) results in an
unspecified behavior.

Immutable objects are declared at build time by specifying objects in an XML configuration file, as described in the
sections immediately below.

The immutable objects will be linked to a particular location in (read-only) memory. Note that immutable objects
do not need to be copied in (scarce) rammemory to bemanipulated.

Software is made up of several parts, often called libraries, that may come with their own immutable object de-
scriptions. Therefore more than one immutable description may be declared in the classpath.

Object ID and Immutable Object Querying

Immutable objects are semantically organized into one global pool, just like the Java interned String objects.

An immutable object may be attached to a String key, known as its ID. This ID allows an immutable object to be
retrieved out of the global pool of immutable objects, thanks to the method Immutables.get(String). The ID of an
object is globally unique in the system.

Immutable Objects Descriptions and Creation

Descriptions are based on the structure of objects, that is, they embed structural information such as fully qualified
class names and field names. Fields that need to get initialized with some value (base-type or another immutable
object) are described using a pair: field-name, value. Only instance fields of objects are involved, i.e., not static
fields.

Fields that are not described get initializedwith the default Java value (0 for numeric types, null for objects, false
for booleans, 0.0 for floating-point numbers). No visibility rule applies, that is, any kind of fieldmay be listed, even
private ones.

There is no particular order for the creation of the immutable objects.

3.5. Application Developer Guide 320

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/String.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/String.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Immutables.html#get-java.lang.String-

MicroEJ Documentation,

XML Grammar

Immutable objects are described according to the following XML syntax (Annex A: Immutables DTD).

• <immutables> : the root element of one immutable objects description.

– attributes:

∗ name : an optional attribute that defines the content of the XML description.

– child elements: <object> , <objectAlias> , <array> , <string> , <class> , <null> ,
<importObject> .

• <object> : element that defines a new object.

• attributes:

– id : the ID string that allows the object to be retrieved through the use of Immutables.get(String).

– type : the nameof the class of the object. An aliasmaybe used insteadof the fully-qualified class name.

– private : aboolean that indicateswhether theobjectwill beaccessibleusing the Immutables.get(String)
method. If false, the objects can only be referenced within the XML immutable objects descriptions.

• child elements: <field> , <refField>

• <objectAlias> : element that defines a new key for an existing object.

– attributes:

∗ id : the ID string that allows the object to be retrieved through the use of Immutables.get(String).

∗ object : the existing object ID or alias ID.

∗ private : a boolean that indicates whether the object will be accessible using the Immuta-
bles.get(String) method. If false, the objects can only be referenced within the XML immutable
objects descriptions.

– child elements: none

• <string> : element that defines an interned string.

– attributes:

∗ id : the ID that allows the object to be retrieved through the use of Immutables.get(String)

∗ value : the string literal

∗ private : a boolean that indicates whether the object will be accessible using the Immuta-
bles.get(String) method. If false, the objects can only be referenced within the XML immutable
objects descriptions.

– child elements: none

• <class> : element that defines an instance of a java.lang.Class . The ID of this object can be used for type
attributes.

– attributes:

∗ id : the ID that allows the object to be retrieved through the use of Immutables.get(String)

∗ type : the class fully qualified name like java.lang.Object .

∗ private : a boolean that indicates whether the object will be accessible using the Immuta-
bles.get(String) method. If false, the objects can only be referenced within the XML immutable
objects descriptions.

– child elements: none

3.5. Application Developer Guide 321

https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Immutables.html#get-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Immutables.html#get-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Immutables.html#get-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Immutables.html#get-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Immutables.html#get-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Immutables.html#get-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Immutables.html#get-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Immutables.html#get-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Immutables.html#get-java.lang.String-

MicroEJ Documentation,

• <field> : elements that state a field with its associated literal value.

– attributes:

∗ name : the name of the field as defined in the class that defines it.

∗ value : the value of the field. The value is a primitive type (numeric or boolean) or a literal string
(see).

∗ type : this attribute is optional. It represents the class where the field is defined. A field without its
type attribute refers to the first field found while scanning the class hierarchy from the bottom to
the top (following the superclass link).

– child elements: none

• <refField> : elements that state a field that references an immutable object.

– attributes:

∗ name : the name of the field as defined in the class that defines it.

∗ ref : the ID of the referenced immutable object.

∗ type : this attribute is optional. It represents the class where the field is defined. A field without its
type attribute refers to the first field found while scanning the class hierarchy from the bottom to
the top (following the superclass link).

– child elements: none

• <array> : element that defines a new array.

– attributes:

∗ id : the ID that allows the object to be retrieved through the use of Immutables.get(String)

∗ type : the array type. An alias may be used instead of the fully qualified class name. Dimensions
are given using the Java notation [] .

∗ length : this attribute is optional. It represents the number of elements the array has.

∗ private : a boolean that indicates whether the object will be accessible using the Immuta-
bles.get(String) method. If false, the objects can only be referenced within the XML immutable
objects descriptions.

– child elements: <elem> , <refElem>

• <elem> : element that defines an array element with its literal value.

– attributes:

∗ value : the value of the element. The value is a primitive type (numeric or boolean) or a literal string
(see).

– child elements: none

• <refElem> : element that defines an array element. Such element references an immutable object.

– attributes:

∗ ref : the ID of the referenced immutable object.

– child elements: none

• <null> : element that defines a null object that can be referenced by an object field or an array element

– attributes:

∗ id : the ID that allows the null object to be retrieved through the use of Immutables.get(String)

3.5. Application Developer Guide 322

https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Immutables.html#get-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Immutables.html#get-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Immutables.html#get-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Immutables.html#get-java.lang.String-

MicroEJ Documentation,

∗ private : a boolean that indicates whether the object will be accessible using the Immuta-
bles.get(String) method. If false, the objects can only be referenced within the XML immutable
objects descriptions.

– child elements: none

• <importObject> : element that import an object that is defined in another immutable file. The referenced
object may be private or public.

– attributes:

∗ id : the ID of the imported object

– child elements: none

Class names use the Java notation (using a '.' as separator): java.lang.Object is an example.

String literals are defined as in XML specification. To allow quotes in XML string data use the apostrophe '’ ' sepa-
rator as XML separator or the escape character " .

To define the next 9 characters String, my”String , as string literal value, use one of following syntax:

<field name=”f1” value=’my”String’ />
<field name=”f1” value=”my"String” />

Next table lists the format for the primitive values:

Table 1: Table 1: Immutables Primitive Type Format
Primitive Type Format Example
boolean

true or false <…value=”true”/>
byte, short, int, long Format defined in the Java method Long.

decode(String) <…value=”123”/>
<…value=”0x2A”/>
<…value=”-561”/>

char
Format defined in the Java method Long.
decode(String) or a character value between
simple quotes

<…value=”123”/
> <…value=”'z'”/>
<…value=”'©'”/>

float Format defined in the Javamethod Float.parse-
Float (String) <…value=”2.3”/> <…value=”4.

2e12”/> <…value=”-5.671”/>
double Format defined in the Java method Dou-

ble.parseDouble (String) <…value=”2.3”/> <…value=”4.
2e12”/> <…value=”-5.671”/>

IDs define one global name space: an ID only refers to only one object. It is an error to have objects sharing ID. As
a good practice, it is recommended to define ID using a qualified name, such asmyCorp.myApp.MyID12.

3.5. Application Developer Guide 323

https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Immutables.html#get-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Immutables.html#get-java.lang.String-

MicroEJ Documentation,

Immutable XML Description Examples

<immutables name=”MyCorp objects”>

<array id=”corp.immut00” type=”boolean[]” length=”2”>
<elem value=”true”/>
<elem value=”false”/>

</array>

<array id=”corp.immut01” type=”int[]”>
<elem value=”3”/>
<elem value=”2”/>
<elem value=”1”/>

</array>

<class id=”MyClass” type=”myCompany.mypackage.MyClass”
private=”true”/>

<object id=”corp.immut02” type=”MyClass”>
<field name=”a” value=”50” />
<field name=”str” value=”Hello” />
<refField name=”b” ref=”corp.null” />

</object>

<object id=”corp.immut03” type=”myCompany.mypackage.A”>
<refField name=”f” ref=”corp.immut04” />
<refField name=”s” ref=”corp.internalKey”/>
<refField name=”o” ref=”corp2.immut”/>

</object>

<string id=”corp.immut04” value='Hello World!' />

<string id=”corp.internalKey” value=”one” private=”true” />

<string id=”key1” value=”two” />

<string id=”key2” value='thr”ee' />

<object id=”value1” type=”java.lang.Object” />

<null id=”corp.null”/>

<importObject id=”corp2.immut”/>

</immutables>

3.5. Application Developer Guide 324

MicroEJ Documentation,

Immortal Objects

Non Garbageable Objects

Immortal objects are regular objects that are notmanaged by the garbage collector. Immortal objects do notmove
around in memory: they remain physically located in onememory location forever.

Turning Objects Into Immortal Objects

Reclaimable objects may be turned into immortal objects using the Immortals.setImmortal(Object) method. Only
the object passed as argument is turned into an immortal object, i.e., none of the objects it refers to through its
fields become immortal. This is in contrast with Immortals.deepImmortal(Object) that turns the object passed as
the argument and all objects referred to from the argument into immortal objects. Note that weakly reachable
objects are not turned into immortal objects; in other words the WeakReference semantic is not affected by this
operation.

The total amount of free immortal memory still available is Immortals.freeMemory(). It is system dependent.

The system provides the possibility to create objects directly as immortal objects using the method Immor-
tals.run(Runnable): while the Runnable.run() method executes, all created objects are allocated as immortal ob-
jects.

Runtime Phases

BON defines two phases of execution:

• The initialization phase: this is the very first Java code that executes. Its purpose is to let the device “boot”,
that is, to initialize all necessary resources, like allocating buffers for drivers, performing default sanity
checks, scanninghardware, etc. The initialization sequenceexecutes all the static initializermethods (known
as the <clinit> methods).

• The mission phase: once initialized, the device switches to the endless mission phase. The main(String[])
method of the main class is called and the application runs until the device is switched off.

Util.isInInitialization() and Util.isInMission() methods allow the phase to be tested.

Mono-threaded Phase

During the initialization phase, there is only one thread running: themain threadwhichwill eventually execute the
main(String[]) method once the system enters the mission phase.

3.5. Application Developer Guide 325

https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Immortals.html#setImmortal-T-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Immortals.html#deepImmortal-T-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/ref/WeakReference.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Immortals.html#freeMemory--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Immortals.html#run-java.lang.Runnable-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Immortals.html#run-java.lang.Runnable-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runnable.html#run--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Util.html#isInInitialization--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Util.html#isInMission--

MicroEJ Documentation,

Fig. 98: BON phases and threads activation.

If other threadsarecreatedwhile theclass initializationsexecute (<clinit> methods), those threadswill beonhold
(i.e., waiting) until the system enters the mission phase, even if those threads have received the start() message
and have a higher priority than the main thread.

Deterministic Initialization Order

If a class needs to be initialized, it defines a <clinit> method. These methods are not visible per se at the Java
source level. They are generated by compilers: they capture the semantic of the initialization of both static fields
and static initializers of classes.

During the initializationphase, all classeswhich are involvedwithin the application are initialized. It implies calling
all <clinit> methods, in sequence.

The order is statically computed from the application code entry points and does not rely on runtime behavior.
If the application code does not change, the order remains the same. The order is also compatible with the Java
semantic. Intuitively, a classmay depend on other classes. Those classes should be initialized first. Here are some
of the main dependencies: object creation, superclass, method receiver, argument types, field types, etc.

Dependencies of classes upon themselves define a graph of dependencies. This graph may depict cycles. The
graph is linearized in an order which depends only on the graph itself.

The classes dependencies also includes all the classes of pre-configured immutable objects objects.

Utilities

Timer & TimerTask

A Timer defines a single thread in charge of scheduling Runnable objects from the TimerTask class. All TimerTask
are executed sequentially, according to their schedule. A Timer does its best effort to schedule the TimerTask ap-
propriately, which depends on the TimerTask durations and schedules (there is no real-time guaranties).

A TimerTaskmay be scheduled repeatedly. In that case, the delay for the next schedule may depend on the end of
the previous ending of the TimerTask, and not on some absolute time: if the previously execution of the TimerTask

3.5. Application Developer Guide 326

https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Timer.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runnable.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/TimerTask.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/TimerTask.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Timer.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/TimerTask.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/TimerTask.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/TimerTask.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/TimerTask.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/TimerTask.html

MicroEJ Documentation,

is delayed for some reason, the next executions are delayed too by the same amount of time. It is also possible to
schedule repeatedly a TimerTask at fixed rate, which allows executions to be independent.

If a TimerTask execution terminates unexpectedly, the other tasks are not impacted: the TimerTask is assumed to
have terminated its execution regularly, and is not rescheduled event if it was scheduled repeatedly.

The main APIs are:

• Timer.schedule(TimerTask, long) and Timer.schedule(TimerTask, Date) methods allow to schedule one exe-
cution after the specified delay.

• Timer.schedule(TimerTask task, long, long) and Timer.schedule(TimerTask, Date, long) methods allow to
schedule repeatedly executions, the first one after the specified delay. The waiting time between two execu-
tions is relative to the end of the previous execution.

• Timer.scheduleAtFixedRate(TimerTask task, long, long) and Timer.scheduleAtFixedRate(TimerTask, Date,
long) methods allow to schedule repeatedly executions, the first one after the specified delay. The waiting
time between two executions is independent of the end of the previous execution.

Platform Time

The application time is the user time: it depends on its localization. System.currentTimeMillis() returns the appli-
cation time expressed in milliseconds since midnight, January 1, 1970 UTC.

BON introducesaplatformtime that ismonotonic. It alwaysmoves forwardand isnot impactedbyapplication time
modifications (e.g., Synchronization of time with an NTP server, TimeZone, or Daylight Savings Time updates). It
can be implemented by returning the running time since the start of the device.

The Util class defines several methods to handle both application time and platform time:

• Util.platformTimeNanos() andUtil.platformTimeMillis()method return the platform time, a long , expressed
in nanoseconds and in milliseconds.

• Util.setCurrentTimeMillis(long) andUtil.setCurrentTimeMillis(Date)methodsallow tochange theapplication
time in order to match a user localization. This has no effect on the platform time. Util.currentTimeMillis()
method is a synonym of System.currentTimeMillis().

Byte Array Accesses

The addresses space is 8-bit oriented even if there are platforms that manipulate quantities that are larger than
an 8-bit: 32-bit processors for example do so. The ordering of individual addressable sub-components within the
representation of a larger data item is called the endianness. BigEndian describes an ordering with the most
significant byte first, whereas LittleEndian describes an ordering with the least significant byte first.

Fig. 99: Representation of the 32-bit quantity 0x0000100A using both BigEndian and in LittleEndian layout.

BON introduces methods to read and write into array of byte (byte[]) according to the platform endianness, or
according to a specific provided endianness. The ByteArray class provides such APIs:

• ByteArray.getPlatformEndianness() returns the underlying system-dependent endianness, whichmostly de-
pends on the target processor(s).

3.5. Application Developer Guide 327

https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/TimerTask.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/TimerTask.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/TimerTask.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Timer.html#schedule-ej.bon.TimerTask-long-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Timer.html#schedule-ej.bon.TimerTask-java.util.Date-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Timer.html#schedule-ej.bon.TimerTask-long-long-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Timer.html#schedule-ej.bon.TimerTask-java.util.Date-long-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Timer.html#scheduleAtFixedRate-ej.bon.TimerTask-long-long-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Timer.html#scheduleAtFixedRate-ej.bon.TimerTask-java.util.Date-long-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Timer.html#scheduleAtFixedRate-ej.bon.TimerTask-java.util.Date-long-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#currentTimeMillis--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Util.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Util.html#platformTimeNanos--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Util.html#platformTimeMillis--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Util.html#setCurrentTimeMillis-long-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Util.html#setCurrentTimeMillis-java.util.Date-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Util.html#currentTimeMillis--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#currentTimeMillis--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/ByteArray.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/ByteArray.html#getPlatformEndianness--

MicroEJ Documentation,

• ByteArray.readInt(byte[], int) and ByteArray.writeInt(byte[], int, int) reads and writes an int using the plat-
form specific endianness.

• ByteArray.readInt(byte[], int, int) and ByteArray.writeInt(byte[], int, int, int) reads andwrites an int using the
specified endianness as last argument, which may be either LITTLE_ENDIAN or BIG_ENDIAN.

Similar methods are provided for short , char , and long types.

Annex A: Immutables DTD

<!ELEMENT immutables (object*, objectAlias*, array*, string*, class*, null*, importObject*) >
<!ATTLIST immutables

name CDATA #IMPLIED
>

<!ELEMENT object (field*, refField*) >
<!ATTLIST object

id ID #REQUIRED
private (true | false) ”false”
type CDATA #REQUIRED

>

<!ELEMENT objectAlias EMPTY >
<!ATTLIST objectAlias

id ID #REQUIRED
private (true | false) ”false”
object IDREF #REQUIRED

>

<!ELEMENT array (elem*, refElem*) >
<!ATTLIST array

id ID #REQUIRED
private (true | false) ”false”
type CDATA #REQUIRED
length CDATA #IMPLIED

>

<!ELEMENT elem EMPTY >
<!ATTLIST elem

value CDATA #REQUIRED
>

<!ELEMENT refElem EMPTY >
<!ATTLIST refElem

ref IDREF #REQUIRED
>

<!ELEMENT class EMPTY >
<!ATTLIST class

id ID #REQUIRED
private (true | false) ”false”
type CDATA #REQUIRED

>

<!ELEMENT string EMPTY >
<!ATTLIST string

(continues on next page)

3.5. Application Developer Guide 328

https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/ByteArray.html#readInt-byte:A-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/ByteArray.html#writeInt-byte:A-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/ByteArray.html#readInt-byte:A-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/ByteArray.html#writeInt-byte:A-int-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/ByteArray.html#LITTLE_ENDIAN
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/ByteArray.html#BIG_ENDIAN

MicroEJ Documentation,

(continued from previous page)

id ID #REQUIRED
private (true | false) ”false”
value CDATA #REQUIRED

>

<!ELEMENT field EMPTY >
<!ATTLIST field

name CDATA #REQUIRED
value CDATA #REQUIRED
type CDATA #IMPLIED

>

<!ELEMENT refField EMPTY >
<!ATTLIST refField

name CDATA #REQUIRED
ref IDREF #REQUIRED
type CDATA #IMPLIED

>

<!ELEMENT null EMPTY >
<!ATTLIST null

id ID #REQUIRED
private (true | false) ”false”

>

<!ELEMENT importObject EMPTY >
<!ATTLIST importObject

id ID #REQUIRED
>

Simple Native Interface Specification (SNI)

Introduction

The Simple Native Interface specification (SNI) defines how to cross the barrier between the Managed world and
the native world:

• Call a C function from Java.

• Pass parameters to the C function.

• Return a value from the C world to the Managed world.

• Manipulate (read & write) sharedmemory both in Java and C: the immortal space.

Note: In the following explanations, the term task refers to native tasks scheduled by the underlying OS or RTOS,
while thread refers to MicroEJ threads scheduled by the Core Engine.

3.5. Application Developer Guide 329

MicroEJ Documentation,

Specification Summary

Java APIs ej.sni
Latest Version 1.4
Module Dependency SDK 6

SDK 5
implementation(”ej.api:sni:1.4.3”)

<dependency org=”ej.api” name=”sni” rev=”1.4.3” />

Module Location https://repository.microej.com/modules/ej/api/sni/

Comments

Your comments about this specification are welcome. Please contact our support teamwith “SNI” as subject.

First Example

This first example shows how to declare and implement a Java native method using SNI. First the method has to
be declared native in Java: this states that the method is written in another language.

package example;

import java.io.IOException;

/**
* Abstract class providing a native method to access sensor value.
* This method will be executed out of the Core Engine.
*/
public abstract class Sensor {

public static final int ERROR = -1;

public int getValue() throws IOException {
int sensorID = getSensorID();
int value = getSensorValue(sensorID);
if (value == ERROR) {

throw new IOException(”Unsupported sensor”);
}
return value;

}

protected abstract int getSensorID();

public static native int getSensorValue(int sensorID);
}

class Potentiometer extends Sensor {

protected int getSensorID() {
return Constants.POTENTIOMETER_ID; // POTENTIOMETER_ID is a static final

(continues on next page)

3.5. Application Developer Guide 330

https://repository.microej.com/javadoc/microej_5.x/apis/ej/sni/package-summary.html
https://repository.microej.com/modules/ej/api/sni/

MicroEJ Documentation,

(continued from previous page)

}
}

Then, the implementation of the method is written in C language.

// File providing an implementation of native method using a C function
#include <sni.h>
#include <potentiometer.h>

#define SENSOR_ERROR (-1)
#define POTENTIOMETER_ID (3)

jint Java_example_Sensor_getSensorValue(jint sensor_id){

if (sensor_id == POTENTIOMETER_ID)
{

return get_potentiometer_value();
}
return SENSOR_ERROR;

}

Java and C Execution Sequence

Calling C from Java

When a Java native method executes, it executes its C counterpart function. This is done using the CPU budget of
the task that has started the Core Engine. While the C function executes, no other Java methods executes and the
Core Engine cannot schedule other threads. The Managed world “waits” for the C function to finish.

The following illustration shows the execution a the Core Engine task. Green thread 3 has called a nativemethod
that executes in C. All Java activities is suspended until the C execution has finished.

Fig. 100: Execution of Threads by the Core Engine Task

3.5. Application Developer Guide 331

MicroEJ Documentation,

Synchronization

SNI defines C functions that provide controls for the threads activities:

• int32_t SNI_suspendCurrentJavaThread(int64_t timeout) : Suspends the execution of the thread that
initiated the current C call. This function does not block the C execution. The suspension is effective only at
the end of the nativemethod call (when the C call returns). The thread is suspended until either an task calls
SNI_resumeJavaThread , or the specified number of milliseconds has elapsed.

• int32_t SNI_getCurrentJavaThreadID(void) : Permits retrieval of the ID of the current thread within the
C function (assuming it is a “native Java to C call”). This ID must be given to the SNI_resumeJavaThread
function in order to resume execution of the thread.

• int32_t SNI_resumeJavaThread(int32_t id) : Resumes the thread with the given ID. If the thread is not
suspended, the resume stays pending.

The following illustration shows Green thread 3 which has called a native method that executes in C. The C code
suspends the thread after having provisioned its ID (e.g. 3). Another task may later resume the thread.

Fig. 101: Green Threads and Task Synchronization

3.5. Application Developer Guide 332

MicroEJ Documentation,

Java And Native Separation

The following illustration shows both Java and C code accesses to shared objects in the immortal space, while also
accessing their respective memory. In C code, non-immortal arrays can only be accessed within the local scope of
a native function.

Fig. 102: Java and C shared objects

ManagedWorld to CWorld

C Function Call FromManagedWorld

The SNI specification allows the invocation of methods from Java to C: these methods must be declared static
native methods, and the parameters must be base types or array of base types. These nativemethods are used in
Java as standard Java methods.

Example:

package example;
public class Foo{

public void bar(){
int times = 3;
print(times);

}

public static native void print(int times);
}

#include <sni.h>
#include <stdio.h>

void Java_example_Foo_print(jint times){
while (--times >= 0){

printf(”Hello world!\n”);
}

}

3.5. Application Developer Guide 333

MicroEJ Documentation,

Java Types And C Types

Base Types

Types may have different representations depending on the language. The file sni.h defines the C types that
represent exactly the Java types.

Table 2: Java types to C types
Java Type Specification C type
void No returned type

void
boolean unsigned 8 bits

jboolean
byte signed 8 bits

jbyte
char unsigned 16 bits

jchar
short signed 16 bits

jshort
int signed 32 bits

jint
long signed 64 bits

jlong
float IEEE 754 single precision 32 bits

jfloat
double IEEE 754 double precision 64 bits

jdouble

Java Array

The Java arrays (of base types) are represented in C functions as C arrays: the array is a pointer on the first element
of the array, all the elements in line within the memory.

SNI allows to get a Java array length in a C function.

int32_t SNI_getArrayLength(void* array);

Strings

Strings are typically representedquitedifferentlybetweenC&Java. InC, strings are representedwithC char (8-bit)
array with a '\0' as last character. In Java, strings are jchar (16-bit) array, not terminated by '\0' .

To helpwith the conversion, the SNI Java API provides utilitymethods to convert between the two representations.

Example:

package example;
public class Foo {

private static final int MAX_STRING_SIZE = 42; // including the '\0' character

public void pushString(String str) {
pushString(SNI.toCString(str));

}
(continues on next page)

3.5. Application Developer Guide 334

https://repository.microej.com/javadoc/microej_5.x/apis/ej/sni/SNI.html

MicroEJ Documentation,

(continued from previous page)

public String pullString() {
byte[] buffer = new byte[MAX_STRING_SIZE];
pullString(buffer);
return SNI.toJavaString(buffer);

}

private static native void pushString(byte[] str);
private static native void pullString(byte[] buffer);

}

#include <sni.h>
#include <string.h>

#define MAX_STRING_SIZE 42

static char gStr[MAX_STRING_SIZE];

void Java_example_Foo_pushString(jbyte *str) {
strncpy(gStr, (char*) str, MAX_STRING_SIZE);

}

void Java_example_Foo_pullString(jbyte *buffer) {
strncpy((char*) buffer, gStr, MAX_STRING_SIZE);

}

Note: The string conversions use the default platform encoding. To use a different encoding, refer to the String
API.

Naming Convention

SNI uses a naming convention to name-match the Java native method with its C counterpart function.

The C function name is the concatenation of the following components:

• the prefix “ Java_ ”.

• the package name of the class, each sub packages is separated with “_ ”.

• the separator “_ ”.

• the class name.

• the separator “_ ”.

• the method name.

If the method is overloaded by another method, native or not (the two methods have the same name with dif-
ferent arguments), the function namemust be followed by the arguments descriptor, obtained with the following
components (except if the method has no arguments):

• the separator “__ ” (two underscores)

• the name of each argument type, without separator, preceded by “_3 “ if it is an array.

3.5. Application Developer Guide 335

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/String.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/String.html

MicroEJ Documentation,

The following table gives the descriptors of the Java types for arguments.

Table 3: SNI Java types descriptors in arguments
Java type SNI name
boolean Z
byte B
char C
short S
int I
long J
float F
double D

The character underscore (“_ ”) is used as a separator in the name. If this character is used within the Java name
(either in package, class name or method name), it is replaced with “ _1 ”. Because the Java names cannot start
with a number, the characters “_1 ” cannot be confused with separator character.

Examples of Java native methods and their counterpart C functions:

package example.sni.impl;

class Hello {

public static native void nativ01(int i);
public static native void nativ02(boolean b, int[] i);
public static native void nativ_03();
public static native void nativ04();
public static native void nativ04(long l, double d);
public static native void nativ04(int[] ia, int ib, char[] ca);
}

void Java_example_sni_impl_Hello_nativ01(jint i);
void Java_example_sni_impl_Hello_nativ02(jboolean b, jint* i);
void Java_example_sni_impl_Hello_nativ_103();
void Java_example_sni_impl_Hello_nativ04();
void Java_example_sni_impl_Hello_nativ04__JD(jlong l, jdouble d);
void Java_example_sni_impl_Hello_nativ04___3II_3C(jint* ia, jint ib, jchar* ca);

Parameters Constraints

There are strong constraints on arguments given by Java methods to native functions:

• Only base types and array of base types are allowed in the parameters. No other objects can be passed: the
native functions cannot access Java objects field nor methods.

• When base type arrays are passed in parameters, they must have only one dimension. No multi dimension
array are allowed (int[][] is forbidden for example).

• Only base types are allowed as return type.

This constraints are checked at link-time to ensure that they are respected.

3.5. Application Developer Guide 336

MicroEJ Documentation,

Startup

The Core Engine needs first to be initialized, and then started. It is the programmer responsibility to create a task
and to start the Core Engine within this task.

SNI defines C functions to create a Managed world, to start it and to free it:

• void SNI_createVM(void) : creates and initializes the Core Engine context.

• int32_t SNI_startVM(void,int32_t,char) : starts the Core Engine. This function returns when the Java
application ends.

• int32_t SNI_getExitCode(void vm) : gets the Java application exit code, after SNI_startVM has suc-
cessfully returned. This is the value passed by the application to System.exit() method.

• void SNI_destroyVM(void vm) : does nothing if the Core Engine is still running. This function must be
called in the task that created the Core Engine.

The following illustration shows a typical example of Core Engine startup code.

Listing 6: Example of Core Engine startup code in C

void microej_main(int argc, char **argv) {
void* vm;
int core_engine_error_code = -1;
int32_t app_exit_code = 0;

vm = SNI_createVM();
if (vm == NULL) {

printf(”MicroEJ initialization error.\n”);
} else {

core_engine_error_code = (int)SNI_startVM(vm, argc, argv);
if (core_engine_error_code < 0) {

printf(”MicroEJ execution error (err = %d).\n”, (int) core_engine_error_code);
} else {

app_exit_code = SNI_getExitCode(vm);
printf(”MicroEJ END (exit code = %d)\n”, (int) app_exit_code);

}
SNI_destroyVM(vm);

}
}

3.5. Application Developer Guide 337

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#exit-int-

MicroEJ Documentation,

Kernel & Features Specification (KF)

Introduction

TheKernel & Features (KF) specificationdefines the concepts for setting upMulti-Sandboxing of Applications,man-
aging their lifecycle, and controlling their execution.

Specification Summary

Java APIs ej.kf
Latest Version 1.7
Module Dependency SDK 6

SDK 5
implementation(”ej.api:kf:1.7.0”)

<dependency org=”ej.api” name=”kf” rev=”1.7.0” />

Module Location https://repository.microej.com/modules/ej/api/kf/

Comments

Your comments about this specification are welcome. Please contact our support teamwith “KF” as subject.

Basic Concepts

Kernel & Features semantic (KF) allows an application to be split into multiple parts:

• the main application, called the Kernel.

• zero or more applications, called Features.

The Kernel is mandatory. It is assumed to be reliable, trusted and cannot bemodified. If there is only one applica-
tion (i.e. only onemain entry point that the system starts with) then this application is called the Kernel.

A Feature is an application “extension” managed by the Kernel. A Feature is fully controlled by the Kernel: it can
be installed, started, stopped and uninstalled at any time independent of the system state (particularly, a Feature
never depends on another Feature to be stopped). A Feature is optional, potentially not-trusted, maybe unreliable
and can be executed without jeopardizing the safety of the Kernel execution and other Features.

Resources accesses (RAM, hardware peripherals, CPU time,…) are under control of the Kernel.

3.5. Application Developer Guide 338

https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/package-summary.html
https://repository.microej.com/modules/ej/api/kf/

MicroEJ Documentation,

First Example

This simple example illustrates a log of a message called by a Kernel and a Feature. The KernelExample class
is the main Kernel entry point. The FeatureExample class is a Feature entry point. The way these classes are
assigned to contexts and how the Feature is installed is not described here. (the Feature is assumed to be installed
before the Kernel main method starts).

Kernel class

Listing 7: Illustration 1: Kernel Hello World Example

package ej.kf.example.helloworld;

import ej.kf.Feature;
import ej.kf.Kernel;

/**
* Defines a Kernel class. The Kernel entry point is the regular main method.
*/
public class KernelExample {

public static void main(String[] args) throws Exception {
log(”Hello World !”);
for (Feature f : Kernel.getAllLoadedFeatures()) {
f.start();

}
}

/**
* Log a message, prefixed with the name of the caller
*/
public static void log(String message) {
String name = Kernel.getContextOwner().getName();
System.out.println('[' + name + ”]: ” + message);

}

}

Feature class

Listing 8: Illustration 2: Feature Hello World Example

package ej.kf.example.helloworld;

import ej.kf.FeatureEntryPoint;

/**
* Defines a Feature class that implements {@link FeatureEntryPoint} interface.
*/
public class FeatureExample implements FeatureEntryPoint {

@Override
public void start() {

(continues on next page)

3.5. Application Developer Guide 339

MicroEJ Documentation,

(continued from previous page)

KernelExample.log(”Hello World !”);
}

@Override
public void stop() {
}

}

Expected Output

[KERNEL]: Hello World !
[FEATURE]: Hello World !

Ownership Rules

At runtime, each type, object and thread execution context has an owner. This section defines ownership trans-
mission and propagation rules.

Type

The owner of a type is fixed when such type is loaded and that owner cannot be modified after.

The owner of an array-of-type type is the owner of the type. Array of basetypes are lazily loaded. Those that are
required by the Kernel are owned by the Kernel. Other arrays are loaded in any Feature that require them.

The owner of a type can be retrieved by calling Kernel.getOwner() with the Class instance.

Object

When an object is created, it is assigned to the owner of the execution context owner.

The owner of an object can be retrieved by calling Kernel.getOwner() with the given object.

Execution Context

When a thread is started, the first execution context is set to the owner of the thread object. When a method is
called from Kernel mode and its receiver is owned by a Feature, the execution context is set to the owner of the
receiver. In all other cases, the execution context of the method called is the execution context of the caller.

The owner of the current execution context can be retrieved by calling Kernel.getContextOwner().

When amethod returns, the execution context owner of the caller remains the one it was before the call was done.

The Kernel is the first application to run, and it is triggered by the systemwhen it boots. The Kernel starts in Kernel
mode, creating a first thread owned by the Kernel.

The Kernel can execute a dynamic piece of code (Runnable) in a Feature context by calling Kernel.runUnderCon-
text().

3.5. Application Developer Guide 340

https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#getOwner-java.lang.Object-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#getOwner-java.lang.Object-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#getContextOwner--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runnable.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#runUnderContext-ej.kf.Module-java.lang.Runnable-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#runUnderContext-ej.kf.Module-java.lang.Runnable-

MicroEJ Documentation,

Kernel Mode

An execution context is said to be in Kernel modewhen the current execution context is owned by the Kernel. The
method Kernel.enter() sets the current execution context owner to the Kernel. Themethod Kernel.exit() resets the
current execution context owner to the one when the method Kernel.enter() was called.

Execution Rules

Notes: this specification does not force all rules to be checked at runtime. When a rule is checked at runtime, a
IllegalAccessError must be thrown at the execution point where the rule is broken.

Type References

A type owned by the Kernel cannot refer to a type owned by a Feature.

A type owned by a Feature can refer to a type owned by the Kernel if and only if it has been exposed as an API type.

A type owned by a Feature cannot refer to a type owned by another Feature.

All the types of the KF library (package ej.kf.*) are owned by the Kernel. A type owned by a Feature cannot access
any types of this library except the FeatureEntryPoint interface and the Proxy class.

Method References

A type owned by a Feature can refererence amethod of type owned by the Kernel if and only if it has been exposed
as an API method.

Field References

Instance Field References

A type owned by a Feature can refer to all instance fields of a type owned by the Kernel, if and only if the type has
been exposed as an API type and the field is accessible according to Java access control rules.

Static Field References

A type owned by a Feature can refer to a static field of a type owned by the Kernel if and only if it has been exposed
as an API static field.

A static field of a type owned by a Feature cannot refer to an object owned by another Feature.

An object ownedby a Feature canbe assigned to a static field of a type ownedby theKernel if andonly if the current
execution context is in Kernel mode, otherwise a IllegalAccessError is thrown at runtime.

3.5. Application Developer Guide 341

https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#enter--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#exit--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#enter--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/IllegalAccessError.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/FeatureEntryPoint.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Proxy.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/IllegalAccessError.html

MicroEJ Documentation,

Context Local Static Field References

By default, a static field holding an object reference is stored in a single memory slot in the context of the owner of
the type that defines the field.

The Kernel can declare a static field as a context local storage field in kernel.intern file (See section XML Schema &
Format for full format specification). Amemory slot is thenallocated for theKernel andduplicated for eachFeature.
As it is a static field, it is initialized to null .

Listing 9: Illustration 3: Context Local Storage Declaration of a Static
Field

<kernel>
<contextLocalStorage name=”com.mycompany.MyType.MY_GLOBAL”/>

</kernel>

The Kernel can declare an optional initialization method. This method is automatically invoked when the field is
being read if its content is null . This gives a hook to lazily initialize the static field before its first read access. If the
initialization method returns a null reference, a NullPointerException is thrown.

Listing 10: Illustration 4: Context Local Storage Declaration of a Static
Field with an Initialization Method

<kernel>
<contextLocalStorage
name=”com.mycompany.MyType.MY_GLOBAL”
initMethod=”com.mycompany.MyType.myInit()java.lang.Object”

/>
</kernel>

Object References

An object owned by a Feature cannot be assigned to an object owned by another Feature.

An object owned by a Feature can be assigned to an object owned by the Kernel if and only if the current execution
context is in Kernel mode.

Note that all possible object assignments are included (field assignment, array assignment and array copies using
System.arraycopy()).

Local References

An object owned by a Feature cannot be assigned into a local of an execution context owned by another Feature.

An object owned by a Feature can be assigned into a local of an execution context owned by the Kernel. When
leaving Kernel mode explicitly with Kernel.exit(), all locals that refer to an object owned by another Feature are set
to null .

3.5. Application Developer Guide 342

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/NullPointerException.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#arraycopy-java.lang.Object-int-java.lang.Object-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#exit--

MicroEJ Documentation,

Monitor Access

Amethod owned by a Feature cannot synchronize on an object owned by the Kernel.

Native Method Declaration

A class owned by a Feature cannot declare a native method.

Reflective Operations

Reflective operations enable dynamic access to Java elements. These operations must adhere to additional rules
to maintain isolation semantics, based on the following parameters:

• Context Owner: The current execution context at the time the operation is invoked.

• Code Owner: The owner of the class that contains the method fromwhich the operation is called.

• Type, Class, or Resource Owner: The owner of the target element being accessed by the operation.

Note: N/A indicates that it is not possible to be in Kernel mode within code owned by a Feature.

Class.forName

The following table defines the extended rules for Class.forName() to throwaClassNotFoundExceptionwhena type
cannot be accessed.

Table 4: Table 1: Class.forName(...) access rules
Context Owner Code Owner Type Owner

Class.forName(Type) allowed

K K K true

K K F false

K F K N/A

K F F N/A

F K K true

Fi K Fj i==j

F F K true if the type has been exposed as an API type, false
otherwise.

Fi Fi Fj i==j

3.5. Application Developer Guide 343

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#forName-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/ClassNotFoundException.html

MicroEJ Documentation,

Class.newInstance

The following table defines the extended rules for Class.newInstance(). The last column indicates the owner of the
newly created instance, if applicable.

Table 5: Table 2: Class.newInstance(...) access rules
Context Owner Code Owner Class Owner New Instance Owner

K K K K

K K F F

K F K N/A

K F F N/A

F K K F

F K F F

F F K F

F F F F

Class.getResourceAsStream

The following table defines the extended rules for Class.getResourceAsStream() to return null when resource is
not allowed to be accessed.

Table 6: Table 3: Class.getResourceAsStream(...) access rules
Context owner Code owner Resource

owner Class.getResourceAsStream(String) allowed

K K K true

K K F false

K F K N/A

K F F N/A

F K K true

Fi K Fj i==j
If the same resource name is declared by both the Ker-
nel and the Feature, the Feature resource takes prece-
dence over the Kernel resource.

F F K false

Fi Fi Fj i==j

3.5. Application Developer Guide 344

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#newInstance--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#getResourceAsStream-java.lang.String-

MicroEJ Documentation,

Thread.currentThread

Threads and their execution contexts have owners. The Thread.currentThread() method relates to the thread’s
owner that is executing the current execution context only. There is no obligation that two execution contexts
that are in a caller-callee relationship have the same (==) returned java.lang.Thread object when using Thread.
currentThread() method.

If the Thread that initiated the execution has the same owner as the current execution context or if execution is in
Kernelmode, then the thread that initiates the execution is returned, otherwise, a java.lang.Thread object owned
by the Kernel is returned.

Feature Lifecycle

Entry point

Each Featuremust define an implementation of the FeatureEntryPoint. FeatureEntryPoint.start() method is called
when the Feature is started. It is considered to be the main method of the Feature application. FeatureEntry-
Point.stop() method is called when the Feature is stopped. It gives a chance to the Feature to terminate properly.

States

A Feature is in one of the following states:

• INSTALLED: Feature has been successfully linked to the Kernel and is not running. There are no references
from the Kernel to objects owned by this Feature.

• STARTED: Feature has been started and is running.

• STOPPED: Feature has been stopped and all its owned threads and execution contexts are terminated. The
memory and resources are not yet reclaimed. See section Stop for the complete stop sequence.

• UNINSTALLED: Feature has been unlinked from the Kernel.

The following illustration describes the Feature state diagram and the methods that changes Feature’s state.

3.5. Application Developer Guide 345

https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/FeatureEntryPoint.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/FeatureEntryPoint.html#start--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/FeatureEntryPoint.html#stop--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/FeatureEntryPoint.html#stop--

MicroEJ Documentation,

Fig. 103: Illustration 5: Feature State Diagram

Installation

A Feature is installed by the Kernel using Kernel.install(). The content of the Feature data to be loaded is implemen-
tation dependent. The Feature data is read and linked to the Kernel. If the Feature cannot be linked to the Kernel,
an IncompatibleFeatureException is thrown. Otherwise, the Feature is added to the list of loaded Features and its
state is set to the INSTALLED state.

Start

A Feature is started by the Kernel using Feature.start(). The Feature is switched in the STARTED state. A new
thread owned by the Feature is created and started. Next steps are executed by the newly created thread:

• Feature clinits are executed.

• Entrypoint is instanciated.

• FeatureEntryPoint.start() is called.

Stop

A Feature is stopped explicitly by the Kernel using Feature.stop(). Features may be stopped implicitly by the Re-
source Control Manager. Next steps are executed:

• On explicit Feature.stop() call, a new thread owned by the Feature is created and FeatureEntryPoint.stop() is
executed within this new thread.

• Wait until this new thread is done, or until a global timeout stop-time occurred1.
1 The default timeout stop-time is 2,000ms.

3.5. Application Developer Guide 346

https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#install-java.io.InputStream-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/IncompatibleFeatureException.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Feature.html#start--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/FeatureEntryPoint.html#start--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Feature.html#stop--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Feature.html#stop--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/FeatureEntryPoint.html#stop--

MicroEJ Documentation,

• All execution contexts, from any thread, owned by the Feature are cleared, which implies that a DeadFea-
tureException is thrown in threads that are running the stopped Feature code or in threads that want to call
stopped Feature code.

• Wait until all threads owned by the Feature are terminated.

• Native resources (files, sockets,…) openedby the Feature that remain openedafter FeatureEntryPoint.stop()
execution are closed abruptly.

• The Feature state is set to the STOPPED state.

• FeatureStateListener.stateChanged() is called for each registered listener.

• Objects owned by the Feature are reclaimed.

• If there are no remaining alive objects2:

– Feature state is set to the INSTALLED state.

– FeatureStateListener.stateChanged() is called for each registered listener.

The method Feature.stop() can be called several times, until the Feature is set to the INSTALLED state.

Uninstallation

A Feature is uninstalled by the Kernel using Kernel.uninstall(). The Feature code is unlinked from the Kernel and
reclaimed. The Feature is removed from the list of loaded Features and its state is set to the UNINSTALLED
state. The Feature does not exist anymore in the system.

Class Spaces

2 If there are any remaining alive Feature objects after the Kernel listeners have been called, the Feature will stay in the
STOPPED state indefinitely. The Kernel has an issue. However, it can continue running and orchestrating other applications,
but it cannot restart or uninstall the problematic Feature.

3.5. Application Developer Guide 347

https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/DeadFeatureException.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/DeadFeatureException.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/FeatureEntryPoint.html#stop--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/FeatureStateListener.html#stateChanged-ej.kf.Feature-ej.kf.Feature.State-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/FeatureStateListener.html#stateChanged-ej.kf.Feature-ej.kf.Feature.State-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Feature.html#stop--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#uninstall-ej.kf.Feature-

MicroEJ Documentation,

Overview

Fig. 104: Illustration 6: Kernel & Features Class Spaces Overview

Private Types

The Kernel and the Features define their own private name space. Internal types are only accessible from within
the Kernel or Features that define these types. The Kernel or a Feature can have only one type for a specific fully
qualified name, insuring there are not two types in the Kernel or in a Feature sharing the same fully qualified name.

Kernel API Types

The Kernel can expose some of its types, methods and static fields as API to Features. A file describes the list of the
types, the methods and the static fields that Features can refer to.

Here is an example for exposing System.out.println(String) to a Feature:

Listing 11: Illustration 7: Kernel API Example for exposing System.out.
println

<require>
<field name=”java.lang.System.out”/>
<method name=”java.io.PrintStream.println(java.lang.String)void”/>

</require>

Section Kernel API Definition describes the Kernel API file format.

3.5. Application Developer Guide 348

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#out

MicroEJ Documentation,

Precedence Rules

APIs exposed by the Kernel are publicly available for all Features: they form the global name space.

A Kernel API type (from the global name space) always takes precedence over a Feature type with the same fully
qualified name when a Feature is loaded. An type exposed by the Kernel cannot be overloaded by a Feature.

Resource Control Manager

CPU Control: Quotas

A Kernel can assign an execution quota to a Feature using Feature.setExecutionQuota(). The quota is expressed in
execution units.

Quotas account to the context of the current thread’s owner.

When a Feature has reached its execution quota, its execution is suspended until all other Features have reached
their execution quota. When there are no threads owned by Features eligible to be scheduled, the execution
counter of all Features is reset.

Setting a Feature execution quota to zero causes the Feature to be suspended (the Feature is paused).

If a Feature exceeds its execution quota while holding a monitor (via one of its threads), and another Module (Fea-
ture or Kernel) with no execution quota limit attempts to acquire the same monitor (via one of its threads), the
thread holding the monitor will continue its execution until it releases the monitor.

RAM Control: Managed Heap Configuration

The Kernel and Features allocate objects in the Managed Heap, whose size is statically configured by the Kernel
using the Option(text): Managed heap size (in bytes). By default, the Kernel and Features can allocate without re-
striction, as long as sufficient space is available in the Managed Heap. Every allocated object is tracked (seeObject
ownership).

The following APIs allow to configure the Managed Heap usage:

• Kernel.setReservedMemory(): Sets the amount of memory heap reserved for the Kernel. This is a lower
bound: the Kernel may allocate more memory than this reservation if needed.

• Feature.setMemoryLimit(): Sets themaximum amount of memory heap that can be allocated by a Feature.
This is an upper bound, not a reservation.

Especially, allocations from Features will fail (throw an OutOfMemoryError):

• when the feature-specific limit is reached, before the Managed heap is full;

• when the Managed heap is full, before the feature-specific limit is reached;

• whentheallocationwouldexceed theamountofmemoryavailable toFeatures (i.e. Managedheapsizeminus
memory reserved for the Kernel).

The diagrams below illustrate a Kernel with two Features with various heap configuration scenarios. Kernel re-
served memory and Feature memory limits are depicted as contiguous blocks for simplicity. However, in reality,
they represent the total size of allocated objects, which are scattered throughout the Managed Heap.

Case 1: No Kernel memory reservation, no Feature limit (Default configuration)

3.5. Application Developer Guide 349

https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Module.html#setExecutionQuota-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#setReservedMemory-long-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Feature.html#setMemoryLimit-long-

MicroEJ Documentation,

Case 2: Kernel memory reservation, one Feature with no memory limit, one Feature with a memory limit that
overlaps the Kernel’s reservedmemory.

Case 3: Kernel memory reservation, with two Features configured to equally share the remaining heap

3.5. Application Developer Guide 350

MicroEJ Documentation,

RAM Control: Feature Criticality

Each Feature has a criticality level between Feature.MIN_CRITICALITY and Feature.MAX_CRITICALITY. When an ex-
ecution context cannot allocate new objects because amemory limit has been reached, Features shall be stopped
following next semantic:

• Select the Feature with the lowest criticality.

• If the selected Feature has a criticality lower than the current execution context owner criticality, then stop
the selected Feature and all the Features with the same criticality.

• If no memory is available, repeat these two previous steps in sequence until there are no more Features to
stop.

If no memory is reclaimed, then an OutOfMemoryError is thrown.

See Core Engine RAM Control implementation for more details.

Time-out Control: Watchdog

Allmethod calls that are done fromaKernelmode to a Featuremode are automatically executed under the control
of a watchdog.

The watchdog timeout is set according to the following rules:

• use the watchdog timeout of the current execution context if it has been set,

• else use the watchdog timeout of the current thread if it has been set,

• else use the global systemwatchdog timeout.

The global systemwatchdog timeout value is set to Long.MAX_VALUE at system startup.

When the watchdog timeout occurs the offending Feature is stopped.

Native Resource Control: Security Manager

The Kernel is responsible for holding all the native calls. The Kernel shall providemethods (API) that systematically
check, using the standard security manager, that the access to a native call is granted to the specific Feature.

When an object owned by a Feature is not allowed to access a native resource, a specific exception shall be thrown.

Any native resource opened by a Featuremust be registered by the Kernel and closedwhen the Feature is stopped.

Communication Between Features

A Feature can communicate with another Feature using Shared Interfaces. This section explains the execution se-
mantics and advanced configuration from the Kernel’s perspective.

3.5. Application Developer Guide 351

https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Feature.html#MIN_CRITICALITY
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Feature.html#MAX_CRITICALITY
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/OutOfMemoryError.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Long.html#MAX_VALUE

MicroEJ Documentation,

Method Binding

A Feature can call a method owned by another Feature, provided:

• Both Features own an interface in their class space with the same fully qualified name.

• Both Features have declared such interface as a Shared Interface.

• The source Feature has declared a Proxy class for its Shared Interface.

• The target Feature has registered to the Kernel an instance of a class implementing its Shared Interface.

• The source Feature has requested from the Kernel an instance of a class implementing its interface.

• The Kernel has bound the source interface to the target instance and returned an instance to the source Fea-
ture, implementing its Shared Interface.

• The source Feature calls a method declared in the Shared Interface using this instance as receiver.

• Amethod with the exact descriptor exists in the target Feature interface.

• The arguments given by the source Feature can be transferred to the target Feature.

• The value returned by the target Feature can be transferred to the source Feature (if the method does not
return void).

Section Shared Interface Declaration describes the Shared Interface file format specification.

Object Binding

Anobject ownedby a Feature canbebound to anobject ownedby another Feature using themethodKernel.bind().

• When the target type is owned by the Kernel, the object is converted using the most accurate Kernel type
converter.

• When the target type is owned by the Feature, it must be a Shared Interface. In this case, an instance of its
Proxy class is returned.

Object identity is maintained across Features, so the same proxy instance is returned. If a Proxy is bound to the
Feature that owns the reference, the original object is passed instead (Proxy unwrapping).

Note: The Kernel can manually bind an object using the Kernel.bind() method.

Kernel Type Converters

By default, Feature instances of types owned by the Kernel cannot be passed across a Shared Interface method
invocation.

The Kernel can register a converter for each allowed type, using Kernel.addConverter(). The convertermust imple-
ment Converter and can implement one of the following behaviors:

• by wrapper: manually allocating a Proxy reference by calling Kernel.newProxy().

• by copy: with the help of Kernel.clone().

3.5. Application Developer Guide 352

https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#bind-T-java.lang.Class-ej.kf.Feature-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#bind-T-java.lang.Class-ej.kf.Feature-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#addConverter-ej.kf.Converter-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Converter.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#newProxy-T-ej.kf.Module-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#clone-T-ej.kf.Module-

MicroEJ Documentation,

Configuration Files

Kernel and Features Declaration

AKernelmust provide a declaration file named kernel.kf . A Featuremust provide a declaration file named [name].
kf .

KF Declaration file is a Properties file. It must appear at the root of any application classpath (directory or JAR file).
Keys are described hereafter:

Table 7: Illustration 10: KF Definition File Properties Specification
Key Usage Description
entryPoint Mandatory for Fea-

ture only.
The fully qualified name of the class that implements FeatureEn-
tryPoint

name Optional
KERNEL bydefault for theKernel, or thenameof the filewithout
the .kf extension for Features.

version Mandatory String version, that can retrieved using Module.getVersion()

Kernel API Definition

By default, when building a Kernel, no types are exposed as API for Features, except FeatureEntryPoint. Kernel
types, methods and static fields allowed to be accessed by Features must be declared in one or more kernel.api
files. Theymust appear at the root of any application classpath (directory or JAR file). Kernel API file is an XML file,
with the following schema:

Listing 12: Illustration 11: Kernel API XML Schema

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'>
<xs:element name='require'>

<xs:complexType>
<xs:choice minOccurs='0' maxOccurs='unbounded'>

<xs:element ref='type'/>
<xs:element ref='field'/>
<xs:element ref='method'/>

</xs:choice>
</xs:complexType>

</xs:element>

<xs:element name='type'>
<xs:complexType>

<xs:attribute name='name' type='xs:string' use='required'/>
</xs:complexType>

</xs:element>

<xs:element name='field'>
<xs:complexType>

<xs:attribute name='name' type='xs:string' use='required'/>
</xs:complexType>

</xs:element>

<xs:element name='method'>
<xs:complexType>

<xs:attribute name='name' type='xs:string' use='required'/>
(continues on next page)

3.5. Application Developer Guide 353

https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/FeatureEntryPoint.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/FeatureEntryPoint.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Module.html#getVersion--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/FeatureEntryPoint.html

MicroEJ Documentation,

(continued from previous page)

</xs:complexType>
</xs:element>

</xs:schema>

Table 8: Illustration 12: Kernel API Tags Specification
Tag Attributes Description
require The root element
field Static field declaration. Declaring a field as a

Kernel API automatically declares its type as a
Kernel API.

name Fully qualified name on the form [type].
[fieldName]

method Method or constructor declaration. Declaring a
method or a constructor as a Kernel API auto-
matically declares its type as a Kernel API

name Fully qualified name on the form
[type].[methodName]([typeArg1,...,
typeArgN)typeReturned . Types are fully
qualified names or one of a base type as de-
scribed by the Java language (boolean , byte
, char , short , int , long , float , double)
When declaring a constructor, methodName
is the single type name. When declaring a void
method or a constructor, typeReturned is
void

type Type declaration. Declaring a type as Kernel
API automatically declares all its super types
(classes and interfaces) and the default con-
structor (if any) as Kernel API.

name Fully qualified name on the form [package].
[package].[typeName]

Identification

Kernel and Features identification is based on a X509 certificate. The 6 first fields defined by RFC 2253 (CN : com-
monName, L : localityName, ST : stateOrProvinceName, O : organizationName, OU : organizationalUnitName,
C : countryName) can be read by calling ej.kf.Module.getProvider().getValue(...) .

The certificate file must be configured as following:

• placed beside the related [name].kf file.

• named [name].cert .

• DER -encoded andmay be supplied in binary or printable (Base64) encoding. If the certificate is provided in
Base64 encoding, it must be bounded at the beginning by -----BEGIN CERTIFICATE----- , and must be
bounded at the end by -----END CERTIFICATE----- .

3.5. Application Developer Guide 354

https://tools.ietf.org/html/rfc5280

MicroEJ Documentation,

Shared Interface Declaration

A Shared Interface file is an XML file ending with the .si suffix with the following format:

Listing 13: Illustration 13: Shared Interface XML Schema Specification

<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'>

<xs:element name='sharedInterfaces'>
<xs:complexType>
<xs:choice minOccurs='0' maxOccurs='unbounded'>
<xs:element ref='sharedInterface'/>

</xs:choice>
</xs:complexType>

</xs:element>

<xs:element name='sharedInterface'>
<xs:complexType>
<xs:attribute name='name' type='xs:string' use='required'/>
</xs:complexType>

</xs:element>

</xs:schema>

Kernel Advanced Configuration

The kernel.intern files is for Kernel advanced configurations such as declaring context local storage static fields. It
must appear at the root of any application classpath (directory or JAR file).

Listing 14: Illustration 14: Kernel Intern Root XMLSchemaSpecification

<!--
Root Element
-->

<xs:element name='kernel'>
<xs:complexType>
<xs:choice minOccurs='0' maxOccurs='unbounded'>
<xs:element ref='contextLocalStorage'/>
<xs:element ref='property'/>

</xs:choice>
</xs:complexType>

</xs:element>

Context Local Storage Static Field Configuration

XML Schema & Format

Listing 15: Table 5: Context Local Storage XML Schema Specification

<xs:element name='contextLocalStorage'>
<xs:complexType>
<!--
Static Field Simple Name.

(continues on next page)

3.5. Application Developer Guide 355

MicroEJ Documentation,

(continued from previous page)

-->
<xs:attribute name='name' type='xs:string' use='required'/>
<!--
Optional Initialization Method descriptor, as specified by Kernel API method descriptor.
-->

<xs:attribute name='initMethod' type='xs:string' use='optional'/>
</xs:complexType>

</xs:element>

Typical Example

The following illustration describes the definition of a context local storage static field (I), which is duplicated in
each context (Kernel and Features):

Fig. 105: Illustration 15: Context Local Storage of Static Field Example

The following illustration describes a detailed sequence of method calls with the expected behavior.

3.5. Application Developer Guide 356

MicroEJ Documentation,

Fig. 106: Illustration 16: Context Local Storage Example of Initialization Sequence

Scheduler

The Core Engine features a Green Threads model. The semantic is as follows:

• preemptive for different priorities,

• round-robin for same priorities,

• “priority inheritance protocol” when priority inversion occurs.3

Threads stacks automatically adapt their sizes according to the thread requirements: once a thread terminates, its
associated stack is reclaimed, freeing the corresponding RAMmemory.

Garbage Collector

The Core Engine includes a state-of-the-art memory management system, the Garbage Collector (GC). It manages
a bounded piece of RAM memory, devoted to the Managed world. The GC automatically frees dead Java objects,
and defragments the memory in order to optimize RAM usage. This is done transparently while the Application
keep running.

See also Garbage Collector options for more details.
3 This protocol raises the priority of a thread that is holding a monitor needed by a higher-priority thread, to the priority

of that higher-priority thread (until exiting the monitor).

3.5. Application Developer Guide 357

https://en.wikipedia.org/wiki/Green_threads

MicroEJ Documentation,

Death Notification

Most objects are reclaimable objects. Sometimes, they interact with the native or system resources using handles.
Those handles represent underlying data that needs to be closed/freed/acknowledged/… when the object that
holds the handle dies.

The Application can get notified when an object is dead through the use of WeakReference objects. When such ob-
jects get their weak reference set to null by the system, they are added to the ReferenceQueue theywere assigned
to at their creation.

Death Notification Actions

Once an object has expired, it cannot be brought to life again. It is the responsibility of the application to make
provisions for all actions that have to be taken on an object death. Such provisions are materialized by subclasses
of the WeakReference class.

ReferenceQueue.poll() and ReferenceQueue.remove() methods allow the execution of a hook at the death of the
object referenced by the weak reference. The first one returns null when queue is empty whereas the second one
blocks while the queue is empty.

The Application is responsible of the execution of such hook.

Limitations

Primitive Types

Getting a Class instance of a primitive type is not supported:

• boolean.class ,

• byte.class ,

• char.class ,

• short.class ,

• int.class ,

• long.class ,

• float.class ,

• double.class .

On Architecture 8.x , you will get the following dedicated error message:

SOAR-L ERROR :
[M79] - Unsupported access to the Class instance of a primitive type (found 'boolean.class' in method 'com.
→˓mycompany.MyClass.myMethod()void')

On Architecture 7.x you will get the following default error message:

No such field TYPE at com/mycompany/MyClass.myMethod()V.

3.5. Application Developer Guide 358

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/ref/WeakReference.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/ref/ReferenceQueue.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/ref/WeakReference.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/ref/ReferenceQueue.html#poll--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/ref/ReferenceQueue.html#remove--

MicroEJ Documentation,

Architecture Characteristics

The Application can retrieve some characteristics of the Architecture on which it is running. Architecture charac-
teristics are automatically provided as constants. Here are the most notable ones:

• com.microej.architecture.capability=[tiny|single|multi] : Core Engine Capability

• com.microej.architecture.name=[architecture_uid] : Architecture name.

• com.microej.architecture.level=[eval|prod] : Usage level (Evaluation or Production).

• com.microej.architecture.toolchain=[toolchain_uid] : Toolchain name.

• com.microej.architecture.version=[M.m.p] : Architecture version.

See also Architecture Naming Convention for more details.

The following code prints the formatted Architecture characteristics on standard output. You can copy-paste and
adapt it to your needs.

String name = Constants.getString(”com.microej.architecture.name”);
String version = Constants.getString(”com.microej.architecture.version”);
String buildLabel = Constants.getString(”com.microej.architecture.buildLabel”);

String usage = Constants.getString(”com.microej.architecture.level”);
String usageStr;
if (usage.equals(”prod”) || usage.equals(”dev”)) {
usageStr = ”Production”;

} else if (usage.equals(”eval”)) {
usageStr = ”Evaluation”;

} else {
usageStr = usage;

}

String capability = Constants.getString(”com.microej.architecture.capability”);
String capabilityStr;
if (capability.equals(”multi”)) {
capabilityStr = ”Multi”;

} else if (capability.equals(”tiny”)) {
capabilityStr = ”Tiny”;

} else if (capability.equals(”single”) || capability.equals(”mono”)) {
capabilityStr = ”Mono”;

} else {
capabilityStr = capability;

}

String isaStr = Constants.getString(”com.microej.architecture.architecturePrintableName”);
String toolchainName = Constants.getString(”com.microej.architecture.toolchainPrintableName”);
String toolchainFullName = Constants.getString(”com.microej.architecture.toolchain”);

System.out.println(”- Name: ” + name);
System.out.println(”- Version: ” + version + ” (” + buildLabel + ”)”);
System.out.println(”- Usage: ” + usageStr);
System.out.println(”- Core Engine Capability: ” + capabilityStr + ”-Sandbox”);
System.out.println(”- Instruction Set Architecture: ” + isaStr);
System.out.println(”- Compilation Toolchain: ” + toolchainName + ” (” + toolchainFullName + ”)”);

3.5. Application Developer Guide 359

MicroEJ Documentation,

3.5.2 SOAR

This chapter describes SOAR capabilities and optimizations from the Application developer’s point of view. To get
more details on its internal structure, please refer to SOAR Build Phases section.

Java Symbols Encoding

Java symbols are any of package, type, method, field, or local names. In .class files, they are encoded in UTF-8 .
However, SOAR only supports Java symbols composed of characters that can be stored on 8 bits (unsigned byte).

This is typically the case of ISO-8859-X encoding family.

If you try to build an Application that includes an unsupported Java symbol you will get the following error:

Unsupported Java symbol XXX in file YYY. A character cannot be stored on an unsigned byte.

Note: Classpath *.list files are standard Java properties files that are encoded in ISO-8859-1 (Latin-1). If you
need to refer to a Java Symbol that contains a character out of this charset, you must declare the character using
the \uHHHH notation where HHHH is the hexadecimal index of the character in the Unicode character set.

Class Initialization Code

SOAR complies with the deterministic class initialization (<clinit>) order specified in [BON] specification. The
application is statically analyzed from its entry points in order to generate a clinit dependency graph. The com-
puted clinit sequence is the result of the topological sort of the dependency graph. An error is thrown if the clinit
dependency graph contains cycles.

A clinit map file (ending with extension .clinitmap) is generated beside the SOAR object file. It describes for each
clinit dependency:

• the types involved

• the kind of dependency

• the stack calls between the two types

In case of complex clinit dependencies graph, the SOAR may detect static cycles (circular dependencies) and fail
with an error. In such case, you have to manually cut-off the cycles, by providing the explicit clinit dependencies.

Explicit clinit dependencies are declared in XML files ending with the .clinitdesc extension, at the root of a library
or application classpath.

The file has the following format:

<?xml version='1.0' encoding='UTF-8'?>
<clinit>

<type name=”T1” depends=”T2”/>
</clinit>

where T1 and T2 are fully qualified names on the form a.b.C . This explicitly forces the SOAR to create a depen-
dency from T1 to T2 , and therefore cuts a potentially detected dependency from T2 to T1 .

3.5. Application Developer Guide 360

https://en.wikipedia.org/wiki/ISO/IEC_8859
https://en.wikipedia.org/wiki/.properties

MicroEJ Documentation,

Method Devirtualization

Method devirtualization consists of transforming a virtual method call to a direct method call when possible. A
virtual method call is a call to a non-private instance method declared either in an interface or in a class. The Core
Engine determines the proper method to call at runtime depending on the actual class of the object. A call to a
constructor or a private method is already optimized as a direct method call by the Java compiler.

SOAR automatically optimizes a virtual method call to a direct method call if there is one and only one embedded
implementation method.

Note: SOAR generates the list of the embeddedmethods in the SOAR Information File.

Method Inlining

Method inlining consists of replacing a direct method call with the content of themethod. This avoids the creation
of a new stack frame context, which can be slower than executing the code itself. Method inlining is transitively
applied from leaf to root methods.

The following method code patterns are inlined:

• empty code after processing assertions and if code removal.

• call to a constructor with no parameters.

• call to a private method with no parameters.

• call to a static method with no parameters, if and only if the caller is also a static method.

Note: Method inlining is performed aftermethod devirtualization, so a virtual method call will be inlined if there is
a unique embedded implementation method that matches one of the inlinedmethod code patterns.

3.5. Application Developer Guide 361

MicroEJ Documentation,

Binary Code Verifier

The Binary Code Verifier is the tool that scrutinizes the bytecode instructions for adherence to strict rules and con-
straints. This process is crucial for preventing runtime errors, security vulnerabilities, and unexpected behavior. It
ensures that code loaded by the SOAR is in a consistent state before being linked. Consequently, this guarantees
the safe execution of the code by the Core Engine.

Fig. 107: Application Build Flow with Binary Code Verifier

The Binary Code Verifier performs tasks including:

• Type Checking: Verifying that variables and operands are used in a manner consistent with their declared
data types, preventing type-related errors at runtime.

• Bytecode Structure: Ensuring the bytecode is well-formed and follows the structure required by the JVM,
which helps prevent memory corruption and crashes.

• Stack Management: Checking that the operand stack used for calculations and evaluations is properly man-
aged to prevent stack overflows or underflows.

• Access Control: Verifying that class accesses and method invocations adhere to Java’s access control rules,
ensuring data encapsulation and security.

• Exception Handling: Validating that exception handlers are correctly defined and that exceptions are caught
and handled appropriately.

• Control Flow: Analyzing the flow of control within bytecode to detect anomalies in loops, branches, and
jumps that could lead to program instability.

A default implementation, derived from the Apache BCEL Project, is included in the SOAR. If you wish to integrate
an alternative implementation, contact our support team for access to the SOAR interface API and integration in-
structions.

Note: The Binary Code Verifier is enabled by default when building a Sandboxed Application, and disabled by

3.5. Application Developer Guide 362

https://commons.apache.org/proper/commons-bcel/
https://www.microej.com/contact/#form_2

MicroEJ Documentation,

default when building a Standalone Application. See Option(checkbox): Enable Bytecode Verifier for more details.

Enable SOAR Verbose Logs

SOAR logs can be enabled by setting the execution.verbose ApplicationOption to true . As for ApplicationOptions,
with SDK 6 the system property must be prefixed with microej.option .

For instance, to enable SOAR logs from command line:

-Dmicroej.option.execution.verbose=true

or from gradle.properties file:

systemProp.microej.option.execution.verbose=true

You should see SOAR logs on tasks buildExecutable , buildFeature and buildFeatureFromWPK . For instance:

...
[SOAR-L] Loaded classpath entry /projectpath/build/classes/java/main
[SOAR-L] Loaded Feature Main from file /projectpath/build/generated/microej-app-wrapper/feature-resources/
→˓feature.kf
[SOAR-L] Added type org.example.project.MainWrapper to be loaded (type is referenced by the file /projectpath/
→˓build/generated/microej-app-wrapper/feature-resources/feature.kf)
[SOAR-L] Added immutables entry com.is2t.microui.fonts.data (type is referenced by the option 'rootImmutables')
[SOAR-L] Try the load of com.is2t.microui.fonts.data from directory /projectpath/build/classes/java/main
...
[SOAR-S] Selected type org.example.project.MainWrapper
[SOAR-S] Selected method org.example.project.MainWrapper.start()void
[SOAR-S] Selected immutable 'ej.microui.fonts.list'
[SOAR-S] Generated map file to /projectpath/build/application/feature/feature/application.selectormap
[SOAR-S] Generated shared object file to /projectpath/build/application/feature/feature/application.so
INFO: Generated Kernel metadata file to /Users/bguedas/tmp/projects/test_junit/build/kernelExecutable/kernel.
→˓kdat
[SOAR-O] Generated file to /projectpath/build/application/feature/feature/application.optimizermap
[SOAR-O] Generated file to /projectpath/build/application/feature/feature/application.map
[SOAR-O] Generated object file to /projectpath/build/application/feature/feature/application.o
...

3.5.3 SOAR Output Files

When building a Standalone Application, multiple files are generated next to the ELF executable file.

Launch Output Folder

Using aMicroEJ Application Launch, the files are generated in a folder which is named like themain type andwhich
is located in the output folder specified in the run configuration.

Build Output Files (Architecture 8.x)

Build Output Files (Architecture 7.x)

3.5. Application Developer Guide 363

MicroEJ Documentation,

3.5. Application Developer Guide 364

MicroEJ Documentation,

Published Module Files

After building the Standalone Application, the publishedmodule contains the following main files:

• [name]-[version].out : Firmware (ELF Executable)

• [name]-[version].zip : Virtual Device

• [name]-[version]-workingEnv.zip : Build intermediate files, including the content of the launch output
Folder

Fig. 108: Published Standalone Application Module Files

The SOARMap File

The .map file lists every embedded symbol of the application (section, Java class or method, etc.) and its size in
ROM or RAM. Since Architecture 8.x , this file is called <main class>.map . It was formerly named SOAR.map
for Architecture 7.x . This file can be opened using theMemory Map Analyzer.

The embedded symbols are grouped intomultiple categories. For example, the Object class and its methods are
grouped in the LibFoundationEDC category. For each symbol or each category, you can see its size in ROM (
Image Size) and RAM (Runtime Size).

The SOAR groups all the Java strings in the same section, which appears in the ApplicationStrings category. The
sameapplies to the static fields (Statics category), the types (Types category), and the class names (ClassNames
category).

The SOAR Information File

The SOAR information file contains details on the embedded elements of an application.

Since Architecture 8.x , information are dispatched in separate files which are related to SOAR build phases:

• soar/<main class>.loadermap : generated by the SOAR Resolver. It provides details on files and resources
that have been loaded from the Application Classpath.

• soar/<main class>.selectormap : generated by the SOAR Resolver. It provides details about the elements
that have been included in the application.

• soar/<main class>.optimizermap : generated by the SOAR Optimizer. It provides details about the ele-
ments that have been linked in the application.

Each of these files can be opened with an XML editor. The following table describes the information that can be
retrieved with their file location.

3.5. Application Developer Guide 365

MicroEJ Documentation,

The SOAR Information File (Architecture 8.x)

The SOAR Information File (Architecture 7.x)

Information XML Location (tag > subtag
[attribute=value])

File Location

Classpath
classpath soar/<main class>.loadermap

Resources
resources soar/<main class>.loadermap

External resources
external_resources soar/<main class>.loadermap

System properties
properties soar/<main class>.loadermap

Constants
constants soar/<main class>.loadermap

Immutables N/A N/A
Interned strings

strings soar/<main class>.selectormap
Class initialization order

clinit soar/<main class>.selectormap
Types

types soar/<main class>.selectormap
Number of types

types>[nb] soar/<main class>.selectormap
Number of concrete
classes types[nbConcreteClasses] soar/<main class>.selectormap
Number of abstract
classes types[nbAbstractClasses] soar/<main class>.selectormap
Number of interfaces

types[nbInterfaces] soar/<main class>.selectormap
Number of arrays

types[nbArrays] soar/<main class>.selectormap
Class instance size (in
bytes) types>type[instanceSize] soar/<main class>.optimizermap
Type embeds its name

types>type[hasRuntimeName
= true]

soar/<main class>.selectormap

Type is exposed as Kernel
API types>type[api=true] soar/<main class>.selectormap
Number of reference
fields in a class types>type[nbReferenceFields] soar/<main class>.optimizermap
Methods

methods soar/<main class>.selectormap
Method code size (in
bytes) methods>method[codesize] soar/<main class>.optimizermap
Method is inlined

meth-
ods>method[inlined=true]

soar/<main class>.optimizermap

Method is exposed as Ker-
nel API methods>method[api=true] soar/<main class>.selectormap
Statics fields

statics soar/<main class>.selectormap

3.5. Application Developer Guide 366

MicroEJ Documentation,

Information XML tag>subtag[at-
tribute=value]

File

Classpath
classpath soar/<main class>.xml

Resources
selected_resources soar/<main class>.xml

External resources
external_resources soar/<main class>.xml

System properties
java_properties soar/<main class>.xml

Constants
constants soar/<main class>.xml

Immutables
selected_immutables soar/<main class>.xml

Interned strings
selected_internStrings soar/<main class>.xml

Class initialization order
clinit_order soar/<main class>.xml

Types
selected_types soar/<main class>.xml

Number of types
selected_types[nb] soar/<main class>.xml

Number of concrete
classes selected_types[nbConcrete-

Classes]
soar/<main class>.xml

Number of abstract
classes selected_types[nbAbstract-

Classes]
soar/<main class>.xml

Number of interfaces
selected_types[nbInterfaces] soar/<main class>.xml

Number of arrays
selected_types[nbArrays] soar/<main class>.xml

Class instance size (in
bytes) se-

lected_types>type[instanceSize]
soar/<main class>.xml

Type embeds its name
required_types soar/<main class>.xml

Type is exposed as Kernel
API se-

lected_types>type[api=true]
soar/<main class>.xml

Number of reference
fields in a class se-

lected_types>type[nbReferenceFields]
soar/<main class>.xml

Methods
selected_methods soar/<main class>.xml

Method code size (in
bytes) selected_meth-

ods>method[codesize]
soar/<main class>.xml

Method is inlined
selected_meth-
ods>method[inlined=true]

soar/<main class>.xml

Method is exposed as Ker-
nel API selected_meth-

ods>method[api=true]
soar/<main class>.xml

Statics fields
selected_static_fields soar/<main class>.xml

3.5. Application Developer Guide 367

MicroEJ Documentation,

3.5.4 Virtual Device

The Virtual Device includes the same custom MicroEJ Core, libraries, and pre-installed Applications as the real
device. The Virtual Device allows developers to run their applications either on the Simulator, or directly on the
real device through local deployment.

The Simulator runs a mockup board support package (BSP Mock) that mimics the hardware functionality. An ap-
plication on the Simulator is run as a Standalone Application.

Before an application is locally deployed on device, the SDK ensures that it does not depend on any API that is
unavailable on the device.

Fig. 109: MicroEJ Virtual Device Architecture

3.5.5 MicroEJ Classpath

MicroEJ Applications run on a target device and their footprint is optimized to fulfill embedded constraints. The
final execution context is an embedded device that may not even have a file system. Files required by the appli-
cation at runtime are not directly copied to the target device, they are compiled to produce the application binary
code which will be executed by the Core Engine.

As a part of the compile-time trimming process, all types not required by the embedded application are eliminated
from the final binary.

MicroEJ Classpath is a developer defined list of all places containing files to be embedded in the final application
binary. MicroEJ Classpath is made up of an ordered list of paths. A path is either a folder or a zip file, called a JAR
file (JAR stands for Java ARchive).

• Application Classpath explains how the MicroEJ Classpath is built from a MicroEJ Application project.

• Classpath Load Model explains how the application contents is loaded fromMicroEJ Classpath.

• Classpath Elements specifies the different elements that can be declared in MicroEJ Classpath to describe
the application contents.

3.5. Application Developer Guide 368

MicroEJ Documentation,

Application Classpath

The following schema shows the classpath mapping from a MicroEJ Application project to the MicroEJ Classpath
ordered list of folders and JAR files. The classpath resolution order (left to right) follows the project appearance
order (top to bottom).

Fig. 110: MicroEJ Application Classpath Mapping

Note: For Sandboxed Applications, when a library cannot be added as a dependency (because it is not available in
a repository for example), its JAR file can be directly added in the META-INF/libraries folder of the Application
project. It is then automatically added in the compilation classpath and is available for the Application.

3.5. Application Developer Guide 369

MicroEJ Documentation,

Classpath Load Model

A MicroEJ Application classpath is created via the loading of :

• an entry point type,

• all *.[extension].list files declared in a MicroEJ Classpath.

Thedifferentelements that constituteanapplicationaredescribed inClasspathElements. Theyare searchedwithin
MicroEJ Classpath from left to right (the first file found is loaded). Types referenced by previously loaded MicroEJ
Classpath elements are loaded transitively.

Fig. 111: Classpath Load Principle

Classpath Elements

The MicroEJ Classpath contains the following elements:

• An entrypoint described in section Application Entry Points;

• Types in .class files, described in section Types;

• Immutables Object data files, described in Section Immutable Objects;

• Raw Resources, Images, Fonts and Native Language Support (NLS) described in Application Resources;

• *.[extension].list files, declaring contents to load. Supported list file extensions and format is specific to
declared application contents and is described in the appropriate section.

At source level, Java types are stored in src/main/java folder of themodule project, any other kind of resources
and list files are stored in the src/main/resources folder.

3.5. Application Developer Guide 370

MicroEJ Documentation,

Application Entry Points

MicroEJ Application entry point declaration differs depending on the application kind:

• In case of a Standalone Application, it is a class that contains a public static void main(String[]) method,
declared using the option application.main.class .

• In case of a Sandboxed Application, it is a class that implements ej.kf.FeatureEntryPoint, declared using the
entryPoint property in the .kf file in the src/main/resources/ folder.

Types

MicroEJ types (classes, interfaces) are compiled from source code (.java) to classfiles (.class). When a type is
loaded, all types dependencies found in the classfile are loaded (transitively).

A type can be declared as a Required type in order to enable the following usages:

• to be dynamically loaded from its name (with a call to Class.forName(String));

• to retrieve its fully qualified name (with a call to Class.getName()).

• when Tiny-Sandbox capability is enabled, to retrieve its package (with a call to Class.getPackage()).

A type that is not declared as a Required typemay not have its fully qualified name (FQN) embedded. Its FQN can
be retrieved using the stack trace reader tool (see Stack Trace Reader).

Required Types are declared in MicroEJ Classpath using *.types.list files. The file format is a standard Java prop-
erties file, each line listing the fully qualified name of a type. Example:

The following types are marked as MicroEJ Required Types
com.mycompany.MyImplementation
java.util.Vector

Resources

Resources are binary files that need to be embedded by the application.

Note: For more details on all supported resources types, please refer to Application Resources chapter.

Raw resources are resources that can be dynamically retrieved with a call to java.lang.Class.getResource-
AsStream(String). Raw Resources are declared in *.resources.list files (and in *.externresources.list for external
resources, see Application Resources).

3.5. Application Developer Guide 371

https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/FeatureEntryPoint.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#forName-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#getName--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#getPackage--
https://docs.oracle.com/en/java/javase/24/docs/api/java.base/java/util/Properties.html#load(java.io.Reader)
https://docs.oracle.com/en/java/javase/24/docs/api/java.base/java/util/Properties.html#load(java.io.Reader)
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#getResourceAsStream-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#getResourceAsStream-java.lang.String-

MicroEJ Documentation,

Raw Resource

internal?

*.resources.list

yes

*.resources.list +
*.externresources.list

no=external

The file format is a standard Java properties file, each line is a relative / separated name of a file in MicroEJ Class-
path to be embedded as a resource. Example:

The following resource is embedded as a raw resource
com/mycompany/MyResource.txt

A resource is 4-bytes aligned in memory by default. Starting from Architecture 8.0.0, it is possible to modify the
alignment constraint. Example:

The following resource is linked to a 32-bytes aligned address in memory.
com/mycompany/MyResource.txt:32

Note: If a Resource is declared multiple times in the classpath, the alignment constraint with the highest value is
used. If the alignment constraints are specific to the target, it is recommended to only declare them in the Appli-
cation project instead of libraries.

If a resource filename contains a delimiter (such as a whitespace, : , or =), the delimiter must be escaped using
the backslash \ character in the *.resources.list file. Example:

The resource filename: ”resource name contains whitespace.txt”
com/mycompany/resource\ name\ contains\ whitespace.txt

3.5. Application Developer Guide 372

https://docs.oracle.com/en/java/javase/24/docs/api/java.base/java/util/Properties.html#load(java.io.Reader)

MicroEJ Documentation,

Immutable Objects

Immutables objects are regular read-only objects that canbe retrievedwith a call to ej.bon.Immutables.get(String).
Immutables objects are declared in files called immutable objects data files, which format is described in the [BON]
specification. Immutables objects data files are declared in MicroEJ Classpath using *.immutables.list files. The
file format is a standard Java properties file, each line is a / separated name of a relative file in MicroEJ Classpath
to be loaded as an Immutable objects data file. Example:

The following file is loaded as an Immutable objects data files
com/mycompany/MyImmutables.data

System Properties

System Properties are key/value string pairs that can be accessed with a call to System.getProperty(String).

System Properties are defined when building a Standalone Application, by declaring *.properties.list files in Mi-
croEJ Classpath.

The file format is a standard Java properties file. Example:

Listing 16: Example of Contents of a MicroEJ Properties File

The following property is embedded as a System property
com.mycompany.key=com.mycompany.value
microedition.encoding=ISO-8859-1

System Properties are resolved at runtime, and all declared keys and values are embedded as intern Strings.

SystemProperties canalsobedefinedusing StandaloneApplicationOptions. This canbedoneby setting theoption
with a specific prefix in their name:

• Properties for both the Core Engine and the Simulator : name starts with microej.java.property.*

• Properties for the Simulator only: name starts with sim.java.property.*

• Properties for the Core Engine only: name starts with emb.java.property.*

For example, to define the property myProp with the value theValue , set the following option :

Listing 17: Example of MicroEJ System Property Definition as Applica-
tion Option

microej.java.property.myProp=theValue

Note: A System Property defined as an Application Option takes precedence over a System Property defined in
the classpath.

Note: When building a Sandboxed Application, *.properties.list files found in MicroEJ Classpath are silently
skipped.

3.5. Application Developer Guide 373

https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Immutables.html#get-java.lang.String-
https://docs.oracle.com/en/java/javase/24/docs/api/java.base/java/util/Properties.html#load(java.io.Reader)
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#getProperty-java.lang.String-
https://docs.oracle.com/en/java/javase/24/docs/api/java.base/java/util/Properties.html#load(java.io.Reader)

MicroEJ Documentation,

Constants

Constants are key/value string pairs that can be accessed with a call to ej.bon.Constants.get[Type](String), where
Type if one of:

• Boolean,

• Byte,

• Char,

• Class,

• Double,

• Float,

• Int,

• Long,

• Short,

• String.

Constants are declared in MicroEJ Classpath *.constants.list files. The file format is a standard Java properties
file. Example:

Listing 18: Example of Contents of a BON constants File

The following property is embedded as a constant
myconstantkey=myconstantvalue

Starting from Architecture 8.3.0, it is also possible to define a constant using the following Application Option:

Listing 19: Example of declaration of a BON constant Application Op-
tion

microej.constant.myconstantkey=myconstantvalue

Note: A Constant defined as an Application Option takes precedence over a constant defined in the classpath.

Constants are resolved at binary level without having to recompile the sources.

At link time, constants are directly inlined at the place of Constants.get[Type] method calls with no cost.

The String key parameter must be resolved as an inlined String:

• either a String literal ”myconstantkey”

• or a static final String field resolved as a String constant

The String value is converted to the desired type using conversion rules described by the [BON] API. A boolean
constant declared in an if statement condition can be used to fully remove portions of code. This feature is similar
to C pre-processors #ifdef directivewith the difference that this optimization is performed at binary level without
having to recompile the sources.

3.5. Application Developer Guide 374

https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Constants.html
https://docs.oracle.com/en/java/javase/24/docs/api/java.base/java/util/Properties.html#load(java.io.Reader)
https://docs.oracle.com/en/java/javase/24/docs/api/java.base/java/util/Properties.html#load(java.io.Reader)

MicroEJ Documentation,

Listing 20: Example of if code removal using a BON boolean constant

if (Constants.getBoolean(”myconstantkey”)) {
System.out.println(”this code and the constant string will be fully removed when the constant is resolved to

→˓'false'”)
}

Please mind that Constants.getXXX must be inlined in the if condition to take effect. The following piece of
code will not remove the code:

static final boolean MY_CONSTANT = Constants.getBoolean(”myconstantkey”);

...

if(MY_CONSTANT){
System.out.println(”this code will not be removed when MY_CONSTANT is resolved to 'false'”)

}

Note: InMulti-Sandbox environment, constants are processed locally within each context. In particular, constants
defined in the Kernel are not propagated to Sandboxed Applications.

3.5.6 Application Resources

An Application resource is the contents of a file identified its relative path from the Application classpath.

An Application resource is one of the following type:

• Raw Resource,

• Image,

• Font,

• Internationalized Message (Native Language Support).

The resource may be stored in RAM, flash, or external flash; and it is the responsibility of the Core Engine and/or
the BSP to retrieve and load it.

There are two ways to store resources:

• Internal resource: The resource is taken into consideration during the Application build. The SOAR step loads
the resource and copies it into the same C library as the Application. Like the Application, the resource is
linked into the CPU address space range (internal device memories, external parallel memories, etc.).

• External resource: The resource is not taken into consideration during the Application build. It is the respon-
sibility of the BSP project to manage external resources. The resource is often programmed outside the CPU
address space range (storage media like SD card, serial NOR flash, EEPROM, etc.).

TheBSPmust implement theproper LowLevel API (LLAPI)C functions: LLEXT_RES_impl.h . SeeExternal
Resources Loader for more information on the implementation.

All resourcesmustbeadded in theproject, usually in src/main/resources/... folder. All resourcesmustbedeclared
in the appropriate *.list files depending on the type (raw, image, font, NLS) and the storage location (internal or
external). The following figure summarized how to declare resources:

3.5. Application Developer Guide 375

MicroEJ Documentation,

Raw Resource Image Font NLS

Add resource to project
in src/main/resources/...

Type of resource?

internal? internal? internal? internal?

*.resources.list

yes

*.resources.list +
*.externresources.list

no=external

*.images.list

yes

*.imagesext.list

no=external

*.fonts.list

yes

*.fontsext.list

no=external

*.nls.list

yes

*.nls.list +
*.externresources.list

no=external

For more details on how to use Application resources, refer to the following dedicated sections:

• Raw Resource

• Image

• Font

• Internationalized String (Native Language Support)

3.5.7 Standalone Application

Introduction

A Standalone Application is a Java Application directly linked to the C code to produce an Executable. Such an
application must define a main entry point (i.e., a class containing a public static void main(String[]) method).

The following figure shows the general process of building a Standalone Application to an Executable.

3.5. Application Developer Guide 376

MicroEJ Documentation,

Fig. 112: Standalone Application Link Flow

Standalone Application Options

To run a Standalone Application on a VEE Port, a set of options must be defined. Options can be of different types:

• Memory Allocation options (e.g., set the Managed heap size). These options are usually called link-time op-
tions.

• Simulator & Debug options (e.g., enable periodic Managed heap dump).

• Deployment options (e.g., copy microejapp.o to a suitable BSP location).

• Foundation Library specific options (e.g., embed UTF-8 encoding).

The following section describes options providedby the latest Architecture version. Please consult the appropriate
Pack(s) documentation for options related to other Foundation Libraries (MicroUI, NET, SSL, FS, …) integrated to
your VEE Port.

Notice that some options may not be supported by your VEE Port, in the following cases:

• Option is specific to the Core Engine capability (tiny/mono/multi).

• Option is specific to the target (Core Engine or Simulator).

• Option has been introduced in a newer Architecture version.

3.5. Application Developer Guide 377

MicroEJ Documentation,

Defining an Option with SDK 6

Using a Properties File

With the SDK 6, the Applications options can be defined in a properties file located in the configuration folder of
the project. Usually, the options are defined in a file named common.properties , but all properties files located in
this folder are loaded, nomatter what their name is.

To set an option in a properties file, open the file in a text editor and add a line to set the desired option to the
desired value, for example:

soar.generate.classnames=false

Using System Properties

Application options can be defined by Systemproperties using the microej.option.* prefix. Systemproperties can
either be defined in command line using -D argument, or in gradle.properties file using systemProp.* prefix.
For instance, in command line:

-Dmicroej.option.soar.generate.classnames=false

or in gradle.properties file:

systemProp.microej.option.soar.generate.classnames=false

See the How To Pass a Property to Project Build Script for more information about System properties.

Note: When Application options are also defined in properties from the configuration folder of the project, they
will be overridden by System properties.

Defining an Option with SDK 5 or lower

With the SDK5or lower, a StandaloneApplicationoption canbedefined either froma launcher or fromaproperties
file. It is alsopossible touseboth together. EachMicroEJArchitectureandMicroEJPackoptioncomeswithadefault
value, which is used if the option has not been set by the user.

Using a Launcher

To set an option in a launcher, perform the following steps:

1. In the SDK, select Run > Run Configurations… menu,

2. Select the launcher of the application under MicroEJ Application or create a new one,

3. Select the Configuration tab,

4. Find thedesiredoption and set it to thedesired value. If the optiondoes not appear in thepage, there are two
cases: - the option has been introduced in a newer Architecture version, - the option is an advanced option.
It is set using a system property in the JRE Tab . See the JRE Tab section for more details.

3.5. Application Developer Guide 378

MicroEJ Documentation,

It is recommended to index the launcher configuration to your version control system. To export launcher options
to the filesystem, perform the following steps:

1. Select the Common tab,

2. Select the Shared file: option and browse the desired export folder,

3. Press the Apply button. A file named [launcher_configuration_name].launch is generated in the export
folder.

Using a Properties File

Options can be also be defined in properties files.

When a Standalone Application is built using the firmware-singleapp skeleton, options are loaded fromproperties
files located in the build folder at the root of the project.

The properties files are loaded in the following order:

1. Every file matching build/sim/*.properties , for Simulator options only (Virtual Device build). These files
are optional.

2. Every file matching build/emb/*.properties , for Device options only (Firmware build). These files are op-
tional.

3. Every file matching build/*.properties , both for Simulator and Device options. At least one file is required.

Usually, the build folder contains a single file named common.properties .

In case an option is defined in multiple properties files, the option of the first loaded file is taken into account and
the same option defined in the other files is ignored (a loaded option cannot be overridden).

The figure below shows the expected tree of the build folder:

Fig. 113: Build Options Folder

It is recommended to index the properties files to your version control system.

To set an option in a properties file, open the file in a text editor and add a line to set the desired option to the
desired value. For example: soar.generate.classnames=false .

To use the options declared in properties files in a launcher, perform the following steps:

1. In the SDK, select Run > Run Configurations… ,

2. Select the launcher of the application,

3. Select the Execution tab,

3.5. Application Developer Guide 379

MicroEJ Documentation,

4. Under Option Files , press the Add… button,

5. Browse the sim.properties file for Simulator or the emb.properties file for Device (if any) and press Open
button,

6. Add the common.properties file and press the Open button.

Note: An option set in a properties file can not be modified in the Configuration tab. Options are loaded in the
order theproperties files are added (youcanuse Up and Down buttons to change the file order). In Configuration
tab, hovering the pointer over an option field will show the location of the properties file that defines the option.

Generating a Properties File

In order to export options defined in a .launch file to a properties file, perform the following steps:

1. Select the [launcher_configuration_name].launch file,

2. Select File > Export > MicroEJ > Launcher as Properties File ,

3. Browse the desired output .properties file,

4. Press the Finish button.

Warning: The Simulator uses some system properties to configure internal memory limits. See Group: Ad-
vanced Simulation Options for more information.

Category: Runtime

3.5. Application Developer Guide 380

MicroEJ Documentation,

Group: Types

Option(checkbox): Embed all type names

Option Name: soar.generate.classnames

Default value: true

Description:

Embed the name of all types. When this option is disabled, only names of declared required types are embedded.

Option(checkbox): Group Methods by Type

Option Name: com.microej.soar.groupMethodsByType.enabled

Default value: false

Description:

Group all embedded methods of a Java type in single ELF section in microejapp.o . This avoids to reach the fol-
lowing SOAR error while building a large application and themaximumnumber of ELF sections (65536) is reached.

1 : ELF ERROR
[M1] - Invalid value for U2 field. Overflow detected when writing 102092.

Warning: This option affects the application code size (especially inline methods are embedded even if they
are not used).

Group: Assertions

Option(checkbox): Execute assertions on Simulator

Option Name: core.assertions.sim.enabled

Default value: false

Description:

When this option is enabled, assert statements are executed. Please note that the executed code may produce
side effects or throw java.lang.AssertionError .

Option(checkbox): Execute assertions on Device

Option Name: core.assertions.emb.enabled

Default value: false

Description:

When this option is enabled, assert statements are executed. Please note that the executed code may produce
side effects or throw java.lang.AssertionError .

3.5. Application Developer Guide 381

MicroEJ Documentation,

Group: Trace

Option(checkbox): Enable execution traces

Option Name: core.trace.enabled

Default value: false

Option(checkbox): Start execution traces automatically

Option Name: core.trace.autostart

Default value: false

Category: Memory

Group: Heaps

Option(text): Managed heap size (in bytes)

Option Name: core.memory.javaheap.size

Default value: 65536

Description:

Specifies the Managed heap size in bytes.

A Managed heap contains live objects. An OutOfMemory error can occur if the heap is too small.

3.5. Application Developer Guide 382

MicroEJ Documentation,

Option(text): Immortal heap size (in bytes)

Option Name: core.memory.immortal.size

Default value: 4096

Description:

Specifies the Immortal heap size in bytes.

The Immortal heap contains allocated Immortal objects. An OutOfMemory error can occur if the heap is too small.

Group: Threads

Description:

This group allows the configuration of application and library thread(s). A thread needs a stack to run. This stack
is allocated from a pool and this pool contains several blocks. Each block has the same size. At thread startup the
thread uses only one block for its stack. When the first block is full it uses another block. Themaximum number of
blocks per thread must be specified. When the maximum number of blocks for a thread is reached or when there
is no free block in the pool, a StackOverflow error is thrown. When a thread terminates all associated blocks are
freed. These blocks can then be used by other threads.

Option(text): Number of threads

Option Name: core.memory.threads.size

Default value: 5

Description:

Specifies the number of threads the application will be able to use at the same time.

Option(text): Number of blocks in pool

Option Name: core.memory.threads.pool.size

Default value: 15

Description:

Specifies the number of blocks in the stacks pool.

Option(text): Block size (in bytes)

Option Name: core.memory.thread.block.size

Default value: 512

Description:

Specifies the thread stack block size (in bytes).

3.5. Application Developer Guide 383

MicroEJ Documentation,

Option(text): Maximum size of thread stack (in blocks)

Option Name: core.memory.thread.max.size

Default value: 4

Description:

Specifies themaximum number of blocks a thread can use. If a thread requires more blocks a StackOverflow error
will occur.

Category: Simulator

Group: Options

Description:

This group specifies options for MicroEJ Simulator.

Option(checkbox): Use target characteristics

Option Name: s3.board.compliant

Default value: false

Description:

When selected, this option forces the MicroEJ Simulator to use the MicroEJ Platform exact characteristics. It sets
the MicroEJ Simulator scheduling policy according to the MicroEJ Platform one. It forces resources to be explicitly
specified. It enables log trace and gives information about the RAMmemory size the MicroEJ Platform uses.

3.5. Application Developer Guide 384

MicroEJ Documentation,

Option(text): Slowing factor (0means disabled)

Option Name: s3.slow

Default value: 0

Description:

Format: Positive integer

This option allows the MicroEJ Simulator to be slowed down in order to match the MicroEJ Platform execution
speed. The greater the slowing factor, the slower the MicroEJ Simulator runs.

Group: HIL Connection

Description:

This group enables the control of HIL (Hardware In the Loop) connection parameters (connection betweenMicroEJ
Simulator and the Mocks).

Option(checkbox): Specify a port

Option Name: s3.hil.use.port

Default value: false

Description:

When selected allows the use of a specific HIL connection port, otherwise a random free port is used.

Option(text): Port

Option Name: s3.hil.port

Default value: 8001

Description:

Format: Positive integer

Values: [1024-65535]

It specifies the port used by the MicroEJ Simulator to accept HIL connections.

Option(text): Timeout (s)

Option Name: s3.hil.timeout

Default value: 10

Description:

Format: Positive integer

It specifies the time the MicroEJ Simulator should wait before failing when it invokes native methods.

3.5. Application Developer Guide 385

MicroEJ Documentation,

Option(text): Maximum frame size (bytes)

Option Name: com.microej.simulator.hil.frame.size

Default value: 262144

Description:

Maximum frame size in bytes. Must be increased to transfer large arrays to native side.

Group: Shielded Plug server configuration

Description:

This group allows configuration of the Shielded Plug database.

Option(text): Server socket port

Option Name: sp.server.port

Default value: 10082

Description:

Set the Shielded Plug server socket port.

Group: Advanced Simulation Options

When running large applications, the Simulator can abruptly reach a memory limit with the following trace:

[...] An error message [...]
”Internal limits reached. Please contact support@microej.com”
See error log file: /tmp/microej/s3/s3_1616489929186.log

Depending on the error message, one of the following optionsmust be set to increase the size of thememory area
which is full.

Option: Objects Heap Size

Error Message: java.lang.OutOfMemoryError exception thrown

Option Name: S3.JavaMemory.HeapSize

Default value: 4096 (kilobytes)

Description:

This memory area contains any kind of objects (regular, immortal and immutable objects). If you get a java.lang.
OutOfMemoryError exception but your Managed heap is not full, most likely you should augment this option. It
must be greater than the sum ofManaged heap and Immortal Heap.

3.5. Application Developer Guide 386

MicroEJ Documentation,

Option: System Chars Size

Error Message: Failed to allocate internString.

Option Name: S3.JavaMemory.SystemCharsSize

Default value: 1024 (kilobytes)

Description:

This memory area contains system interned strings. System interned strings are likely allocated by the debugger.
If you get a Failed to allocate internString. message while debugging an Application, most likely you should
augment this option.

Option: Application Chars Size

Error Message: Failed to allocate internString.

Option Name: S3.JavaMemory.ApplicationCharsSize

Default value: 4096 (kilobytes)

Description:

ThismemoryareacontainsApplication internedstrings (String literals). If yougeta Failed to allocate internString.
message while the Simulator is starting the Application, most likely you should augment this option.

Option: Methods Size

Error Message: Failed to allocate method's code.

Option Name: S3.JavaMemory.MethodsSize

Default value: 10000 (kilobytes)

Description:

This memory area contains loadedmethods code.

Option: Thread Stack Size

Error Message: The simulator has encountered a stack overflow error while analyzing method [...]

Option Name: S3.JavaMemory.ThreadStackSize

Default value: 300 (kilobytes)

Description:

This memory area contains all Application threads stacks.

3.5. Application Developer Guide 387

MicroEJ Documentation,

Option: Icetea Heap End

Error Message: S3 internal heap is full.

Option Name: IceteaRuntimeSupport.S3.HeapEnd

Default value: 64000000 (bytes)

Description:

This is the overall Simulator memory limit. It includes fixed sizes internal structures and all memory areas. The
value must be greater than the size of the memory areas that can be parameterized above.

Option: Symbol Table Size

Error Message: Symbols table area is full.

Option Name: S3.SymbolTable.MaxNbState

Default value: 500000

Description:

This is the number of symbols that can be handled by the internal symbol table (any kind of names: class names,
method names, …).

Category: Code Coverage

Group: Code Coverage

Description:

This group is used to set parameters of the code coverage analysis tool.

3.5. Application Developer Guide 388

MicroEJ Documentation,

Option(checkbox): Activate code coverage analysis

Option Name: s3.cc.activated

Default value: false

Description:

When selected it enables the code coverage analysis by the MicroEJ Simulator. Resulting files are output in the cc
directory inside the output directory. You canprocess these files to anHTML report afterwardwith the built-inCode
Coverage Analyzer .

Option(text): Saving coverage information period (in sec.)

Option Name: s3.cc.thread.period

Default value: 15

Description:

It specifies the period between the generation of .cc files.

Category: Debug

Group: Remote Debug

Option(text): Debug port

Option Name: debug.port

Default value: 12000

3.5. Application Developer Guide 389

MicroEJ Documentation,

Description:

Configures the JDWP debug port.

Format: Positive integer

Values: [1024-65535]

Category: Heap Dumper

Group: Heap Inspection

Description:

This group is used to specify heap inspection properties.

Option(checkbox): Activate heap dumper

Option Name: s3.inspect.heap

Default value: false

Description:

When selected, this option enables a dump of the heap each time the System.gc() method is called by the MicroEJ
Application.

3.5. Application Developer Guide 390

MicroEJ Documentation,

Category: Logs

Group: Logs

Description:

This group defines parameters for MicroEJ Simulator log activity. Note that logs can only be generated if the Sim-
ulator > Use target characteristics option is selected.

Some logs are sent when the Simulator executes some specific action (such as start thread, start GC, etc), other
logs are sent periodically (according to defined log level and the log periodicity).

Option(checkbox): system

Option Name: console.logs.level.low

Default value: false

Description:

When selected, System logs are sent when the Simulator executes the following actions:

start and terminate a thread

start and terminate a GC

exit

3.5. Application Developer Guide 391

MicroEJ Documentation,

Option(checkbox): thread

Option Name: console.logs.level.thread

Default value: false

Description:

When selected, thread information is sent periodically. It gives information about alive threads (status, memory
allocation, stack size).

Option(checkbox): monitoring

Option Name: console.logs.level.monitoring

Default value: false

Description:

When selected, threadmonitoring logs are sent periodically. It gives information about time execution of threads.

Option(checkbox): memory

Option Name: console.logs.level.memory

Default value: false

Description:

When selected, memory allocation logs are sent periodically. This level allows to supervise memory allocation.

Option(checkbox): schedule

Option Name: console.logs.level.schedule

Default value: false

Description:

When selected, a log is sent when the Simulator schedules a thread.

Option(checkbox): monitors

Option Name: console.logs.level.monitors

Default value: false

Description:

When selected, monitors information is sent periodically. This level permits tracing of all thread state by tracing
monitor operations.

3.5. Application Developer Guide 392

MicroEJ Documentation,

Option(text): period (in sec.)

Option Name: console.logs.period

Default value: 2

Description:

Format: Positive integer

Values: [0-60]

Defines the periodicity of periodical logs.

Category: Mock

Description:

Specify Hardware In the Loop Mock client options

Group: Debug

Option(checkbox): Enable Mock debug

Option Name: com.microej.simulator.hil.debug.enabled

Default value: false

3.5. Application Developer Guide 393

MicroEJ Documentation,

Option(text): Port

Option Name: com.microej.simulator.hil.debug.port

Default value: 8002

Category: Kernel

Group: Kernel UID

Option(checkbox): Enable

Option Name: com.microej.simulator.kf.kernel.uid.enabled

Default value: false

Option(text): UID

Option Name: com.microej.simulator.kf.kernel.uid

Default value: (empty)

3.5. Application Developer Guide 394

MicroEJ Documentation,

Category: Libraries

Category: EDC

Group: Java System.out

3.5. Application Developer Guide 395

MicroEJ Documentation,

Option(checkbox): Use a custom Java output stream

Option Name: core.outputstream.disable.uart

Default value: false

Description:

Select this option to specify another Java System.out print stream.

If selected, the default Java output stream is not used by the Java application. The Core Engine will not use the
default Java output stream at startup.

Option(text): Class

Option Name: core.outputstream.class

Default value: (empty)

Description:

Format: Java class like packageA.packageB.className

Defines the Java class used to manage System.out .

At startup the Core Engine will try to load this class using the Class.forName() method. If the given class is not
available, itwill use thedefault Javaoutput streamasusual. The specified classmustbeavailable in theapplication
classpath.

Group: Runtime options

Description:

Specifies the additional classes to embed at runtime.

Option(checkbox): Embed UTF-8 encoding

Option Name: cldc.encoding.utf8.included

Default value: true

Description:

Embed UTF-8 encoding.

Option(checkbox): Enable SecurityManager checks

Option Name: com.microej.library.edc.securitymanager.enabled

Default value: false

Description:

Enable the security manager Permission checks.

3.5. Application Developer Guide 396

MicroEJ Documentation,

Category: Shielded Plug

Group: Shielded Plug configuration

Description:

Choose the database XML definition.

Option(browse): Database definition

Option Name: sp.database.definition

Default value: (empty)

Description:

Choose the database XML definition.

3.5. Application Developer Guide 397

MicroEJ Documentation,

Category: External Resources Loader

Group: External Resources Loader

Description:

This group allows to specify the external resources input folder. The content of this folderwill be copied in an appli-
cation output folder and used by SOAR and the Simulator. If empty, the default location will be [output folder]/ex-
ternalResources, where [output folder] is the location defined in Execution tab.

Option(browse):

Option Name: ej.externalResources.input.dir

Default value: (empty)

Description:

Browse to specify the external resources folder..

3.5. Application Developer Guide 398

MicroEJ Documentation,

Category: Device

Category: Core Engine

Group: Memory

3.5. Application Developer Guide 399

MicroEJ Documentation,

Option(text): Maximum number of monitors per thread

Option Name: core.memory.thread.max.nb.monitors

Default value: 8

Description:

Specifies the maximum number of monitors a thread can own at the same time.

Option(text): Maximum number of frames dumpers on OutOfMemoryError

Option Name: core.memory.oome.nb.frames

Default value: 5

Description:

Specifies the maximum number of stack frames that can be dumped to the standard output when Core Engine
throws an OutOfMemoryError.

Option(checkbox): Enable Managed heap usagemonitoring

Option Name: com.microej.runtime.debug.heap.monitoring.enabled

Default value: false

Option(text): Managed heap initial size

Option Name: com.microej.runtime.debug.heap.monitoring.init.size

Default value: 0

Description:

Specify the initial size (in bytes) of the Managed heap.

Group: SOAR

Option(checkbox): Enable Bytecode Verifier

Option Name: soar.bytecode.verifier

Default value: Standalone Application: false , Sandboxed Application: true

Description:

Enables Binary Code Verifier during application build.

In the context of building a Standalone Application, the bytecode verifier is, by default, disabled to prioritize per-
formance. In this case, the code is considered trusted. Conversely, when building a Sandboxed Application, the
bytecode verifier is automatically enabled by default. This is particularly important when dealing with untrusted
third-party code.

3.5. Application Developer Guide 400

MicroEJ Documentation,

Group: Garbage Collector

Option(text): GCmark stack size

Option Name: com.microej.runtime.core.gc.markstack.levels.max

Default value: 32

Description:

Indicates the quantity of items in theGarbageCollector’smark stack. Themark stack is usedby theGarbageCollec-
tor for identifying live objects within the heap through a depth-first search approach. Once themark stack reaches
its capacity, the Garbage Collector proceeds to inspect heap memory, which may slow down garbage collection
performance.

You can receive a notification when the mark stack limit is reached by implementing the following hook:

void LLMJVM_on_GC_MarkStackOverflow_reached(void) {
// When entering here, the GC mark stack is undersized, which may affect GC performance.
// It is recommended to either increase the GC mark stack size or reduce the object graph depth.

}

Category: Kernel

Group: Threads

Option(text): Maximum number of threads per Feature

Option Name: core.memory.feature.max.threads

Default value: 5

3.5. Application Developer Guide 401

MicroEJ Documentation,

Description:

Specifies the maximum number of threads a Feature is allowed to use at the same time.

Option(text): Feature stop timeout

Option Name: com.microej.runtime.kf.waitstop.delay

Default value: 2000

Description:

Specifies the maximum time allowed for the FeatureEntryPoint.stop() method to return (value in milliseconds).

Group: Features Installation

Option(text): Maximum number of installed Features

Option Name: com.microej.runtime.kernel.dynamicfeatures.max

Default value: 16

Description:

Specifies the maximum number of Features that can be installed to this Kernel (see Kernel.install() method).

Option(text): Code chunk size

Option Name: com.microej.soar.kernel.featurecodechunk.size

Default value: 65536

Description:

Specifies the size in bytes of the code chunk in RAM. See Code Chunk Size section for more details.

Option(text): InputStream transfer buffer size

Option Name: com.microej.runtime.kf.link.transferbuffer.size

Default value: 512

Description:

Specifies the size in bytes of the temporary byte array for reading in the Feature InputStream. See InputStream
Transfer Buffer Size section for more details.

3.5. Application Developer Guide 402

https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/FeatureEntryPoint.html#stop--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#install-java.io.InputStream-

MicroEJ Documentation,

Option(text): Maximum number of relocations applied simultaneously

Option Name: com.microej.runtime.kf.link.chunk.relocations.count

Default value: 128

Group: Feature Portability Control

Option(checkbox): Enable Feature Portability Control

Option Name: com.microej.soar.kernel.featureportabilitycontrol.enabled

Default value: false

Option(browse): Kernel Metadata File

Option Name: com.microej.soar.kernel.featureportabilitycontrol.metadata.path

Default value: (empty)

Description:

Specifies the path to the Kernel metadata file for Feature Portability Control.

Category: Watchdog

Option(checkbox): Enable watchdog support

Option Name: enable.watchdog.support

3.5. Application Developer Guide 403

MicroEJ Documentation,

Default value: true

Group: Watchdog

Option(text):

Option Name: maximum.active.watchdogs

Default value: 4

Description:

Specifies the maximum number of active watchdogs at the same time.

Category: Deploy

Description:

Configures the output locations where store the Application, the Architecture libraries and Abstraction Layer
header files.

See Board Support Package (BSP) connection chapter for more details.

3.5. Application Developer Guide 404

MicroEJ Documentation,

Group: Configuration

Option(checkbox): Deploy the Application (microejapp.o) at a location known by the 3rd-party BSP project.

Option Name: deploy.bsp.microejapp

Default value: true

Description:

Deploy the Application (microejapp.o) at a location known by the 3rd-party BSP project.

Option(browse):

Option Name: deploy.dir.microejapp

Default value: (empty)

Description:

Choose an output folder where to deploy the Application. An empty value means no deployment (file is available
in the Application output folder).

Option(checkbox): Deploy the Architecture library (microejruntime.a) at a location known by the 3rd-party
BSP project.

Option Name: deploy.bsp.microejlib

Default value: true

Description:

Deploy the Architecture library (microejruntime.a) at a location known by the 3rd-party BSP project.

Option(browse):

Option Name: deploy.dir.microejlib

Default value: (empty)

Description:

Choose an output folder where to deploy the Architecture library. An empty value means no deployment (file is
available in the Application output folder).

Option(checkbox): Deploy the Abstraction Layer header files (*.h) at a location known by the 3rd-party BSP
project.

Option Name: deploy.bsp.microejinc

Default value: true

Description:

Deploy the Abstraction Layer header files (*.h) at a location known by the 3rd-party BSP project.

3.5. Application Developer Guide 405

MicroEJ Documentation,

Option(browse):

Option Name: deploy.dir.microejinc

Default value: (empty)

Description:

Choose an output folder where to deploy the Architecture library. An empty value means no deployment (file is
available in the Application output folder).

Option(checkbox): Execute the MicroEJ build script (build.bat) at a location known by the 3rd-party BSP
project.

Option Name: deploy.bsp.microejscript

Default value: false

Description:

Execute the MicroEJ build script (build.bat) at a location known by the 3rd-party BSP project.

Option(browse):

Option Name: deploy.dir.microejscript

Default value: (empty)

Description:

Choose an output folder where is located theMicroEJ build script (build.bat) to execute. An empty valuemeans no
execution.

Option(browse):

Option Name: deploy.bsp.root.dir

Default value: (empty)

Description:

Choose an output folder where is located the 3rd-party BSP project. An empty value means not set (3rd-party BSP
project location may have been configured by the VEE Port).

3.5. Application Developer Guide 406

MicroEJ Documentation,

Category: Feature

Description:

Specify Feature options

Group: Build

Option(text): Output Name

Option Name: feature.output.basename

Default value: application

Option(browse): Kernel

Option Name: kernel.filename

Default value: (empty)

3.5. Application Developer Guide 407

MicroEJ Documentation,

3.5.8 Sandboxed Application

Fundamental Concepts

Multi-Sandboxing is based on the Kernel & Features Specification (KF).

It allows an application code to be split betweenmultiples parts:

• the main application, called the Kernel,

• zero or more applications called Features.

Therefore, a Kernel Application relates to the Kernel concept and a Sandboxed Application relates to the Feature
concept.

Some fundamental points:

• The Kernel is mandatory. It is assumed to be reliable, trusted and cannot be modified.

• A Feature is an application “extension” managed by the Kernel.

• A Feature is fully controlled by the Kernel: it can be installed, started, stopped and uninstalled at any time
independent of the system state (particularly, a Feature never depends on another Feature to be stopped).

• A Feature is optional, potentially not-trusted, maybe unreliable and can be executed without jeopardizing
the safety of the Kernel execution and other Features.

• Resources accesses (RAM, hardware peripherals, CPU time,…) are under control of the Kernel.

Note: You can go further by reading the Kernel & Features Specification (KF).

3.5. Application Developer Guide 408

MicroEJ Documentation,

Shared Interfaces

Principle

The Shared Interfacemechanismprovided by the Core Engine is an object communication bus based on plain Java
interfaces where method calls are allowed to cross Sandboxed Applications boundaries without relying on Kernel
APIs.

The Shared Interfacemechanism is the cornerstone for designing reliable Service Oriented Architectures. Commu-
nication is based on the sharing of interfaces defining APIs (Contract Oriented Programming).

The basic schema:

• A provider application publishes an implementation for a shared interface into a system registry.

• A user application retrieves the implementation from the system registry and directly calls the methods de-
fined by the shared interface.

Fig. 114: Shared Interface Call Mechanism

The Shared Interface mechanism is based on automatic proxy objects created by the Core Engine. This offers a
reliable way for users to handle broken links in case the provider application has been stopped or uninstalled.

Applications with a Shared Interface must provide a dedicated implementation (called the Proxy class implemen-
tation). Its main goal is to perform the remote invocation and provide a reliable implementation regarding the in-
terface contract even if the remote application fails to fulfill its contract (unexpected exceptions, application killed,
…). The Core Engine will allocate instances of this Proxy class when an implementation (of the Shared Interface)
owned by another application is being transferred to this application.

Fig. 115: Shared Interfaces Proxy Overview

This mecanism is formally specified in the Kernel & Features Specification (KF).

3.5. Application Developer Guide 409

MicroEJ Documentation,

Shared Interface Usage

Usage of a Shared Interface follows these steps:

1. Define the Shared Interface:

1. Define the Java interface

2. Implement the proxy for the interface

3. Register the interface as a Shared Interface

2. From the provider application,

1. Create an instance of this Shared Interface

2. Register the instance to a KF service registry

3. From the consumer application,

1. Retrieve a proxy of the instance from the KF service registry

2. Call methods of the instance proxy.

Define the Shared Interface

Define the Java Interface

The definition of a Shared Interface starts by defining a standard Java interface. For example:

package mypackage;
public interface MyInterface {

void foo();
}

A Shared Interface includes all methods it declares, along with those inherited from its super types. It can extend
any interface, including Feature interfaces (which may or may not be declared as Shared Interfaces) and Kernel
interfaces.

Some restrictions apply to Shared Interfaces compared to standard Java interfaces:

• Types for parameters and return values must be transferable types;

• Thrown exceptions must be classes owned by the Kernel.

Implement the Proxy Class

A proxy class is implemented and executed on the client side.

with the following specification:

• its fully qualified name is the shared interface fully qualified name append with Proxy .

• it extends the Proxy class.

• it implements the Shared Interface

• it provides an implementation of all interface methods

Eachmethod of the implemented interface must be defined according to the following pattern:

3.5. Application Developer Guide 410

https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Proxy.html

MicroEJ Documentation,

package mypackage;

public class MyInterfaceProxy extends Proxy<MyInterface> implements MyInterface {
@Override
public void foo(){

try {
invoke(); // perform remote invocation

} catch (Throwable e) {
// Handle any errors thrown during the remote call, including dead Feature.
// Implement a behavior that complies with the method specification.
// i.e. return a valid error code or throw a documented exception.
// Logging traces for debug can also be added here.

}
}

}

Each implemented method of the proxy class is responsible for performing the remote call and catching all errors
from the server side and to provide an appropriate answer to the client application call according to the interface
method specification (contract).

The Proxy class implementation section documents how to perform the remote invocation.

Register the Shared Interface

Todeclare an interface as aShared Interface, itmust be registered in aShared Interfaces identification file. A Shared
Interface identification file is an XML file with the .si filename extension and the following format:

<sharedInterfaces>
<sharedInterface name=”mypackage.MyInterface”/>

</sharedInterfaces>

Shared Interface identification filesmust be placed at the root of the application classpath, typically it is defined in
the src/main/resources folder.

Use the Shared Interface at Runtime

Projects Structure

Both the consumer and the provider applications must have the Java interface, the proxy class and the identifica-
tion file on the classpath in order to be able to use the Shared Interface.

Typically, the 3 files can be defined in an Add-On Library that both application projects depend on.

Create and Share an instance of a Shared Interface

The provider application can instantiate the Java interface. For example:

MyInterface myInstance = new MyInterface() {
@Override
public void foo() {

System.out.println(”Hello world!”);
}

};

3.5. Application Developer Guide 411

MicroEJ Documentation,

In order to share the instancewithother applications, theprovider applicationmust register the instancewith some
registry owned by the Kernel (see Communication between Kernel and Feature for details) like so:

ServiceFactory.register(MyInterface.class, myInstance);

Retrieve and Use a Proxy of a Shared Interface Instance

The consumer application can then retrieve the instance from the Kernel registry like so:

MyInterface otherAppInstance = ServiceFactory.getService(MyInterface.class);
// otherAppInstance is actually an instance of the proxy class owned by the consumer application

Then it can call the interface methods transparently:

otherAppInstance.foo(); // remote invocation through the proxy

Transferable Types

In the process of a cross-application method call, parameters and return value of methods declared in a Shared
Interface must be transferred back and forth between application boundaries.

Fig. 116: Shared Interface Parameters Transfer

The following table describes the rules applied depending on the element to be transferred.

Table 9: Shared Interface Types Transfer Rules
Type Owner Instance

Owner
Rule

Base type N/A N/A Passing by value. (boolean , byte , short ,
char , int , long , double , float)

Any Class, Array or Inter-
face

Kernel Kernel Passing by reference

Any Class, Array or Inter-
face

Kernel Application Kernel specific. Converted to a target Fea-
ture object if the Kernel has registered a
Kernel type converter, otherwise Forbid-
den.

Array of base types Any Application Clone by copy
Arrays of references Any Application Clone and transfer rules applied again on

each element (recursively)
Shared Interface Application Application Passing by indirect reference (Proxy cre-

ation).
Any Class, Array or Inter-
face

Application Application Forbidden

3.5. Application Developer Guide 412

MicroEJ Documentation,

Objects created by an Application which type is owned by the Kernel can be transferred to another Application
provided this has been authorized by the Kernel. When an argument transfer is forbidden, the call is abruptly
stopped and an java.lang.IllegalAccessError is thrown by the Core Engine.

The list of Kernel types that can be transferred is Kernel specific, so you have to consult your Kernel specification.
The table below lists some well-known types that your Kernel likely can allow to be transferred through a Shared
Interface, along with their behaviors.2.

Table 10: Transfer Rules for well-known Kernel Types
Type Rule
java.lang.Boolean Clone by copy
java.lang.Byte Clone by copy
java.lang.Character Clone by copy
java.lang.Short Clone by copy
java.lang.Integer Clone by copy
java.lang.Float Clone by copy
java.lang.Long Clone by copy
java.lang.Double Clone by copy
java.lang.String Clone by copy
java.io.InputStream Create a Proxy reference
java.util.Date Clone by copy
java.util.List<T> Clone by copy with recursive element conversion
java.util.Map<K,V> Clone by copy with recursive keys and values conversion

Implementing the Proxy Class

Remote invocation methods are defined in the super class ej.kf.Proxy and are named invokeXXX() where XXX
is the kind of return type.

Table 11: Proxy Remote Invocation Built-in Methods
Invocation Method Usage
void invoke() Remote invocation for a proxy method that returns void
Object invokeRef() Remote invocation for a proxymethod that returns a reference
boolean invokeBoolean(), byte invokeByte(),
char invokeChar(), short invokeShort(), int in-
vokeInt(), long invokeLong(), double invoke-
Double(), float invokeFloat()

Remote invocation for aproxymethod that returns abase type

As this class is part of the Application, the developer has the full control on the Proxy implementation and is free
to insert additional code such as logging calls and errors for example. It is also possible to have different proxy
implementations for the same Shared Interface in different applications.

ASandboxedApplication is anApplication that ispartially linked, thendeployedandexecutedoveraMulti-Sandbox
Executable.

Typical use cases for a Sandboxed Application are:

• over the air provisioning: the Application is dynamically installed or updated on a fleet of heterogenous de-
vices.

• modularization: amonolithic application is split intomultiple Sandboxed Applications; each of them can be
started or stopped separately.

2 For these types to be transferable, a dedicated Kernel Type Converter must have been registered in the Kernel.

3.5. Application Developer Guide 413

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/IllegalAccessError.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Boolean.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Byte.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Character.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Short.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Integer.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Float.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Long.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Double.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/String.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/io/InputStream.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/Date.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/List.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/Map.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Proxy.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Proxy.html#invoke--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Proxy.html#invokeRef--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Proxy.html#invokeBoolean--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Proxy.html#invokeByte--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Proxy.html#invokeChar--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Proxy.html#invokeShort--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Proxy.html#invokeInt--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Proxy.html#invokeInt--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Proxy.html#invokeLong--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Proxy.html#invokeDouble--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Proxy.html#invokeDouble--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Proxy.html#invokeFloat--

MicroEJ Documentation,

The following figure shows the general process of building a Sandboxed Application.

Fig. 117: Sandboxed Application Link Flow

Please refer to theKernel Developer Guide to learnmore onwriting Kernel Applications and buildingMulti-Sandbox
Executable and Virtual Devices.

3.5.9 Character Encoding

Default Encoding

The default character encoding is ISO-8859-1 . It is thus the encoding used when:

• creating a new string from a byte array without specifying the encoding (String(byte[]) constructor),

• getting the byte array from a string without specifying the encoding (String.getBytes() method),

• printing a string to standard output stream (System.out),

• creating a new PrintStreamwithout specifying the encoding.

UTF-8 Encoding

EDC provides an implementation of the UTF-8 character encoding. It can be embedded using the Embed UTF-8
encoding option (otherwise a java.io.UnsupportedEncodingException exception will be thrown).

This implementationalso supportsUnicodecodepoints as supplementary characters, by setting the constant com.
microej.library.edc.supplementarycharacter.enabled to true .

3.5. Application Developer Guide 414

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/String.html#String-byte:A-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/String.html#getBytes--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#out
https://repository.microej.com/javadoc/microej_5.x/apis/java/io/PrintStream.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/io/UnsupportedEncodingException.html

MicroEJ Documentation,

Custom Encoding

It is possible to connect additional custom encodings. Please contact our support team for more details.

Console Output

By default, the standard output stream (System.out) uses ISO-8859-1 encoding to print strings. If you want to
print a string with a different encoding, you can create a new PrintStream:

PrintStream outUtf8 = new PrintStream(System.out, true, ”UTF-8”);
outUtf8.println(”��”);

Warning: Make sure you embed the UTF-8 encoder (see UTF-8 Encoding)

The printmethods write the raw byte array with the encoding used by the PrintStream to the console. The console
must then be configured with the same encoding to display characters properly.

Set Encoding in MicroEJ SDK Console

The default encoding for Eclipse consoles is UTF-8 . If your application prints non-ASCII characters, theymay not
be displayed properly.

The encoding used by a console for a given application can be set in the application launcher options: Run >
Run Configurations… , and then Common tab > Encoding radio buttons.

3.5. Application Developer Guide 415

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#out
https://repository.microej.com/javadoc/microej_5.x/apis/java/io/PrintStream.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/io/PrintStream.html

MicroEJ Documentation,

Fig. 118: Eclipse Launcher Console Encoding Options

3.5.10 Limitations

The following table lists the limitations of MicroEJ Architectures version 8.4.0 or higher, for both Evaluation and
Production usage. Please consult Architectures Changelog for limitations changes on former versions.

Note: The term unlimited means there is no Architecture specific limitation. However, there may be limitations
driven by devicememory layout. Please refer to your VEE Port specific documentation to get thememorymapping
of Core Engine sections.

3.5. Application Developer Guide 416

MicroEJ Documentation,

Table 12: Architecture Limitations
Item EVAL PROD
[Mono-Sandbox] Number of concrete types1 8192 8192
[Multi-Sandbox] Number of concrete types per contextPage 417, 1 4096 4096
Number of abstract classes and interfaces unlimited unlimited
Class or Interface hierarchy depth 127 127
Number of methods unlimited unlimited
Method size in bytes 65536 65536
Numbers of exception handlers per method 63 63
Number of parameters for an SNI method 15 15
Number of instance fields2 (Base type) 4096 4096
Number of instance fields2 (References) 31 31
Number of static fields (boolean + byte) 65536 65536
Number of static fields (short + char) 65536 65536
Number of static fields (int + float) 65536 65536
Number of static fields (long + double) 65536 65536
Number of static fields (References) 65536 65536
[Mono-Sandbox] Number of threads 63 63
[Multi-Sandbox] Number of threads 127 127
[Mono-Sandbox] Number of held monitors4 63 63
[Multi-Sandbox] Number of held monitors4 1273 1273

Time limit 60 minutes unlimited
Number of methods and constructors calls 500000000 unlimited
Number of Managed heap Garbage Collection 30004 unlimited
Number of Shielded Plug databases unlimited unlimited
Number of blocks per Shielded Plug database 32767 32767

3.5.11 GitHub Repositories

A largenumberof examples, libraries, demosand tools are sharedonMicroEJGitHubaccount: https://github.com/
MicroEJ.

Most of these GitHub repositories contain projects ready to be imported in MicroEJ SDK.

Repository Import

This section explains the steps to import a Github repository in MicroEJ SDK, illustrated with the MWT Examples
repository.

Note: MicroEJ SDK Distribution includes the Eclipse plugin for Git.

First, from the GitHub page, copy the repository URI (HTTP address) from the dedicated field in the right menu
(highlighted in red):

1 Concrete types are classes and arrays that can be instantiated.
2 All instance fields declared in the class and its super classes.
4 The Managed heap Garbage Collection limit may throw unexpected cascading java.lang.OutOfMemoryError exceptions

before the Core Engine exits.
3 The maximum number of different monitors that can be held by one thread at any time is defined by the maximum number

of monitors per thread Application option.

3.5. Application Developer Guide 417

https://github.com/MicroEJ
https://github.com/MicroEJ
https://github.com/MicroEJ/ExampleJava-MWT
https://github.com/MicroEJ/ExampleJava-MWT
https://projects.eclipse.org/projects/technology.egit/
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/OutOfMemoryError.html

MicroEJ Documentation,

In the SDK, to clone and import the project from the remoteGit repository into theMicroEJworkspace, select File
> Import > Git > Projects from Git wizard.

3.5. Application Developer Guide 418

MicroEJ Documentation,

Click Next , select Clone URI , click Next and paste the remote repository address in the URI field. For
this repository, the address is https://github.com/MicroEJ/ExampleJava-MWT.git. If the HTTP address is a valid
repository, the other fields are filed automatically.

3.5. Application Developer Guide 419

https://github.com/MicroEJ/ExampleJava-MWT.git

MicroEJ Documentation,

Click Next , select the master branch, click Next and accept the proposed Local Destination by clicking Next
once again.

3.5. Application Developer Guide 420

MicroEJ Documentation,

Click Next once more and finally Finish . The Package Explorer view now contains the imported projects.

3.5. Application Developer Guide 421

MicroEJ Documentation,

If you want to import projects from another (GitHub) repository, you simply have to do the same procedure using
the Git URL of the desired repository.

MicroEJ GitHub Badges

MicroEJ GitHub Badges are badges embedded in a README at the root of the repository. They highlight the com-
patibilities of the repository at a quick glance with MicroEJ Architecture, MicroEJ SDK and Graphical User Interface
versions.

The color of the badge has the following meaning:

• Greenmeans a current supported version:

• Orangemeans a still supported version that will be deprecated in the future:

• Gray means a deprecated version:

3.5.12 Module Repositories

This chapter describes themodule repositories provided by MicroEJ Corp.

Central Repository

TheCentralRepository is themodule repositorydistributedandmaintainedbyMicroEJCorp. It containsaselection
of production-grade modules such as Libraries and Packs.

Use

By default, the SDK is configured to import modules from the online Central Repository.

You canmanually browse the repository at https://repository.microej.com/modules/.

Before starting to develop production code, it is strongly recommended to import the repository to your local en-
vironment. Please follow the steps described at https://developer.microej.com/central-repository/.

Licensing

The Central Repository is a set of modules distributed under various software licenses, including the SDK EULA
and the Commercial Component License for some of them. Please consult the LICENSE.txt file attached to each
module.

3.5. Application Developer Guide 422

https://repository.microej.com/modules/
https://developer.microej.com/central-repository/

MicroEJ Documentation,

Changelog

The Central Repository content is versioned. The overall changelog is available at https://repository.microej.com/
and describes modules additions or removals. For module content changes, please consult the CHANGELOG.
md file attached to eachmodule.

Java APIs (Javadoc)

To consult the Java APIs documentation (Javadoc) of all libraries available in the repository, please visit https:
//repository.microej.com/javadoc/microej_5.x/apis/.

Developer Repository

The developer repository is an online repository hosted by MicroEJ Corp., contains community modules provided
“as-is”. It is similar to what Maven Central Repository are for hosting Java standard modules.

MicroEJ Corp. contributes to the developer repository in the following cases:

• Demos (VEE Ports, Kernel Executables, Virtual Devices, Applications),

• Incubating Libraries,

• Former Central Repository versions,

• Hardware specific modules.

Use

By default, the SDK is configured to import modules from the developer repository1.

You can also manually browse the repository at https://forge.microej.com/artifactory/
microej-developer-repository-release/.

Before starting to develop production code, it is strongly recommended to transfer the desired modules to your
local environment by creating your ownmodule repository copy.

Licensing

The developer repository is a set of modules distributed under various software licenses. Please consult the
LICENSE.txt file attached to eachmodule.

Changelog

The developer repository is populated frommultiple sources, thus there is no changelog for the whole repository
content as it is the case of the Central Repository.

Please consult the CHANGELOG.md file attached to eachmodule.
1 Require SDK version 5.4.0 or higher.

3.5. Application Developer Guide 423

https://repository.microej.com/
https://repository.microej.com/javadoc/microej_5.x/apis/
https://repository.microej.com/javadoc/microej_5.x/apis/
https://repo1.maven.org/maven2/
https://forge.microej.com/artifactory/microej-developer-repository-release/
https://forge.microej.com/artifactory/microej-developer-repository-release/

MicroEJ Documentation,

Javadoc

To consult the APIs documentation (Javadoc) of libraries available in the developer repository, please consult the
javadoc attached to eachmodule.

Community

The developer repository can host modules developed by the community. If your organization plan to develop
suchmodule, please contact our support team to get dedicated credentials for publication.

Content Organization

The following table describes how are organized themodules natureswithin the repository.

Table 13: Modules Organization
Organization Module Nature

ej.api , com.microej.api
Foundation Library API

com.microej.architecture
Architecture

com.microej.pack
Pack

ej.tool , com.microej.tool
Tool or Add-On processor

Any other Add-On Library

3.5.13 Libraries

A MicroEJ Foundation Library is a MicroEJ Core library that provides core runtime APIs or hardware-dependent
functionality. A Foundation library is divided into an API and an implementation. A Foundation library API is com-
posed of a name and a 2 digits version (e.g. EDC-1.3) and follows the semantic versioning (http://semver.org)
specification. A Foundation Library API only contains prototypes without code. Foundation Library implemen-
tations are provided by VEE Ports. From a MicroEJ Classpath, Foundation Library APIs dependencies are auto-
matically mapped to the associated implementations provided by the VEE Port or the Virtual Device on which the
application is being executed.

A MicroEJ Add-On Library is a MicroEJ library that is implemented on top of MicroEJ Foundation Libraries (100%
full Java code). A MicroEJ Add-On Library is distributed in a single JAR file, with a 3 digits version and provides its
associated source code.

Foundation and Add-On Libraries are added to MicroEJ Classpath by the application developer as module depen-
dencies (seeMicroEJ Module Manager).

Fig. 119: MicroEJ Foundation Libraries and Add-On Libraries

3.5. Application Developer Guide 424

http://semver.org

MicroEJ Documentation,

MicroEJ Corp. provides a large number of libraries through the MicroEJ Central Repository. To consult its libraries
APIs documentation, please visit https://developer.microej.com/microej-apis/.

Graphical User Interface

This section presents libraries relative to the user interface.

The following schema shows the overall architecture andmodules:

Fig. 120: Graphical User Interface Overview

Note: This chapter describes the current Graphical User Interface version 3 , provided by UI Pack version 14.0.0
or higher.

• If you are using the former Graphical User Interface version 3 provided by MicroEJ UI Pack version 13.x ,
please refer to this MicroEJ Documentation Archive.

3.5. Application Developer Guide 425

https://developer.microej.com/microej-apis/
https://docs.microej.com/_/downloads/en/20240215/pdf/

MicroEJ Documentation,

• If you are using the former Graphical User Interface version 2 provided by MicroEJ UI Pack version up to
12.1.x , please refer to this MicroEJ Documentation Archive.

MicroUI

MicroUI Foundation Library provides access to a pixel-based display and inputs.

The aim of this library is to enable the creation of user interface in Java by reifying hardware capabilities.

Usage

To use the MicroUI Foundation Library, add MicroUI API module to the project build file:

Gradle (build.gradle.kts)

MMM (module.ivy)

implementation(”ej.api:microui:3.6.0”)

<dependency org=”ej.api” name=”microui” rev=”3.6.0”/>

Drawing Foundation Library extends MicroUI drawing APIs1 with more complex ones such as:

• thick line, arc, circle and ellipse

• polygon

• image deformation and rotation

To use the Drawing Foundation Library, add Drawing API module to the project build file:

Gradle (build.gradle.kts)

MMM (module.ivy)

implementation(”ej.api:drawing:1.0.4”)

<dependency org=”ej.api” name=”drawing” rev=”1.0.4”/>

Rendering

Clipping Region

The clipping region is a rectangle used to restrict the drawing operations. It is usually referedmore simply as clip.

The clip can be set on any GraphicsContext with:

• GraphicsContext.setClip(int, int, int, int): sets the clipping area to the given rectangle.

• GraphicsContext.intersectClip(int, int, int, int): sets the clipping area to the intersection between the current
clipping area and the given rectangle.

• GraphicsContext.resetClip(): resets the clipping area to the entire bounds of the graphics context.

The clip can be retrieved with:
1 These APIs were formerly included in MicroUI 2.x

3.5. Application Developer Guide 426

https://docs.microej.com/_/downloads/en/20201009/pdf/
https://repository.microej.com/modules/ej/api/microui/
https://repository.microej.com/modules/ej/api/drawing/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html#setClip-int-int-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html#intersectClip-int-int-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html#resetClip--

MicroEJ Documentation,

• GraphicsContext.getClipX(): gets the x coordinate of the clipping area.

• GraphicsContext.getClipY(): gets the y coordinate of the clipping area.

• GraphicsContext.getClipWidth(): gets the width of the clipping area.

• GraphicsContext.getClipHeight(): gets the height of the clipping area.

Translation Vector

It is possible to modify the origin of a GraphicsContext by setting a translation vector. This origin will be used by
all drawing operations to translate the given coordinates. In other words, the translation x and y coordinates will
be added to the x and y coordinates given to the subsequent drawing operations.

The translation coordinates can be negative.

The translation can be set on any GraphicsContext with:

• GraphicsContext.setTranslation(int, int): sets the translation coordinates.

• GraphicsContext.translate(int, int): adds the given coordinates to the current translation coordinates.

• GraphicsContext.resetTranslation(): resets the translation coordinates to (0,0).

The translation can be retrieved with:

• GraphicsContext.getTranslationX(): gets the x coordinate of the translation.

• GraphicsContext.getTranslationY(): gets the y coordinate of the translation.

Rendering Pipeline

The Rendering Pipeline of a MicroUI application consists of twomain phases: Render, and Flush.

1. Render: During this phase, the application executes its rendering code to perform the necessary drawing
operations. The application can either draw the whole screen for each frame or just a part.

2. Flush: This phase involves copying the back buffer to the front buffer. The VEE Port performs this operation,
and it is the responsibility of the VEE Port developer to optimize this process, for example, by utilizing a GPU.

To reduce the number of pixels drawn, it may be interesting to redraw only subpart(s) of the display. In this case,
the Render phase consists in setting the clip to the desired region and then draw inside this region. And again for
each region to redraw.

Display Buffer Management

The display usually involves several buffers. It may be for one or several of these reasons:

• the display has its ownmemory that is not mapped by the CPU,

• to avoid seeing the stepsof thedrawing (if thedisplay reads in the samememoryas theapplication is drawing
to),

• to allow the application to drawmore quickly after a flush,

• etc.

More information can be found in the Display section of the VEE Porting Guide.

When the buffer used to draw is changed after a flush, the new buffer needs to be “refreshed” with the content of
the previous buffer to avoid glitches. This copy ismanaged by the Buffer Refresh Strategy (BRS). To save some copy

3.5. Application Developer Guide 427

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html#getClipX--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html#getClipY--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html#getClipWidth--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html#getClipHeight--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html#setTranslation-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html#translate-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html#resetTranslation--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html#getTranslationX--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html#getTranslationY--

MicroEJ Documentation,

time, the BRS optimizes the refreshed region. For example, if the full screen is drawn, nothing needs to be restored
(the same goes if the very same zone is drawn several times in a row). More information can be found in the Buffer
Refresh Strategy section of the VEE Porting Guide.

The BRS has two ways to detect the drawn regions. Both are using the clip:

1. The first one does not require any action from the application, the BRS saves the clipwhen a drawing is done.

2. The second one consists in declaring the list of the regions that will be modified before starting the draw-
ings. This is done by setting the clip and calling the GraphicsContext.notifyDrawingRegion()method for each
region. Declaring the regions is advised when redrawing several parts of the display in the frames.

Since the refreshing is based on the clip, it means that all the pixels in the clip need to be drawn since they will not
be refreshed. In otherwords, the pixels left unchanged inside the clipmay contain unexpected data thatwill create
glitches in the display.

To detect such pixels, an option can be set that draw a colored rectangle when a clip is detected by the BRS. If a
pixel with that color is seen on the display, that means that it has not been drawn by the application.

Fig. 121: Example of animation with clip not correctly set.

Fig. 122: Example of animation with clip not correctly set with highlight option (ej.fp.brs.
dirtyColor=0x200000ff).

3.5. Application Developer Guide 428

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html#notifyDrawingRegion--

MicroEJ Documentation,

Drawing Logs

When performing drawing operations, the VEE portmay report incidents that occurred during a drawing to the ap-
plication. Graphics contexts enable this by holding flags that canbe set by the VEEport and readby the application.

Usage Overview

When the VEE port needs to report an incident, it will set drawing log flags in the graphics context describing its
nature. The application will then be able to read the flag values to know if an incident occurred. This mechanism
is meant to help the developer to debug the application if it does not display what is expected. See Drawing Logs
for more information on setting drawing log flags in the VEE port.

Incidents are split into two categories:

• Warnings are non-critical incidents that the application developer may ignore. When such an incident is re-
ported, the flags are set in the graphics context so that the application can read them. However, if they are
not explicitly read, the incident will be ignored silently.

• Errors are critical incidents that the application developer should not ignorewhen developing. Aswithwarn-
ings, drawing log flagswill be set in the graphics context. Additionally, an exception will be thrownwhen the
display is flushed so that the developer is aware of the incident.

Any incident may be either a warning or an error, depending on how the VEE port reported it. The distinction is
made through the value of the flag DRAWING_LOG_ERROR .

Default Behavior

When the VEE port reports an incident, it sets drawing log flags in the graphics context. Additionally, if the incident
was an error, it sets the special flag DRAWING_LOG_ERROR .

Every time the display is flushed, the flags contained in its graphics context will be checked. If the flag DRAW-
ING_LOG_ERROR is set — which means an error has been reported — the flush function will throw a Mi-
croUIException with the code DRAWING_ERROR , and the values of the drawing log flags in its message.
Afterward, the flags will be reset.

Warning: This behavior can be disabled at build time. In this case, the flags will keep their values after the
display is flushed, and no exceptions will be thrown.

Therefore, the developer should not rely on the drawing log flags in the application workflow. They are meant
to be used as a debugging hint.

If an exception is thrown, the application developer should use the flag values to find the cause of the error and fix
it accordingly.

3.5. Application Developer Guide 429

MicroEJ Documentation,

Explicit Checks

MicroUI only checks the drawing log flags automatically during a display flush. The developer may want to read
the flag values between drawing operations to investigate the cause of an error. Two functions are provided to do
so:

• GraphicsContext.getAndClearDrawingLogFlags will return the current values of the flags and reset them.

• GraphicsContext.checkDrawingLogFlags behaves like GraphicsContext.getAndClearDrawingLogFlags
. However, it will also throw an exception if the flag DRAWING_LOG_ERROR is set, like it is donewhen
the display is flushed.

For example, if a VEE port with no implementation to draw circles reports an error with the flag DRAW-
ING_LOG_NOT_IMPLEMENTED , the application would behave as below.

// The VEE port has not implemented this function.
Painter.drawCircle(gc, 1, 2, 3);

// This throws a MicroUIException with the error code -13 (DRAWING_ERROR).
Display.getDisplay().flush();

The application developer could force a check of the drawing log flags:

// The VEE port has not implemented this function.
Painter.drawCircle(gc, 1, 2, 3);

// This throws a MicroUIException with the error code -13 (DRAWING_ERROR).
int flags = gc.checkDrawingLogFlags();

Or the developer could explicitly retrieve the value of the flags:

// The VEE port has not implemented this function.
Painter.drawCircle(gc, 1, 2, 3);

// This retrieves the values of drawing log flags.
int flags = gc.getAndClearDrawingLogFlags();
// This prints ”80000001” (DRAWING_LOG_ERROR | DRAWING_LOG_NOT_IMPLEMENTED == 1 <<␣
→˓31 | 1 << 0).
System.out.println(Integer.toHexString(flags));

Configuration

When releasing an application, the developer should disable the automatic check of drawing log flags performed
when thedisplay is flushed. Doing sowill prevent exceptions frombeing thrown,whichwould causeanunexpected
crash. It will also not clear the drawing log flags when the display is flushed.

Disabling this check can be done by setting the constant com.microej.library.microui.impl.
check-drawing-errors-on-flush to false when building the application. If it is not set, it defaults to true
.

3.5. Application Developer Guide 430

MicroEJ Documentation,

Available Constants

MicroUI provides a set of constants to describe reported incidents. They are defined and documented in the class
GraphicsContext .

Constant Value Description

DRAW-
ING_LOG_NOT_IM-
PLEMENTED

1 << 0
This function is not implemented.

DRAWING_LOG_FOR-
BIDDEN

1 << 1
This function must not be called in this situation.

DRAW-
ING_LOG_OUT_OF_MEM-
ORY

1 << 2
The system ran out of memory.

DRAW-
ING_LOG_CLIP_MODI-
FIED

1 << 3
The VEE port modified clip values in the graphics context.

DRAWING_LOG_MISS-
ING_CHARACTER

1 << 4
An undefined character was drawn.

DRAWING_LOG_LI-
BRARY_INCIDENT

1 <<
29

An incident occurred in an underlying library.

DRAWING_LOG_UN-
KNOWN_INCIDENT

1 <<
30

An incident that does not match other flags occurred.

DRAWING_LOG_ERROR 1 <<
31

Special flag denoting critical incidents.

The special value DRAWING_SUCCESS (defined as 0) represents a state where no drawing log flags are set,
so encountering this value means no incident was reported.

New flag constants may be added in future versions of MicroUI. Also, their actual values may change, and the de-
veloper should not rely on them.

Images

Immutable Images

Overview

Immutable images are graphical resources that can be accessed with a call to ej.microui.display.Image.getImage()
or ej.microui.display.ResourceImage.loadImage(). As their name suggests, immutable images cannot bemodified.
Therefore, there is noway to get a Graphics Context to draw into these images. To be displayed, these images have
to be converted from their source format to a RAW format. The conversion can either be done:

• At build-time, using the Image Generator.

• At run-time, using the relevant decoder library.

3.5. Application Developer Guide 431

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Image.html#getImage-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/ResourceImage.html#loadImage-java.lang.String-

MicroEJ Documentation,

Immutable images are declared in Classpath *.images.list files (or in *.imagesext.list for an external resource,
see External Images).

Image

internal?

*.images.list

yes

*.imagesext.list

no=external

The file format is a standard Java properties file. Each line contains a / -separated resource path relative to the
Classpath root referring to a standard image file (e.g. .png , .jpg). The resource may be followed by an optional
parameter (separated by a :) which defines and/or describes the image output file format (RAW format). When no
option is specified, the image is embedded as-is and will be decoded at run-time. Example:

The following image is embedded as
a PNG resource (decoded at run-time)
com/mycompany/MyImage1.png

The following image is embedded as
a 16-bit encoding without transparency (decoded at build-time)
com/mycompany/MyImage2.png:RGB565

The following image is embedded as
a 16-bit encoding with transparency (decoded at build-time)
com/mycompany/MyImage3.png:ARGB1555

Configuration File

Here is the format of the *.images.list files.

ConfigFile ::= Line ['EOL' Line]*
Line ::= ImagePath [':' ImageOption]*
ImagePath ::= Identifier ['/' Identifier]*
ImageOption ::= [^:]*
Identifier ::= Letter [LetterOrDigit]*
Letter ::= 'a-zA-Z_$'
LetterOrDigit ::= 'a-zA-Z_$0-9'

3.5. Application Developer Guide 432

MicroEJ Documentation,

Unspecified Output Format

When no output format is set in the image list file, the image is embedded without any conversion / compression.
This allows you to embed the resource as-is, in order to keep the source image characteristics (compression, bpp,
size, etc.). This option produces the same result as specifying an image as a resource in the MicroEJ launcher (i.e.
in a .resources.list file).

Refer to the platform specification to retrieve the list of runtime decoders.

Advantages

• Preserves the image characteristics.

• Preserves the original image compression.

Disadvantages

• Requires an image runtime decoder.

• Requires some RAM in which to store the decoded image.

• Requires execution time to decode the image.

image1

Display Output Format

It encodes the image into the exact displaymemory representation. If the image to encode contains some transpar-
ent pixels, the output file will embed the transparency according to the display’s implementation capacity. When
all pixels are fully opaque, no extra information will be stored in the output file in order to free up some memory
space.

Note: When the display memory representation is standard, the display output format is automatically replaced
by a standard format.

Advantages

• Drawing an image is very fast because no pixel conversion is required at runtime.

• Supports alpha encoding when the display pixel format allows it.

Disadvantages

• No compression: the image size in bytes is proportional to the number of pixels.

image1:display

3.5. Application Developer Guide 433

MicroEJ Documentation,

Standard Output Formats

Some image formats are well known and commonly implemented by GPUs.

Refer to the platform specification to retrieve the list of natively supported formats.

Advantages

• The pixel layout and bit format are standard, so it is easy to manipulate these images on the C-side.

• Drawing an image is very fast when the display driver recognizes the format (with or without transparency).

Disadvantages

• No compression: the image size in bytes is proportional to the number of pixels.

• Slower than display format when the display driver does not recognize the format: a pixel conversion is
required at runtime.

Here is the list of the standard formats:

• Transparent images:

– ARGB8888: 32-bit format, 8 bits for transparency, 8 per color,

– ARGB4444: 16-bit format, 4 bits for transparency, 4 per color,

– ARGB1555: 16-bit format, 1 bit for transparency, 5 per color.

• Transparent images with premultiplied alpha (RGB and alpha are linked)

– ARGB8888_PRE: 32-bit format, 8 bits for transparency, 8 per color,

– ARGB4444_PRE: 16-bit format, 4 bits for transparency, 4 per color,

– ARGB1555_PRE: 16-bit format, 1 bit for transparency, 5 per color.

• Opaque images:

– RGB888: 24-bit format, 8 per color,

– RGB565: 16-bit format, 5 for red, 6 for green, 5 for blue.

• Alpha images, only transparency is encoded (the color appliedwhen drawing the image is the current Graph-
icsContext color):

– A8: 8-bit format,

– A4: 4-bit format,

– A2: 2-bit format,

– A1: 1-bit format.

Examples:

image1:ARGB8888
image2:RGB565
image3:A4

3.5. Application Developer Guide 434

MicroEJ Documentation,

Grayscale Output Formats

Some grayscale formats may be useful on grayscale or black and white displays.

Advantages

• Reduced footprint with less bits per pixels.

Disadvantages

• No compression: the image size in bytes is proportional to the number of pixels.

• Slower: a pixel conversion is required at runtime.

Here is the list of the grayscale formats:

• With transparency:

– AC44: 4 bits for transparency, 4 bits with grayscale conversion,

– AC22: 2 bits for transparency, 2 bits with grayscale conversion,

– AC11: 1 bit for transparency, 1 bit with grayscale conversion.

• Without transparency:

– C4: 4 bits with grayscale conversion,

– C2: 2 bits with grayscale conversion,

– C1: 1 bit with grayscale conversion.

Examples:

image1:AC44
image2:C2

Compressed Output Formats

Some image formats are compressed using run-length encoding. This compression is lossless. The principle is
that identical consecutive pixels are stored as one entry (value and count). The more the consecutive pixels are
identical, the more the compression is efficient.

Advantages

• Good compression when there are a lot of identical consecutive pixels.

Disadvantages

• Drawing an imagemay be slightly slower than using an uncompressed format supported by the GPU.

• Not designed for imageswithmany different pixel colors: in such case, the output file sizemay be larger than
the original image file.

Here is the list of the compressed formats:

• ARGB1565_RLE: 16-bit format, 1 bit for transparency, 5 for red, 6 for green, 5 for blue. (Formerly named RLE1
up to UI Pack 13.3.X.)

• A8_RLE: similar to A8.

image1:ARGB1565_RLE
image2:RLE1 # Deprecated
image3:A8_RLE

3.5. Application Developer Guide 435

MicroEJ Documentation,

Alpha Format

As described above, the formats A8 , A4 , A2 , A1 and A8_RLE (also called Picto) only handle the opacity
information. The source image can be transparent or not, colored or grayscaled. The alpha format provides two
options to interpret the source image’s pixels:

• grayscale : The source image is first grayscaled and then drawn over a white background. The black pixels
are encoded as fully opaque pixels, the white pixels as fully transparent pixels and gray pixels as transparent
pixels (the closer the pixel is to black, the more opaque the encoded opacity is).

• alpha : Only the opacity component is encoded (the R-G-B components are ignored).

• no option: same as grayscale (backward compatibility).

image1:A8:grayscale
image2:A8_RLE:alpha
image3:A4

Note: The MicroUI ResourceImage OutputFormat A8 encodes in the same way as the option alpha .

Expected Result

The following table summarizes the usage of the different formats and the actual result on a white background.

Table 14: Image Output Formats Usage
Format Source Result

ARGB8888

ARGB4444

ARGB1555

ARGB8888_PRE

ARGB4444_PRE
continues on next page

3.5. Application Developer Guide 436

https://en.wikipedia.org/wiki/Grayscale

MicroEJ Documentation,

Table 14 – continued from previous page
Format Source Result

ARGB1555_PRE

RGB888

RGB565

A8

With 0x0000ff as color
and option grayscale

With 0x0000ff as color
and option alpha

continues on next page

3.5. Application Developer Guide 437

MicroEJ Documentation,

Table 14 – continued from previous page
Format Source Result

With 0x0000ff as color
and option grayscale

With 0x0000ff as color
and option alpha

A4
option grayscale

option alpha

A2
option grayscale

option alpha

A1
option grayscale

option alpha

C4
continues on next page

3.5. Application Developer Guide 438

MicroEJ Documentation,

Table 14 – continued from previous page
Format Source Result

C2

C1

AC44

AC22

AC11

ARGB1565_RLE

A8_RLE
option grayscale

option alpha

3.5. Application Developer Guide 439

MicroEJ Documentation,

Usage Advice

• When the image is rarely used, or when there is little Flash and enough RAM: embed the image in its original
compressed format (PNG or JPG for instance).

• For an opaque image: RGB565 is usually sufficient.

• For a transparent image: ARGB4444 is usually sufficient.

• For a transparent image that contains only shape(s) with horizontal or vertical edges:

– ARGB1555may be interesting to have more colors,

– for a smaller footprint if the imagematches the RLE rule, ARGB1565_RLE is best.

• For a pictogram to colorize:

– A4 is usually sufficient,

– A8may be necessary for pictograms with long gradients,

– for a smaller footprint if the imagematches the RLE rule, A8_RLE is best.

• For BSP with a GPU, choose a format compatible with the GPU (all formats may not be available),

– ARGB formats: choose between non-premultiplied formats and premultiplied formats (suffixed with
_PRE),

– Ax formats (pictogram): all bits-per-pixel values may not be available.

– be careful about the color components position (A-R-G-B versus R-G-B-A for instance),

– avoid formats Cx, ACxx and xxx_RLE, which are not compatible with a GPU.

Caching Generated Images

Images converted using the Image Generator can be cached so that they are not rebuilt every time the application
is launched. Doing so can significantly speed up the application build phase.

The cache is enabled by default. It may be disabled by setting the Application option ej.microui.imageConverter.
disableCache to true .

The Image Generator obeys several rules when choosing whether an image should be converted.

• If the cache is disabled, all images are generated every time the application is launched.

• All images will be regenerated if the application is launched using another VEE port and the new VEE port
uses a different Image Generator or another set of Image Generator plugins.

• If the generated image does not exist, it will be generated.

• If the source image has beenmodified since the last time it was converted, the image will be regenerated.

• The image will be regenerated if the destination format has beenmodified in the images.list file.

Cached images are stored in .cache/images , which is located in the application output folder. Youmay delete this
directory to force the generation of all images in your application. An image that was previously generated but is
no longer listed in the *.images.list fileswhen the application is launchedwill be deleted from the cache directory.

Warning: When testing an Image Generator extension project, the image cache is automatically disabled.

3.5. Application Developer Guide 440

MicroEJ Documentation,

External Images

To fetch immutable images from external memory, the applicationmust pre-register the external Image resources.
Themanagement of this kind of imagemay be different than the internal images andmay require someallocations
in the Images Heap. For more details about the external image management, refers to the VEE Port Guide chapter
External Resource.

Image Generator Error Messages

These errors can occur while preprocessing images.

Table 15: Static Image Generator Error Messages
ID Type Description
0 Error The image generator has encountered an unexpected internal error.
1 Error The images list file has not been specified.
2 Error The image generator cannot create the final, raw file.
3 Error The image generator cannot read the images list file. Make sure the system allows reading of

this file.
4 Warning The image generator has found no image to generate.
5 Error The image generator cannot load the images list file.
6 Warning The specified image path is invalid: The image will be not converted.
7 Warning There are toomany or too few options for the desired format.
8 Error The display format is not generic; a MicroUIRawImageGeneratorExtension implementation is

required to generate the MicroUI raw image.
9 Error The image cannot be read.
10 Error The image generator has encountered an unexpected internal error (invalid endianness).
11 Error The image generator has encountered an unexpected internal error (invalid bpp).
12 Error The image generator has encountered an unexpected internal error (invalid display format).
13 Error The image generator has encountered an unexpected internal error (invalid pixel layout).
14 Error The image generator has encountered an unexpected internal error (invalid output folder).
15 Error The image generator has encountered an unexpected internal error (invalid memory

alignment).
16 Error The input image format and / or the ouput format are not managed by the image generator.
17 Error The image has been already loaded with another output format.

Mutable Images

Overview

Unlike immutable images, mutable images are graphical resources that can be created and modified at runtime.
The application can draw into such images using the Painter classes with the image’s Graphics Context as the des-
tination. Mutable images can be created with a call to constructor ej.microui.display.BufferedImage().

BufferedImage image = new BufferedImage(320, 240);
GraphicsContext g = image.getGraphicsContext();
g.setColor(Colors.BLACK);
Painter.fillRectangle(g, 0, 0, 320, 240);
g.setColor(Colors.RED);
Painter.drawHorizontalLine(g, 50, 50, 100);
image.close();

3.5. Application Developer Guide 441

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/BufferedImage.html#getGraphicsContext--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/BufferedImage.html#BufferedImage-int-int-

MicroEJ Documentation,

Display Format

By default, the output format of a BufferedImagematches the display’s pixel organization (layout, depth, etc.). The
algorithms used to draw in such an image are the same as those used on the display (for footprint purposes). The
algorithm cannot draw transparent pixels since the display back buffer is opaque.

In addition, GraphicsContext.setColor() does not consider the alpha channel and only accepts RGB values. The
given color value is interpreted as a 24-bit RGB color, where the high-order byte is ignored, and the remaining bytes
contain the red, green, and blue channels, respectively.

Other Formats

It is also possible to create a buffered image with another format using the constructor with the format parameter.

The other formats than the display one are not supported by MicroUI. But a VEE port can manage one or more
formats (see Destination Format).

Depending on the format, the transparency may be supported.

Images Heap

The image heap is used to allocate the pixel data of:

• Mutable images (i.e. BufferedImage instances).

• Immutable images decoded at runtime, typically a PNG: the heap is used to store the decoded image and
the runtime decoder’s temporary buffers, required during the decoding step. After the decoding step, all the
temporary buffers are freed. Note that the size of the temporary buffers depends on the decoder and on the
original image itself (compression level, pixel encoding, etc.).

• Immutable images which are not byte-addressable, such as images opened with an input stream (i.e. Re-
sourceImage instances).

• Immutable images which are byte-addressable but converted to a different output format (i.e. ResourceIm-
age instances).

In other words, every image which cannot be retrieved using ej.microui.display.Image.getImage() is saved on the
image heap.

The size of the images heap can be configured with the ej.microui.memory.imagesheap.size property.

Warning: AResourceImage allocated on the images heapmust be closedmanually by the application (Resour-
ceImage.close()); otherwise, a memory leak will occur on the images heap.

For more details about the images heap implementation, refers to this chapter in the VEE Port Guide.

3.5. Application Developer Guide 442

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/BufferedImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html#setColor-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/BufferedImage.html#BufferedImage-int-int-ej.microui.display.Format-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/BufferedImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/ResourceImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/ResourceImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/ResourceImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/ResourceImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Image.html#getImage-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/ResourceImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/ResourceImage.html#close--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/ResourceImage.html#close--

MicroEJ Documentation,

Fonts

Overview

The font system consists in two distinct parts: the built-in part (also known as the internal font) and, since MicroUI
3.6, the extended part. The extended part allows the VEE Port to provide one ormore additional font systems with
their own characteristics. However, once created, all fonts can be used by the application using the Font class. In
most cases, the application does not know the type of font and should use all fonts (built-in or extended) in the
same way. This makes for portable code (as far as rendering is concerned), as only the code that creates the font
at runtime is specific.

Note: The application may need to manipulate certain specific characteristics of an extended font for rendering
(text layout, opacity, etc.), in which case it can use the extended font API.

Internal Font

Principle

The internal font format is a simple and small bitmap format.

The built-in font engine used to render this format:

• Does not require any additional support in the VEE Port to be used as-is.

• Has the same rendering whatever the VEE Port capabilities.

• Has a very small memory footprint.

• Is fast.

• Does not need runtimememory allocation.

• Provides some offline tools to generate the font files.

• Allows to tune the footprint of the font files (pixel opacity levels and ranges).

• Can be extended to provide additional features (such as a complex layout manager).

Its limitations are described in the following chapters.

Height

Each font file is encoded for agiven fontheight. Touse the same font face (.ttf file)with several heights, several font
files are required. Consequently, an application that uses a lot of font heights may be penalized (ROM footprint).

3.5. Application Developer Guide 443

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Font.html

MicroEJ Documentation,

Color

The font encoding is similar to the Alpha Format. These formats only embed the pixel’s opacity information. The
strings will be drawn using the current color of the graphics context. No color is embedded, consequently, colored
characters as emojis are not supported.

Languages

The language support is limited to the Unicode basic multilingual alphabets, whose characters are encoded on
16 bits, i.e. Unicodes characters ranging from 0x0000 to 0xFFFF (Surrogates characters are allowed). It allows to
render left-to-right or right-to-left writing systems: Latin (English, etc.), Arabic, Chinese, etc. are some supported
languages. However, the rendering is always performed left-to-right, even if the string iswritten right-to-left. There
is no built-in support for:

• Top-to-bottomwriting systems.

• Diacritics, contextual letters, specific character ordering, etc.

The array of characters to render must only contain renderable characters (no escape character) and the very first
character in the array is always the character on the left.

Hint: Use the offline toolNative Language Support to automatically convert the translationmessages in a charac-
ter array compatible with the built-in font engine.

FNT Font File

Font files which endwith the suffix .fnt are bitmap fonts specified by AngelCode (without the support of the kern-
ing).

A third-party tool is required to generate a .fnt from .ttf . To be compatible with the MicroEJ Font Engine, the
following settings are mandatory:

• The output file format must be a .txt (not XML or binary).

• Images must be PNG files.

• Font and images must be located in the same folder.

• The images files namemust end with the file number (0-based): xxx0.png , xxx1.png , etc.

• The foreground color must be black and the background color white or transparent.

Hint: Open the .fnt with a text editor to retrieve the image: page id=0 file=”myfont_0.png” .

3.5. Application Developer Guide 444

https://en.wikipedia.org/wiki/Universal_Character_Set_characters#Surrogates
http://www.angelcode.com/products/bmfont/

MicroEJ Documentation,

fontbm

fontbm is a free cross-platform (Linux / MacOS / Windows) command line bitmap font generator. It is based on
FreeType2 and generates exactly the same font on any operating system.

The next command line generates a .fnt from the font file SourceSansPro-Regular.ttf with a size of 24 pixels:

./fontbm --font-file SourceSansPro-Regular.ttf --output myfont --color 0,0,0 --font-size 24

It generates a .fnt accompanied by its images (one or more):

myfont.fnt
myfont_0.png
myfont_1.png

bmfont

bmfont is a free Windows UI and command line bitmap font generator, based on FreeType2.

The options to export the font must follow these rules:

3.5. Application Developer Guide 445

https://github.com/vladimirgamalyan/fontbm/
http://www.angelcode.com/products/bmfont/

MicroEJ Documentation,

Fig. 123: BMFont Export Options

It generates a .fnt accompanied by its images (one or more):

myfont.fnt
myfont_0.png
myfont_1.png

3.5. Application Developer Guide 446

MicroEJ Documentation,

EJF Font File

Font files which end with the .ejf suffix are created using the Font Designer (see Font Designer).

Usage

A Java application can retrieved a font with a call to Font.getFont() passing its fully qualified name.

Fonts are declared in Classpath *.fonts.list files (or in *.fontsext.list for an external resource, see External Fonts).

Font

internal?

*.fonts.list

yes

*.fontsext.list

no=external

The file format is a standard Java properties file, each line representing a / separated resource path relative to the
Classpath root referring to a Font file (fnt or .ejf extension). The resourcemay be followedby optional parameters
which define :

• some ranges of characters to embed in the final raw file;

• the required pixel depth for transparency.

By default, all characters available in the input font file are embedded, and the pixel depth is 1 (i.e 1 bit-per-pixel).
Example:

The following font is embedded with all characters
without transparency
com/mycompany/MyFont1.fnt

The following font is embedded with only the latin
unicode range without transparency
com/mycompany/MyFont2.fnt:latin

The following font is embedded with all characters
with 2 levels of transparency
com/mycompany/MyFont2.ejf::2

3.5. Application Developer Guide 447

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Font.html#getFont-java.lang.String-

MicroEJ Documentation,

Configuration File

Here is the format of the *.fonts.list files.

ConfigFile ::= Line ['EOL' Line]*
Line ::= FontPath [':' [Ranges] [':' BitsPerPixel]]
FontPath ::= Identifier ['/' Identifier]*
Ranges ::= Range [';' Range]*
Range ::= CustomRangeList | KnownRange
CustomRangeList ::= CustomRange [',' CustomRange]*
CustomRange ::= Number | Number '-' Number
KnownRange ::= Name [SubRangeList]?
SubRangeList ::= '(' SubRange [',' SubRange]* ')'
SubRange ::= Number | Number - Number
Identifier ::= 'a-zA-Z_$' ['a-zA-Z_$0-9']*
Number ::= Number16 | Number10
Number16 ::= '0x' [Digit16]+
Number10 ::= [Digit10]+
Digit16 ::= 'a-fA-F0-9'
Digit10 ::= '0-9'
BitsPerPixel ::= '1' | '2' | '4' | '8'

Font Range

The first parameter is for specifying the font ranges to embed. Selecting only a specific set of characters to embed
reduces the memory footprint. If unspecified, all characters of the font are embedded.

Several ranges can be specified, separated by ; . There are twoways to specify a character range: the custom range
and the known range.

Custom Range

Allows the selection of raw Unicode character ranges.

Examples:

• myfont:0x21-0x49 : Defines one range: embed all characters from 0x21 to 0x49 (included);

• myfont:0x21-0x49,0x55-0x75 : Defines a set of two ranges: embed all characters from0x21 to 0x49 and from
0x55 to 0x75.

• myfont:0x21-0x49,0x55 : Defines a set of one range and one character: embed all characters from 0x21 to
0x49 and character 0x55.

Known Range

A known range is a range available in the following table.

Examples:

• myfont:basic_latin : Embed all Basic Latin characters;

• myfont:basic_latin;arabic : Embed all Basic Latin characters, and all Arabic characters.

The following table describes the available list of ranges and sub-ranges (processed from the “Unicode Character
Database” version 9.0.0 available on the official unicode website https://home.unicode.org/).

3.5. Application Developer Guide 448

https://home.unicode.org/

MicroEJ Documentation,

Table 16: Ranges
Name Tag Start End
Basic Latin basic_latin 0x0 0x7f
Latin-1 Supplement latin-1_supplement 0x80 0xff
Latin Extended-A latin_extended-a 0x100 0x17f
Latin Extended-B latin_extended-b 0x180 0x24f
IPA Extensions ipa_extensions 0x250 0x2af
Spacing Modifier Letters spacing_modifier_letters 0x2b0 0x2ff
Combining Diacritical Marks combining_diacritical_marks 0x300 0x36f
Greek and Coptic greek_and_coptic 0x370 0x3ff
Cyrillic cyrillic 0x400 0x4ff
Cyrillic Supplement cyrillic_supplement 0x500 0x52f
Armenian armenian 0x530 0x58f
Hebrew hebrew 0x590 0x5ff
Arabic arabic 0x600 0x6ff
Syriac syriac 0x700 0x74f
Arabic Supplement arabic_supplement 0x750 0x77f
Thaana thaana 0x780 0x7bf
NKo nko 0x7c0 0x7ff
Samaritan samaritan 0x800 0x83f
Mandaic mandaic 0x840 0x85f
Arabic Extended-A arabic_extended-a 0x8a0 0x8ff
Devanagari devanagari 0x900 0x97f
Bengali bengali 0x980 0x9ff
Gurmukhi gurmukhi 0xa00 0xa7f
Gujarati gujarati 0xa80 0xaff
Oriya oriya 0xb00 0xb7f
Tamil tamil 0xb80 0xbff
Telugu telugu 0xc00 0xc7f
Kannada kannada 0xc80 0xcff
Malayalam malayalam 0xd00 0xd7f
Sinhala sinhala 0xd80 0xdff
Thai thai 0xe00 0xe7f
Lao lao 0xe80 0xeff
Tibetan tibetan 0xf00 0xfff
Myanmar myanmar 0x1000 0x109f
Georgian georgian 0x10a0 0x10ff
Hangul Jamo hangul_jamo 0x1100 0x11ff
Ethiopic ethiopic 0x1200 0x137f
Ethiopic Supplement ethiopic_supplement 0x1380 0x139f
Cherokee cherokee 0x13a0 0x13ff
Unified Canadian Aboriginal Syllabics unified_canadian_aboriginal_syllabics 0x1400 0x167f
Ogham ogham 0x1680 0x169f
Runic runic 0x16a0 0x16ff
Tagalog tagalog 0x1700 0x171f
Hanunoo hanunoo 0x1720 0x173f
Buhid buhid 0x1740 0x175f
Tagbanwa tagbanwa 0x1760 0x177f
Khmer khmer 0x1780 0x17ff
Mongolian mongolian 0x1800 0x18af

continues on next page

3.5. Application Developer Guide 449

MicroEJ Documentation,

Table 16 – continued from previous page
Name Tag Start End
Unified Canadian Aboriginal Syllabics
Extended

unified_canadian_aboriginal_syllabics_ex-
tended

0x18b0 0x18ff

Limbu limbu 0x1900 0x194f
Tai Le tai_le 0x1950 0x197f
New Tai Lue new_tai_lue 0x1980 0x19df
Khmer Symbols khmer_symbols 0x19e0 0x19ff
Buginese buginese 0x1a00 0x1a1f
Tai Tham tai_tham 0x1a20 0x1aaf
CombiningDiacriticalMarks Extended combining_diacritical_marks_extended 0x1ab0 0x1aff
Balinese balinese 0x1b00 0x1b7f
Sundanese sundanese 0x1b80 0x1bbf
Batak batak 0x1bc0 0x1bff
Lepcha lepcha 0x1c00 0x1c4f
Ol Chiki ol_chiki 0x1c50 0x1c7f
Cyrillic Extended-C cyrillic_extended-c 0x1c80 0x1c8f
Sundanese Supplement sundanese_supplement 0x1cc0 0x1ccf
Vedic Extensions vedic_extensions 0x1cd0 0x1cff
Phonetic Extensions phonetic_extensions 0x1d00 0x1d7f
Phonetic Extensions Supplement phonetic_extensions_supplement 0x1d80 0x1dbf
Combining Diacritical Marks Supple-
ment

combining_diacritical_marks_supplement 0x1dc0 0x1dff

Latin Extended Additional latin_extended_additional 0x1e00 0x1eff
Greek Extended greek_extended 0x1f00 0x1fff
General Punctuation general_punctuation 0x2000 0x206f
Superscripts and Subscripts superscripts_and_subscripts 0x2070 0x209f
Currency Symbols currency_symbols 0x20a0 0x20cf
Combining Diacritical Marks for Sym-
bols

combining_diacritical_marks_for_symbols 0x20d0 0x20ff

Letterlike Symbols letterlike_symbols 0x2100 0x214f
Number Forms number_forms 0x2150 0x218f
Arrows arrows 0x2190 0x21ff
Mathematical Operators mathematical_operators 0x2200 0x22ff
Miscellaneous Technical miscellaneous_technical 0x2300 0x23ff
Control Pictures control_pictures 0x2400 0x243f
Optical Character Recognition optical_character_recognition 0x2440 0x245f
Enclosed Alphanumerics enclosed_alphanumerics 0x2460 0x24ff
Box Drawing box_drawing 0x2500 0x257f
Block Elements block_elements 0x2580 0x259f
Geometric Shapes geometric_shapes 0x25a0 0x25ff
Miscellaneous Symbols miscellaneous_symbols 0x2600 0x26ff
Dingbats dingbats 0x2700 0x27bf
Miscellaneous Mathematical
Symbols-A

miscellaneous_mathematical_symbols-a 0x27c0 0x27ef

Supplemental Arrows-A supplemental_arrows-a 0x27f0 0x27ff
Braille Patterns braille_patterns 0x2800 0x28ff
Supplemental Arrows-B supplemental_arrows-b 0x2900 0x297f
Miscellaneous Mathematical
Symbols-B

miscellaneous_mathematical_symbols-b 0x2980 0x29ff

continues on next page

3.5. Application Developer Guide 450

MicroEJ Documentation,

Table 16 – continued from previous page
Name Tag Start End
Supplemental Mathematical Opera-
tors

supplemental_mathematical_operators 0x2a00 0x2aff

Miscellaneous Symbols and Arrows miscellaneous_symbols_and_arrows 0x2b00 0x2bff
Glagolitic glagolitic 0x2c00 0x2c5f
Latin Extended-C latin_extended-c 0x2c60 0x2c7f
Coptic coptic 0x2c80 0x2cff
Georgian Supplement georgian_supplement 0x2d00 0x2d2f
Tifinagh tifinagh 0x2d30 0x2d7f
Ethiopic Extended ethiopic_extended 0x2d80 0x2ddf
Cyrillic Extended-A cyrillic_extended-a 0x2de0 0x2dff
Supplemental Punctuation supplemental_punctuation 0x2e00 0x2e7f
CJK Radicals Supplement cjk_radicals_supplement 0x2e80 0x2eff
Kangxi Radicals kangxi_radicals 0x2f00 0x2fdf
Ideographic Description Characters ideographic_description_characters 0x2ff0 0x2fff
CJK Symbols and Punctuation cjk_symbols_and_punctuation 0x3000 0x303f
Hiragana hiragana 0x3040 0x309f
Katakana katakana 0x30a0 0x30ff
Bopomofo bopomofo 0x3100 0x312f
Hangul Compatibility Jamo hangul_compatibility_jamo 0x3130 0x318f
Kanbun kanbun 0x3190 0x319f
Bopomofo Extended bopomofo_extended 0x31a0 0x31bf
CJK Strokes cjk_strokes 0x31c0 0x31ef
Katakana Phonetic Extensions katakana_phonetic_extensions 0x31f0 0x31ff
Enclosed CJK Letters and Months enclosed_cjk_letters_and_months 0x3200 0x32ff
CJK Compatibility cjk_compatibility 0x3300 0x33ff
CJK Unified Ideographs Extension A cjk_unified_ideographs_extension_a 0x3400 0x4dbf
Yijing Hexagram Symbols yijing_hexagram_symbols 0x4dc0 0x4dff
CJK Unified Ideographs cjk_unified_ideographs 0x4e00 0x9fff
Yi Syllables yi_syllables 0xa000 0xa48f
Yi Radicals yi_radicals 0xa490 0xa4cf
Lisu lisu 0xa4d0 0xa4ff
Vai vai 0xa500 0xa63f
Cyrillic Extended-B cyrillic_extended-b 0xa640 0xa69f
Bamum bamum 0xa6a0 0xa6ff
Modifier Tone Letters modifier_tone_letters 0xa700 0xa71f
Latin Extended-D latin_extended-d 0xa720 0xa7ff
Syloti Nagri syloti_nagri 0xa800 0xa82f
Common Indic Number Forms common_indic_number_forms 0xa830 0xa83f
Phags-pa phags-pa 0xa840 0xa87f
Saurashtra saurashtra 0xa880 0xa8df
Devanagari Extended devanagari_extended 0xa8e0 0xa8ff
Kayah Li kayah_li 0xa900 0xa92f
Rejang rejang 0xa930 0xa95f
Hangul Jamo Extended-A hangul_jamo_extended-a 0xa960 0xa97f
Javanese javanese 0xa980 0xa9df
Myanmar Extended-B myanmar_extended-b 0xa9e0 0xa9ff
Cham cham 0xaa00 0xaa5f
Myanmar Extended-A myanmar_extended-a 0xaa60 0xaa7f
Tai Viet tai_viet 0xaa80 0xaadf

continues on next page

3.5. Application Developer Guide 451

MicroEJ Documentation,

Table 16 – continued from previous page
Name Tag Start End
Meetei Mayek Extensions meetei_mayek_extensions 0xaae0 0xaaff
Ethiopic Extended-A ethiopic_extended-a 0xab00 0xab2f
Latin Extended-E latin_extended-e 0xab30 0xab6f
Cherokee Supplement cherokee_supplement 0xab70 0xabbf
Meetei Mayek meetei_mayek 0xabc0 0xabff
Hangul Syllables hangul_syllables 0xac00 0xd7af
Hangul Jamo Extended-B hangul_jamo_extended-b 0xd7b0 0xd7ff
High Surrogates high_surrogates 0xd800 0xdb7f
High Private Use Surrogates high_private_use_surrogates 0xdb80 0xdbff
Low Surrogates low_surrogates 0xdc00 0xdfff
Private Use Area private_use_area 0xe000 0xf8ff
CJK Compatibility Ideographs cjk_compatibility_ideographs 0xf900 0xfaff
Alphabetic Presentation Forms alphabetic_presentation_forms 0xfb00 0xfb4f
Arabic Presentation Forms-A arabic_presentation_forms-a 0xfb50 0xfdff
Variation Selectors variation_selectors 0xfe00 0xfe0f
Vertical Forms vertical_forms 0xfe10 0xfe1f
Combining Half Marks combining_half_marks 0xfe20 0xfe2f
CJK Compatibility Forms cjk_compatibility_forms 0xfe30 0xfe4f
Small Form Variants small_form_variants 0xfe50 0xfe6f
Arabic Presentation Forms-B arabic_presentation_forms-b 0xfe70 0xfeff
Halfwidth and Fullwidth Forms halfwidth_and_fullwidth_forms 0xff00 0xffef
Specials specials 0xfff0 0xffff

Transparency

The second parameter is for specifying the font transparency level (1 , 2 , 4 or 8). If unspecified, the encoded
transparency level is 1 (does not depend on the transparency level encoded in the font file).

Examples:

• myfont:latin:4 : Embed all latin characters with 16 levels of transparency

• myfont::2 : Embed all characters with 4 levels of transparency

3.5. Application Developer Guide 452

MicroEJ Documentation,

External Fonts

To fetch fonts from non-byte addressable external memory, the application must pre-register the external Font
resources. Themanagementof this kindof fontmaybedifferent than the internal fontsandmay requireadedicated
heap. Formoredetails about theexternal fontmanagement, refer to theVEEPortGuide chapterExternalResources.

Font Generator Error Messages

Table 17: Static Font Generator Error Messages
ID Type Description
0 Error The font generator has encountered an unexpected internal error.
1 Error The Fonts list file has not been specified.
2 Error The font generator cannot create the final, raw file.
3 Error The font generator cannot read the fonts list file.
4 Warning The font generator has found no font to generate.
5 Error The font generator cannot load the fonts list file.
6 Warning The specified font path is invalid: The font will be not converted.
7 Warning There are toomany arguments on a line: the current entry is ignored.
8 Error The font generator has encountered an unexpected internal error (invalid output format).
9 Error The font generator has encountered an unexpected internal error (invalid endianness).
10 Error The specified entry is invalid.
11 Error The specified entry does not contain a list of characters.
12 Error The specified entry does not contain a list of identifiers.
13 Error The specified entry is an invalid width.
14 Error The specified entry is an invalid height.
15 Error The specified entry does not contain the characters’ addresses.
16 Error The specified entry does not contain the characters’ bitmaps.
17 Error The specified entry bits-per-pixel value is invalid.
18 Error The specified range is invalid.
19 Error There are toomany identifiers. The output RAW format cannot store all identifiers.
20 Error The font’s name is too long. The output RAW format cannot store all name characters.
21 Error There are toomany ranges. The output RAW format cannot store all ranges.
22 Error Output list files cannot be created.
23 Error Dynamic styles are not supported. Only a PLAIN font can be encoded.
24 Error Underlined style is not supported. Only a BOLD and ITALIC font can be set.

Default Character

The applicationmay request the rendering of a stringwhere some characters are not available in the selected font.
In that case, a default character is drawn instead: it is the first available character in the font. For example, the first
available character for a font where the range matches the ASCII printable characters (0x21-0x7E) would be the
exclamation mark (0x21).

The characters of a font are referenced by their Unicode value. For a given font range, the default character is the
first character of the first range. Consequently, the default character may not be the same for two given fonts of an
application: it depends on the specified character range for each font.

To help developers identify quickly why a string is rendered with unexpected characters, it is recommended that
the fontmaker sets a default character that is easy to recognize (a symbol, for example, a rectangle). This character
must have the first character index (index 0 is allowed).

3.5. Application Developer Guide 453

MicroEJ Documentation,

Caching Generated Fonts

Fonts converted using the Font Generator can be cached so that they are not rebuilt every time the application is
launched. Doing so can significantly speed up the application build phase.

The cache is enabled by default. It may be disabled by setting the Application option ej.microui.fontConverter.
disableCache to true .

The Font Generator obeys several rules when choosing whether a font should be converted.

• If the cache is disabled, all fonts are generated every time the application is launched.

• All fonts will be regenerated if the application is launched using another VEE port and the new VEE port uses
a different Font Generator.

• If the generated font does not exist, it will be generated.

• If the source font has beenmodified since the last time it was converted, the font will be regenerated.

• The font will be regenerated if the destination format or the range has beenmodified in the fonts.list file.

Cached fonts are stored in .cache/fonts , which is located in the application output folder. You may delete this
directory to force the generation of all fonts in your application. A font that was previously generated but is no
longer listed in the *.fonts.list files when the application is launched will be deleted from the cache directory.

Extended Font

A VEE Port can provide one ofmultiple subclasses ofMicroUI Font. Theway to open these extended fonts is specific
to each subclass. However, each subclass should implement the default MicroUI Painter API to draw and transform
the strings. This makes for portable code (as far as rendering is concerned).

• For more information about the way an extended font is added to a VEE Port, see Custom Font.

• For more information about the way an extended font is added to the application classpath, opened at ru-
time, its characteristics, its extended Painter API, etc., refer to the extended font documentation.

Note: MicroVG’s VectorFont offers a way to retrieve an extended font.

Application Options

MicroUI librariesand its toolsprovidea setofoptions. SeeStandaloneApplicationOptions tohavemore information
about the application options.

Note: MicroUI implementation requires one thread (MicroUI Pump) and at least 100 bytes in the immortals heap.

3.5. Application Developer Guide 454

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Font.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorFont.html

MicroEJ Documentation,

Category: Libraries

Category: MicroUI

Group: Memory

3.5. Application Developer Guide 455

MicroEJ Documentation,

Option(text): Pump events (inputs and display) queue size (in number of events)

Option Name: ej.microui.memory.queue.size

Default value: 100

Description:

Specifies the size of the pump events queue.

Option(combo): Pump events thread priority

Option Name: com.microej.library.microui.pump.priority

Default value: 5

Available values: 1 to 10

Description:

Specifies the priority of the pump events queue.

Option(text): Images heap size (in bytes)

Option Name: ej.microui.memory.imagesheap.size

Default value: 131072

Description:

Specifies the size of the images heap. This heap is used to store the dynamic user images, the decoded images
and the working buffers of embedded image decoders (for instance the PNG decoder). A too small value can cause
OutOfMemory errors and incomplete drawings.

3.5. Application Developer Guide 456

MicroEJ Documentation,

Category: Font

Group: Fonts to Process

Description:

This group allows to select a file describing the font files which need to be converted into a RAW format. At Mi-
croUI runtime, the pre-generated fonts will be read from the flashmemory without anymodifications (see MicroUI
specification).

Option(checkbox): Activate the font pre-processing step

Option Name: ej.microui.fontConverter.useIt

Default value: true

Description:

When checked, enables the next option Fonts list file. When the next option is disabled, there is no check on the
file path validity.

3.5. Application Developer Guide 457

MicroEJ Documentation,

Option(checkbox): Define an explicit list file

Option Name: ej.microui.fontConverter.file.enabled

Default value: false

Description:

By default, list files are loaded from the classpath. When checked, only the next option Fonts list file is processed.

Option(browse):

Option Name: ej.microui.fontConverter.file

Default value: (empty)

Description:

Browse to select a font list file. Refer to Font Generator chapter formore information about the font list file format.

Category: Image

Group: Images to Process

Description:

This group allows to select a file describing the image files which need to be converted into a RAW format. At
MicroUI runtime, the pre-generated images will be read from the flash memory without any modifications (see
MicroUI specification).

3.5. Application Developer Guide 458

MicroEJ Documentation,

Option(checkbox): Activate the image pre-processing step

Option Name: ej.microui.imageConverter.useIt

Default value: true

Description:

When checked, enables the next option Images list file. When the next option is disabled, there is no check on the
file path validity.

Option(checkbox): Define an explicit list file

Option Name: ej.microui.imageConverter.file.enabled

Default value: false

Description:

Bydefault, list files are loaded fromthe classpath. Whenchecked, only thenext option Images list file is processed.

Option(browse):

Option Name: ej.microui.imageConverter.file

Default value: (empty)

Description:

Browse to select an image list file. Refer to Image Generator chapter for more information about the image list file
format.

Debug Traces

MicroUI logs several actionswhen traces are enabled (see Event Tracing). This chapter explains the trace identifiers.

Note: Most of the logs are only available on the Embedded VEE Port (not on the Simulator).

Trace format

The trace output format is the following:

[TRACE: MicroUI] Event AA(BB[CC],DD[EE])

where:

• AA is the event identifier. See next table.

• BB is the first event data.

• CC is the index of the first event data (0x0).

• DD is the second event data.

• EE is the index of the second event data (0x1).

3.5. Application Developer Guide 459

MicroEJ Documentation,

• etc.

For example, given the following trace output:

[TRACE: MicroUI] Event 0x2(1[0x0],2[0x1],117571586[0x2])

• 0x2 -> Execute native input event

• 1 -> Event “Button” (index 0x0)

• 2 -> Generator Id (index 0x1)

• 117571586 -> event data (index 0x2)

Trace identifiers

The following tables describe some events data.

Warning: These tables are only compatible with the latest pack available (14.4.2).

Table 18: MicroUI Traces
Event ID Description End of event
0x0 (0) Execute EventGenerator event %0% (see Event Type). Generator

id is %1% and data is %2% .
End of %0% (see Event Type).

0x1 (1) Drop event %0% .
0x2 (2) Execute native input event %0% (see Event Type). Generator id

is %1% and data is %2% .
End of %0% (see Event Type).

0x3 (3) Execute display event %0% (see Event Type). Event is %1% . End of %0% (see Event Type).
0x4 (4) Execute user event %0% . End of %0% .
0x5 (5) Create new image using %0% algorithm (see Create Image). Image created, image identifier

is %0% .
0x6 (6) New image characteristics %0% (see Image Type), identifier is

%1% andmemory size is %2% .
0xa (10) Flush start. Region (%0% , %1%) (%2% x %3%).
0xb (11) Flush done.
0xc (12) Start drawing operation %0% (see Drawing Type). Drawing status %0% (see

Drawing Status)
0xd (13) Start drawing operation %0% (see Drawing Type). Drawing status %0% (see

Drawing Status)
0xf (15) Asynchronous drawing operation done.
0x10
(16)

Flush %0% from back buffer %1% start. Region (%2% , %3%)
(%4% x %5%).

0x11 (17) Flush %0% done. New back buffer: %1% .
0x14
(20)

Invalid input event %0% .

0x15 (21) Event queue is full, cannot add event %0% .
0x16
(22)

Add event %0% at index %1% ; queue length is %2% .

0x17
(23)

Replace event %0% by %1% at index %2% ; queue length is
%3% .

0x18
(24)

Read event %0% at index %1% .

continues on next page

3.5. Application Developer Guide 460

MicroEJ Documentation,

Table 18 – continued from previous page
Event ID Description End of event
0x28
(40)

Start drawing operation %0% (see Drawing Type). Drawing status %0% (see
Drawing Status)

0x32
(50)

[BRS] New drawing region (%0% , %1%) to (%2% , %3%)

0x33
(51)

[BRS] Flush LCD (id = %0% buffer = %1%) with a single region (
%2% , %3%) to (%4% , %5%)

0x34
(52)

[BRS] Flush LCD (id = %0% buffer = %1%) with %2% regions

0x35
(53)

[BRS] Add a region (%0% , %1%) to (%2% , %3%)

0x36
(54)

[BRS] Remove a region (%0% , %1%) to (%2% , %3%)

0x37
(55)

[BRS] Restore a region (%0% , %1%) to (%2% , %3%)

0x38
(56)

[BRS] Clear the list of regions

0x39
(57)

[BRS] Restore a region (%0% , %1%) (%2% x %3%)

0x3c
(60)

Get pixel from image %0% (%1% , %2%)

0x3d
(61)

Get ARGB array from image %0% region (%1% , %2%) (%3% x
%4%)

0x3e
(62)

Get string width (%0% characters)

0x3f
(63)

Set foreground color: dest %0% color = %1%

0x40
(64)

Set background color: dest %0% color = %1%

0x41
(65)

Remove background color: dest %0%

0x42
(66)

Set clip: dest %0% region (%1% , %2%) (%3% x %4%)

0x43
(67)

Draw ing out of clip:: dest %0%

0x44
(68)

Drawn region: dest %0% clip disabled = %1% region (%2% ,
%3%) (%4% x %5%)

0x50
(80)

Write pixel: dest %0% (%1% , %2%) Drawing status %0% (see
Drawing Status)

0x51 (81) Draw line: dest %0% (%1% , %2%) to (%3% , %4%) Drawing status %0% (see
Drawing Status)

0x52
(82)

Draw horizontal line: dest %0% (%1% , %2%) length %3% Drawing status %0% (see
Drawing Status)

0x53
(83)

Draw vertical line: dest %0% (%1% , %2%) length %3% Drawing status %0% (see
Drawing Status)

0x54
(84)

Draw rectangle: dest %0% anchor (%1% , %2%) size (%3% x
%4%)

Drawing status %0% (see
Drawing Status)

0x55
(85)

Fill rectangle: dest %0% anchor (%1% , %2%) size (%3% x
%4%)

Drawing status %0% (see
Drawing Status)

0x56
(86)

Draw rounded rectangle: dest %0% anchor (%1% , %2%) size (
%3% x %4%) corner (%5% x %6%)

Drawing status %0% (see
Drawing Status)

continues on next page

3.5. Application Developer Guide 461

MicroEJ Documentation,

Table 18 – continued from previous page
Event ID Description End of event
0x57
(87)

Fill rounded rectangle: dest %0% anchor (%1% , %2%) size (
%3% x %4%) corner (%5% x %6%)

Drawing status %0% (see
Drawing Status)

0x58
(88)

Draw circle arc: dest %0% anchor (%1% , %2%) diameter %3%
start %5% angle %6%

Drawing status %0% (see
Drawing Status)

0x59
(89)

Fill circle arc: dest %0% anchor (%1% , %2%) diameter %3%
start %5% angle %6%

Drawing status %0% (see
Drawing Status)

0x5a
(90)

Draw ellipse arc: dest %0% anchor (%1% , %2%) size (%3% x
%4%) start %5% angle %6%

Drawing status %0% (see
Drawing Status)

0x5b
(91)

Fill ellipse arc: dest %0% anchor (%1% , %2%) size (%3% x
%4%) start %5% angle %6%

Drawing status %0% (see
Drawing Status)

0x5c
(92)

Drawellipse: dest %0% anchor (%1% , %2%) size (%3% x %4%
)

Drawing status %0% (see
Drawing Status)

0x5d
(93)

Fill ellipse: dest %0% anchor (%1% , %2%) size (%3% x %4%) Drawing status %0% (see
Drawing Status)

0x5e
(94)

Draw circle: dest %0% anchor (%1% , %2%) diameter %3% Drawing status %0% (see
Drawing Status)

0x5f
(95)

Fill circle: dest %0% anchor (%1% , %2%) diameter %3% Drawing status %0% (see
Drawing Status)

0x60
(96)

Draw image: dest %0% image %1% from (%2% , %3%) size (
%4% x %5%) anchor (%6% , %7%) alpha %8%

Drawing status %0% (see
Drawing Status)

0x61
(97)

Draw string: dest %0% (%1% characters) anchor (%2% , %3%) Drawing status %0% (see
Drawing Status)

0x62
(98)

Draw renderable string: dest %0% (%1% characters) anchor (
%2% , %3%)

Drawing status %0% (see
Drawing Status)

0x6e
(110)

Draw thick fadedpoint: dest %0% (%1% , %2%) thickness %3%
fade %4%

Drawing status %0% (see
Drawing Status)

0x6f
(111)

Draw thick faded line: dest %0% (%1% , %2%) to (%3% , %4%
) thickness %5% fade %6%

Drawing status %0% (see
Drawing Status)

0x70
(112)

Draw thick faded circle: dest %0% anchor (%1% , %2%) diam-
eter %3% thickness %4% fade %5%

Drawing status %0% (see
Drawing Status)

0x71
(113)

Draw thick faded circle arc: dest %0% anchor (%1% , %2%)
diameter %3% start %5% angle %6% thickness %7% fade
%8%

Drawing status %0% (see
Drawing Status)

0x72
(114)

Draw thick faded ellipse: dest %0% anchor (%1% , %2%) size (
%3% x %4%) thickness %5% fade %6%

Drawing status %0% (see
Drawing Status)

0x73
(115)

Draw thick line: dest %0% (%1% , %2%) to (%3% , %4%)
thickness %5%

Drawing status %0% (see
Drawing Status)

0x74
(116)

Draw thick circle: dest %0% anchor (%1% , %2%) diameter
%3% thickness %4%

Drawing status %0% (see
Drawing Status)

0x75
(117)

Draw thick ellipse: dest %0% anchor (%1% , %2%) size (%3%
x %4%) thickness %5%

Drawing status %0% (see
Drawing Status)

0x76
(118)

Draw thick Circle arc: dest %0% anchor (%1% , %2%) diameter
%3% start %4% angle %5% thickness %6% fade %7%

Drawing status %0% (see
Drawing Status)

0x77
(119)

Draw polygon: dest %0% lenght %1% Drawing status %0% (see
Drawing Status)

0x78
(120)

Fill polygon: dest %0% lenght %1% Drawing status %0% (see
Drawing Status)

0x82
(130)

Draw flipped image: dest %0% image %1% from (%2% , %3%)
size (%4% x %5%) anchor (%6% , %7%) %8% (see Flip Type)
alpha %9%

Drawing status %0% (see
Drawing Status)

continues on next page

3.5. Application Developer Guide 462

MicroEJ Documentation,

Table 18 – continued from previous page
Event ID Description End of event
0x83
(131)

Draw rotated image: dest %0% image %1% anchor (%2% , %3%
) center=(%4% , %5%) angle %6% alpha %7% approx %8%
(see Approximation)

Drawing status %0% (see
Drawing Status)

0x84
(132)

Draw scaled image: dest %0% image %1% anchor (%2% , %3%
) factor %4% alpha %5% approx %6% (see Approximation)

Drawing status %0% (see
Drawing Status)

0x85
(133)

Draw scaled string: dest %0% (%1% characters) anchor (%2% ,
%3%) factor %4% approx %5% (see Approximation)

Drawing status %0% (see
Drawing Status)

0x86
(134)

Draw scaled renderable string: dest %0% (%1% characters) an-
chor (%2% , %3%) factor %4% approx %5% (see Approxima-
tion)

Drawing status %0% (see
Drawing Status)

0x87
(135)

Draw rotated character: dest %0% char %1% anchor (%2% ,
%3%) center (%4% , %5%) angle %6% alpha %7% approx
%8% (see Approximation)

Drawing status %0% (see
Drawing Status)

0x88
(136)

Draw image deformed: dest %0% image %1% Drawing status %0% (see
Drawing Status)

Table 19: Event Type
Event ID Description
0x0 (0) Event “Command”
0x1 (1) Event “Button”
0x2 (2) Event “Pointer”
0x3 (3) Event “State”
0x4 (4) Event “Unknwon”
0x5 (5) Event “Call Serially”
0x6 (6) Event “MicroUI Stop”
0x7 (7) Event “Input”
0x8 (8) Event “Show Displayable”
0x9 (9) Event “Hide Displayable”
0xb (11) Event “Pending Flush”
0xc (12) Event “Force Flush”
0xd (13) Event “Repaint Displayable”
0xe (14) Event “Repaint Current Displayable”
0xf (15) Event “KF Stop Feature”

Table 20: Create Image
Event ID Description
0x0 (0) Create BufferedImage
0x1 (1) Create Image from path
0x2 (2) Create Image from InputStream

3.5. Application Developer Guide 463

MicroEJ Documentation,

Table 21: Image Type
Event ID Description
0x0 (0) New BufferedImage
0x1 (1) Load MicroEJ Image from RAW file
0x2 (2) NewMicroEJ Image from encoded image
0x3 (3) NewMicroEJ Image from RAW image in external memory
0x4 (4) NewMicroEJ Image from encoded image in external memory
0x5 (5) NewMicroEJ Image frommemory InputStream
0x6 (6) NewMicroEJ Image from byte array InputStream
0x7 (7) NewMicroEJ Image from generic InputStream
0x8 (8) Link Image

Table 22: Drawing Type
Event ID Description
0x1 (1) Write pixel
0x2 (2) Draw line
0x3 (3) Draw horizontal line
0x4 (4) Draw vertical line
0x5 (5) Draw rectangle
0x6 (6) Fill rectangle
0x7 (7) Unknown
0x8 (8) Draw rounded rectangle
0x9 (9) Fill rounded rectangle
0xa (10) Draw circle arc
0xb (11) Fill circle arc
0xc (12) Draw ellipse arc
0xd (13) Fill ellipse arc
0xe (14) Draw ellipse
0xf (15) Fill ellipse
0x10 (16) Draw circle
0x11 (17) Fill circle
0x12 (18) Draw ARGB array
0x13 (19) Draw image
0x14 (20) Draw string
0x15 (21) Get string width
0x32 (50) Draw polygon
0x33 (51) Fill polygon
0x34 (52) Get ARGB image data
0x35 (53) Draw string
0x36 (54) Draw deformed string
0x37 (55) Draw deformed image
0x38 (56) Draw rotated character bilinear
0x39 (57) Draw rotated character nearest neighbor
0x3a (58) Get string width
0x3b (59) Get pixel
0x64 (100) Draw thick faded point
0x65 (101) Draw thick faded line
0x66 (102) Draw thick faded circle
0x67 (103) Draw thick faded circle arc

continues on next page

3.5. Application Developer Guide 464

MicroEJ Documentation,

Table 22 – continued from previous page
Event ID Description
0x68 (104) Draw thick faded ellipse
0x69 (105) Draw thick line
0x6a (106) Draw thick circle
0x6b (107) Draw thick ellipse
0x6c (108) Draw thick circle arc
0xc8 (200) Draw image with fli
0xc9 (201) Draw image with rotation (simple)
0xca (202) Draw image with rotation (bilinear)
0xcb (203) Draw image with scalling (simple)
0xcc (204) Draw image with scalling (bilinear)
0xcd (205) Draw string with scaling (bilinear)
0xce (206) Draw character with rotation (bilinear)
0xcf (207) Draw character with rotation (simple)

Table 23: Drawing Status
Event ID Description
0x0 (0) Synchronous drawing done
0x1 (1) Asynchronous drawing delayed

Table 24: Flip Type
Event ID Description
0x0 (0) none
0x1 (1) mirror 90°
0x2 (2) 270°
0x3 (3) mirror
0x4 (4) 180°
0x5 (5) mirror 270°
0x6 (6) mirror 180°
0x7 (7) 90°

Table 25: Approximation
Event ID Description
0x0 (0) bilinear
0x1 (1) nearest neighbor

3.5. Application Developer Guide 465

MicroEJ Documentation,

SystemView Integration

The traces are SystemView compatible.

Fig. 124: MicroUI Traces displayed in SystemView

The following text can be copied in a file called SYSVIEW_MicroUI.txt and copied in SystemView installation
folder (e.g. SEGGER/SystemView_V252a/Description/).

Warning: These traces are only compatible with the latest pack available (14.4.2).

#
SystemView Description File
#
Copyright 2019-2025 MicroEJ Corp. All rights reserved.
This library is provided in source code for use, modification and test, subject to license terms.
Any modification of the source code will break MicroEJ Corp. warranties on the whole library.

#===========
NamedTypes
#===========

NamedType Bool 0=false
NamedType Bool 1=true

MicroUI Events

NamedType UIEvent 0=COMMAND
NamedType UIEvent 1=BUTTON
NamedType UIEvent 2=POINTER
NamedType UIEvent 3=STATE
NamedType UIEvent 4=UNKNOWN
NamedType UIEvent 5=CALLSERIALLY
NamedType UIEvent 6=STOP
NamedType UIEvent 7=INPUT
NamedType UIEvent 8=SHOW_DISPLAYABLE
NamedType UIEvent 9=HIDE_DISPLAYABLE
NamedType UIEvent 11=PENDING_FLUSH
NamedType UIEvent 12=FORCE_FLUSH
NamedType UIEvent 13=REPAINT_DISPLAYABLE
NamedType UIEvent 14=REPAINT_CURRENT_DISPLAYABLE
NamedType UIEvent 15=KF_STOP_FEATURE

(continues on next page)

3.5. Application Developer Guide 466

MicroEJ Documentation,

(continued from previous page)

NamedType UIEvent *=”%u”

Image Events

NamedType UINewImage 0=MUTABLE_IMAGE
NamedType UINewImage 1=IMAGE_FROM_PATH
NamedType UINewImage 2=IMAGE_FROM_INPUTSTREAM

NamedType UIImageData 0=BUFFER
NamedType UIImageData 1=RAW
NamedType UIImageData 2=ENCODED
NamedType UIImageData 3=RAW_EXTERNAL
NamedType UIImageData 4=ENCODED_EXTERNAL
NamedType UIImageData 5=MEMORY_INPUTSTREAM
NamedType UIImageData 6=BYTEARRAY_INPUTSTREAM
NamedType UIImageData 7=GENERIC_INPUTSTREAM
NamedType UIImageData 8=LINK_IMAGE

Drawing Events

NamedType UIDrawAsync 0=”Drawing operation done”
NamedType UIDrawAsync 1=”Drawing operation delayed”

NamedType UIDestination *=”dest=0x%x”
NamedType UIFlush *=”flush=%u”
NamedType UISource *=”image=0x%x”
NamedType UIDiameter *=”diameter=%u”
NamedType UIAlpha *=”alpha=%u”
NamedType UIThickness *=”thickness=%u”
NamedType UIFade *=”fade=%u”
NamedType UIString *=”%u characters”

NamedType UIApprox 0=”(bilinear)”
NamedType UIApprox 1=”(nearest neighbor)”

NamedType UIFlip 0=”flip=none”
NamedType UIFlip 1=”flip=mirror90”
NamedType UIFlip 2=”flip=270”
NamedType UIFlip 3=”flip=mirror”
NamedType UIFlip 4=”flip=180”
NamedType UIFlip 5=”flip=mirror270”
NamedType UIFlip 6=”flip=mirror180”
NamedType UIFlip 7=”flip=90”

Old Drawing Events

Deprecated (kept for backward compatibility UI Pack < 14.4.1)

NamedType UIDrawAlgo 1=WRITE_PIXEL
NamedType UIDrawAlgo 2=DRAW_LINE

(continues on next page)

3.5. Application Developer Guide 467

MicroEJ Documentation,

(continued from previous page)

NamedType UIDrawAlgo 3=DRAW_HORIZONTALLINE
NamedType UIDrawAlgo 4=DRAW_VERTICALLINE
NamedType UIDrawAlgo 5=DRAW_RECTANGLE
NamedType UIDrawAlgo 6=FILL_RECTANGLE
NamedType UIDrawAlgo 7=UNKNOWN
NamedType UIDrawAlgo 8=DRAW_ROUNDEDRECTANGLE
NamedType UIDrawAlgo 9=FILL_ROUNDEDRECTANGLE
NamedType UIDrawAlgo 10=DRAW_CIRCLEARC
NamedType UIDrawAlgo 11=FILL_CIRCLEARC
NamedType UIDrawAlgo 12=DRAW_ELLIPSEARC
NamedType UIDrawAlgo 13=FILL_ELLIPSEARC
NamedType UIDrawAlgo 14=DRAW_ELLIPSE
NamedType UIDrawAlgo 15=FILL_ELLIPSE
NamedType UIDrawAlgo 16=DRAW_CIRCLE
NamedType UIDrawAlgo 17=FILL_CIRCLE
NamedType UIDrawAlgo 18=DRAW_ARGB
NamedType UIDrawAlgo 19=DRAW_IMAGE
NamedType UIDrawAlgo 20=DRAW_STRING
NamedType UIDrawAlgo 21=STRING_WIDTH

NamedType UIDrawAlgo 50=DRAW_POLYGON
NamedType UIDrawAlgo 51=FILL_POLYGON
NamedType UIDrawAlgo 52=GET_ARGB
NamedType UIDrawAlgo 53=DRAW_STRING
NamedType UIDrawAlgo 54=DRAW_DEFORMED_STRING
NamedType UIDrawAlgo 55=DRAW_DEFORMED_IMAGE
NamedType UIDrawAlgo 56=DRAW_CHAR_ROTATION_BILINEAR
NamedType UIDrawAlgo 57=DRAW_CHAR_ROTATION_SIMPLE
NamedType UIDrawAlgo 58=STRING_WIDTH
NamedType UIDrawAlgo 59=READ_PIXEL

NamedType UIDrawAlgo 100=DRAW_THICK_FADED_POINT
NamedType UIDrawAlgo 101=DRAW_THICK_FADED_LINE
NamedType UIDrawAlgo 102=DRAW_THICK_FADED_CIRCLE
NamedType UIDrawAlgo 103=DRAW_THICK_FADED_CIRCLE_ARC
NamedType UIDrawAlgo 104=DRAW_THICK_FADED_ELLIPSE
NamedType UIDrawAlgo 105=DRAW_THICK_LINE
NamedType UIDrawAlgo 106=DRAW_THICK_CIRCLE
NamedType UIDrawAlgo 107=DRAW_THICK_ELLIPSE
NamedType UIDrawAlgo 108=DRAW_THICK_CIRCLEARC

NamedType UIDrawAlgo 200=DRAW_FLIPPED_IMAGE
NamedType UIDrawAlgo 201=DRAW_ROTATED_IMAGE_NEARESTNEIGHBOR
NamedType UIDrawAlgo 202=DRAW_ROTATED_IMAGE_BILINEAR
NamedType UIDrawAlgo 203=DRAW_SCALED_IMAGE_NEARESTNEIGHBOR
NamedType UIDrawAlgo 204=DRAW_SCALED_IMAGE_BILINEAR
NamedType UIDrawAlgo 205=DRAW_SCALED_STRING_BILINEAR
NamedType UIDrawAlgo 206=DRAW_CHAR_WITH_ROTATION_BILINEAR
NamedType UIDrawAlgo 207=DRAW_CHAR_WITH_ROTATION_NEARESTNEIGHBOR

#=======
Events
#=======

MicroUI Library

(continues on next page)

3.5. Application Developer Guide 468

MicroEJ Documentation,

(continued from previous page)

[0-9]: 10 events

0 UI_ExecuteGenEvent type=%UIEvent (generatorID=%u data=0x%x) | event=%UIEvent done
1 UI_UnknownEvent drop=0x%x
2 UI_InputEvent type=%UIEvent (generatorID=%u, event=0x%x) | event=%UIEvent done
3 UI_DisplayEvent event=%UIEvent (0x%x) | event=%UIEvent done
4 UI_UserEvent event=0x%x | event=0x%x done
5 UI_NewImage type=%UINewImage | id=0x%x
6 UI_ImageData type=%UINewImage data=%UIImageData id=0x%x size=%u*%u

MicroUI Graphics Engine

[10-19]: 10 events

Deprecated (kept for backward compatibility UI Pack < 14.4.1)
10 UI_FlushStart region=(%u,%u)(%ux%u)
11 UI_FlushDone flush done
12 UI_DrawInternal draw=%UIDrawAlgo | draw=%UIDrawAlgo done
13 UI_Draw draw=%UIDrawAlgo | draw=%UIDrawAlgo done

15 UI_GPUDrawDone asynchronous drawing operation done
16 UI_Flush %UIFlush %UIDestination region=(%u,%u)(%ux%u)
17 UI_FlushDone %UIFlush %UIDestination

MicroUI Events Engine

[20-29]: 10 events

20 UI_InvalidEvent invalid=0x%x
21 UI_QueueFull drop=0x%x
22 UI_AddEvent add=0x%x (index=%u queueLength=%u)
23 UI_ReplaceEvent replace=0x%x by 0x%x (index=%u queueLength=%u)
24 UI_ReadEvent read=0x%x (index=%u)

MicroUI LED Engine

[30-39]: 10 events

MicroUI C Module

[40-139]: 100 events (see symbol CCO_MICROUI_NB_LOGS)

Deprecated (kept for backward compatibility UI Pack < 14.4.1)
40 UI_Draw %UIDrawAlgo | %UIDrawAsync
50 BRS_NewRegion region (%u,%u) to (%u,%u)
53 BRS_AddRegion (%u,%u) to (%u,%u)

(continues on next page)

3.5. Application Developer Guide 469

MicroEJ Documentation,

(continued from previous page)

54 BRS_RemoveRegion (%u,%u) to (%u,%u)
55 BRS_RestoreRegion (%u,%u) to (%u,%u)
56 BRS_ClearList

51 BRS_FlushSingleRect %UIFlush %UIDestination (region (%u,%u) to (%u,%u))
52 BRS_FlushMultiRect %UIFlush %UIDestination (%u regions)
57 BRS_RestoreRegion region=(%u,%u)(%ux%u)

60 UI_GetPixel %UISource %d,%d
61 UI_GetImageARGB %UISource from %d,%d size=%dx%d
62 UI_StringWidth %UIString
63 UI_SetForegroundColor %UIDestination color=0x%x
64 UI_SetBackgroundColor %UIDestination color=0x%x
65 UI_RemoveBackgroundColor %UIDestination
// clip seen as a container (use a START event)
66 UI_SetClip %UIDestination region=(%u,%u)(%ux%u) | (force START event)
67 UI_OutOfClip %UIDestination
// region seen as a drawing (use a STANDALONE event)
68 UI_DrawnRegion %UIDestination clipDisabled=%Bool region=(%u,%u)(%ux%u)

80 UI_WritePixel %UIDestination %d,%d | %UIDrawAsync
81 UI_DrawLine %UIDestination %d,%d to %d,%d | %UIDrawAsync
82 UI_DrawHorizontalLine %UIDestination %d,%d length=%d | %UIDrawAsync
83 UI_DrawVerticalLine %UIDestination %d,%d length=%d | %UIDrawAsync
84 UI_DrawRectangle %UIDestination anchor=%d,%d size=%dx%d | %UIDrawAsync
85 UI_FillRectangle %UIDestination anchor=%d,%d size=%dx%d | %UIDrawAsync
86 UI_DrawRoundedRectangle %UIDestination anchor=%d,%d size=%dx%d corner=%dx%d |
→˓%UIDrawAsync
87 UI_FillRoundedRectangle %UIDestination anchor=%d,%d size=%dx%d corner=%dx%d | %UIDrawAsync
88 UI_DrawCircleArc %UIDestination anchor=%d,%d %UIDiameter start=%d angle=%d |
→˓%UIDrawAsync
89 UI_FillCircleArc %UIDestination anchor=%d,%d %UIDiameter start=%d angle=%d |
→˓%UIDrawAsync
90 UI_DrawEllipseArc %UIDestination anchor=%d,%d size=%dx%d start=%d angle=%d |
→˓%UIDrawAsync
91 UI_FillEllipseArc %UIDestination anchor=%d,%d size=%dx%d start=%d angle=%d |
→˓%UIDrawAsync
92 UI_DrawEllipse %UIDestination anchor=%d,%d size=%dx%d | %UIDrawAsync
93 UI_FillEllipse %UIDestination anchor=%d,%d size=%dx%d | %UIDrawAsync
94 UI_DrawCircle %UIDestination anchor=%d,%d %UIDiameter | %UIDrawAsync
95 UI_FillCircle %UIDestination anchor=%d,%d %UIDiameter | %UIDrawAsync
96 UI_DrawImage %UIDestination %UISource from %d,%d size=%dx%d anchor=%d,%d
→˓%UIAlpha | %UIDrawAsync
97 UI_DrawString %UIDestination %UIString anchor=%d,%d | %UIDrawAsync
98 UI_DrawRenderableString %UIDestination %UIString anchor=%d,%d | %UIDrawAsync

110 UI_DrawThickFadedPoint %UIDestination %d,%d %UIThickness %UIFade | %UIDrawAsync
111 UI_DrawThickFadedLine %UIDestination %d,%d to %d,%d %UIThickness %UIFade |
→˓%UIDrawAsync
112 UI_DrawThickFadedCircle %UIDestination anchor=%d,%d %UIDiameter %UIThickness %UIFade |
→˓%UIDrawAsync
113 UI_DrawThickFadedCircleArc %UIDestination anchor=%d,%d %UIDiameter start=%d angle=%d
→˓%UIThickness %UIFade | %UIDrawAsync
114 UI_DrawThickFadedEllipse %UIDestination anchor=%d,%d size=%dx%d %UIThickness %UIFade |
→˓%UIDrawAsync
115 UI_DrawThickLine %UIDestination %d,%d to %d,%d %UIThickness | %UIDrawAsync

(continues on next page)

3.5. Application Developer Guide 470

MicroEJ Documentation,

(continued from previous page)

116 UI_DrawThickCircle %UIDestination anchor=%d,%d %UIDiameter %UIThickness |
→˓%UIDrawAsync
117 UI_DrawThickEllipse %UIDestination anchor=%d,%d size=%dx%d %UIThickness | %UIDrawAsync
118 UI_DrawThickCircleArc %UIDestination anchor=%d,%d %UIDiameter start=%d angle=%d
→˓%UIThickness %UIFade | %UIDrawAsync
119 UI_DrawPolygon %UIDestination lenght=%u | %UIDrawAsync
120 UI_FillPolygon %UIDestination lenght=%u | %UIDrawAsync

130 UI_DrawFlippedImage %UIDestination %UISource from %d,%d size=%dx%d anchor=%d,%d
→˓%UIFlip %UIAlpha | %UIDrawAsync
131 UI_DrawRotatedImage %UIDestination %UISource anchor=%d,%d center=%d,%d angle=%d
→˓%UIAlpha %UIApprox | %UIDrawAsync
132 UI_DrawScaledImage %UIDestination %UISource anchor=%d,%d factor=%dx%d %UIAlpha
→˓%UIApprox | %UIDrawAsync
133 UI_DrawScaledString %UIDestination %UIString anchor=%d,%d factor=%dx%d %UIApprox |
→˓%UIDrawAsync
134 UI_DrawScaledRenderableString %UIDestination %UIString anchor=%d,%d factor=%dx%d %UIApprox␣
→˓| %UIDrawAsync
135 UI_DrawRotatedCharacter %UIDestination char=%c anchor=%d,%d center=%d,%d angle=%d
→˓%UIAlpha %UIApprox | %UIDrawAsync
136 UI_DrawImageDeformed %UIDestination %UISource | %UIDrawAsync

Hint: Retrieve a compatible file with the VEE Port’s UI Pack in the UI Pack (open it with as a zip): in the VEE Port
configuration project, open [veeport-configuration]\target~\dependencies\[architecture]-ui-pack.xpfp\build\
fragments\microui\content\lib\SYSVIEW_MicroUI.txt .

Error Messages

When an exception is thrown by the implementation of the MicroUI API, the exception MicroUIException with the
error message MicroUI:E=<messageId> is issued, where the meaning of <messageId> is defined in the Field
Detail of each error code.

Migration Guide

The MicroUI implementation is provided by the UI Pack. According to the UI Pack used to build the VEE Port, the
application has to be updated.

• Refer to the table that illustrates the implemented MicroUI API for each UI Pack.

• Refer to the latest MicroUI API Changelog.

• Refer to the latest Drawing API Changelog.

The following chapters describe the changes to perform in the application according the UI Pack used to build the
VEE Port.

3.5. Application Developer Guide 471

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/MicroUIException.html
https://repository.microej.com/modules/ej/api/microui
https://repository.microej.com/modules/ej/api/drawing

MicroEJ Documentation,

From 13.x to 14.x

Consider the new semantic of the content of the back buffer after a flush: the past is not systematically restored,
see Buffer Refresh Strategy. The application code may be affected by this update. Ensure that a clip is set before
each initial drawing and that it has the same size as what is drawn (at least that every pixels in the clip is drawn).

From 12.x to 13.x

• Update ej.api#microui dependency to the latest available version 3.4.0 .

• Add ej.api#drawing dependency.

Gradle (build.gradle.kts)

MMM (module.ivy)

implementation(”ej.api:microui:3.4.0”)
implementation(”ej.api:drawing:1.0.4”)

<dependencies>
<dependency org=”ej.api” name=”microui” rev=”3.4.0”/>
<dependency org=”ej.api” name=”drawing” rev=”1.0.4”/>

</dependencies>

From 10.x to 12.x

• In MicroEJ application launcher > Configuration tab >MicroUI: check Use Flying Images when the appli-
cation is using the flying images (property com.microej.library.microui.flyingimage.enabled).

• InMicroEJ application launcher, increase theManaged heap: it now containsMicroUI imagesmetadata (size,
format, clip etc.). The icetea heap has been automatically decreased.

From 9.x to 10.x

• In MicroEJ application launcher > Configuration tab > MicroUI: set the image heap size (property ej.mi-
croui.memory.imagesheap.size).

MicroVG

MicroVG Foundation Library provides vector drawing capabilities.

3.5. Application Developer Guide 472

https://repository.microej.com/modules/ej/api/microui
https://repository.microej.com/modules/ej/api/drawing

MicroEJ Documentation,

Usage

To use the MicroVG Foundation Library, add MicroVG API module to the project build file:

Gradle (build.gradle.kts)

MMM (module.ivy)

implementation(”ej.api:microvg:1.5.0”)

<dependency org=”ej.api” name=”microvg” rev=”1.5.0”/>

The MicroVG Library brings the following features:

• the creation and drawing of paths with color or linear gradient.

• the drawing of texts using vector fonts with color or linear gradient.

• the drawing of vector images.

• the transformation of paths, texts, images with affine transformation matrices.

Note: TheMicroVG library natives use different drawing engines, font rendering and layout engines for embedded
and simulator implementations.

This can lead to some slightly drawing differences, like for instance in the antialiasing processing of font glyphs.

Path

Path Creation

The MicroVG library enables the creation of vector paths composed of the following commands:

• Move

• Line

• Cubic Bezier Curve

• Quadratic Bezier Curve

• Close

The coordinates of the points associated with these commands can be absolute or relative.

Path path = new Path();

path.moveTo(70, 20);
path.cubicTo(0, 0, 10, 50, 80, 90);
path.lineTo(95, 75);
path.quadTo(12, 40, 80, 50);
path.close();

Path path = new Path();

path.moveTo(70, 20);
path.cubicToRelative(-70, -20, -60, 30, 10, 70);

(continues on next page)

3.5. Application Developer Guide 473

https://repository.microej.com/modules/ej/api/microvg/

MicroEJ Documentation,

(continued from previous page)

path.lineToRelative(15, -15);
path.quadToRelative(-83, -35, -15, -25);
path.close();

Path Drawing

A path can be drawn with a call to ej.microvg.VectorGraphicsPainter.fillPath().

The drawn path will be filled with the graphic context color or with a linear gradient.

The path can be transformed by a transformation matrix (this concept is explained inMatrix section) before draw-
ing.

A FillType and an Alpha Blending Mode can be applied during the drawing.

Fill Path With Graphics Context Color

The default alpha channel value of the drawing is 0xFF (opaque opacity).

g.setColor(Colors.GRAY);
VectorGraphicsPainter.fillPath(g, path, 0, 0);

3.5. Application Developer Guide 474

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorGraphicsPainter.html#fillPath-ej.microui.display.GraphicsContext-ej.microvg.Path-float-float-

MicroEJ Documentation,

Fill Path With a Linear Gradient

Refer to Linear Gradient section for more details about the definition of a linear gradient.

Theopacity valueof thedrawing is definedby theAlpha channel of theARGBcolor valuesof theeach linear gradient
stop point.

LinearGradient gradient = new LinearGradient(0, 0, 100, 0, new int[] { 0xffff0000, 0xffffff00, 0xffffffff });
VectorGraphicsPainter.fillGradientPath(g, path, new Matrix(), gradient);

Fill Type

A path can be drawn with a FillType argument. This argument defines the way a path will be filled.

The following values are a available:

• FillType.Winding: Specifies that “inside” is computed by a non-zero sum of signed edge crossings.

• FillType.EVEN_ODD: Specifies that “inside” is computed by an odd number of edge crossings.

Path path = new Path();

path.moveTo(50, 0);
path.lineTo(21, 90);
path.lineTo(98, 35);
path.lineTo(2, 35);
path.lineTo(79, 90);
path.close();

3.5. Application Developer Guide 475

MicroEJ Documentation,

Opacity and Blending Mode

The opacity of the drawing can be provided to the fillPathmethod with a blending mode.

When the drawing is done with graphic context color, the given alpha value replaces the default value (0xFF).

When the drawing is donewith a linear gradient, the given alpha is applied above each gradient colors alpha chan-
nel values(0x80 alpha value on #80FFFFFF ARGB color leads to #40FFFFFF color).

The supported blending modes are:

• SRC : The source pixels replace the destination pixels.

• SRC_OVER : The source pixels are drawn over the destination pixels.

• DST_OVER : The source pixels are drawn behind the destination pixels.

• SRC_IN : Keeps the source pixels that cover the destination pixels, discards the remaining source and des-
tination pixels.

• DST_IN : Keeps the destination pixels that cover source pixels, discards the remaining source and destina-
tion pixels.

• DST_OUT : Keeps the destination pixels that are not covered by source pixels. Discards destination pixels
that are covered by source pixels. Discards all source pixels.

• PLUS : Adds the source pixels to the destination pixels and saturates the result.

• SCREEN : Adds the source and destination pixels, then subtracts the source pixels multiplied by the desti-
nation.

• MULTIPLY : Multiplies the source and destination pixels.

Fig. 125: SRC

3.5. Application Developer Guide 476

MicroEJ Documentation,

Fig. 126:
SRC_OVER

Fig. 127:
DST_OVER

Fig. 128:
SRC_IN

Fig. 129:
DST_IN

Fig. 130:
DST_OUT

Fig. 131: PLUS

Fig. 132:
SCREEN

Fig. 133: MUL-
TIPLY

Matrix

A Matrix is composed of an array of numbers with three rows and three columns. It is used
to apply an affine transformations to Path points. (Refer to https://en.wikipedia.org/wiki/
Transformation_matrix#Affine_transformations to getmore information about affine transfor-
mations).

The available transformations are:

• translation

• rotation

• scaling

3.5. Application Developer Guide 477

https://en.wikipedia.org/wiki/Transformation_matrix#Affine_transformations
https://en.wikipedia.org/wiki/Transformation_matrix#Affine_transformations

MicroEJ Documentation,

Scaling and rotation are always performed around the (0,0) pivot point. In order to rotate or
scale a Pathwith a pivot point, thematrixmust be translated before and after the rotation/scal-
ing.

AMatrix is created as an identity matrix, whichmeans that a Path resulting of a transformation
with this matrix is identical to the original Path.

TheMatrix can be initialized with a transformation with set methods:

• setTranslate(translateX, translateY)

• setRotate(angle)

• setScale(scaleX, scaleY)

A transformation can be prepended to aMatrix with the prependmethods:

• preTranslate(translateX, translateY)

• preRotate(angle)

• preScale(scaleX, scaleY)

A transformation can be appended to aMatrix with the appendmethods:

• postTranslate(translateX, translateY)

• postRotate(angle)

• postScale(scaleX, scaleY)

AMatrix can also get transformations from an otherMatrix with the concatenate and set meth-
ods:

• preConcat(matrix)

• postConcat(matrix)

• set(matrix)

• setConcat(matrix0, matrix1)

Once aMatrix has been computed, it can be used to draw an object (Path, String, VectorImage).
All the points of the drawn object will be transformed by theMatrix.

When aMatrix has been computedwithmultiple type of transformation, the sequence order of
the transformation is important. Chaining the transformations in a different order will not pro-
vide the same Matrix. The result of the previous transformation is the input to the next trans-
formation.

The following examples use the Path created in the section Path Creation with different trans-
formations.

Translation

Matrix matrix = new Matrix();
matrix.setTranslate(200, 150);

3.5. Application Developer Guide 478

MicroEJ Documentation,

Rotation

Around point (0,0).

Matrix matrix = new Matrix();
matrix.setRotate(40);

Around a pivot point (80,50).

Matrix matrix = new Matrix();
matrix.setRotate(40);

(continues on next page)

3.5. Application Developer Guide 479

MicroEJ Documentation,

(continued from previous page)

float pivotX = 80;
float pivotY = 50;
matrix.preTranslate(-pivotX, -pivotY);
matrix.postTranslate(pivotX, pivotY);

Scale

From point (0,0).

Matrix matrix = new Matrix();
matrix.setScale(2,3);

3.5. Application Developer Guide 480

MicroEJ Documentation,

Concatenate Matrixes

Sequence order has an incidence on the rendering.

Matrix matrix0 = new Matrix();
matrix0.setScale(2, 3);

Matrix matrix1 = new Matrix();
matrix1.setTranslate(100, 40);

Matrix matrix2 = new Matrix();
matrix2.setConcat(matrix0, matrix1);

g.setColor(Colors.GRAY);
VectorGraphicsPainter.fillPath(g, path, matrix2);

matrix2.setConcat(matrix1, matrix0);

g.setColor(Colors.YELLOW);
VectorGraphicsPainter.fillPath(g, path, matrix2);

Linear Gradient

The MicroVG library supports the drawing of shapes with a linear gradient of color.

A linear gradient is specifiedby a linear segment anda set of ARGBcolors associatedwithpoints
on that segment.

The colors along the segment between those points are calculated using linear interpolation,
then extended perpendicular to that line.

The position of the color points on the segment are given from 0.0f (start of point) to 1.0f (end
of the segment).

There are two ways to create a gradient:

3.5. Application Developer Guide 481

MicroEJ Documentation,

• with a start point, an end point and a color table: the first color will be applied to the start
point, the second color to the end point and other colors distributed evenly along the gradient
segment.

Path path = new Path();
path.moveTo(0, 0);
path.lineTo(100, 0);
path.lineTo(100, 100);
path.lineTo(0, 100);
path.close();

LinearGradient gradient = new LinearGradient(0, 0, 99, 0,
new int[] { 0xffff0000, 0xffffff00, 0xffffffff });

VectorGraphicsPainter.fillGradientPath(g, path, new Matrix(), gradient);

• with a start point, an endpoint, a color table and aposition table: the colors are applied to their
corresponding relative positions on the segment. If the first point is not the start point of the
segment, then first color is applied from the start of the segment to the first point. If the last
point is not the end point of the segment, then last color is applied from the last point to the
end of the segment.

LinearGradient gradient = new LinearGradient(0, 0, 99, 0,
new int[] { 0xffff0000, 0xffffff00, 0xffffffff },
new float[] { 0.4f, 0.6f, 0.8f });

VectorGraphicsPainter.fillGradientPath(g, path, new Matrix(), gradient);

3.5. Application Developer Guide 482

MicroEJ Documentation,

The transformation applied to the object (Path or String) to drawwith a gradient is also applied
to that gradient. The LinearGradient is not updated after the drawing.

LinearGradient gradient = new LinearGradient(0, 0, 99, 0,
new int[] { 0xffff0000, 0xffffff00, 0xffffffff });

Matrix matrix = new Matrix();
matrix.setScale(2, 2.5f);
matrix.postRotate(30);
matrix.postTranslate(100, 100);

VectorGraphicsPainter.fillGradientPath(g, path, matrix, gradient);

3.5. Application Developer Guide 483

MicroEJ Documentation,

Vector Fonts

Overview

The MicroVG library enables the usage of Vector Fonts.

Compared to MicroUI Fonts, Vector Fonts brings the following features:

• the text strings are scalable and can be transformed using a Matrix object.

• the TTF/OTF font files don’t need to be preprocessed.

• the text strings can be drawn with opacity, a color or a linear gradient.

The library also considers the Kerning space described in the font file kerning table, and allows
a fine adjustement of the inter-letters spacing.

It also providesmetrics measurementmethods to correctly place the text within the surround-
ing drawing elements (i.e. in a label).

Loading a Font File

A Vector Font has to be loaded in a VectorFont object with a call to ej.microvg.VectorFont.load-
Font(). This VectorFont object can then be used to draw text strings.

The fonts are decoded at runtime. They don’t need to be pre-processed by some generator
tool like MicroUI Fonts Vector Font files must be declared as resources in a .resources.list file
available in the classpath (Application Resources). To declare them as external resources, the
font files must be declared too in a .externresources.list file.

Text String Drawing

A string can be drawn in the graphics context with a call to ej.microvg.VectorGraphic-
sPainter.drawString().

The text string height is scalable, andmultiple font files can be used in parrallel.

VectorFont font0 = VectorFont.loadFont(”/fonts/Arial.ttf”);
VectorFont font1 = VectorFont.loadFont(”/fonts/RAVIE.ttf”);

int x = 20;
int y = 30;
int yOffset = 150;

g.setColor(Colors.LIME);
VectorGraphicsPainter.drawString(g, ”Hello MicroEJ”, font0, 20, x, y);
VectorGraphicsPainter.drawString(g, ”Hello MicroEJ”, font1, 20, x, y + yOffset);

g.setColor(Colors.RED);
y += 20;
VectorGraphicsPainter.drawString(g, ”Hello MicroEJ”, font0, 30, x, y);
VectorGraphicsPainter.drawString(g, ”Hello MicroEJ”, font1, 30, x, y + yOffset);

g.setColor(Colors.WHITE);
y += 30;
VectorGraphicsPainter.drawString(g, ”Hello MicroEJ”, font0, 40, x, y);

(continues on next page)

3.5. Application Developer Guide 484

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/Matrix.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorFont.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorFont.html#loadFont-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorFont.html#loadFont-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorFont.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorGraphicsPainter.html#drawString-ej.microui.display.GraphicsContext-java.lang.String-ej.microvg.VectorFont-float-float-float-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorGraphicsPainter.html#drawString-ej.microui.display.GraphicsContext-java.lang.String-ej.microvg.VectorFont-float-float-float-

MicroEJ Documentation,

(continued from previous page)

VectorGraphicsPainter.drawString(g, ”Hello MicroEJ”, font1, 40, x, y + yOffset);

g.setColor(Colors.YELLOW);
y += 40;
VectorGraphicsPainter.drawString(g, ”Hello MicroEJ”, font0, 50, x, y);
VectorGraphicsPainter.drawString(g, ”Hello MicroEJ”, font1, 50, x, y + yOffset);

display.flush();

Text Color

The text string can be colored with the graphics context color or a with a linear gradient(Linear
Gradient).

FillType and Alpha Blending Mode are also managed similarly to Path drawing (refer to Fill Type
and Opacity and Blending Mode).

g.setColor(Colors.LIME);
VectorGraphicsPainter.drawString(g, ”Hello MicroEJ”, font, 50, x, y);

LinearGradient gradient = new LinearGradient(0, 0, 250, 50,
new int[] { 0xffff0000, 0xffffff00, 0xffffffff });

Matrix matrix = new Matrix();
matrix.setTranslate(x, y + 60);
VectorGraphicsPainter.drawGradientString(g, ”Hello MicroEJ”, font, 50, matrix, gradient, 0xff,

BlendMode.SRC_OVER, 0);

3.5. Application Developer Guide 485

MicroEJ Documentation,

Text Transformations

The text string can also be transformed with a Matrix to translate, rotate, scale the drawing.

Matrix matrix0 = new Matrix();

matrix0.setTranslate(20, 60);
VectorGraphicsPainter.
→˓drawString(g, ”Hello MicroEJ”, font, 50, matrix0, 0xff, BlendMode.SRC_OVER, 0);

matrix0.preRotate(180);
matrix0.postTranslate(300, 120);
VectorGraphicsPainter.
→˓drawString(g, ”Hello MicroEJ”, font, 50, matrix0, 0xff, BlendMode.SRC_OVER, 0);

Matrix matrix1 = new Matrix();
matrix1.setScale(0.5f, 1.2f);
matrix1.postRotate(45);
matrix1.postTranslate(80, 200);

VectorGraphicsPainter.
→˓drawString(g, ”Hello MicroEJ”, font, 50, matrix1, 0xff, BlendMode.SRC_OVER, 0);

matrix1.setScale(0.5f, 1.2f);
matrix1.postRotate(-45);
matrix1.postTranslate(200, 300);
VectorGraphicsPainter.
→˓drawString(g, ”Hello MicroEJ”, font, 50, matrix1, 0xff, BlendMode.SRC_OVER, 0);

3.5. Application Developer Guide 486

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/Matrix.html

MicroEJ Documentation,

Letter Spacing

The inter character distance can be adjusted for each string drawing. By default, the inter char-
acter distance is computed from the font file metrics, considering kerning, if the font file in-
cludes a kerning table. It can be adjusted with the letterSpacing parameter of drawString().
Itsdefault value is0pixel, apositive/negativevaluewill increase/reduce the inter spacedistance
by the corresponding pixel value.

Matrix matrix = new Matrix();

matrix.setTranslate(20, 60);
VectorGraphicsPainter.
→˓drawString(g, ”Hello MicroEJ”, font, 50, matrix, 0xff, BlendMode.SRC_OVER, 0);

matrix.postTranslate(0, 60);
VectorGraphicsPainter.
→˓drawString(g, ”Hello MicroEJ”, font, 50, matrix, 0xff, BlendMode.SRC_OVER, 5f);

matrix.postTranslate(0, 60);
VectorGraphicsPainter.
→˓drawString(g, ”Hello MicroEJ”, font, 50, matrix, 0xff, BlendMode.SRC_OVER, -2);

3.5. Application Developer Guide 487

https://en.wikipedia.org/wiki/Kerning

MicroEJ Documentation,

Colored Emojis

The library supports the drawing of colored multilayer glyphs, but only for the embedded im-
plementation. The simulator implementation draws the full emoji glyph with the color of the
graphics context.

Only font files with CPAL/COLR tables are supported.

Font files with CBDT/CBLC tables are not supported.

To add colored emojis to a font, see the tutorial How to Add Emojis to a Vector Font.

Metrics and Text Positioning

All metrics provided by the ej.microvg.VectorFont class are given for a specific font size. The
font size defines the height to which each character bounding box will be scaled.

The following figure presents some concepts of font metrics standarts:

When a string is drawn with a call to ej.microvg.VectorGraphicsPainter.drawString() or ej.mi-
crovg.VectorGraphicsPainter.drawGradientString(), the anchor point of the string is the top left
corner of the text rendering box. This anchor point is located horizontally on the first pixel of
the first drawn glyph and vertically on the max ascent line.

3.5. Application Developer Guide 488

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorFont.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorGraphicsPainter.html#drawString-ej.microui.display.GraphicsContext-java.lang.String-ej.microvg.VectorFont-float-float-float-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorGraphicsPainter.html#drawGradientString-ej.microui.display.GraphicsContext-java.lang.String-ej.microvg.VectorFont-float-ej.microvg.Matrix-ej.microvg.LinearGradient-int-ej.microvg.BlendMode-float-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorGraphicsPainter.html#drawGradientString-ej.microui.display.GraphicsContext-java.lang.String-ej.microvg.VectorFont-float-ej.microvg.Matrix-ej.microvg.LinearGradient-int-ej.microvg.BlendMode-float-

MicroEJ Documentation,

The ej.microvg.VectorFont.getBaselinePosition()method can be used to position the text base-
line on a horizontal line.

The ej.microvg.VectorFont.getHeight() method can be used to center a text inside a label, by
positionning the anchor point in order to have the same space above and below the text string.

Two other methods are available to position a known text in a label:

• ej.microvg.VectorFont.measureStringHeight()

• ej.microvg.VectorFont.measureStringWidth()

These methods return the width and height of a string drawing. They are computed from the
width and height of the glyphs composing the string.

3.5. Application Developer Guide 489

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorFont.html#getBaselinePosition-float-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorFont.html#getHeight-float-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorFont.html#measureStringHeight-java.lang.String-float-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorFont.html#measureStringWidth-java.lang.String-float-

MicroEJ Documentation,

These methods canmeasure a specific glyph width and height using a one character string.

Note: Themetrics are extracted from the character glyphmetrics without considering the antialiasing introduced
by the glyphs rasterizer.

Drawing a Text on a Circle

The library proposes the drawing of a text on a circle by a call to ej.microvg.VectorGraphic-
sPainter.drawStringOnCircle(). The string is rendered as if the baseline of the stringwas a circle
arc.

The string direction can be either clockwise or counter clockwise.

All the features described above are still available (linear gradient, transformations, letter spac-
ing, kerning, colored emojis).

int x = 196;
int y = 196;
int diameter = 250;

g.setColor(Colors.YELLOW);

Painter.drawCircle(g, x - diameter / 2, y - diameter / 2, diameter);

g.setColor(Colors.PURPLE);
Matrix matrix = new Matrix();

matrix.setTranslate(x, y);

VectorGraphicsPainter.drawStringOnCircle(g, ”Hello MicroEJ”, font, 50, matrix, diameter / 2,
Direction.CLOCKWISE);

diameter = 100;

g.setColor(Colors.YELLOW);
Painter.drawCircle(g, x - diameter / 2, y - diameter / 2, diameter);

g.setColor(Colors.RED);
VectorGraphicsPainter.drawStringOnCircle(g, ”Hello MicroEJ”, font, 20, matrix, diameter / 2,

Direction.COUNTER_CLOCKWISE);

3.5. Application Developer Guide 490

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorGraphicsPainter.html#drawStringOnCircle-ej.microui.display.GraphicsContext-java.lang.String-ej.microvg.VectorFont-float-ej.microvg.Matrix-float-ej.microvg.VectorGraphicsPainter.Direction-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorGraphicsPainter.html#drawStringOnCircle-ej.microui.display.GraphicsContext-java.lang.String-ej.microvg.VectorFont-float-ej.microvg.Matrix-float-ej.microvg.VectorGraphicsPainter.Direction-

MicroEJ Documentation,

The anchor point of the drawing is the center of the circle.

The position where the text starts along the circle is the 3 o’clock position (positive X axis). This
starting position can bemodified by specifying a rotation into the transformationMatrix.

g.setColor(Colors.PURPLE);
Matrix matrix = new Matrix();

matrix.setTranslate(x, y);

VectorGraphicsPainter.drawStringOnCircle(g, ”Hello MicroEJ”, font, 20, matrix, diameter / 2,
Direction.CLOCKWISE);

matrix.preRotate(90);
g.setColor(Colors.RED);
VectorGraphicsPainter.drawStringOnCircle(g, ”Hello MicroEJ”, font, 20, matrix, diameter / 2,

Direction.CLOCKWISE);

matrix.preRotate(90);
g.setColor(Colors.GREEN);
VectorGraphicsPainter.drawStringOnCircle(g, ”Hello MicroEJ”, font, 20, matrix, diameter / 2,

Direction.CLOCKWISE);

matrix.preRotate(90);
g.setColor(Colors.WHITE);
VectorGraphicsPainter.drawStringOnCircle(g, ”Hello MicroEJ”, font, 20, matrix, diameter / 2,

Direction.CLOCKWISE);

3.5. Application Developer Guide 491

MicroEJ Documentation,

Complex Text Layout

Some scripts like Arabic or Thai scripts request a specific text layout mode where the shape
or positioning of a grapheme depends on its relation to other graphemes (Refer to https://en.
wikipedia.org/wiki/Complex_text_layout).

The MicroVG library provides two different layout modes:

• the simple layoutmode for latin scripts and other scripts where character unicodes and glyphs
are one-to-one associated.

• the complex layout mode for complex text layout scripts like arabic or thai.

The simple layout mode draws the text character as described in the previous sections. It uses
the font Kerning table and the glyphs advanceX parameter to position the glyphs one after the
other.

The complex layout mode uses the GPOS and GSUB font tables to substitute and position the
character glyph.

The complex layout mode can be selected while loading the glyph with ej.microvg.Vector-
Font.loadFont by passing a supplementary boolean argument with value true.

Next example shows the same arabic string drawnwith the same font butwith simple (inwhite)
and complex layout(in RED).

VectorFont font0 = VectorFont.loadFont(FONT_NAME, false);
VectorFont font1 = VectorFont.loadFont(FONT_NAME, true);

String s = ”�������”;

g.setColor(Colors.WHITE);
VectorGraphicsPainter.drawString(g, s, font0, 20, 50, 50);

g.setColor(Colors.RED);
VectorGraphicsPainter.drawString(g, s, font1, 20, 50, 100);

3.5. Application Developer Guide 492

https://en.wikipedia.org/wiki/Complex_text_layout
https://en.wikipedia.org/wiki/Complex_text_layout

MicroEJ Documentation,

Text Measurement and Positioning

The measurement of string in complex layout mode respects the requirements presented in
Metrics and Text Positioning.

Strings fromscriptwhere text is read fromright to left, likearabic, are still drawnwith theanchor
point located on the top left of the string.

Bidirectional Text

The complex layout mode does not support bidirectional text. A bidirectional text has to be
splitted in multiple strings and each string has to be drawn to the correct location.

Limitations

The simulator rendering of complex layout mode for Drawing a Text on a Circle feature is done
with many approximations. This rendering can still be used to have an overview of the text
positionning on the display.

The letterSpacing feature is not supported by the simulator implementation. Texts will be dis-
played with a letterspacing value of 0.

3.5. Application Developer Guide 493

MicroEJ Documentation,

External Fonts

To fetch fonts from external memory, the application must pre-register the external Font re-
sources. The management of this kind of font may be different than the internal images and
may require some allocations in the runtimememory. Formore details about the external font
management, refers to the VEE Port Guide chapter External Memory.

Vector Images

Overview

Vector Images are graphical resources that can be accessed with a call to ej.microvg.VectorIm-
age.getImage(). The images are converted at build-time (using the image generator tool) to
binary resources.

Images thatmust be processed by the image generator tool are declared in *.vectorimages.list
files (or in *.externvectorimages.list for an external resource, see External Images). The file
format is a standard Java properties file, each line representing a / separated resource path
relative to the MicroEJ classpath root referring to a vector image file (e.g. .svg , .xml). The
resource must be followed by a parameter (separated by a :) which defines and/or describes
the image output file format (raw format).

Currently accepted formats are :

• :VGF : MicroVG compatible format with coordinates encoded as float numbers (32 bits).

• :VG32 : MicroVG compatible format with coordinates encoded as signed int numbers (32 bits).

• :VG16 : MicroVG compatible format with coordinates encoded as signed short numbers (16 bits).

• :VG8 : MicroVG compatible format with coordinates encoded as signed char numbers (8 bits).

Note: The ouput format may be adjusted by the MicroVG engine to fit the capabilities of the vectorial GPU.

Example:

/com/mycompany/MyImage1.svg:VGF
/com/mycompany/androidVectorDrawable.xml:VG8

Warning: In the casewhere the output format is not specified, the resource is embedded as is,
as described in the Image Generator chapterUnspecified Output Format. This use case is useful
for loading an encoded VG image, as described in the Android Vector Drawable Loader chapter.

3.5. Application Developer Guide 494

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorImage.html#getImage-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorImage.html#getImage-java.lang.String-

MicroEJ Documentation,

Supported Input Files

The image generator tool supports the following input file formats:

• Android Vector Drawable

• SVG

Refer to the Limitations / Supported Features section for the list of supported features for these
file formats.

The vector imageobjects are extractedandconverted topathsmadeof Move , Line and Curve
commands.

Each path is associated with either a fill color or a linear gradient. All object strokes are con-
verted to filled paths at build-time.

Objects group transformations are also extracted from the input file and applied at run-time.

Drawing Images

Drawing and Transforming Images

Once an image has been loaded it can be drawn in the graphic context with a call to ej.mi-
crovg.VectorGraphicsPainter.drawImage().

The image is associated with a transformationMatrix that will be applied in order to translate,
scale and/or rotate the image.

The application can get the width and the height of the image with ej.microvg.VectorIm-
age.getWidth() and ej.microvg.VectorImage.getHeight() to correctly scale and position the im-
age in the application window.

The following example describes how an Android Vector Drawable file can be drawn and posi-
tioned on the display.

• Android Vector Drawable file:

<vector xmlns:android=”http:/
→˓/schemas.android.com/apk/res/android” xmlns:aapt=”http://schemas.android.com/aapt”
android:width=”100dp

→˓” android:height=”100dp” android:viewportWidth=”100” android:viewportHeight=”100”>
<path android:pathData=”M 0 0 h50 v50 h-50 z” android:fillColor=”#FFFFAA”/>
<path android:pathData=”M 50 50 h50 v50 h-50 z”>

<aapt:attr name=”android:fillColor”>
<gradient

android:startColor=”#0000ff” android:startX=”50” android:startY=”50”
android:endColor=”#ff00ff” android:endX=”100” android:endY=”100”
android:type=”linear”>

</gradient>
</aapt:attr>

</path>
</vector>

public static void main(String[] args) {

MicroUI.start();

(continues on next page)

3.5. Application Developer Guide 495

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorGraphicsPainter.html#drawImage-ej.microui.display.GraphicsContext-ej.microvg.VectorImage-float-float-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorGraphicsPainter.html#drawImage-ej.microui.display.GraphicsContext-ej.microvg.VectorImage-float-float-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorImage.html#getWidth--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorImage.html#getWidth--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorImage.html#getHeight--

MicroEJ Documentation,

(continued from previous page)

Display display = Display.getDisplay();
GraphicsContext g = display.getGraphicsContext();

VectorImage image = VectorImage.getImage(”/images/myImage.xml”); //$NON-NLS-1$

Matrix matrix0 = new Matrix();
matrix0.setTranslate(20, 20);
matrix0.preScale(50 / image.getWidth(), 50 / image.getHeight());

Matrix matrix1 = new Matrix();
matrix1.setTranslate(150, 150);
matrix1.preRotate(45);

VectorGraphicsPainter.drawImage(g, image, matrix0);
VectorGraphicsPainter.drawImage(g, image, matrix1);

display.flush();
}

DrawingWith Opacity

The vector image can be drawn with a global opacity level.

VectorImage image = VectorImage.getImage(”/images/myImage.xml”); //$NON-NLS-1$

// the global opacity rendering value, between 0 (transparent) and 255 (opaque)
int opacity = 0x80;

VectorGraphicsPainter.drawImage(g, image, new Matrix(), opacity);

3.5. Application Developer Guide 496

MicroEJ Documentation,

Warning: As paths are drawn one after the other, images that contain overlapping paths are
not correctly coloredwhenaglobal opacity is applied. The rendering of these imageswill throw
an exception. The images must be reworked to suppress overlapping.

Color Filtering

A VectorImage object can be derived from another VectorImage object, keeping the paths and
transformations but updating the colors using a color matrix.

This color matrix is a 4x5 float matrix. It is organized like that:

• Each line is used to compute a component of the resulting color, in this order: red, green, blue,
alpha.

• The four first columns are multipliers applied to a component of the initial color, in this order:
red, green, blue, alpha.

• The last column is a constant value.

Let A, R, G, B be the components of the initial color and the following array a color matrix:

{ rR, rG, rB, rA, rC, // red
gR, gG, gB, gA, gC, // green
bR, bG, bB, bA, bC, // blue
aR, aG, aB, aA, aC } // alpha

The resulting color components are computed as:

resultRed = rR * R + rG * G + rB * B + rA * A + rC
resultGreen = gR * R + gG * G + gB * B + gA * A + gC
resultBlue = bR * R + bG * G + bB * B + bA * A + bC
resultAlpha = aR * R + aG * G + aB * B + aA * A + aC

3.5. Application Developer Guide 497

MicroEJ Documentation,

If the resulting component value is below 0 or above 255, the component value is clamped to
these limits.

Note: The new image is a ResourceVectorImage. The image buffer is allocated in the MicroUI image heap. The
application must manage the image cycle life and close the image to free the image buffer.

A VectorImage object can also be drawn associated to a colormatrix by a call to ej.microvg.Vec-
torGraphicsPainter.drawFilteredImage().

The following example illustrates this feature.

VectorImage image = VectorImage.getImage(”/images/myImage.xml”); //$NON-NLS-1$

// Derive a new VectorImage
float[] colorMatrix0 = new float[] { //

1f, 0, 0, 0, 0, // red
0, 0, 0, 0, 0, // green
0, 0, 1f, 0, 0, // blue
0, 0, 0, 1f, 0, // alpha

};

VectorImage imageFiltered = image.filterImage(colorMatrix0);
VectorGraphicsPainter.drawImage(g, imageFiltered, new Matrix());

float[] colorMatrix1 = new float[] { //
0f, 0, 0, 0, 0, // red
0.5f, 0.5f, 0, 0, 0, // green
0, 0, 1f, -0.5f, 0, // blue
0, 0, 0, 1f, 0, // alpha

};
Matrix matrix1 = new Matrix();
matrix1.setTranslate(image.getWidth(), 0);

VectorGraphicsPainter.drawFilteredImage(g, image, matrix1, colorMatrix1);

imageFiltered.close();

3.5. Application Developer Guide 498

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/ResourceVectorImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorGraphicsPainter.html#drawFilteredImage-ej.microui.display.GraphicsContext-ej.microvg.VectorImage-ej.microvg.Matrix-float:A-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorGraphicsPainter.html#drawFilteredImage-ej.microui.display.GraphicsContext-ej.microvg.VectorImage-ej.microvg.Matrix-float:A-

MicroEJ Documentation,

Animated Vector Images

The Android Vector Drawable format provides the ability to change the properties of vector
graphics over time, in order to create animated effects.

The transformations of the objects over the time are embedded in the Vector image file and
a call to ej.microvg.VectorGraphicsPainter.drawAnimatedImage() or ej.microvg.VectorGraphic-
sPainter.drawFilteredAnimatedImage() will draw the image for a specific time frame.

The application can get the duration of the image animationwith a call to ej.microvg.VectorIm-
age.getDuration().

Every image object that is animated outside the image viewbox is clipped at the image bound-
ary. In any cases, especially when the image is rotated, the image boundary is the rectangle
that contains all the corners of the original image.

The supported file format is an Animated Vector Drawable xml file with animations and vector
definition in the same file as described in Android API.

The SVG format also supports the animation of vector graphics objects, but this feature is not
yet implemented in the MicroVG library for this file format.

SVG files that need tobeanimated shouldbe converted toAndroid VectorDrawable formatwith
the Android Vector Asset tool and then animatedmanually or with a tool like Shapeshifter.

Warning: A flaw in Eclipse Temurin™ JDK 8 causes animated vector images to render incor-
rectly on the Simulator. You should upgrade to Eclipse Temurin™ JDK 11 instead.

Supported animations

This section will present the different available animations with an example.

For each example, this simple java code will be used.

VectorImage image = VectorImage.getImage(”/images/myImage.xml”); //$NON-NLS-1$
Matrix matrix = new Matrix();
matrix.setTranslate(100,100);
matrix.preScale(2,2);

long elapsed = 0;
long step = 10;
while (true) {

// Clear Screen
g.setColor(Colors.BLACK);
Painter.fillRectangle(g, 0, 0, display.getWidth(), display.getHeight());

VectorGraphicsPainter.drawAnimatedImage(g, image, matrix, elapsed);

display.flush();

// Pause the current thread
try {

Thread.sleep(step);
} catch (InterruptedException e) {

e.printStackTrace();
}

(continues on next page)

3.5. Application Developer Guide 499

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorGraphicsPainter.html#drawAnimatedImage-ej.microui.display.GraphicsContext-ej.microvg.VectorImage-float-float-long-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorGraphicsPainter.html#drawFilteredAnimatedImage-ej.microui.display.GraphicsContext-ej.microvg.VectorImage-ej.microvg.Matrix-long-float:A-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorGraphicsPainter.html#drawFilteredAnimatedImage-ej.microui.display.GraphicsContext-ej.microvg.VectorImage-ej.microvg.Matrix-long-float:A-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorImage.html#getDuration--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorImage.html#getDuration--
https://developer.android.com/reference/android/graphics/drawable/AnimatedVectorDrawable#define-an-animatedvectordrawable-all-in-one-xml-file
https://shapeshifter.design/

MicroEJ Documentation,

(continued from previous page)

// Update current image time
if (elapsed < image.getDuration()) {

elapsed += step;
} else {

elapsed = 0;
}

}

TranslateX and TranslateY

Any group in the Android Vector Drawable can be translated in X or Y direction with an object
animator.

<animated-vector xmlns:android=”http://schemas.android.com/apk/res/android”
xmlns:aapt=”http://schemas.android.com/aapt”>

<aapt:attr name=”android:drawable”>
<vector android:width=”100dp” android:height=”100dp”

android:viewportWidth=”100” android:viewportHeight=”100”>
<group android:name=”yellow_group”>

<path android:pathData=”M 0 0 h50 v50 h-50 z” android:fillColor=”#FFFFAA”/>
</group>
<group android:name=”gradient_group”>
<path android:pathData=”M 50 50 h50 v50 h-50 z”>

<aapt:attr name=”android:fillColor”>
<gradient

android:startColor=”#0000ff” android:startX=”50” android:startY=”50”
android:endColor=”#ff00ff” android:endX=”100” android:endY=”100”
android:type=”linear”>

</gradient>
</aapt:attr>

</path>
</group>

</vector>
</aapt:attr>
<target android:name=”yellow_group”>

<aapt:attr name=”android:animation”>
<set android:ordering=”together”>

␣
→˓ <objectAnimator android:propertyName=”translateX” android:valueType=”floatType”

android:duration=
→˓”1000” android:startOffset=”0” android:valueFrom=”0” android:valueTo=”50”/>

␣
→˓ <objectAnimator android:propertyName=”translateX” android:valueType=”floatType”

android:duration=
→˓”1000” android:startOffset=”1500” android:valueFrom=”50” android:valueTo=”0”/>

</set>
</aapt:attr>

</target>
<target android:name=”gradient_group”>

<aapt:attr name=”android:animation”>
<set android:ordering=”together”>

␣
→˓ <objectAnimator android:propertyName=”translateX” android:valueType=”floatType”

android:duration=
(continues on next page)

3.5. Application Developer Guide 500

MicroEJ Documentation,

(continued from previous page)

→˓”1000” android:startOffset=”0” android:valueFrom=”0” android:valueTo=”-50”/>
␣

→˓ <objectAnimator android:propertyName=”translateX” android:valueType=”floatType”
android:duration=

→˓”1000” android:startOffset=”1500” android:valueFrom=”-50” android:valueTo=”0”/>
␣

→˓ <objectAnimator android:propertyName=”translateY” android:valueType=”floatType”
android:duration=

→˓”1000” android:startOffset=”0” android:valueFrom=”0” android:valueTo=”-50”/>
␣

→˓ <objectAnimator android:propertyName=”translateY” android:valueType=”floatType”
android:duration=

→˓”1000” android:startOffset=”1500” android:valueFrom=”-50” android:valueTo=”0”/>
</set>

</aapt:attr>
</target>
</animated-vector>

TranslateXY over a path

Any group in the Android Vector Drawable can be translated over a path.

<animated-vector xmlns:android=”http://schemas.android.com/apk/res/android”
xmlns:aapt=”http://schemas.android.com/aapt”>

<aapt:attr name=”android:drawable”>
<vector android:width=”100dp” android:height=”100dp”

android:viewportWidth=”100” android:viewportHeight=”100”>
... same as previous example

</vector>
</aapt:attr>
<target android:name=”gradient_group”>

<aapt:attr name=”android:animation”>
<set android:ordering=”together”>

<objectAnimator
android:propertyName=”translateXY” android:duration=”5000”
android:propertyXName=”translateX” android:propertyYName=”translateY”
android:pathData=”M -0.143 0.479 C -30.355 28.02 -153.405 -111.8 -39.441 -70.818

C -48.423 -63.52 70.593 -18.608 -91.09 -15.802 Z”/>
</set>

</aapt:attr>
</target>
</animated-vector>

3.5. Application Developer Guide 501

MicroEJ Documentation,

ScaleX and ScaleY

A group in the Android Vector Drawable can be scaled on X or Y direction. The scaling pivot
point is the one defined in the group attributes. By default, the pivot point is (0,0).

<animated-vector xmlns:android=”http://schemas.android.com/apk/res/android”
xmlns:aapt=”http://schemas.android.com/aapt”>

<aapt:attr name=”android:drawable”>
<vector android:width=”100dp” android:height=”100dp”

android:viewportWidth=”100” android:viewportHeight=”100”>
<group android:name=”yellow_group” android:pivotX=”25” android:pivotY=”25”>

<path android:pathData=”M 0 0 h50 v50 h-50 z” android:fillColor=”#FFFFAA”/>
</group>
<group android:name=”gradient_group” >
<path android:pathData=”M 50 50 h50 v50 h-50 z”>

<aapt:attr name=”android:fillColor”>
<gradient

android:startColor=”#0000ff” android:startX=”50” android:startY=”50”
android:endColor=”#ff00ff” android:endX=”100” android:endY=”100”
android:type=”linear”>

</gradient>
</aapt:attr>

</path>
</group>

</vector>
</aapt:attr>
<target android:name=”yellow_group”>

<aapt:attr name=”android:animation”>
<set android:ordering=”together”>

<objectAnimator android:propertyName=”scaleX” android:valueType=”floatType”
android:duration=”1000” android:startOffset=”0” android:valueFrom=”1”
android:valueTo=”0.5”/>

<objectAnimator android:propertyName=”scaleX” android:valueType=”floatType”
android:duration=”1000” android:startOffset=”1500” android:valueFrom=”0.5”
android:valueTo=”1”/>

</set>
</aapt:attr>

</target>
<target android:name=”gradient_group”>

<aapt:attr name=”android:animation”>
<set android:ordering=”together”>

<objectAnimator android:propertyName=”scaleX” android:valueType=”floatType”
android:duration=”1000” android:startOffset=”0”
android:valueFrom=”0.2” android:valueTo=”1”/>

<objectAnimator android:propertyName=”scaleX” android:valueType=”floatType”
android:duration=”1000” android:startOffset=”1500”
android:valueFrom=”1” android:valueTo=”0.2”/>

<objectAnimator android:propertyName=”scaleY” android:valueType=”floatType”
android:duration=”1000” android:startOffset=”0”
android:valueFrom=”0.2” android:valueTo=”1”/>

<objectAnimator android:propertyName=”scaleY” android:valueType=”floatType”
android:duration=”1000” android:startOffset=”1500”
android:valueFrom=”1” android:valueTo=”0.2”/>

</set>
</aapt:attr>

</target>
</animated-vector>

3.5. Application Developer Guide 502

MicroEJ Documentation,

Rotate

A group in the Android Vector Drawable can be rotated around a pivot point. The pivot point is
the one defined in the group attributes. By default, the pivot point is (0,0).

<animated-vector xmlns:android=”http://schemas.android.com/apk/res/android”
xmlns:aapt=”http://schemas.android.com/aapt”>

<aapt:attr name=”android:drawable”>
<vector android:width=”100dp” android:height=”100dp”

android:viewportWidth=”100” android:viewportHeight=”100”>
... same as previous example

</vector>
</aapt:attr>
<target android:name=”yellow_group”>

<aapt:attr name=”android:animation”>
<set android:ordering=”together”>

<objectAnimator android:propertyName=”rotation” android:valueType=”floatType”
android:duration=”1000” android:startOffset=”0”
android:valueFrom=”0” android:valueTo=”720”/>

<objectAnimator android:propertyName=”rotation” android:valueType=”floatType”
android:duration=”1000” android:startOffset=”1500”
android:valueFrom=”720” android:valueTo=”0”/>

</set>
</aapt:attr>

</target>
</animated-vector>

Morphing

The Android Vector Drawable format supports the animation of the pathData attribute of a
path. With this type of animation a shape can be transformed to a totally different other shape.
Theonly constraint is that theoriginanddestination pathData musthave the samecommands
format.

Lets take, for instance, the morphing of a rectangle to a circle which have the following com-
mands.

Circle: M 11.9 9.8 C 11.9 8.1 13.3␣
→˓6.7 14.9 6.7 C 16.6 6.7 18 8.1 18 9.8 C 18 11.6 16.6 13 14.9 13 C 13.3 13 11.9 11.6 11.9 9.8 Z

Rectangle: M 11.9 6.7 H 18 V 13 H 11.9 Z

The rectangle path has to be reworked to match with the sequence of commands of the circle
path.

The following tools can be used tomanipulate the paths to create thewanted animation effect:

• Shapeshifter

• SVGPathEditor

3.5. Application Developer Guide 503

https://shapeshifter.design/
https://yqnn.github.io/svg-path-editor

MicroEJ Documentation,

There is an infinity of possibilities to create the new path, and the association of each points of
the pathswill induce a specificmorphing animation. As an example, let’s define two rectangles
very similar visually but with different definitions:

New Rectangle␣
→˓path1: M 11.9 9.8 C 11.897 7.735 11.906 7.995 11.906 6.697 C 16.6 6.7 16.601 6.706␣
→˓17.995 6.697 C 18 11.6 17.995 11.587 18.004 13.006 C 13.3 13 13.852 13.006 11.897 13.006 Z

New Rectangle path2:␣
→˓M 11.906 6.697 C 11.953 6.698 12.993 6.698 17.995 6.697 C 17.999 8.331 17.997 9.93 18.002␣
→˓13.004 C 16.239 13.007 16.009 13.001 11.893 13.007 C 13.3 13 13.852 13.006 11.893 13.007 Z

<animated-vector xmlns:android=”http://schemas.android.com/apk/res/android”
xmlns:aapt=”http://schemas.android.com/aapt”>

<aapt:attr name=”android:drawable”>
<vector android:width=”20dp” android:height=”20dp”

android:viewportWidth=”20” android:viewportHeight=”20”>
<path android:fillColor=”#FF0000” android:pathData=”M 0 0 h40 v40 h-40”/>
<path android:fillColor=”#FF0000” android:pathData=”M 0 0 h40 v40 h-40”/>
<group android:name=”group1” android:translateX=”-10”>

<path
android:name=”circle1”
android:pathData=”M 11.9 9.8 C 11.9 8.1 13.3 6.7 14.9 6.7

C 16.6 6.7 18 8.1 18 9.8
C 18 11.6 16.6 13 14.9 13
C 13.3 13 11.9 11.6 11.9 9.8 Z”

android:fillColor=”#FFFFAA”/>
</group>
<group android:name=”group2”>

<path android:name=”circle2”
android:pathData=”M 11.9 9.8 C 11.9 8.1 13.3 6.7 14.9 6.7

C 16.6 6.7 18 8.1 18 9.8
C 18 11.6 16.6 13 14.9 13
C 13.3 13 11.9 11.6 11.9 9.8 Z”

android:fillColor=”#00FFAA” />
</group>

</vector>
</aapt:attr>

<target android:name=”circle1”>
<aapt:attr name=”android:animation”>

<set>
<objectAnimator

android:propertyName=”pathData”
android:duration=”2000”
android:valueFrom=”M 11.9 9.8 C 11.9 8.1 13.3 6.7 14.9 6.7

C 16.6 6.7 18 8.1 18 9.8
C 18 11.6 16.6 13 14.9 13
C 13.3 13 11.9 11.6 11.9 9.8 Z”

android:valueTo=”M 11.9 9.8 C 11.897 7.735 11.906 7.995 11.906 6.697
C 16.6 6.7 16.601 6.706 17.995 6.697
C 18 11.6 17.995 11.587 18.004 13.006
C 13.3 13 13.852 13.006 11.897 13.006 Z”

android:valueType=”pathType”/>
</set>

</aapt:attr>
</target>

(continues on next page)

3.5. Application Developer Guide 504

MicroEJ Documentation,

(continued from previous page)

<target android:name=”circle2”>
<aapt:attr name=”android:animation”>

<set>
<objectAnimator

android:propertyName=”pathData”
android:duration=”2000”
android:valueFrom=”M 11.9 9.8 C 11.9 8.1 13.3 6.7 14.9 6.7

C 16.6 6.7 18 8.1 18 9.8
C 18 11.6 16.6 13 14.9 13
C 13.3 13 11.9 11.6 11.9 9.8 Z”

android:valueTo=”M 11.906 6.697 C 11.953 6.698 12.993 6.698 17.995 6.697
C 17.999 8.331 17.997 9.93 18.002 13.004
C 16.239 13.007 16.009 13.001 11.893 13.007
C 13.3 13 13.852 13.006 11.893 13.007 Z”

android:valueType=”pathType”/>
</set>

</aapt:attr>
</target>
</animated-vector>

Warning: As path strokes are converted at build-time to filled path, the morphing of stroked
paths is not supported. Any image with a path morphing animation on a stroked path will be
rejected. Path strokes must be manually converted to filled path and the morphing of these
new filled paths must be created.

Color and Opacity

Any path fillColor, strokeColor, fillAlpha and strokeAlpha attributes in the Android Vector Draw-
able can be animated.

<animated-vector xmlns:android=”http://schemas.android.com/apk/res/android”
xmlns:aapt=”http://schemas.android.com/aapt”>

<aapt:attr name=”android:drawable”>
<vector android:width=”55dp” android:height=”55dp”

android:viewportWidth=”55” android:viewportHeight=”55”>
<group android:translateX=”5”>
<path android:name=”fillColor” android:fillColor=”#FF00FF”

android:pathData=”M 0 0 h20 v20 h-20 Z”/>
<path android:name=”fillAlpha” android:fillColor=”#FF0000”

android:pathData=”M 25 0 h20 v20 h-20 Z”/>
<path android:name=”strokeColor” android:strokeWidth=”5”

android:strokeColor=”#FFFF00” android:pathData=”M 0 25 h20 v20 h-20 Z”/>
<path␣

→˓android:name=”strokeAlpha” android:strokeWidth=”5” android:strokeColor=”#00FF00”
android:pathData=”M 25 25 h20 v20 h-20 Z”/>

</group>
</vector>

</aapt:attr>

(continues on next page)

3.5. Application Developer Guide 505

MicroEJ Documentation,

(continued from previous page)

<target android:name=”fillColor”>
<aapt:attr name=”android:animation”>

<set><objectAnimator
android:propertyName=”fillColor”
android:duration=”3000”
android:valueFrom=”#FF00FF”
android:valueTo=”#FFFF00”/>

</set>
</aapt:attr>
</target>
<target android:name=”strokeColor”>

<aapt:attr name=”android:animation”>
<set><objectAnimator

android:propertyName=”strokeColor”
android:duration=”3000”
android:valueFrom=”#FFFF00”
android:valueTo=”#FF00FF”/>

</set>
</aapt:attr>

</target>

<target android:name=”fillAlpha”>
<aapt:attr name=”android:animation”>

<set> <objectAnimator
android:propertyName=”fillAlpha”
android:duration=”3000”
android:valueFrom=”0.2”
android:valueTo=”1”
android:valueType=”floatType”/>

</set>
</aapt:attr>

</target>
<target android:name=”strokeAlpha”>

<aapt:attr name=”android:animation”>
<set> <objectAnimator

android:propertyName=”strokeAlpha”
android:duration=”3000”
android:valueFrom=”1”
android:valueTo=”0.2”
android:valueType=”floatType”/>

</set>
</aapt:attr>

</target>
</animated-vector>

Warning: The color of paths colored with a linear gradient can not be animated.

3.5. Application Developer Guide 506

MicroEJ Documentation,

Easing Interpolators

Every animation is associated with an easing interpolator. By default, the animation transition
is linear, but the rate of change in the animation can be defined by an interpolator. This allows
the existing animation effects to be accelerated, decelerated, repeated, bounced, etc.

The supported Android interpolators are:

• accelerate_cubic

• accelerate_decelerate

• accelerate_quad

• anticipate

• anticipate_overshoot

• bounce

• cycle

• decelerate_cubic

• decelerate_quad

• decelerate_quint

• fast_out_extra_slow_in

• fast_out_linear_in

• fast_out_slow_in

• linear

• linear_out_slow_in

• overshoot

Any other vectorial path can also be used as the interpolator easing function.

Following examples show the behavior of some of the interpolators for a simple translation
animation.

• Image:

<animated-vector xmlns:android=”http:/
→˓/schemas.android.com/apk/res/android” xmlns:aapt=”http://schemas.android.com/aapt”>
<aapt:attr name=”android:drawable”>

<vector android:width=”100dp
→˓” android:height=”100dp” android:viewportWidth=”100” android:viewportHeight=”100”>

<path android:pathData=
→˓”M 0 0 h100 v20 h-100 Z” android:strokeColor=”#FFFFFF” android:strokeWidth=”1”/>

<group android:name=”translate”>
<path android:pathData=”M 0 0 h20 v20 h-20 Z” android:fillColor=”#335566”/>

</group>
</vector>

</aapt:attr>

<target android:name=”translate”>
<aapt:attr name=”android:animation”>

<set><objectAnimator
android:propertyName=”translateX”

(continues on next page)

3.5. Application Developer Guide 507

MicroEJ Documentation,

(continued from previous page)

android:duration=”2000”
android:valueFrom=”0”
android:valueTo=”80”
android:interpolator = ”@android:interpolator/linear” />

</set>
</aapt:attr>
</target>
</animated-vector>

android:interpolator = ”@android:interpolator/linear”

android:interpolator = ”@android:interpolator/accelerate_cubic”

android:interpolator = ”@android:interpolator/bounce”

android:interpolator = ”@android:interpolator/fast_out_slow_in”

<aapt:attr name=”android:interpolator”>
<pathInterpolator android:pathData=”M 0 0 C 0.371 2.888 0.492 -1.91 1 1”/>

</aapt:attr>

<aapt:attr name=”android:interpolator”>
<pathInterpolator android:pathData=

→˓”M 0 0 C 0.333 1.939 0.171 -0.906 0.601 0.335 C 0.862 0.998 0.83 -0.771 1 1”/>
</aapt:attr>

3.5. Application Developer Guide 508

MicroEJ Documentation,

External Images

To fetch images from external memory, the application must pre-register the external Image
resources. The management of this kind of image may be different than the compile-time im-
ages andmay require some allocations in theMicroUI Images Heap. Formore details about the
external imagemanagement, refers to the VEE Port Guide chapter External Memory.

Caching Generated Images

Images converted using the Image Generator can be cached so that they are not rebuilt ev-
ery time the application is launched. Doing so can significantly speed up the application build
phase.

See Caching Generated Images to have more details.

Note: The cache is available from version 13.6 of the UI Pack.

Limitations / Supported Features

Android Vector Drawable

The MicroVG library supports most of the Android Vector Drawable features with the following
limitations:

• clip-path feature is only supported for static images.

• trim-path animation is not supported.

• morphing animations are not supported for paths with stroke.

• usage of path opacity is limited

– drawImage with alpha is not supported if the image contains overlapping paths.

– images with global alpha(android:alpha attribute of vector element) and overlapping paths
are not supported.

– Beware that using android:fillColor and android:strokeColor attributes on the same path
leads to overlapping paths.

3.5. Application Developer Guide 509

MicroEJ Documentation,

• radial and sweep gradient types are not supported.

• tint , tintMode and autoMirrored features are not supported.

• trimPath feature is not supported.

SVG

The MicroVG library supports a subset of SVGTiny: https://www.w3.org/TR/SVGTiny12/ includ-
ing:

• Path

• Basic shape

• Painting filling

• Painting stroking

• Painting gradient (only linear gradient with one pattern)

• Painting color formats : #RRGGBB, #RGB, rgb(r,g,b), keywords

• Transforms

• Text

• Fonts (the text fonts used in the SVG file has to be installed on the operating system)

Debug Traces

MicroVG logs several actions when traces are enabled. This chapter explains the trace identi-
fiers.

Note: The logs are only available on the Embedded VEE Port (not on the Simulator).

Trace format

The trace output format is the following:

[TRACE: MicroVG] Event AA(BB[CC])

where:

• AA is the event identifier. See next table.

• BB is the event data.

• CC is the index of the event data (0x0).

For example, given the following trace output:

[TRACE: MicroVG] Event 0x2(2[0x0])

• 0x2 -> Execute drawing event

• 2 -> Event “Draw String” (index 0x0)

3.5. Application Developer Guide 510

https://www.w3.org/TR/SVGTiny12/

MicroEJ Documentation,

Trace identifiers

The following tables describe some events data.

Table 26: MicroVG Traces
Event ID Description End of event
0x0 (0) Image event %0% (see Image Type). End of %0% (see Image Type).
0x1 (1) Font event %0% (see Font Type). End of %0% (see Font Type).
0x2 (2) Drawing event %0% (see Drawing Type). End of %0% (see Drawing Type).

Table 27: Image Type
Event ID Description
0x0 (0) Get or load image from RAW file
0x1 (1) Create BufferedVectorImage
0x2 (2) Close image

Table 28: Font Type
Event ID Description
0x0 (0) Load font from TTF / OTF file
0x1 (1) Retrieve font baseline
0x2 (2) Retrieve font height
0x3 (3) Measure string width
0x4 (4) Measure string height

Table 29: Drawing Type
Event ID Description
0x0 (0) Fill path with a color
0x1 (1) Fill path with a linear gradient
0x2 (2) Draw string with a color
0x3 (3) Draw string with a linear gradient
0x4 (4) Draw string on a circle with a color
0x5 (5) Draw string on a circle with a gradient
0x6 (6) Draw image

SystemView Integration

The traces are SystemView compatible.

Fig. 134: MicroVG Traces displayed in SystemView

3.5. Application Developer Guide 511

MicroEJ Documentation,

The following text can be copied in a file called SYSVIEW_MicroVG.txt and copied in Sys-
temView installation folder (e.g. SEGGER/SystemView_V252a/Description/).

NamedType VGImage 0=LOAD_IMAGE
NamedType VGImage 1=CREATE_IMAGE
NamedType VGImage 2=CLOSE_IMAGE

NamedType VGFont 0=LOAD_FONT
NamedType VGFont 1=FONT_BASELINE
NamedType VGFont 2=FONT_HEIGHT
NamedType VGFont 3=STRING_WIDTH
NamedType VGFont 4=STRING_HEIGHT

NamedType VGDraw 0=DRAW_PATH
NamedType VGDraw 1=DRAW_PATH_GRADIENT
NamedType VGDraw 2=DRAW_STRING
NamedType VGDraw 3=DRAW_STRING_GRADIENT
NamedType VGDraw 4=DRAW_STRING_ON_CIRCLE
NamedType VGDraw 5=DRAW_STRING_ON_CIRCLE_GRADIENT
NamedType VGDraw 6=DRAW_IMAGE

0 VG_ImageEvent␣
→˓ (MicroVG) Execute image event %VGImage | (MicroVG) Image event %VGImage done
1 VG_FontEvent␣
→˓ (MicroVG) Execute font event %VGFont | (MicroVG) Font event %VGFont done
2 VG_DrawingEvent ␣
→˓ (MicroVG) Execute drawing event %VGDraw | (MicroVG) Drawing event %VGDraw done

Error Messages

When an exception is thrown by the implementation of the MicroVG API, the exception Vector-
GraphicsException with the error message MicroVG:E=<messageId> is issued, where the
meaning of <messageId> is defined in the Field Detail of each error code.

Android Vector Drawable Loader

Overview

TheAVDLoader is an Add-On Library that can load vector images fromAndroid Vector Drawable
XML files. Unlike the vector images that are loaded using a raw output file format (see Vector
Images), the XML parsing and interpreting is done at runtime. This is useful for loading a vector
image as an external resource, especially when the resource has to be loaded dynamically (i.e.,
not known at build-time).

To use the AVD Loader library, add the following dependency to the project build file:

Gradle (build.gradle.kts)

MMM (module.ivy)

implementation(”ej.library.ui:vectorimage-loader:1.1.0”)

<dependency org=”ej.library.ui” name=”vectorimage-loader” rev=”1.1.0”/>

3.5. Application Developer Guide 512

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorGraphicsException.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorGraphicsException.html

MicroEJ Documentation,

Note: The AVD Loader library requires the VG Pack 1.2 and above.

Supported Format

The library supports the vector drawables with the following elements (in that order):

<vector>
Used to define a vector drawable

android:viewportWidth The width
of the image (must be a positive value).

android:viewportHeight The height
of the image (must be a positive value).

<path>
Defines a path.

android:fillColor (optional)
The color used to fill the path. Color is specified as a 32-bit ARGB value in hexadecimal format
(#AARRGGBB). This attribute is optional when a gradient color is specified (see below).

android:fillType The fill-
Type for the path, can be either evenOdd or nonZero .

android:pathData The path
data, using the commands in {M , L , C , Q , Z } (match upper-case).

A linear gradient can also be used as color fill for a <path> . This element is optional if a solid
color fill has been specified.

<gradient>
Used to define a linear gradient

android:endX The
x-coordinate for the end of the gradient vector.

android:endY The
y-coordinate for the end of the gradient vector.

android:startX The
x-coordinate for the start of the gradient vector.

android:startY The
y-coordinate for the start of the gradient vector.

<item> Defines an
item of the gradient (minimum two items for a gradient).

android:color The color of the
item. Color is specified as a 32-bit ARGB value in hexadecimal format (#AARRGGBB).

android:offset The position of
the item inside the gradient (value in [0..1]).

Here is an example of a Vector Drawable myImage.xml that complies with that format. It de-
fines a 100 x 100 image with two paths: the first one with a solid color fill, the second one with
a linear gradient.

3.5. Application Developer Guide 513

MicroEJ Documentation,

<vector xmlns:aapt=”http://schemas.android.com/aapt” xmlns:android=”http://
→˓schemas.android.com/apk/res/android” android:height=”100.0dp” android:viewportHeight=
→˓”100.0” android:viewportWidth=”100.0” android:width=”100.0dp”>
<path android:fillColor=”#FFFFFFAA

→˓” android:fillType=”nonZero” android:pathData=”M0,0L50,0L50,50L0,50Z ” />
<path android:fillType=”nonZero” android:pathData=”M50,50L100,50L100,100L50,100Z ”>

<aapt:attr name=”android:fillColor”>
<gradient android:endX=”100.0” android:endY=

→˓”100.0” android:startX=”50.0” android:startY=”50.0” android:type=”android:linear”>
<item android:color=”#FF0000FF” android:offset=”0.0” />
<item android:color=”#FFFF00FF” android:offset=”1.0” />

</gradient>
</aapt:attr>

</path>
</vector>

If the input Vector Drawable does not comply with this format, the library will throw an excep-
tion.

Note: To make a Vector Drawable compatible with the library, use the image generator tool to convert the AVD
into a compatible version. See this section for more information.

Format Limitations

The library only supports a subset of the Vector Drawable specification.

The AVD Loader is designed to load AVDs at runtime on embedded devices. It minimizes Man-
aged heap usage and CPU time for XML parsing, Path creation, and adds little code to the final
executable. The format is intentionally limited to reduce processing time and complexity while
ensuring good performance, knowing that the pre-processing step can convert any AVD into the
compatible format.

Note that this limitation on the Android Vector Drawable format does not apply to AVDs loaded
as raw vector images.

Loading a Vector Drawable

The following code loads the Vector Drawable myImage.xml with the AvdImageLoader.
loadImage() method. Thismethodhasoneparameterwhich is thepath to the VectorDrawable
file, provided asa raw resource of theapplication. The resulting vector image can thenbedrawn
on the display:

public static void main(String[] args) {
MicroUI.start();

Display display = Display.getDisplay();
GraphicsContext g = display.getGraphicsContext();

try (ResourceVectorImage image = AvdImageLoader.loadImage(”/images/myImage.xml”)) {
VectorGraphicsPainter.drawImage(g, image, 100, 100);
display.requestFlush();

}
}

3.5. Application Developer Guide 514

https://developer.android.com/reference/android/graphics/drawable/VectorDrawable

MicroEJ Documentation,

Listing 21: Declaration of the resource in a *.resources.list file.

/images/myImage.xml

Note: The image must be provided as a raw resource of the application, either internal or external. For external
resource loading, the BSPmust implement the proper Abstraction Layer API (LLAPI), see External Resources Loader
for more information on the implementation.

Warning: Thenew image is a ResourceVectorImage . In the current implementation, an image
loaded with the AvdImageLoader is allocated in the Managed heap. To release memory, the
application must close the image and remove any references to it.

Limitations

The AVD Loader can only load static images (i.e., no animations). The other limitations are the
same as for vector images.

3.5. Application Developer Guide 515

MicroEJ Documentation,

Advanced

Make a AVD Compatible with the Library

To ensure that a Vector Drawable can be loadedby the AVD Loader library at runtime, the image
generator tool can generate a compatible version of the drawable.

The tool comes with the VG pack installed in the platform, use the following command line to
run it:

java -cp [path_to_platform]/source/tools/imagegenerator-vectorimage.
→˓jar com.microej.converter.vectorimage.Main --input originalImage.xml --avd myImage.xml

This processes the input Vector Drawable originalImage.xml and outputs a Vector Drawable
myImage.xml which is compliant with the library and optimized for runtime loading.

The processing does the following:

• Normalize the output

• Limit the size of the XML file (e.g., minification)

• Pre-process the resource-consuming operations (e.g., transformations, stroking)

Make a SVG Compatible with the Library

It is possible to convert a SVG into a compatible Vector Drawable using the platform tooling.
Use the following command:

java -cp [path_to_platform]/source/tools/imagegenerator-vectorimage.
→˓jar com.microej.converter.vectorimage.Main --input originalImage.svg --avd myImage.xml

This processes the input SVG originalImage.svg and outputs a Vector Drawable myImage.xml
.

Memory Usage

The loading of a Vector Drawable at runtime uses Managed heap:

• for theworkingbuffersand intermediateobjectsusedduring the loadingphase. TheXMLparser
is optimized to stream the data and uses as few heap as possible.

• for the image data.

Simplify the Path Data

The loading timeandheapusagegrow linearlywith thenumberofpathcommands in theVector
Drawable. To achieve optimal performances, it is recommended to reduce the number of path
commands, by “simplifying” thepaths. The simplification algorithmwill determine theoptimal
amount of anchor points to use in the artwork. Most of the modern Graphic Design Software
have an option to simplify a path (check this article for Adobe Illustrator for example).

3.5. Application Developer Guide 516

https://helpx.adobe.com/illustrator/using/simplify_paths.html

MicroEJ Documentation,

Monitor the Number of Path Commands

To print the number of paths and path commands declared in a Vector Drawable, set the con-
stant ej.vectorimage.loader.debug.enabled to true . This will output the numbers in the con-
sole when loading a file.

Output example:

avdimageloader INFO: Parsed a path data with a number of 5 commands
avdimageloader INFO: Parsed a path data with a number of 5 commands
avdimageloader INFO: Parsed a path data with a number of 28 commands
avdimageloader INFO: Number of paths in loaded image: 3

Troubleshooting

The Image Cannot Be Parsed

A error can be raised when the parsing fails:

Exception in␣
→˓thread ”main” ej.microvg.VectorGraphicsException: MicroVG: The image cannot be parsed.
→˓ The image must be a valid AVD image, converted with the platform's image generator.

This error indicates that the file is not a compatible Vector Drawable, as specified in this section.

How to Add Emojis to a Vector Font

MicroVG supports the drawing of multicolor fonts that use the COLR/CPAL tables to define multi-layered glyphs.
Multicolor fonts are mainly used for providing a set of colorful emojis in messaging applications. However, emojis
fonts usually do not contain many characters other than emojis, which requires applications to use multiple fonts
to handle all use cases.

One solution to minimize the number of fonts used by an application is to add emojis to an-
other font (i.e., combine fonts into one). This article shows how to achieve this using FontLab,
a third-party font editor.

Note: FontLab is not a free software (it has a 30-days trial period). Tests with other tools, including free solutions,
were unsuccessful in this very specific task (e.g. FontTools, FontForge which are great tools for font editing).

Prerequisites

• Windows 10 (and higher) or macOS 10.14 (and higher),

• An COLR/CPAL emoji font (e.g., Segoe UI Emoji),

• A target font (i.e., a TTF/OTF font to append emojis to).

3.5. Application Developer Guide 517

https://github.com/fonttools/fonttools
https://fontforge.org/

MicroEJ Documentation,

Append the Emoji Glyphs

1. Download and install FontLab.

2. In FontLab, go to File > Export Profiles… .

3. Create a new Export Profile (the + button on the bottom-left).

4. Edit the new profile to match the configuration below in menu Export color font files :

5. Click on OK to close the Export Profiles window.

6. Open the emoji font: go to File > Open Fonts… and browse to the font file.

7. Open the target font.

8. Select a range of glyphs in the emoji font and select Edit > Copy Glyphs :

3.5. Application Developer Guide 518

https://www.fontlab.com/font-editor/fontlab/

MicroEJ Documentation,

9. Select the target font and append the copied glyphs: go to Edit > Append Glyphs .

10. Check that the glyphs have been added to the target font:

11. To save the changes, go to File > Export Font As… .

12. In the Export Font dialog, select the new Export Profile (with COLR/CPAL support) and

Destination .

13. Click Export .

The exported font can then be used in an application, as described in the Application Developer
Guide.

This procedure can also be used to add non-emoji glyphs to a font.

Warning: There are multiple ways of implementing emojis in fonts. The four main formats
are COLR/CPAL (Microsoft), CBDT/CBLC (Google), SVG (Adobe/Firefox) and sbix (Apple). Each

3.5. Application Developer Guide 519

MicroEJ Documentation,

format uses custom tables in fonts to describe the emoji glyphs. MicroVG supports COLR/CPAL
tables and this article only applies to this case. See this section for more details about color
emojis support with MicroVG.

Motion

Motion is a library that provides some of themost commonly used easing functions and allows
users to define new ones.

Easing functions help to mimic the movement of real objects, which allows for the creation of
appealing visual animations. The library can also be useful for other purposes such as defining
non-linear gradients for example.

Usage

To use the Motion library, add Motion library module to the project build file:

Gradle (build.gradle.kts)

MMM (module.ivy)

implementation(”ej.library.ui:motion:4.0.1”)

<dependency org=”ej.library.ui” name=”motion” rev=”4.0.1”/>

Concepts

Functions

TheFunction interface representsamathematical function. Itspurpose is toassociatea floating
value to any input floating value between 0f and 1f . This function specifies the rate of change
of a parameter over time (for example the position of an object).

The library provides a set of functions among the most common ones. Each one contains a
convenient instance. For example the singleton for the linear function.

Simple functions

The constant function represents a constant motion whose value is always the stop value.

The linear function represents a uniform linearmotion: the velocity is constant (no acceleration
or deceleration).

3.5. Application Developer Guide 520

https://repository.microej.com/modules/ej/library/ui/motion/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/motion/Function.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/motion/linear/LinearFunction.html#INSTANCE
https://repository.microej.com/javadoc/microej_5.x/apis/ej/motion/constant/ConstantFunction.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/motion/linear/LinearFunction.html

MicroEJ Documentation,

Easing functions

The easing functions come in 3 forms:

• Ease-in: the function is eased at the beginning.

• Ease-out: the function is eased at the end.

• Ease-in-out: the function is eased at the beginning and the end.

Here are the easing functions available in the library:

Circ ease-in

Circ ease-out

Circ ease-in-out

Cubic ease-in

Cubic ease-out

Cubic ease-in-out

Expo ease-in

Expo ease-out

Expo ease-in-out

Quad ease-in

Quad ease-out

Quad ease-in-out

Quart ease-in

Quart ease-out

Quart ease-in-out

3.5. Application Developer Guide 521

https://repository.microej.com/javadoc/microej_5.x/apis/ej/motion/circ/CircEaseInFunction.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/motion/circ/CircEaseOutFunction.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/motion/circ/CircEaseInOutFunction.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/motion/cubic/CubicEaseInFunction.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/motion/cubic/CubicEaseOutFunction.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/motion/cubic/CubicEaseInOutFunction.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/motion/expo/ExpoEaseInFunction.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/motion/expo/ExpoEaseOutFunction.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/motion/expo/ExpoEaseInOutFunction.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/motion/quad/QuadEaseInFunction.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/motion/quad/QuadEaseOutFunction.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/motion/quad/QuadEaseInOutFunction.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/motion/quart/QuartEaseInFunction.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/motion/quart/QuartEaseOutFunction.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/motion/quart/QuartEaseInOutFunction.html

MicroEJ Documentation,

Quint ease-in

Quint ease-out

Quint ease-in-out

Sine ease-in

Sine ease-out

Sine ease-in-out

Back ease-in

Back ease-out

Back ease-in-out

Bounce ease-in

Bounce ease-out

Bounce ease-in-out

Elastic ease-in

Elastic ease-out

Elastic ease-in-out

3.5. Application Developer Guide 522

https://repository.microej.com/javadoc/microej_5.x/apis/ej/motion/quint/QuintEaseInFunction.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/motion/quint/QuintEaseOutFunction.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/motion/quint/QuintEaseInOutFunction.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/motion/sine/SineEaseInFunction.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/motion/sine/SineEaseOutFunction.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/motion/sine/SineEaseInOutFunction.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/motion/back/BackEaseInFunction.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/motion/back/BackEaseOutFunction.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/motion/back/BackEaseInOutFunction.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/motion/bounce/BounceEaseInFunction.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/motion/bounce/BounceEaseOutFunction.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/motion/bounce/BounceEaseInOutFunction.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/motion/elastic/ElasticEaseInFunction.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/motion/elastic/ElasticEaseOutFunction.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/motion/elastic/ElasticEaseInOutFunction.html

MicroEJ Documentation,

Custom Function

It ispossible tocreatecustomfunctionsbycreatingaclass implementing theFunction interface.
The computeValue(float)method should return a value between 0f and 1f .

Motion

The Motion class is used to describe the movement of an element. It is made of a function, a
start value, a stop value and a duration.

It proposes a convenientmethodMotion.getValue(long) to retrieve the position of the element
at the specified elapsed time.

MWT (Micro Widget Toolkit)

MWT is a toolkit that simplifies the creation and use of graphical user interface widgets on a
pixel-based display.

The aim of this library is to be sufficient to create complex applications with a minimal frame-
work. It provides themain concepts withoutmanaging particular needs. Specific needs can be
met by aMWTexpert by creating newwidgets, addingmore complex concepts, etc. The flexibil-
ity of theMWTopen frameworkallows the selectionofonlywhat is necessary for theapplication
in order to guarantee lightweight applications and fast execution.

Usage

To use the MWT library, add MWT library module to the project build file:

Gradle (build.gradle.kts)

MMM (module.ivy)

implementation(”ej.library.ui:mwt:3.3.0”)

<dependency org=”ej.library.ui” name=”mwt” rev=”3.3.0”/>

Concepts

3.5. Application Developer Guide 523

https://repository.microej.com/javadoc/microej_5.x/apis/ej/motion/Function.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/motion/Motion.html#getValue-long-
https://repository.microej.com/modules/ej/library/ui/mwt/

MicroEJ Documentation,

Graphical Elements

Widget

A widget is an object that is intended to be displayed on a screen. A widget occupies a specific
region of the display and holds a state. A user may interact with a widget (using a touch screen
or a button for example).

Widgets are arranged on a desktop. A widget can be part of only one desktop hierarchy, and
can appear only once on that desktop.

Container

A container follows the composite pattern: it is a widget composed of other widgets. It also
defines the layout policy of its children (defining their bounds). The children’s positions are
relative to the position of their parent. Containers can be nested to design elaborate user inter-
faces.

By default, the children are rendered in the order in which they have been added in the con-
tainer. And thus if the container allows overlapping, the widgets added last will be on top of
the widgets added first. A container can also modify how its children are rendered.

Desktop

Adesktop is a displayable intended to be shownon a display (cf. MicroUI). At any time, only one
desktop can be displayed per display.

A desktop contains a widget (or a container). When the desktop is shown, its widget (and all its
hierarchy for a container) is drawn on the display.

3.5. Application Developer Guide 524

MicroEJ Documentation,

Rendering

A new rendering of a widget on the display can be requested by calling its requestRender()
method. The rendering is done asynchronously in the MicroUI thread.

When a container is rendered, all its children are also rendered.

A widget can be transparent, meaning that it does not draw every pixel within its bounds. In
this case, when this widget is asked to be rendered, its parent is asked to be rendered in the
area of thewidget (recursively if the parent is also transparent). Usually a widget is transparent
when its background (from the style) is transparent.

Awidget can also be rendered directly in a specific graphics context by calling its render(Graph-
icsContext) method. It can be useful to render a widget (and its children) in an image for exam-
ple.

Render Policy

A render policy is a strategy that MWT uses in order to repaint the entire desktop or to repaint
a specific widget.

Themost naive render policy would be to render the whole hierarchy of the desktop whenever
a widget has changed. However DefaultRenderPolicy is smarter than that: it only repaints the
widget, and its ancestors if the widget is transparent. The result is correct only if there is no
overlappingwidget, in which case OverlapRenderPolicy should be used instead. This policy re-
paints the widget (or its non-transparent ancestor), then it repaints all the widgets that overlap
it.

When using a partial buffer, these render policies can not be used because they render the en-
tire screen in a single pass. Instead, a customrender policywhich renders the screen inmultiple
passes has to be used. Refer to the partial buffer demo for more information on how to imple-
ment this render policy and how to use it.

The render policy can be changed by overridding Desktop.createRenderPolicy().

Widget Lifecycle

Desktops and widgets run through different states. Once created, they can be attached, then
they can be laid out, and finally they can be shown.

A desktop is attached automatically as soon as it is shown on the display and detached when
hidden. It can also be attachedmanually by calling Desktop.setAttached() or detached by call-
ing Desktop.setDetached(). It is particularly useful to render the desktop (and its widgets) in a
buffered image for example.

Awidget is consideredasattachedwhen it is contained inadesktop that is attached. In thesame
way, by default, a widget is shown when its desktop is shown. But for optimization purposes,
a container can control when its children are shown or hidden. A typical use case is when the
widgets are moved outside the display (in a scroll container for instance).

3.5. Application Developer Guide 525

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#requestRender--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#render-ej.microui.display.GraphicsContext-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#render-ej.microui.display.GraphicsContext-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/render/DefaultRenderPolicy.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/render/OverlapRenderPolicy.html
https://github.com/MicroEJ/Demo-PartialBuffer
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Desktop.html#createRenderPolicy--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Desktop.html#setAttached--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Desktop.html#setDetached--

MicroEJ Documentation,

Hooks

When attached, a widget is notified by a call to its onAttached() method. This notification can
be useful to allocate some images or other resources for example. These resources can be used
to compute the size of the widget and to render it. In other words, after this call, a widget is
ready to be laid out.

After being laid out, a widget is notified by a call to its onLaidOut() method. Being laid out
means that its bounds inside its parent are set. During this call, the widget can prepare some
resources used later by the rendering. For example, it can split a string into several lines based
on its width. Another idea could be to allocate a buffered image and draw the background to
avoid repainting everything during the rendering.

Beware that a widget can be laid out several times once attached (typically each time a Desk-
top.requestLayOut() or Widget.requestLayOut() is done).

When a whole hierarchy is ready to be rendered, all the widgets are notified by a call to their
onShown() method. This notification is particularly useful to start a periodic refresh or an ani-
mation.

A widget can finally be hidden and detached, in which cases its methods onHidden() and on-
Detached() will be called respectively. In these methods, anything that has been started or al-
located during the previous phases must be stopped or freed correctly to avoidmemory leaks.

Lay Out

All widgets are laid out at once during the lay out process. This process can be started by Desk-
top.requestLayOut() or Widget.requestLayOut(). The layout is also automatically done when
the desktop is shown (Desktop.onShown()).

This process is composed of two steps. Each step browses the hierarchy of widgets following a
depth-first algorithm:

• Compute the optimal size for each widget and container (considering the constraints of the lay
out).

• Set the position and size for each widget.

A widget must implement its Widget.computeContentOptimalSize() method. It is explained in
detail in this section: Computing the Optimal Size of the Widget.

A container is responsible for laying out its children. For that it must implement its own Wid-
get.computeContentOptimalSize() method and call the Container.computeChildOptimalSize()
method for each of its children. And it must implement its Container.layOutChildren() method
and call the Container.layOutChild() method for each of its children. It is explained in detail in
these sections: Computing the Optimal Size of the Container and Laying out the Children of the
Container.

3.5. Application Developer Guide 526

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#onAttached--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#onLaidOut--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Desktop.html#requestLayOut--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Desktop.html#requestLayOut--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#requestLayOut--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#onShown--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#onHidden--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#onDetached--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#onDetached--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Desktop.html#requestLayOut--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Desktop.html#requestLayOut--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#requestLayOut--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Desktop.html#onShown--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#computeContentOptimalSize-ej.mwt.util.Size-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#computeContentOptimalSize-ej.mwt.util.Size-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#computeContentOptimalSize-ej.mwt.util.Size-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Container.html#computeChildOptimalSize-ej.mwt.Widget-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Container.html#layOutChildren-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Container.html#layOutChild-ej.mwt.Widget-int-int-int-int-

MicroEJ Documentation,

3.5. Application Developer Guide 527

MicroEJ Documentation,

Rendering Pipeline

The Rendering Pipeline of an MWT application consists of three main phases: Layout, Render,
and Flush.

1. Layout: This phase determines which widgets should be displayed on the screen and the po-
sitions of the widgets. It is typically triggered when widgets are added or removed from the
widget hierarchy. An application should only modify the widget hierarchy when necessary and
avoid doing so during animation to ensure efficiency.

2. Render: During this phase, each widget executes its rendering code to perform the necessary
drawing operations. The widgets must render only what is needed and minimize overlapping
with other widgets to ensure optimal performance.

3. Flush: This phase involves copying the back buffer to the front buffer. The VEE Port performs
this operation, and it is the responsibility of the VEE Port developer to optimize this process, for
example, by utilizing a GPU.

Event Dispatch

Events generated in the hardware (touch, buttons, etc.) are sent to the event dispatcher of the
desktop. It is then responsible of sending the event to one or several widgets of the hierarchy. A
widget receives the event through its handleEvent(int)method. Thismethod returns a boolean
that indicates whether or not the event has been consumed by the widget.

Widgets are disabled by default and don’t receive the events.

Pointer Event Dispatcher

By default, the desktop proposes an event dispatcher that handles only pointer events.

Pointer events are grouped in sessions. A session starts when the pointer is pressed, and ends
when the pointer is released or when it exits the pressed widget.

While nowidget consumes the events, they are sent to thewidget that is under the pointer (see
Desktop.getWidgetAt(int, int)), then sent to all its parent hierarchy recursively.

3.5. Application Developer Guide 528

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#handleEvent-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Desktop.html#getWidgetAt-int-int-

MicroEJ Documentation,

Once a widget has consumed an event, it will be the only one to receive the next events during
the session.

Use case examples:

• A button-like widget should not consume the press event since the user can drag the pointer
after that.

– In a simple case, the user may release the pointer outside the bounds of the button, thus the
button will not be clicked.

– Or the button may be included in a container that capture the drag events (and/or the release
ones) to perform a scroll or a drag-and-drop for instance.

3.5. Application Developer Guide 529

MicroEJ Documentation,

• In the same way, a directed scroll (horizontal or vertical) should only start to consume pointer
events once a swipe in the right direction is detected. This way, 2 scrolls with opposite direc-
tions may be nested, each one handling one direction.

By default, the reactive area of a widget is the boundaries of its content, plus its padding, plus
its border (does not include the margin).

A widget can redefine its reactive area by subclassing the contains(int x, int y) method. It is
useful when a widget does not fill fully its bounds.

Style

A style describes how widgets must be rendered on screen. The attributes of the style are
strongly inspired from CSS.

Dimension

The dimension is used to constrain the size of the widget.

MWT provides multiple implementations of dimensions:

• NoDimension does not constrain the dimension of the widget, so the widget will take all the space granted
by its parent container.

• OptimalDimension constrains the dimension of thewidget to its optimal size, which is given by the compute-
ContentOptimalSize() method of the widget.

• FixedDimension constrains the dimension of the widget to a fixed absolute size.

• RelativeDimension constrains the dimension of the widget to a percentage of the size of its parent container.

Alignment

The horizontal and vertical alignments are used to position the content of the widget within its
bounds.

The alignment is used by the framework to position the widget within its available space if the
size of the widget has been constrained with a Dimension.

Thealignmentcanalsobeused in the renderContent()method inorder toposition thedrawings
of the widget (such as a text or an image) within its content bounds.

Outlines

The margin, border and padding are the 3 outlines which wrap the content of the widget. The
widget is wrapped in the following sequence: first the padding, then the border, and finally the
margin.

3.5. Application Developer Guide 530

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#contains-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/dimension/NoDimension.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/dimension/OptimalDimension.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#computeContentOptimalSize-ej.mwt.util.Size-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#computeContentOptimalSize-ej.mwt.util.Size-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/dimension/FixedDimension.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/dimension/RelativeDimension.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/dimension/Dimension.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#requestRender-int-int-int-int-

MicroEJ Documentation,

MWTprovidesmultiple implementations of invisible outlineswhich are usually used formargin
and padding:

• NoOutline does not wrap the widget in an outline.

• UniformOutline wraps the widget in an outline which thickness is equal on all sides.

• FlexibleOutline wraps the widget in an outline which thickness can be configured for each side.

MWT also providesmultiple implementations of visible outlineswhich are usually used for bor-
der:

• RectangularBorder draws a plain rectangle around the widget.

• RoundedBorder draws a plain rounded rectangle around the widget.

Background

The background is used to render the background of the widget. The background covers the
border, the padding and the content of the widget, but not its margin.

MWT provides multiple implementations of backgrounds:

• NoBackground leaves a transparent background behind the widget.

• RectangularBackground draws a plain rectangle behind the widget.

• RoundedBackground draws a plain rounded rectangle behind the widget.

• ImageBackground draws an image behinds the widget.

Color

The color is not used by the framework itself, but it may be used in the renderContent() to
select the color of the drawings.

3.5. Application Developer Guide 531

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/outline/NoOutline.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/outline/UniformOutline.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/outline/FlexibleOutline.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/outline/border/RectangularBorder.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/outline/border/RoundedBorder.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/background/NoBackground.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/background/RectangularBackground.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/background/RoundedBackground.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/background/ImageBackground.html

MicroEJ Documentation,

Font

The font is not used by framework itself, but it may be used in the renderContent() to select
the font to use when drawing strings.

Extra Fields

Extra fields are not used by framework itself, but they may be used in the renderContent() to
customize the behavior and the appearance of the widget.

See chapter How to Define an Extra Style Field for more information on extra fields.

Stylesheet

A stylesheet allows to customize the appearance of all the widgets of a desktopwithout chang-
ing the code of the widget subclasses.

MWT provides multiple implementations of stylesheets:

• VoidStylesheet assigns the same default style for every widget.

• CascadingStylesheet assigns styles to widgets using selectors, similarly to CSS.

For example, the following code customizes the style of every Label widget of the desktop:

CascadingStylesheet stylesheet = new CascadingStylesheet();

EditableStyle labelStyle = stylesheet.getSelectorStyle(new TypeSelector(Label.class));
labelStyle.setColor(Colors.RED);
labelStyle.setBackground(new RectangularBackground(Colors.WHITE));

desktop.setStylesheet(stylesheet);

Widget’s Style

At any time, a widget has a style that can be retrieved using Widget.getStyle() method.

When created, the widget’s style contains the default value for each field. These default values
are defined in the DefaultStyle class.

Once it is attached to a desktop, the widget’s style is computed from the stylesheet set in the
desktop. This is done using the Stylesheet.getStyle() method. The style can then be usedwhen
laying out and rendering the widget.

At any time, the style of the widget can be recomputed by calling Widget.updateStyle(). For
example when its state changes:

• When a button is pressed or released.

• When a checkbox is checked or unchecked.

• etc.

3.5. Application Developer Guide 532

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/stylesheet/VoidStylesheet.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/stylesheet/cascading/CascadingStylesheet.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/basic/Label.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#getStyle--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/DefaultStyle.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/stylesheet/Stylesheet.html#getStyle-ej.mwt.Widget-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#updateStyle--

MicroEJ Documentation,

Animations

MWT provides a utility class in order to animate widgets: Animator. When a widget is being
animatedbyananimator, thewidget isnotifiedeach time that thedisplay is flushed. Thewidget
can use this interrupt in order to update its state and request a new rendering.

See chapter How to Animate a Widget for more information on animating a widget.

Partial Buffer Considerations

Rendering a widget in partial buffer mode may require multiple cycles if the buffer is not big
enough to hold all the pixels to update in a single shot. This means that rendering is slower in
partial buffer mode, and this may cause performance being significantly affected during ani-
mations.

Besides, thewhole screen is flushed inmultiple times instead of a single one, whichmeans that
the usermay see the display at a timewhere every part of the display has not been flushed yet.

Due to these limitations, it is not recommended to repaint big parts of the screen at the same
time. For example, a transition on a small part of the screen will look better than a transition
affecting the whole screen. A transition will look perfect if the partial buffer can hold all the
lines to repaint. Since the buffer holds a group of lines, a horizontal transitionmay not look the
same as a vertical transition.

How to Create a Widget

A widget is the main way to render information on the display. A set of pre-defined widgets is
described in theWidgets section.

If the neededwidget does not already exist, it is possible to create it from scratch (or by derivat-
ing another one).

To create a custom widget, a new class should be created, extending the Widget class. Widget
subclasses have to implement twomethods andmay override optional methods, as explained
in the following sections.

Implementing the Mandatory Methods

Computing the Optimal Size of the Widget

The computeContentOptimalSize() method is called by the MWT framework in order to know
the optimal size of the widget.

The optimal size of the widget is the size of the smallest possible area which would still allow
to represent the widget. Unless the widget is using an OptimalDimension in its style, the actual
size of the widget will most likely be bigger than the optimal size returned in this method.

The size parameter of the computeContentOptimalSize() method initially contains the size
available for the widget. An available width or height equal toWidget.NO_CONSTRAINTmeans
that the optimal size should be computedwithout considering any restriction on the respective
axis. Before themethod returns, the size object should be set to the optimal size of the widget.

When implementing this method, the getStyle() method may be called in order to retrieve the
style of the widget.

3.5. Application Developer Guide 533

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/animation/Animator.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#computeContentOptimalSize-ej.mwt.util.Size-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/dimension/OptimalDimension.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#computeContentOptimalSize-ej.mwt.util.Size-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#NO_CONSTRAINT
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#getStyle--

MicroEJ Documentation,

For example, the following snippet computes the optimal size of an image widget:

@Override
protected void computeContentOptimalSize(Size size) {

size.setSize(this.image.getWidth(), this.image.getHeight());
}

Rendering the Content of the Widget

The renderContent() method is called by the MWT framework in order to render the content of
the widget.

The g parameter is used to draw the content of the widget. It is already configured with the
translation and clipping area which match the widget’s bounds. The contentWidth and con-
tentHeight parameters indicate the actual size of the content of the widget (excluding its out-
lines). Unless the widget is using an OptimalDimension in its style, the given content size will
most likely be bigger than the optimal size returned in computeContentOptimalSize(). If the
drawings do not take the complete content area, the position of the drawings should be com-
puted using the horizontal and vertical alignment values set in the widget’s style.

When implementing this method, the getStyle() method may be called in order to retrieve the
style of the widget.

For example, the following snippet renders the content of an image widget:

@Override
protected void renderContent(GraphicsContext g, int contentWidth, int contentHeight) {

Style style = getStyle();
int imageX = Alignment.

→˓computeLeftX(this.image.getWidth(), 0, contentWidth, style.getHorizontalAlignment());
int imageY = Alignment.

→˓computeTopY(this.image.getHeight(), 0, contentHeight, style.getVerticalAlignment());
Painter.drawImage(g, this.image, imageX, imageY);

}

Handling Events

When a widget is created, it is disabled and it will not receive any event. A widget may be en-
abled or disabled by calling setEnabled(). A common practice is to enable the widget in its con-
structor.

Enabled widgets can handle events by overriding handleEvent(). MicroUI event APIs may be
used in order to know more information on the event, such as its type. The handleEvent()
method should return whether or not the event was consumed by the widget.

For example, the following snippet prints a message when the widget receives an event:

@Override
public boolean handleEvent(int event) {

System.out.println(”Event type: ” + Event.getType(event));
return false;

}

3.5. Application Developer Guide 534

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#renderContent-ej.microui.display.GraphicsContext-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/dimension/OptimalDimension.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#computeContentOptimalSize-ej.mwt.util.Size-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#getStyle--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#setEnabled-boolean-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#handleEvent-int-

MicroEJ Documentation,

Consuming Events

To indicate that an event was consumed by a widget, handleEvent() should return true . Usu-
ally, onceanevent is consumed, it is not dispatched tootherwidgets (this behavior is controlled
by the event dispatcher). The widget that consumed the event is the last one to receive it.

The following guidelines are recommended to decidewhen to consume an event andwhen not
to consume an event:

• If the widget triggers an action when receiving the event, it consumes the event.

• If thewidgetdoesnot trigger anactionwhen receiving theevent, it doesnot consume theevent.

Note: If the event is Pointer.PRESSED, do not consume the event unless it is required that the subsequent widgets
in the hierarchy do not receive it. The Pointer.PRESSED event is special because pressing a widget is usually not
the deciding factor to trigger an action. The user has to release or to drag thewidget to trigger an action. If the user
presses a widget and then drags the pointer (e.g. their finger or a stylus) out of the widget before releasing it, the
action is not triggered.

Listening to the Life-cycle Hooks

Widget subclasses may override the following methods in order to allocate and free the necessary resources:

• onAttached()

• onDetached()

• onLaidOut()

• onShown()

• onHidden()

The onAttached() methodmay be overridden to load an image:

@Override
protected void onAttached() {

this.image = ResourceImage.loadImage(this.imagePath);
}

Likewise, the onDetached() methodmay be overridden to close the image:

@Override
protected void onDetached() {

this.image.close();
}

The onLaidOut() method may be overridden to split a String into several lines based on the
widget’s width:

@Override
protected void onLaidOut() {

Style style = getStyle();
Font font = style.getFont();
this.splittedText = TextHelper.wrap(getText(), font, getContentBounds().getWidth());

}

3.5. Application Developer Guide 535

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#handleEvent-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Buttons.html#PRESSED
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Buttons.html#PRESSED
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#onAttached--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#onDetached--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#onLaidOut--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#onShown--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#onHidden--

MicroEJ Documentation,

The onShown() methodmay be overridden to start an animation:

@Override
protected void onShown() {

Animator animator = getDesktop().getAnimator();
animator.startAnimation(this);

}

Likewise, the onHidden() methodmay be overridden to stop an animation:

@Override
protected void onHidden() {

Animator animator = getDesktop().getAnimator();
animator.stopAnimation(this);

}

How to Create a Container

Tocreatea customcontainer, anewclass shouldbecreated, extending theContainer class. This
new classmay define a constructor and settermethods in order to provide away for the user to
configure the container, such as its orientation. Container subclasses have to implement two
methods andmay override optional methods, as explained in the following sections.

Implementing the Mandatory Methods

This section explains how to implement the twomandatory methods of a container subclass.

Computing the Optimal Size of the Container

The computeContentOptimalSize() method is called by the MWT framework in order to know
the optimal size of the container. The optimal size of the container should be big enough so
that each child can be laid out with a size at least as big as its own optimal size.

The container is responsible for computing the optimal size of every child. To do so, the com-
puteChildOptimalSize() method should be called for every child. After this method is called,
the optimal size of the child can be retrieved by calling getWidth() and getHeight() on the child
widget.

The Size parameter of the computeContentOptimalSize() method initially contains the size
available for the container. An available width or height equal to Widget.NO_CONSTRAINT
means that the optimal size should be computed without considering any restriction on the
respective axis. Before the method returns, the size object should be set to the optimal size of
the container.

For example, the following snippet computes the optimal size of a simple wrapper:

@Override
protected void computeContentOptimalSize(Size size) {

Widget child = getChild(0);
computeChildOptimalSize(child, size.getWidth(), size.getHeight());
size.setSize(child.getWidth(), child.getHeight());

}

3.5. Application Developer Guide 536

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Container.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#computeContentOptimalSize-ej.mwt.util.Size-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Container.html#computeChildOptimalSize-ej.mwt.Widget-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Container.html#computeChildOptimalSize-ej.mwt.Widget-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#getWidth--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#getHeight--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#computeContentOptimalSize-ej.mwt.util.Size-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#NO_CONSTRAINT

MicroEJ Documentation,

Laying out the Children of the Container

The layOutChildren() method is called by the MWT framework in order to lay out every child
of the container, i.e. to set the position and size of the children. If a child is laid out outside
the bounds of the container (partially or fully), only the part of the widget which is within the
container bounds will be visible.

The container is responsible for laying out each child. To do so, the layOutChild() method
should be called for every child. Before this method is called, the optimal size of the child can
be retrieved by calling getWidth() and getHeight() on the child widget.

When laying out a child, its bounds have to be passed as parameter. The position will be inter-
preted as relative to the position of the container content. This means that the position should
not include the outlines of the container. This means that the (0, 0) coordinates represent
the top-left pixel of the container content and the (contentWidth-1, contentHeight-1) coor-
dinates represent the bottom-right pixel of the container content.

For example, the following snippet lays out the children of a simple wrapper:

@Override
protected void layOutChildren(int contentWidth, int contentHeight) {

Widget child = getChild(0);
layOutChild(child, 0, 0, contentWidth, contentHeight);

}

Managing the Visibility of the Children of the Container

By default, when a container is shown, each of its children is shown too. This behavior can be
changed by overriding the setShownChildren() method of Container. When implementing this
method, the setShownChild() method should be called for each child which should be shown
when the container is shown.

At any timewhile the container is visible, childrenmaybe shownorhiddenby calling setShown-
Child() or setHiddenChild().

When a container is hidden, each of its children is hidden too (unless it is already hidden). It is
not necessary to override setHiddenChildren(), except for optimization.

Providing APIs to Change the Children list of the Container

The Container class introduces protected APIs in order tomanipulate the list of children of the
container. These methods may be overridden in the container subclass and set as public in
order to make these APIs available for the user.

Each of the following methods may be overridden individually:

• addChild()

• removeChild()

• removeAllChildren()

• insertChild()

• replaceChild()

• changeChildIndex()

3.5. Application Developer Guide 537

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Container.html#layOutChildren-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Container.html#layOutChild-ej.mwt.Widget-int-int-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#getWidth--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#getHeight--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Container.html#setShownChildren--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Container.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Container.html#setShownChild-ej.mwt.Widget-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Container.html#setShownChild-ej.mwt.Widget-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Container.html#setShownChild-ej.mwt.Widget-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Container.html#setHiddenChild-ej.mwt.Widget-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Container.html#setHiddenChildren--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Container.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Container.html#addChild-ej.mwt.Widget-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Container.html#removeChild-ej.mwt.Widget-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Container.html#removeAllChildren--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Container.html#insertChild-ej.mwt.Widget-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Container.html#replaceChild-int-ej.mwt.Widget-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Container.html#changeChildIndex-ej.mwt.Widget-int-

MicroEJ Documentation,

For example, the following snippet allows the user to call the addChild() method on the con-
tainer:

@Override
public void addChild(Widget child) {

super.addChild(child);
}

How to Animate a Widget

Starting and stopping the animation

To animate a widget, an Animator instance is required. This instance can be retrieved from the
desktop of the widget by calling Desktop.getAnimator(). Make sure that your widget subclass
implements the Animation interface so that it can be used with an Animator.

An animation can be started at any moment, provided that the widget is shown. For example,
the animation can start on a click event. Likewise, an animation can be stopped at any mo-
ment, for example a few seconds after the animation has started. Once thewidget is hidden, its
animation should always be stopped to avoid memory leaks and unnecessary operations.

To start the animation of thewidget, call the startAnimation()methodof the Animator instance.
To stop it, call the stopAnimation() method of the same Animator instance.

For example, the following snippet starts the animation as soon as the widget is shown and
stops it once the widget is hidden:

public class MyAnimatedWidget extends Widget implements Animation {

private long startTime;
private long elapsedTime;

@Override
protected void onShown() {

// start animation
getDesktop().getAnimator().startAnimation(this);
// save start time
this.startTime = Util.platformTimeMillis();
// set widget initial state
this.elapsedTime = 0;

}

@Override
protected void onHidden() {

// stop animation
getDesktop().getAnimator().stopAnimation(this);

}
}

3.5. Application Developer Guide 538

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/animation/Animator.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Desktop.html#getAnimator--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/animation/Animation.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/animation/Animator.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/animation/Animator.html#startAnimation-ej.mwt.animation.Animation-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/animation/Animator.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/animation/Animator.html#stopAnimation-ej.mwt.animation.Animation-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/animation/Animator.html

MicroEJ Documentation,

Performing an animation step

The tick() method is called by the animator in order to update the widget. It is called in the
UI thread once the display has been flushed. This method should not render the widget but
should update its state and request a new render. The tick() method should return whether or
not the animation should continue after this increment.

For example, the following snippet updates the state of the widget when it is ticked, requests a
new render and keeps the animation going until 5 seconds have passed:

@Override
public boolean tick(long platformTimeMillis) {

// update widget state
this.elapsedTime = platformTimeMillis - this.startTime;
// request new render
requestRender();
// return whether to continue or to stop the animation
return (this.elapsedTime < 5_000);

}

The renderContent() method should render the widget by using its current state (saved in the
fields of the widget). This method should not call methods such as Util.platformTimeMillis()
because thewidget could be rendered inmultiple passes, for example if a partial buffer is used.

For example, the following snippet renders the current state of the widget by displaying the
time elapsed since the start of the animation:

@Override
protected void renderContent(GraphicsContext g, int contentWidth, int contentHeight) {

Style style = getStyle();
g.setColor(style.getColor());
Painter.drawString(g, Long.toString(this.elapsedTime), style.getFont(), 0, 0);

}

Note: Since an animator ticks its animations as often as possible, the animator may take 100% CPU usage if none
of its animations requests a render. For more information on how to debug animators, see the How to Debug Ani-
mators section.

3.5. Application Developer Guide 539

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/animation/Animation.html#tick-long-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/animation/Animation.html#tick-long-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#renderContent-ej.microui.display.GraphicsContext-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Util.html#platformTimeMillis--

MicroEJ Documentation,

How to Define an Outline or Border

Tocreate a customoutlineorborder, anewclass shouldbe created, extending theOutline class.
Outline subclasses have to implement twomethods, as explained in the following sections.

Applying the outline on an outlineable object

The apply(Outlineable)method is called by theMWT framework in order to subtract the outline
from a Size or Rectangle object.

The Outlineable parameter of the method initially contains the size or bounds of the box, in-
cluding the outline. Before the method returns, the outlineable object should be modified by
subtracting the outline. In order to remove the outline from the object, the removeOutline()
method of Outlineable should be used, passing as argument the thickness on each side.

For example, the following snippet applies an outline of 1 pixel on every side:

@Override
public void apply(Outlineable outlineable) {

outlineable.removeOutline(1, 1, 1, 1);
}

Applying the outline on a graphics context

The apply(GraphicsContext, Size) method is called by the MWT framework in order to render
the outline (only relevant if it is a border) and to update the translation and clip of a graphics
context.

The Size parameter of the method initially contains the size of the box, including the outline.
Before the method returns, the size object should be modified by subtracting the outline. In
order to remove theoutline fromtheobject, the removeOutline()methodofOutlineable should
be used, passing as argument the thickness on each side.

For example, the following snippet applies an outline of 1 pixel on every side:

@Override
public void apply(GraphicsContext g, Size size) {

size.removeOutline(1, 1, 1, 1);
g.translate(1, 1);
g.setClip(0, 0, size.getWidth(), size.getHeight());

}

How to Define a Background

Tocreateacustombackground, anewclass shouldbecreated, extending theBackgroundclass.
Background subclasses have to implement two methods, as explained in the following sec-
tions.

3.5. Application Developer Guide 540

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/outline/Outline.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/outline/Outline.html#apply-ej.mwt.util.Outlineable-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/util/Size.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/util/Rectangle.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/util/Outlineable.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/util/Outlineable.html#removeOutline-int-int-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/util/Outlineable.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/outline/Outline.html#apply-ej.microui.display.GraphicsContext-ej.mwt.util.Size-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/util/Outlineable.html#removeOutline-int-int-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/util/Outlineable.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/background/Background.html

MicroEJ Documentation,

Informing whether the background is transparent

The isTransparent() method is called by the MWT framework in order to know whether or not
the background is transparent. A background is considered as transparent if it does not draw
every pixel with maximal opacity when it is applied.

For example, the following snippet informs that the background is completely opaque regard-
less of its size:

@Override
public boolean isTransparent(int width, int height) {

return false;
}

Applying the background on a graphics context

The apply(GraphicsContext g, int width, int height) method is called by the MWT framework
in order to render the background and to set or remove the background color of subsequent
drawings.

For example, the following snippet applies a white background:

@Override
public void apply(GraphicsContext g, int width, int height) {

g.setColor(Colors.WHITE);
Painter.fillRectangle(g, 0, 0, width, height);
g.setBackgroundColor(Colors.WHITE);

}

How to Create a Desktop Event Dispatcher

Creating a custom event dispatcher can help you address two use cases:

• [Dispatch] Extending an EventDispatcher is used to dispatch the events. For example, the FocusEventDis-
patcher will send the events to the widget owning the focus.

• [Handle] Overriding the desktop is used to directly trigger a behavior. For example “BACK” command shows
the previous page.

To create a custom event dispatcher, a new class should be created, extending the EventDis-
patcher class. Event dispatcher subclasses have to implement amethod andmay override op-
tional methods, as explained in the following sections.

Dispatching the events to the widgets

The dispatchEvent() method is called by the MWT framework in order to dispatch a MicroUI
event to thewidgets of thedesktop. The getDesktop()methodmaybe called in order to retrieve
the desktop with which the event dispatcher is associated. This is useful in order to browse
the widget hierarchy of the desktop, for example by using the getWidget() and getWidgetAt()
methods of Desktop.

In order to send an event to one of the widgets of the hierarchy, the sendEventToWidget()
method should be used. The dispatchEvent() method should return whether or not the event
was dispatched and consumed by a widget.

3.5. Application Developer Guide 541

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/background/Background.html#isTransparent-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/background/Background.html#apply-ej.microui.display.GraphicsContext-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/event/EventDispatcher.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/event/EventDispatcher.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/event/EventDispatcher.html#dispatchEvent-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/event/EventDispatcher.html#getDesktop--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Desktop.html#getWidget--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Desktop.html#getWidgetAt-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Desktop.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/event/EventDispatcher.html#sendEventToWidget-ej.mwt.Widget-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/event/EventDispatcher.html#dispatchEvent-int-

MicroEJ Documentation,

For example, the following snippet dispatches every event to the widget of the desktop:

@Override
public boolean dispatchEvent(int event) {

Widget desktopWidget = getDesktop().getWidget();
if (desktopWidget != null) {

return sendEventToWidget(desktopWidget, event);
} else {

return false;
}

}

In addition to dispatching the provided events, an event dispatcher may generate custom
events. This may be done by using a DesktopEventGenerator. Its buildEvent() method allows
to build an event which may be sent to a widget using the sendEventToWidget() method.

Initializing and disposing the dispatcher

EventDispatcher subclasses may override the initialize() and dispose() methods in order to allocate and free the
necessary resources.

For example, the initialize()methodmay be overridden to create an event generator and to add
it to the system pool of MicroUI:

@Override
public void initialize() {

this.eventGenerator = new DesktopEventGenerator();
this.eventGenerator.addToSystemPool();

}

Likewise, the dispose()methodmay be overridden to remove the event generator from the sys-
tem pool of MicroUI:

@Override
public void dispose() {

this.eventGenerator.removeFromSystemPool();
}

3.5. Application Developer Guide 542

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/event/DesktopEventGenerator.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/event/DesktopEventGenerator.html#buildEvent-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/event/EventDispatcher.html#sendEventToWidget-ej.mwt.Widget-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/event/EventDispatcher.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/event/EventDispatcher.html#initialize--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/event/EventDispatcher.html#dispose--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/event/EventDispatcher.html#initialize--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/event/EventDispatcher.html#dispose--

MicroEJ Documentation,

How to Define an Extra Style Field

Extra style fields allow to customize a widget by configuring graphical elements of the widget
from the stylesheet. Extra fields are only relevant to a specific widget type and its subtypes. A
widget type can support up to 7 extra fields. The value of an extra field may be represented as
an int , a float or any object, and it can not be inherited from parent widgets.

Defining an extra field ID

The recommended practice is to add a public constant for the ID of the new extra field in the
widget subtype. This ID should be an integer with a value between 0 and 6 .

Every extra field ID has to be unique within the widget type. However, two unrelated widget
types may define an extra field with the same ID.

For example, the following snippet defines an extra field for a secondary color:

public static final int SECONDARY_COLOR_FIELD = 0;

Setting an extra field in the stylesheet

The value of an extra fieldmay be set in the stylesheet in a similar fashion to built-in style fields,
using one of the setExtraXXX() methods of EditableStyle.

For example, the following snippet sets the valueof anextra field for all the instancesof awidget
subtype:

EditableStyle style = stylesheet.getSelectorStyle(new TypeSelector(MyWidget.class));
style.setExtraInt(MyWidget.SECONDARY_COLOR_FIELD, Colors.RED);

Getting an extra field during rendering

The value of an extra field may be retrieved from the style of a widget in a similar fashion to
built-in style fields, using one of the getExtraXXX() methods of Style. When calling one of
these methods, a default value has to be given in case the extra field is not set for this widget.

For example, the following snippet gets the value of an extra field of the widget:

Style style = getStyle();
int secondaryColor = style.getExtraInt(SECONDARY_COLOR_FIELD, Colors.BLACK);

How to Use the Overlap Render Policy

TheMWT library implements two render policies: the DefaultRenderPolicy and theOverlapRen-
derPolicy:

• DefaultRenderPolicy: renders the specified widget. If the widget is transparent, it renders its parent (and
recursively).

• OverlapRenderPolicy: renders the specified widget but also the other widgets that overlap with it.

While the DefaultRenderPolicy will be fine for most GUIs, it will not handle properly the case
where widgets overlap. In this case, the OverlapRenderPolicy will be the best match.

3.5. Application Developer Guide 543

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/EditableStyle.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/Style.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/render/DefaultRenderPolicy.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/render/OverlapRenderPolicy.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/render/OverlapRenderPolicy.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/render/DefaultRenderPolicy.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/render/OverlapRenderPolicy.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/render/DefaultRenderPolicy.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/render/OverlapRenderPolicy.html

MicroEJ Documentation,

Making Widgets Overlap

A widget is said to overlap with another when:

• their boundaries intersect

• it comes after in the widget tree (depth-first search)

The following snippet displays two widgets that overlap:

public static void main(String[] args) {
MicroUI.start();

Desktop desktop = new Desktop();

// make two widgets overlap in a Canvas container
Canvas rootWidget = new Canvas();
final Button overlapped = new Button(”Overlapped widget”);
rootWidget.addChild(overlapped, 50, 50, 200, 200);
final Label overlapping = new Label(”Overlapping widget”);
rootWidget.addChild(overlapping, 125, 75, 100, 50);
desktop.setWidget(rootWidget);

// the overlapping widget is silver
CascadingStylesheet stylesheet = new CascadingStylesheet();
EditableStyle style = stylesheet.getSelectorStyle(new TypeSelector(Label.class));
style.setBackground(new RectangularBackground(Colors.SILVER));

// the overlapped widget is orange
style = stylesheet.getSelectorStyle(new TypeSelector(Button.class));
style.setBackground(new RectangularBackground(0xee502e));
desktop.setStylesheet(stylesheet);

desktop.requestShow();
}

As expected from the addChild() sequence, the widget overlapping overlaps the widget over-
lapped :

So far, the DefaultRenderPolicy is being used and it seems to look fine: the widgets of the desk-
top are rendered successively in depth-first order after the call to desktop.requestShow().

3.5. Application Developer Guide 544

https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/container/Canvas.html#addChild-ej.mwt.Widget-int-int-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/render/DefaultRenderPolicy.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Desktop.html#requestShow--

MicroEJ Documentation,

Requesting a New Render

Let’s see how the DefaultRenderPolicy performs when the widget overlapped is requested to
render again. Inmost cases, awidget is requested to renderwhen its content has been updated
(e.g. the value displayed has changed). For demonstration purposes, let’s introduce amean to
trigger a new render: each time the user clicks on the widget overlapped , it will request the
widget to render.

The snippet above shows how to do that, by adding anOnClickListener to the overlapped wid-
get:

overlapped.setOnClickListener(new OnClickListener() {

@Override
public void onClick() {

overlapped.requestRender();
}

});

When theuser clicks on thewidget overlapped , thewidget is renderedagainbut not thewidget
overlapping . As a consequence, the widget that overlaps is not displayed anymore:

When using the DefaultRenderPolicy, widgets are rendered regardless of their order in the wid-
get hierarchy. However, the OverlapRenderPolicy will take account of the relative order of the
other widgets: widgets that come after in the widget tree will be rendered if their boundaries
intersect those of the widget.

Using the OverlapRenderPolicy

Overriding the method createRenderPolicy() of the Desktop, as follows, will cause the Over-
lapRenderPolicy to be used when rendering widgets:

Desktop desktop = new Desktop() {
@Override
protected RenderPolicy createRenderPolicy() {

return new OverlapRenderPolicy(this);
}

};

Now, both widgets will be displayed correctly when they are requested to render.

As a conclusion, favor the OverlapRenderPolicy when a GUI uses overlapping elements. Note
that this render policy is slightly more time-consuming because it traverses the widget tree to
determine which widgets are overlapping with each other.

3.5. Application Developer Guide 545

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/render/DefaultRenderPolicy.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/basic/OnClickListener.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/render/DefaultRenderPolicy.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/render/OverlapRenderPolicy.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Desktop.html#createRenderPolicy--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Desktop.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/render/OverlapRenderPolicy.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/render/OverlapRenderPolicy.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/render/OverlapRenderPolicy.html

MicroEJ Documentation,

How to Debug

Highlighting the Bounds of the Widgets

When designing a UI, it can be pretty convenient to highlight the bounds of each widget. Here
are some cases where it helps:

• Verify if the layout fits the expected design.

• Set the outlines (margin, padding, border).

• Check the alignment of the widget content inside its bounds.

Setting the ej.mwt.debug.bounds.enabled constant to true will add a rectangle overlay over
each widget and container. For more information about constants, see the Constants section.

By default, the rectangles around the widgets are magenta. But their color can be adjusted by
modifying the ej.mwt.debug.bounds.color constant.

Here is an example of a xxx.constants.list file with the result in an application:

ej.mwt.debug.bounds.enabled=true
ej.mwt.debug.bounds.color=0x00ff00

3.5. Application Developer Guide 546

MicroEJ Documentation,

Note: Available since MWT 3.3.0.

Enabling Traces for System View

MWT logs some keypoints when traces are enabled (see Event Tracing).

Here is the list of the logs:

• The creation of a widget. A unique ID is associated to the widget at this moment that will be
used in the other traces all along its lifetime.

• The creation of a desktop. A unique ID is associated to the desktop at this moment that will be
used in the other traces all along its lifetime.

• The request to show a desktop.

• The request to layout a widget.

• The request to layout a desktop.

• The request to render a widget. The region of the rendering request is available in the trace.

• The request to render a desktop.

• The update of the style of a widget. There is another trace for the end of the cascading update
of containers.

• The compute of the optimal size of awidget. There is another trace for the end of the cascading
compute of containers.

• The lay out of awidget. There is another trace for the endof the cascading lay out of containers.

3.5. Application Developer Guide 547

MicroEJ Documentation,

• The rendering of a widget. There is another trace for the end of the cascading rendering of
containers.

• When a widget is shown.

• When a widget is hidden.

• When a desktop is shown.

• When a desktop is hidden.

• When a widget is attached.

• When a widget is detached.

It is possible to print more information about the created widgets and desktops (to associate
the ID with an actual object). It can be activated by setting the Application Option named ej.
mwt.debug.log.trace.enabled to true .

The traces can be seen in SystemView. For the traces to be more human-readable, the file
SYSVIEW_MWT.txt must be put in SystemView installation folder (e.g. SEGGER/
SystemView_V252a/Description/). This file can be found in the resources folder of the jar
of MWT. Otherwise, it can be created manually with the following content:

NamedType UIDestination *=”[dest=0x%x]”

0 MWT_CreateWidget (MWT) Create a widget (ID = %u, type = %x)
1 MWT_CreateDesktop (MWT) Create a desktop (ID = %u, type = %x)
2 MWT_RequestShowDesktop (MWT) Request to show a desktop (ID = %u)
3 MWT_RequestLayout (MWT) Request to layout a widget (ID = %u)
4 MWT_RequestLayoutDesktop (MWT) Request to layout a desktop (ID = %u)
5 MWT_
→˓RequestRender (MWT) Request to render a widget (ID = %u %u,%u %ux%u)
6 MWT_RequestRenderDesktop (MWT) Request to render a desktop (ID = %u)
7 MWT_UpdateStyle (MWT) Update the style␣
→˓of a widget (ID = %u) | (MWT) Widget style updated (ID = %u)
8 MWT_ComputeOptimalSize (MWT) Compute the optimal␣
→˓size of a widget (ID = %u %ux%u) | (MWT) Widget size computed (ID = %u)
9 MWT_Layout (MWT) Lay out a widget␣
→˓(ID = %u %u,%u %ux%u) | (MWT) Widget layout done (ID = %u)
// region seen as a container (use a START event)
10 MWT_Render (MWT) %UIDestination Render a␣
→˓widget (ID = %u) region=(%u,%u)(%ux%u) | (MWT) Widget render done (ID = %u)
11 MWT_OnShown (MWT) A widget is shown (ID = %u)
12 MWT_OnHidden (MWT) A widget is hidden (ID = %u)
13 MWT_OnShownDesktop (MWT) A desktop is shown (ID = %u)
14 MWT_OnHiddenDesktop (MWT) A desktop is hidden (ID = %u)
15 MWT_OnAttached (MWT) A widget is attached (ID = %u)
16 MWT_OnDetached (MWT) A widget is detached (ID = %u)

Note: Available since MWT 3.6.0.

3.5. Application Developer Guide 548

MicroEJ Documentation,

Monitoring the Render Operations

When developing a GUI application, itmay not be obviouswhat/how exactly the UI is rendered.
Especially, when a widget can be re-rendered from a distant part of the application code. Or
simply because of the RenderPolicy used.

MWT provides a way to inject a monitor for the following render operations:

• Render requests done by the Application.

• Successive render executions triggered by the RenderPolicy .

Setting the ej.mwt.debug.render.enabled constant to true will enable themonitoringofabove
render operations. For more information about the monitoring mechanism, see RenderPolicy
Javadoc. For more information about constants, see the Constants section.

TheWidget library provides a defaultmonitor implementation that prints the operations on the
standard output. The logs produced also contain information about what is rendered (widget
and area) and what code requested the rendering. For more information about this monitor
implementation, see RenderMonitor Javadoc.

To use a different implementation (and if Widget is not in the classpath), set the ej.mwt.debug.
render.monitor constant to the FQN of the monitor implementation class.

Here is an example of a xxx.constants.list file with the result in an application:

ej.mwt.debug.render.enabled=true
ej.mwt.debug.render.monitor=ej.widget.debug.RenderMonitor

Fig. 135: Screenshot before click

Listing 22: Application logs after click

rendermonitor@ INFO: Render requested␣
→˓on com.microej.demo.widget.common.PageHelper$2 > SimpleDock > OverlapContainer␣
→˓> SimpleDock > List > RadioButton at {0,0 87x25} of {221,116 87x25} by com.microej.
→˓demo.widget.radiobutton.widget.RadioButtonGroup.setChecked(RadioButtonGroup.java:47)
rendermonitor@ INFO: Render requested␣
→˓on com.microej.demo.widget.common.PageHelper$2 > SimpleDock > OverlapContainer␣
→˓> SimpleDock > List > RadioButton at {0,0 87x25} of {221,166 87x25} by com.microej.
→˓demo.widget.radiobutton.widget.RadioButtonGroup.setChecked(RadioButtonGroup.java:50)
rendermonitor@ INFO: Render executed␣
→˓on com.microej.demo.widget.common.PageHelper$2 > SimpleDock > OverlapContainer␣
→˓> SimpleDock > List > RadioButton at {-221,-116 87x25} of {221,116 87x25}
rendermonitor@ INFO: Render executed␣
→˓on com.microej.demo.widget.common.PageHelper$2 > SimpleDock > OverlapContainer␣
→˓> SimpleDock > List > RadioButton at {-221,-141 87x25} of {221,141 87x25}
rendermonitor@ INFO: Render executed␣
→˓on com.microej.demo.widget.common.PageHelper$2 > SimpleDock > OverlapContainer␣
→˓> SimpleDock > List > RadioButton at {-221,-166 87x25} of {221,166 87x25}
rendermonitor@ INFO: Render executed on com.microej.demo.widget.common.PageHelper

(continues on next page)

3.5. Application Developer Guide 549

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/render/RenderPolicy.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/render/RenderPolicy.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/debug/RenderMonitor.html

MicroEJ Documentation,

(continued from previous page)

→˓$2 > SimpleDock > OverlapContainer > ImageWidget at {133,116 87x25} of {44,0 20x16}
rendermonitor@ INFO: Render executed on com.microej.demo.widget.common.PageHelper$2␣
→˓> SimpleDock > OverlapContainer > ImageWidget at {133,-140 87x25} of {44,256 20x16}
rendermonitor@ INFO: Render executed␣
→˓on com.microej.demo.widget.common.PageHelper$2 > SimpleDock > OverlapContainer␣
→˓> SimpleDock > List > RadioButton at {-221,-116 87x25} of {221,166 87x25}
rendermonitor@ INFO: Render executed on com.microej.demo.widget.common.PageHelper
→˓$2 > SimpleDock > OverlapContainer > ImageWidget at {133,166 87x25} of {44,0 20x16}
rendermonitor@ INFO: Render executed on com.microej.demo.widget.common.PageHelper
→˓$2 > SimpleDock > OverlapContainer > ImageWidget at {133,-90 87x25} of {44,256 20x16}

Fig. 136: Screenshot after click

Note: Available since MWT 3.5.0 & Widget 5.0.0.

Monitoring the Animators

Since an animator ticks its animations as often as possible, the animator may take 100% CPU
usage if none of its animations requests a render.

MWT provides a way to inject a monitor to be notified when none of the animations has re-
quested a render during an animator tick.

Setting the ej.mwt.debug.animator.enabled constant to true will enable animator monitor-
ing. For more information about constants, see the Constants section.

The Widget library provides a default monitor implementation which logs warning messages.
The logs produced also contain information about the animations running on the animator.
The Animation instances are logged using their toString() method, so it can be a good idea to
override this method in the Animation subclasses to be able to identify them.

To use a different implementation (and if Widget is not in the classpath), set the ej.mwt.debug.
animator.monitor constant to the FQN of the monitor implementation class.

Here is an example of a xxx.constants.list file with the result in an application:

ej.mwt.debug.animator.enabled=true

3.5. Application Developer Guide 550

MicroEJ Documentation,

Listing 23: Application logs when the watchface update animation is
started but it doesn’t request a render

animatormonitor WARNING:␣
→˓No render requested during animator tick. Animations list: [Watchface update animation]

Note: Available since MWT 3.5.0 & Widget 5.0.0.

Finding which Rule Originates the Attributes of a Widget’s Style

ThemethodCascadingStylesheet.getStyleSources() is able to retrieve the selectors used to cre-
ate aStyle (that hasbeenoriginated fromaCascadingStylesheet). It requires to set the constant
ej.mwt.debug.cascadingstyle.enabled to true .

The result of thismethod is anarray containing 16 selectors: one for eachparameter of the style.
The indices for each style entry are available as constants in the CascadingStylesheet class.
For each entry, the selector belongs to the rule selected to fill thematching parameter (thus set
by getSelectorStyle()). A null entrymeans that the parameter is from the default style (thus set
by getDefaultStyle()).

This feature is used in the HierarchyInspector of the Widget library.

Warning: Beware that enabling that feature may downgrade the performances (more time to
compute a style andmore Managed heap used).

Note: Available since MWT 3.6.0.

Detecting Text Overflow

Widgets that display a text may experience text overflow when the strings are too long to fit
into the available area. It can be the case, for example, in applications that support multiple
languages because widgets have to deal with texts of different lengths.

This document presents a solution to detect such text overflows.

Instrumenting the Widget

The goal is to checkwhether the text to bedisplayed iswithin the content bounds of thewidget.
A way to test this is to extend or modify the widget. In this article, the widget MyLabel will
extend the type Label from the Widget library, which displays a text:

import ej.widget.basic.Label;

public class MyLabel extends Label {

public MyLabel(String text) {
(continues on next page)

3.5. Application Developer Guide 551

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/stylesheet/cascading/CascadingStylesheet.html#getStyleSources-ej.mwt.style.Style-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/stylesheet/cascading/CascadingStylesheet.html#getSelectorStyle-ej.mwt.stylesheet.selector.Selector-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/stylesheet/cascading/CascadingStylesheet.html#getDefaultStyle--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/basic/Label.html

MicroEJ Documentation,

(continued from previous page)

super(text);
}

}

Overriding the onLaidOut() Method

Once the position and size of a wigdet are set during the lay out process, the onLaidOut()
method is called to notify thewidget. Overriding onLaidOut() of class MyLabel is a good place
to check whether the text overflows or not.

For example, the following snippet compares the text width with the available width: it will
print a message if an overflow is detected.

@Override
protected void onLaidOut() {

super.onLaidOut();

// compute the width of the text with the specified font
final Font font = getStyle().getFont();
final String text = getText();
final int textWidth = font.stringWidth(text);

// compare to the width available for the content of the widget
final int contentWidth = getContentBounds().getWidth();
if (textWidth > contentWidth) {

System.out.println(”Overflow detected:\n > Text: \”
→˓” + text + ”\”\n > Width = ” + textWidth + ” px (available: ” + contentWidth + ” px)”);

}
}

Testing

Here is a case where the widget size is set manually to be a little shorter than the text width:

public static void main(String[] args) {
MicroUI.start();
Desktop desktop = new Desktop();
Canvas canvas = new Canvas();
// add a label with an arbitrary fixed width of 25 pixels (which is too short)
canvas.addChild(new MyLabel(”Some text”), 20, 20, 25, 10);
desktop.setWidget(canvas);
desktop.requestShow();

}

3.5. Application Developer Guide 552

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#onLaidOut--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#onLaidOut--

MicroEJ Documentation,

The text is cropped and the console logs that a text overflow has been detected:

=============== [Initialization Stage] ===============
=============== [Converting fonts] ===============
=============== [Converting images] ===============
=============== [Launching on Simulator] ===============
Overflow detected:
> Text: ”Some text”
> Width = 47 px (available: 25 px)

Improving the Detection

To ease the correction process, it is best to add some additional debug information to locate
the issue. Let’s extract the text overflow detection into a helper class, so that it is available for
all classes across the application.

The following snippet:

• extracts the text overflow detection into the class MyTextHelper .

• prints the part of the text that is displayed.

• prints the path to the widget in the widget tree to help the tester locate the affected widget in
the GUI.

public class MyLabel extends Label {

public MyLabel(String text) {
super(text);

}

@Override
protected void onLaidOut() {

super.onLaidOut();

final Font font = getStyle().getFont();
final String text = getText();
MyTextHelper.checkTextOverflow(this, text, font);

}
}

public class MyTextHelper {

/**
* Checks whether␣

→˓the given text overflows for the specified widget and font. In the case where an overflow is
* detected, the method prints a message that details the error.
*
* @param widget
* the widget that displays the text.
* @param text
* the text to display.
* @param font
* the font used for drawing the text.
*/
␣

→˓public static void checkTextOverflow(final Widget widget, final String text, final Font font) {
(continues on next page)

3.5. Application Developer Guide 553

MicroEJ Documentation,

(continued from previous page)

final int textWidth = font.stringWidth(text);
final int contentWidth = widget.getContentBounds().getWidth();

if (textWidth > contentWidth) {
String displayedText = buildDisplayedText(text, font, contentWidth);
String widgetPath = buildWidgetPath(widget);
System.out.println(

”Overflow␣
→˓detected:\n > Text: \”” + text + ”\”\n > Width = ” + textWidth + ” px (available: ”

+ contentWidth␣
→˓+ ” px) \n > Displayed: \”” + displayedText + ”\”\n > Path : ” + widgetPath);

}
}

private static String buildDisplayedText(String text, Font font, int width) {
for (int i = text.length() - 1; i > 0; i--) {

if (font.substringWidth(text, 0, i) <= width) {
return text.substring(0, i);

}
}

return ””;
}

private static String buildWidgetPath(Widget widget) {
StringBuilder builder = new StringBuilder();

Widget ancestor = widget;
do {

builder.insert(0, ” > ” + ancestor.getClass().getSimpleName());
ancestor = ancestor.getParent();

} while (ancestor != null);
builder.insert(0, widget.getDesktop().getClass().getSimpleName());

return builder.toString();
}

}

When the application is launched again, the console shows more information about the text
overflow:

=============== [Initialization Stage] ===============
=============== [Converting fonts] ===============
=============== [Converting images] ===============
=============== [Launching on Simulator] ===============
Overflow detected:
> Text: ”Some text”
> Width = 47 px (available: 25 px)
> Displayed: ”Some”
> Path : Desktop > Canvas > MyLabel

To keep control over the extra verbosity and code size, one option is to use BON constants
to enable/disable this debug code at will. In the following snippet, when the constant com.
mycompany.check.text.overflow is set to false , the debug code will not be embedded in the
application.

3.5. Application Developer Guide 554

MicroEJ Documentation,

public static void checkTextOverflow(final Widget widget, final String text, final Font font) {
if (Constants.getBoolean(”com.mycompany.check.text.overflow”)) {

final int textWidth = font.stringWidth(text);
final int contentWidth = widget.getContentBounds().getWidth();

if (textWidth > contentWidth) {
String displayedText = buildDisplayedText(text, font, contentWidth);
String widgetPath = buildWidgetPath(widget);
System.out.println(

”Overflow␣
→˓detected:\n > Text: \”” + text + ”\”\n > Width = ” + textWidth + ” px (available: ”

+ contentWidth␣
→˓+ ” px) \n > Displayed: \”” + displayedText + ”\”\n > Path : ” + widgetPath);

}
}

}

MWT Examples

TheMWTExamples are code samples that showhow to implement various use caseswithMWT.

Because theMWT toolkit is designed to be compact and customizable, it allows formany possi-
bilities when developing a GUI. Thus, the examples can be used, with or withoutmodifications,
to extend and customize the MWT framework for your specific needs. They also help to learn
the best practices for the development of graphic interfaces with MWT.

Source

Toget the sourcecodeof theseexamples, clone the followingGitHub repository: https://github.
com/MicroEJ/ExampleJava-MWT.

The repository contains several Gradle projects (one project for each example) that can be im-
ported in your favorite IDE.

For each project, please refer to its README.md file for more details about the example and
its usage.

Provided Examples

Attribute Selectors

This example shows how to customize the style of widgets using attribute selectors, similar to
CSS Attribute Selectors.

It provides several types of attribute selectors, any of which can be used in a stylesheet to se-
lect widgets based on custom attributes. In this case, the background color of a label switches
depending on the value of an attribute of the label.

3.5. Application Developer Guide 555

https://github.com/MicroEJ/ExampleJava-MWT
https://github.com/MicroEJ/ExampleJava-MWT
https://github.com/MicroEJ/ExampleJava-MWT

MicroEJ Documentation,

Buffered Image Pool

This example shows how to use a pool of BufferedImages to share them across an application.

In this example, there is one image in the pool, which is shared between the histogram widget
and the transition container.

Context-Sensitive Container

This example shows a smartwatch application that looks different depending on whether the
user is wearing the device on the left arm or on the right arm.

It demonstrates how a container can adapt to the context by changing how its children are laid
out: in this case, depending on the wrist mode, the widgets are displayed on either the left or
right side. For demonstration purposes, the example displays a virtual watch to simulate the
device flip.

Drag’n’Drop

This example shows how to implement drag’n’drop support in a grid.

Focus

This example shows how to introduce focus management in a project when using peripherals
like buttons or a joystick.

The virtual joystick (on the right) is used to simulate a hardware joystick. When the joystick
directions (up, down, left, right) are pressed, the focus changes on the items in the same way
as when using the touch pointer.

Immutable Stylesheet

This example shows how to create and use an immutable stylesheet.

The immutable stylesheet resolves the style for awidgetwith the samealgorithmas the cascad-
ing stylesheet. The difference is that the immutable stylesheet is described in an immutable file
instead of Java code. Therefore, the style objects are allocated in flash instead of the Managed
heap.

3.5. Application Developer Guide 556

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/BufferedImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/stylesheet/cascading/CascadingStylesheet.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/stylesheet/cascading/CascadingStylesheet.html

MicroEJ Documentation,

Lazy Stylesheet

This example shows how to create and use a “lazy” stylesheet.

The lazy stylesheet resolves the style for a widget with the same algorithm as the cascading
stylesheet. The difference is that the lazy stylesheet associates style factories with selectors
(rather than style instances). As a result, the style elements are allocated “on demand” when a
rule’s selector applies to a widget.

Masking Grid

This example shows how tomask a widget temporarily.

The grid is a custom container (MaskingGrid) that exposes an API to change the visibility of
its children (visible or invisible). When requested to render, the grid only renders the children
marked as visible.

MVC

This example shows how to create and use an MVC design pattern (Model, View, Controller).

The value of the model can be changed by clicking on the physical button.

It is also possible to resize all the widgets at once.

Popup

This example shows how to show a popup in an application.

Two types of popups are illustrated. The information popup can be dismissed by clicking out-
side of its bounds. The action popup needs the user to click on a button to close it.

RemoveWidget

This example shows how to add and remove widgets in a widget hierarchy.

The layout adapts automatically to the number of items because requestLayout() is called for
each addition/deletion on the container.

3.5. Application Developer Guide 557

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/stylesheet/cascading/CascadingStylesheet.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/stylesheet/cascading/CascadingStylesheet.html

MicroEJ Documentation,

Slide Container

This example shows a slide container. This is a container that shows only its last child.

An animation is done when adding/removing a child by translating the widgets from/to the
right.

Stack Container

This example shows a stack container. This is a container that stacks its children on top of each
other.

Ananimation is donewhenadding/removinga childby translating thewidget from/to the right.

Stashing Grid

This example shows how to stash a widget temporarily.

The grid is a custom container (StashingGrid) that exposes an API to change the visibility of
its children (visible or invisible). When requested to lay out, the grid only lays out the children
marked as visible. When requested to render, the grid only renders the children marked as
visible.

Theming and Branding

This example shows how to create theming and branding for your project.

The application contains only one page.

There are two different types of theming shown:

1. Changing from normal to condensed by passing a Themewhen building the stylesheet.

2. Changing the styling (including padding, margin, background, etc.) itself with a StyleTheme.

Transition

This example shows a container that triggers effects during page transitions.

The effect applied to the transition container can be changed dynamically. New effects can be
developed easily.

3.5. Application Developer Guide 558

MicroEJ Documentation,

Virtual Watch

This example showshow to simulate the skin and inputs of a devicewith a different device (e.g.,
an evaluation board).

This can be a convenient option when the target hardware is not yet available.

Here, it simulates a watch with a round screen and 3 buttons. The actual application is shown
in a round area of the screen and receives events from the virtual buttons. The virtual buttons
send commands when clicked, the same way a target device would have sent events from the
native world. The goal is to be able to migrate the application on the target device without
modifying the application code.

Widgets

The Widget library provides very common widgets with basic implementations. These simple
widgets may not provide every desired feature, but they can easily be forked since their imple-
mentation is very simple.

Usage

To use the widgets provided by the widget library, add Widget library module to the project
build file:

Gradle (build.gradle.kts)

MMM (module.ivy)

implementation(”ej.library.ui:widget:4.1.0”)

<dependency org=”ej.library.ui” name=”widget” rev=”4.1.0”/>

To fork one of the providedwidgets, duplicate the associated Java class from thewidget library
JAR into the source code of your application. It is recommended to move the duplicated class
to an other package and to rename the class in order to avoid confusion between your forked
class and the original class.

ProvidedWidgets

Widgets:

• Label: displays a text.

• ImageWidget: displays an image which is loaded from a resource.

• Button: displays a text and reacts to click events.

• ImageButton: displays an image which is loaded from a resource and reacts to click events.

Containers:

• List: lays out any number of children horizontally or vertically.

• Flow: lays out any number of children horizontally or vertically, using multiple rows if necessary.

3.5. Application Developer Guide 559

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Command.html
https://repository.microej.com/modules/ej/library/ui/widget/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/basic/Label.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/basic/ImageWidget.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/basic/Button.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/basic/ImageButton.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/container/List.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/container/Flow.html

MicroEJ Documentation,

• Grid: lays out any number of children in a grid.

• Dock: lays out any number of children by docking each child one by one on a side.

• SimpleDock: lays out three children horizontally or vertically.

• OverlapContainer: lays out any number of children by stacking them.

• Canvas: lays out any number of children freely.

Color Utilities

The widget library offers some color utilities.

The ColorHelper is helpful for decomposing colors into components (alpha, red, blue, green)
and building back a color from components.

The GradientHelper can blend two colors and create a gradient from two colors.

The resulting gradient is a list of distinct colors from the start color to the end color. The colors
are truncated to the display color depth. As a consequence, for the same start and end colors,
a gradient created for a 32-bit display will contain more colors than on a 16-bit display.

The LightHelper proposes several primitives concerning the luminance of the colors. The lumi-
nance of a color is computed from the luminance and the quantity of each of its components.
The green being the brighter, then the red and finally the blue.

Debug Utilities

A few utilities useful for debugging are available in the package ej.widget.util.debug of the
widget library.

Print the Hierarchy of Widgets

ThemethodHierarchyInspector.hierarchyToString(Widget) returns aString representing thehi-
erarchy of a widget. In other words, it prints the widget and its children recursively in a tree
format.

It may be used to analyse the content of a page and have a quick estimation of the number of
widgets and the depth of the hierarchy.

For example:

Scroll
+--ScrollableList
| +--Label
| +--Dock
| | +--ImageWidget
| | +--Label
| +--Label

The method HierarchyInspector.hierarchyStyleToString(Widget) returns the same information
plus the list of the attributes of the style of each widget in the hierarchy. It only adds the at-
tributes that differ from the default style.

For example:

3.5. Application Developer Guide 560

https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/container/Grid.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/container/Dock.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/container/SimpleDock.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/container/OverlapContainer.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/container/Canvas.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/color/ColorHelper.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/color/GradientHelper.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/color/LightHelper.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/debug/HierarchyInspector.html#hierarchyToString-ej.mwt.Widget-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/debug/HierarchyInspector.html#hierarchyStyleToString-ej.mwt.Widget-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/DefaultStyle.html

MicroEJ Documentation,

Scroll (background=RectangularBackground, horizontalAlignment=hcenter)
+--ScrollableList (background=RectangularBackground)
| +--Label (color=white, font=RasterFont[SourceSansPro_
→˓19px-300], horizontalAlignment=hcenter, verticalAlignment=vcenter)
| +--Dock (background=NoBackground)
| | +--ImageWidget (horizontalAlignment=hcenter, verticalAlignment=vcenter)
| | +--Label (color=0xf8a331, font=RasterFont[SourceSansPro_
→˓19px-300], horizontalAlignment=hcenter, verticalAlignment=vcenter)
| +--Label (color=white, font=RasterFont[SourceSansPro_
→˓19px-300], horizontalAlignment=hcenter, verticalAlignment=vcenter)

If the constant ej.mwt.debug.cascadingstyle.enabled is set (see this section), it will also print
the selector that originated each style’s attribute.

For example:

Scroll (background=RectangularBackground␣
→˓from default, horizontalAlignment=hcenter from .class 896560)
+--ScrollableList (background=RectangularBackground from default)
| +--Label (color=white from .class␣
→˓896572, background=NoBackground from .class 896572, font=RasterFont[SourceSansPro_
→˓19px-300] from .class 896572, horizontalAlignment=hcenter␣
→˓from .class 896572, verticalAlignment=vcenter from .class 896572)
| +--Dock (background=NoBackground from default)
| | +--ImageWidget (horizontalAlignment=hcenter␣
→˓from .class 896571, verticalAlignment=vcenter from .class 896571)
| | +--Label␣
→˓(color=0xf8a331 from .class 896572 and :nth-child(odd), font=RasterFont[SourceSansPro_
→˓19px-300] from .class 896572, horizontalAlignment=hcenter␣
→˓from .class 896572, verticalAlignment=vcenter from .class 896572)
| +--Label (color=white from .class 896572, font=RasterFont[SourceSansPro_
→˓19px-300] from .class 896572, horizontalAlignment=hcenter␣
→˓from .class 896572, verticalAlignment=vcenter from .class 896572)

Print the Path to a Widget

The method HierarchyInspector.pathToWidgetToString(Widget) returns a String representing
the list of ancestors of the widget. For example: Desktop > Scroll > ScrollableList > Label .

It may be used to identify a widget in a trace.

It is also possible to choose the separator by using HierarchyInspector.pathToWidget-
ToString(Widget, char) method. For example: Desktop ; Scroll ; ScrollableList ; Label .

Count the Number of Widgets or Containers

The methods HierarchyInspector.countNumberOfWidgets(Widget) and HierarchyInspec-
tor.countNumberOfContainers(Widget) respectively count the number of widgets and
containers in a hierarchy.

It may be used to evaluate the complexity of a hierarchy of widgets.

3.5. Application Developer Guide 561

https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/debug/HierarchyInspector.html#pathToWidgetToString-ej.mwt.Widget-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/debug/HierarchyInspector.html#pathToWidgetToString-ej.mwt.Widget-char-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/debug/HierarchyInspector.html#pathToWidgetToString-ej.mwt.Widget-char-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/debug/HierarchyInspector.html#countNumberOfWidgets-ej.mwt.Widget-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/debug/HierarchyInspector.html#countNumberOfContainers-ej.mwt.Widget-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/debug/HierarchyInspector.html#countNumberOfContainers-ej.mwt.Widget-

MicroEJ Documentation,

Count the MaximumDepth of a Hierarchy

Themethod HierarchyInspector.countMaxDepth(Widget) counts themaximumdepth of a hier-
archy. In other words, the depth of the widget with the biggest number of parents recursively.

It may be used to evaluate the complexity of a hierarchy of widgets.

Print the Bounds of a Widget

The method BoundsInspector.boundsToString(Widget) returns a String with the widget type
and its bounds. The returned String contains:

• the simple name of the class of the widget,

• its position relative to its parent,

• its size,

• its absolute position.

For example: Label: 0,0 7x25 (absolute: 75,75)

Print the bounds of all the widgets in a hierarchy

The method BoundsInspector.boundsRecursiveToString(Widget) returns a String representing
the type and bounds of each widget in the hierarchy of a widget.

For example:

Scroll: 0,0 480x272 (absolute: 0,0)
+--ScrollableList: 0,0 480x272 (absolute: 0,0)
| +--Label: 0,0 480x50 (absolute: 0,0)
| +--Dock: 0,50 480x50 (absolute: 0,50)
| | +--ImageWidget: 0,0 70x50 (absolute: 0,50)
| | +--Label: 70,0 202x50 (absolute: 70,50)
| +--Label: 0,100 480x50 (absolute: 0,100)

Widget Examples

The Widget Examples provides some widget implementations as well as usage examples for
these widgets and for the widgets of the Widget library. The widgets and usage examples are
intended to be duplicated by the developers in order to be adapted to their use-case.

Source

To use the widgets provided by the widget examples, clone the following GitHub repository:
https://github.com/MicroEJ/Example-Java-Widget.

The repository contains only one Gradle project that can be imported in your favorite IDE.

Each subpackage contains the source code for a specific widget and for a page which show-
cases thewidget. For example, the com.microej.demo.widget.checkbox package contains the
Checkbox widget and the CheckboxPage .

3.5. Application Developer Guide 562

https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/debug/HierarchyInspector.html#countMaxDepth-ej.mwt.Widget-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/debug/BoundsInspector.html#boundsToString-ej.mwt.Widget-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/debug/BoundsInspector.html#boundsRecursiveToString-ej.mwt.Widget-
https://github.com/MicroEJ/Example-Java-Widget
https://github.com/MicroEJ/Example-Java-Widget

MicroEJ Documentation,

ProvidedWidgets

The showcased widgets are listed in the README of the project.

Simulation

The following sections present the options of the Front Panel and some tooling and tips to help
debugging and optimizing an application.

Front Panel Overview

The Front Panel Mock is provided by the VEE Ports.

It is especially useful for those exposing a MicroUI display, LEDs and input devices. It then pro-
vides an interactive window for the Application simulation.

The window contains a toolbar, the device image and a status bar. It is extensible, so VEE ports
can add custom controls and informations.

Following is the list of features available as standard in the UI Pack.

Zoom

The Front Panel is able to zoom in or out the represented device.

The current value of the zoom is printed in the status bar.

There are three buttons in the toolbar to change the zoom:

• Zoom out by increment of 10%.

• Reset the zoom to 100%.

3.5. Application Developer Guide 563

https://github.com/MicroEJ/Example-Java-Widget/blob/master/README.md

MicroEJ Documentation,

• Zoom in by increment of 10%.

The zoom can also be updated when the window size is changed when the Fit option is set.

Interpolation

By default, the zoom is done without interpolation to ease the reading of the pixels drawn

on the screen. But it could be convenient to enable the interpolation when a great or small
zoom is applied, to better read the strings for instance.

Here is an example of the same content zoomed out with and without interpolation:

Fit

By default, the zoom and thewindow size are not related . Thatmeans that when the zoom
is changed the window size does not change and scrollbars may appear to navigate in the de-
vice.

3.5. Application Developer Guide 564

MicroEJ Documentation,

And the other way around, when the window size is changed, the zoom does not change.

In contrast, the zoom and the window can be linked together . In this case, a modification
of the zoom or the window size have an impact on the other. It is important to note that in this
case, some zoomsmay not be possible since the window is bound to the display size.

3.5. Application Developer Guide 565

MicroEJ Documentation,

Device Coordinates

It is possible to print the coordinates of the device under the cursor in the status bar. It may
be convenient for the development of the Front Panel project of a VEE Port. It is not activated
by default .

3.5. Application Developer Guide 566

MicroEJ Documentation,

Display Coordinates

When the device contains a display, the display coordinates under the cursor are printed in the
status bar.

Display Screenshot

When the device contains a display, a newbutton is available in the toolbar that allows tomake
ascreenshot of thecurrent contentof thedisplay. Thescreenshotsare saved in thesubfolder
screenshots of the application output folder. Their name contains the date and time they are
shot at.

When a screenshot ismade, a notification appears in the status bar. Clicking on the notification
opens the folder containing the screenshots.

3.5. Application Developer Guide 567

MicroEJ Documentation,

Refresh Strategy

Some buttons enable (or disable) some debug information in relation with the Buffer Refresh
Strategy; see Refresh Strategy Highlighting.

Flush Visualizer

Some buttons allow to record and visualize the drawingsmade between two flushes; see Flush
Visualizer.

Front Panel Options

Cache

The configuration of the Front Panel is saved and restored for the next launch. This configura-
tion could be reset by deleting the .cache/frontpanelstate.properties in the application output
folder.

The saved properties are: the zoom, the fit, the interpolation, and the device coordinates.

3.5. Application Developer Guide 568

MicroEJ Documentation,

Properties

The configuration of the Front Panel can be configured through properties.

Someof theproperties are usedby the cache. Defining thesepropertieswill overrule the cache.
In other words, the cache will not be used for these properties.

However, it is possible to define a default value for the very first launch of the Front Panel (or
when the cache has been deleted). It can be done by defining a property with the same name
but with the .default suffix.

Please refer to the dedicated sections (SDK 6 or SDK 5) to know how to define options.

Table 30: Front Panel Options
Option Chapter Aim Cached

ej.fp.project
Installation Specify a local Front Panel project to avoid re-

building VEE Port. Only available before Archi-
tecture 8 and before UI Pack 14.3.0.

false

ej.fp.hil
Classpath Run the Front Panel in the same Java SE VM as

the standard mocks.
false

ej.fp.brs.
drawnColor

Drawn Re-
gion(s)

Identify the drawn regions for each frame. false

ej.fp.brs.
restoredColor

Restored
Region(s)

Identify the restored regions for each frame. false

ej.fp.brs.
dirtyColor

Dirty Re-
gion(s)

Identify the regions not fully filled by the draw-
ings.

false

ej.fp.zoom
Zoom Set the zoom of the device at startup. true (ej.fp.zoom.

default)

ej.fp.zoom.fit
Fit Setwhether thedevice is fitted to theFrontPanel

bounds at startup. In other words if the zoom
changes when the user resizes the frame or the
other way around.

true (ej.fp.zoom.
fit.default)

ej.fp.zoom.
interpolate

Interpolation Set whether the device is drawn with interpola-
tion when zoomed in or out at startup.

true (ej.fp.zoom.
interpolate.default
)

ej.fp.frame.
coordinates

Device Coordi-
nates

Set the location of the Front Panel frame at
startup.

true (ej.fp.frame.
coordinates.
default)

Flush Visualizer

Presentation

Building smooth and visually appealing UI applications requires a keen focus on performance.
To achieve efficient UI rendering, minimizing unnecessary work that consumes valuable CPU
time is essential.

For example, assuming the application targets 60 FPS to perform a transition between two
screens, that means the application has 1/60s ~= 16ms in total to execute the rendering and
the flush (see Rendering Pipeline).

3.5. Application Developer Guide 569

MicroEJ Documentation,

The Flush Visualizer is a tool designed to investigate potential performance bottlenecks in UI
applications running on the Simulator. It uses the Debug Traces to record the drawings whose
target is the display (since UI Pack 14.4.1, see Installation). All other traces (drawings in buffered
images and third-party traces of the other libraries) are dropped.

The Flush Visualizer provides the following information:

• A timeline with a step for each flush.

• A screenshot of what is shown on the display at flush time.

• The list of what is done before this flush (and after the previous one) organized as a tree.

• A node of the tree can be either a region (the display or a clip) or a drawing operation.

• Each region defines its bounds and can contain one or several other nodes.

• Each region also displays the percentage of their parent region they cover.

• Some of the drawings can compute the percentage of their parent region they cover.

• The others are either negligeable or unknown.

• At the end of each region, there is a summary of the percentage covered by the drawings in this
region (recursively).

Consider this part of the tree:

|_ UI_SetClip #10 dest=0x0 region=(0,0)(44x46) [16.91% of UI_SetClip #9]
| |
| |_ MWT_Render #11 (MWT) [dest=0x0]␣
→˓Render a widget (ID = 61) region=(0,0)(44x46) [100.00% of UI_SetClip #10]
| | |_ UI_SetForegroundColor dest=0x0 color=0xffee502e
| | |
| | |_ UI_FillRectangle dest=0x0 anchor=0,0 size=44x46
| | | |_ UI_DrawnRegion␣
→˓dest=0x0 clipDisabled=true region=(0,0)(44x46) [100.00% of MWT_Render #11]
| | |_ UI_FillRectangle Drawing operation done
| | |_ UI_SetForegroundColor dest=0x0 color=0xffcf4520
| | |
| | |_ UI_FillRectangle dest=0x0 anchor=0,44 size=44x2
| | | |_ UI_DrawnRegion␣
→˓dest=0x0 clipDisabled=true region=(0,44)(44x2) [4.35% of MWT_Render #11]
| | |_ UI_FillRectangle Drawing operation done
| | |

(continues on next page)

3.5. Application Developer Guide 570

MicroEJ Documentation,

(continued from previous page)

| | |_ UI_SetClip #12 dest=0x0 region=(0,0)(44x44) [95.65% of MWT_Render #11]
| | | |
| | | |_ UI_SetClip #13 dest=0x0 region=(10,10)(24x24) [29.75% of UI_SetClip #12]
| | | | |_ UI_SetForegroundColor dest=0x0 color=0xffffffff
| | | | |
| |␣
→˓ | | |_ UI_DrawImage dest=0x0 image=0x3 from 0,0 size=24x24 anchor=10,10 alpha=255
| | | | | |_ UI_DrawnRegion␣
→˓dest=0x0 clipDisabled=true region=(10,10)(24x24) [100.00% of UI_SetClip #13]
| | | | |_ UI_DrawImage Drawing operation done
| | | | [100.00% drawn of UI_SetClip #13]
| | | [29.75% drawn of UI_SetClip #12]
| | [132.81% drawn of MWT_Render #11]
| |_ MWT_Render (MWT) Widget render done (ID = 61)
| [132.81% drawn of UI_SetClip #10]

We can see that:

• The MWT_Render #11 is 100% of the clip #10, which is 16.91% of the clip #9.

• It draws 2 rectangles and an image that take respectively 100%, 4.35%and 100%of their parent
region.

• The clip #13 is fully covered by the image (100%).

• The clip #10 is covered at 132.81%: 100% for the 1st rectangle, 4.35% for the 2nd, 28.46% for the
clip #12 and its inner image (29.75 x 95.65%)

A value of 100% indicates that the area drawn is equivalent to the surface of the region. A value
of 200% indicates that the area drawn is equivalent to twice the surface of the region. A perfect
application has 100% of its root region drawn but its very unlikely for an application that draws
anything else than a rectangle or an image. A total area drawn between 100% to 200% is the
norm in practice because widgets often overlap. However, if the total area drawn is bigger than
200%, that means that the total surface of the region was drawn more than twice. Probably
meaning that a lot of drawings are done above others. Identifying this drawing (and the ones
below) can help reducing the number of drawings done (or their surface).

As always, when conducting a performance study, measure. Use SystemView to identify the
bottlenecks in your application on the embedded target. A total area drawn over 200% is in-
efficient, but your application may have bigger bottlenecks. Confirm it by measuring the time
spent drawing vs. the time spent elsewhere between flushes.

Installation

The Flush Visualizer option is available for the Display widget in frontpanel widget module
version 4.+ for UI Pack 14.0.0 or later.

Since UI Pack 14.4.1

Before UI Pack 14.4.1

• Set the property core.trace.enabled to true to enable the Flush Visualizer.

• Set the property core.trace.autostart to true to start the recording on startup.

• Start and pause the recording by clicking on the button .

• Set the property ej.fp.display.flushVisualizer to true to enable the Flush Visualizer.

3.5. Application Developer Guide 571

https://forge.microej.com/artifactory/microej-developer-repository-release/ej/tool/frontpanel/widget/

MicroEJ Documentation,

Refer to the Standalone Application Options documentation to set the option.

Usage

1. Run the application in the Simulator.

2. Since UI Pack 14.3.0, the button in the toolbar of the Front Panel opens the Flush Visualizer.

3. The file MicroUIFlushVisualizer/MicroUIFlushVisualizer.html is generated in the applica-
tion output folder and can be opened during or after the execution.

Note: Since MICROEJ SDK 6, the application output folder is located under the build/output/ folder.

Examples

Here are examples of the Flush Visualizer in action:

3.5. Application Developer Guide 572

MicroEJ Documentation,

MVC Demo Widget Example

Refresh Strategy Highlighting

Presentation

A buffer refresh strategy is responsible of making sure that what is shown on the display con-
tains all the drawings. The ones done since last flush and the past. To achieve that it detects
the drawn regions and refresh the necessary data in the back buffer.

These information can also be used to understand what happens for each frame in terms of
drawings and refreshes. It may be very useful to identify performance issues.

The drawn and restored regions can be very different depending on the selected strategy and
the associated options. See Buffer Refresh Strategy for more information about the different
strategies and their behavior.

Drawn Region(s)

The buffer refresh strategies registers the list of drawn regions between two flushes. These re-
gions can be highlighted during the execution of an application. It can be activated or deacti-
vated with the button in the toolbar.

The color of the rectangles can be configured by setting the ej.fp.brs.drawnColor option to
any 24-bit RGB color (when set, the feature is activated at startup).

For example with ej.fp.brs.drawnColor=0x00ff00 :

3.5. Application Developer Guide 573

MicroEJ Documentation,

Fig. 137: Drawn region when scrolling.

Fig. 138: Drawn region when selecting a radio button.

Restored Region(s)

It is alsopossible to track the regions restoredby thebuffer refresh strategies. It canbeactivated
or deactivated with the button in the toolbar.

The color of the rectangles can be configured by setting the ej.fp.brs.restoredColor option can
be set to any 24-bit RGB color to highlight these regions (when set, the feature is activated at
startup).

For example with ej.fp.brs.restoredColor=0xff00ff :

3.5. Application Developer Guide 574

MicroEJ Documentation,

Fig. 139: Restored region when selecting a radio button when entering page.

Fig. 140: Restored region when selecting another radio button.

Dirty Region(s)

The buffer refresh strategies use the clip to determine the regions changed between each flush.
If a clip has been set but not fully filled by the drawings, the pixels “not drawn”may be flushed
to thedisplay as is (without restoration). But the content of thesepixels is undefineddepending
on what this buffer was used for before. It can be a previous frame, one or several flush before
depending on the number of buffers. It can also be randompixels if nothing has been drawn on
the buffer yet.

These regions are considered as “dirty” since they do not contain the current drawings nor the
state of the previous display panel. In other words, it can cause glitches .

3.5. Application Developer Guide 575

MicroEJ Documentation,

To detect easily these regions, a rectangle can be filled with a color for each clip handled by the
buffer refresh strategy. It can be activated or deactivated with the button in the toolbar.

The color of the rectangles can be configured by setting the ej.fp.brs.dirtyColor option to any
32-bit ARGB color, opaque or semi-transparent (when set, the feature is activated at startup).

For example: ej.fp.brs.dirtyColor=0x200000ff :

Fig. 141: Dirty regions when animating with the clip not correctly set.

Combining Highlightings

It is possible to use all the highlightings in the same execution. It is particularly convenient to
see at the same time the drawn regions and the restored regions.

For example:

ej.fp.brs.drawnColor=0x00ff00
ej.fp.brs.restoredColor=0xff00ff
ej.fp.brs.dirtyColor=0x200000ff

Fig. 142: Drawn and restored regions when the scrollbar is hidden at the end of a scroll.

3.5. Application Developer Guide 576

MicroEJ Documentation,

Fig. 143: Drawn and restored regions when selecting another radio button.

Fig. 144: Drawn and dirty regions when animating with the clip not correctly set.

3.5. Application Developer Guide 577

MicroEJ Documentation,

Front Panel Tips

The following sections provides a non-exhaustive list of tips to make the best use of the Front
Panel for Application developers.

Pixel Accurate Display: Window scaling

The Front Panel Display is designed for a pixel-accurate simulation of the GUI application. It
uses MicroUI’s Graphics Engine, not the system native engine. Therefore, the Front Panel does
not support scaling of the window. For accurate graphics, the window must not be resized by
the system or the application that launched the simulation (typically the IDE). Here are several
distinct solutions:

Scaling of the Front Panel

Disable auto-scaling

Reset display scaling

InWindows settings, if the Display is scaled, the application can be launchedwith the property
sun.java2d.uiScale set to 1 . It will force the Front Panel to be displayed at 100% instead of the
selected value in the Windows Display settings.

Fig. 145: Windows Display Scale & Layout settings

Override the application auto scaling with the system’s in Windows Explorer:

3.5. Application Developer Guide 578

MicroEJ Documentation,

Fig. 146: Windows Application High DPI scaling override setting

OnWindows, set your Display settings to 100%:

3.5. Application Developer Guide 579

MicroEJ Documentation,

Fig. 147: Windows Display Scale & Layout settings

Zoom on pixelated view for checking custom drawings

Assuming a pixel accurate simulated display (seeWindow scaling), use a screen magnifier tool
to zoomon portions of the GUI. It is especially useful to check customdrawings aswell as Fonts
& Images. Also, make sure the tool does not apply a filter to smooth when scaling.

Windows Magnifier

Windows Magnifier Settings

3.5. Application Developer Guide 580

MicroEJ Documentation,

Fig. 148: Windows Magnifier Example

Fig. 149: Windows Magnifier Smooth edges of images and text setting

3.5. Application Developer Guide 581

MicroEJ Documentation,

Take screenshots of the simulated display

An alternative is to make a screenshot and zooming with an image viewer/editor. For that:

• Use Display Screenshot button (available since UI Pack 14.3.0).

• Use a screenshot tool.

• Programmatically extend the Front Panel with:

// Use ej.fp.widget package to access ej.fp.widget.Display.visibleBuffer
package ej.fp.widget;

import java.awt.Graphics;
import java.awt.Image;
import java.awt.Toolkit;
import java.awt.datatransfer.DataFlavor;
import java.awt.datatransfer.Transferable;
import java.awt.datatransfer.UnsupportedFlavorException;
import java.awt.image.BufferedImage;
import java.io.IOException;

import ej.fp.Device;
import ej.fp.widget.Button.ButtonListener;

public class SceenshotOnClick implements ButtonListener {

@Override
public void press(Button widget) {
␣

→˓ copyImageToClipboard(copyToType(takeScreenshot(), BufferedImage.TYPE_INT_RGB));
System.out.println(”Screenshot copied to clipboard”);

}

@Override
public void release(Button widget) {

// do nothing
}

private static BufferedImage takeScreenshot() {
Display display = Device.getDevice().getWidget(Display.class, null);
return (BufferedImage) display.visibleBuffer.getRAWImage();

}

private static Image copyToType(BufferedImage src, int imageType) {
BufferedImage dst = new BufferedImage(src.getWidth(), src.getHeight(), imageType);
Graphics g = dst.createGraphics();
g.drawImage(src, 0, 0, null);
g.dispose();
return dst;

}

private static void copyImageToClipboard(Image image) {
Toolkit.getDefaultToolkit().getSystemClipboard().setContents(new Transferable() {

@Override
public boolean isDataFlavorSupported(DataFlavor flavor) {

return DataFlavor.imageFlavor.equals(flavor);
}

(continues on next page)

3.5. Application Developer Guide 582

MicroEJ Documentation,

(continued from previous page)

@Override
public DataFlavor[] getTransferDataFlavors() {

return new DataFlavor[] { DataFlavor.imageFlavor };
}

@Override
public Object␣

→˓getTransferData(DataFlavor flavor) throws UnsupportedFlavorException, IOException {
if (!DataFlavor.imageFlavor.equals(flavor)) {

throw new UnsupportedFlavorException(flavor);
}
return image;

}

}, null);
}

}

Visual Testing

Such screenshots simplifies visual testing. The screenshot can be compared against amade-up
image from design specification (typically exported from design tools), or against another
screenshot taken from a different version of the application. To go further (and possibly au-
tomate such tests), use tools like ImageMagick:

Before

After

Compare

3.5. Application Developer Guide 583

https://imagemagick.org/

MicroEJ Documentation,

$ compare before.png after.png compare.png

3.5. Application Developer Guide 584

MicroEJ Documentation,

Compare screenshots with Figma frames

In Figma, frames can be easily exported to PNG images. But it may need more processing be-
fore the comparison with the screenshot. First (optional), within Figma, enable Pixel Preview (
View > Pixel Preview (Ctrl+Shift+P)):

Then, if the exported frame does not contain only the display, the image can be cropped with:

$ convert figma.png -crop 480x480+45+45 figma-cropped.png

Then, if the MicroUI bpp setting is not RGB888 , the image can be filtered to match the sup-
ported colors. For example, for bpp=RGB565 , apply the following filter:

$ convert figma.png -channel␣
→˓red,blue -evaluate AND 63743 -channel green -evaluate AND 64767 figma-rgb565.png

3.5. Application Developer Guide 585

MicroEJ Documentation,

Keep the Front Panel always on top

To keep the Front Panel visible while developing the application, use multiple displays and/or
use tools like Microsoft PowerToys’ Always on Top utility.

Native Language Support (NLS)

Introduction

Native Language Support (NLS) allows the application to facilitate internationalization. It pro-
vides support to manipulate messages and translate them in different languages. Each mes-
sage to be internationalized is referenced by a key, which can be used in the application code
instead of using the message directly.

Principle

NLS is distributed as an add-on library containing a single Java interface: NLS.

In addition to that, the binary-nls library provides a factory for implementations of this inter-
face: it uses an add-on processor which processes, offboard, the Localization Source Files into
one BON resource buffer file for compactness.

During the clinit phase, this resource file is opened and the list of locales is parsed. After that,
the resource remains opened for the rest of the Application execution and is directly used to
retrieve messages translations for the supported locales.

Localization Source Files

Messagesmustbedefined in localization source files, located in theClasspathof theapplication
(i.e. in the src/main/resources folder).

Localization source files can be either PO files or Android String resources.

Here is an example of a PO file:

msgid ”Label1”
msgstr ”My label 1”

msgid ”Label2”
msgstr ”My label 2”

And here is an example of an Android String resource:

<resources>
<string name=”Label1”>My label 1</string>
<string name=”Label2”>My label 2</string>

</resources>

Hint: The Android String resources string arrays feature is also supported.

3.5. Application Developer Guide 586

https://learn.microsoft.com/en-us/windows/powertoys/always-on-top
https://repository.microej.com/javadoc/microej_5.x/apis/ej/nls/NLS.html
https://repository.microej.com/modules/com/microej/library/runtime/binary-nls
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/ResourceBuffer.html
https://www.gnu.org/software/gettext/manual/gettext.html#PO-Files
https://developer.android.com/guide/topics/resources/string-resource
https://developer.android.com/guide/topics/resources/string-resource#StringArray

MicroEJ Documentation,

NLS List Files

Localization source files are declared in Classpath *.nls.list files (and to *.externresources.
list for an external resource, see Application Resources and Loading Translations as an External
Resource).

NLS

internal?

*.nls.list

yes

*.nls.list +
*.externresources.list

no=external

The file format is a standard Java properties file, each line represents the Full Qualified Name
of a Java interface that will be generated and used in the application. Example:

com.mycompany.myapp.Labels
com.mycompany.myapp.Messages

Usage

The binary-nls module must be added to the Application project build file:

Gradle (build.gradle.kts)

MMM (module.ivy)

implementation(”com.microej.library.runtime:binary-nls:3.1.0”)

<dependency org=”com.microej.library.runtime” name=”binary-nls” rev=”3.1.0”/>

This module includes an Add-On Processor which parses the localization source files. For each
interface declared in the NLS list files, all the localization source files whose names start with
the interface name are used to generate:

• a Java interface with the given FQN, containing a field for each message of the localization
source files

• a NLS binary file containing the translations

3.5. Application Developer Guide 587

https://repository.microej.com/modules/com/microej/library/runtime/binary-nls

MicroEJ Documentation,

So, in the example, the generated interface com.mycompany.myapp.Labels will gather all the
translations from files named Labels* and located in anypackageof theClasspath. Thenames
of the localization source files should be suffixed by their locale (for example Labels_en_US.
po).

The generation is triggered when building the application or after a change done in any local-
ization source file or *.nls.list files. This allows to always have the Java interfaces up-to-date
with the translations and to use them immediately.

Besides themessage fields, the generated interface declares anNLS instancewhich is automat-
ically created in the clinit of the interface.

Once thegeneration is done, the application canuse the Java interfaces toget internationalized
messages, for example:

String label = Labels.NLS.getMessage(Labels.Label1);

Locale

For the application to knowwhich language to use among thosemade available andwhen, you
can set it and change it at any point using the setCurrentLocale(locale)method. If no locale has
been set yet when getting a message, the translation for the first locale available in alphabeti-
cal order will be used by default. However, you can also pick this locale to default to yourself,
by adding a com.microej.binarynls.defaultLocale property followed by a locale name in a .
properties.list file.

Plural Forms

The version 4.0.0 of the NLS module and version 3.0.0 of the binary-nls module introduce the
support of GNU gettext’s plural forms feature in PO files. The version 3.2.0 of binary-nls adds
support of plural forms for Android String resources quantity strings.

This feature allows the localizations to define plural forms and adapt the localized messages
based on a numeric value using ej.nls.NLS.getMessage(id, count):

int count;
String localizedMessagePlural = MyLabels.NLS.getMessage(MyLabels.MyMessageId, count);

The mapping of count to a quantity depends on the locale. The binary-nls plural engine is
based on GNU gettext’s plural forms. Each localization file (PO or XML) that makes use of plural
formsmust specify the plural rule for the associated locale. The rule is defined in GNU gettext’s
plural forms format. See themanual (previous link) to get the plural forms formany languages.

GNU gettext (PO)

Android String resources (XML)

First, set the plural rule using the Plural-Forms header entry. Then, for each msgid , set the
msgstr for all plural forms.

”Plural-Forms: nplurals=3; plural=n%10==1␣
→˓&& n%100!=11 ? 0 : n%10>=2 && n%10<=4 && (n%100<10 || n%100>=20) ? 1 : 2;”

msgid ”One file removed”
msgid_plural ”%d files removed”

(continues on next page)

3.5. Application Developer Guide 588

https://repository.microej.com/javadoc/microej_5.x/apis/ej/nls/NLS.html#setCurrentLocale-java.lang.String-
https://repository.microej.com/modules/ej/library/runtime/nls/
https://repository.microej.com/modules/com/microej/library/runtime/binary-nls
https://www.gnu.org/software/gettext/manual/html_node/Plural-forms.html
https://repository.microej.com/modules/com/microej/library/runtime/binary-nls
https://developer.android.com/guide/topics/resources/string-resource#Plurals
https://repository.microej.com/javadoc/microej_5.x/apis/ej/nls/NLS.html#getMessage-int-int-
https://repository.microej.com/modules/com/microej/library/runtime/binary-nls
https://www.gnu.org/software/gettext/manual/html_node/Plural-forms.html
https://www.gnu.org/software/gettext/manual/html_node/Plural-forms.html
https://www.gnu.org/software/gettext/manual/html_node/Plural-forms.html

MicroEJ Documentation,

(continued from previous page)

msgstr[0] ”%d slika je uklonjena”
msgstr[1] ”%d datoteke uklonjenih”
msgstr[2] ”%d slika uklonjenih”

binary-nls maps a quantity to a plural form index and then makes use of a plural rule similar to that found in PO
files to map the count to the localized message for the associated quantity. This rule must be added to your XML
file with a custom <ej-plural-rule> element. For example, the plural rule for French could look like this:

<resources>
<ej-plural-rule nplurals=”3”>

(n > 1) ? 0 : 1
</ej-plural-rule>

<plurals name=”Plural forms”>
<item quantity=”one”>%d fruit</item>
<item quantity=”many”>%d fruits</item>
<item quantity=”other”>%d fruits</item>

</plurals>
</resources>

The nplurals attribute must be set to the number of quantity keys supported by the locale
language, as defined in Unicode CLDR Language Plural Rules (for cardinal type). The returned
index corresponds to the index of supported quantities, in order from the list zero , one , two
, few , many , and other . For example, in French, one , many and other are supported, and
they are indexed by, respectively, 0 , 1 , and 2 (and nplurals must be set to 3).

Note: If a locale defines plural forms for a message, all other locales for the same NLS interface must provide the
plural forms for this message.

Note: The plural rule can only be set at build time. When updating NLS locale data using nls_external_resource,
only the localizedmessages can be updated. It assumes that the plural rule used is the same as when the applica-
tion was built.

Note: Please note that one significant difference with gettext’s implementation is that the expression described
in the plural field of the Plural-Forms header must be a valid Java expression returning an int , as opposed to
a C expression. A usual case in which this makes a difference is for expressions that rely on boolean values being
evaluated as zero or one in C, such as in:

”Plural-Forms: nplurals=2; plural=n != 1;\n”

This expression will not work with our implementation as Java does not interpret booleans as
integers. An easy way to convert this expression would be:

”Plural-Forms: nplurals=2; plural=n != 1 ? 1 : 0;\n”

Also note that the validity of these provided expressions is not entirely checked. Providing an
expression that is not valid Java or that would return an invalid plural form index would cause
errors at runtime or even in the Java files generated by the Add-On Processor.

3.5. Application Developer Guide 589

https://repository.microej.com/modules/com/microej/library/runtime/binary-nls
https://www.unicode.org/cldr/charts/47/supplemental/language_plural_rules.html

MicroEJ Documentation,

Missing Translations

By default, if a translation ismissing for a given msgid in a PO file in a given language, themes-
sage returned by the ej.nls.NLS.getMessage() method with the locale set to this language will
simply be the msgid itself. In the case of an XMLAndroid String resource, the name attribute of
a missing string element will be returned. However if returning this identifier is not a suitable
solution, youmightwant to set a fallback locale parameter for an interface. This parameter cor-
responds to a language to print the translation for amessage in, in case it is not available in the
current language.

Starting with version 2.5.0 of the binary-nls module, you can set this fallback locale by spec-
ifying a locale name in a .nls.list file, after the name of the interface you want this locale to
be the fallback for, separated by a colon : . For example, with the following .nls.list file, if a
translation is missing in a language for a message in the Labels and Messages PO/XML files,
the message will be translated to en_US instead of just returning its msgid / name .

Missing translations for Labels and Messages will fall back to en_US
com.mycompany.myapp.Labels:en_US
com.mycompany.myapp.Messages:en_US

As such, you can specify a different fallback locale for each interface in a .nls.list file. For exam-
ple, with the following .nls.list file, the messages in Labels will not have a fallback language
set and will only return the msgid / name if a translation is missing, while missing translations
will default to en_US for themessages in Messages , and to ja_JP for themessages in Con-
tent :

Missing translations for Labels will fall back to their msgid/name
com.mycompany.myapp.Labels

Missing translations for Messages will fall back to en_US
com.mycompany.myapp.Messages:en_US

Missing translations for Content will fall back to ja_JP
com.mycompany.myapp.Content:ja_JP

In the case of amessage with plural forms in PO files, this worksmuch the sameway, using the
messages and forms in the fallback locale if available. If no fallback locale is specified or if the
requestedmessage is not specified in it, then the msgid will be used for a count value of 1, and
the msgid_plural will be used for any other value, as gettext would function.

Converter

Problematic

Translated messages can be used directly for the following purposes:

• EDC (in the console): System.out.println().

• MicroUI: ej.microui.display.Painter.drawString().

• MicroVG: ej.microvg.VectorGraphicsPainter.drawString().

When displaying certain languages, such as Arabic, string analysis is necessary for character
substitution and right-to-left (RTL) reading direction. Console encoding is required for proper
display using EDC.

Without Console Encoding

3.5. Application Developer Guide 590

https://repository.microej.com/javadoc/microej_5.x/apis/ej/nls/NLS.html#getMessage-int-
https://repository.microej.com/modules/com/microej/library/runtime/binary-nls
https://repository.microej.com/javadoc/microej_5.x/apis/java/io/PrintStream.html#println--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Painter.html#drawString-ej.microui.display.GraphicsContext-java.lang.String-ej.microui.display.Font-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorGraphicsPainter.html#drawString-ej.microui.display.GraphicsContext-java.lang.String-ej.microvg.VectorFont-float-float-float-

MicroEJ Documentation,

With Console Encoding

System.out.print(”�������”);

'D91(J)

System.out.print(”�������”);

�������

In order to render correctly such a message with MicroVG, the complex layout must be used.
This means that the font must contain substitution tables that the rendering engine can read
and apply. If these conditions are not met, the rendering may be incorrect. It is also important
to note that using a complex font has a cost in terms of flash storage (due to the increased size
of the TTF file and the addition of complex layout algorithms) as well as in run time (due to the
time required to apply the substitution tables).

Without Complex Layout

With Complex Layout

It is not possible to render such a message with MicroUI: the Graphics Engine does not offer
substitution table reading or bidirectional stringmanagement. The rendering is systematically
wrong:

Solution

Since the version 3.1.0, the binary-nls module features an offboard translation conversion. It
means that the generated strings can be substituted and rearranged before being embedded
in the executable.

This conversion enables MicroUI’s Graphics Engine to render complex strings correctly.

Warning: This offboard conversion only concerns PO files.

Without Offboard Conversion

With Offboard Conversion

3.5. Application Developer Guide 591

https://repository.microej.com/modules/com/microej/library/runtime/binary-nls

MicroEJ Documentation,

Hint: This also avoids embedding substitution tables and the complex layout management when the message is
rendered with MicroVG.

Principle

Keep in mind that offboard conversion is only relevant to translated strings. It is important to
note that all other fields, such as message identifiers and display names, are not converted as
they are not intended to be rendered.

msgid ”Arabic” // not converted
msgstr ”�������” // converted

Offboard conversion is not a systematic process, so it is necessary tomention it explicitly in the
PO file. To do so, add Language-converter: name_of_converter\n to the PO file’s header,
where name_of_converter is the name of the converter to be applied (see below for the avail-
able list of converters).

msgid ””
msgstr ””
”Language: ar_AR\n”
”Language-Team: �������\n”
”Language-Converter: Arabic\n”
”MIME-Version: 1.0\n”
”Content-Type: text/plain; charset=UTF-8\n”

msgid ”Arabic”
msgstr ”�������”

List of Converters

Bidi

This converter features details about the bidirectional reordering of text, which is neces-
sary to correctly render Arabic or Hebrew text. These languages are unique in that they are
mixed-directional, meaning they order numbers from left to right while ordering most other
text from right to left.

• Example of PO file:

msgid ””
msgstr ””
”Language: bidi\n”
”Language-Team: Bidirectional\n”
”Language-Converter: Bidi\n”
”MIME-Version: 1.0\n”
”Content-Type: text/plain; charset=UTF-8\n”

msgid ”Hello”
msgstr ”Hello”

• Result:

– Unicodes before conversion: U+006f U+006c U+006c U+0065 U+0048

3.5. Application Developer Guide 592

MicroEJ Documentation,

– After reordering: U+0048 U+0065 U+006c U+006c U+006f

Arabic

This converter is dedicated to the Arabic language, which involves text-based shaping and bidi-
rectional reordering of text. Text-based shaping refers to the process of replacing certain char-
acter code points in the text with others depending on the context. The purpose of this process
is to transform one type of text into another.

• Example of PO file:

msgid ””
msgstr ””
”Language: ar_AR\n”
”Language-Team: �������\n”
”Language-Converter: Arabic\n”
”MIME-Version: 1.0\n”
”Content-Type: text/plain; charset=UTF-8\n”

msgid ”Arabic”
msgstr ”�������”

• Result:

– Unicodes before conversion: U+0627 U+0644 U+0639 U+0631 U+0628 U+064a
U+0629

– After text shaping: U+fe8d U+fedf U+fecc U+feae U+fe91 U+fef4 U+fe94

– After reordering: U+fe94 U+fef4 U+fe91 U+feae U+fecc U+fedf U+fe8d

Hebrew

This converter is dedicated to the Hebrew language, which involves text-based shaping and
bidirectional reordering of text. Not all point-letter combinationsmatch a substituted Unicode
character. The following table lists the supported combinations. For all others combinations
(Niqqud), the point and the letter are rendered independently.

Point Representation Unicode Letter Representation Unicode Substitution Unicode
Sheva ◌� U+05B0
Hataf Segol ◌� U+05B1
Hataf Patah ◌� U+05B2
Hataf Qamats ◌� U+05B3
Hiriq ◌� U+05B4 Yod � U+05B4 � U+FB1D
Tsere ◌� U+05B5
Segol ◌� U+05B6
Patah ◌� U+05B7 Alef � U+05D0 � U+FB2E
Qamats ◌� U+05B8 Alef � U+05D0 � U+FB2F
Holam ◌� U+05B9 Vav � U+05D5 � U+FB4B
Holam Haser (for Vav U+05D5) ◌� U+05BA
Qubuts ◌� U+05BB
Mapiq ◌� U+05BC Alef � U+05D0 � U+FB30

continues on next page

3.5. Application Developer Guide 593

MicroEJ Documentation,

Table 31 – continued from previous page
Point Representation Unicode Letter Representation Unicode Substitution Unicode
Dagesh ◌� U+05BC Bet � U+05D1 � U+FB31
Dagesh ◌� U+05BC Gimel � U+05D2 � U+FB32
Dagesh ◌� U+05BC Dalet � U+05D3 � U+FB33
Mapiq ◌� U+05BC He � U+05D4 � U+FB34
Dagesh ◌� U+05BC Vav � U+05D5 � U+FB35
Dagesh ◌� U+05BC Zayin � U+05D6 � U+FB36
Dagesh ◌� U+05BC Tet � U+05D8 � U+FB38
Dagesh ◌� U+05BC Yod � U+05D9 � U+FB39
Dagesh ◌� U+05BC Final Kaf � U+05DA � U+FB3A
Dagesh ◌� U+05BC Kaf � U+05DB � U+FB3B
Dagesh ◌� U+05BC Lamed � U+05DC � U+FB3C
Dagesh ◌� U+05BC Mem � U+05DE � U+FB3E
Dagesh ◌� U+05BC Nun � U+05E0 � U+FB40
Dagesh ◌� U+05BC Samekh � U+05E1 � U+FB41
Dagesh ◌� U+05BC Final Pe � U+05E3 � U+FB43
Dagesh ◌� U+05BC Pe � U+05E4 � U+FB44
Dagesh ◌� U+05BC Tsadi � U+05E6 � U+FB46
Dagesh ◌� U+05BC Qof � U+05E7 � U+FB47
Dagesh ◌� U+05BC Resh � U+05E8 � U+FB48
Dagesh ◌� U+05BC Shin � U+05E9 � U+FB49
Dagesh ◌� U+05BC Tav � U+05EA � U+FB4A
Meteg ◌� U+05BD
Maqaf � U+05BE
Rafe ◌� U+05BF Bet � U+05D1 � U+FB4C
Rafe ◌� U+05BF Kaf � U+05DB � U+FB4D
Rafe ◌� U+05BF Pe � U+05E4 � U+FB4E
Paseq � U+05C0
Shin Dot ◌� U+05C1 Shin � U+05E9 � U+FB2A
Shin Dot ◌� U+05C1 Shin with Dagesh � U+FB49 � U+FB2C
Sin Dot ◌� U+05C2 Sin � U+05E9 � U+FB2B
Sin Dot ◌� U+05C2 Shin with Dagesh � U+FB49 � U+FB2D
Sof Pasuq � U+05C3
Upper Dot ◌� U+05C4
Lower Dot ◌� U+05C5

• Example of PO file:

msgid ””
msgstr ””
”Language: he\n”
”Language-Team: Hebrew\n”
”Language-Converter: Hebrew\n”
”MIME-Version: 1.0\n”
”Content-Type: text/plain; charset=UTF-8\n”

msgid ”Man”
msgstr ”�����”

• Result:

– Unicodes before conversion: U+05D0 U+05BC U+05D9 U+05E9 U+05C1

– After text shaping: U+FB30 U+05D9 U+FB2A

3.5. Application Developer Guide 594

MicroEJ Documentation,

– After reordering: U+FB2A U+05D9 U+FB30

Limitations

Conversion is a feature dedicated to graphic display (MicroUI orMicroVG). Amessage converted
and displayed with EDCmay be shown incorrectly, especially regarding visual orientation.

Without Offboard Conversion

With Offboard Conversion

System.out.print(”�������”);

�������

System.out.print(”�������”);

�������

Messagesareusuallydisplayedusinga single typeofoutput, eitherEDCorUI.Whenprinting the
text with EDC, it is correctly rendered without any pre-conversion (the terminal on the PC, that
actually prints the text, performs the necessary reordering, substitutions, etc.) To properly ren-
der the texton theUIdisplay, thePO filemust explicitly specify a converter (seeabove) toensure
compatibility. But when printing a pre-converted text with EDC, the application needs to add
the character U+202D before the message to force the message orientation, and U+202C
after it to restore the previous orientation.

Without U+202D

With U+202D

System.out.print(”�������”);

�������

System.out.print(”\u202D” + ”�������” + ”\u202C”);

�������

Warning: This tip works on the Simulator but may not work with the MicroVG complex layout
manager.

3.5. Application Developer Guide 595

MicroEJ Documentation,

Resource Generation

If the classpath of the Application contains .po / .xml files and .nls.list files, the binary-nls
Add-On Processor will generate the following source files for each NLS interface:

• a .resourcebuffer

• a .resourcebuffer.list which references the .resourcebuffer

• a .resources.list which references the resource (this resource does not exist yet but it will be
generated later)

When building the Application or running it on Simulator, the Resource Buffer Generator is first
executed. Based on the .resourcebuffer and the .resourcebuffer.list , it will generate a re-
source.

Since the generated resource is referenced by the .resources.list generated by the binary-nls
ADP, the SOAR will embed the resource in the Application binary. Unless it is also referenced
by an .externresources.list in which case the SOAR will output the resource in the External
Resources Folder instead.

This resource is loaded as soon as the BinaryNLS instance is created, in the clinit of the gener-
ated NLS interface (see Principle).

External Resource

When the resource is also referenced by a .nls.externresources.list file (cf. NLS List Files), it
can be loaded as External Resource in order to be loaded from an external memory (e.g. from
a FileSystem).

Note: This mode requires to setup the External Resources Loader in the VEE Port.

Usage

The procedure below assumes that the application already has localization source files named
HelloWorldMessages*.po referenced as internal resources in a .nls.list file. The localization
source files are declared as follows in the .nls.list file: com.microej.example.nls.generated.
HelloWorldMessages .

The procedure below explains how to declare those translations as an External Resource:

• Create a .nls.externresources.list file next to the .nls.list file,

• Add the path to the generated External Resource. This path can be deduced from the declara-
tion done in the .nls.list file, for example:

Content of the .nls.list file:

com.microej.example.nls.generated.HelloWorldMessages

Path to add in the .nls.externresources.list file:

/com/microej/example/nls/generated/HelloWorldMessages.nls

3.5. Application Developer Guide 596

MicroEJ Documentation,

This path can also be found in the application build folder once the application has been built
for the device (e.g. build/adp/src-adpgenerated/binarynls/java/com/microej/exercises/
generated/HelloWorldMessages.nls.resources.list).

• Build the application for the device,

• Open the The SOAR Map File file to check that the translations are not embedded anymore in
the application binary. The xxx_HelloWorldMessages_*.nls linesmust not appear anymore
in the ApplicationResources section.

• The resource containing translations is now located in the External Resources Folder
(e.g. build/application/object/externalResources/com/microej/exercises/generated/
HelloWorldMessages.nls). This resource must be embedded on the target and loaded using
the External Resources Loader. For more information, refer to the External Resources Loader
Use section.

When using a resource referenced as External Resource, the application is not guaranteed to
access it at startup (external memory failure, corruption, …).

The application can be configured to fallback on a default resource embedded in the Appli-
cation binary. This resource can be a “lighter” version of the one loaded using the External
Resources Loader (e.g. only embed the English language).

Fallback on Default Resource

The procedure below assumes that the application already has localization source files named
HelloWorldMessages*.po that are referenced as External Resource.

The procedure below explains how to setup the fallback on a default resource embedding the
en_US locale only:

• Create a new localization source file in the src/main/resources folder (e.g.
HelloWorldMessagesDefault_en_US.po). This file should contain the same translations as
HelloWorldMessages_en_US.po ,

• Declare it in the *.nls.list file (e.g. com.microej.example.nls.generated.
HelloWorldMessagesDefault),

• Create a new class that implements the NLS interface (e.g. DefaultNLS),

• Implement every method, wrapping on HelloWorldMessagesDefault :

public class DefaultNLS implements NLS {

@Override
public String[] getAvailableLocales() {

return HelloWorldMessagesDefault.NLS.getAvailableLocales();
}

@Override
public String getDisplayName(String locale) {

return HelloWorldMessagesDefault.NLS.getDisplayName(locale);
}
...

• Set the DefaultNLS class as the default NLS implementation:

– Create a *.properties.list file in the src/main/resources folder (if not already created),

3.5. Application Developer Guide 597

MicroEJ Documentation,

– Add the following property in this file: com.microej.binarynls.
defaultImplementation=[FULLY QUALIFIED NAME TO DEFAULT IMPLEMEN-
TATION CLASS] (e.g. com.microej.binarynls.defaultImplementation=com.microej.
example.nls.DefaultNLS).

• Declare DefaultNLS as a Required type:

– Create a *.types.list file in the src/main/resources folder (if not already created),

– Add the fully qualified name of the class (e.g. com.microej.example.nls.DefaultNLS).

To guarantee the proper application operation, the default translations (HelloWorldMes-
sagesDefault) must be consistent with the translations embedded in External Memory (Hel-
loWorldMessages). In other words, they must contain the exact same set of messages.

• Add the following code in the Main class to perform the consistency check at startup:

static {
if (HelloWorldMessagesDefault.KeysCRC32 != HelloWorldMessages.KeysCRC32) {

throw new RuntimeException(
␣

→˓”CRC check fail between default and fallback translations. Make sure PO files are aligned.”);
}

}

Warning: This implementation only checks the consistency of msgid , it does not check the
content of msgstr . PO files should be checked carefully to avoid deviation between transla-
tions.

The logs below are showing the expected behavior when the resource can be loaded or can’t
be loaded from External Memory:

Resource Loaded from External Memory

Fallback on Default Resource (External Memory failure)

MicroEJ START
Available locales:
- en_US
- es_FR
- fr_FR
Saying:
English (US) (en_US)
- Hello, World
- What's up?
Español (es_FR)
- Hola, Mundo
- ¿ Qué tal ?
Français (fr_FR)
- Bonjour, Le Monde
- Ça va ?
MicroEJ END (exit code = 0)

MicroEJ START
NLS-PO:I=6
Exception in thread ”main” java.io.IOException: NLS-PO:S=1

at java.lang.System.getStackTrace(Unknown Source)
(continues on next page)

3.5. Application Developer Guide 598

MicroEJ Documentation,

(continued from previous page)

at java.lang.Throwable.fillInStackTrace(Throwable.java:82)
at java.lang.Throwable.<init>(Throwable.java:37)
at java.lang.Exception.<init>(Exception.java:18)
at java.io.IOException.<init>(IOException.java:18)
at com.microej.nls.BinaryNLS.loadBinFile(BinaryNLS.java:385)
at com.microej.nls.BinaryNLS.<init>(BinaryNLS.java:203)
at com.microej.nls.BinaryNLS.newBinaryNLSInternal(BinaryNLS.java:161)
at com.microej.nls.BinaryNLS.newBinaryNLS(BinaryNLS.java:155)
at com.

→˓microej.example.nls.generated.HelloWorldMessages.<clinit>(HelloWorldMessages.java:19)
at java.lang.Thread.execClinit(Unknown Source)
at java.lang.Thread.clinitWrapper(Thread.java:483)
at java.lang.Thread.callWrapper(Thread.java:449)

Available locales:
- en_US
Saying:
English (US) (en_US)
- Hello, World
- What's up?
MicroEJ END (exit code = 0)

Limitations

The latest BinaryNLS implementation does not support (even when the resource is external;
see External resource loader):

• to dynamically add a new locale

• to dynamically modify messages translations

For any addition / modification, the Application must be restarted and, typically, the full re-
source buffer must be updated (not only the part of the added/modified locale).

Also, there is noAPI to close the resourcebuffer. If it is external, theApplicationmustbe stopped
to close this resource, before it can potentially bemodified depending on the external resource
loader.

Virtual Device PO Loader Tool

The NLS External Loader tool allows to update the PO files of an application executed on a Vir-
tualDevicewithout rebuilding it. PO files canbedropped inagiven location in theVirtualDevice
folders to dynamically replace the language strings packaged in the application.

This is typically useful when testing or translating an application in order to have a quick feed-
back when changing the PO files. Once the PO files are updated, a simple restart of the Virtual
Device allows to immediately see the result.

3.5. Application Developer Guide 599

https://repository.microej.com/modules/com/microej/tool/nls-po-external-loader/

MicroEJ Documentation,

Installation

To enable the NLS External Loader in the Virtual Device, add the following dependency to the
Firmware project:

Gradle (build.gradle.kts)

MMM (module.ivy)

microejTool(”com.microej.tool:nls-po-external-loader:3.0.0”)

<dependency␣
→˓org=”com.microej.tool” name=”nls-po-external-loader” rev=”3.0.0” transitive=”false”/>

Then rebuild the Firmware project to produce the Virtual Device.

Usage

Once the project built:

• unzip the Virtual Device and create a folder named translations in the root folder.

• copy all thePO files from theproject into the translations folder. All PO files found in this folder
are processed, no matter their folder level.

• start the Virtual Device with the launcher. The following logs should be printed if the NLS Exter-
nal Loader has been executed and has found the PO files:

externalPoLoaderInit:init:

externalPoLoaderInit:loadPo:
[mkdir] Created dir: <PATH>\tmp\microejlaunch1307817858\resourcebuffer

[po-to-nls] *.nls files found in <PATH>\output\<FIRMWARE>\resourceBuffer :
[po-to-nls] - com.mycompany.Messages1
[po-to-nls] - com.mycompany.Messages2
[po-to-nls] Loading *.po files for NLS interface com.mycompany.Messages1
[po-to-nls] => loaded locales : fr_FR,de_DE,ja_JP,en_US
[po-to-nls] Loading *.po files for NLS interface com.mycompany.Messages2
[po-to-nls] => loaded locales : fr_FR,de_DE,ja_JP,en_US

• update the languages strings in the PO files of the Virtual Device (the files in the translations/
folder).

• restart the Virtual Device and check the changes.

It is important to know the following rules about the NLS External Loader:

• the external PO files namesmustmatchwith the default PO files names of the application to be
processed.

• when PO files with a given name are loaded, the default translations for these PO files are re-
placed, there is no merge. It means that:

– if messages are missing in the new PO files, they are not available anymore for the application
andmay very probably make it crash.

– if languages are missing (the application has 3 PO files for English, French and Spanish, and
only PO files for English and French are available in the translations folder), the messages of

3.5. Application Developer Guide 600

MicroEJ Documentation,

the missing languages are not available anymore for the application and may very probably
make it crash.

– if newmessages are added in the PO files, it has no impact, they are ignored by the application.

• External PO files are loaded at Virtual Device startup, so any change requires a restart of the
Virtual Device to be considered

Troubleshooting

java.io.IOException: NLS-PO:S=4

The following error occurs when at least 1 PO file is missing for a language:

[parallel2] NLS-PO:I=6
[parallel2]␣
→˓Exception in thread ”main” java.io.IOException: NLS-PO:S=4 323463627 -1948548092
[parallel2] at java.lang.Throwable.fillInStackTrace(Throwable.java:79)
[parallel2] at java.lang.Throwable.<init>(Throwable.java:30)
[parallel2] at java.lang.Exception.<init>(Exception.java:10)
[parallel2] at java.io.IOException.<init>(IOException.java:16)
[parallel2] at com.microej.nls.BinaryNLS.loadBinFile(BinaryNLS.java:310)
[parallel2] at com.microej.nls.BinaryNLS.<init>(BinaryNLS.java:157)
[parallel2] at com.microej.nls.BinaryNLS.newBinaryNLS(BinaryNLS.java:118)

Make sure that all PO files are copied in the translations folder.

Crowdin

Crowdin is a cloud-based localization platform which allows to manage multilingual content. The NLS External
Loader can fetch translations directly from Crowdin to make the translation process even easier. Translators can
then contribute and validate their translations in Crowdin and apply them automatically in the Virtual Device.

Anewdependencymustbeadded toFirmwareproject dependencies toenable this integration:

Gradle (build.gradle.kts)

MMM (module.ivy)

microejTool(”com.microej.tool:nls-po-crowdin:1.0.0”)

<dependency␣
→˓org=”com.microej.tool” name=”nls-po-crowdin” rev=”1.0.0” transitive=”false”/>

Once the module has been built, edit the file platform/tools/crowdin/crowdin.properties to
configure the Crowdin connection:

• set crowdin.token to the Crowdin API token. A token can be generated in the Crowdin in
Settings > API > click on New Token .

• set crowdin.projectsIds to the id of the Crowdin project. The project id can be found in the
Details section on a project page. Multiple projects can be set by separating their id with a
comma (for example crowdin.projectsIds=12,586,874).

When the configuration is done, the fetch of the Crowdin translations can be done by executing
the script crowdin.bat or crowdin.sh located in the folder platform/tools/crowdin/ . The PO

3.5. Application Developer Guide 601

https://repository.microej.com/modules/com/microej/tool/nls-po-crowdin/

MicroEJ Documentation,

files retrieved from Crowdin are automatically pasted in the folder translations , therefore the
new translations are applied after the next Virtual Device restart.

Data Serialization

Description

This documentation highlights some data serialization formats that are provided on MicroEJ
Central Repository and their usage through basic code samples.

XML

XML (EXtensibleMarkup Language) is used to describe data and text. It allows flexible development of user-defined
document types. The format is robust, non-proprietary, persistent and is verifiable for storage and transmission.
To parse this data format, the XMLPull parser KXmlParser from the Java community has been integrated toMicroEJ
Central Repository.

XMLModule

To use the XML Module, add the following line to the project build file:

Gradle (build.gradle.kts)

MMM (module.ivy)

implementation(”org.kxml2:kxml2:2.3.2”)

<dependency org=”org.kxml2” name=”kxml2” rev=”2.3.2”/>

Example Of Use

An example is available at https://github.com/MicroEJ/Example-XML. It presents how to use
XML data exchange for your Application. It also details how to use the KXmlParser module.

The example parses a short poemwritten in XML and prints the result on the standard output.
The project can run on any VEE Port (no external dependencies).

<?xml version=”1.0” encoding=”UTF-8”?>
<poem xmlns=”http://www.megginson.com/ns/exp/poetry”>

<title>Roses are Red</title>
<l>Roses are red,</l>
<l>Violets are blue;</l>
<l>Sugar is sweet,</l>
<l>And I love you.</l>

</poem>

Running the ReadPoem Java application should print the following trace :

=============== [Initialization Stage] ===============
=============== [Launching on Simulator] ===============
Roses are Red

(continues on next page)

3.5. Application Developer Guide 602

https://en.wikipedia.org/wiki/XML
http://kxml.org/
https://repository.microej.com/modules/org/kxml2/kxml2/
https://github.com/MicroEJ/Example-XML
http://kxml.org/

MicroEJ Documentation,

(continued from previous page)

Roses are red,
Violets are blue;
Sugar is sweet,
And I love you.

=============== [Completed Successfully] ===============

SUCCESS

Running MyXmlPullApp gives more details on the XML parsing and should print this trace :

=============== [Initialization Stage] ===============
=============== [Launching on Simulator] ===============
parser implementation class is class org.kxml2.io.KXmlParser
Parsing simple sample XML
Start document
Start element: {http://www.megginson.com/ns/exp/poetry}poem
Characters: ”\n”
Start element: {http://www.megginson.com/ns/exp/poetry}title
Characters: ”Roses are Red”
End element: {http://www.megginson.com/ns/exp/poetry}title
Characters: ”\n”
Start element: {http://www.megginson.com/ns/exp/poetry}l
Characters: ”Roses are red,”
End element: {http://www.megginson.com/ns/exp/poetry}l
Characters: ”\n”
Start element: {http://www.megginson.com/ns/exp/poetry}l
Characters: ”Violets are blue;”
End element: {http://www.megginson.com/ns/exp/poetry}l
Characters: ”\n”
Start element: {http://www.megginson.com/ns/exp/poetry}l
Characters: ”Sugar is sweet,”
End element: {http://www.megginson.com/ns/exp/poetry}l
Characters: ”\n”
Start element: {http://www.megginson.com/ns/exp/poetry}l
Characters: ”And I love you.”
End element: {http://www.megginson.com/ns/exp/poetry}l
Characters: ”\n”
End element: {http://www.megginson.com/ns/exp/poetry}poem
=============== [Completed Successfully] ===============

SUCCESS

JSON

As described on the JSON official site, JSON (JavaScript Object Notation) is a lightweight
data-interchange format. It is widely used in many applications such as:

• as a mean of data serialization for lightweight web services such as REST

• for server interrogation in Ajax to build dynamic webpages

• or even databases.

3.5. Application Developer Guide 603

http://json.org/

MicroEJ Documentation,

JSON is easily readable by humans compared to XML. To parse this data format, several JSON
parsers are available on the official JSON page, such as JSONME, which has been integrated to
MicroEJ Central Repository.

JSONModule

To use the JSONModule, add the following line to the project build file:

Gradle (build.gradle.kts)

MMM (module.ivy)

implementation(”org.json.me:json:1.4.0”)

<dependency org=”org.json.me” name=”json” rev=”1.4.0”/>

The instantiation and use of the parser is pretty straightforward. First you need to get the JSON
content as a String , and then create a JSONObject instancewith the string. If the string content
is a valid JSON content, you should have an workable JSONObject to browse.

Example Of Use

In the following example we will parse this JSON file that represents a simple abstraction of a
file menu:

{
”menu”: {

”id”: ”file”,
”value”: ”File”,
”popup”: {

”menuitem”: [
{”value”: ”New”, ”onclick”: ”CreateNewDoc()”},
{”value”: ”Open”, ”onclick”: ”OpenDoc()”},
{”value”: ”Close”, ”onclick”: ”CloseDoc()”}

]
}

}
}

First, we need to include this file in our project by adding it to the src/main/resources folder
and creating a .resources.list properties file to declare this resource for our application to be
able to retrieve it (see Resources for more details).

This .resources.list file (here named json.resources.list) should contain the path to our JSON
file as such :

3.5. Application Developer Guide 604

http://json.org/
https://repository.microej.com/modules/org/json/me/json/
https://repository.microej.com/javadoc/microej_5.x/apis/org/json/me/JSONObject.html
https://repository.microej.com/javadoc/microej_5.x/apis/org/json/me/JSONObject.html

MicroEJ Documentation,

resources/menu.json

The example below will parse the file, browse the resulting data structure (org.json.me.
JSONObject) and print the value of the menuitem JSON array.

package com.microej.examples.json;

import java.io.DataInputStream;
import java.io.IOException;

import org.json.me.JSONArray;
import org.json.me.JSONException;
import org.json.me.JSONObject;

/**
* This example uses the org.json.me parser provided by json.org to parse and
* browse a JSON content.
*
* The JSON content is simple abstraction of a file menu as provided here:
* http://www.json.org/example.html
*
* The example then tries to list all the 'menuitem's available in the popup
* menu. It is assumed the user knows the menu JSON file structure.
*
*/
public class MyJSONExample {

public static void main(String[] args) {

// get back an input stream from the resource that represents the JSON
// content
DataInputStream dis = new DataInputStream(

␣
→˓ MyJSONExample.class.getResourceAsStream(”/resources/menu.json”));

byte[] bytes = null;

try {

// assume the available returns the whole content of the resource
bytes = new byte[dis.available()];

dis.readFully(bytes);

} catch (IOException e1) {
// something went wrong
e1.printStackTrace();
return;

}

try {

// create the data structure to exploit the content
// the string is created assuming default encoding
JSONObject jsono = new JSONObject(new String(bytes));

// get the JSONObject named ”menu” from the root JSONObject
(continues on next page)

3.5. Application Developer Guide 605

MicroEJ Documentation,

(continued from previous page)

JSONObject o = jsono.getJSONObject(”menu”);

o = o.getJSONObject(”popup”);

JSONArray a = o.getJSONArray(”menuitem”);

System.out.println(”The menuitem content of popup menu is:”);
System.out.println(a.toString());

} catch (JSONException e) {
// a getJSONObject() or a getJSONArray() failed
// or the parsing failed
e.printStackTrace();

}

}

}

The execution of this example on the Simulator should print the following trace:

=============== [Initialization Stage] ===============
=============== [Launching Simulator] ===============
The menuitem content of popup menu is:
[{”value”:”New”,”onclick”:”CreateNewDoc()
→˓”},{”value”:”Open”,”onclick”:”OpenDoc()”},{”value”:”Close”,”onclick”:”CloseDoc()”}]
=============== [Completed Successfully] ===============

SUCCESS

CBOR

The CBOR (Concise Binary Object Representation) binary data serialization format is a
lightweight data-interchange format similar to JSON but with a smaller footprint, making it
very practical for embedded applications, though its messages are often less easily readable
by humans.

CBORModule

To use the CBOR Module, add the following line to the project build file:

Gradle (build.gradle.kts)

MMM (module.ivy)

implementation(”ej.library.iot:cbor:1.2.0”)

<dependency org=”ej.library.iot” name=”cbor” rev=”1.2.0”/>

3.5. Application Developer Guide 606

https://cbor.io/
https://repository.microej.com/modules/ej/library/iot/cbor/

MicroEJ Documentation,

Example Of Use

An example is available at https://github.com/MicroEJ/Example-IOT/tree/master/cbor. It
shows how to use the CBOR library in your Application by encoding some data and reading
it back, printing it on the standard output both as a raw byte string and in a JSON-like format.
You canuse tools like cbor.me to convert thebyte stringoutput to a JSON format and check that
it matches the encoded data. The project can run on any VEE Port (no external dependencies).

The execution of this example on the Simulator should print the following trace:

=============== [Initialization Stage] ===============
=============== [Launching on Simulator] ===============
CBOR␣
→˓data␣
→˓string␣
→˓:␣
→˓a1646d656e75a36269646466696c656576616c75656446696c6565706f707570a1686d656e756974656d83a26576616c7565634e6577676f6e636c69636b6e4372656174654e6577446f632829a26576616c7565644f70656e676f6e636c69636b694f70656e446f632829a26576616c756565436c6f7365676f6e636c69636b6a436c6f7365446f632829
Data content :
{

”menu” : {
”id” : ”file”,
”value” : ”File”,
”popup” : {

”menuitem” : [{
”value” : ”New”,
”onclick” : ”CreateNewDoc()”

}, {
”value” : ”Open”,
”onclick” : ”OpenDoc()”

}, {
”value” : ”Close”,
”onclick” : ”CloseDoc()”

}]
}

}
}
=============== [Completed Successfully] ===============

Another example showing how to use the JSON module along with the CBOR module to con-
vert data fromJSONtoCBOR is availablehere : https://github.com/MicroEJ/Example-IOT/tree/
master/cbor-json.

The execution of this example on the Simulator should print the following trace:

Initial data (271 bytes) = {”menu”:
→˓{”value”:”File”,”id”:”file”,”popup”:{”menuitem”:[{”value”:”New”,”onclick”:”CreateNewDoc()
→˓”},{”value”:”Open”,”onclick”:”OpenDoc()”},{”value”:”Close”,”onclick”:”CloseDoc()”}]}}}
Data serialized (139 bytes)
Data deserialized =␣
→˓{menu={value=File, id=file, popup={menuitem=[{value=New, onclick=CreateNewDoc()}
→˓, {value=Open, onclick=OpenDoc()}, {value=Close, onclick=CloseDoc()}]}}}

3.5. Application Developer Guide 607

https://github.com/MicroEJ/Example-IOT/tree/master/cbor
https://github.com/MicroEJ/Example-IOT/tree/master/cbor-json
https://github.com/MicroEJ/Example-IOT/tree/master/cbor-json

MicroEJ Documentation,

Networking

Foundation Libraries

Name Description Module
Link

API Link Use

ECOM-Net-
work

Network interfaces management
and IP configurations.

ecom-networkNetworkInterfaceM-
anager class

ECOM-WIFI
Wi-Fi connectivity. ecom-wifi WifiManager class

• Wi-Fi setup Ex-
ample

• Wi-Fi utility Li-
brary

NET
Client and Server raw TCP/IP sock-
ets.

net java.net package
• NET Example
• NET utility

Library

Security
Cryptographic operations. security javax.crypto package

SSL
Client and Server secure sockets
layer using Transport Layer Secu-
rity (TLS) protocols.

ssl java.net.ssl package
• SSL mutual

client Example
• SSL mutual

server Example
• SSL utility

Library

Add-On Libraries

3.5. Application Developer Guide 608

https://repository.microej.com/modules/ej/api/ecom-network/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/ecom/network/NetworkInterfaceManager.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/ecom/network/NetworkInterfaceManager.html
https://repository.microej.com/modules/ej/api/ecom-wifi/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/ecom/wifi/WifiManager.html
https://github.com/MicroEJ/Example-Wi-Fi-Setup
https://github.com/MicroEJ/Example-Wi-Fi-Setup
https://repository.microej.com/modules/ej/library/iot/wifi-util/
https://repository.microej.com/modules/ej/library/iot/wifi-util/
https://repository.microej.com/modules/ej/api/net/
https://repository.microej.com/javadoc/microej_5.x/apis/java/net/package-summary.html
https://github.com/MicroEJ/Example-Foundation-Libraries/tree/master/net.helloworld
https://repository.microej.com/modules/ej/library/iot/net-util/
https://repository.microej.com/modules/ej/library/iot/net-util/
https://repository.microej.com/modules/ej/api/security/
https://repository.microej.com/javadoc/microej_5.x/apis/javax/crypto/package-summary.html
https://repository.microej.com/modules/ej/api/ssl/
https://repository.microej.com/javadoc/microej_5.x/apis/javax/net/ssl/package-summary.html
https://github.com/MicroEJ/Example-IOT/tree/master/ssl-mutual
https://github.com/MicroEJ/Example-IOT/tree/master/ssl-mutual
https://github.com/MicroEJ/Example-IOT/tree/master/ssl-mutual-server
https://github.com/MicroEJ/Example-IOT/tree/master/ssl-mutual-server
https://repository.microej.com/modules/ej/library/iot/ssl-util/
https://repository.microej.com/modules/ej/library/iot/ssl-util/

MicroEJ Documentation,

IoT Libraries

Name Description Module
Link

API Link Use

Android
Connec-
tivity

Network connection state and no-
tifications.

android-connectivityConnectivityManager
class • Connectivity Ex-

ample

HTTP
Client

OpenJDK HTTP client. http-
client,
http-
sclient

HttpURLConnection
class • HTTP client

README

Web
Server
(HOKA)

Tiny footprint yet extensible web
server.

HOKA HttpServer class
• HOKA User Man-

ual
• HOKA Examples

MQTT
Client
(Mi-
croPaho)

Tiny footprint MQTT 3.1.1 client
based on Eclipse Paho Java APIs.

mi-
cropaho

MqttClient class
• MicroPaho

README
• MQTT publish

Example
• MQTT subscribe

Example

REST
Client

REpresentational State Tranfer
(REST) client.

restclient Resty class
• REST client

README

SNTP
Client

Simple Network Time Protocol
(SNTP) client, used to retrieve the
current time from an NTP server.

sntp-
client

SntpClient class
• SNTP client

README

Web-
Socket
Client

WebSocket client (RFC 6455). web-
socket,
websocket-secure

WebSocket class
• WebSocket

client README
• WebSocket

client Example

3.5. Application Developer Guide 609

https://repository.microej.com/modules/ej/library/iot/android-connectivity/
https://repository.microej.com/javadoc/microej_5.x/apis/android/net/ConnectivityManager.html
https://repository.microej.com/javadoc/microej_5.x/apis/android/net/ConnectivityManager.html
https://github.com/MicroEJ/Example-IOT/tree/master/androidconnectivity
https://github.com/MicroEJ/Example-IOT/tree/master/androidconnectivity
https://repository.microej.com/modules/ej/library/eclasspath/httpclient/
https://repository.microej.com/modules/ej/library/eclasspath/httpclient/
https://repository.microej.com/modules/ej/library/eclasspath/httpsclient/
https://repository.microej.com/modules/ej/library/eclasspath/httpsclient/
https://repository.microej.com/javadoc/microej_5.x/apis/java/net/HttpURLConnection.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/net/HttpURLConnection.html
https://repository.microej.com/modules/ej/library/eclasspath/httpclient/1.3.0/README-1.3.0.md
https://repository.microej.com/modules/ej/library/eclasspath/httpclient/1.3.0/README-1.3.0.md
https://repository.microej.com/modules/ej/library/iot/hoka/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/hoka/http/HttpServer.html
https://github.com/MicroEJ/Example-Hoka
https://repository.microej.com/modules/ej/library/iot/micropaho/1.0.0/
https://repository.microej.com/modules/ej/library/iot/micropaho/1.0.0/
https://repository.microej.com/javadoc/microej_5.x/apis/org/eclipse/paho/client/mqttv3/MqttClient.html
https://repository.microej.com/modules/ej/library/iot/micropaho/1.0.0/README-1.0.0.md
https://repository.microej.com/modules/ej/library/iot/micropaho/1.0.0/README-1.0.0.md
https://github.com/MicroEJ/Example-IOT/tree/master/mqtt-publisher
https://github.com/MicroEJ/Example-IOT/tree/master/mqtt-publisher
https://github.com/MicroEJ/Example-IOT/tree/master/ssl-mqtt-subscriber
https://github.com/MicroEJ/Example-IOT/tree/master/ssl-mqtt-subscriber
https://repository.microej.com/modules/ej/library/iot/restclient/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/rest/web/Resty.html
https://repository.microej.com/modules/ej/library/iot/restclient/1.1.0/README-1.1.0.md
https://repository.microej.com/modules/ej/library/iot/restclient/1.1.0/README-1.1.0.md
https://repository.microej.com/modules/ej/library/iot/sntpclient/
https://repository.microej.com/modules/ej/library/iot/sntpclient/
https://repository.microej.com/javadoc/microej_5.x/apis/android/net/SntpClient.html
https://repository.microej.com/modules/ej/library/iot/sntpclient/1.3.0/README-1.3.0.md
https://repository.microej.com/modules/ej/library/iot/sntpclient/1.3.0/README-1.3.0.md
https://repository.microej.com/modules/ej/library/iot/websocket/
https://repository.microej.com/modules/ej/library/iot/websocket/
https://repository.microej.com/modules/ej/library/iot/websocket-secure/
https://repository.microej.com/javadoc/microej_5.x/apis/index.html?ej/websocket/WebSocket.html
https://repository.microej.com/modules/ej/library/iot/websocket/2.0.0/README-2.0.0.md
https://repository.microej.com/modules/ej/library/iot/websocket/2.0.0/README-2.0.0.md
https://github.com/MicroEJ/Example-IOT/tree/master/ssl-websocket
https://github.com/MicroEJ/Example-IOT/tree/master/ssl-websocket

MicroEJ Documentation,

Data Serialization Libraries

Name Description Module
Link

API Link Use

CBOR
Concise Binary Object Representa-
tion (CBOR) encoder and decoder
(RFC 7049).

cbor
• CborEncoder

class
• CborDecoder

class

• CBOR Documen-
tation

JSON
JavaScript Object Notation (JSON)
encoder and decoder.

json
• JSONObject

class (decoder)
• JSONWriter

class (encoder)

• README
• JSON Documen-

tation

Protocol
Buffers

Google Protocol Buffers 3 encoder
and decoder, supporting files com-
piled by protoc with lite plugin.

proto-
buf3 • CodedInput-

Stream class
(decoder)

• CodedOutput-
Stream class
(encoder)

• Protobuf3 Doc-
umentation

XML
eXtensible Markup Language en-
coder and decoder (kXML 3).

kxml2
• XmlPullParser

class (decoder)
• XmlSerializer

class (encoder)

• XML Documen-
tation

Cloud Agent Libraries

Name Description Module Link Use

AWS
IoT
Core

AWS IoT Core client, providing pub-
lish/subscribe functionalities.

aws-iot
• AWS IoT Core README
• AWS IoT Core Example

HOKAWeb Server

HOKA is a tiny extensible Java web server for embedded applications.

It comes with the support of HTTP, HTTPS, Server session, and routing for REST API.

Note: This is the documentation of the latest version of HOKA library 8.X.X

3.5. Application Developer Guide 610

https://repository.microej.com/modules/ej/library/iot/cbor/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/cbor/CborEncoder.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/cbor/CborEncoder.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/cbor/CborDecoder.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/cbor/CborDecoder.html
https://repository.microej.com/modules/ej/library/iot/json/
https://repository.microej.com/javadoc/microej_5.x/apis/org/json/me/JSONObject.html
https://repository.microej.com/javadoc/microej_5.x/apis/org/json/me/JSONObject.html
https://repository.microej.com/javadoc/microej_5.x/apis/org/json/me/JSONWriter.html
https://repository.microej.com/javadoc/microej_5.x/apis/org/json/me/JSONWriter.html
https://repository.microej.com/modules/ej/library/iot/json/1.0.0/README-1.0.0.md
https://repository.microej.com/modules/com/google/protobuf3/
https://repository.microej.com/modules/com/google/protobuf3/
https://repository.microej.com/javadoc/microej_5.x/apis/com/google/protobuf/CodedInputStream.html
https://repository.microej.com/javadoc/microej_5.x/apis/com/google/protobuf/CodedInputStream.html
https://repository.microej.com/javadoc/microej_5.x/apis/com/google/protobuf/CodedOutputStream.html
https://repository.microej.com/javadoc/microej_5.x/apis/com/google/protobuf/CodedOutputStream.html
https://github.com/MicroEJ/Demo-Protobuf3
https://github.com/MicroEJ/Demo-Protobuf3
http://kxml.sourceforge.net/about.shtml
https://repository.microej.com/modules/org/kxml2/kxml2/
https://repository.microej.com/javadoc/microej_5.x/apis/org/xmlpull/v1/XmlPullParser.html
https://repository.microej.com/javadoc/microej_5.x/apis/org/xmlpull/v1/XmlPullParser.html
https://repository.microej.com/javadoc/microej_5.x/apis/org/xmlpull/v1/XmlSerializer.html
https://repository.microej.com/javadoc/microej_5.x/apis/org/xmlpull/v1/XmlSerializer.html
https://repository.microej.com/modules/ej/library/iot/aws-iot/
https://repository.microej.com/modules/ej/library/iot/aws-iot/2.0.0/README-2.0.0.md
https://github.com/MicroEJ/AWS

MicroEJ Documentation,

Intended Audience

The intended audience for this document is Java developers who are familiar with socket com-
munication, the HTTP 1.1 protocol, and web server concepts.

Getting Started

Create a newMicroEJ application and add the HOKA library dependency to your MicroEJ appli-
cation

Gradle (build.gradle.kts)

MMM (module.ivy)

implementation(”ej.library.iot:hoka:8.4.0”)

<dependency org=”ej.library.iot” name=”hoka” rev=”8.4.0”/>

public class MyServer {

public static void main(String[] args) throws IOException {

HttpServer http = HttpServer.builder().port(8080).build();

http.get(”/hello”, new RequestHandler() {

@Override
public void process(HttpRequest request, HttpResponse response) {
response.setData(”Hello world!”);

}
});

http.start();

}
}

Run the application and check the result at http://localhost:8080/hello

Routes Mapping

In HOKA, an HTTP request is a combination of 4 elements:

• Verb: The HTTP verbs, GET, POST, PUT or DELETE…

• Path: The request path or URI. /hello/:username

• Handler: The request handler process the request and respond to the client.

• content type: (optional) the route supported content type

Note: Paths are matched in the order of their creation. The handler of the first matching path will be invoked. All
the paths need to be registered before calling the start() method of the HttpServer instance. If no pathmatches
the incoming request, the server will return a 404 Not Found response.

3.5. Application Developer Guide 611

MicroEJ Documentation,

HttpServer http = HttpServer.builder().port(8080).build();

http.get(”/”, new RequestHandler() {

@Override
public void process(HttpRequest request, HttpResponse response) {
// read a resource

}
});

http.post(”/”, new RequestHandler() {

@Override
public void process(HttpRequest request, HttpResponse response) {
// write a resource

}
});

http.put(”/”, new RequestHandler() {

@Override
public void process(HttpRequest request, HttpResponse response) {
// update a resource

}
});

http.delete(”/”, new RequestHandler() {

@Override
public void process(HttpRequest request, HttpResponse response) {
// delete a resource

}
});

A path can be registered with one single specific content type in different request handlers on
the same path.

For example, to map two content types on the same path, do the following:

HttpServer http = HttpServer.builder().port(8080).build();

http.get(”/”, ”application/json”, new RequestHandler() {

@Override
public void process(HttpRequest request, HttpResponse response) {
// read a resource and return a json formatted response.

}
});

http.get(”/”, ”application/xml”, new RequestHandler() {

@Override
public void process(HttpRequest request, HttpResponse response) {
// read a resource and return a json formatted response.

}
});

3.5. Application Developer Guide 612

MicroEJ Documentation,

Path Parameters

The request path cancontainnamedparameters calledpathparameters. Thoseparameters are
madeavailable through the request instanceof the process() methodof the RequestHandler .
The path parameter can be accessed by calling HttpRequest#getPathParam(String param)

HttpServer http = HttpServer.builder().port(8080).build();

http.get(”/hello/:name”, new RequestHandler() {

@Override
public void process(HttpRequest request, HttpResponse response) {
String name = request.getPathParam(”name”);
response.setData(”Hello ” + name);

}
});

Splat Parameters

The request path also supports splat parameters usingwildcard ‘*’. Thoseparameters aremade
available through the request instance of the process() method of the RequestHandler . The
splat parameters array can be accessed by calling HttpRequest#getSplatParams()

HttpServer http = HttpServer.builder().port(8080).build();

http.get(”/greet/*/by/*”, new RequestHandler() {

@Override
public void process(HttpRequest request, HttpResponse response) {
String name = request.getSplatParams().get(0);
String greeting = request.getSplatParams().get(1);
response.setData(greeting + ” ” + name);

}
});

Request

• HttpRequest#getMethod() : returns the request method (1 for POST , 2 for GET , 3 for PUT and 4 for
DELETE . see HttpRequest for the full list).

• HttpRequest#getURI() : returns the requested URI.

• HttpRequest#getQueryParams() : returns the request query parameters map.

• HttpRequest#getQueryParam(String) : returns the query parameter by the given name from the query
parameters map.

• HttpRequest#getPathParam(String) : returns the request path parameter by the given name.

• HttpRequest#getSplatParams() : returns the list of splat parameters.

• HttpRequest#setAttribute(String, Object) : set a server-side request attribute. can be used to passe data
between handlers.

• HttpRequest#getAttribute(String) : get a server-side request attribute.

• HttpRequest#getVersion() : returns the HTTP protocol version of the request.

3.5. Application Developer Guide 613

MicroEJ Documentation,

• HttpRequest#getHeaders() : returns the request headers, all header field names are converted to lower-
case.

• HttpRequest#getHeader(String) : returns the value of the header with the given name.

• HttpRequest#parseBody(BodyParser) : parses the body of the request with the given parser.

• HttpRequest#getRequestBody() : return the request InputStream to be used for any custom request han-
dling.

Body Parsers

The HttpRequest#parseBody(BodyParser) is used to read the body (data) of a request.

HOKA library provides 4 implementations of BodyParser :

• StringBodyParser : returns the full request body as a string.

• MultipartStringsParser : parse a multipart/* request body, each part is returned as a string.

• MultiPartBodyParser : parsea multipart/* body, andparseeachpart asheader fieldsandan InputStream
body.

• ParameterParser : parse an application/x-www-form-urlencoded request body.

Cookies

The cookies are lazily parsed the first time they are accessed.

• HttpRequest#getCookies() : returns the list of cookies.

• HttpRequest#getCookie(String) : returns the value of the cookie by the given name.

Response

Build a HttpResponse based on the request with the following data :

• data : the body of the response as a String , byte[] or as an InputStream .

• status : the status of the response to send. HTTP response code.

• mimeType : the value of the content-type header.

• HttpResponse#addHeader(String name, String value) : adds a header with given name and value.

• HttpResponse#addCookie(Cookie) : adds a cookie to the response. USe ej.hoka.http.Cookie.Builder() to
create a cookie instance.

// Use the cookie builder to create a cookie instance.
Cookie cookie = Cookie.builder().name(”cookieName”).value(”cookieValue”)

.expires(expirationDate)

.maxAge(900)

.domain(”www.example.com”)

.path(”/api”)

.sameSite(SameSite.Strict)

.secure()

.httpOnly()

.build();

3.5. Application Developer Guide 614

MicroEJ Documentation,

MIME Types

The Mime class provides constant values for commonly used MIME types and utility methods
to return the MIME type of a resource name based on file extensions.

The predefined MIME types are :

• MIME_PLAINTEXT = “text/plain”

• MIME_HTML = “text/html”

• MIME_XML = “text/xml”

• MIME_APP_JSON = “application/json”

• MIME_DEFAULT_BINARY = “application/octet-stream”

• MIME_CSS = “text/css”

• MIME_PNG = “image/png”

• MIME_JPEG = “image/jpeg”

• MIME_GIF = “image/gif”

• MIME_JS = “application/x-javascript”

• MIME_FORM_ENCODED_DATA = “application/x-www-form-urlencoded”

• MIME_MULTIPART_FORM_ENCODED_DATA = “multipart/form-data”

The method Mime#getMIMEType(String URI) returns the MIME type of the given URI, as-
suming that the file extension in the URI was previously registered with the Mime#mapFile-
ExtensionToMIMEType(String fileExtension, String mimeType) . Only lower case file ex-
tensions are recognized.

For example, calling getMIMEType(”/images/logo.png”) will return the string ”image/png”
.

The following table shows thepredefinedassignmentsbetween file extensions andMIME types:

Extension MIME type
“.png”

MIME_PNG
“.css”

MIME_CSS
“.gif”

MIME_GIF
“.jpeg”

MIME_JPEG
“.jpg”

MIME_JPEG
“.html” MIME_HTML
“.htm” MIME_HTML
“.js”

MIME_JS
“.txt”

MIME_PLAINTEXT
“.xml”

MIME_XML

3.5. Application Developer Guide 615

MicroEJ Documentation,

Halt Request Processing Chain

to stop a request processing and return immediately. The following static methods form
HttpServer class should be used.

This will cause the request handler to stop immediately and the response will be returned to
the client without executing other filters.

This is useful for error handling for example.

halt(); <--- return a 200 OK response.
halt(HTTPConstants.HTTP_STATUS_UNAUTHORIZED);
halt(HTTPConstants.HTTP_STATUS_UNAUTHORIZED, ”login required!”);

Filters

A filter is also a request handler that is executed before or after a registered request.

It needs to be registered before calling the start() method on the server instance.

It can be used to pre-process or post-process a request.

Multiple filters can be registered. They will be executed in the order they were added in.

HOKA supports 4 types of filters.

• before all requests: runs before any registered path.

• before a specific path: runs before a specific registered path.

• after a specific path: runs after a specific registered path.

• after all requests: runs after any registered path.

Before

Example of adding a filter that will be executed before any registered path.

Multiple before filters can be added by calling before() multiple times. They will be executed
in their registration order.

HttpServer http = HttpServer.builder().port(8080).build();

http.before(new RequestHandler() {

@Override
public void process(HttpRequest request, HttpResponse response) {
boolean authenticated = false;
// check if authenticated ...
if (!authenticated) {
halt(HTTPConstants.

→˓HTTP_STATUS_UNAUTHORIZED); // stop the processing and return an error.
}

}
});

Example of adding a filter that will be executed before a specific registered path.

Unlike global before filters, only one before filter by path can be registered.

3.5. Application Developer Guide 616

MicroEJ Documentation,

HttpServer http = HttpServer.builder().port(8080).build();

http.before(”/private/*”, new RequestHandler() {

@Override
public void process(HttpRequest request, HttpResponse response) {
// check access privilege ...
halt(HTTPConstants.

→˓HTTP_STATUS_FORBIDDEN); // stop the processing and return an error.
}

});

After

Example of adding a filter that will be executed after any registered path.

Multiple global after filters can be added by calling after() multiple times. They will be exe-
cuted in their registration order.

HttpServer http = HttpServer.builder().port(8080).build();

http.after(new RequestHandler() {

@Override
public void process(HttpRequest request, HttpResponse response) {
// do some post processing on the request/response
response.addHeader(”common header key”, ”common header value”);

}
});

Example of adding a filter that will be executed after a specific registered path.

Unlike global after filters, only one after filter by path can be registered.

HttpServer http = HttpServer.builder().port(8080).build();

http.after(”/private/*”, new RequestHandler() {

@Override
public void process(HttpRequest request, HttpResponse response) {
// do some post processing on the request/response
response.addHeader(”special header key”, ”special header value”);

}
});

3.5. Application Developer Guide 617

MicroEJ Documentation,

Error Handling

Not Found Error

The 404 not found error can be customized by using the HttpServer#notFoundError()
method.

HttpServer http = HttpServer.builder().port(8080).build();

// html, The html page can be loaded form a file
http.notFoundError(”<html><body><h1>404 Page doesn't exist</h1></body></html>”);

// json format
http.notFoundError(”{\”message\”:\”404 Page doesn't exist\”}”, ”application/json”);

Internal Server Error

The 500 Internal Server Error can also be customized.

// html, The html page can be loaded form a file
http.internalServerError(
→˓”<html><body><h1>505 Something went wrong!</h1></body></html>”);

// json format
http.internalServerError(”{\”message\”:\”505 Something went wrong!\”}”, ”application/json”);

Exception Mapping

An exception can bemapped to a custom handler to return specific errors.

HttpServer http = HttpServer.builder().port(8080).build();

http.get(”/throwerror”, new RequestHandler() {

@Override
public void process(HttpRequest request, HttpResponse response) {
throw new MyCustomError();

}
});

http.exception(MyCustomError.class, new RequestHandler() {

@Override
public void process(HttpRequest request, HttpResponse response) {
// handle the custom error here.

}
});

3.5. Application Developer Guide 618

MicroEJ Documentation,

Static Files

A specific static file handler can be set to serve files from the application classpath by using
ClasspathFilesHandler class.

HttpServer http = HttpServer.builder() //
.port(8080) //
.staticFilesHandler(ClasspathFilesHandler.builder() // set the static file handler

.rootDirectory(”/public”) // set the static file folder form src/main/resources

.build())
.build();

Note that the public directory name is not included in the request URL. to access a file in src/
main/resources/public/css/main.css the url is http://localhost:8080/css/main.css

Anexternal file location canbeusedbyproviding your own implementationof StaticFilesHan-
dler interface and adding the fs foundation library to work with File* classes from java.io .

Web Server Configuration

HttpServer class builder has the following options :

HttpServer http = HttpServer.builder()
.port(8080) // setup the port number to bind the server socket on. Use 0 for a random port
.simultaneousConnections(3)␣

→˓// setup the max simultaneous connections accepted by the server
.workerCount(3) // setup the number of threads to handle incoming connections
.connectionTimeout(60 * 1000) // setup connection timeout
.encodingRegistry(new␣

→˓EncodingRegistry()) // register a custom the content encoding & transfer-coding registry
.secure(/**SSLContext#getServerSocketFactory()*/) // setup SSL / HTTPS
.apiBase(”/api/v1/”) // setup a common␣

→˓URI base for all relative registered path. relative means, the path do not starting with a /
.staticFilesHandler(staticFilesHandler) // setup the static files handler
.withTrailingSlashSupport() // process route with trailing slash as different routes
.withStrictAcceptContentEncoding() //

→˓ activate strict content acceptance. return 406 Not Acceptable for unknown content-encoding
.developmentMode()/

→˓/ enable development mode, send error stack trace to the client side as in html
.build();

Trailing Slash Matching

By default, the HOKA server ignores the trailing forward slash at the ends of the request URI.

For example:

• GET | host/hello

• GET | host/hello/

Will link to the same request handler.

This behavior can be deactivated by calling the method HttpServer#builder()#withTrail-
ingSlashSupport() on the server builder.

3.5. Application Developer Guide 619

MicroEJ Documentation,

Note that host and host/ will link to the same request handler whatever the Trailing Slash
Match is activated or not.

Development Mode

Development mode can be activated by calling HttpServer#builder()#developmentMode()
.

This will tell the HOKA server to send the exception stack trace to the client.

The stack trace is sent in a plain text response. This is useful when developing the web appli-
cation; otherwise, a “500 Internal Error” response is sent.

Note: when developmentmode is active, internal error page customization is deactivated. The
development mode page is returned instead.

Generate Server Self Signed Key and Certificate for HOKAWebServer TLS

This section details the commands and steps to generate a self signed certificate and a DER
formatted key for HOKA server to enable TLS.

Generate Root CA Key & Certificate

To generate a root certificate authority (CA) using openssl, execute the following command and
follow the instructions by filling the certificate information:

openssl req -new -x509 -days 3650 -keyout ca.key -out ca.crt

• ca.key : is the name of the generated root private key in PEM format.

• ca.crt : is the name of the generated root certificate in PEM format.

3.5. Application Developer Guide 620

MicroEJ Documentation,

Generate HOKA Server Private Key

To generate a private key using openssl, execute the following command:

openssl genrsa -out hoka.key 4096

• hoka.key : is the name of the generated private key.

• 4096 : is the length of the private key.

Generate HOKA Server Self Signed Public Key

To generate a Self signed public key:

1. Generate a certificate signing request (CSR) using openssl, for that execute the following com-
mand and fill in the information: openssl req -new -sha256 -key hoka.key -out hoka-csr.pem

2. Use the CSR to generate a self signed certificate using openssl by executing the following com-
mand: openssl x509 -req -days 365 -in hoka-csr.pem -CA ca.crt -CAkey ca.key -CAcre-
ateserial -out hoka.crt

3.5. Application Developer Guide 621

MicroEJ Documentation,

Convert HOKA Private Key to DER Format

To convert the private key to DER format using openssl execute the following command:

openssl pkcs8 -inform PEM -in hoka.key -topk8 -outform DER -out hoka.der -v1 PBE-SHA1-3DES -passout
pass:changeit

Note: In the HOKA SSL example, hoka.key corresponds to the above hoka.der .

Handle Encoding

Content And Transfer Encoding

The HTTP protocol specifies how to send the request/response payload (the body) with a spe-
cific encoding. To guarantee that the receiver can understand the encoded stream, HTTP has
specified headers for encoding : content-encoding , transfer-encoding and accept-encoding
. The HttpRequest and HttpResponse classes uses encoding handlers stored in the En-
codingRegistry to, respectively, decode and encode the payloads with the relevant handler (
ContentEncoding or TransferEnCoding). For the response, the accept-encoding the header
value is used to determine the available encoding with the highest quality (acceptance value).

By default, the registry contains the “identity” encoding handler and the “chunked”
transfer-coding handlers.

Request And Response Encoding

Whenparsing the request, HttpRequest wraps thebodywith the appropriate decoder or, if not
found, sends a “406 Not Acceptable” response. The body-parser will receive the wrapped (de-
coded) stream as input to not have to deal with encodings. The same for HttpResponse uses
the encoder wrapper to write the response into the encoded stream sent to the socket. Also,
when using an input streamwith unknown length as the response’s data, the transfer encoding
used to send the response is “chunked”; otherwise, it is “identity”. When using a String as the
response data, use the HttpResponse#setData(String, String) to specify the encoding of the
string (by default, ISO-8859-1 is used).

URL Encoding

The percent-encoded special characters in the URI and in the query (parameters) are automat-
ically decoded at parsing.

3.5. Application Developer Guide 622

https://github.com/MicroEJ/ExampleJava-Hoka/tree/master-github/example-https/src/main/resources/https

MicroEJ Documentation,

Session

HOKA provides tools to enable session management on the HTTP server.

Here is an example of how to use it.

// create a new session and store the user data in a session
final SessionHandler sessionHandler = new SessionHandler(new SecureRandom());
final Session session = this.sessionHandler.newSession();

// for example from a login request handler
// ... authenticate a user and store it user name into a session attribute
session.setAttribute(”username”, username);
// add a session cookie to the HttpResponse
response.addCookie(”jsessionid”, session.getId(), 0, false, true);

// from a protected request handler
// Get the session if from the cookie
String sessionId = request.getCookie(”jsessionid”);
Session session = this.session.getSession(sessionId); // get the session by it's id
// check if the user exists in the server session.
String␣
→˓username = (String) session.getAttribute(”username”); // access the username for example.

HOKA Configuration

Theserver canbeconfiguredbycreatingaproperty file in src/main/resourcesnamedhoka.prop-
erties

Copyright 2021 MicroEJ Corp. All rights reserved.
Use␣
→˓of this source code is governed by a BSD-style license that can be found with this software.

HOKA Server properties

Use this property to set the logging level of the server.
TRACE, DEBUG, INFO, WARN, ERROR, NONE
the lower level activate all the others.
hoka.logger.level=INFO

use this property␣
→˓to set a custom logger. The custom logger must implement the interface ej.hoka.log.Logger
if not set HOKA use a SimpleLogger implementation that logs to the standard output
Ensure that your␣
→˓logger is kept by the Soar by adding it to *.types.list properties file in the app resources.
#hoka.logger.class=

I/O buffer size used to read/write data from/to request/response
#hoka.buffer.size=4096

This section presents networking libraries.

The following schema shows the overall architecture andmodules:

3.5. Application Developer Guide 623

MicroEJ Documentation,

Fig. 150: Network Libraries Overview

• Foundation Libraries

• Add-On Libraries

Bluetooth

This section presents Bluetooth libraries.

Bluetooth API Library

Introduction

The Bluetooth API Library provides APIs to use BLE (Bluetooth Low Energy) in an Application.

Usage

The Bluetooth API Library is provided as a Foundation Library.

To use the Bluetooth API Library, add the following to the project build file:

Gradle (build.gradle.kts)

MMM (module.ivy)

3.5. Application Developer Guide 624

https://repository.microej.com/modules/ej/api/bluetooth/

MicroEJ Documentation,

implementation(”ej.api:bluetooth:2.2.1”)

<dependency org=”ej.api” name=”bluetooth” rev=”2.2.1”/>

Building or running an Application which uses the Bluetooth API Library requires the VEE Port
to provide the Bluetooth Pack.

Basic Knowledge and APIs

BLE is very different from TCP/IP networking. Like Wi-Fi, Bluetooth uses UHF radio waves to
communicate over a short range, but it introduces an entirely uniqueprotocol stack. It is impor-
tant to understand how BLE works to develop an efficient and reliable Bluetooth application.
This section explains the basics of BLE and how they are reified in the Bluetooth API.

Connection APIs

BLE introduces two roles of devices: the Central and Peripheral roles. A Central device scans
nearby Peripheral devices and initiates the connection, while a Peripheral device advertises
(broadcasts) and listens for connection requests. In this regard, a Central device canbe thought
of as a Wi-Fi Station while a Peripheral device can be thought of as a Wi-Fi Access Point.

The following sequence explains the typical connection flow between two devices:

• The Peripheral device starts advertising

• The Central device starts scanning

• The Central device initiates a connection with the Peripheral device

Fig. 151: Connection Procedure

A devicemust always enable its Bluetooth adapter using the BluetoothAdapter.enable() API be-
fore calling any other Bluetooth API. A Peripheral device can call the BluetoothAdapter.startAd-
vertising() API to start advertising. A Central device can call the BluetoothAdapter.startScan-
ning() API to start scanning and the BluetoothAdapter.connect() API to initiate a connec-
tion. The BluetoothAdapter.stopAdvertising() and BluetoothAdapter.stopScanning() APIs can
be called to stop advertising or scanning, however note that these operations are stopped au-
tomatically when a connection is established. A device must set the connection listener of

3.5. Application Developer Guide 625

https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothAdapter.html#enable--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothAdapter.html#startAdvertising-byte:A-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothAdapter.html#startAdvertising-byte:A-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothAdapter.html#startScanning-ej.bluetooth.BluetoothScanFilter-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothAdapter.html#startScanning-ej.bluetooth.BluetoothScanFilter-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothAdapter.html#connect-ej.bluetooth.BluetoothAddress-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothAdapter.html#stopAdvertising--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothAdapter.html#startScanning-ej.bluetooth.BluetoothScanFilter-

MicroEJ Documentation,

the adapter in order to be notified of asynchronous connection events, by calling the Blue-
toothAdapter.setConnectionListener() API. The ConnectionListener.onScanResult() hook is called on every scan
result and the ConnectionListener.onConnected() hook is called when a connection is established.

Pairing APIs

Pairing is an optional procedure which allows to authenticate the connection by requesting
a proof of possession (via a PIN code for example). The pairing procedure can be started at
any time during a connection. It is often performed upon connecting or when first accessing a
secure GATT service.

Here are the steps of the pairing procedure:

• Either device sends a pairing request or security request to the other device

• Both devices share their I/O capabilities

• If the I/O capabilities of the devices allow to create a connection with protection against MITM
attacks, the Passkey Entry method is used:

– The device with display capability displays a generated passkey on its user interface

– Thedevicewith input capability reads thepasskey fromtheuser input and sends it to thedevice
with display capability

– The device with display capability checks that the passkey match

• Otherwise, the “JustWorks”method is used and the pairing is complete. Thismethod does not
prevent fromMITM attacks.

A device can call the BluetoothConnection.sendPairRequest() API to initiate pairing. The Con-
nectionListener.onPairRequest() hook is called when the device receives a pairing request. It
can call the BluetoothConnection.sendPairResponse() API to accept or deny the pairing. The
ConnectionListener.onPasskeyGenerated() hook is called when the device with display capa-
bility has generated a passkey to display. The ConnectionListener.onPasskeyRequest() hook is
called when the device with input capability should provide the passkey. It can call the Blue-
toothConnection.sendPasskeyResponse() API to provide it.

GATT Services APIs

With BLE, devices exchange data through GATT services. BLE specifies standard services (such
as the Current Time Service or the Battery Service) which allow devices to be interoperable,
but BLE also allows to define custom services. Either device (Central or Peripheral or both) can
provide services to the other. A device must discover the services provided by the other device
before it can use them.

Adevice candefine andprovide services using theBluetoothServiceDefinitionbuilder class and
theBluetoothAdapter.addService() API. Once a connection is established, either device candis-
cover the services of the other device by calling the BluetoothConnection.discoverServices()
API. The ConnectionListener.onDiscoveryResult() hook is called for each service provided by
the other device.

A service provides characteristics, which can be thought of as data channels. A characteris-
tic has property flags, which indicate to the other devices how the characteristic can be used
(whether it can be written, whether it provides notifications, etc.). A characteristic may have
descriptors, which allow to describe or configure the characteristic in a specific way. Every at-
tribute (characteristic or descriptor) has permission flags, which control its access (read-only,

3.5. Application Developer Guide 626

https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothAdapter.html#setConnectionListener-ej.bluetooth.listeners.ConnectionListener-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothAdapter.html#setConnectionListener-ej.bluetooth.listeners.ConnectionListener-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/listeners/ConnectionListener.html#onScanResult-ej.bluetooth.BluetoothAddress-byte:A-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/listeners/ConnectionListener.html#onConnected-ej.bluetooth.BluetoothConnection-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothConnection.html#sendPairRequest--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/listeners/ConnectionListener.html#onPairRequest-ej.bluetooth.BluetoothConnection-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/listeners/ConnectionListener.html#onPairRequest-ej.bluetooth.BluetoothConnection-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothConnection.html#sendPairResponse-boolean-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/listeners/ConnectionListener.html#onPasskeyGenerated-ej.bluetooth.BluetoothConnection-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/listeners/ConnectionListener.html#onPasskeyRequest-ej.bluetooth.BluetoothConnection-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothConnection.html#sendPasskeyResponse-boolean-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothConnection.html#sendPasskeyResponse-boolean-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothServiceDefinition.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothAdapter.html#addService-ej.bluetooth.BluetoothServiceDefinition-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothConnection.html#discoverServices--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/listeners/ConnectionListener.html#onDiscoveryResult-ej.bluetooth.BluetoothConnection-ej.bluetooth.BluetoothService-

MicroEJ Documentation,

read/write, requires authentication, etc.). Services and attributes are all identified by a 16-bit
UUID. If a service or attribute is standard, the relevant specification indicates its UUID.

Fig. 152: Service Structure

A device can call the getter APIs of BluetoothService, BluetoothCharacteristic, BluetoothDe-
scriptor and BluetoothAttribute to browse the content of a service.

BLE devices use characteristics to transfer data. There are 4 main procedures:

• The Read procedure allows the device which discovered the service to request data. The de-
vice sends a read request and the devicewhich provides the service sends back a read response
with the data.

• The Write procedure allows the device which discovered the service to send data and to re-
quire an acknowledgment. Thedevice sends awrite requestwith thedata and thedevicewhich
provides the service sends back a write response.

• The Write Without Response procedure allows the device which discovered the service to
send data without expecting an acknowledgment. The device just sends a write request with
the data.

• The Notify procedure allows the device which provides the service to send data. The device
sends a notification with the data, and if it requires an acknowledgment, the device which dis-
covered the service sends back an acknowledgment. It is a common practice to send notifica-
tions only to devices which have subscribed to the characteristic (a device can subscribe to a
characteristic by sending a write request on its CCC descriptor).

For the Read procedure, a device can call the BluetoothConnection.sendReadRequest() API to
send a read request. The LocalServiceListener.onReadRequest() hook is called when a device
receives a read request. It can call the BluetoothConnection.sendReadResponse() API to send
a read response with the data. The RemoteServiceListener.onReadCompleted() hook is called
with the data when a device receives a read response.

For theWriteWithout Response and theWrite procedures, a device can call the sendBluetooth-
Connection.sendWriteRequest() API to send awrite request with the data. The LocalServiceLis-
tener.onWriteRequest() hook is called with the data when a device receives a write request. It

3.5. Application Developer Guide 627

https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothService.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothCharacteristic.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothDescriptor.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothDescriptor.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothAttribute.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothConnection.html#sendReadRequest-ej.bluetooth.BluetoothAttribute-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/listeners/LocalServiceListener.html#onReadRequest-ej.bluetooth.BluetoothConnection-ej.bluetooth.BluetoothAttribute-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothConnection.html#sendReadResponse-ej.bluetooth.BluetoothAttribute-byte-byte:A-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/listeners/RemoteServiceListener.html#onReadCompleted-ej.bluetooth.BluetoothConnection-ej.bluetooth.BluetoothAttribute-byte-byte:A-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothConnection.html#sendWriteRequest-ej.bluetooth.BluetoothAttribute-byte:A-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothConnection.html#sendWriteRequest-ej.bluetooth.BluetoothAttribute-byte:A-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/listeners/LocalServiceListener.html#onWriteRequest-ej.bluetooth.BluetoothConnection-ej.bluetooth.BluetoothAttribute-byte:A-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/listeners/LocalServiceListener.html#onWriteRequest-ej.bluetooth.BluetoothConnection-ej.bluetooth.BluetoothAttribute-byte:A-

MicroEJ Documentation,

can call the BluetoothConnection.sendWriteResponse() API to send a write response (in case
of the write procedure). The RemoteServiceListener.onWriteCompleted() hook is called when
a write request is sent (or when it receives a write response, in case of the write procedure).

For the Notify procedure, a device can call the send BluetoothConnection.sendNotification()
API to send a notification with the data. The RemoteServiceListener.onNotificationReceived()
hook is calledwith the datawhen a device receives a notification. The LocalServiceListener.on-
NotificationSent() hook is called when a notification is sent (or when it receives the acknowl-
edgment, if one is required).

Classes Summary

Main classes:

• BluetoothAdapter (singleton): Performs operations not related to a specific device connection (scan, adver-
tise, connect, provide GATT service)

• BluetoothConnection: Performsoperations related toaspecificdeviceconnection (disconnect, pair, discover
GATT services, send GATT requests)

• BluetoothService: Represents a GATT service

• ConnectionListener and DefaultConnectionListener: Callbacks for all events not related to a specific GATT
service

• LocalServiceListener and DefaultLocalServiceListener: Callbacks for events related to a specific provided
GATT service

• RemoteServiceListener and DefaultRemoteServiceListener: Callbacks for events related to a specific discov-
ered GATT service

Stateless and immutable classes:

• BluetoothAddress: Address (BD_ADDR) of a device

• BluetoothScanFilter: Scan result filter used when starting a scan

• BluetoothDataTypes: Data types enumeration used in advertisement payloads

• BluetoothCharacteristic: Represents a GATT characteristic

• BluetoothDescriptor: Represents a GATT descriptor

• BluetoothAttribute: Abstract base class of BluetoothCharacteristic and BluetoothDescriptor

• BluetoothUuid: UUID of a GATT service or GATT attribute

• BluetoothProperties: Properties enumeration used in GATT characteristics

• BluetoothPermissions: Permissions enumeration used when defining a GATT attribute

• BluetoothServiceDefinition: Builder class used when adding a GATT service

• BluetoothStatus: Status code enumeration used when reading/writing a GATT attribute

3.5. Application Developer Guide 628

https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothConnection.html#sendWriteResponse-ej.bluetooth.BluetoothAttribute-byte-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/listeners/RemoteServiceListener.html#onWriteCompleted-ej.bluetooth.BluetoothConnection-ej.bluetooth.BluetoothAttribute-byte-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothConnection.html#sendNotification-ej.bluetooth.BluetoothCharacteristic-byte:A-boolean-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/listeners/RemoteServiceListener.html#onNotificationReceived-ej.bluetooth.BluetoothConnection-ej.bluetooth.BluetoothCharacteristic-byte:A-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/listeners/LocalServiceListener.html#onNotificationSent-ej.bluetooth.BluetoothConnection-ej.bluetooth.BluetoothCharacteristic-boolean-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/listeners/LocalServiceListener.html#onNotificationSent-ej.bluetooth.BluetoothConnection-ej.bluetooth.BluetoothCharacteristic-boolean-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothAdapter.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothConnection.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothService.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/listeners/ConnectionListener.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/listeners/impl/DefaultConnectionListener.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/listeners/LocalServiceListener.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/listeners/impl/DefaultLocalServiceListener.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/listeners/RemoteServiceListener.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/listeners/impl/DefaultRemoteServiceListener.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothAddress.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothScanFilter.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothDataTypes.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothCharacteristic.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothDescriptor.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothAttribute.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothUuid.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothProperties.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothPermissions.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothServiceDefinition.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothStatus.html

MicroEJ Documentation,

Use-Cases

Achieving Maximum Throughput

In some use-cases, such as when sending a large file to another device, the throughput must
be as high as possible to decrease the transfer time.

Here are some guidelines to achieve the maximum throughput:

• Change the MTU to the maximum value (512 bytes) instead of the default value (23 bytes)

– Once devices are connected, either device should send aMTU request with themaximumvalue

– When the other device receives the MTU request, it should send a MTU response with the max-
imum value

– Since there is no API for MTU exchange in the Bluetooth API Library, this step has to be per-
formed in the native code

• Use a data transfer procedure which does not require an acknowledgment

– If the service is provided by the device sending the data: use the Notify procedure without re-
questing an acknowledgment

– If the service is discovered by the device sending the data: use the Write Without Response
procedure

• Send the data chunks as fast as possible

– Do not wait for the previous chunk to be delivered before sending the next chunk

– If a chunkcannotbedeliveredbecause theconnection is congested,wait abit and retry sending
the chunk

Examples

MicroEJprovides twoexampleswhich showhowtouse theBluetoothAPI. There is oneexample
of Central device and one example of Peripheral device.

These examples can be found on GitHub. Please refer to their own README for more informa-
tion on these examples.

Bluetooth Utility Library

Introduction

The Bluetooth Utility Library provides utility methods which can be useful when developing a
Bluetooth Application. It depends on the Bluetooth API Library.

3.5. Application Developer Guide 629

https://github.com/MicroEJ/Example-Foundation-Libraries

MicroEJ Documentation,

Usage

The Bluetooth Utility Library is provided as an Add-On Library.

To use the Bluetooth Utility Library, add the following to the project build file:

Gradle (build.gradle.kts)

MMM (module.ivy)

implementation(”ej.library.iot:bluetooth-util:1.1.0”)

<dependency org=”ej.library.iot” name=”bluetooth-util” rev=”1.1.0”/>

Since this library is built on top of the Bluetooth API Library, it inherits its requirements.

Classes Summary

Main classes:

• AdvertisementData: Parses or builds an advertisement payload

• DescriptorHelper: Constants and utility methods related to GATT descriptors

• ServiceHelper: Utility methods related to GATT services

Stateless and immutable classes:

• AdvertisementFlags: Flags enumeration used in advertisement payloads

• AttributeNotFoundException: Exception thrown by ServiceHelper when a GATT attribute is not found

Audio

Introduction

The Audio API Library provides APIs to record and play audio in an Application.

This API can be used in various use-cases, such as:

• playing a sound

• playing a music streamed over IP or Bluetooth

• making a call

• synthesizing speech (text-to-speech)

• recognizing speech (speech-to-text)

• using a voice assistant such as Alexa or ChatGPT

3.5. Application Developer Guide 630

https://repository.microej.com/modules/ej/library/iot/bluetooth-util/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/util/AdvertisementData.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/util/DescriptorHelper.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/util/ServiceHelper.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/util/AdvertisementFlags.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/util/AttributeNotFoundException.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/util/ServiceHelper.html

MicroEJ Documentation,

Usage

The Audio API Library is provided as a Foundation Library.

To use the Audio API Library, add the following line to the project build file:

Gradle (build.gradle.kts)

MMM (module.ivy)

implementation(”ej.api:audio:1.0.0”)

<dependency org=”ej.api” name=”audio” rev=”1.0.0”/>

Building or running an Application which uses the Audio API Library requires the VEE Port to
provide the Audio Pack.

APIs

This section explains how audio concepts are reified in the Audio API.

Audio Format

When opening an audio stream, it is necessary to provide the format of the audio data. In the
Audio API, the format is specified by the AudioFormat class.

The main property of an audio format is the encoding that is used to represent the data. De-
pending on the encoding used, the format may be described by an indeterminate number of
parameters, such as the sample rate or the number of channels.

Although many audio encoding standards exist, the Audio API only provides a single Audio-
Format implementation, PcmAudioFormat, which uses the PCM encoding. The Application can
define additional audio formats usingother encodings, but these encodingsmust be supported
by the VEE Port to be used by the Application.

For example, the following snippet defines the “PCM 16kHz mono 16-bit little-endian signed”
audio format:

AudioFormat FORMAT = new PcmAudioFormat(16_000, 1, 16, false, true);

Audio Recording

An audio recording stream can be opened by creating an AudioRecord instance. When creating
an audio record, the format and the size of the native audio buffer must be provided. Since
creating an AudioRecord instance allocates native resources, it should be closed with the Au-
dioRecord.close() method in order to free these resources.

While the audio record is open, the native implementation records audio data continuously
from the input device and writes it in the buffer. The AudioRecord.readBuffer() method can be
used to retrieve and remove a chunk of audio data from the buffer. This method blocks until
the requested size has been read or until the audio record is closed. If the audio data is not read
fast enough by the application, the native implementation will discard the oldest audio data
from the buffer.

3.5. Application Developer Guide 631

https://repository.microej.com/modules/ej/api/audio/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/audio/AudioFormat.html
https://en.wikipedia.org/wiki/Audio_coding_format
https://repository.microej.com/javadoc/microej_5.x/apis/ej/audio/AudioFormat.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/audio/AudioFormat.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/audio/format/PcmAudioFormat.html
https://en.wikipedia.org/wiki/Pulse-code_modulation
https://repository.microej.com/javadoc/microej_5.x/apis/ej/audio/AudioRecord.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/audio/AudioRecord.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/audio/AudioRecord.html#close--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/audio/AudioRecord.html#close--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/audio/AudioRecord.html#readBuffer-byte:A-int-int-

MicroEJ Documentation,

For example, the following snippet records audio with an audio record and writes the audio
data to a file:

try (OutputStream outputStream = new FileOutputStream(”record.raw”)) {
try (AudioRecord audioRecord = new AudioRecord(FORMAT, 1600)) {

byte[] buffer = new byte[480];
while (true) {
␣

→˓ int bytesRead = audioRecord.readBuffer(buffer, 0, buffer.length); // read from audio record
outputStream.write(buffer, 0, bytesRead); // write to file

}
}

}

Note: In order to avoid discontinuities in the recorded data, it is recommended to have a dedicated thread reading
thebufferof theaudio record. This shouldnotbedone in theUI threadas reading is ablockingoperation thatwould
prevent the UI thread from performing other tasks.

Audio Playback

An audio playback stream can be opened by creating an AudioTrack instance. When creating
an audio track, the format and the size of the native audio buffer must be provided. Since cre-
ating an AudioTrack instance allocates native resources, it should be closed with the Audio-
Track.close() method in order to free these resources.

While the audio track is open, the native implementation reads audio data continuously from
the buffer and plays it on the output device. The AudioTrack.writeBuffer() method can be used
to write a chunk of audio data in the buffer. This method blocks until the requested size has
been written or until this audio track is closed. If audio data is not written fast enough by
the application, the output devicemay play undesired silences. The AudioTrack.waitForBuffer-
Flushed() method can be used to wait until all the audio data written in the buffer has been
played back. The volume of the playback can be configured by calling AudioTrack.setVolume().

For example, the following snippet reads audio data from a resource and plays the audio with
an audio track:

try (InputStream inputStream = MyClass.class.getResourceAsStream(”/track.raw”)) {
try (AudioTrack audioTrack = new AudioTrack(FORMAT, 1600)) {

byte[] buffer = new byte[480];
while (true) {

int bytesRead = inputStream.read(buffer, 0, buffer.length); // read from resource
if (bytesRead == -1) { // EOF

break;
}
audioTrack.writeBuffer(buffer, 0, bytesRead); // write to audio track

}
audioTrack.waitForBufferFlushed(); // play remaining audio data before closing

}
}

Note: In order to avoiddiscontinuities in theaudioplayback, it is recommended tohaveadedicated threadwriting
the buffer of the audio track. This should not be done in the UI thread as writing is a blocking operation that would

3.5. Application Developer Guide 632

https://repository.microej.com/javadoc/microej_5.x/apis/ej/audio/AudioTrack.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/audio/AudioTrack.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/audio/AudioTrack.html#close--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/audio/AudioTrack.html#close--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/audio/AudioTrack.html#writeBuffer-byte:A-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/audio/AudioTrack.html#waitForBufferFlushed--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/audio/AudioTrack.html#waitForBufferFlushed--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/audio/AudioTrack.html#setVolume-float-

MicroEJ Documentation,

prevent the UI thread from performing other tasks.

Classes Summary

Main classes:

• AudioRecord: Represents an audio recording stream.

• AudioTrack: Represents an audio playback stream.

Stateless and immutable classes:

• AudioException: RuntimeException thrown when an error occurred during an audio operation.

• AudioFormat: Specifies the data format of an audio stream.

• PcmAudioFormat: AudioFormat which represents data with the PCM encoding.

Configuration

The Audio Pack can be configured by defining the following Application Options:

• audio.heap.size : defines the size of the Audio heap, in which the native buffers of the audio streams are
allocated.

• s3.audio.input.device : defines the name of the Audio input device to use when running the Application on
Simulator.

• s3.audio.output.device : defines the name of the Audio output device to use when running the Application
on Simulator.

Examples

MicroEJ provides two examples which show how to use the Audio API: one example for audio
recording and one for audio playback.

These examples can be found on GitHub. Please refer to their own README for more informa-
tion on these examples.

MicroAI

Introduction

The MicroAI Library provides APIs to interact with trained Machine Learningmodels, especially
to run inferences.

3.5. Application Developer Guide 633

https://repository.microej.com/javadoc/microej_5.x/apis/ej/audio/AudioRecord.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/audio/AudioTrack.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/audio/AudioException.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/RuntimeException.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/audio/AudioFormat.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/audio/format/PcmAudioFormat.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/audio/AudioFormat.html
https://en.wikipedia.org/wiki/Pulse-code_modulation
https://github.com/MicroEJ/Example-Foundation-Libraries

MicroEJ Documentation,

Usage

The MicroAI Library is provided as a Foundation Library.

To use the MicroAI Library, add the following line to the project build file:

implementation(”ej.api:microai:2.0.0”)

Building or running an Applicationwhich uses theMicroAI Library requires a SDK6 VEEPort that
provides theMicroAI Pack.

Machine Learning Model Format

MicroAI API is designed to be framework-agnostic, meaning it does not rely on a specific Ma-
chine Learning framework like TensorFlow or ONNX.

The Machine Learning framework is integrated at the VEE Port level, as a C/C++ library.

The Application is responsible of loading the model file. Therefore, before developing an Ap-
plication with MicroAI, check which model file formats are supported by your target VEE Port.

MicroEJ Simulator

If you need to use the MicroEJ Simulator, you must use a model in TensorFlow Lite for Mi-
crocontrollers (TFLM) format. Other model formats will not be compatible with the MicroEJ
Simulator and cannot be executed within it.

Tensorflow Lite for Microcontrollers supports a limited subset of TensorFlow operations, which
impacts the model architectures that it is possible to run. The supported operators list corre-
sponds to the list in the all_ops_resolver.cc file.

APIs

MLInferenceEngine

The first actionwhenworkingwithMicroAI is to load the trainedMachine Learningmodel using
MLInferenceEngine class.

There are 2 ways to load amodel:

• From an application resource with MLInferenceEngine(String modelPath) constructor.

• From an InputStream using MLInferenceEngine(InputStream is) constructor.

The MLInferenceEngine constructor will:

1. Map the model into a native data structure.

2. Build an interpreter to run the model with.

3. Allocate memory for the model’s tensors.

When using MLInferenceEngine(InputStream is), the model is loaded inside the MicroAI heap.
The size of MicroAI heap is defined from theMicroAI Configurations.

Note that the call toMLInferenceEngine(InputStream is)will blockuntil themodel is completely
retrieved/loaded.

3.5. Application Developer Guide 634

https://repository.microej.com/modules/ej/api/microai/
https://github.com/tensorflow/tflite-micro/blob/cdc3a3203f7721d17f6058979385a79cbd217551/tensorflow/lite/micro/all_ops_resolver.cc
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microai/MLInferenceEngine.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microai/MLInferenceEngine.html#MLInferenceEngine-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microai/MLInferenceEngine.html#MLInferenceEngine-java.io.InputStream-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microai/MLInferenceEngine.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microai/MLInferenceEngine.html#MLInferenceEngine-java.io.InputStream-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microai/MLInferenceEngine.html#MLInferenceEngine-java.io.InputStream-

MicroEJ Documentation,

Once initialized, MLInferenceEngine allows to get input/output model tensors and to run infer-
ences on the trainedmodel.

For example, the following snippet loads a trained model from the application resources and
runs an inference on it:

try(MLInferenceEngine mlInferenceEngine␣
→˓= new MLInferenceEngine(”/model.tflite”)) { // Initialize the inference engine.

InputTensor inputTensor␣
→˓= mlInferenceEngine.getInputTensor(0); // Get input tensor of the trained model.

/*
* Fill the input tensor
*/
mlInferenceEngine.run(); // Run inference on the trained model.
OutputTensor outputTensor␣

→˓= mlInferenceEngine.getOutputTensor(0); // Get output tensor of the trained model.
/*
* Process output data
*/

}

Tensor

Tensor parameters can be retrieved from the Tensor class.

It allows to get some useful information such as the data type, the number of dimensions, the
number of elements, the size in bytes or the quantization parameters.

There are 2 kinds of tensors:

• InputTensor: Offers services to load input data insideMicroAI input tensors before running an inference. Ten-
sor input data must be one of the types supported by MicroAI (see Tensor.DataType).

• OutputTensor: Offers services to retrieve output data fromMicroAI output tensors after running an inference.
Tensor output data must be one of the types supported by MicroAI (see Tensor.DataType).

Classes Summary

Main classes:

• MLInferenceEngine: Loads a model, get its tensors and runs inferences on it.

• Tensor: Retrieves a tensor information.

• InputTensor: Loads input data before running an inference.

• OutputTensor: Retrieves output data after running an inference.

Stateless and immutable classes:

• Tensor.DataType: Enumerates MicroAI data types.

• Tensor.QuantizationParameters: Represents quantized parameters of a tensor.

3.5. Application Developer Guide 635

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microai/MLInferenceEngine.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microai/Tensor.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microai/InputTensor.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microai/OutputTensor.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microai/MLInferenceEngine.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microai/Tensor.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microai/InputTensor.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microai/OutputTensor.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microai/Tensor.DataType.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microai/Tensor.QuantizationParameters.html

MicroEJ Documentation,

Configuration

TheMicroAI Pack can be configured by defining the following Application Options:

• microai.heap.size : defines the size of the MicroAI heap, in which the InputStreammodels are allocated.

Example

For example, the following snippet runs inference on model that takes 1 quantized element as
input and outputs 1 float value:

try(MLInferenceEngine mlInferenceEngine␣
→˓= new MLInferenceEngine(”/model.tflite”)) { // Initialize the inference engine.

InputTensor inputTensor␣
→˓= mlInferenceEngine.getInputTensor(0); // Get input tensor of the trained model.

byte[] inputData = new␣
→˓byte[inputTensor.getNumberElements()]; // Create an array that fits size of input tensor.

// Fill inputData with quantized value.
float realValue = 10f;
Tensor.QuantizationParameters quantizationParameters␣

→˓= inputTensor.getQuantizationParams(); // Get quantization parameters.
inputData[0] = (byte) (realValue / quantizationParameters.

→˓getScale() + quantizationParameters.getZeroPoint()); // Quantize the input value.
inputTensor.setInputData(inputData); // Load input data inside MicroAI input tensor.

mlInferenceEngine.run(); // Run inference on the trained model.

OutputTensor outputTensor␣
→˓= mlInferenceEngine.getOutputTensor(0); // Get output tensor of the trained model.

float[] outputData = new␣
→˓float[outputTensor.getNumberElements()]; // Create an array that fits size of output tensor.

// Retrieve and print inference result.
outputTensor.

→˓getOutputData(outputData); // Retrieve output data from MicroAI output tensor.
System.out.println(”Inference result with ” + realValue + ” input is ” + outputData[0]);

}

Date and Time

Introduction

Javadevelopers have longused theDate, Calendar andTimeZoneclasses for handlingdateand
time. Java SE 8 introduced a more advanced and comprehensive Date and Time API that goes
beyond simply replacing Date or Calendar. It provides a complete timemodel for applications.

There are many benefits of using the latest:

• Immutability: types are immutable, making thread-safe code easier to write and less prone to
bugs (due to nomutable state).

• Improved API design: it offers an intuitive and developer-friendly design that better addresses
the challenges of date and time manipulation. Application code is also easier to read and un-
derstand.

3.5. Application Developer Guide 636

https://repository.microej.com/javadoc/microej_5.x/apis/java/util/Date.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/Calendar.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/TimeZone.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/Date.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/Calendar.html

MicroEJ Documentation,

• Simplified date and time arithmetic: the API introduces methods for common date and time
operations, simplifying tasks like adding or subtracting days, months, or years.

• Precision: it providesmore precise representations for date and time values, including support
for nanoseconds, which is important for applications requiring high precision.

• Comprehensive timemodel: it introduces new classes that deal with different concepts of time
such as date without a time or time without a date, durations or periods.

In general, it’s a good practice to use the Java Time API when dealing with date, time,
and time zone-related operations because of its convenient features and extensive capa-
bilities. Yet, for straightforward timestamp handling or lightweight applications, System.
currentTimeMillis() can be adequate. One aspect to keep in mind is that the Time API offers
better readability and advanced operations, which might be missing when using timestamp
manipulation or older APIs.

Overview

The library introduces different classes for date, time, date-time, and variations for offset and
time zone. While thismay seem like a lot of classes, most applications can start with only these
types:

• Instant: an instantaneous point on the timeline. It can be used to store timestamps of application events.

• LocalDate: stores a date without a specific time or time zone, like 2023-09-26 .

• LocalTime: stores a time without a specific date or time zone, like 15:30 .

• LocalDateTime: stores both a date and time without a specific time zone, like 2023-09-26T15:30 . It com-
bines LocalDate and LocalTime.

• ZonedDateTime: stores both a date and time, including a time zone. This is handy for performing precise
date and time calculations while considering the time zone.

• Duration: a duration of time, measured in hours, minutes, seconds, and nanoseconds.

• Period: a duration of time in terms of years, months, and days.

Note: Working with a time zone can make calculations more complex. In many cases, the application can only
work with LocalDate, LocalTime, and Instant, and then add the time zone at the user interface (UI) level.

TheAPI hasmanymethods, but it remains easy tohandlebecause it sticks to consistentmethod
prefixes:

• of : static factory method.

• get : gets a value.

• is : checks if some condition is true.

• with : equivalent to a setter for immutable objects, returns a copy with the specified argument set.

• plus : adds an amount to an object.

• minus : subtracts an amount from an object.

• to : converts this object to another type.

• at : combines this object with another.

3.5. Application Developer Guide 637

https://repository.microej.com/javadoc/microej_5.x/apis/java/time/Instant.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/time/LocalDate.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/time/LocalTime.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/time/LocalDateTime.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/time/LocalDate.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/time/LocalTime.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/time/ZonedDateTime.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/time/Duration.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/time/Period.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/time/LocalDate.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/time/LocalTime.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/time/Instant.html

MicroEJ Documentation,

Usage

The Date and Time API is provided as an Add-on Library.

To use the time library, add the following to the project build file:

Gradle (build.gradle.kts)

MMM (module.ivy)

implementation(”ej.library.eclasspath:time:1.1.0”)

<dependency org=”ej.library.eclasspath” name=”time” rev=”1.1.0”/>

Examples

This section presents a series of small, focused examples that demonstrate various aspects of
the Java Date and Time API.

Instant

The Instant class is the closest equivalent of Date. It represents a specific instant in time.

// Creating instants
Instant now = Instant.now(); // now
Instant␣
→˓someInstant = Instant.ofEpochSecond(1695732445L); // September 26, 2023 12:47:25 PM

// Displaying
System.out.println(”Seconds elapsed since epoch ” + now.getEpochSecond());

// Chaining operations on instants
long secondsUntil = someInstant.plusSeconds(10).until(now, ChronoUnit.SECONDS);
System.out.println(”Amount of time until another instant in seconds: ” + secondsUntil);

LocalDate

LocalDate stores a date without a time. It is called “local” because it isn’t associated with any specific time zone,
similar to a wall clock. It simplifies date operations by dealing only with dates, making it suitable for scenarios not
requiring time zone concerns (e.g., booking systems, calendars, date validation, etc.).

// Creating LocalDate instances
LocalDate today = LocalDate.now(); // Current date
LocalDate specificDate = LocalDate.of(2023, Month.JULY, 15); // July 15, 2023

// Displaying LocalDate instances
System.out.println(”Today's Date: ” + today);
System.out.println(”Specific Date: ” + specificDate);

// Performing operations
LocalDate futureDate = today.plusDays(30); // Adding 30 days to today
LocalDate pastDate = today.minusMonths(2); // Subtracting 2 months from today

(continues on next page)

3.5. Application Developer Guide 638

https://repository.microej.com/modules/ej/library/eclasspath/time/
https://repository.microej.com/javadoc/microej_5.x/apis/java/time/Instant.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/Date.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/time/LocalDate.html

MicroEJ Documentation,

(continued from previous page)

// Displaying the results of operations
System.out.println(”Date 30 days from today: ” + futureDate);
System.out.println(”Date 2 months ago from today: ” + pastDate);

// Comparing LocalDate instances
boolean isAfter = specificDate.isAfter(today); // Check if specificDate is after today

// Displaying comparison results
System.out.println(”Is specificDate after today? ” + isAfter);

LocalTime

LocalTime stores a particular time of day, focusing only on the time (hour, minute, second, nanosecond), and
doesn’t include date or time zone details. Useful when you only need to handle time values without dates or time
zones (e.g., scheduling events like alarms, stopwatch and timers, event timing, etc.).

// Creating LocalTime instances
LocalTime now = LocalTime.now(); // Current time
LocalTime specificTime = LocalTime.of(14, 30); // 2:30 PM

// Displaying LocalTime instances
System.out.println(”Current Time: ” + now);
System.out.println(”Specific Time: ” + specificTime);

// Performing operations
LocalTime futureTime = now.plusHours(3); // Adding 3 hours to the current time
LocalTime pastTime = now.minusMinutes(15).
→˓minusSeconds(29); // Subtracting 15 minutes and 29 seconds from the current time

// Displaying the results of operations
System.out.println(”Time 3 hours from now: ” + futureTime);
System.out.println(”Time 15 minutes ago: ” + pastTime);

// Displaying time fields
System.out.println(”Hour: ” + now.getHour());
System.out.println(”Minute: ” + now.getMinute());
System.out.println(”Second: ” + now.getSecond());

LocalDateTime

LocalDateTimecombinesbothdateand timecomponents andprovidesaprecise timestamp. Thismakes it suitable
for scenarios where you need to work with both date and time information, but without considering time zone
conversions (e.g., timestamping, user interfaces, etc.).

// Creating LocalDateTime instances
LocalDateTime now = LocalDateTime.now(); // Current date and time
LocalDateTime specificDateTime␣
→˓= LocalDateTime.of(2023, Month.JULY, 15, 14, 30); // July 15, 2023, 2:30 PM

// Displaying LocalDateTime instances
System.out.println(”Current Date and Time: ” + now);

(continues on next page)

3.5. Application Developer Guide 639

https://repository.microej.com/javadoc/microej_5.x/apis/java/time/LocalTime.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/time/LocalDateTime.html

MicroEJ Documentation,

(continued from previous page)

System.out.println(”Specific Date and Time: ” + specificDateTime);

// Performing operations
LocalDateTime␣
→˓futureDateTime = now.plusDays(30).plusHours(3); // Adding 30 days and 3 hours to now
LocalDateTime pastDateTime␣
→˓= now.minusMonths(2).minusMinutes(15); // Subtracting 2 months and 15 minutes from

// now
// Displaying the results of operations
System.out.println(”Date and Time 30 days and 3 hours from now: ” + futureDateTime);
System.
→˓out.println(”Date and Time 2 months and 15 minutes ago from now: ” + pastDateTime);

// Displaying date and time fields
System.out.println(”Year: ” + now.getYear());
System.out.println(”Month: ” + now.getMonth());
System.out.println(”Day of Month: ” + now.getDayOfMonth());
System.out.println(”Hour: ” + now.getHour());
System.out.println(”Minute: ” + now.getMinute());
System.out.println(”Second: ” + now.getSecond());
System.out.println(”Day of Year: ” + now.get(ChronoField.DAY_OF_YEAR));
System.out.println(”Day of Week: ” + now.get(ChronoField.DAY_OF_WEEK));

// Displaying comparison results
System.out.println(
→˓”Is specificDateTime after current date and time? ” + specificDateTime.isAfter(now));

Duration

Duration represents a duration of time, typicallymeasured in hours,minutes, seconds, andnanoseconds. It is used
to calculate and work with time intervals, such as the amount of time between two points in time or the duration
of an event. It is suitable for tasks involving precise timing, such as measuring time elapsed or setting timeouts.

// Creating Duration instances
Duration fiveHours = Duration.ofHours(5); // Duration of 5 hours
Duration thirtyMinutes = Duration.ofMinutes(30); // Duration of 30 minutes
Duration twoSeconds = Duration.ofSeconds(2); // Duration of 2 seconds

// Displaying Duration instances
System.out.println(”5 Hours: ” + fiveHours);
System.out.println(”30 Minutes: ” + thirtyMinutes);
System.out.println(”2 Seconds: ” + twoSeconds);

// Performing operations
Duration␣
→˓combinedDuration = fiveHours.plus(thirtyMinutes).plusSeconds(10); // Adding durations
Duration subtractedDuration = fiveHours.minus(twoSeconds); // Subtracting durations

// Displaying the results of operations
System.out.println(”Combined Duration: ” + combinedDuration);
System.out.println(”Subtracted Duration: ” + subtractedDuration);

// Displaying duration fields
System.out.println(”Hours: ” + combinedDuration.toHours());

(continues on next page)

3.5. Application Developer Guide 640

https://repository.microej.com/javadoc/microej_5.x/apis/java/time/Duration.html

MicroEJ Documentation,

(continued from previous page)

System.out.println(”Minutes: ” + combinedDuration.toMinutes());
System.out.println(”Seconds: ” + combinedDuration.getSeconds());

// Comparing Duration instances
boolean isLonger =␣
→˓fiveHours.compareTo(thirtyMinutes) > 0; // Check if fiveHours is longer than thirtyMinutes
boolean␣
→˓isEqual = fiveHours.equals(Duration.ofHours(5)); // Check if fiveHours is equal to 5 hours

// Displaying comparison results
System.out.println(”Is fiveHours longer than thirtyMinutes? ” + isLonger);
System.out.println(”Is fiveHours equal to 5 hours? ” + isEqual);

Period

Period represents a duration of time in terms of years, months, and days. It is primarily concerned with
human-centric time measurements, like the length of a month or a year. It is well-suited for measuring time in-
tervals within a calendar context. For example, it can represent periods such as 2 years, 3 months, and 5 days.

// Creating LocalDate instances
LocalDate date1 = LocalDate.of(2021, 6, 15); // June 15, 2021
LocalDate date2 = LocalDate.of(2023, 9, 25); // September 25, 2023

// Calculating the period between two dates
Period period = Period.between(date1, date2);

// Displaying the period
System.out.println(”Period between ” + date1 + ” and ” + date2 + ”: ” + period);

// Displaying period fields
System.out.println(”Years: ” + period.getYears());
System.out.println(”Months: ” + period.getMonths());
System.out.println(”Days: ” + period.getDays());

// Creating Period instances using factory methods
Period customPeriod = Period.of(2, 3, 5); // 2 years, 3 months, and 5 days

// Displaying the custom period
System.out.println(”Custom Period: ” + customPeriod);

// Performing operations on periods
Period addedPeriod = period.plus(customPeriod); // Adding periods
Period subtractedPeriod = period.minus(customPeriod); // Subtracting periods

// Displaying the results of operations
System.out.println(”Added Period: ” + addedPeriod);
System.out.println(”Subtracted Period: ” + subtractedPeriod);

// Comparing Period instances
boolean isEqual = customPeriod.
→˓equals(Period.of(2, 3, 5)); // Check if customPeriod is equal to 2 years, 3 months, and 5 days

// Displaying comparison results
System.out.println(”Is customPeriod equal to 2 years, 3 months, and 5 days? ” + isEqual);

3.5. Application Developer Guide 641

https://repository.microej.com/javadoc/microej_5.x/apis/java/time/Period.html

MicroEJ Documentation,

Time Zone Support

The Time API introduces multiple types for time zonemanagement:

• ZoneId : represents a time zone identifier: a fixed offset (e.g., +0200) or a geographical region (e.g., Africa/
Johannesburg).

• ZoneOffset : represents a fixed time zone offset from UTC, usually a fixed number of hours andminutes.

• ZonedDateTime : a date time with a time zone: the combination of a LocalDateTime and a ZoneId.

• ZoneRules : defines the offsets fromUTC, the daylight saving time rules, and how they change over time, for
a specific time zone.

• ZoneRulesProvider : provides the time zone rules to all the zone-aware classes of the library. Meant to be
implemented by custom time zone rule providers.

Default Zone Rules Provider

By default, the library uses a lightweight provider designed to handle only the time zone rules
for GMT (Greenwich Mean Time). This is suitable for operations on dates and times that do
not depend on time zone considerations. This provider only supports the GMT zone ID. Any
attempt to get a different zone ID will throw a ZoneRulesException. For example,

ZoneId.of(”GMT”); // ok
ZoneId.of(”+0200”); // ok
ZoneId.of(”GMT+0530”); // ok
ZoneId.of(”PST”); // throws ZoneRulesException
ZoneId.of(”CST-0115”); // throws ZoneRulesException
ZoneId.of(”Asia/Tokyo”); // throws ZoneRulesException

Set<String> zoneIds = ZoneId.getAvailableZoneIds(); // returned set contains only ”GMT”

TZDB Zone Rules Provider

The library also defines a provider of zone rules for the time zones defined in the IANA Time
Zone Database (TZDB).

The TZDB provider reads the zones and rules from a raw resource at runtime. Compared to
the TzdbZoneRulesProvider of Java SE distributions, this implementation uses less Managed
heap at runtime, making it more suitable for embedded devices.

Warning: The TZDB provider requires a target VEE Port that uses an architecture version 8.1.1
minimum (for 8.x), or 7.20.5 minimum (for 7.x).

3.5. Application Developer Guide 642

https://repository.microej.com/javadoc/microej_5.x/apis/java/time/ZoneId.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/time/ZoneOffset.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/time/ZonedDateTime.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/time/LocalDateTime.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/time/ZoneId.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/time/zone/ZoneRules.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/time/zone/ZoneRulesProvider.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/time/zone/ZoneRulesException.html
https://www.iana.org/time-zones
https://www.iana.org/time-zones

MicroEJ Documentation,

Using the TZDB Provider

Touse this provider, set the constant java.time.zone.DefaultZoneRulesProvider to java.time.
zone.TzdbZoneRulesProvider in a *.constants.list file, like below:

java.time.zone.DefaultZoneRulesProvider=java.time.zone.TzdbZoneRulesProvider

It is also required to add the class name java.time.zone.TzdbZoneRulesProvider to a *.
types.list file: the class name is required to instantiate the provider and can not be known
at compile-time.

The raw resource fromwhich the provider reads the zone rules is generated from the timezone
database file included in the JDK/JRE installation (tzdb.dat). To generate the resource and use
it in an application, do the following:

1. Locate the tzdb.dat file in a local JDK/JRE installation (path/to/JRE/lib/tzdb.dat),

2. Add the tzdb.dat file to the application resources (e.g., src/main/resources/com/
mycompany/tzdb.dat),

3. Create a *.tzdb.list file in the application resources (e.g., src/main/resources/com/
mycompany/myapp.tzdb.list),

4. Open the *.tzdb.list file and add the path to the tzdb.dat file (e.g., /com/mycompany/tzdb.
dat).

The resourcewill be automatically generatedwhen building the application or running it in the
Simulator. By default, it will be embedded in the application binary (as an internal resource).
For reference, the size of the resource is 100 KB for version 2024a .

Note: To get a tzdb.dat with the most current timezone data available, use the TZUpdater tool and run the
following command:

java -jar tzupdater.jar -l

The TZUpdater tool updates the JDK/JRE instance that is used to execute the tool: copy path/
to/JRE/lib/tzdb.dat into the application resources, as described above.

In addition, you can check that the version of the timezone data is correct in the logs of the
Add-on Processor that generates the raw resource.

SDK 6

SDK 5

When running on Simulator or building an executable in verbosemode (with the --info Gradle
option), look in the console for an output similar to:

[myapp:tzdb] Successfully␣
→˓deserialized TZDB data: version = 2024a, zones count = 603, resource buffer size = 102532

where 2024a is the version of the timezone data in this example.

The Add-on Processor is executed when changes occur in the resources files. Open the Add-on
Processor console and set the log level to debug . After copying a tzdb.dat file in the resources
files, look in the console for an output similar to:

[myapp:tzdb] Successfully␣
→˓deserialized TZDB data: version = 2024a, zones count = 603, resource buffer size = 102532

3.5. Application Developer Guide 643

https://www.oracle.com/java/technologies/downloads/tools/#TZUpdater

MicroEJ Documentation,

where 2024a is the version of the timezone data in this example.

If the TZDB provider can’t find the resource, it will throw an exception at runtime:

Exception in thread ”main” java.lang.ExceptionInInitializerError:␣
→˓java.lang.IllegalStateException: Cannot open the tzdb binary resource

In this case, follow the steps described above to generate the resource, andmake sure that the
resource is available at runtime: when the resource is internal, the tzdb resource should be
listed in the Application Resources group of the SOAR.map file.

Loading the TZDB Data as an External Resource

The resource can be declared as an external resource to be loaded from another location (e.g.
from a FileSystem). It has to be referenced in a *.externresources.list file, in which case the
SOAR will output the resource in the External Resources Folder. See Application Resources for
more information about external resources.

Warning: Loading external resources requires a target VEE Port that uses the External Re-
sources Loader.

Follow the steps below to declare the tzdb resource as an external resource:

• Create a *.externresources.list file in the src/main/resources/ folder,

• Add the following path to the file:

/java/time/zone/tzdb

• Build the application executable,

• The raw resource is nowavailable in the External Resources Folder. This resourcemust be trans-
ferred to the target device’s memory and loaded from the path /java/time/zone/tzdb , using
the External Resources Loader.

Migration Guide

If you’re using the legacy date and time classes (Date, Calendar), it’s a great time to considermi-
grating to the new API. This small migration guidewill help you transition from the old time API
to the Java Date and Time API (java.time). It covers some common date and time operations
and demonstrates how to perform them using both approaches.

3.5. Application Developer Guide 644

https://repository.microej.com/javadoc/microej_5.x/apis/java/util/Date.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/Calendar.html

MicroEJ Documentation,

Displaying the Current Date

Legacy Time API

New Time API

// Create a Calendar instance representing the current date and time
Calendar calendar = Calendar.getInstance();

// Get date components from the Calendar
int year = calendar.get(Calendar.YEAR);
int month = calendar.get(Calendar.MONTH) + 1; // Months are 0-based
int day = calendar.get(Calendar.DAY_OF_MONTH);

// Display the date
System.out.println(”Current Date: ” + year + ”-” + month + ”-” + day);

// Get the current date using LocalDate
LocalDate currentDate = LocalDate.now();

// Display the date
System.out.println(”Current Date: ” + currentDate);

Calculating a Timestamp from a Date

Legacy Time API

New Time API

// Create a Calendar instance
Calendar calendar = Calendar.getInstance();
calendar.set(2023, 10, 06, 15, 27, 30); // November 06, 2023 3:27:30 PM
long timeInMillis = calendar.getTimeInMillis();

// Create a LocalDateTime instance with the desired date and time
LocalDateTime localDateTime = LocalDateTime.of(2023, 10, 06, 15, 27, 30);

// Convert LocalDateTime to a timestamp from Epoch
long timeInMillis = localDateTime.toInstant(ZoneOffset.UTC).toEpochMilli();

Calculating Date and Time Differences

Legacy Time API

New Time API

public long computeDifference(Date date1, Date date2){
return date1.getTime() - date2.getTime();

}

public long computeDifference(LocalDateTime date1, LocalDateTime date2){
return Duration.between(date1, date2).toMillis();

}

3.5. Application Developer Guide 645

MicroEJ Documentation,

Calculating the Day of the Week

Legacy Time API

New Time API

// Create a Calendar instance
Calendar calendar = Calendar.getInstance();

// Set a date (e.g., October 15, 2023)
calendar.set(2023, Calendar.OCTOBER, 15);

// Get the day of the week as an integer (1 = Sunday, 2 = Monday, ..., 7 = Saturday)
int dayOfWeek = calendar.get(Calendar.DAY_OF_WEEK);

// Create a LocalDate instance for a specific date (October 15, 2023)
LocalDate date = LocalDate.of(2023, 10, 15);

// Get the day of the week as an enum value (DayOfWeek)
DayOfWeek dayOfWeek = date.getDayOfWeek();

Handling Time Zones

Legacy Time API

New Time API

TimeZone timeZone = TimeZone.getTimeZone(”America/New_York”);
Calendar calendar = Calendar.getInstance(timeZone);
Date dateInNewYork = calendar.getTime();

ZoneId zoneId = ZoneId.of(”America/New_York”);
ZonedDateTime zonedDateTime = ZonedDateTime.now(zoneId);

Restrictions

The library’s goal is to offer Application developers an API that closely mirrors the one found in
Java SE 8. However, we had to make the library compatible with both pre-Java 8 features and
the constraints found in embedded devices, such as limited memory size. Here are the items
where the backport differs from its Java 8 counterpart:

• Non-ISO chronologies are not present (Hijrah, Japanese, Minguo, ThaiBuddhist). The over-
whelming majority of applications use the ISO calendar system. Applications still have the op-
tion to introduce their own chronologies.

• No formatting or parsing methods (methods parse , format , getDisplayName , ofLocale).

• Removed the method ZoneRulesProvider.registerProvider(ZoneRulesProvider provider) .
The unique provider is defined with the constant java.time.zone.DefaultZoneRulesProvider .

• Static methods in interfaces are not supported and were removed or moved (see below).

• Default methods in interfaces are not supported and were removed (pulled down in concrete
types).

3.5. Application Developer Guide 646

MicroEJ Documentation,

• Removed staticmethods TemporalAdjusters.ofDateAdjuster(UnaryOperator<LocalDate>
dateBasedAdjuster) and WeekFields.of(Locale locale) .

• No overflow checks on calculations (removed throws ArithmeticException when relevant).
Excessively checking for overflow in all calculations can impact performance negatively.

• No null checks onmethod arguments. Developers are encouraged to use the Null Analysis tool
to detect null access and adhere to the API Javadoc specifications.

• The classes from the java.time.zone package do not provide a human readable implementa-
tion of toString() .

Note: For a comprehensive list of restrictions, refer to the README of the module. If some of the restrictions
listedabovearehighly limitingandnecessary for yourapplication, pleasecontact yourMicroEJsales representative
or our support team.

Static Interface Methods

• ChronoLocalDate.from(TemporalAccessor) : removed

• ChronoLocalDate.timeLineOrder() : use LocalDate.timeLineOrder() instead

• ChronoLocalDateTime.from(TemporalAccessor) : removed

• ChronoLocalDateTime.timeLineOrder() : use LocalDateTime.timeLineOrder() instead

• ChronoZonedDateTime.from(TemporalAccessor) : removed

• ChronoZonedDateTime.timeLineOrder() : use ZonedDateTime.timeLineOrder() instead

• ChronoPeriod.between(ChronoLocalDate, ChronoLocalDate) : removed

• Chronology.from(TemporalAccessor) : use AbstractChronology.from(TemporalAccessor) instead

• Chronology.getAvailableChronologies() : use AbstractChronology.getAvailableChronologies() instead

• Chronology.of(String) : use AbstractChronology.of(String) instead

• Chronology.ofLocale(Locale) : removed

Event Queue

Principle

The Event Queue Foundation Library provides an asynchronous communication interface be-
tween the native world and the Managed world based on events.

3.5. Application Developer Guide 647

MicroEJ Documentation,

Functional Description

Overview

The Event Queue Foundation Library allows users to send events from the native world to the
Managed world. It is composed of a Java API that provides mechanisms to register specific
event notifications and a C API that allows someone to send events in the queue.

Fig. 153: Event Queue Overview

A FIFOmechanism is implemented on the native side and is system specific. The user can offer
events to this FIFO by using the C or the Java API.

Eventnotificationsarehandledusingevent listeners (Observerdesignpattern). Theapplication
code has to register event listeners to be notified when new events are coming.

Then the Event Pump automatically retrieves new events pushed in the FIFO and notifies the
event listeners.

Architecture

The Event Queue Foundation Library uses a dedicated thread to forward and process events.
Application event listener’s calls are done in the context of the Event Queue thread.

3.5. Application Developer Guide 648

MicroEJ Documentation,

Fig. 154: Event Queue Architecture

Events reading operations are done using the SNI mechanism. Event Queue thread is sus-
pended when the events FIFO is empty and resumed when a new event is sent.

Note: To support sending events from the Interrupt Handler, the VEE Port must provide a compatible implemen-
tation.

Event format

An event is composed of a type and, optionally, data. The type identifies the listener that will
handle the event. The data is application specific and passed to the listener as a rawbyte array.

The items stored in the FIFO buffer are integers (4 bytes). There are two kinds of events that can
be sent over the Event Queue:

• Standard event: an eventwith data that fits on 24bits. The event is stored in the FIFOas a single
4 bytes item.

• Extended event: an event with data that does not fit on 24 bits. The event is stored in the FIFO
as multiple 4 bytes items.

+--------------+----------+---+
| Extended (1) | Type (7) | Data (if Extended==0), Length (if Extended==1) (24) |
+--------------+----------+---+
...
+---+
| Extended Data for extended events (32) | (Length bytes)
+---+

Format explanation:

3.5. Application Developer Guide 649

MicroEJ Documentation,

• Extended (1 bit): event kind flag (0 for standard event, 1 for extended event).

• Type (7 bits): event type, which allows to find the corresponding event queue listener.

• Length (24 bits): length of the data in bytes (for extended events only).

• Data (24 bits): standard event data (for standard events only).

• Extended data (Length bytes): extended event data (for extended events only).

Event Queue listener

An application can register listeners to the EventQueue. Each listener is registered for a specific
event type. The same listener canbe registered several times for different event types, but each
event type can only have one listener.

When the queue receives an event from the FIFO, it will get the event type and check if it is an
extended event. Then it will check if a listener is registered for this event type. If so, it will call
its handle method depending on the extended event flag. It will call the default listener if no
listener corresponds to the event type.

You can create your Event Queue listener by implementing the EventQueueListener interface.
It contains twomethods that are used to handle standard and extended events.

Before registering your listener, you must get a valid unique type using the getNewType()
method from the EventQueue class. Then you can register your listener using the registerLis-
tener(EventQueueListener listener, int type) method from the EventQueue class.

The unique type your listener uses could be stored on the Managed world and passed/stored
to the C world. One way to do it is to create a native method that sends the event type to the C
world during the initialization phase.

To set the default listener, you must use EventQueue.
setDefaultListener(EventQueueListener listener) .

For example:

public static int eventType;

public static void main(String[] args) throws InterruptedException {
EventQueue eventQueue = EventQueue.getInstance();

// Get the unique type to register your listener.
// eventType must be stored if you want to offer an event from the Java API.
eventType = eventQueue.getNewType();

// Create and register a listener.
eventQueue.registerListener(new ExampleListener(), eventType);

// Send eventType to the C world.
initialize(eventType);

}

/**
* This native method will take the event type as an entry and store it in the C world.
*/
public static native void initialize(int type);

3.5. Application Developer Guide 650

MicroEJ Documentation,

Standard event

Standard events are events with data that can be stored on 24 bits.

+-------+----------+-----------+
| 0 (1) | Type (7) | Data (24) |
+-------+----------+-----------+

The first bit equals 0, indicating that this is a standard event.

Then there is the event type stored on 7 bits.

To finish, there is the data that you want to send to the application event listener. It is stored
on 24 bits.

Offer the event

There are two ways to send a standard event through the Event Queue: from the C API or the
Java API.

From C API

To send a standard event through the Event Queue using the C API, you must use the
LLEVENT_offerEvent(int32_t type, int32_t data) method from LLEVENT.h .

For example:

// Assuming that event_type has␣
→˓been passed from the Managed world through a native method after registering your listener.
int type = event_type;
int data = 12;

LLEVENT_offerEvent(type, data);

From Java API

To send a standard event through the Event Queue using the Java API, youmust use the offer-
Event(int type, int data) method from the EventQueue class.

For example:

EventQueue eventQueue = EventQueue.getInstance();

// Assuming␣
→˓that eventType has been stored in the Managed world when you registered the listener.
int type = eventType;
int data = 12;

eventQueue.offerEvent(type, data);

3.5. Application Developer Guide 651

MicroEJ Documentation,

Handle the event

Tohandlea standardevent, youmust implementyour listener handleEvent(int type, int data)
method. You can process the data received by the Event Queue in this method.

First, you have to register your listener as explained Event Queue listener in section.

For example:

EventQueue queue = EventQueue.getInstance();
int type = queue.getNewType();
initialize(type);
queue.registerListener(type, new EventQueueListener() {

@Override
public void handleEvent(int type, int data) {

System.out.println(”My data is equal to: ” + data);
}
@Override
public void handleExtendedEvent(int type, EventDataReader eventDataReader) {

throw new RuntimeException();
}

});

Extended event

Extended events are events with data that can not be stored on 24 bits.

+-------+----------+-------------+
| 1 (1) | Type (7) | Length (24) |
+-------+----------+-------------+
...
+--------------------------------+
| Extended Data (32) | (Length bytes)
+--------------------------------+

On the first 32 bits of the events, you will have:

• First bit is equal to 1, saying that this is an extended event,

• The event type stored on 7 bits,

• The length of the data following the header in bytes stored on 24 bits.

Then you will have the data. The number of bytes of the data depends on the length.

Data Alignment

To process the data from an extended event, you will use an EventDataReader object. You
will see it more in detail in the Handle the event section.

With EventDataReader API, there are two ways to read an event:

• Read the data with read(byte[] b, int off, int len) or readFully(byte[] b) methods.

– You will get the data in a byte array and can process it on your own in your handleExtendedE-
vent(int type, EventDataReader eventDataReader) method.

3.5. Application Developer Guide 652

MicroEJ Documentation,

• Read the data with themethods related to the primitive types such as readBoolean() or read-
Byte() .

– The reader is designed to parse C-struct data.

– To use the methods, your fields must follow this alignment:

∗ A boolean (1 byte) will be 1-byte aligned.

∗ A byte (1 byte) will be 1-byte aligned.

∗ A char (2 bytes) will be 2-byte aligned.

∗ A double (8 bytes) will be 8-byte aligned.

∗ A float (4 bytes) will be 4-byte aligned.

∗ An int (4 bytes) will be 4-byte aligned.

∗ A long (8 bytes) will be 8-byte aligned.

∗ A short (2 bytes) will be 2-byte aligned.

∗ An unsigned byte (1 byte) will be 1-byte aligned.

∗ A unsigned short (2 bytes) will be 2-byte aligned.

Offer the event

There are two ways to send an extended event through the Event Queue: from the C API or the
Java API.

From C API

To send an extended event through the Event Queue using the C API, you have to use the
LLEVENT_offerExtendedEvent(int32_t type, void* data, int32_t data_length) method
from LLEVENT.h .

For example:

struct accelerometer_data {
int x;
int y;
int z;

}

// Assuming that event_type has␣
→˓been passed from the Managed world through a native method after registering your listener.
int type = event_type;

struct accelerometer_data data;
data.x = 42;
data.y = 72;
data.z = 21;

LLEVENT_offerExtendedEvent(type, (void*)&data, sizeof(data));

3.5. Application Developer Guide 653

MicroEJ Documentation,

From Java API

To send an extended event through the Event Queue using the Java API, you must use the of-
ferExtendedEvent(int type, byte[] data) method from the EventQueue API.

For example:

EventQueue eventQueue = EventQueue.getInstance();

// Assuming␣
→˓that eventType has been stored in the Managed world when you registered the listener.
int type = eventType;

// Array of 3 integers. Each integer is stored in 4 bytes.
byte[] accelerometerData = new byte[3*4];

// Write integers into the byte array using ByteArray API.
ByteArray.writeInt(accelerometerData, 0, 42);
ByteArray.writeInt(accelerometerData, 4, 72);
ByteArray.writeInt(accelerometerData, 8, 21);

eventQueue.offerExtendedEvent(type, accelerometerData);

Handle the event

To handle an extended event, you must implement your listener’s handleExtendedEvent(int
type, EventDataReader eventDataReader) method. You can process the data received by
the Event Queue on this method.

It provides an EventDataReader that contains the methods needed to read the data of an ex-
tended event.

First, you have to register your listener as explained Event Queue listener in section.

For example:

EventQueue queue = EventQueue.getInstance();
int type = queue.getNewType();
initialize(type);
queue.registerListener(type, new EventQueueListener() {

@Override
public void handleEvent(int type, int data) {

throw new RuntimeException();
}
@Override
public void handleExtendedEvent(int type, EventDataReader eventDataReader) {

int x = 0;
int y = 0;
int z = 0;
try {

x = eventDataReader.readInt();
y = eventDataReader.readInt();
z = eventDataReader.readInt();

} catch (IOException e) {
System.

→˓out.println(”IOException while reading accelerometer values from the EventDataReader.”);
}

(continues on next page)

3.5. Application Developer Guide 654

MicroEJ Documentation,

(continued from previous page)

␣
→˓System.out.println(”Accelerometer values: X = ” + x + ”, Y = ” + y + ”, Z = ” + z + ”.”);
}

});

Mock the Event Queue

To simulate event that are normally sent through the C API, use the Event QueueMock API from
your mock.

The Event QueueMock API dependencymust be added to the project build file of your MicroEJ
Mock project.

Gradle (build.gradle.kts)

MMM (module.ivy)

implementation(group=
→˓”com.microej.pack.event”, name=”event-pack”, version=”2.0.0”, configuration=”mockAPI”)

<dependency org=
→˓”com.microej.pack.event” name=”event-pack” rev=”2.0.0” conf=”provided->mockAPI”/>

It provides twomethods:

• EventQueueMock.offerEvent(int type, int data) is the equivalent of LLEVENT_offerEvent(int32_t
type, int32_t data) method from LLEVENT.h .

• EventQueueMock.offerExtendedEvent(int type, byte[] data, int dataLength) is the equivalent of
LLEVENT_offerExtendedEvent(int32_t type, void* data, int32_t data_length) method from
LLEVENT.h .

Example of use:

// Assuming that event_type has␣
→˓been passed from your Application through a native method after registering your listener.
int type = event_type;
int data = 12;

EventQueueMock.offerEvent(type, data);

Use

The Event Queue API Modulemust be added to the project build file of the MicroEJ Application
project to use the Event Queue Foundation Library.

Gradle (build.gradle.kts)

MMM (module.ivy)

implementation(”ej.api:event:2.0.0”)

<dependency org=”ej.api” name=”event” rev=”2.0.0”/>

3.5. Application Developer Guide 655

https://forge.microej.com/artifactory/microej-developer-repository-release/ej/api/event/

MicroEJ Documentation,

To use this API, your VEE Port must implement a compatible version. Please refer to the VEE
Porting Guide to port the Event Queue for your project.

GNSS

Principle

The GNSS Foundation Library.

Functional Description

Interactions with the GNSS API goes through a GNSS manager. This manager works around a
state machine. To perform read operations to retrieve GNSS data, the machine must be in a
STARTED state. Transitions between the states are controlled by the user. The following graph:
details the different states, their function and transitions.

Fig. 155: GNSS State Machine.

After each operations, the method getState() can be called on the GNSS manager instance to
check weither or not the state has been successfully changed.

3.5. Application Developer Guide 656

MicroEJ Documentation,

Turning the GNSS Engine ON

// Retrieve the GNSS instance
GnssManager gnssManager = GnssManager.getInstance();

// Initialize the manager and native components
gnssManager.initializeManager();

// Switch the GNSS Engine ON
gnssManager.switchOn();

Retrieving GNSS data

// Read data
gnssManager.readPosition();

// Check timestamp of latest data read to confirm a fix was found.
long timestamp = gnssManager.getTime();

// Retrieve alitude data from engine
gnssManager.getAltitude()

Turning the GNSS Engine OFF

// Retrieve the GNSS instance
GnssManager gnssManager = GnssManager.getInstance();

// Switch the GNSS Engine OFF
gnssManager.switchOff();

// Close every native components and the manager.
gnssManager.closeManager();

Note: readPosition() call will throw an IOException if an error occured during data reading, however, timestamp
will still be updated.

Use

The GNSS Library is provided as a Foundation Library.

To use the GNSS API Module, add the following line to the project build file:

implementation(”ej.api:gnss:2.0.0”)

Building or running an Application which uses the GNSS Library requires a SDK6 VEE Port that
provides the GNSS Pack.

3.5. Application Developer Guide 657

https://forge.microej.com/artifactory/microej-developer-repository-release/ej/api/gnss/

MicroEJ Documentation,

JavaScript

MicroEJallows todevelopparts of anapplication in JavaScript. Basically, aMicroEJApplication
boots in Java, then it initializes the JavaScript runtime to run amix of Java and JavaScript code.

Fig. 156: MicroEJ JavaScript Overview

It supports the ECMAScript 5.1 specification, with some limitations. You can start playing with it
by following the Getting Started page.

Getting Started

Let’s walk through the steps required to use Javascript in your MicroEJ application:

• install theMMM CLI (Command Line Interface)

• create your Standalone Application project with the init command:

mmm init -Dskeleton.org=com.is2t.easyant.skeletons -Dskeleton.
→˓module=firmware-singleapp -Dskeleton.rev=1.1.12 -Dproject.org=com.mycompany␣
→˓-Dproject.module=myproject -Dproject.rev=1.0.0 -Dskeleton.target.dir=myproject

Adapt the properties values to your need. See the MMM CLI init command documentation for
more details.

Javascript is supported in the following Module Natures page: - Add-On Library, - Standalone
Application, - Sandboxed Application.

3.5. Application Developer Guide 658

https://262.ecma-international.org/5.1

MicroEJ Documentation,

• add the js dependency in the build file:

Gradle (build.gradle.kts)

MMM (module.ivy)

implementation(”com.microej.library.runtime:js:0.13.0”)

<dependency org=”com.microej.library.runtime” name=”js” rev=”0.13.0”/>

• add the following lines in your application main class:

import com.microej.js.JsErrorWrapper;
import com.microej.js.JsCode;
import com.microej.js.JsRuntime;

...

JsCode.initJs();
JsRuntime.ENGINE.runOneJob();
JsRuntime.stop();

• create a file named hello.js in the folder src/main/js with the following content:

function hello() {
var message = ”MicroEJ Javascript application!”;
print(”My first”, message);

}

hello()

• follow the steps described in the run command documentation

• in a terminal, go to the folder containing the module.ivy file and build the project with the
command:

mmm build

You should see the following message at the end of the build:

BUILD SUCCESSFUL

Total time: 20 seconds

• now that your application is built, you can run it in the simulator with the command:

mmm run

You should see the following output:

My first MicroEJ Javascript application!

You can now go further by exploring the capabilities of the MicroEJ Javascript engine and dis-
covering the commands available in the CLI.

3.5. Application Developer Guide 659

MicroEJ Documentation,

Sources Management

JavaScript Sources Location

The JavaScript sources of an applicationmust be located in the project folder src/main/js . All
JavaScript files (*.js) found in this folder, at any level, are processed.

JavaScript Sources Load Order

When several JavaScript files are found in the sources folder, they are loaded in alphabetical
order of their relative path. For example, the following source files:

src
��� main

��� js
��� components
� ��� component1.js
� ��� component2.js
��� ui
� ��� widgets.js
��� app.js
��� feature1.js
��� feature2.js

are loaded in this order:

1. app.js

2. components/component1.js

3. components/component2.js

4. feature1.js

5. feature2.js

6. ui/widgets.js

JavaScript Sources Load Scope

All the code of the JavaScript source files are loaded in the same scope. It means a variable or
function defined in a source file can be used in another one if it has been loaded first. In this
example:

Listing 24: src/main/js/lib.js

function sum(a, b) {
return a + b;

}

Listing 25: src/main/js/main.js

print(”5 + 3 = ” + sum(5, 3));

the file src/main/js/lib.js is loaded before src/main/js/main.js so the function sum can be
used in src/main/js/main.js .

3.5. Application Developer Guide 660

MicroEJ Documentation,

JavaScript Sources Processing

JavaScript sources need to be processed before being executed. This processing is done in the
following cases:

• when building the project withMMM.

• whendeveloping theproject inMicroEJSDK. TheMicroEJSDKdetects any change in JavaScript
sources folder (addition/update/deletion) to trigger the processing.

Examples

This section is intended to provide a set of examples to cover most of the use cases when de-
veloping JavaScript applications with MicroEJ:

Simple Application

Note: Before trying this example, make sure you have theMMM CLI (Command Line Interface) installed.

This example shows the minimal code for a MicroEJ JavaScript application:

• create an Add-On Library project or a Sandboxed Application project

• add the MicroEJ JavaScript dependency in the build file of your project:

Gradle (build.gradle.kts)

MMM (module.ivy)

implementation(”com.microej.library.runtime:js:0.13.0”)

<dependency org=”com.microej.library.runtime” name=”js” rev=”0.13.0”/>

• init the JavaScript code in your Java application with:

import com.microej.js.JsCode;

...

JsCode.init();

The class com.microej.js.JsCode is the Java class generated from the JavaScript sources.

• ask the MicroEJ JavaScript engine to start processing the job queue with:

import com.microej.js.JsRuntime;

...

JsRuntime.ENGINE.run();

This makes the JavaScript engine process the job queue forever until the program is stopped.

• create a file with the js extension in the src/main/js folder (for example app.js) with the
following content:

3.5. Application Developer Guide 661

MicroEJ Documentation,

print(”My Simple Application”);

• build and execute the application with theMMM CLI:

$ mmm build
$ mmm run

Themessage My Simple Application should be displayed.

Use a Java API in JavaScript

Note: Before trying this example, make sure you have theMMM CLI (Command Line Interface) installed.

It is also recommended to follow the Getting Started page and/or the Simple Application exam-
ple before.

In this example the JavaScript code calls a JavaAPI. The JavaAPI can come fromtheapplication
or from any library used by the application. Let’s create it in the project for this example, in a
class Calculator (src/main/java/com/mycompany/Calculator.java):

public class Calculator {
public int sum(int x, int y) {

return x + y;
}

public int mul(int x, int y) {
return x * y;

}
}

Then in the Java Main class of the application, add the glue to expose the Calculator Java API
to the JavaScript code and init the JavaScript engine:

public static void main(String[] args) throws Exception {
// Add the ”getCalculator” function in the JavaScript global object
JsRuntime.

→˓JS_GLOBAL_OBJECT.put(”getCalculator”, JsRuntime.createFunction(new JsClosure() {
@Override
@Nullable
public Object invoke(Object thisBinding, int argsLength, Object... arguments) {

return new Calculator();
}

}), false);

// Init the JavaScript code
JsCode.initJs();
// Start the JavaScript engine
JsRuntime.ENGINE.run();

}

You can now call the API from the JavaScript code:

3.5. Application Developer Guide 662

MicroEJ Documentation,

var calc = getCalculator();
print(calc.sum(1, 2));
print(calc.mul(5, 3));

As you can see, themethods of the Java API Calculator can be used directly from the JavaScript
code.

Finally, build and execute the application with theMMM CLI:

$ mmm build
$ mmm run

The sum andmultiply results should be displayed.

For more information about communication between Java and JavaScript please refer to the
Communication Between Java and JS page.

Create a JavaScript API from Java

Note: Before trying this example, make sure you have theMMM CLI (Command Line Interface) installed.

It is also recommended to follow the Getting Started page and/or the Simple Application exam-
ple before.

In this example a JavaScript API is exposed from Java. This can be useful when a specific API
must be defined in JavaScript or when adapting an existing Java API to a JavaScript API.

Create a class MyApiHostObject (src/main/java/com/mycompany/MyApiHostObject.
java):

public class MyApiHostObject extends JsObject {

public MyApiHostObject(Object thisBinding) {

␣
→˓ this.put(”count”, new DataPropertyDescriptor(JsRuntime.createFunction(new JsClosure() {

@Override
@Nullable

␣
→˓ public Object invoke(@Nullable Object thisBinding, int argsLength, Object... arguments) {

String data = (String) arguments[0];
return Integer.valueOf(data.length());

}
})));

}
}

This class defines a JavaScript object using the MicroEJ JavaScript API by extending the class
JsObject . It also defines a count method which accepts a String parameter and returns its
length.

Then in the Java Main class of the application, add the glue to expose the MyApi object to the
JavaScript code and init the JavaScript engine:

3.5. Application Developer Guide 663

MicroEJ Documentation,

public static void main(String[] args) throws Exception {
// Add the ”MyApi” function in the JavaScript global object
JsRuntime.

→˓JS_GLOBAL_OBJECT.put(”MyApi”, JsRuntime.createFunction(new JsClosure() {
@Override
@Nullable
public Object invoke(Object thisBinding, int argsLength, Object... arguments) {

return new MyApiHostObject(thisBinding);
}

}), false);

// Init the JavaScript code
JsCode.initJs();
// Start the JavaScript engine
JsRuntime.ENGINE.run();

}

You can now call the new API from the JavaScript code:

var myApi = new MyApi();
print(myApi.count(”Hello World!”));

Finally, build and execute the application with theMMM CLI:

$ mmm build
$ mmm run

The length of the string Hello World! (12) should be displayed.

For more information about communication between Java and JavaScript please refer to the
Communication Between Java and JS page.

API

This page lists the API provided by the MicroEJ JavaScript engine.

Built-in Objects

The built-in objects are the API objects defined by the ECMAScript specification. This section
lists all the JavaScript built-in objects and their support status in theMicroEJ JavaScript engine.
For the complete reference about these built-in objects, consult the ECMAScript 5.1 specifica-
tion.

For a description and usage examples of each method or property, consult a JavaScript docu-
mentation such as Mozilla Developer Reference.

3.5. Application Developer Guide 664

https://www.ecma-international.org/ecma-262/5.1/#sec-15
https://www.ecma-international.org/ecma-262/5.1/#sec-15
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects

MicroEJ Documentation,

Array

• Array (len)

• isArray (arg)

• toString ()

• [excluded] toLocaleString ()

• concat ([item1 [, item2 [, …]]])

• join (separator)

• pop ()

• push ([item1 [, item2 [, …]]])

• reverse ()

• shift ()

• slice (start, end)

• sort (comparefn)

• [excluded] splice (start, deleteCount [, item1 [, item2 [, …]]])

• unshift ([item1 [, item2 [, …]]])

• indexOf (searchElement [, fromIndex])

• lastIndexOf (searchElement [, fromIndex])

• every (callbackfn [, thisArg])

• some (callbackfn [, thisArg])

• forEach (callbackfn [, thisArg])

• map (callbackfn [, thisArg])

• filter (callbackfn [, thisArg])

• [excluded] reduce (callbackfn [, initialValue])

• [excluded] reduceRight (callbackfn [, initialValue])

• length

Boolean

• Boolean (value)

• Boolean.prototype.toString ()

• Boolean.prototype.valueOf ()

3.5. Application Developer Guide 665

MicroEJ Documentation,

Date

• [excluded]

Error

• [excluded]

Function

• [excluded] Function (p1, p2, … , pn, body)

• length

• [excluded] toString ()

• apply (thisArg, argArray)

• call (thisArg [, arg1 [, arg2, …]])

• [excluded] bind (thisArg [, arg1 [, arg2, …]])

• [[Call]]

• [[Construct]]

Global

• NaN

• Infinity

• undefined

• [excluded] eval (x)

• parseInt (string , radix)

• parseFloat (string)

• isNaN (number)

• isFinite (number)

• [excluded] escape (string)

• [excluded] unescape (string)

• [excluded] decodeURI (encodedURI)

• [excluded] decodeURIComponent (encodedURIComponent)

• [excluded] encodeURI (uri)

• [excluded] encodeURIComponent (uriComponent)

3.5. Application Developer Guide 666

MicroEJ Documentation,

JSON

• parse (text [, reviver])

• stringify (value , [replacer [, space]])

Math

• E

• LN10

• LN2

• LOG2E

• LOG10E

• PI

• SQRT1_2

• SQRT2

• abs (x)

• acos (x)

• asin (x)

• atan (x)

• atan2 (y, x)

• ceil (x)

• cos (x)

• exp (x)

• floor (x)

• log (x)

• max ([value1 [, value2 [, …]]])

• min ([value1 [, value2 [, …]]])

• pow (x, y)

• random ()

• round (x)

• sin (x)

• sqrt (x)

• tan (x)

3.5. Application Developer Guide 667

MicroEJ Documentation,

Number

• Number (value)

• MAX_VALUE

• MIN_VALUE

• NaN

• NEGATIVE_INFINITY

• POSITIVE_INFINITY

• [excluded] toString ([radix])

• [excluded] toLocaleString()

• valueOf ()

• [excluded] toFixed (fractionDigits)

• [excluded] toExponential (fractionDigits)

• [excluded] toPrecision (precision)

Object

• Object ([value])

• Object.getPrototypeOf (O)

• Object.getOwnPropertyDescriptor (O, P)

• Object.getOwnPropertyNames (O)

• Object.create (O [, Properties])

• Object.defineProperty (O, P, Attributes)

• Object.defineProperties (O, Properties)

• [excluded] Object.seal (O)

• [excluded] Object.freeze (O)

• [excluded] Object.preventExtensions (O)

• Object.isSealed (O)

• Object.isFrozen (O)

• Object.isExtensible (O)

• Object.keys (O)

• toString ()

• [excluded] toLocaleString ()

• valueOf ()

• hasOwnProperty (V)

• isPrototypeOf (V)

• propertyIsEnumerable (V)

3.5. Application Developer Guide 668

MicroEJ Documentation,

Regex

• RegExp (pattern, flags)

• exec (string)

• test (string)

• toString ()

String

• String (value)

• fromCharCode ([char0 [, char1 [, …]]])

• toString ()

• valueOf ()

• charAt (pos)

• charCodeAt (pos)

• concat ([string1 [, string2 [, …]]])

• indexOf (searchString, position)

• lastIndexOf (searchString, position)

• [excluded] localeCompare (that)

• match (regexp)

• replace (searchValue, replaceValue)

• [excluded] search (regexp)

• slice (start, end)

• split (separator, limit)

• [excluded] substr (start [, length])

• substring (start, end)

• toLowerCase ()

• [excluded] toLocaleLowerCase ()

• toUpperCase ()

• [excluded] toLocaleUpperCase ()

• trim ()

• length

• [[GetOwnProperty]] (P)

3.5. Application Developer Guide 669

MicroEJ Documentation,

Host Objects

Host objects are not part of the ECMAScript specification, they are additional API provided by
the MicroEJ JavaScript engine.

Global

setTimeout(function[, delay, arg1, arg2,…])

• description: sets a timer which executes a function once the timer expires.

• arguments:

– function : the function to execute when the delay expires.

– delay (optional): the time inmilliseconds that the timermust wait before executing the given function.

– arg1, arg2, ... (optional): additional arguments passed to the given function.

• returns: the timer object. This object can be passed to the function clearTimeout to cancel
the timer.

setInterval(function[, delay, arg1, arg2,…])

• description: repeatedly calls a function, with a fixed time delay between each call.

• arguments:

– function : the function to execute when the delay expires.

– delay (optional): the time inmilliseconds that the timermustwait between each execution of the given
function.

– arg1, arg2, ... (optional): additional arguments passed to the given function.

• returns: the timer object. This object can be passed to the function clearInterval to cancel
the timer.

clearTimeout(timer)

• description: cancels the given timer created by a call to setTimeout .

• arguments:

– timer : the timer to cancel.

3.5. Application Developer Guide 670

MicroEJ Documentation,

clearInterval(timer)

• description: cancels the given timer created by a call to setInterval .

• arguments:

– timer : the timer to cancel.

print([arg1, arg2,…])

• description: prints the given arguments in the standard output. The arguments are concate-
nated and separated by a space. A new line is added at the end.

• arguments:

– arg1, arg2, ... : the list of elements to print.

Communication Between Java and JS

TheMicroEJ engine allows to communicate betweenJava and JavaScript: JavaAPI canbeused
from JavaScript code and vice-versa.

JavaScript Engine

The JavaScript code is executed in a single-threaded engine, whichmeans only one JavaScript
statement is executed at a given time. Each piece of JavaScript code that must be executed is
pushed in a job queue. It is up to the engine to manage the job queue and execute the jobs.

One consequence of this design is that Java code called from a JavaScript code must not
be blocker. When calling a Java API from a Javascript code, in order to avoid blocking the
JavaScript engine, the Java code must return as quick as possible. Otherwise the JavaScript
engine is stuck and cannot execute other JavaScript jobs. It is especially harmfull when the
Java operation takes time, for example for network or IO operations. In such a case, it is there-
fore recommended to execute it in a new thread and return immediately.

Another consequence of the JavaScript engine design is that JavaScript code must always be
executed by the engine, by the single thread. Therefore, any call to a JavaScript code from a
Java codemust create a job and add it to the job queue.

Calling Java from JavaScript

The MicroEJ engine allows to expose Java objects or methods to the JavaScript code by using
the engine API and creating the adequate JavaScript object.

3.5. Application Developer Guide 671

MicroEJ Documentation,

Import Java Types from JavaScript

Java objects can be exposed to JavaScript using the JavaImport mechanism. It takes a Java
fully qualified name as argument and returns an object that gives access to the constructors,
static methods and static fields. All the classes from the project’s classpath can be imported
(project’s own classes and its dependencies).

For instance, the following code imports java.lang.System and prints a string calling Sys-
tem.out.println():

var System = JavaImport(”java.lang.System”)
System.out.println(”foo”);

Here we instantiate a Java File object and check that it exists:

var File = JavaImport(”java.io.File”)
var myFile = new File(”myFile.txt”)

if (myFile.exists()) {
print(”myFile.txt exists”)

} else {
print(”myFile.txt does not exist”)

}

Warning: You cannot instantiate an anonymous class from an interface or an abstract class
with the new keyword and JavaImport . Nevertheless, you can still access to static fields and
methods.

Implement JavaScript Functions in Java

We can also implement JavaScript functions in Java by adding their implementation to the
global object from Java. For example, here is the code to create a JavaScript function named
javaPrint in the global scope:

JsRuntime.
→˓JS_GLOBAL_OBJECT.put(”javaPrint”, JsRuntime.createFunction(new JsClosure() {

@Override
public Object invoke(Object thisBinding, Object... arguments) {

System.out.println(”Print from Java: ” + arguments[0]);
return null;

}
}), false);

The function is created with a com.microej.js.objects.JsObjectFunction object created
with the API JsRuntime.createFunction(JsClosure jsClosure) , and injected in the object
JsRuntime.JS_GLOBAL_OBJECT which maps to the JavaScript global scope.

The function javaPrint can then be used in JS:

javaPrint(”foo”)

This technique can also be used to share any Java object to JavaScript. It is achieved by return-
ing the Java object in the invoke method of the JsClosure object. For example, a Java Date
object can be exposed as follows:

3.5. Application Developer Guide 672

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/io/PrintStream.html#println--
https://repository.microej.com/javadoc/microej_5.x/apis/java/io/PrintStream.html#println--
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/Date.html

MicroEJ Documentation,

JsRuntime.JS_
→˓GLOBAL_OBJECT.put(”getCurrentDate”, JsRuntime.createFunction(new JsClosure() {

@Override
public Object invoke(Object thisBinding, Object... arguments) {

return Calendar.getInstance().getTime();
}

}), false);

When a Java object is exposed in JavaScript, all its public methods can be called, therefore the
JavaScript code can then use this Date object and get the time:

var date = getCurrentDate()
var time = date.getTime()
print(”Current time: ”, time)

for more information on how these called are managed by the MicroEJ JavaScript engine,
please go to the Foreign Function Interface section.

Java objects can also be shared using one of the other Java JS adapter objects. With this so-
lution, the code of the Java object is executed at engine initialisation, contrary to the previous
solution where it is executed only when the JavaScript code is called. For example, here is the
code to expose a Java string named javaString in the JavaScript global scope:

JsRuntime.JS_GLOBAL_OBJECT.put(”javaString”, ”Hello World!”, false);

The string javaString can then be used in JS:

var myString = javaString;

The available Java JS adapter objects are:

• com.microej.js.objects.JsObject : exposes a Java object as a JavaScript object

• com.microej.js.objects.JsObjectFunction : exposes a Java “process” as a JavaScript function (using a Js-
Closure object)

• com.microej.js.objects.JsObjectString : exposes a Java String as a JavaScript String

• com.microej.js.objects.JsObjectArray : exposes a Java items collection as a JavaScript Array

• com.microej.js.objects.JsObjectBoolean : exposes a Java Boolean as a JavaScript Boolean

• com.microej.js.objects.JsObjectNumber : exposes a Java Number as a JavaScript Number

Calling JavaScript from Java

TheMicroEJ JavaScript engine API allows to call JavaScript code from Java code. For example,
given the following JavaScript function in a file in src/main/js :

function sum(a, b) {
print(a + ” + ” + b + ” = ” + (a+b));

}

it can be called from a Java piece of code with:

JsObjectFunction␣
→˓functionObject = (JsObjectFunction) JsRuntime.JS_GLOBAL_OBJECT.get(”sum”);

(continues on next page)

3.5. Application Developer Guide 673

https://repository.microej.com/javadoc/microej_5.x/apis/java/util/Date.html

MicroEJ Documentation,

(continued from previous page)

JsRuntime.ENGINE.addJob(functionObject,
→˓ JsRuntime.JS_GLOBAL_OBJECT, new Integer(5), new Integer(3));

The first line gets the JavaScript function from the global scope. The second line adds a job in
the JavaScript engine queue to execute the function, in the global scope, with the arguments
5 and 3 .

Passing Values Between JavaScript and Java

JavaScript base types are represented by Java objects and not Java base types. The following
table shows the mapping between types in both languages:

JavaScript Java
Number java.lang.Integer or java.lang.Double
Boolean java.lang.Boolean
String java.lang.String
Null

null value
Undefined

JsRuntime.JS_UNDEFINED_OBJECT singleton

In JavaScript, a Number type is a 64-bits floating-point value. Nevertheless, Kifaru may use
integer values (Integer Java type) when possible for performance reasons. Otherwhise, Double
type will be used.

Note: Prefer passing Integer values as argument to a job added to the JavaScript execution queue, or return In-
teger values when implementing a JsClosure instead of Double when possible.

It is not possible to retrieve the returned value of a JavaScript function from Java. For instance,
consider the following JavaScript function:

function sum(a, b) {
return a + b;

}

When calling this function from Java, we have no way to get the result back:

JsObjectFunction␣
→˓functionObject = (JsObjectFunction) JsRuntime.JS_GLOBAL_OBJECT.get(”sum”);
JsRuntime.ENGINE.addJob(functionObject,
→˓ JsRuntime.JS_GLOBAL_OBJECT, new Integer(5), new Integer(3));

A workaround is to modify the JavaScript function so it takes a callback object as argument:

function sum(a, b, callback) {
callback.returnValue(a + b);

}

Here is a possible implementation of the callback object:

3.5. Application Developer Guide 674

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Integer.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Double.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Boolean.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/String.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Integer.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Double.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Integer.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Double.html

MicroEJ Documentation,

public class Callback<T> {

@Nullable
private T value;

private boolean returned;

/**
* Gets the value returned by this callback function when ready.
* <p>
* A call to this method waits for the value to be ready.
*
* @return the value return by the callback
*/

@Nullable
public T getValue() {

synchronized (this) {
while (!this.returned) {

try {
wait();

} catch (InterruptedException e) {
throw new JsErrorWrapper(””); //$NON-NLS-1$

}
}

}

return this.value;
}

/**
* Sets the value to return by this callback function.
*
* @param value
* the value to return
*/
public synchronized void returnValue(@Nullable T value) {

this.value = value;
this.returned = true;
notify();

}
}

We can now pass the callback to the job. The Java code will wait on the callback.getValue()
until the result is ready.

JsObjectFunction␣
→˓functionObject = (JsObjectFunction) JsRuntime.JS_GLOBAL_OBJECT.get(”sum”);
Callback<Integer> callback = new Callback<>();
JsRuntime.ENGINE.addJob(functionObject,
→˓ JsRuntime.JS_GLOBAL_OBJECT, new Integer(5), new Integer(3), callback);
Integer returnedValue = callback.getValue();
System.out.println(”Result is ” + returnedValue);

3.5. Application Developer Guide 675

MicroEJ Documentation,

Tests

JavaScript applications can be tested with tests written in JavaScript. The JavaScript test files
must be located in the project folder src/test/js . All JavaScript files (*.js) found in this folder,
at any level, are considered as test files.

In order to setup JavaScript tests for your application, follow these steps:

• create an Add-On Library project or a Standalone Application project

• define the following configuration in the build file of the project:

Gradle (build.gradle.kts)

MMM (module.ivy)

tasks.test {
filter {

includeTestsMatching(”*._JsTest_*Code”)
}

}

Add these properties nside the ea:build tag (if the properties already exist, replace them):

<ea:property name=”test.run.includes.pattern” value=”**/_JsTest_*Code.class”/>
<ea:property name=”target.main.classes” value=”${basedir}/target~/test/classes”/>

• add the MicroEJ JavaScript dependency in the build file of the project:

Gradle (build.gradle.kts)

MMM (module.ivy)

implementation(”com.microej.library.runtime:js:0.13.0”)

<dependency org=”com.microej.library.runtime” name=”js” rev=”0.13.0”/>

• define the platform to use to run the tests with one of the options described in Select a VEE Port
section

• create a file assert.js in the folder src/test/resources with the following content:

var assertionCount = 0;

function assert(value) {
assertionCount++;
if (value == 0) {

print(”assert ” + assertionCount + ” - FAILED”);
} else {

print(”assert ” + assertionCount + ” - PASSED”);
}

}

This method assert will be available in all tests to do assertions.

• create a file test.js in the folder src/test/js and write your first test:

var a = 5;
var b = 3;

(continues on next page)

3.5. Application Developer Guide 676

MicroEJ Documentation,

(continued from previous page)

var sum = a + b;
assert(sum === 8);

• build the application in the SDK or in command line with theMMM CLI

The execution of the tests produces a report available in the folder target~/test/html for the
project.

Limitations

The MicroEJ engine supports the version 5.1 of the ECMAScript specification, with the limita-
tions described in this page.

Unsupported Directives

Directives, such as 'use strict' , are not supported and are considered as literal statements.
Literal statements are just ignored.

Unsupported Statements

The following syntaxes are not supported by the MicroEJ JavaScript engine:

• with (x) { } : the with statement is not supported in MicroEJ since its usage is not recommended. See the
reference documentation for more information.

Unsupported Built-in Objects

The unsupported built-in objects are listed in the API section.

Troubleshooting

Compilation error cannot be resolved to a type in FFI class

Acompilationerror canbe raisedwhen the classpath containsunexpected classes, for example:

Exception in thread ”main” java.lang.Error: Unresolved compilation problems:
ArrayComparisonFailure cannot be resolved to a type
ArrayComparisonFailure cannot be resolved to a type

at java.lang.Throwable.fillInStackTrace(Throwable.java:82)
at java.lang.Throwable.<init>(Throwable.java:37)
at java.lang.Error.<init>(Error.java:18)
at com.microej.js.JsFfi.ffi_toString_0(JsFfi.java:54)
at com.microej.js.JsCode$1$1.invoke(JsCode.java:50)

As described in the FFI section, in order to call Javamethods fromJavaScript code, all themeth-
ods with the given names are searched in the classpath. Since the classpath can contain test
dependencies which are not available at compile time, the generated FFI can contain classes

3.5. Application Developer Guide 677

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/with
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/with

MicroEJ Documentation,

from these dependencies and therefore fail to compile. The following classes are excluded by
default:

• ej.junit.*

• org.junit.*

• junit.*

• org.hamcrest.*

• java.lang.String

• java.lang.Number

This list can be changed by setting the system property js.ffi.excludes.classes to a
comma-separated list of FQN patterns. For example:

js.ffi.excludes.classes=ej.junit.
→˓*,org.junit.*,junit.*,org.hamcrest.*,java.lang.String,java.lang.Number,com.mycompany.test.*

Warning: Defining this property overwrites the default value, so do not forget to keep the
default excluded classes (unless you knowwhat you are doing).

Internals

JavaScript Sources Processing

The JavaScript code is not executeddirectly, it is first translated in Java code and compiledwith
the Java application code. This transpilation is done by the JavaScript Add-On Processor. This
processor uses theOpenJDKNashorn library (extracted from jre1.8.0_92) toparse the Javascript
files.

The operations performed by this processor are summarized in this diagram:

• Parsing: all JavaScript source files located in the folder src/main/js and src/test/js are
parsed by the Nashorn library to provide a JavaScript AST.

• JS Validation: validation on the JavaScript AST to detect unsupported language features (for
example eval).

• Conversion preparation: before actually converting the JavaScript AST to a Java AST, a prepa-
ration operation is done to initialize all the lexical environments (done by JsIrVisitor).

• Conversion: conversion of the JavaScript AST to a Java AST.

• Java AST cleanup/optim: post-conversion step to cleanup and optimize the Java AST. The fol-
lowing operations are done: - fix imports - remove dead code - remove literal statements

• Java sources generation: generation of the Java sources from the Java AST.

3.5. Application Developer Guide 678

MicroEJ Documentation,

Foreign Function Interface

As said in the section Calling Java from JavaScript, a JavaScript code can manipulate Java ob-
jects and call methods on Java objects. This chapter describes how does the call to methods
on Java objets work.

Let getValue() aJavamethodcalled fromJavaScriptonaJavaobject. As longas the typeof the
object is not known at compile-time in the JavaScript code, all the types containing a method
with the same signature are searched in the classpath. Then the JavaScript pre-processor gen-
erates a JsFfi class and amethod that dynamically tries to find the type of the receiver object.
So, when the getValue() method is called from JavaScript, this generated method is called.

Warning: Calling a method whose name is very common could result in a delay while calling
it, and some useless methods embedded.

This example shares a Java Date of the current time:

JsRuntime.JS_
→˓GLOBAL_OBJECT.put(”getCurrentDate”, JsRuntime.createFunction(new JsClosure() {

@Override
public Object invoke(Object thisBinding, Object... arguments) {

return Calendar.getInstance().getTime();
}

}), false);

The JavaScript can then use this Date to print the current time:

var date = getCurrentDate()
var time = date.getTime()
print(”Current time: ”, time)

In this case, the generated method in JsFfi looks like:

public static Object ffi_getTime_0(Object function, @ej.annotation.Nullable Object this_) {
try {

if (this_ instanceof JsObject || this_ instanceof String)
return JsRuntime.functionCall(((Reference) function).getValue(), this_);

if (this_ instanceof Calendar) {
return ((Calendar) this_).getTime();

}
if (this_ instanceof Date) {

return new Double(((Date) this_).getTime());
}

} catch (JsErrorWrapper e) {
throw e;

} catch (Throwable t) {
throw new JsErrorWrapper(new JsObjectError.

→˓TypeError(”A Java exception has been thrown in generated FFI code of getTime”), t);
}
throw new JsErrorWrapper(new JsObjectError.TypeError(”getTime”));

}

3.5. Application Developer Guide 679

MicroEJ Documentation,

3.5.14 Development Tools

Code Instrumentation for Logging

This document explains how to add logging and tracing to MicroEJ applications and libraries
with three different solutions. The aim is to help developers to report precise execution context
for further debugging andmonitoring.

Introduction

One straightforward way to add logs in Java code is to use the Java basic print methods: Sys-
tem.out.println(…).

However, this is not desirablewhenwriting production-grade code, where it should be possible
to adjust the log level:

• without having to change the original source code,

• at build-time or at runtime, as application logging will affect memory footprint and perfor-
mances

Overview

This documentation describes 3 ways for logging data:

• Using Trace library: a real-time event recording library designed for performance and interac-
tion analysis.

• Using Message library: a lightweight and simple logging library.

• Using Logging library: a complete and highly configurable standard logging library.

The use of each library will be illustrated by instrumenting the following code snippet:

public class Main {

enum ApplicationState {
INSTALLED, STARTED, STOPPED, UNINSTALLED

}

private static ApplicationState currentState;
private static ApplicationState previousState;

public static void main(String[] args) {
currentState = ApplicationState.UNINSTALLED;
switchState(ApplicationState.INSTALLED);

}

public static void switchState(ApplicationState newState) {
previousState = currentState;
currentState = newState;

}
}

Finally, the last section describes some techniques to remove logging related code in order to
reduce the memory footprint.

3.5. Application Developer Guide 680

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#out
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#out
https://repository.microej.com/modules/ej/api/trace
https://repository.microej.com/modules/ej/library/runtime/message/
https://repository.microej.com/modules/ej/library/eclasspath/logging/

MicroEJ Documentation,

Log with the Trace Library

The ej.api.trace Trace library provides a way of tracing integer events. Its features and princi-
ples are described in the Event Tracing section.

Here is a short example of how to use this library to log the entry/exit of the switchState()
method:

1. To use this library, add the following line to the project build file:

Gradle (build.gradle.kts)

MMM (module.ivy)

implementation(”ej.api:trace:1.1.1”)

<dependency org=”ej.api” name=”trace” rev=”1.1.1”/>

2. Start by initializing a Tracer object:

private static final Tracer tracer = new Tracer(”Application”, 100);

In this case, Application identifies a category of events that defines amaximumof 100 differ-
ent event types.

3. Next, start trace recording:

public static void main(String[] args) {
Tracer.startTrace();

currentState = ApplicationState.UNINSTALLED;
switchState(ApplicationState.INSTALLED);

}

4. Use themethodsTracer.recordEvent(…)andTracer.recordEventEnd(…) to record theentry/exit
events in the method:

private static final int EVENT_ID = 0;

public static void switchState(ApplicationState newState) {
tracer.recordEvent(EVENT_ID);

previousState = currentState;
currentState = newState;

tracer.recordEventEnd(EVENT_ID);
}

The Tracer object records the entry/exit of method switchState with event ID 0 .

5. Finally, to enable the Core Engine trace system, set the core.trace.enabled option to true .

This produces the following output:

[TRACE: Application] Event 0x0()
[TRACE: Application] Event End 0x0()

3.5. Application Developer Guide 681

https://repository.microej.com/modules/ej/api/trace
https://repository.microej.com/javadoc/microej_5.x/apis/ej/trace/Tracer.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/trace/Tracer.html#recordEvent-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/trace/Tracer.html#recordEventEnd-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/trace/Tracer.html

MicroEJ Documentation,

Note: The default VEE Port implementation of the Trace library prints the events to the console. See VEE Port
Implementation for other available implementations such as SystemView tool.

Log with the Message Library

The ej.library.runtime.message Message library was designed to enable logging while min-
imizing RAM/ROM footprint and CPU usage. For that, logs are based on message identifiers,
which are stored on integers instead of using of constant Strings. In addition to amessage iden-
tifier, the category of themessage allows the user to find the corresponding error/warning/info
description. An external documentationmust bemaintained todescribe allmessage identifiers
and their expected arguments for each category.

Principles:

• TheMessageLogger type allows for loggingmessages solely based on integers that identify the
message content.

• Log a message by using methods MessageLogger.log(…) methods, by specifying the log level,
the message category, and the message identifier. Use optional arguments to add any useful
information to the log, such as a Throwable or contextual data.

• Log levels are very similar to those of the Logging library. The class ej.util.message.Level lists
the available levels.

• Loggers rely on the MessageBuilder type for message creation. The messages built by the Ba-
sicMessageBuilder follow this pattern: [category]:[LEVEL]=[id] . The builder appends the
specified Object arguments (if any) separated by spaces, then the full stack trace of the Throw-
able argument (if any).

• The FilterMessageLogger allows to filter messages actually logged based on a threshold level
(defaults to INFO). The threshold level can be modified dynamically with FilterMessageLog-
ger.setLevel(). Use the system FilterMessageLogger.INSTANCE or create a new logger to
configure the level of loggedmessages per instance.

Here is a short example of how to use this library to log the entry/exit of the switchState()
method:

1. To use this library, add the following line to the project build file:

Gradle (build.gradle.kts)

MMM (module.ivy)

implementation(”ej.library.runtime:message:2.2.1”)

<dependency org=”ej.library.runtime” name=”message” rev=”2.2.1”/>

2. Call the message API to log some info:

private static final String LOG_CATEGORY = ”Application”;

private static final int LOG_ID = 2;

public static void switchState(ApplicationState newState) {
previousState = currentState;
currentState = newState;

(continues on next page)

3.5. Application Developer Guide 682

https://repository.microej.com/modules/ej/api/trace
https://repository.microej.com/modules/ej/library/runtime/message/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/util/message/MessageLogger.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/util/message/MessageLogger.html#log-char-java.lang.String-int-java.lang.Throwable-java.lang.Object...-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Throwable.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/util/message/Level.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/util/message/MessageBuilder.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/util/message/basic/BasicMessageBuilder.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/util/message/basic/BasicMessageBuilder.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Object.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Throwable.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Throwable.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/util/message/basic/FilterMessageLogger.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/util/message/basic/FilterMessageLogger.html#setLevel-char-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/util/message/basic/FilterMessageLogger.html#setLevel-char-

MicroEJ Documentation,

(continued from previous page)

FilterMessageLogger.
→˓INSTANCE.log(Level.INFO, LOG_CATEGORY, LOG_ID, previousState, currentState);
}

This produces the following output:

Application:I=2 UNINSTALLED INSTALLED

Log with the Logging Library

The ej.library.eclasspath.logging Logging library implements a subset of the standard Java
java.util.logging package and follows the same principles:

• There is one instance of LogManager by application that manages the hierarchy of loggers.

• Findor create Loggerobjectsusing themethodLogger.getLogger(String). If a loggerhasalready
been created with the same name, this logger is returned, otherwise a new logger is created.

• Each Logger created with this method is registered in the LogManager and can be retrieved
using its String ID .

• A minimum level can be set to a Logger so that only messages that have at least this level are
logged. The class java.util.logging.Level lists the available standard levels.

• The Logger API provides multiple methods for logging:

– log(…) methods that send a LogRecord to the registered Handler instances. The LogRecord object
wraps the String message and the log level.

– Log level-specific methods, like severe(String msg), that call the aforementioned log(...)
method with the correct level.

• The library defines a default Handler implementation, called DefaultHandler, that prints the
message of the LogRecord on the standard error output stream. It also prints the stack trace of
the Throwable associated with the LogRecord if there is one.

Here is a short example of how to use this library to log the entry/exit of the switchState()
method:

1. To use this library, add the following line to the project build file:

Gradle (build.gradle.kts)

MMM (module.ivy)

implementation(”ej.library.eclasspath:logging:1.2.1”)

<dependency org=”ej.library.eclasspath” name=”logging” rev=”1.2.1”/>

2. Call the logging API to log some info text:

public static void switchState(ApplicationState newState) {
previousState = currentState;
currentState = newState;

Logger logger = Logger.getLogger(Main.class.getName());
logger.log(Level.

(continues on next page)

3.5. Application Developer Guide 683

https://repository.microej.com/modules/ej/library/eclasspath/logging/
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/logging/package-summary.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/logging/LogManager.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/logging/Logger.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/logging/Logger.html#getLogger-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/logging/Logger.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/logging/Logger.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/logging/Level.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/logging/Logger.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/logging/Logger.html#log-java.util.logging.Level-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/logging/LogRecord.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/logging/Handler.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/logging/LogRecord.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/logging/Logger.html#severe-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/logging/Handler.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/util/logging/handler/DefaultHandler.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/logging/LogRecord.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Throwable.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/logging/LogRecord.html

MicroEJ Documentation,

(continued from previous page)

→˓INFO, ”The application state has changed from ” + previousState.toString() + ” to ”
+ currentState.toString() + ”.”);

}

This produces the following output:

main INFO: The application state has changed from UNINSTALLED to INSTALLED.

Note: Unlike the two other libraries discussed here, the Logging library is entirely based on Strings (log IDs and
messages). String operations can lead to performance issues and String objects use significant ROM space. When
possible, prefer using a logging solution that uses primitive types over Strings.

Remove Logging Related Code

This section describes some techniques to remove logging related code, which saves mem-
ory footprint when logging is disabled at runtime. This is typically useful when building two
Firmware flavors: one for production and one for debug.

Wrapwith a Constant If Statement

A boolean constant declared in an if statement can be used to fully remove portions of code.
When this boolean constant is detected to be false , the wrapped code becomes unreachable
and is not embedded.

Note: More information about the usage of constants and if code removal can be found in the Classpath section.

1. Let’s consider a constant com.mycompany.logging declared as false in a resource file named
example.constants.list .

2. Wrap the log code by an if statement, as follows:

private static final String LOG_PROPERTY = ”com.mycompany.logging”;

public static void switchState(ApplicationState newState) {
previousState = currentState;
currentState = newState;

if (Constants.getBoolean(LOG_PROPERTY)) {
Logger logger = Logger.getLogger(Main.class.getName());
logger.log(Level.

→˓INFO, ”The application state has changed from ” + previousState.toString() + ” to ”
+ currentState.toString() + ”.”);

}
}

When using the Trace API (Trace), you can use the Tracer.TRACE_ENABLED_CONSTANT_PROP-
ERTY constant that represents the value of the core.trace.enabled option.

Follow the same principle as before:

3.5. Application Developer Guide 684

https://repository.microej.com/modules/ej/library/eclasspath/logging/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/trace/Tracer.html#TRACE_ENABLED_CONSTANT_PROPERTY
https://repository.microej.com/javadoc/microej_5.x/apis/ej/trace/Tracer.html#TRACE_ENABLED_CONSTANT_PROPERTY

MicroEJ Documentation,

private static final int EVENT_ID = 0;

public static void switchState(ApplicationState newState) {
if (Constants.getBoolean(Tracer.TRACE_ENABLED_CONSTANT_PROPERTY)) {

tracer.recordEvent(EVENT_ID);
}

previousState = currentState;
currentState = newState;

if (Constants.getBoolean(Tracer.TRACE_ENABLED_CONSTANT_PROPERTY)) {
tracer.recordEventEnd(EVENT_ID);

}
}

Shrink Code Using ProGuard

ProGuard is a tool that shrinks, optimizes, and obfuscates Java code.

It optimizes bytecode as well as it detects and removes unused instructions. Therefore it can
be used to remove log messages in a production binary.

A dedicated How-To is available at https://github.com/MicroEJ/How-To/tree/master/
Proguard-Get-Started. It describes how to configure ProGuard to remove elements of code
from the Logging library.

Event Tracing

Description

Event Tracing allows to record integer based events for debugging and monitoring purposes
without affecting execution performance too heavily. Basically, it gives access to Tracer ob-
jects that are named and can produce a limited number of different event types.

A record is an event type identified by an eventID and can have a list of values. It can be a
single event or a period of time with a start and an end.

Event Tracing can be accessed from two APIs:

• A Java API, provided by the Trace APImodule. The following dependencymust be added to the
build file of the MicroEJ Application project:

Gradle (build.gradle.kts)

MMM (module.ivy)

implementation(”ej.api:trace:1.1.0”)

<dependency org=”ej.api” name=”trace” rev=”1.1.0”/>

• A C API, provided by the Foundation Library header file named LLTRACE_impl.h .

3.5. Application Developer Guide 685

https://www.guardsquare.com/en/products/proguard
https://github.com/MicroEJ/How-To/tree/master/Proguard-Get-Started
https://github.com/MicroEJ/How-To/tree/master/Proguard-Get-Started
https://repository.microej.com/modules/ej/library/eclasspath/logging/
https://repository.microej.com/modules/ej/api/trace/

MicroEJ Documentation,

Event Recording

Events are recorded if and only if:

• the Core Engine trace system is enabled,

• and trace recording is started.

To enable the Core Engine trace system, set the Application Option named core.trace.enabled
to true (see also launch configuration).

Then, multiple ways are available to start and stop the trace recording:

• by setting the Application Option named core.trace.autostart to true to automatically start at
startup (see also launch configuration),

• using the Java API methods ej.trace.Tracer.startTrace() and ej.trace.Tracer.stopTrace(),

• using the C API functions LLTRACE_IMPL_start(void) and LL-
TRACE_IMPL_stop(void) .

Java API Usage

The detailed Trace API documentation is available here.

First, you need to instantiate a Tracer object by calling its constructor with two parameters.
The first parameter, name , is a String that will represent the Tracer object group’s name. The
second parameter, nbEventTypes , is an integer representing the maximum number of event
types available for the group.

Tracer tracer = new Tracer(”MyGroup”, 10);

Then, you can record an event by calling the recordEvent(int eventId) method. The event ID
needs to be in the range 0 to nbEventTypes-1 with nbEventTypes themaximumnumber of
event types set when initializing the Tracer object. Methods named recordEvent(...) always
needs the event ID as the first parameter and can have up to ten integer parameters as custom
values for the event.

To record the end of an event, call the method recordEventEnd(int eventID). It will trace the
duration of an event previously recorded with one of the recordEvent(int eventID) methods.
The recordEventEnd(...) method can also have another integer parameter for a custom value
for the event end. One can use it to trace the returned value of a method.

The Trace API also provides a String constant Tracer.TRACE_ENABLED_CONSTANT_PROPERTY
representing the Constant value of core.trace.enabled option. This constant can be used to re-
move at build timeportions of codewhen the trace system is disabled. To do that, just surround
tracer record calls with a if statement that checks the constant’s state. When the constant is set
to false , the code inside the if statement will not be embedded with the application and thus
will not impact the performances.

if(Constants.getBoolean(Tracer.TRACE_ENABLED_CONSTANT_PROPERTY)) {
// This␣

→˓code is not embedded if TRACE_ENABLED_CONSTANT_PROPERTY is set to false.
tracer.recordEventEnd(0);

}

Examples:

• Trace a single event:

3.5. Application Developer Guide 686

https://repository.microej.com/javadoc/microej_5.x/apis/ej/trace/Tracer.html#startTrace--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/trace/Tracer.html#stopTrace--
https://repository.microej.com/javadoc/microej_5.x/foundation/ej/trace/Tracer.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/trace/Tracer.html#recordEvent-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/trace/Tracer.html#recordEventEnd-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/trace/Tracer.html#recordEvent-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/trace/Tracer.html#TRACE_ENABLED_CONSTANT_PROPERTY

MicroEJ Documentation,

private static final Tracer tracer = new Tracer(”Application”, 100);

public static void main(String[] args) {
Tracer.startTrace();
tracer.recordEvent(0);

}

Standard Output:

MicroEJ START
[TRACE] [1] Declare group ”Application”
[TRACE] [1] Event 0x0

• Trace a method with a start event showing the parameters of the method and an end event
showing the result:

private static final Tracer tracer = new Tracer(”Application”, 100);

public static void main(String[] args) {
Tracer.startTrace();
int a = 14;
int b = 54;
add(a, b);

}

public static int add(int a, int b) {
tracer.recordEvent(1, a, b);
int result = a + b;
tracer.recordEventEnd(1, result);
return result;

}

Standard Output:

MicroEJ START
[TRACE] [1] Declare group ”Application”
[TRACE] [1] Event 0x1 (14 [0xE],54 [0x36])
[TRACE] [1] Event End 0x1 (68 [0x44])

VEE Port Implementation

By default, when enabled, the Trace API displays a message in the standard output for every
recordEvent(...) and recordEventEnd(...) method calls.

It does not print a timestamp when displaying the trace message because it can drastically af-
fect execution performances. It only prints the ID of the recorded event followed by the values
given in parameters.

A VEE Port can connect its own implementation by overriding the functions defined in the
LLTRACE_impl.h file.

MicroEJ Corp. provides an implementation that redirects the events to SystemView tool, the
real-time recording and visualization tool from Segger. It is perfect for a finer understanding of
the runtime behavior by showing events sequence and duration.

A implementation example for theNXPOM13098development boardwith SystemView support
is available here.

3.5. Application Developer Guide 687

https://www.segger.com/
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc54000-cortex-m4-/lpcxpresso54628-development-board:OM13098
https://developer.microej.com/packages/referenceimplementations/U3OER/2.0.1/OM13098-U3OER-fullPackaging-eval-2.0.1.zip

MicroEJ Documentation,

Please contact our support team for more information about how to integrate this module.

Advanced Event Tracing

Method invocation can be profiled.

Note: This feature requires Architecture version 7.17.0 or higher and is only available on the Core Engine, not on
Simulator.

MicroEJ Corp. provides an implementation on Linux targets to profile an Application and gen-
erate a flamegraph for the Trace Compass tool.

Please contact our support team for more information about how to generate flamegraph.

VEE Debugger Proxy

Principle

The VEE debugger proxy is an implementation of the Java Debug Wire protocol (JDWP) for
debugging Applications executed by MICROEJ VEE. It consists of a TCP server implementing
the JDWP protocol and acting as a proxy between the IDE (debugger) and the Executable (de-
buggee) running on the device.

The debugger proxy allows a postmortem debug from a snapshot of the memory (core dump
file for Linux/QNX targets and Intel Hex file for MCU targets) of a running Executable binary.

Fig. 157: Debugger Proxy Principle

Warning: The snapshot of thememory (core dumpor Intel Hex files) should only be generated
when the Core Engine task is stopped on one of the Core Engine hooks (LLMJVM_on_Out-
OfMemoryError_thrown , LLMJVM_on_Runtime_gc_done etc.) or in a native function.

3.5. Application Developer Guide 688

https://www.eclipse.org/tracecompass/

MicroEJ Documentation,

Otherwise, the Core Enginememory dump is not guarranted to be consistent, whichmay cause
the VEE Debugger to crash abruptly.

Note: This feature requires Architecture version 8.1.0 or higher and works for both Mono-Sandbox and
Multi-Sandbox Executables.

Installation

Download the VEE Debugger Proxy tool jdwp-server-[version].jar at https://forge.microej.
com/artifactory/microej-sdk6-repository-release/com/microej/tool/jdwp-server/1.0.5/
jdwp-server-1.0.5.jar .

Debugging Executable for Linux or QNX target

In order to debug an Executable for Linux or QNX target, you need to dump the memory of the
running Executable and then run the VEE Debugger Proxy.

For Linux and QNX target, the memory dumpmust be a core dump file.

Generate a Core Dump File using GDB

Open a shell terminal on the device and enter the following commands:

Instruct the Linux kernel to Dump file-backed private mappings.
echo 0x37 > /proc/self/coredump_filter
Start GDB
gdb ./application.out

The following GDB script can be used to generate a core dump file:

• when the signal SIGUSR1 is received

• or when an out of memory error occurs

• or when an explicit garbage collection (GC) is done.

You can run the script directly in the GDB console.

From GBD documentation:
generate-core-file [file]
Produce a core dump of the inferior process.
The optional argument file specifies the file name where to put the core dump.
If not specified, the file name defaults to 'core.pid', where pid is the inferior process ID.

Generate a core dump when the signal SIGUSR1 is received
catch signal SIGUSR1
commands
silent
generate-core-file
cont
end

(continues on next page)

3.5. Application Developer Guide 689

https://forge.microej.com/artifactory/microej-sdk6-repository-release/com/microej/tool/jdwp-server/1.0.5/jdwp-server-1.0.5.jar
https://forge.microej.com/artifactory/microej-sdk6-repository-release/com/microej/tool/jdwp-server/1.0.5/jdwp-server-1.0.5.jar
https://forge.microej.com/artifactory/microej-sdk6-repository-release/com/microej/tool/jdwp-server/1.0.5/jdwp-server-1.0.5.jar

MicroEJ Documentation,

(continued from previous page)

Generate a core dump when an out of memory error occurs
break LLMJVM_on_OutOfMemoryError_thrown
commands
silent
generate-core-file
cont
end

Generate a core dump when an explicit garbage collection (GC) is done
break LLMJVM_on_Runtime_gc_done
commands
silent
generate-core-file
cont
end

Starts executing the Mono-Sandbox Executable under GDB:

In the GDB console:
run

A core dump file will be generated once the Executable reach one of the breaking conditions
described previously.

Run the VEE Debugger Proxy

Open a shell terminal on your workstation and run the following command:

java -DveePortDir=<path to VEE Port directory> \
-Ddebugger.port=<8000> \
-Ddebugger.out.path=<path to the Executable file (application.out)> \
-Ddebugger.

→˓features.out.path=<comma-separated list of the Feature files with debug information␣
→˓(*.fodbg files). To be used if you want to debug an installed Sandboxed Application> \

-Ddebugger.out.coredump.path=<path to the core dump file> \
-jar jdwp-server-[version].jar

Open the SDK and run a Remote Java Application Launch to debug your code.

Debugging Executable for MCU target

The VEE Debugger Proxy for MCU target requires a memory dump of the running Executable in
Intel Hex format. It provides a tool to generate a script for IAR (IAR8 or IAR9) or GDB debugger,
that contains the needed commands to dump the requiredmemory regions in Intel Hex format.

3.5. Application Developer Guide 690

MicroEJ Documentation,

Generate VEEmemory dump script

Open a shell terminal on your workstation and run the following command:

java -DveePortDir=<path to VEE Port directory> \
-Ddebugger.out.path=<path to the Executable file (application.out)> \
-cp jdwp-server-[version].jar com.microej.jdwp.VeeDebuggerCli \
--debugger=IAR8|IAR9|GDB \
--output=<Output directory where the script file will be generated>

A script file named vee-memory-dump.mac (for IAR) or vee-memory-dump.gdb (for GDB) is
generated into the specified output directory.

You can now use this script to dump the memory of the running Executable.

Dump thememory of the running Executable

With IAR Debugger

Note: Youmust use a version of IAR Workbench for which the vee-memory-dump.mac script file is generated.

A script file generated for IAR8 will not work on IAR Workbench 9.x.x and vice versa.

In IAR Embedded Workbench:

• Register the generated vee-memory-dump.mac script file in the debugger project option:

1. Open the Debugger Project option window by clicking on Project > Options... > Debugger
> Setup

2. Check the option Use macro file(s) andbrowse to the generated vee-memory-dump.mac file.

3. Click on OK to confirm.

3.5. Application Developer Guide 691

MicroEJ Documentation,

Fig. 158: IAR Debugger Project Option

• Add the macro dumpMemories() as an action expression to a code breakpoint:

1. Open IAR Breakpoints window by clicking on View > Breakpoints

2. Right click on IAR Breakpoints window and select New Breakpoint > Code

3. In the Expression text field, enter dumpMemories() and click on OK

3.5. Application Developer Guide 692

MicroEJ Documentation,

Fig. 159: IAR Breakpoint editor

When the IAR Debugger hits the specified breakpoint, the dumpMemories() macro function is
executed and the memory is dumped into *.hex files.

The *.hex files are generated in the same directory as the vee-memory-dump.mac file.

3.5. Application Developer Guide 693

MicroEJ Documentation,

With GNU Debugger (GDB)

In your GDB console:

• Create a breakpoint at a specific safe point (Core Engine hooks or native function)

E.g. Add breakpoint at LLMJVM_on_Runtime_gc_done hook
break LLMJVM_on_Runtime_gc_done
run

• When the running Executable stops at the Breakpoint, run the vee-memory-dump.gdb script
file to dump the memory.

E.g. Run the GDB memory dump script
source [/path/to]/vee-memory-dump.gdb

The memory is dumped into *.hex files in the same directory as the vee-memory-dump.gdb
file.

Start the VEE Debugger Proxy

Open a shell terminal on your workstation and run the following command:

java -DveePortDir=<path to VEE Port directory> \
-Ddebugger.port=<8000> \
-Ddebugger.out.path=<path to the Executable file (application.out)> \
-Ddebugger.

→˓features.out.path=<comma-separated list of the Feature files with debug information␣
→˓(*.fodbg files). To be used if you want to debug an installed Sandboxed Application> \

-Ddebugger.out.hex.path=<comma-separated list of the␣
→˓memory dump files in Intel Hex format or a single file containg all the dumped memory> \

-jar jdwp-server-[version].jar

Open the SDK and run a Remote Java Application Launch to debug your code.

Note: If you havemultiple *.hex files generated in the previous step, you can if youwantmerge them into a single
*.hex file.

It will be easier to use a single *.hex file than multiple files in the Debugger Proxy command
line.

You can run the following shell script tomerge all the *.hex files into a single file called all.hex
for example.

Make sure to move to the directory where *.hex files are generated before running the script.

• OnWindows workstation

set ALL_HEX=”all.hex”
rem delete all.hex file if it exists
if exist ”%ALL_HEX%” (del /f %ALL_HEX%)
rem merge all the *.hex files
copy /b *.hex %ALL_HEX%

• On Linux workstation

3.5. Application Developer Guide 694

MicroEJ Documentation,

#!/usr/bin/bash
ALL_HEX=”all.hex”
#delete all.hex file if it exists
test -f $ALL_HEX && rm $ALL_HEX
#merge all the *.hex files
cat *.hex > $ALL_HEX

Now, use this single all.hex file as value to the Debugger Proxy option -Ddebugger.out.hex.
path

Update the State of the Debugged Application

While the VEE Debugger Proxy is active, you can debug a new application state without restart-
ing it. Simply replace the old memory dump files with the new ones, and the VEE Debugger
Proxy will automatically reload the state. After that, relaunch the Remote Java Application
Launch.

VEE Debugger Proxy Options Summary

• veePortDir: Thepath to the VEEPort directory (must point to the source folder of the VEEPort.).

• debugger.port: The TCP server port, defaults to 8000 .

• debugger.out.path: The Path to the Executable file to debug (application.out).

• debugger.features.out.path: comma-separated list of the Feature files with debug informa-
tion (*.fodbg files). This option must be used if you want to debug an installed Sandboxed
Application. In this case, note that the specified Executable in debugger.out.path optionmust
be the Multi-Sandbox Executable.

• debugger.out.coredump.path: The Path to the core dump file (conflict with debug-
ger.out.hex.path option).

• debugger.out.hex.path: The Path to the memory dump files in Intel Hex format (conflict
with debugger.out.coredump.path option). If you have multiple Intel Hex files, you can ei-
ther merge them into a single file or list them with a comma separator, such as [/path/to]/
java_heap.hex,[/path/to]/java_stacks.hex,[/path/to]/vm_instance.hex .

Troubleshooting

You may encounter some command line issues if you try to run the proxy on Windows Power-
Shell.

On Windows workstation, we recommend using CMD Command Prompt instead.

3.5. Application Developer Guide 695

MicroEJ Documentation,

Dependency Discoverer

Introduction

DependencyDiscoverer is a tool that lists unresolveddependencies (types,methods and fields)
of a set of Java ARchive (JAR) files and .class files. It is a versatile tool and can be used in other
contexts, for instance, to list every dependency of a JAR file.

It can be used through a command-line interface, with the possibility to output the result in
JSON or XML format, allowing an easy scripting process.

Installation

This tool is available at https://github.com/MicroEJ/Tool-ApiDependencyDiscoverer. A JAR
and Windows executable version can be downloaded from the release page. It is also possi-
ble to clone and import the project in the SDK and use it from sources.

Use

For usage information, see https://github.com/MicroEJ/Tool-ApiDependencyDiscoverer/blob/
master/README.md.

MicroEJ Linker

Overview

MicroEJ Linker is a standard linker that is compliant with the Executable and Linkable File for-
mat (ELF).

MicroEJ Linker takes one or several relocatable binary files and generates an image represen-
tation using a description file. The process of extracting binary code, positioning blocks and
resolving symbols is called linking.

Relocatable object files are generated by SOAR and third-party compilers. An archive file is a
container of Relocatable object files.

The description file is called a Linker Specific Configuration file (lsc). It describes what shall be
embedded, and how those things shall be organized in the program image. The linker outputs
:

• An ELF executable file that contains the image and potential debug sections. This file can be di-
rectly used by debuggers or programming tools. Itmay also be converted into a another format
(Intel* hex, Motorola* s19, rawBinary, etc.) using external tools, such as standard GNU binutils
toolchain (objcopy, objdump, etc.).

• Amap file, in XML format, which can be viewed as a database of what has been embedded and
resolved by the linker. It can be easily processed to get a sort of all sizes, call graphs, statistics,
etc.

• The linker is composedwith one ormore library loaders, according to the platform’s configura-
tion.

3.5. Application Developer Guide 696

https://github.com/MicroEJ/Tool-ApiDependencyDiscoverer
https://github.com/MicroEJ/Tool-ApiDependencyDiscoverer/blob/master/README.md
https://github.com/MicroEJ/Tool-ApiDependencyDiscoverer/blob/master/README.md

MicroEJ Documentation,

ELF Overview

An ELF relocatable file is split into several sections:

• allocation sections representing a part of the program

• control sections describing the binary sections (relocation sections, symbol tables, debug sec-
tions, etc.)

An allocation section can hold some image binary bytes (assembler instructions and raw data)
or can refer to an interval of memory which makes sense only at runtime (statics, main stack,
heap, etc.). An allocation section is an atomic block and cannot be split. A section has a name
thatbyconvention, represents thekindofdata it holds. For example, .text sectionsholdbinary
instructions, .bss sections hold read-write static data, .rodata hold read-only data, and .
data holds read-write data (initialized static data). The name is used in the .lsc file to organize
sections.

A symbol is an entity made of a name and a value. A symbol may be absolute (link-time con-
stant) or relative to a section: Its value is unknown until MicroEJ Linker has assigned a defini-
tive position to the target section. A symbol can be local to the relocatable file or global to the
system. All global symbol names should be unique in the system (the name is the key that con-
nects an unresolved symbol reference to a symbol definition). A sectionmay need the value of
symbols to be fully resolved: the address of a function called, address of a static variable, etc.

Linking Process

The linking process can be divided into three main steps:

1. Symbols and sections resolution. Starting from root symbols and root sections, the linker em-
beds all sections targeted by symbols and all symbols referred by sections. This process is tran-
sitive while new symbols and/or sections are found. At the end of this step, the linker may stop
and output errors (unresolved symbols, duplicate symbols, unknown or bad input libraries,
etc.)

2. Memory positioning. Sections are laid out inmemory ranges according tomemory layout con-
straints described by the lsc file. Relocations are performed (in other words, symbol values are
resolved and section contents are modified). At the end of this step, the linker may stop and
output errors (it could not resolve constraints, such as not enoughmemory, etc.)

3. An output ELF executable file andmap file are generated.

A partialmap filemaybe generated at the endof step 2. It provides useful information to under-
standwhy the link phase failed. Symbol resolution is the process of connecting a global symbol
name to its definition, found in one of the linker input units. The order the units are passed to
the linker may have an impact on symbol resolution. The rules are :

• Relocatable object files are loaded without order. Two global symbols defined with the same
name result in an unrecoverable linker error.

• Archive files are loadedondemand. Whenaglobal symbolmust be resolved, the linker inspects
eacharchiveunit in theorder itwaspassed to the linker. Whenanarchive contains a relocatable
object file that declares the symbol, the object file is extracted and loaded. Then the first rule is
applied. It is recommended that you group object files in archives asmuch as possible, in order
to improve load performances. Moreover, archive files are the only way to tie with relocatable
object files that share the same symbols definitions.

• A symbol name is resolved to a weak symbol if - and only if - no global symbol is foundwith the
same name.

3.5. Application Developer Guide 697

MicroEJ Documentation,

Linker Specific Configuration File Specification

Description

A Linker Specific Configuration (Lsc) file contains directives to link input library units. An lsc file
is written in an XML dialect, and its contents can be divided into two principal categories:

• Symbols and sections definitions.

• Memory layout definitions.

Listing 26: Example of Relocation of Runtime Data from FLASH to
RAM

<?xml version=”1.0” encoding=”UTF-8”?>
<!--

An example of linker specific configuration file
-->
<lsc name=”MyAppInFlash”>

<include name=”subfile.lscf”/>
<!--

Define symbols with arithmetical and logical expressions
-->
<defSymbol name=”FlashStart” value=”0”/>
<defSymbol name=”FlashSize” value=”0x10000”/>
<defSymbol name=”FlashEnd” value=”FlashStart+FlashSize-1”/>
<!--

Define FLASH memory interval
-->
<defSection name=”FLASH” start=”FlashStart” size=”FlashSize”/>

<!--
Some memory layout directives

-->
<memoryLayout ranges =”FLASH”>

<sectionRef name =”*.text”/>
<sectionRef name =”*.data”/>

</memoryLayout>
</lsc>

File Fragments

An lsc file can be physically divided into multiple lsc files, which are called lsc fragments. Lsc
fragments may be loaded directly from the linker path option, or indirectly using the include
tag in an lsc file.

Lsc fragments start with the root tag lscFragment . By convention the lsc fragments file exten-
sion is .lscf . From here to the end of the document, the expression “the lsc file” denotes the
result of the union of all loaded (directly and indirectly loaded) lsc fragments files.

3.5. Application Developer Guide 698

MicroEJ Documentation,

Symbols and Sections

A new symbol is defined using defSymbol tag. A symbol has a name and an expression value.
All symbols defined in the lsc file are global symbols.

A new section is defined using the defSection tag. A section may be used to define a memory
interval, or define a chunk of the final imagewith the description of the contents of the section.

Memory Layout

A memory layout contains an ordered set of statements describing what shall be embedded.
Memory positioning can be viewed as moving a cursor into intervals, appending referenced
sections in the order they appear. A symbol can be defined as a “floating” item: Its value is
the value of the cursor when the symbol definition is encountered. In the example below, the
memory layout sets the FLASH section. First, all sections named .text are embedded. The
matching sections are appended in a undefined order. To reference a specific section, the sec-
tion shall have a unique name (for example a reset vector is commonly called .reset or .vector
, etc.). Then, the floating symbol dataStart is set to the absolute address of the virtual cursor

right after embedded .text sections. Finally all sections named .data are embedded.

Amemory layout can be relocated to amemory interval. The positioning works in parallel with
the layout ranges, as if therewere two cursors. The address of the section (used to resolve sym-
bols) is the address in the relocated interval. Floating symbols can refer either to the layout cur-
sor (by default), or to the relocated cursor, using the relocation attribute. A relocation layout
is typically used to embed data in a program image that will be used at runtime in a read-write
memory. Assuming the program image is programmed in a read only memory, one of the first
jobs at runtime, before starting the main program, is to copy the data from read-only memory
to RAM , because the symbols targeting the data have been resolved with the address of the

sections in the relocated space. To perform the copy, the program needs both the start address in FLASH where
the data has been put, and the start address in RAM where the data shall be copied.

3.5. Application Developer Guide 699

MicroEJ Documentation,

Listing 27: Example of Relocation of Runtime Data from FLASH to RAM

<memoryLayout ranges=”FLASH” relocation=”RAM” image=”true”>
<defSymbol name=”DataFlashStart” value=”.”/>
<defSymbol name=”DataRamStart” value=” .” relocation=”true”/>
<sectionRef name=”.data”/>
<defSymbol name=”DataFlashLimit” value=”.”/>

</memoryLayout>

Note: the symbol DataRamStart is defined to the start address where .data sections will be inserted in RAM
memory.

Tags Specification

Here is the complete syntactical and semantical description of all available tags of the .lsc file.

Table 32: Linker Specific Configuration Tags
Tags Attributes Description

defSection
Defines a new section. A floating section only holds a declared size
attribute. A fixed section declares at least one of the start / end at-
tributes. When this tag is empty, the section is a runtime section, and
must define at least one of the start , end or size attributes. When
this tag is not empty (when it holds a binary description), the section
is an image section.

name Name of the section. The section namemay not be unique. However,
it is recommended that you define a unique name if the section must
be referred separately for memory positioning.

start Optional. Expression defining the absolute start address of the sec-
tion. Must be resolved to a constant after the full load of the lsc file.

end Optional. Expression defining the absolute end address of the section.
Must be resolved to a constant after the full load of the lsc file.

size Optional. Expression defining the size in bytes of the section. Invari-
ant: (end-start)+1=size . Must be resolved to a constant after the full
load of the lsc file.

align Optional. Expression defining the alignment in bytes of the section.
rootSection Optional. Boolean value. Sets this section as a root section to be em-

bedded even if it is not targeted by any embedded symbol. See also
rootSection tag.

symbolPrefix Optional. Used in collaboration with symbolTags . Prefix of symbols
embedded in the auto-generated section. See Auto-generated Sec-
tions.

symbolTags Optional. Used in collaboration with symbolPrefix . Comma sepa-
rated list of tags of symbols embedded in the auto-generated section.
See Auto-generated Sections.

defSymbol
Defines a new global symbol. Symbol name must be unique in the
linker context

name Name of the symbol.
continues on next page

3.5. Application Developer Guide 700

MicroEJ Documentation,

Table 32 – continued from previous page
Tags Attributes Description

type Optional. Type of symbol usage. Thismay be necessary to set the type
of a symbol when using third party ELF tools. There are three types: -
none : default. No special type of use. - function : symbol describes a
function. - data : symbol describes some data.

value The value ”.” defines a floating symbol that holds the current cursor
position in amemory layout. (This is the only form of this tag that can
be used as a memoryLayout directive) Otherwise value is an expres-
sion. A symbol expression must be resolved to a constant after mem-
ory positioning.

relocation Optional. The only allowed value is true . Indicates that the value
of the symbol takes the address of the current cursor in the memory
layout relocation space. Only allowed on floating symbols.

rootSymbol Optional. Boolean value. Sets this symbol as a root symbol that must
be resolved. See also rootSymbol tag.

weak Optional. Boolean value. Sets this symbol as a weak symbol.

group memoryLayout directive. Defines a named group of sections. Group
name may be used in expression macros START , END , SIZE . All
memoryLayout directives are allowed within this tag (recursively).

name The name of the group.

include
Includes an lsc fragment file, semantically the same as if the fragment
contents were defined in place of the include tag.

name Name of the file to include. When the name is relative, the file sepa-
rator is / , and the file is relative to the directory where the current
lsc file or fragment is loaded. When absolute, the name describes a
platform-dependent filename.

lsc
Root tag for an .lsc file.

name Name of the lsc file. The ELF executable output will be {name}.out ,
and the map file will be {name}.map

lscFragment Root tag for an lsc file fragment. Lsc fragments are loaded from the
linker path option, or included from a master file using the include
tag.

memoryLayout
Describes the organization of a set of memory intervals. The mem-
ory layouts are processed in the order in which they are declared in
the file. The same interval may be organized in several layouts. Each
layout starts at the value of the cursor the previous layout ended. The
following tagsareallowedwithinamemoryLayoutdirective: defSym-
bol (under certain conditions), group , memoryLayoutRef , padding
, and sectionRef .

ranges Exclusivewithdefault. Comma-separatedordered list of fixed sections
to which the layout is applied. Sections represent memory segments.

image Optional. Boolean value. false if not set. If true , the layout describes
a part of the binary image: Only image sections can be embedded. If
false , only runtime sections can be embedded.

relocation Optional. Name of the section to which this layout is relocated.
name Exclusive with ranges. Defines a named memoryLayout directive in-

stead of specifying a concrete memory location. May be included in a
parent memoryLayout using memoryLayoutRef.

memoryLayoutRef
memoryLayout directive. Provides an extension-pointmechanism to
include memoryLayout directives defined outside the current one.

name All directives of memoryLayout defined with the same name are in-
cluded in an undefined order.

continues on next page

3.5. Application Developer Guide 701

MicroEJ Documentation,

Table 32 – continued from previous page
Tags Attributes Description

padding
memoryLayout directive. Append padding bytes to the current cur-
sor. Either size or align attributes should be provided.

size Optional. Expressionmust be resolved to a constant after the full load
of the lsc file. Increment the cursor position with the given size.

align Optional. Expressionmust be resolved to a constant after the full load
of the lsc file. Move the current cursor position to thenext address that
matches the given alignment. Warning: when used with relocation,
the relocation cursor is also aligned. Keep in mind this may increase
the cursor position with a different amount of bytes.

address Optional. Expressionmust be resolved to a constant after the full load
of the lsc file. Move the current cursor position to the given absolute
address.

fill Optional. Expressionmust be resolved to a constant after the full load
of the lsc file. Fill padding with the given value (32 bits).

rootSection
References a section name that must be embedded. This tag is not a
definition. It forces the linker to embed all loaded sections matching
the given name.

name Name of the section to be embedded.

rootSymbol
References a symbol thatmust be resolved. This tag is not a definition.
It forces the linker to resolve the value of the symbol.

name Name of the symbol to be resolved.

sectionRef
Memory layout statement. Embeds all sections matching the given
name starting at the current cursor address.

file Select only sections defined in a linker unit matching the given file
name. The file name is the simple name without any file separator,
e.g. bsp.o or mylink.lsc . Link unitsmay be object fileswithin archive
units.

name Name of the sections to embed. When the name ends with *, all sec-
tions starting with the given name are embedded (name completion),
except sections that are embedded in another sectionRef using the ex-
act name (without completion).

symbol Optional. Only embeds the section targeted by the given symbol. This
is the only way at link level to embed a specific section whose name is
not unique.

force Optional. Deprecated. Replaced by the rootSection tag. The only al-
lowed value is true . By default, for compaction, the linker embeds
only what is needed. Setting this attribute will force the linker to em-
bed all sections that appear in all loaded relocatable files, even sec-
tions that are not targeted by a symbol.

sort Optional. Specifies that the sections must be sorted in memory. The
value can be: - order : the sections will be in the same order as the
input files - name : the sections are sorted by their file names - unit
: the sections declared in an object file are grouped and sorted in the
order they are declared in the object file

u4 Binary section statement. Describes the four next raw bytes of the
section. Bytes are organized in the endianness of the target ELF ex-
ecutable.

value Expression must be resolved to a constant after the full load of the lsc
file (32 bits value).

fill
Binary section statement. Fills the section with the given expression.
Bytes are organized in the endianness of the target ELF executable.

continues on next page

3.5. Application Developer Guide 702

MicroEJ Documentation,

Table 32 – continued from previous page
Tags Attributes Description

size Expression defining the number of bytes to be filled.
value Expression must be resolved to a constant after the full load of the lsc

file (32 bits value).

Expressions

An attribute expression is a value resulting from the computation of an arithmetical and logical
expression. Supported operators are the same operators supported in the Java language, and
follow Java semantics:

• Unary operators: + , - , ~ , !

• Binary operators: + , - , * , / , % , << , >>> , >> , < , > , <= , >= , == , != , &, |
, ^ , && , ||

• Ternary operator: cond ? ifTrue : ifFalse

• Built-in macros:

– START(name) : Get the start address of a section or a group of sections

– END(name) : Get the end address of a section or a group of sections

– SIZE(name) : Get the size of a section or a group of sections. Equivalent to
END(name)-START(name)

– TSTAMPH() , TSTAMPL() : Get 32 bits linker time stamp (high/low part of system time in millisec-
onds)

– SUM(name,tag) : Get the sum of an auto-generated section (Auto-generated Sections) column. The
column is specified by its tag name.

An operand is either a sub expression, a constant, or a symbol name. Constantsmay bewritten
in decimal (127) or hexadecimal form (0x7F). There are no boolean constants. Constant value
0 means false , and other constants’ values mean true . Examples of use:

value=”symbol+3”
value=”((symbol1*4)-(symbol2*3)”

Note: Ternary expressions can be used to define selective linking because they are the only
expressions that may remain partially unresolved without generating an error. Example:

<defSymbol name=”myFunction” value=”condition ? symb1 : symb2”/>

No error will be thrown if the condition is true and symb1 is defined, or the condition is false
and symb2 is defined, even if the other symbol is undefined.

3.5. Application Developer Guide 703

MicroEJ Documentation,

Auto-generated Sections

The MicroEJ Linker allows you to define sections that are automatically generated with sym-
bol values. This is commonly used to generate tables whose contents depends on the linked
symbols. Symbols eligible to be embedded in an auto-generated section are of the form: pre-
fix_tag_suffix . An auto-generated section is viewedas a table composedof lines and columns
that organize symbols sharing the sameprefix. On the same columnappear symbols that share
the same tag. On the same line appear symbols that share the same suffix. Lines are sorted in
the lexical order of the symbol name. The next line defines a sectionwhichwill embed symbols
starting with zeroinit . The first column refers to symbols starting with zeroinit_start_ ; the

second column refers to symbols starting with zeroinit_end_ .

<defSection
name=”.zeroinit”
symbolPrefix=”zeroInit”
symbolTags=”start,end”

/>

Consider there are four defined symbols named zeroinit_start_xxx , zeroinit_end_xxx ,
zeroinit_start_yyy and zeroinit_end_yyy . The generated section is of the form:

0x00: zeroinit_start_xxx
0x04: zeroinit_end_xxx
0x08: zeroinit_start_yyy
0x0C: zeroinit_end_yyy

If there are missing symbols to fill a line of an auto-generated section, an error is thrown.

Execution

MicroEJ Linker can be invoked through an ANT task. The task is installed by inserting the fol-
lowing code in an ANT script

<taskdef
name=”linker”
classname=”com.is2t.linker.GenericLinkerTask”
classpath=”[LINKER_CLASSPATH]”

/>

[LINKER_CLASSPATH] is a list of path-separated jar files, including the linker and all architecture-specific li-
brary loaders.

The following code shows a linker ANT task invocation and available options.

<linker
doNotLoadAlreadyDefinedSymbol=”[true|false]”
endianness=”[little|big|none]”
generateMapFile=”[true|false]”
ignoreWrongPositioningForEmptySection=”[true|false]”
lsc=”[filename]”
linkPath=”[path1:...pathN]”
mergeSegmentSections=”[true|false]”
noWarning=”[true|false]”
outputArchitecture=”[tag]”
outputName=”[name]”

(continues on next page)

3.5. Application Developer Guide 704

MicroEJ Documentation,

(continued from previous page)

stripDebug=”[true|false]”
toDir=”[outputDir]”
verboseLevel=”[0...9]”

>
<!-- ELF object & archives files using ANT paths / filesets -->
<fileset dir=”xxx” includes=”*.o”>
<fileset file=”xxx.a”>
<fileset file=”xxx.a”>

<!-- Properties that will be reported into .map file -->
<property name=”myProp” value=”myValue”/>

</linker>

3.5. Application Developer Guide 705

MicroEJ Documentation,

Table 33: Linker Options Details
Option Description

doNotLoadAlreadyDefinedSymbol
Silently skip the load of a global symbol if it has already
been loaded before. (false by default. Only the first
loaded symbol is taken into account (in the order input
files are declared). This option only affects the load se-
mantic for global symbols, and does not modify the se-
mantic for loading weak symbols and local symbols.

endianness
Explicitly declare linker endianness [little, big] or
[none] for auto-detection. All input files must declare
the same endianness or an error is thrown.

generateMapFile
Generate the .map file (true by default).

ignoreWrongPositioningForEmptySection
Silently ignore wrong section positioning for zero size
sections. (false by default).

lsc
Provide a master lsc file. This option is mandatory un-
less the linkPath option is set.

linkPath
Provide a set of directories into which to load link
file fragments. Directories are separated with a
platform-path separator. This option is mandatory
unless the lsc option is set.

noWarning
Silently skip the output of warning messages.

mergeSegmentSections
(experimental). Generate a single section per segment.
Thismay speed up the load of the output executable file
into debuggers or flasher tools. (false by default).

outputArchitecture
Set the architecture tag for the output ELF file (ELF ma-
chine id).

outputName
Specify the output name of the generated files. By de-
fault, take the name provided in the lsc tag. The output
ELF executable filenamewill be name.out. Themap file-
name will be name.map.

stripDebug
Remove all debug information from the output ELF file.
A stripped output ELF executable holds only the binary
image (no remaining symbols, debug sections, etc.).

toDir
Specify the output directory in which to store generated
files. Output filenames are in the form: od + separator
+ value of the lsc name attribute + suffix . By default,
without this option, files are generated in the directory
fromwhich the linker was launched.

verboseLevel
Print additionalmessages on the standard output about
linking process.

3.5. Application Developer Guide 706

MicroEJ Documentation,

Error Messages

This section lists MicroEJ Linker error messages.

Table 34: Linker-Specific Configuration Tags
Message ID Description
0 The linker has encountered an unexpected internal error. Please contact the support hot-

line.
1 A library cannot be loaded with this linker. Try verbose to check installed loaders.
2 No lsc file provided to the linker.
3 A file could not be loaded. Check the existence of the file and file access rights.
4 Conflicting input libraries. A global symbol definition with the same name has already

been loaded from a previous object file.
5 Completion (*) could not be used in association with the force attribute. Must be an exact

name.
6 A required section refers to an unknown global symbol. Maybe input libraries aremissing.
7 A library loader has encountered an unexpected internal error. Check input library file in-

tegrity.
8 Floating symbols can only be declared inside memoryLayout tags.
9 Invalid value format. For example, the attribute relocation in defSymbol must be a

boolean value.
10 Missing one of the following attributes: address , size , align .
11 Toomany attributes that cannot be used in association.
13 Negative padding. Memory layout cursor cannot decrease.
15 Not enough space in the memory layout intervals to append all sections that need to be

embedded. Check the output map file to get more information about what is required as
memory space.

16 A block is referenced but has already been embedded. Most likely a block has been espe-
cially embedded using the force attribute and the symbol attribute.

17 A block that must be embedded has nomatching sectionRef statement.
19 An IO error occurred when trying to dump one of the output files. Check the output direc-

tory option and file access rights.
20 size attribute expected.
21 The computed size does not match the declared size.
22 Sections defined in the lsc file must be unique.
23 One of the memory layout intervals refers to an unknown lsc section.
24 Relocation must be done in one and only one contiguous interval.
25 force and symbol attributes are not allowed together.
26 XML char data not allowed at this position in the lsc file.
27 A section which is a part of the program image must be embedded in an image memory

layout.
28 A section which is not a part of the program image must be embedded in a non-image

memory layout.
29 Expression could not be resolved to a link-time constant. Some symbols are unresolved.
30 Sections used in memory layout ranges must be sections defined in the lsc file.
31 Invalid character encountered when scanning the lsc expression.
32 A recursive include cycle was detected.
33 An alignment inconsistency was detected in a relocation memory layout. Most likely one

of the start addresses of the memory layout is not aligned on the current alignment.
34 An error occurs in a relocation resolution. In general, the relocation has a value that is out

of range.
continues on next page

3.5. Application Developer Guide 707

MicroEJ Documentation,

Table 34 – continued from previous page
35 symbol and sort attributes are not allowed together.
36 Invalid sort attribute value is not one of order , name , or no .
37 Attribute start or end in defSection tag is not allowed when defining a floating section.
38 Autogenerated section can build tables according to symbol names (see Auto-generated

Sections). A symbol is needed to build this section but has not been loaded.
39 Deprecated featurewarning. Remains for backward compatibility. It is recommended that

you use the new indicated feature, because this feature may be removed in future linker
releases.

40 Unknownoutput architecture. Either the architecture ID is invalid, or the library loader has
not been loaded by the linker. Check loaded library loaders using verbose option.

41…43 Reserved.
44 Duplicate group definition. A group name is unique and cannot be defined twice.
45 Invalid endianness. The endianness mnemonic is not one of the expected mnemonics (

little,big,none).
46 Multiple endiannesses detected within loaded input libraries.
47 Reserved.
48 Invalid type mnemonic passed to a defSymbol tag. Must be one of none , function , or

data .
49 Warning. A directory of link path is invalid (skipped).
50 No linker-specific description file could be loaded from the link path. Check that the link

path directories are valid, and that they contain .lsc or .lscf files.
51 Exclusive options (these options cannot be used simultaneously). For example, -linkFile-

name and -linkPath are exclusive; either select a master lsc file or a path from which to
load .lscf files.

52 Name given to a memoryLayoutRef or a memoryLayout is invalid. Itmust not be empty.
53 A memoryLayoutRef with the same name has already been processed.
54 A memoryLayout must define ranges or the name attribute.
55 Nomemory layout foundmatching the name of the current memoryLayoutRef .
56 Anamed memoryLayout is declaredwitha relocationdirective, but the relocation interval

is incompatible with the relocation interval of the memoryLayout that referenced it.
57 A named memoryLayout has not been referenced. Every declared memoryLayout must

be processed. A named memoryLayout must be referenced by a memoryLayoutRef
statement.

58 SUM operator expects an auto-generated section.
59 SUM operator tag is unknown for the targetted auto-generated section.
60 SUM operator auto-generated section name is unknown.
61 An option is set for an unknown extension. Most likely the extension has not been set to

the linker classpath.
62 Reserved.
63 ELF unit flags are inconsistent with flags set using the -forceFlags option.
64 Reserved.
65 Reserved.
66 Found an executable object file as input (expected a relocatable object file).
67 Reserved.
68 Reserved.
69 Reserved.
70 Not enough memory to achieve the linking process. Try to increase JVM heap that is run-

ning the linker (e.g. by adding option -Xmx1024M to the JRE command line).

3.5. Application Developer Guide 708

MicroEJ Documentation,

Map File Interpretor

Themap file interpretor is a tool that allows you to read, classify and displaymemory informa-
tiondumpedby the linkermap file. Themap file interpretor is a graph-oriented tool. It supports
graphs of symbols and allows standard operations on them (union, intersection, subtract, etc.).
It can also dump graphs, compute graph total sizes, list graph paths, etc.

The map file interpretor uses the standard Java regular expression syntax.

It is used internally by the graphicalMemory Map Analyzer tool.

Commands:

• createGraph graphName symbolRegExp ... section=regexp

createGraph all section=.*

Recursively create a graph of symbols from root symbols and sections described as regular ex-
pressions. For example, to extract the complete graph of the application:

• createGraphNoRec symbolRegExp ... section=regexp

The above line is similar to the previous statement, but embeds only declared symbols and
sections (without recursive connections).

• removeGraph graphName

Removes the graph for memory.

• listGraphs

Lists all the created graphs in memory.

• listSymbols graphName

Lists all graph symbols.

• listPadding

Lists the padding of the application.

• listSections graphName

Lists all sections targeted by all symbols of the graph.

• inter graphResult g1 ... gn

Creates a graph which is the intersection of g1/\ ... /\gn .

• union graphResult g1 ... gn

Creates a graph which is the union of g1\/ ...\/ gn .

• substract graphResult g1 ... gn

Creates a graph which is the substract of g1\ ... \ gn .

3.5. Application Developer Guide 709

MicroEJ Documentation,

• reportConnections graphName

Prints the graph connections.

• totalImageSize graphName

Prints the image size of the graph.

• totalDynamicSize graphName

Prints the dynamic size of the graph.

• accessPath symbolName

The above line prints one of the paths from a root symbol to this symbol. This is very useful in
helping you understand why a symbol is embedded.

• echo arguments

Prints raw text.

• exec commandFile

Execute the given commandFile. The path may be absolute or relative from the current com-
mand file.

MicroEJ Test Suite Engine

Introduction

The MicroEJ Test Suite Engine is a generic tool made for validating any development project
using automatic testing.

This section details advanced configuration for users who wish to integrate custom test suites
in their build flow.

The MicroEJ Test Suite Engine allows the user to test any kind of projects within the configura-
tion of a generic Ant file.

3.5. Application Developer Guide 710

MicroEJ Documentation,

The MicroEJ Test Suite Engine is already pre-configured for running test suites on a VEE Port
(either on Simulator or on Device).

• For Application and Libraries, refer to Test Suite with JUnit section.

• For Foundation Libraries Test Suites, refer to VEE Port Test Suite section.

Using the MicroEJ Test Suite Ant Tasks

Multiple Ant tasks are available in the testsuite-engine.jar provided in the Build Kit:

• testsuite allows the user to run a given test suite and to retrieve an XML report document in a JUnit format.

• javaTestsuite is a subtask of the testsuite task, used to run a specialized test suite for Java (will only run
Java classes).

• htmlReport is a task which will generate an HTML report from a list of JUnit report files.

The testsuite Task

The following attributes are mandatory:

3.5. Application Developer Guide 711

MicroEJ Documentation,

Table 35: testsuite task mandatory attributes
Attribute Name Description

outputDir
The output folder of the test suite. The final report will be generated at [outputDir]/[label]/
[reportName].xml , see the testsuiteReportFileProperty and testsuiteReportDirProperty
attributes.

harnessScript
The harness script must be an Ant script and it is the script which will be called for each test
by the test suite engine. It is called with a basedir located at output location of the current
test.

The test suite engine provides the following properties to the harness script giving all the infor-
mations to start the test:

Table 36: harnessScript properties
Attribute Name Description

testsuite.test.
name

The output name of the current test in the report. Default value is the relative path of the
test. It can bemanually set by the user. More details on the output name are available in the
section Specific Custom Properties.

testsuite.test.
path

The current test absolute path in the filesystem.

testsuite.test.
properties

The absolute path to the customproperties of the current test (see the property customPro-
pertiesExtension)

testsuite.
common.
properties

The absolute path to the commonproperties of all the tests (see the property commonProp-
erties)

testsuite.
report.dir

The absolute path to the directory of the final report.

The following attributes are optional:

3.5. Application Developer Guide 712

MicroEJ Documentation,

Table 37: testsuite task optional attributes
Attribute
Name

Description Default value

timeOut
The time in seconds before any test is considerated as un-
known. Set it to 0 to disable the time-out. 60

verbose-
Level

The required level to output messages from the test suite.
Can be one of those values: error , warning , info , verbose
, debug .

info

report-
Name

The final report name (without extension).
testsuite-report

custom-
Proper-
tiesEx-
tension

The extension of the custom properties for each test. For in-
stance, if it is set to .options , a test named xxx/Test1.class
will be associated with xxx/Test1.options . If a file exists
for a test, the property testsuite.test.properties is set with
its absolute path and given to the harnessScript . If the test
path references a directory, then the customproperties path
is the concatenation of the test path and the customProper-
tiesExtension value.

.properties

com-
mon-
Proper-
ties

The properties to apply to every test of the test suite. Those
options might be overridden by the custom properties of
each test. If this option is set and the file exists, the property
testsuite.common.properties is set to the absolute path of
the harnessScript file.

no common properties

label
The build label. timestamp of when the test suite

was invoked.

product-
Name

The name of the current tested product.
TestSuite

jvm
The location of your Java SE VM to start the test suite (the
harnessScript is called as is: [jvm] [...] -buildfile [harnessS-
cript]).

java.home location if the property
is set, java otherwise.

jvmargs
Thearguments topass to theJavaSEVMstarted foreach test. None.

testsuit-
eReport-
FileProp-
erty

The name of the Ant property in which the path of the final
report is stored. Path is [outputDir]/[label]/[reportName].
xml

testsuite.report.file

testsuit-
eReport-
DirProp-
erty

Thenameof the Ant property inwhich is store the path of the
directory of the final report. Path is [outputDir]/[label] . testsuite.report.dir

testsuit-
eResult-
Property

The name of the Ant property in which you want to have the
result of the test suite (true or false), depending if every
tests successfully passed the test suite or not. Ignored tests
do not affect this result.

None

Finally, you have to give as nested element the path containing the tests.

3.5. Application Developer Guide 713

MicroEJ Documentation,

Table 38: testsuite task nested elements
Element Name Description

testPath
Containing all the file of the tests which will be launched by the test suite.

testIgnored-
Path (optional)

Any test in the intersection between testIgnoredPath and testPath will be executed by the
test suite, but will not appear in the JUnit final report. It will still generate a JUnit report for
each test, whichwill allow theHTML report to let themappears as “ignored” if it is generated.
Mostly used for known bugs which are not considered as failure but still relevant enough to
appears on the HTML report.

Listing 28: Example of test suite task invocation

<!-- Launch the testusite engine -->
<testsuite:testsuite

timeOut=”${microej.kf.testsuite.timeout}”
outputDir=”${target.test.xml}/testkf”
harnessScript=”$

→˓{com.is2t.easyant.plugins#microej-kf-testsuite.microej-kf-testsuite-harness-jpf-emb.xml.file}”
commonProperties=”${microej.kf.launch.propertyfile}”
testsuiteResultProperty=”testkf.result”
testsuiteReportDirProperty=”testkf.testsuite.report.dir”
productName=”${module.name} testkf”
jvmArgs=”${microej.kf.testsuite.jvmArgs}”
lockPort=”${microej.kf.testsuite.lockPort}”
verboseLevel=”${testkf.verbose.level}”

>
<testPath refid=”target.testkf.path”/>

</testsuite:testsuite>

The javaTestsuite Task

This task extends the testsuite task, specializing the test suite to only start real Java class. This
task retrieves the classname of the tests from the classfile and provides new properties to the
harness script:

Table 39: javaTestsuite task properties
Property Name Description

testsuite.test.
class

The classname of the current test. The value of the property testsuite.test.name is also set
to the classname of the current test.

testsuite.test.
classpath

The classpath of the current test.

Listing 29: Example of javaTestsuite task invocation

<!-- Launch test suite -->
<testsuite:javaTestsuite

verboseLevel=”${microej.testsuite.verboseLevel}”
timeOut=”${microej.testsuite.timeout}”
outputDir=”${target.test.xml}/@{prefix}”
harnessScript=”${harness.file}”

(continues on next page)

3.5. Application Developer Guide 714

MicroEJ Documentation,

(continued from previous page)

commonProperties=”${microej.launch.propertyfile}”
testsuiteResultProperty=”@{prefix}.result”
testsuiteReportDirProperty=”@{prefix}.testsuite.report.dir”
productName=”${module.name} @{prefix}”
jvmArgs=”${microej.testsuite.jvmArgs}”
lockPort=”${microej.testsuite.lockPort}”
retryCount=”${microej.testsuite.retry.count}”
retryIf=”${microej.testsuite.retry.if}”
retryUnless=”${microej.testsuite.retry.unless}”

>
<testPath refid=”target.@{prefix}.path”/>
<testIgnoredPath refid=”tests.@{prefix}.ignored.path” />

</testsuite:javaTestsuite>

The htmlReport Task

This task allow the user to transform a given path containing a sample of JUnit reports to an
HTML detailed report. Here is the attributes to fill:

• A nested fileset element containing all the JUnit reports of each test. Take care to exclude the
final JUnit report generated by the test suite.

• A nested element report :

– format : The format of the generated HTML report. Must be noframes or frames . When noframes
format is choosen, a standalone HTML file is generated.

– todir : The output folder of your HTML report.

– The report tag accepts the nested tag param with name and expression attributes. These
tags can pass XSL parameters to the stylesheet. The built-in stylesheets support the following
parameters:

∗ PRODUCT : the product name that is displayed in the title of the HTML report.

∗ TITLE : the comment that is displayed in the title of the HTML report.

Note: It is advised to set the format to noframes if your test suite is not a Java test suite. If the format is set to
frames , with a non-JavaMicroEJ Test Suite, the name of the linkswill not be relevant because of the non-existency
of packages.

Listing 30: Example of htmlReport task invocation

<!-- Generate HTML report -->
<testsuite:htmlReport>

<fileset dir=”${@{prefix}.testsuite.report.dir}”>
<include name=”**/*.xml”/> <!-- include unary reports -->
<exclude name=”**/bin/**/*.xml”/> <!-- exclude test bin files -->
<exclude name=”*.xml”/> <!-- exclude global report -->

</fileset>
<report format=”noframes” todir=”${target.test.html}/@{prefix}”/>

</testsuite:htmlReport>

3.5. Application Developer Guide 715

MicroEJ Documentation,

Using the Trace Analyzer

This sectionwill shortly explains how touse the Trace Analyzer . TheMicroEJTest Suite comes
with an archive containing the Trace Analyzer which can be used to analyze the output trace
of an application. It can be used from different forms;

• The FileTraceAnalyzer will analyze a file and research for the given tags, failing if the success
tag is not found.

• The SerialTraceAnalyzer will analyze the data from a serial connection.

The TraceAnalyzer Tasks Options

Here is the common options to all TraceAnalyzer tasks:

• successTag : the regular expression which is synonym of success when found (by default .*PASSED.*).

• failureTag : the regular expression which is synonym of failure when found (by default .*FAILED.*).

• verboseLevel : int value between 0 and 9 to define the verbose level.

• waitingTimeAfterSuccess : waiting time (in s) after success before closing the stream (by default 5).

• noActivityTimeout : timeout (in s) with no activity on the stream before closing the stream. Set it to 0 to
disable timeout (default value is 0).

• stopEOFReached : boolean value. Set to true to stop analyzing when input stream EOF is reached. If false
, continue until timeout is reached (by default false).

• onlyPrintableCharacters : boolean value. Set to true to only dump ASCII printable characters (by default
false).

The FileTraceAnalyzer Task Options

Here is the specific options of the FileTraceAnalyzer task:

• traceFile : path to the file to analyze.

The SerialTraceAnalyzer Task Options

Here is the specific options of the SerialTraceAnalyzer task:

• port : the comm port to open.

• baudrate : serial baudrate (by default 9600).

• databits : databits (5|6|7|8) (by default 8).

• stopBits : stopbits (0|1|3 for (1_5)) (by default 1).

• parity : none | odd | event (by default none).

3.5. Application Developer Guide 716

MicroEJ Documentation,

Appendix

The goal of this section is to explain some tips and tricks that might be useful in your usage of
the test suite engine.

Specific Custom Properties

Some custom properties are specifics and retrieved from the test suite engine in the custom
properties file of a test.

• The testsuite.test.name property is the output name of the current test. Here are the steps to
compute the output name of a test:

– If the custom properties are enabled and a property named testsuite.test.name is find on the
corresponding file, then the output name of the current test will be set to it.

– Otherwise, if the running MicroEJ Test Suite is a Java test suite, the output name is set to the
class name of the test.

– Otherwise, from thepath containing all the tests, a commonprefixwill be retrieved. The output
namewill be set to the relative path of the current test from this commonprefix. If the common
prefix equals the name of the test, then the output name will be set to the name of the test.

– Finally, if multiples tests have the same output name, then the current name will be followed
by _XXX , an underscore and an integer.

• The testsuite.test.timeout property allow the user to redefine the time out for each test. If it
is negative or not an integer, then global timeout defined for the MicroEJ Test Suite is used.

Heap Usage Monitoring

Introduction

When building a Standalone Application, the Managed heap size must be specified as an Appli-
cation Option (see Option(text): Managed heap size (in bytes)). The value to set in this option
depends on themaximum heap usage, and the developer can estimate it by running the appli-
cation.

TheCoreEngineprovides a JavaAPI to introspect theheapusageat runtime. Additionally, heap
usage monitoring can be enabled to compute the maximum heap usage automatically.

Here are the descriptions of the different notions related to heap usage:

• Heap: memory area used to store the objects allocated by the application.

• Heap Size: current size of the heap.

• MaximumHeap Size: maximum size of the heap. The heap size cannot exceed this value. See
Option(text): Managed heap size (in bytes).

• Heap Usage: the amount of the heap currently being used to store alive objects.

• Garbage Collector (GC): amemory manager in charge of recycling unused objects to increase
free memory.

3.5. Application Developer Guide 717

MicroEJ Documentation,

Fig. 160: Heap Structure Summary

The Java class java.lang.Runtime defines the following methods:

• gc(): Runs the garbage collector. System.gc() is an alternative means of invoking this method.

• freeMemory(): Returns the amount of free memory in the heap. This value does not include unused objects
eligible for garbage collection. Calling the gc() method may result in increasing the value returned by this
method.

• totalMemory(): Returns the current size of the heap. The value returned by this methodmay vary over time.

• maxMemory(): Returns the maximum size of the heap.

Heap Usage Introspection

Themethods provided by the Runtime class allow introspecting the heap usage by comparing
the heap size and the freememory size. A garbage collectionmust be executed before comput-
ing the heap usage to recycle all the unused objects and count only alive objects.

The application can compute the current heap usage by executing the following code:

Runtime runtime = Runtime.getRuntime(); // get Runtime instance
runtime.gc(); // Ensure unused objects are recycled
long heapUsage = runtime.totalMemory() - runtime.freeMemory();

This example gives the heap usage at a given point but not the maximum heap usage of the
application.

Note: When heap usage monitoring is disabled, the heap size is fixed, and so totalMemory() and maxMemory()
return the same value.

3.5. Application Developer Guide 718

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#gc--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#gc--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#freeMemory--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#gc--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#totalMemory--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#maxMemory--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#totalMemory--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#maxMemory--

MicroEJ Documentation,

Automatic Heap Usage Monitoring

Themaximumheap usage of an application’s execution can be computed automatically by en-
abling heap usage monitoring.

Note: This feature is available in the Architecture versions 7.16.0 or higher for the Applications deployed on hard-
ware devices (not on Simulator).

When this option is activated, an initial size for the heapmust be specified, and the Core Engine
increases the heap size dynamically. The value returned by totalMemory() is the current heap
size. maxMemory() returns themaximum size of the heap. A call to gc() decreases the heap size
to the higher value of either the heap usage or the initial heap size.

At any moment, totalMemory() returns the maximum heap usage of the current execution (as-
suming the maximum heap usage is higher than the initial heap size, and gc() has not been
called).

See the sectionOption(checkbox): EnableManagedheapusagemonitoring to enable this option
and configure the initial heap size.

Even if the heap size can vary during time, a memory section of maxMemory() bytes is allo-
cated at link time or during the Core Engine startup. No dynamic allocation is performedwhen
increasing the heap size.

Warning: A small initial heap size will impact the performances as the GC will be executed
every time the heap size needs to be increased.

Furthermore, the smaller the heap size is, the more frequent the GC will occur. This feature
should be used only for heap usage benchmarking.

Heap Usage Analysis

To analyze heap usage and see what objects are alive in the application, use the Heap Dumper
& Heap Analyzer tools (on SDK 6, on SDK 5).

GUI Software Robot

This document presents how to test a GUI applicationwith a software robot for robotic process
automation (RPA).

Robot tests and traditional unit tests are different but both are useful. Traditional unit tests
validate the systems through calls to the API (internal or external). Robot tests validate the
systems by mimicking the human user behavior directly in the GUI. The robot implementation
proposed here targets the following errors detection:

• OutOfMemory

• StackOverflow

• MEJ32 and platform libraries error

• Widget sequence validation

The following document covers:

3.5. Application Developer Guide 719

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#totalMemory--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#maxMemory--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#gc--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#totalMemory--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#gc--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#maxMemory--

MicroEJ Documentation,

• Recording human touch events on the simulator or on the device

• Running recorded events on the simulator or on the device

The following document does not cover:

• The display rendering validation (this can be done using the Test Automation Tool)

• Integration of the robot into an automatic JUnit test suite

Wewill nowpresent thebasic architecture and code required to create and to runa robotwithin
a MicroEJ application on the simulator and on the device.

In the following sections, we assume the MicroEJ VEE Port has a display interface and a touch
controller.

Overview

The robot creationprocess is twofold. First, wehave to record and store thehumanuser events.
Second, we have to play them back with the robot.

Record the Scenario

The first step is to record the human user events.

Here is the code of the EventRecorder class that should be added to our application’s project:

import ej.annotation.Nullable;
import ej.microui.event.Event;
import ej.microui.event.generator.Buttons;
import ej.microui.event.generator.Pointer;

/**
* Records events.
*/
public class EventRecorder {

private long lastEventTime;

/**
* Creates an event recorder.
*/
public EventRecorder() {
this.lastEventTime = -1;

}

/**
* Records an event.
*
* @param event
* the event to record.
*/
public void recordEvent(int event) {
String command = getEventCommand(event);
if (command != null) {
long currentTime = System.currentTimeMillis();
if (this.lastEventTime == -1) {

(continues on next page)

3.5. Application Developer Guide 720

https://github.com/MicroEJ/Tool-UITestAutomation

MicroEJ Documentation,

(continued from previous page)

this.lastEventTime = currentTime;
}

long delta = currentTime - this.lastEventTime;
if (delta > 0) {
System.out.println(getPauseCommand(delta));

}

System.out.println(command);

this.lastEventTime = currentTime;
}

}

@SuppressWarnings(”nls”)
private static @Nullable String getEventCommand(int event) {
if (Event.getType(event) == Pointer.EVENT_TYPE) {
Pointer pointer = (Pointer) Event.getGenerator(event);
switch (Pointer.getAction(event)) {
case Pointer.PRESSED:
return ”press(” + pointer.getX() + ”, ” + pointer.getY() + ”);”;

case Pointer.MOVED:
case Pointer.DRAGGED:
return ”move(” + pointer.getX() + ”, ” + pointer.getY() + ”);”;

case Buttons.RELEASED:
return ”release(” + pointer.getX() + ”, ” + pointer.getY() + ”);”;

default:
return null;

}
} else if (Event.getType(event) == Buttons.EVENT_TYPE) {
if (Buttons.getAction(event) == Buttons.RELEASED) {
return ”button();”;

} else {
return null;

}
} else {
return null;

}
}

@SuppressWarnings(”nls”)
private static @Nullable String getPauseCommand(long delay) {
return ”pause(” + delay + ”);”;

}
}

This code records all pressed,moved, dragged and released events aswell as the time between
each event (we want to play our robot at the same speed as the human). EventRecorder out-
puts the commands on the standard output. More on this a bit later.

3.5. Application Developer Guide 721

MicroEJ Documentation,

Set Up the Event Recorder

Theevents have tobe recorded from theapplication’s desktop’s EventDispatcher . Here is how
to override it:

final EventRecorder eventRecorder = new EventRecorder();

Desktop desktop = new Desktop() {

@Override
protected EventDispatcher createEventDispatcher() {
return new PointerEventDispatcher(this) {

@Override
public boolean dispatchEvent(int event) {
eventRecorder.recordEvent(event);

return super.dispatchEvent(event);
}

};
}

};

When runnning the application, the EventDispatcher will now record the events and then
redirect themto itsparent dispatchEvent so they canbemanagednormallyby theapplication.

Set Up the Scenario Player

As we now have recorded our scenario we have to play it. For that we have to add the Event-
Player to our project:

/**
* Plays events.
*/
public class EventPlayer {

@Nullable
private final Pointer pointer;
@Nullable
private final Buttons buttons;

/**
* Creates a robot.
*/
public EventPlayer() {
this.pointer = EventGenerator.get(Pointer.class, 0);
this.buttons = EventGenerator.get(Buttons.class, 1);

}

/**
* Pauses before the next action.
*
* @param delay
* the delay to pause.
*/
public void pause(long delay) {

(continues on next page)

3.5. Application Developer Guide 722

MicroEJ Documentation,

(continued from previous page)

ThreadUtils.sleep(delay);
}

/**
* Generates a press event.
*
* @param x
* the x coordinate of the pointer.
* @param y
* the y coordinate of the pointer.
*/
public void press(int x, int y) {
if (null != this.pointer) {
this.pointer.reset(x, y);

}
if (null != this.pointer) {
this.pointer.send(Pointer.PRESSED, 0);

}
}

/**
* Generates a move event.
*
* @param x
* the x coordinate of the pointer.
* @param y
* the y coordinate of the pointer.
*/
public void move(int x, int y) {
if (null != this.pointer) {
this.pointer.move(x, y);

}
}

/**
* Generates a release event.
*
* @param x
* the x coordinate of the pointer.
* @param y
* the y coordinate of the pointer.
*/
public void release(int x, int y) {
if (null != this.pointer) {
this.pointer.reset(x, y);

}
if (null != this.pointer) {
this.pointer.send(Pointer.RELEASED, 0);

}
}

/**
* Generates a button event.
*/
public void button() {
if (null != this.buttons) {

(continues on next page)

3.5. Application Developer Guide 723

MicroEJ Documentation,

(continued from previous page)

this.buttons.send(Buttons.RELEASED, 0);
}

}
}

EventPlayer will play events using the EventGenerator .

We will now extend EventPlayer in order to play a specific scenario:

/**
* Robot scenario which reproduces the recorded human user events .
*/
public class NavigationScenario extends EventPlayer implements Runnable {

@Override
public void run() {
press(344, 177);
pause(885);
release(344, 177);
pause(359);
press(184, 192);
pause(34);
move(185, 192);
pause(24);
move(188, 192);
pause(23);
move(191, 192);
pause(24);
move(196, 192);
pause(21);
move(206, 191);

}
}

The run method from the code above already contains recorded events, you will have to re-
place it by the EventRecorder output you get when recording the events.

Run the Scenario

Wewill now create a task that will run the scenario:

/**
* A robot task is able to run a given scenario.
*/
public class RobotTask {

private boolean running;

/**
* Creates a demo robot.
*/
public RobotTask() {
this.running = false;

}
(continues on next page)

3.5. Application Developer Guide 724

MicroEJ Documentation,

(continued from previous page)

/**
* Starts the given scenario.
*
* @param scenario
* the scenario to run.
*/
public void startScenario(final Runnable scenario) {
if (!this.running) {
this.running = true;

new Thread() {
@Override
public void run() {
scenario.run();
RobotTask.this.running = false;

}
}.start();

}
}

/**
* Returns whether the robot is currently running.
*
* @return <code>true</code> if the robot is running, false otherwise</code>.
*/
public boolean isRunning() {
return this.running;

}
}

You can now start the RobotTask in your application:

RobotTask robot = new RobotTask();
robot.startScenario(new NavigationScenario());

Then, launch your application: the recorded scenario is now re-played, well done!

3.6 VEE Porting Guide

3.6.1 Introduction

AMicroEJArchitecture is a softwarepackage that includes theMicroEJRuntimeport to a specific
target Instruction Set Architecture (ISA) and C compiler. It contains a set of libraries, tools and
C header files.

A VEE Port is a MicroEJ Architecture port for a custom device.

It relies on C drivers (a.k.a. low level LL drivers) for each VEE Port feature. These drivers are
implemented in the VEE Port BSP project. This project is edited in the C compiler IDE/dev en-
vironment (e.g. KEIL, GCC, IAR). For example, the MicroUI library LED feature will require a
LLUI_LED.c that implements the native on/off IO drive.

Each VEE Port is specific to:

3.6. VEE Porting Guide 725

MicroEJ Documentation,

• a MicroEJ Architecture (MCU ISA and C compiler)

• an optional RTOS (e.g. FreeRTOS - note: the MicroEJ Runtime can run bare metal)

• a device: the OS bring up code that is device-specific (e.g. the MCU specific
code/IO/RAM/Clock/Middleware… configurations)

MicroEJ Corp. provides MicroEJ Evaluation Architectures at https://repository.microej.com/
modules/com/microej/architecture, and VEE Port Examples for various evaluation boards.

The VEE Porting Guide explains how the core features are accessed, configured and used to
create a port of MICROEJ VEE (VEE Port) on your dedicated device. It also explains how an Ap-
plication interactswith native code, and the details of the Architecturemodules, including their
APIs, error codes and options.

Semantics of implemented Foundation Libraries are described in their respective chapters as
well as the required Abstraction Layers APIs for porting them to different targets.

VEE Port Build Process

The following figure shows theoverall process to create anExecutable file todeployonadevice.
The first three steps are performed within MICROEJ SDK. The remaining steps are performed
within the C IDE.

3.6. VEE Porting Guide 726

https://repository.microej.com/modules/com/microej/architecture
https://repository.microej.com/modules/com/microej/architecture
https://github.com/microej?q=vee&type=all&language=&sort=

MicroEJ Documentation,

Fig. 161: Overall Build Process

The steps are as follow:

1. Create a new VEE Port configuration project. This project describes the VEE Port to build (Archi-
tecture selection).

2. Select which modules provided by the Architecture and Packs will be installed in the VEE Port.

3. Build the VEE Port according to the choices made in steps 1 and 2.

4. Build an Application against the VEE Port in order to obtain an object file to link in the BSP.

5. Compile the BSP and link it with the Application object file that was built previously in step 4 to
produce an Executable.

3.6. VEE Porting Guide 727

MicroEJ Documentation,

6. Final step: Deploy the Executable (i.e. the binary application) onto a device.

Create a VEE Port for a Custom Device

VEE Port creation can either be done from scratch or modifying an existing VEE Port example
project. The following chart provides a handy guide to ease decision:

Before goingon,make sure that thenewdevicehardware is validatedandat least a traceoutput
is available. It is also a good idea to run basic hardware tests like:

• Internal and external flash programming and verification

• RAM 8/16/32 -bit read/write operations (internal and external if any)

• EEMBC Coremark benchmark to verify the CPU/buses/memory/compiler configuration

A VEE Port Example is already available for the sameMCU/RTOS/C Compiler

This is the fastest way: VEE Port Examples are usually provided for a silicon vendor evaluation
board. Use this VEE Port project and adapt it to your needs.

As theMCU,RTOSandcompiler are the same, only thedevice-specific codeneeds tobechanged
(external RAM, external oscillator, communication interfaces).

3.6. VEE Porting Guide 728

https://github.com/microej?q=vee&type=all&language=&sort=

MicroEJ Documentation,

VEE Port Configuration

• Modify the VEE Port project to match the device features and its associated configuration (e.g.
GUI, Networking, …).

Refer to VEE Port configuration documentation for SDK 6 or SDK 5 to learn more about it.

More details on available modules can be found in the VEE Porting Guide.

BSP

Required actions:

• Modify the BSP C project to match the device specification:

– Edit the scatter file/link options.

– Edit the compilation options.

• Create/review/change the platform Low Level C drivers. They must match the device compo-
nents and the MCU IO pin assignment:

Note: A number of LL*.h files are referenced from the project. Implement the function pro-
totypes declared there so that the Core Engine can delegate the relevant operations to the pro-
vided BSP C functions.

Simulator

• Modify the existing Simulator Front Panel project.

A VEE Port Example is not available for the sameMCU/RTOS/C Compiler

Look for an available VEE Port Example that will match in order of priority:

• same MCU part number

• same RTOS

• same C compiler

At this point, consider either to modify the closest VEE Port:

• Modify the VEE Port configuration.

• in the C IDE, start from an empty project that matches with the MCU.

Or to start from scratch a new VEE Port:

• Create the VEE Port project and refer to the selected VEE Port as a model for implementation
(refer to the VEE Port Creation documentation for SDK 6 or SDK 5).

• In the C IDE, start from an empty project and implement the drivers of each of the LL drivers
API.

Make sure to link with:

– The microejruntime.a that runs the Core Engine for a specific MCU Architecture.

3.6. VEE Porting Guide 729

https://github.com/microej?q=vee&type=all&language=&sort=

MicroEJ Documentation,

– The microejapp.o that contains the compiled Java application.

MCU

The MCU specific code can be found:

• in the C project IDE properties

• in the linker file

• the IO configuration

• in the low level driver (these drivers are usually provided by the silicon vendor)

RTOS

The LL driver is named LLMJVM_[RTOS].c/.h . Modify this file to match the selected RTOS.

C Compiler

The BSP project is provided for a specific compiler (that matches the selected platform archi-
tecture). Start a newprojectwith the compiler IDE that includes the LL drivers and start the VEE
Port in the main() function.

Platform Validation

Refer to VEE Port Qualification to qualify the VEE Port.

Further Assistance Needed

Please note that porting MicroEJ to a new device is also something that is part of our engineer-
ing services. Consider contacting our sales team to request a quote.

3.6.2 MicroEJ Architecture

MicroEJ Architecture features the Core Engine built for a specific instructions set (ISA) and com-
piler.

The Core Engine is a tiny and fast runtime associatedwith a Scheduler and aGarbage Collector.

MicroEJ Architecture provides implementations of the following Foundation Libraries :

• Embedded Device Configuration (see [EDC]).

• Beyond Profile (see [BON]).

• Simple Native Interface (see [SNI]).

• Kernel & Features (see [KF]).

• Shielded Plug (see [SP]).

3.6. VEE Porting Guide 730

https://www.microej.com/contact/#form_1

MicroEJ Documentation,

The following figure shows the components involved.

Fig. 162: MicroEJ Architecture Modules

Three Low Level APIs allow the MicroEJ Architecture to link with (and port to) external code,
such as any kind of RTOS or legacy C libraries:

• Simple Native Interface (see [SNI])

• Low Level Core Engine (see LLMJVM)

• Low Level Shielded Plug (see LLSP)

For further information onArchitecture installation and releases, you can check these chapters:

Naming Convention

MicroEJ Architecture files ends with the .xpf extension, and are classified using the following
naming convention:

com/microej/
→˓architecture/[ISA]/[TOOLCHAIN]/[UID]/[VERSION]/[UID]-[VERSION]-[USAGE].xpf

• ISA : instruction set architecture (e.g. CM4 for Arm® Cortex®-M4, ESP32 for Espressif ESP32, …).

• TOOLCHAIN : C compilation toolchain (e.g. CM4hardfp_GCC48).

• UID : Architecture unique ID (e.g. flopi4G25).

• VERSION : module version (e.g. 7.12.0).

3.6. VEE Porting Guide 731

MicroEJ Documentation,

• USAGE = eval for evaluation Architectures, prod for production Architectures.

For example, MicroEJ Architecture versions for Arm® Cortex®-M4 microcontrollers compiled
with GNUCC toolchain are available at https://repository.microej.com/modules/com/microej/
architecture/CM4/CM4hardfp_GCC48/flopi4G25/.

See the VEE Port Creation documentation for SDK 6 or SDK 5 for usage.

Architectures Changelog

Notation

A line prefixed by [] describes a change that only applies on a specific configuration: [Core
Engine Capability/Instruction Set/C Compiler] :

• Core Engine Capability

– Mono : Mono-Sandbox (default)

– Tiny : Tiny-Sandbox

– Multi : Multi-Sandbox

• Instruction Set

– ARM9 : ARM ARM9

– Cortex-A : ARM Cortex-A

– Cortex-M : ARM Cortex-M

– ESP32 : Espressif ESP32

– RX : Renesas RX

– x86 : Intel x86

• C Compilation Toolchain

– ARMCC5 : Keil ARMCC uVision v5. See also ARM Linker Specific Options.

– Clang : Clang

– GCC : GNU GCC Compiler. See also GNU LD Specific Options.

– IAR : IAR Embedded Workbench for ARM. See also IAR Linker Specific Options.

– QNX65 : BlackBerry QNX 6.5

– QNX70 : BlackBerry QNX 7.0

[8.4.0] - 2025-05-28

Core Engine

• Updated External Resources Loader implementation to use SNI 1.4 which removes allocations
to the Immortal Heap.

• Fixedan issuewhere LLMJVM_MONITOR_IMPL_on_thread_state_changed() wasnot
called when a thread was preempted by another thread due to higher priority or round-robin
scheduling.

3.6. VEE Porting Guide 732

https://repository.microej.com/modules/com/microej/architecture/CM4/CM4hardfp_GCC48/flopi4G25/
https://repository.microej.com/modules/com/microej/architecture/CM4/CM4hardfp_GCC48/flopi4G25/

MicroEJ Documentation,

• [Multi] - Increased the limitation on the maximum number of threads from 63 to 127.

Integration

• Added Memory Map Scripts for new Foundation Libraries: Audio , EventQueue , Metrology
, MicroAI and new Add-On Libraries: AppConnect , ConnectivityManager , Eclasspath
Time , Facer , Hoka , KFUtil , Layout , Message , NETUtil , Property , Protobuf , Script
, Storage .

• Updated Memory Map Scripts for the latest versions of Foundation Libraries: FS , Security ,
and Add-On Libraries: Eclasspath Executor , Eclasspath IO .

• Fixed incorrect assignment of some .bss , .text , and .rodata sections in Memory Map Scripts;
these were previously placed in the default BSP category.

Simulator

• AddedMock event tracing.

• Added, in Front Panel, the ability to resize thewindow, an options toolbar, and a status bar (see
Front Panel Overview).

• Fixed, in Front Panel, synchronization on thewidget display accesses and rendering of the wid-
gets other than display.

• Fixed initialization of an empty Immortal Heap when Option(text): Immortal heap size (in bytes)
is set to 0.

• Fixed the implementation of Tracer.isTraceStarted() that could return true when trace record-
ing is not yet enabled in some cases.

• Fixed InputStream.reset() method on a Resource that could throw an unexpected IOException
after the end of stream is reached.

• Fixed Front Panel not starting at boot. It was previously only displayed after the MicroUI.start()
call.

SOAR

• Added an appropriate errormessagewhen a resources list file contains an invalid resource dec-
laration.

• Increased the maximum number of blocks allowed in a method to prevent the [M200] - Max-
imum number of blocks reached error.

3.6. VEE Porting Guide 733

https://repository.microej.com/javadoc/microej_5.x/apis/ej/trace/Tracer.html#isTraceStarted--
https://repository.microej.com/javadoc/microej_5.x/apis/java/io/InputStream.html#reset--
https://repository.microej.com/javadoc/microej_5.x/apis/java/io/IOException.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/MicroUI.html#start--

MicroEJ Documentation,

[8.3.0] - 2024-12-24

Foundation Libraries

• Fixed, in EDC , implementation of java.util.WeakHashMap.put() which could lead to amemory
leak when new elements are added but never accessed.

• Fixed, in EDC , Enable SecurityManager checks optionwas not disabled by default.

Integration

• Added the declaration of Constants as Application Options.

• Updated Architecture End User License Agreement to version SDK 3.1-c .

• Fixed Front Panel File option optionwas not taken into account on VEEPorts that do not depend
on UI Pack.

• Fixedan issuewhereSentinel licenseswerenotdisplayed in theLicenseManager in somecases.

• Removedwarningmessages related tomissing GCmark stack size optionwhen building on De-
vice.

Simulator

• Added the capability to defineMock Options.

• Added a check to verify compatibility with the expected MicroEJ classfile version (1.7).

• Fixed invalid mentions of SNI.closeOnGC() instead of NativeResource.closeOnGC() in the
HILEngine Javadoc.

• Fixed potential crash when calling Kernel.clone() in a project that does not define a kernel.kf
file.

• Fixed potential crash when booting a GUI Application on a Multi-Sandbox VEE Port.

SOAR

• Added a check to verify compatibility with the expected MicroEJ classfile version (1.7).

• Fixed precedence of a System Property declared as an Application Option to take priority over
one defined in the classpath.

Tools

• Updated License Manager (Evaluation) to debug installed license from command line (see
Check Activation).

3.6. VEE Porting Guide 734

https://repository.microej.com/javadoc/microej_5.x/apis/java/util/WeakHashMap.html#put-K-V-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#clone-T-ej.kf.Module-

MicroEJ Documentation,

[8.2.0] - 2024-09-19

Core Engine

• [Multi] - Increased execution quota precision

• [Multi] - Added function LLKERNEL_quantaConsumed(int32_t quanta) in LLKERNEL.h , allowing a
native function to increment the quantum counter of the current execution context.

• [Multi] - Fixed watchdog which prevents the Core Engine to stop because of a pending thread.

• [Multi] - Added new functions to LowLevel API LLMJVM_MONITOR_impl.h for CPUControlmonitoring

– void LLMJVM_MONITOR_IMPL_on_quota_reset(int32_t context_id, int32_t quota) : called
by the Core Engine when the quota for an execution context is updated.

– void LLMJVM_MONITOR_IMPL_on_quota_reached(int32_t context_id) : called by the Core
Engine when the quota for an execution context has been reached.

– void LLMJVM_MONITOR_IMPL_on_quantum_counters_reset() : called by the Core Engine
when all the quantum counters are reset to zero.

– void LLMJVM_MONITOR_IMPL_on_thread_added_to_context(int32_t thread_id, int32_t
context_id) : called by the Core Engine when a thread is added to an execution context.

Integration

• Added Architecture tools compatibility with SDKs running on JDK 17 and JDK 21.

• Fixed message to correctly display the BSP location, ensuring compatibility with both SDK 5
and SDK 6.

Simulator

• [Multi] - Fixed, in KF , wrong assertion thrown when starting a Kernel on the Simulator with a pre-installed
Application, occurring only when assertions were enabled on Simulator.

[8.1.1] - 2024-06-17

Core Engine

• [Multi] - Fixed call to LLKERNEL_IMPL_freeFeature(int32_t handle) with handle 0 when an FO file is
corrupted or not compatible with the Core Engine.

3.6. VEE Porting Guide 735

MicroEJ Documentation,

Foundation Libraries

• Fixed unexpected java.lang.NullPointerException when a runtime exception or a native excep-
tion occurs in a try-with-resources block, and the method AutoCloseable.close() throws an ex-
ception.

• Fixed Throwable.getSuppressed() which exposes a private mutable member.

• Fixed Throwable.printStackTrace() which does not print suppressed exceptions.

• Fixed Throwable.printStackTrace() which erroneously printed the thread name.

Integration

• [ESP32] Fixed copy of microejapp.s into the C project.

• Fixed properties defined in VEE Port release.properties file not passed to the SOAR.

• Fixed Virtual Device that could not override HIL options for debugging the Mock.

• Fixed build and run scripts end-of-line (EOL) characters if a Linux VEE port is built on Windows.

• Removedwarningmessages related tomissingHIL debug optionswhen running the Simulator.

Simulator

• Fixed breakpoint not taken into account by IntelliJ Idea’s debugger when a class is not loaded
during the startup.

• Fixed boostrap thread which could be visible in the thread list when debugging.

• Fixed debugger error when clinit code takes time to execute.

• Fixed debugger stuck when stepping over another breakpoint in Eclipse.

• Fixed missing traces when debug logs are activated.

SOAR

• [Multi] - Fixed the 64 KB size limitation for Java Strings section that caused an AssertionError in the SOAR
when building a Sandboxed Application.

Tools

• Fixed Resource Buffer Generator that keeps a lock on input files and prevents them from being
deleted.

3.6. VEE Porting Guide 736

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/NullPointerException.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/AutoCloseable.html#close--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Throwable.html#getSuppressed--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Throwable.html#printStackTrace--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Throwable.html#printStackTrace--

MicroEJ Documentation,

[8.1.0] - 2023-12-22

This Architecture version update introduces the following main features:

• Updated Feature installation flow to support Code chunks. A Feature can now be installed to
ROMwithout the need of the Code size in RAM.

• Support for debugging ASLR Executables

• Support for debugging MCU targets

• Support for debugging Multi-Sandbox Executables

• Updated the options to select the Core Engine capability. See Migrate Core Engine Capability
Configuration.

– Added the VEE Port option com.microej.runtime.capability

– Removed the Multi Applications module from the platform configuration file

– Value of the BON constant com.microej.architecture.capability is now mono instead of
single when the Core Engine capability is Mono-Sandbox.

• Support of THALES Sentinel License Manager

• Added a default application for early-stage VEE Port integration without the need of a SDK li-
cense.

If you plan to migrate a VEE Port from Architecture 8.0.0 to Architecture 8.1.0 , consider the
Architecture 8.0.0 Migration chapter.

Core Engine

• Added option com.microej.runtime.core.gc.markstack.levels.max to configure the maximum
number of elements of the Garbage Collector’s mark stack.

• In sni.h , clarified the behavior of SNI_createVM() , SNI_startVM() , and SNI_de-
stroyVM() when restarting the Core Engine. See also the Core Engine implementation section.

• Fixed missing default initialization of the options core.memory.javaheap.size and core.mem-
ory.immortal.size.

• [Multi] - Added a check when LLKERNEL_IMPL_getFeatureHandle() returns 0 . Corre-
sponding error code is LLKERNEL_FEATURE_INIT_ERROR_NULL_HANDLE .

• [Multi] - Removed Feature installation in RAM (legacy In-Place Installation mode). See Migrate
Your LLKERNEL Implementation.

• [Multi] - Updated Feature installationboot sequence: all Feature handles are now retrievedprior
to initializing them.

• [Multi] - Updated check of Kernel UID at the beginning of Kernel.install(java.io.InputStream),
before allocating Feature sections.

• [Multi] - Updated the specification for LLKERNEL_IMPL_allocateFeature() function to re-
turn the handle 0 if the Feature could not be allocated.

• [Multi] - Updated the specification for LLKERNEL_IMPL_getAllocatedFeaturesCount()
function to ensure that it returns a valid result at any time, even if it is only called by the Core
Engine during startup.

3.6. VEE Porting Guide 737

https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#install-java.io.InputStream-

MicroEJ Documentation,

• [Multi] - Updated the specifications for LLKERNEL_IMPL_getFeatureAddressRAM() and
LLKERNEL_IMPL_getFeatureAddressROM() functions to return NULL when an incor-
rect index is provided. This change is only for LLKERNEL TCK purposes, as the Core Engine
only invokes these methods with valid indices.

• [Multi] - Added an option to enable RAM Control at VEE Port build (disabled by default).

Foundation Libraries

• Fixed, in BON , ResourceBuffer.readString() which does not increment correctly the position
in the buffer.

• Fixed, in BON , -1 returned by ResourceBuffer.available() instead of 0 when the end of the
buffer is reached.

• Fixed, in BON , invalid value returned by ResourceBuffer.available() on the Simulator.

• Fixed, in BON , potential crash when calling ResourceBuffer.close() several times on a Re-
sourceBuffer loaded with the External Resources Loader.

Integration

• Updated Architecture End User License Agreement to version SDK 3.1-B .

• Removed warning messages related to missing KF options when running the SOAR or the Sim-
ulator in Mono-Sandbox.

Simulator

• Added compatibility with IntelliJ IDEA IDE to debug applications.

• Addedmessage when waiting for a connection in debugmode.

• Fixed debugger verbose mode.

• Removed bootstrap thread from the debugger vision.

• Fixed debugger suspend count on threads handling.

• Fixed stop issue on static method entry breakpoint.

SOAR

• Fixed trimming of leading or trailing spaces in immutable strings

• [Multi] - Fixed integration of the bytecode verifier in Feature mode.

• [Multi] - Improved the error message thrown when no Feature definition file is found and dis-
played the classpath to better guide developers in identifying potential causes.

3.6. VEE Porting Guide 738

https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/ResourceBuffer.html#readString--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/ResourceBuffer.html#available--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/ResourceBuffer.html#available--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/ResourceBuffer.html#close--

MicroEJ Documentation,

Tools

• Updated SOAR and VMModel Readers

– Added support to retrieve the Core Engine memory regions (used by the VEE Debugger Proxy
to generate a memory dump script (see Generate VEEmemory dump script))

– Added an API to relink the SOARModel objects, i.e. change their associated addresses (used by
the VEE Debugger Proxy to support ASLR Executables debug)

– Added new APIs to load Kernel and Features SOAR Model objects (used by the VEE Debugger
Proxy to support Multi-Sandbox Executable debug)

• [ARMCC5] - Fixed SOAR Debug Infos Post Linker tool to throw a dedicated error when the SOAR
object file does not contain the debug section.

• [Multi] - Fixed missing first null entry in the symbol table generated by the Firmware Stripper.

[8.0.0] - 2023-06-27

Note: This Architecture requires SDK version 5.7.0 or higher (see SDK Version).

This major Architecture version update introduces the following main features:

• Added compatibility with dynamic linkers enabling Address Space Layout Randomization
(ASLR).

• Added Feature build on device. For that, the SOAR has been deeply redesigned and split into
multiple phases. The most noticeable change is about the SOAR Information File that is now
composed of 3 files.

• Added Feature portability. The same .fo file can now be installed:

– Onany Executable built from the sameKernel Application (microejapp.o). The VEEPort C code
can bemodified and relinked without requiring to rebuild the .fo file anymore.

– On different Kernel Applications provided some conditions are met. Basically, a .fo built on
Kernel 1 can be installed on Kernel 2 if the exposed Kernel APIs are left unchanged. See Feature
Portability Control for more details.

• Redesigned Feature installation flow. A Feature can now be installed in any byte-addressable
memorymapped to the CPU’s address space, including ROM. For that, LLKERNEL LowLevel
APIs have been fully rewritten. See Feature installation for more details. Former Feature instal-
lation inRAM is preservedand is nowcalled In-Place Installation. Former static Feature installed
by the SDK (using the Firmware Linker tool) is removed in favor of Feature persistency at boot.

If you plan tomigrate a VEE Port from Architecture 7.x to Architecture 8.x , consider the Archi-
tecture 7.x Migration chapter.

3.6. VEE Porting Guide 739

MicroEJ Documentation,

Core Engine

• Renamed Core Engine sections to fully respect the ELF standard naming convention.

• Removed check when passing a non-immortal array in SNI if VEE Port option core.sni.
nonimmortal.access was set to false .

• Removed LLBSP_isInReadOnlyMemory in Core Engine Abstraction Layer (LLBSP.h file).

• Clarified LLMJVM_IMPL_getCurrentTime API contract in Core Engine Abstraction Layer (
LLMJVM_impl.h file).

• Updated Trace C library from version 1.0.0 to 2.0.0 . SeeMigrate Trace C Library Usage.

– Renamed header file trace.h into LLTRACE.h to avoid filename conflicts.

– Renamed C functions TRACE_xxx into LLTRACE_xxx .

• Fixed potential crash when Core Engine is restarted after a call to System.exit(int).

• [Multi] - Added option com.microej.runtime.kernel.dynamicfeatures.max to configure the max-
imum number of Features that can be dynamically installed.

• [Multi] - Added option com.microej.runtime.kf.waitstop.delay to configure the maximum time
allowed for a Feature to stop.

• [Multi] - Fixed missing release of allocated Feature buffers after Core Engine exits (In-Place In-
stallationmode).

Foundation Libraries

• Updated KF to version 1.7 :

– Added heap memory control: Module.getAllocatedMemory(), Kernel.setReservedMemory()
and Feature.setMemoryLimit() methods.

– Added load of a Feature resource (Feature.getResourceAsStream() method).

• Updated KF dynamic loader to support the new Feature installation flow.

• Removed Foundation Libraries API Jars and Javadoc.

• Removed Unknown product - Unknown version comment in auto-generated Low Level API
header files.

• Removed the Serial Communication modules group, including the Foundation Libraries
ECOM and ECOM-COMM . SeeMigrate ECOM-COMMModule.

• Removed thedeprecated Device Information modulegroup, including theFoundationLibrary
Device . SeeMigrate Device Module.

• Fixed Option(checkbox): Embed UTF-8 encoding defaults to true when building a Standalone
Application using MMM.

• Fixed KF to call the registered Thread.UncaughtExceptionHandler when an exception is
thrown in FeatureEntryPoint.stop().

• Fixed unexpected java.lang.NullPointerException thrown by the skip method of an Input-
StreamreturnedbyClass.getResourceAsStream(). This erroronlyoccurswitha resource loaded
by the External Resource Loader.

• Fixed the behavior of available , read , skip , mark , reset and close methods of an Input-
Stream returned by Class.getResourceAsStream() and previously closed.

3.6. VEE Porting Guide 740

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#exit-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Module.html#getAllocatedMemory--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#setReservedMemory-long-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Feature.html#setMemoryLimit-long-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Feature.html#getResourceAsStream-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Thread.UncaughtExceptionHandler.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/FeatureEntryPoint.html#stop--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/NullPointerException.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#getResourceAsStream-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#getResourceAsStream-java.lang.String-

MicroEJ Documentation,

• Fixed the LLEXT_RES_read() LowLevel API specification (the buffer passed cannot be null
).

• [Mono] Fixed an unexpected FeatureFinalizer exception or infinite loop when a Standalone
Application touches a KF API in some cases.

• [Tiny] Fixed an unexpected SOAR error when a Standalone Application touches a KF API.

• [Multi] Fixed exception thrown when calling Kernel.removeConverter().

• [Multi] Fixed an unexpected NullPointerException thrown by ej.kf.Kernel.<clinit> method
in some cases.

• [Multi] Fixed KF watchdogs not triggered correctly when several expire at the same time.

Integration

• Added support for resolving Front Panel in Workspace before the included Front Panel.

• Added Memory Map Scripts for Eclasspath Math , Formatter and DateFormat .

• Updated default value of VEE Port configuration option vendorURL .

• Updated Memory Map Scripts for MicroVG library.

• Updated Memory Map Scripts for Eclasspath Executor library.

• Updated output Map file location to soar/[application_main_class].map (formerly named
SOAR.map).

• Removed unused SOAR.o file. It is available at bsp/microejapp.o .

• Renamed MicroEJ launch Build dynamic Feature to Build Feature .

• [Multi] Fixed the SOAR output files from being deleted when the Clean intermediate files op-
tion is enabled.

Simulator

• AddedMock debugmode.

• Added missing default values for the properties s3.slow , console.logs.period , and s3.hil.
timeout when launching the Simulator from the command line.

• Added a check for unsupported access to the Class instance of a primitive type (e.g. byte.class
).

• Added HIL Engine debug logs when verbose option is enabled.

• Added log of the Mock classpath when verbose option is enabled.

• Added log of Mock resolution errors (class or method not found).

• Added support for mark/reset on an InputStream returned by Class.getResourceAsStream().

• Fixed “Internal limits” error in HIL enginewhen toomany array arguments are used at the same
time by one or several native methods.

• Fixed slow reading with an array of bytes of the input stream returned by Class.getResource-
AsStream(String).

3.6. VEE Porting Guide 741

https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#removeConverter-ej.kf.Converter-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#getResourceAsStream-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#getResourceAsStream-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#getResourceAsStream-java.lang.String-

MicroEJ Documentation,

• Fixed configuration of the Managed heap size using Option(text): Managed heap size (in bytes).
The legacy core.memory.javaheapsum.size option is not more supported.

• Fixed Option(text): Immortal heap size (in bytes) default value when running a Standalone Ap-
plication using MMM.

• Fixed stop of the HIL Engine if Simulator was terminated before the connection is established.

• Fixed load of the Mock classes in the classpath order (left-to-right).

• Fixed themissing error check when loading an immutable file referencing an external object id
(the importObject directive is required).

• Fixed initialization of transparent images in the Front Panel when the initial color is not fully
opaque. (introduced in version 7.11.0)

• [Multi] Fixed the computation of object sizes. The 4-byte KF header was missing.

SOAR

• Added support for Resource alignment constraint.

• Added a check for legacy .system.properties files in the Application Classpath. The build pro-
cess is stopped and an error is reported. SeeMigrate Legacy System Properties Files.

• Added a check for unsupported access to the Class instance of a primitive type (e.g. byte.class
).

Tools

• Updated the serial PC connector to JSSC 2.9.4 , including support formacOSaarch64 (M1 chip).

• Removed Test Suite Engine. If needed, the Test Suite Engine is available in the Build Kit.

• Removed Immutables NLS library. Use Binary NLS add-on library instead.

• Fixed an incorrect generation of a debug file beside the memory file when launching the Heap
Dumper.

• [Multi] Added Heap Dumper support for dynamically installed Features.

[maintenance/7.20.5] - 2024-05-24

Foundation Libraries

• Fixed, in BON , ResourceBuffer.readString() which does not increment correctly the position
in the buffer.

• Fixed, in BON , -1 returned by ResourceBuffer.available() instead of 0 when the end of the
buffer is reached.

• Fixed, in BON , invalid value returned by ResourceBuffer.available() on the Simulator.

• Fixed, in BON , potential crash when calling ResourceBuffer.close() several times on a Re-
sourceBuffer loaded with the External Resources Loader.

3.6. VEE Porting Guide 742

https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/ResourceBuffer.html#readString--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/ResourceBuffer.html#available--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/ResourceBuffer.html#available--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/ResourceBuffer.html#close--

MicroEJ Documentation,

[7.20.1] - 2023-04-10

Foundation Libraries

• Fixed Float.parseFloat(…) and Double.parseDouble(…) that don’t throw a NumberFormatEx-
ception when the given string is empty.

• Fixed float anddouble to string conversions that contain anunecessary + sign in the exponent.

[7.20.0] - 2023-04-04

Known Issues

• Float.parseFloat(…) and Double.parseDouble(…) don’t throw a NumberFormatException when the given
string is empty.

• Float and double to string conversions contain an unecessary + sign in the exponent.

Core Engine

• Added the capability to customize implementation of the function that performs an atomic ex-
change operation.

• [ESP32] - Remove default implementation of the function that performs an atomic exchange
operation. The Core Engine abstraction layer implementation has to implement the C function
int32_t LLBSP_IMPL_atomic_exchange(int32_t* ptr, int32_t value) .

Foundation Libraries

• Fixed uninitialized pointer access in the External Resources Loader, which can cause a system
crash when reading data from a resource.

[7.19.0] - 2023-02-16

Known Issues

• Float.parseFloat(…) and Double.parseDouble(…) don’t throw a NumberFormatException when the given
string is empty.

• Float and double to string conversions contain an unecessary + sign in the exponent.

3.6. VEE Porting Guide 743

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Float.html#parseFloat-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Double.html#parseDouble-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/NumberFormatException.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/NumberFormatException.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Float.html#parseFloat-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Double.html#parseDouble-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/NumberFormatException.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Float.html#parseFloat-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Double.html#parseDouble-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/NumberFormatException.html

MicroEJ Documentation,

Core Engine

• Added the capability to customize implementation of the functions that convert strings to
float/double values and vice-versa.

• [Cortex-A/Clang] - Fixed wrong float/double arguments passed to the SNI natives.

Tools

• Removed dependency on GNU ar program to create microejruntime.a archive file.

[7.18.1] - 2022-10-26

Integration

• Fixed LicenseManager issuewith JDK8u351 or higher ([M65] - License check failed [tampered
(3)].).

[7.18.0] - 2022-09-14

Integration

• Added support for Windows 11.

• Added License Manager support for macOS aarch64 (M1 chip).

• Removed warning when launching Applications or Tools with JDK 11 (Warning: Nashorn engine
is planned to be removed from a future JDK release).

SOAR

• Added grouping of all immutables objects in a single ELF section.

[7.17.0] - 2022-06-13

Core Engine

• Fixed potential premature evaluation timeoutwhenCore Engine is not started at the same time
as the device.

• Fixedpotential crash during the call of LLMJVM_dump whenprinting information about the
Garbage Collector.

• Added new functions to Low Level API LLMJVM_MONITOR_impl.h (see Advanced Event
Tracing):

– void LLMJVM_MONITOR_IMPL_on_invoke_method(void* method) : called by the Core En-
gine when anmethod is invoked.

– void LLMJVM_MONITOR_IMPL_on_return_method(void* method) : called by the Core En-
gine when amethod returns.

3.6. VEE Porting Guide 744

MicroEJ Documentation,

• [Cortex-M] - Added support for MCU configuration with unaligned access traps enabled (UN-
ALIGN_TRP bit set in CCR register).

Foundation Libraries

• Updated KF to version 1.6 :

– Added Kernel.canUninstall() method.

Integration

• Fixed some Architecture tools compatibility issues with SDKs running on JDK 11.

• Fixed missing default value for ShieldedPlug server port when running it with MMM (10082).

• Updated Memory Map Scripts for ej.microvg library.

• Updated Architecture End User License Agreement to version SDK 3.1-A .

Simulator

• Added class file major version check (<=51). Classes must be compiled for Java 7 or lower.

• Added native method signature in the stack trace of the UnsatisfiedLinkError thrown when a
native method is missing.

• Fixed HIL enginemethod NativeInterface.getResourceContent() that generates a runtime er-
ror in the Simulator.

• Fixed error “Internal limits reached … S3 internal heap is full” when repeatedly loading a re-
source that is available in the classpath but not referenced in a .resources.list file.

• Fixed OutOfMemoryError when loading a large resource with Class.getResourceAsStream().

• Fixed A[].class.isAssignableFrom(B[].class) returning false instead of true when B is a
subclass of A .

• Fixed potential “Internal limits reached” error when an OutOfMemoryError is thrown.

• Fixed error “Cannot pin objects anymore” when passing repeatedly immutable objects to a na-
tive method.

• Fixed properties not passed correctly to the mocks when the Virtual Device is executed from a
path that contains spaces.

• [Multi] - Fixed an unexpected errorwhen kernel.kf file ismissing andKF library is used: “Please
specify a ‘kernel.kf’ file to enable Kernel & Features semantics.”

• [Multi] - Fixed type double[] not recognized in kernel.api file.

3.6. VEE Porting Guide 745

https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#canUninstall-ej.kf.Feature-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/UnsatisfiedLinkError.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/OutOfMemoryError.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#getResourceAsStream-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/OutOfMemoryError.html

MicroEJ Documentation,

SOAR

• Fixed internal error when using a BON constant in an if statement at the end of a try block.

• Fixed internal error when a try block ends with an assert expression while assertions are
disabled.

• [Multi] - Raise awarning instead of an error when duplicated .kf files are detected in the Kernel
classpath. Usual classpath resolution order is used to load the file (seeMicroEJ Classpath).

• [Multi] - Fixed SOAR error when building a Feature that uses an array of basetypes that is not
explicitly declared in the kernel.api file of the Kernel.

• [Multi] - Optimized “Build Dynamic Feature” scripts speed by removing unnecessary steps.

[7.16.3] - 2022-04-06

Core Engine

• [Cortex-M/IAR] Fix unaligned stack pointer when calling SNI native functions in ARM IAR architectures.

[7.16.2] - 2021-11-10

Core Engine

• [Cortex-M/GCC/ARMCC5] Fix unaligned stack pointer when calling SNI native functions in ARM GCC and
ARMCC architectures with non-ASM Core Engines.

[7.16.1] - 2021-07-16

Core Engine

• [GCC] Fixedwrong inlined extern symbol access (affects only someGCC architectures until version 6.x). This
produces an unexpected java.lang.OutOfMemoryError: Stacks space exception at boot time.

[7.16.0] - 2021-06-24

Known Issues

• [Multi] - SOARmay fail to build a Feature with the following message:

1 : KERNEL/FEATURE ERROR
[M25] - Type double[] is expected to be owned by the Kernel but is not embedded.

Workaround is to explicitly declare each array of basetypes in your kernel.api file:

<type name=”int[]”/>
<type name=”long[]”/>
<type name=”short[]”/>
<type name=”double[]”/>

(continues on next page)

3.6. VEE Porting Guide 746

MicroEJ Documentation,

(continued from previous page)

<type name=”float[]”/>
<type name=”byte[]”/>
<type name=”char[]”/>
<type name=”boolean[]”/>

Notes

The Device module provided by the Architecture is deprecated andwill be removed in a future
version. It has beenmoved to the Device Pack. Please update your VEE Ports.

Core Engine

• Added a dedicated error code LLMJVM_E_INITIALIZE_ERROR (-23)
when LLMJVM_IMPL_initialize() , LLMJVM_IMPL_vmTaskStarted()
, or LLMJVM_IMPL_shutdown() fails. Previously the generic error code
LLMJVM_E_MAIN_THREAD_ALLOC (-5) was returned.

• Added automatic heap consumption fing when option com.microej.runtime.debug.heap.
monitoring.enabled is set to true

• Fixed some parts of LLMJVM_checkIntegrity() code were embedded even if not called

• [Multi] - Fixed potential crash during the call of LLMJVM_checkIntegrity() when analyzing
a corrupted stack (make this function robust to object references with an invalid memory ad-
dress)

Foundation Libraries

• Added source code for KF , SCHEDCONTROL , SNI , SP implementations

• Updated KF API with annotations for Null analysis

• Updated SNI API with annotations for Null analysis

• Updated SP API with annotations for Null analysis

• Updated ResourceManager implementation with annotations for Null analysis

• Updated KF implementation:

– Addedmissing Kernel.getAllFeatureStateListeners() method

– Updated code for correct Null analysis detection

– Fixed Feature.getCriticality() to throw IllegalStateException if it is in state UNINSTALLED (in-
stead of returning NORM_CRITICALITY)

– Fixed potential race condition between Kernel.addResourceControlListener() and Kernel.re-
moveResourceControlListener(). Adding a new listener may not register it if another one is re-
moved at the same time.

3.6. VEE Porting Guide 747

https://repository.microej.com/modules/com/microej/pack/device/device-pack/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#getAllFeatureStateListeners--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Feature.html#getCriticality--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/IllegalStateException.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#addResourceControlListener-ej.kf.ResourceControlListener-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#removeResourceControlListener-ej.kf.ResourceControlListener-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#removeResourceControlListener-ej.kf.ResourceControlListener-

MicroEJ Documentation,

Integration

• Added a new task in ELF Utils library allowing to update the content of an ELF section:

– Declaration:

<taskdef classpath=”${platform.dir}
→˓/tools/elfutils.jar” classname=”com.is2t.elf.utils.AddSectionTask” name=”addSection” />

– Usage:

<addSection file=”${executable.
→˓file}” sectionFile=”${section.file}” sectionName=”${section.name}” sectionAlignment=
→˓”${section.alignment}” outputDir=”${output.dir}” outputName=”${output.name}” />

• Updated Architecture End User License Agreement to version SDK 3.0-C

• Updated copyright notice of Low Level APIs header files to latest SDK default license

• Updated Architecture module with required files and configurations for correct publication in
a module repository (README.md , LICENSE.txt , and CHANGELOG.md)

Simulator

• Added an option (com.microej.simulator.hil.frame.size) to configure the HIL engine max
frame size

• Fixed load of an immutable byte field (sign extension)

• Fixed java.lang.String constructors String(byte[] bytes, ...) when passing characters in the
range [0x80,0xFF] using default ISO-8859-1 encoding

• Fixed potential crash in debug mode when a breakpoint is set on a field access (introduced in
version 7.13.0)

• Fixed wrong garbage collection of an object only referenced by an immortal object

SOAR

• Fixed the following compilation issues in if statement with BON constant:

– too many codemay be removed when the block contains a while loop

– potential Stacks merging coherence error may be thrown when the block contains a nested
try-catch statement

– potential Stacks merging coherence error when declaring a ternary expression with Con-
stants.getBoolean() in condition expression

• Fixed assert statement removal when it is located at the end of a then block: the else block
may be executed instead of jumping over

• Removed names of arrays of basetype unless soar.generate.classnames option is set to true

• [Multi] - Fixed potential link exception when a Feature use one of the ej_bon_ByteAr-
ray methods (e.g. ej.kf.InvalidFormatException: code=51:ON_ej_bon_ByteAr-
ray_method_readUnsignedByte_AB_I_I)

3.6. VEE Porting Guide 748

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/String.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Constants.html#getBoolean-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Constants.html#getBoolean-java.lang.String-

MicroEJ Documentation,

• [Multi] - Fixed SOAR error (Invalid SNI method) when one of the ej.bon.Constants.getXXX()
methods is declared in a kernel.api file. This issue was preventing from using BON Constants
in Feature code.

Tools

• Updated Code Coverage Analyzer report generation:

– Automatically configure src/main/java source directory beside a /bin directory if available

– Added an option (cc.src.folders) to specify the source directory (require SDK 5.4.1 or higher)

– Removed the analysis of generated code for synchronized statements

– Fixed crash when loading source code with annotations

• Fixed Memory Map scripts: ClassNames group may contain duplicate sections with Types
group

• Fixed load of an ELF executable when a section overlaps a segment (updated ELF Utils, Kernel
Packager and Firmware Linker)

• Fixed Firmware Linker to generate output executable file at the same location than the input
executable file

[7.15.1] - 2021-02-19

SOAR

• [Multi] - Fixed potential Core Engine crash when declaring a Proxy class which is abstract .

[7.15.0] - 2020-12-17

Core Engine

• Added support for applying Feature relocations

Foundation Libraries

• Updated KF implementation to apply Feature relocations using the Core Engine. The for-
mer Java implementation is deprecated but can still be enabled using the option com.microej.
runtime.kf.link.relocations.java.enabled .

3.6. VEE Porting Guide 749

https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Constants.html

MicroEJ Documentation,

Integration

• Updated the Architecture naming convention: the usage level is prod instead of dev .

• Fixed generation of temporary properties file with a .properties.list extension instead of dep-
recated .system.properties extension.

SOAR

• Fixedcrashwhendeclaringa clinit dependency ruleonaclass that is loadedbutnot embedded.

Tools

• Fixed Memory Map Script All graph creation to prevent slow opening of large .map file in
Memory Map Analyzer.

[7.14.1] - 2020-11-30

Core Engine

• [Multi/x86/QNX7] - Fixed missing multi-sandbox version

Tools

• Fixed categories for class names and SNI library in Memory Map Scripts

[7.14.0] - 2020-09-25

Notes

The following set of Architecture properties are automatically provided as BON constants:

• com.microej.architecture.capability=[tiny|single|multi]

• com.microej.architecture.name=[architecture_uid]

• com.microej.architecture.level=[eval|prod]

• com.microej.architecture.toolchain=[toolchain_uid]

• com.microej.architecture.version=7.14.0

Note: Starting from Architecture 8.1.0, com.microej.architecture.capability constant is set to mono instead of
single when the Core Engine capability is Mono-Sandbox.

The following setof VEEPort properties (customerdefined) areautomatically providedas BON
constants:

• com.microej.platform.hardwarePartNumber

• com.microej.platform.name

3.6. VEE Porting Guide 750

MicroEJ Documentation,

• com.microej.platform.provider

• com.microej.platform.version

• com.microej.platform.buildLabel

Foundation Libraries

• Updated EDC UTF-8 encoder to support Unicode code points as supplementary characters

• Fixed java.lang.NullPointerException thrown when java.util.WeakHashMap.put() method is
called with a null key (introduced in version 7.11.0)

Integration

• Added all options starting with com.microej. prefix as BON constants

• Added all properties defined in architecture.properties as options prefixed by com.microej.
architecture.

• Added all properties defined in release.properties as options prefixed by com.microej.
platform.

• Added all properties defined in script/mjvm.properties as options prefixed by com.microej.
architecture.

• Added an option (com.microej.library.edc.supplementarycharacter.enabled) to enable sup-
port for supplementary characters (enabled by default)

• Updated Memory Map Scripts to extract Java static fields in a dedicated group named Statics

• Updated Memory Map Scripts to extract Java types in a dedicated group named Types

• Fixed generated Feature filename (unexpanded ${feature.output.basename} variable, intro-
duced in version 7.13.0)

• Fixed definition of missing default values for memory options (same values than launcher de-
fault ones)

• [Tiny,Multi] - Added display of the Core Engine capability when launching SOAR

SOAR

• [Multi] - Added anewattribute named api in Kernel soar.xml file indicatingwhich types,methods and static
fields are exposed as Kernel APIs

• [Multi] - Fixed potential link error when calling Object.clone() method on an array in Feature mode

3.6. VEE Porting Guide 751

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/NullPointerException.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/WeakHashMap.html#put-K-V-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Object.html#clone--

MicroEJ Documentation,

Tools

• Updated the serial PC connector to JSSC 2.9.2 (COM port could not be open on Windows 10
using a JRE 8u261 or higher)

[7.13.3] - 2020-09-18

Core Engine

• [QNX70] - Embedmethod names and line numbers information in the application

• [Cortex-A/QNX70] - Fixed wrong float/double arguments passed to the SNI natives (introduced in version
7.12.0)

Simulator

• Fixed unnecessary stacktrace dump on Long.parseLong(…) error

• Fixed UTF-8 encoded Strings not correctly printed

Tools

• Updated Memory Map Scripts for ej.library.runtime.basictool library

[7.13.2] - 2020-08-14

Core Engine

• [ARM9/QNX65] - Fixed custom convention call

• [x86/QNX70] - Fixed SIGFPE raised when overflow occurs on division

• [x86/QNX70] - Fixed issue with NaN conversion to int or long

Tools

• Fixed Feature build script for SDK 5.x (introduced in version 7.13.0)

• Updated Memory Map Scripts for MicroUI 3 and Service libraries

3.6. VEE Porting Guide 752

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Long.html#parseLong-java.lang.String-

MicroEJ Documentation,

[7.13.1] - 2020-07-20

Core Engine

• [ESP32] - Fixed potential PSRAM access faults by rebuilding using esp-idf v3.3.0 toolchain (simikou2)

[7.13.0] - 2020-07-03

Core Engine

• Added SNI-1.4 support, with the following new LLSNI.h Low Level APIs:

– Added function SNI_registerResource()

– Added function SNI_unregisterResource()

– Added function SNI_registerScopedResource()

– Added function SNI_unregisterScopedResource()

– Added function SNI_getScopedResource()

– Added function SNI_retrieveArrayElements()

– Added function SNI_flushArrayElements()

– Added function SNI_isResumePending()

– Added function SNI_clearCurrentJavaThreadPendingResumeFlag()

– Added define SNI_VERSION

– Added define SNI_IGNORED_RETURNED_VALUE

– Added define SNI_ILLEGAL_ARGUMENT

– Updated the documentation of some functions to clarify the behavior

• Added a message to IllegalArgumentException thrown in an SNI call when passing a
non-immortal array in SNI (only in case the VEE Port is configured to disallow the use of
non-immortal arrays in SNI native calls)

• Added function LLMJVM_CheckIntegrity() to LLMJVM.h Low Level API to perform heap
and internal structures integrity check

• Updated KF implementation to use SNI-1.4 to close native resources when the Feature is
stopped (ej.lang.ResourceManager is now deprecated)

• Updated LLMJVM_dump() output with the following new information related to SNI-1.4
native resource management:

– Last native method called (per thread)

– Current native method being invoked (per thread)

– Last native resource close hook called (per thread)

– Current native resource close hook being invoked (per thread)

– Pending Native Exception (per thread)

– Pending SNI Scoped Resource to close (per thread)

3.6. VEE Porting Guide 753

https://github.com/espressif/esp-idf/commit/ff29e3e7a24a715bc7f5ba453c83d694ba0ec1e2
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/IllegalArgumentException.html

MicroEJ Documentation,

– Current Garbage Collector state: (running or not, last scanned object address, last scanned ob-
ject class)

– LLMJVM schedule request (global and per thread)

• Updated non-immortal array access from SNI default behavior (now allowed by default)

• Fixed thread state displayed by LLMJVM_dump for threads in SLEEP state

• Fixed sni.h header file function prototypes using the SNI_callback typedef

• Fixed crash when an OutOfMemoryError is thrown while creating a native exception in SNI

• [Multi] - Fixed runtime exceptions that can be implicitly thrown (such as NullPointerException)
which were not automatically exposed by the Kernel

• [Multi] - Fixed passing Kernel array parameters through a shared interface method call. These
parameters were passed by copy instead of by reference as specified by KF specification

• [Multi] - Fixed execution context when jumping in a catch block of a ej.kf.Proxy method (the
catch block was executed in the Kernel context instead of the Feature context)

• [ARMCC5] - Fixed link error Undefined symbol _java_Ljava_lang_OutOfMemoryEr-
ror_field_OOMEMethodAddr_I with ARM Compiler 5 linker (introduced in version 7.12.0)

Foundation Libraries

• Updated SNI to version 1.4

• Updated internal library Resource-Manager-1.0 as deprecated. Use SNI-1.4 native resources
instead

• Updated Thread.getId() method implementation to return the same value than SNI_getCur-
rentJavaThreadID() function

• Optimized SNI.toCString() method by removing a useless temporary buffer copy

• Fixed EDC implementation of String(byte[],int,int) constructor which could allocate a too
large temporary buffer

• Fixed EDC implementation of Thread.interrupt() method to throw a java.lang.SecurityExcep-
tion when the interrupted thread cannot be modified by the the current thread

• Fixed EDC implementation to remove remaining references to java.util.SecurityManager class
when it is disabled

• Fixed EDC implementation of Thread.interrupt() method that was declared final

• Fixed EDC API of Thread.interrupt() to clarify the behavior of the method

• Fixed EDC API of java.util.Calendarmethod to specify that non-lenientmode is not supported

• Fixed EDC API of java.io.FilterInputStream.in field to be marked @Nullable

3.6. VEE Porting Guide 754

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/OutOfMemoryError.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/NullPointerException.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Proxy.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Thread.html#getId--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/sni/SNI.html#toCString-java.lang.String-byte:A-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/String.html#String-byte:A-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Thread.html#interrupt--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/SecurityException.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/SecurityException.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/SecurityManager.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Thread.html#interrupt--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Thread.html#interrupt--
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/Calendar.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/io/FilterInputStream.html#in

MicroEJ Documentation,

Integration

• Updated Architecture End User License Agreement to version SDK 3.0-B

Simulator

• Added SNI-1.4 support, with the following new HIL engine APIs:

– Addedmethods NativeInterface.suspendStart() and NativeInterface.suspendStop() to no-
tify the simulator that anative is suspended so that it can schedule a threadwitha lowerpriority

• Added KF support to dynamically install Features (.fs3 files)

• Added the capability to specify the Kernel UID from an option (see options in Simulator >
Kernel > Kernel UID)

• Added object size in generated .heap dump files

• Optimized file accesses from the Application

• Fixed crash in debug mode when paused on a breakpoint in SDK and hovering a Java variable
with the mouse

• Fixed potential crash in debug mode when putting a breakpoint in the SDK on a line of code
declared in an inner class

• Fixed potential crash in debug mode (java.lang.NullPointerException) when a breakpoint set
on a field access is hit

• Fixed potential crash in debugmode (ArrayIndexOutOfBoundsException)

• Added support for JDWP commands DisableCollection / EnableCollection in the debugger

• Fixed invalid heap dump generation in debugmode.

• Fixed crash when a Mockup implements com.is2t.hil.StartListener and this implementation
throws an uncaught exception in the clinit

• Fixed verbose of missing resource only when a resource is available in the classpath but not
declared in a .resources.list file

• Fixedheapconsumptionsimulation forobjects instancesof classesdeclaring fieldsof type float
or double

• Fixed Device UID not displayed in the Front Panel window title (introduced in version 7.11.0)

• Fixed loading of a resource from a JAR when the path starts with /

• Fixed potential deadlock on Front Panel startup in some cases

• Fixed Thread.getState() returning TERMINATED whereas the thread is running

• Fixed Simulator which may not stop properly when closing the Front Panel window

• Fixed Front Panel which stops sending widget events when dragging out of a widget

• [Multi] - Fixed monitor that may not be released when an exception occurs in a synchronized
block (introduced in version 7.10.0)

• [Multi] - Fixed invalid heap dump generation that causes heap analyzer crash

• [Multi] - Fixed potential crash (java.lang.NullPointerException) in debugmodewhendebugging
an Application (introduced in version 7.10.0)

3.6. VEE Porting Guide 755

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/NullPointerException.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/ArrayIndexOutOfBoundsException.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Thread.html#getState--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/NullPointerException.html

MicroEJ Documentation,

• [Multi] - Fixed error when using KF library without defining a kernel.kf file in the Kernel (in-
troduced in version 7.10.0)

SOAR

• Added an option (soar.bytecode.verifier) to enable or disable the bytecode verifier (disabled
by default)

• Removed size related limits in Architecture Evaluation version

Tools

• Added SNI-1.4 support to HIL engine

• Updated Heap Dumper to verbose information about the memory section when an overlap is
detected in the HEX file

• Updated Memory Map Scripts (Security, DTLS, Device)

• Fixed LicenseManager (Evaluation) random crash onWindows 10when a VEE Port is built using
Build Module button

• Fixed License Manager (Evaluation) wrong UID computation after reboot when Windows 10
Hyper-V feature is enabled

• Fixed HIL engine to exit as soon as the Simulator is disconnected (avoid remaining detached
processes)

• Fixed ELF to Map generating symbol addresses different from the ELF symbol addresses (intro-
duced in version 7.11.0)

• Fixed Heap Dumper crash when a wrong object header is encountered

• Fixed Heap Dumper failure when amemory dump is larger than the heap section

• Fixed Heap Dumper crash when loading an Intel HEX file that contains lines of type 02

[7.12.0] - 2019-10-16

Core Engine

• Updated implementation of internal OutOfMemoryError thrownwith themaximumnumber of
frames that can be dumped

• Updated LLMJVM_dump() output with the following new information:

– Maximum number of alive threads

– Total number of created threads

– Maximum number of stack blocks used

– Current number of stack blocks used

– Objects referenced by each stack frame: address, type, length (in case of arrays), string content
(in case of String objects)

– [Multi] - Kernel stale references with the name of the Feature stopped

3.6. VEE Porting Guide 756

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/OutOfMemoryError.html

MicroEJ Documentation,

Foundation Libraries

• Fixed EDC implementation of Throwable.getStackTrace() when called on a OutOfMemoryEr-
ror thrown by Core Engine or Simulator (either the returned stack trace array was empty or a
java.lang.NullPointerException was thrown)

• [Tiny] - Fixed EDC implementation of StackTraceElement.toString() (removed the character .
before the type)

• [Multi] - Fixed KF implementation of Feature.start() to throw an ExceptionInInitializerError
when an exception is thrown in a Feature clinit method

Simulator

• Updated implementation of internal OutOfMemoryError thrown with more than one frames
dumped per thread

– By default the 20 top frames per thread are dumped. This can be modified using S3.
OutOfMemoryErrorNbFrames system property

• Fixedwrong parsing of an array of long when an element is declaredwith only 2 digits (e.g. 25
was parsed as 2)

• Fixed error parsing of an array of byte when an element is declared with the unsigned hex-
adecimal notation (e.g. 0xFF) (introduced in version 7.10.0)

• Fixed crash when ResourceBuffer.readString() is called on a String greater than 63 characters
(introduced in version 7.10.0)

• Fixed code coverage .cc generation of classpath directories

• Fixed crash during a GC when computing the references map of a complex method (an error
message is dumpedwith the involvedmethod name and suggest to increase the internal stack
using S3.JavaMemory.ThreadStackSize system property)

• [Multi] - Added validity check of Shared Interface declaration files (.si) according to KF spec-
ification

• [Multi] - Fixed processing of Resource Buffers declared in Feature classpath

SOAR

• Addedanewoption core.memory.oome.nb.frames to configure themaximumnumberof stack
frames that can be dumped when an internal OutOfMemoryError is thrown by Core Engine

Tools

• Updated Heap Dumper to verbose detected object references that are outside the heap

• UpdatedHeapDumper to throwadedicated errorwhen an object reference does not target the
beginning of an object (most likely a corrupted heap)

• Updated Heap Dumper to dump .heap.error partial file when a crash occurred during heap
processing

• Fixed Heap Dumper crash when processing an object owned by a Feature which type is also
owned by the Feature (was working before only when the type is owned by the Kernel)

3.6. VEE Porting Guide 757

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Throwable.html#getStackTrace--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/OutOfMemoryError.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/OutOfMemoryError.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/NullPointerException.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/StackTraceElement.html#toString--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Feature.html#start--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/ExceptionInInitializerError.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/OutOfMemoryError.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/ResourceBuffer.html#readString--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/OutOfMemoryError.html

MicroEJ Documentation,

• Fixed Firmware Linker potential negative offset generation when some sections do not appear
in the same order in the ELF file than in their associated LOAD segment

• Fixed Code Coverage Analyzer potential generated empty report (wrong load of classfiles from
JAR files)

[7.11.0] - 2019-06-24

Important Notes

• Java assertions execution is now disabled by default. If you experience any runtime trouble
whenmigrating from a previous Architecture, please enable Java assertions execution both on
Simulator and onDevice (maybe the application code requires Java assertions to be executed).

• Calls to Security Manager are now disabled by default. If you are using the Security Manager,
it must be explicitly enabled using the option described below (likely the case when building a
Multi-Sandbox Firmware and its associated Virtual Device).

• Front Panel framework is now provided by the Architecture instead of the UI Pack. This allow
to build a VEE Port with a Front Panel (splash screen, basic I/O, …), even if it does not pro-
vide a MicroUI port. Moreover, the Front Panel framework API has been redesigned and is now
distributed using the ej.tool.frontpanel.framework module insteadof the legacy Eclipse class-
path variable.

Known Issues

• SOAR Internal SOAR error or Stacks merging coherence error thrownwhen an if statement
(being removed) is declared at the end of a try block:

try {
...
if (Constants.getBoolean(XXX)) { // constant resolved to false

... // code being removed
}

} catch (Exception e) {
...

}

Core Engine

• Added EDC-1.3 support for daemon threads

• Added BON support for ej.bon.Util.newArray(T[],int)

• [Multi/ARMCC5] - Fixed unused undefined symbol that prevent Keil MDK-ARM to link properly

3.6. VEE Porting Guide 758

https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Util.html#newArray-java.lang.Class-int-

MicroEJ Documentation,

Foundation Libraries

• Updated EDC to version 1.3 (see EDC-1.3 API Changelog)

– Updated the implementation code for correct Null analysis detection (added assertions, ex-
tracted multiple field accesses into a local)

– Fixed PrintStream.PrintStream(OutputStream, boolean) writer initialization

– Removed useless String literals in java.lang.Throwable

• Updated UTF-8 decoder to support Unicode code points

• Updated BON to version 1.4 (see BON-1.4 API Changelog)

• Updated TRACE to version 1.1

– Added ej.trace.Tracer.getGroupID()

– Added a BON Constant (core.trace.enabled) to remove trace related code when tracing is dis-
abled

• Fixed KF to call the registered Thread.UncaughtExceptionHandler when an exception is
thrown by the first Feature thread

Integration

• Added new options for Java assertions execution in category Runtime (core.assertions.sim.
enabled and core.assertions.emb.enabled). By default, Java assertions execution is disabled
both on Simulator and on Device.

• Updated options categories (options property names left unchanged)

– Added a new category named Runtime

– Renamed Target to Device

– Moved Embed All type names option from Core Engine to Runtime

– Moved Core Engine under Device

– Removed category Target > Debug andmoved Trace options to Runtime

– Removed category Debug andmoved all sub categories under Simulator

– Renamed category JDWP to Debug

• Added anoption (com.microej.library.edc.securitymanager.enabled) to enable SecurityMan-
ager runtime checks (disabled by default)

Simulator

• Added a cache to speed-up classfile loading in JARs

• Added EDC-1.3 support for daemon threads

• Added BON-1.4 support for compile-time constants (load of .constants.list resources)

• Added BON-1.4 support for ej.bon.Util.newArray()

• Added Front Panel framework

• Updated error message when reaching Simulator limits

3.6. VEE Porting Guide 759

https://repository.microej.com/5/artifacts/ej/api/edc/1.3.0/CHANGELOG-1.3.0.md
https://repository.microej.com/javadoc/microej_5.x/apis/java/io/PrintStream.html#PrintStream-java.io.OutputStream-boolean-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Throwable.html
https://repository.microej.com/5/artifacts/ej/api/bon/1.4.0/CHANGELOG-1.4.0.md
https://repository.microej.com/javadoc/microej_5.x/apis/ej/trace/Tracer.html#getGroupID--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Thread.UncaughtExceptionHandler.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Util.html#newArray-java.lang.Class-int-

MicroEJ Documentation,

• Removed the Bootstrapping a Smart Software Simulator message when verbose mode in
enabled

• Fixed Object.clone() on an immutable object to return a new (mutable) object instead of an
immutable one

• Fixed Object.clone() crash when an OutOfMemory occurs

• Fixed potential crash when calling an abstract method (some interfaces of the hierarchy were
not taken into account - introduced in version 7.10.0)

• Fixed OutOfMemory errors even if the heap is not full (resources loaded from Class.ge-
tResourceAsStream() and ResourceBuffer creation were taken into account in simulated heap
memory - introduced in version 7.10.0)

• Fixedpotential crashwhen aGCoccurswhile a ResourceBuffer is opened (introduced in version
7.10.0)

• Fixed potential debugger hangs when an exception was thrown but not caught in the same
method

• [Multi] - Fixed wrong class loading in some cases

• [Multi] - Fixed wrong immutable loading in some cases

SOAR

• Added BON-1.4 support for compile-time constants (load of .constants.list resources)

• Added bytecode removal for Java assertions (when option is disabled)

• Added bytecode removal for if(ej.bon.Constants.getBoolean()) pattern

– then or else block is removed depending on the boolean condition

– WARNING: Current limitation: the “if“ statement cannot wrap or be nested in a “try-catch-finally“
statement

• AddedOption(checkbox): GroupMethodsbyType for groupingall themethodsby type in a single
ELF section

• Addedanerrormessagewhen microejapp.o cannotbegeneratedbecause themaximumnum-
ber of ELF sections (65536) is reached

Tools

• Updated LicenseManager (Production) to debugdongle recognition issues fromcommand line
(see Check Activation).

• Updated License Manager (Production) to support dongle recognition on macOS 10.14 (Mo-
jave)

• Fixed ELF To Map to produce correct sizes from an executable generated by IAR Embedded
Workbench for ARM

• Fixed Firmware Linker .ARM.exidx section generation (missing section link content)

• Updated deployment files policy for VEE Ports in Workspace, in order to be more flexible de-
pending on the C project layout. This also allows to deploy to the same C project different Ap-
plications built with different VEE Ports

3.6. VEE Porting Guide 760

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Object.html#clone--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Object.html#clone--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#getResourceAsStream-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#getResourceAsStream-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/ResourceBuffer.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/ResourceBuffer.html

MicroEJ Documentation,

– VEE Port configuration: in bsp/bsp.properties , a new option output.dir indicates where the
files are deployed by default

∗ Application (microejapp.o) and Runtime library (microejruntime.a) are deployed to
${output.dir}/lib . Architecture header files (*.h) are deployed to ${output.dir}/inc/

∗ When this option is not set, the legacy behavior is left unchanged (project.file option in collab-
oration with augmentCProject scripts)

– Launch configuration: Device > Deploy options allow to override the default VEE Port con-
figuration in order to deploy each file into a separate folder.

• Fixed wrong ELF file generation when a section included in a LOAD segment was generated be-
fore one of the sections included in a LOAD segment declared before the first one (integrated in
ELF Utils and Firmware Linker)

• Fixed wrong ELF file generation when a section included in a LOAD segment had an address
whichwasoutside its LOADsegment virtual address space (integrated inELFUtils andFirmware
Linker)

[7.10.1] - 2019-04-03

Simulator

• Fixed Object.getClass() may return a Class instance owned by a Feature for type owned by the
Kernel

[7.10.0] - 2019-03-29

Core Engine

• Added internal memories checks at startup: heaps and statics memories are not allowed to
overlap with LLBSP_IMPL_isInReadOnlyMemory()

• [Multi] - Updated Feature Kill implementation to prepare future RAMControl (fullymanaged by
Core Engine)

• [Multi] - Updated implementation of ej.kf.Kernel: all APIs taking a Feature argument now will
throw a java.lang.IllegalStateException when the Feature is not started

Foundation Libraries

• Updated KF library in sync with Core Engine Kill related fixes and Simulator with Kernel &
Features semantic

• Updated BON library on Simulator (now uses the same implementation than the one used by
the Core Engine)

3.6. VEE Porting Guide 761

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Object.html#getClass--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/IllegalStateException.html

MicroEJ Documentation,

Integration

• Added generation of architecture.properties file when building a VEE Port. (Used by SDK 5.x
whenmanipulating VEE Ports & Virtual Devices)

Simulator

• Added Embed all types names option for Simulation

• Added memory size simulation for Managed heap and Immortal Heap (Enabling Use target
characteristics option is nomore required)

• Added Kernel & Features semantic, as defined in the KF-1.4 specification

– Fully implemented:

∗ Ownership for types, object and thread execution context

∗ Kernel mode

∗ Context Local Static Field References

– Partially implemented:

∗ Kernel API (Type grained only)

∗ Shared Interfaces are binded using direct reference links (no Proxy execution)

∗ Feature.stop() does not perform the safe kill. The application cannot be stopped unless it has
correctly removed all its shared references.

– Not implemented:

∗ Dynamic Feature installation from Kernel.install(java.io.InputStream)

∗ Execution Rules Runtime checks

Tools

• Updated Memory Map Scripts (Bluetooth, MWT, NLS, Rcommand and AllJoyn libraries)

• Fixed Kernel Packager internal limits error when the ELF executable does not contains a .
debug.soar section

• FixedwrongELF file generationwhensegment file size isdifferent than thememsize (integrated
in ELF Utils and Firmware Linker)

• Fixed Simulator COMportmapping default value (set to disabled instead of UART<->UART
in order to avoid an error when launch configuration is just created)

• Fix ELF To Map: the total sections size were not equal to the segments size

3.6. VEE Porting Guide 762

https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Feature.html#stop--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#install-java.io.InputStream-

MicroEJ Documentation,

[7.9.1] - 2019-01-08

Tools

• Fixed ELF objcopy generation when ELF executable file contains 0 size segments

• Fixed Stack Trace Reader error when ELF executable file contains relocation sections

[7.9.0] - 2018-09-20

Core Engine

• Fixed OutOfMemoryError thrown when allocating an object of the size of free memory in im-
mortals heap

SOAR

• Optimized SOAR processing (up to 50% faster on applications with tens of classpath entries)

[7.8.0] - 2018-08-01

Tools

• [ARMCC5] - Updated SOAR Debug Infos Post Linker tool to generate the full ELF executable file

[7.7.0] - 2018-07-19

Core Engine

• Added a permanent hook LLMJVM_on_Runtime_gc_done called after an explicit
java.lang.Runtime.gc()

• Updated internal heap header for memory dump

SOAR

• Added check for the maximum number of allowed concrete types (avoids a Core Engine link
error)

3.6. VEE Porting Guide 763

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/OutOfMemoryError.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#gc--

MicroEJ Documentation,

Tools

• Added Heap Dumper tool

[7.6.0] - 2018-06-29

Foundation Libraries

• [Multi] - Updated BON library: a Timer owned by the Kernel can execute a TimerTask owned by a Feature

[7.5.0] - 2018-06-15

Internal Release - COTS Architecture left unchanged.

[7.4.0] - 2018-06-13

Core Engine

• Removed partial support of ej.bon.Util.throwExceptionInThread() (deprecated)

• [Multi/Linux] - Updated default configuration to always embedmethod names

• [Multi/Cortex-M] - Optimized KF checks execution for array & field accesses

Foundation Libraries

• Updated ej.bon.Timer to schedule ej.bon.TimerTask owned bymultiple Features

Simulator

• Fixed implementation of Class.getResourceAsStream() to throw an IOException when the
stream is closed

SOAR

• [GCC] - Fixed microejapp.o link with GCC 6.3

Tools

• Added a retry mechanism in the Testsuite Engine

• Added amessage to suggest increasing the JVMheapwhen anOutOfMemoryError occurs in the
Firmware Linker tool

• Fixed generation of LL header files for all cross compilation toolchains (file separator for in-
cluded paths is /)

• [Cortex-A/ARMCC5] - Fixed SNI convention call issue

3.6. VEE Porting Guide 764

https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Timer.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/TimerTask.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#getResourceAsStream-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/io/IOException.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/OutOfMemoryError.html

MicroEJ Documentation,

• [ESP32,RX] - Fixed Firmware Linker tool internal limit

[7.3.0] - 2018-03-07

Simulator

• Added an option for the IDE to customize the mockups classpath

• Fixed Deadlock in Shielded Plug remote client when interrupting a thread that waits for block
modification

[7.2.0] - 2018-03-02

Core Engine

• [Multi] - Enabled quantum counter computation only when Feature quota is set

• [Cortex-M/IAR] - Updated compilation flags to -Oh

Simulator

• Added a hook in the mockup that is automatically called during the HIL engine startup

• Added dump of loaded classes when verbose option is enabled

• Fixed Runtime.freeMemory() call freeze when Emb Characteristics option is enabled

• Fixed ShieldedPlug server error after interrupting a thread that is waiting for a database block

• Fixed crash Access to a wrong reference in some cases

• Fixed java.lang.NullPointerException when interrupting a thread that has not been started

• Fixed crash when closing an HIL engine connection in some cases

• [Multi] - Fixed KF &Watchdog library link when Emb Characteristics option is enabled

• [Multi] - Fixed XML Parsing error when Emb Characteristics option is enabled

[7.1.2] - 2018-02-02

SOAR

• Fixed SNI library was added in the classpath in some cases

3.6. VEE Porting Guide 765

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#freeMemory--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/NullPointerException.html

MicroEJ Documentation,

[maintenance/6.18.0] - 2017-12-15

Core Engine

• [Multi] - Enabled quantum counter computation only when Feature quota is set

• [Cortex-M/IAR] - Updated compilation flags to -Oh

Simulator

• Fixed Runtime.freeMemory() call freeze when Emb Characteristics option is enabled

• [Multi] - Fixed KF &Watchdog library link when Emb Characteristics option is enabled

• [Multi] - Fixed XML Parsing error when Emb Characteristics option is enabled

Tools

• Updated Kernel API Generator tool with classes filtering

[7.1.1] - 2017-12-08

Tools

• [Multi/RX] - Fixed Firmware Linker tool

[7.1.0] - 2017-12-08

Core Engine

• [Multi/RX] - Added KF support

Integration

• Fixed SNI-1.3 library name

SOAR

• [RX] - Added support for ELF symbol prefix _

3.6. VEE Porting Guide 766

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#freeMemory--

MicroEJ Documentation,

Tools

• Updated Kernel API generator tool with classes filtering

[7.0.0] - 2017-11-07

Core Engine

• Added SNI-1.3 support

• SNI_suspendCurrentJavaThread() is not interruptible via Thread.interrupt() anymore

Foundation Libraries

• Updated to SNI-1.3

[6.17.2] - 2017-10-26

Simulator

• Fixed deadlock during bootstrap in some cases

[6.17.1] - 2017-10-25

Core Engine

• Fixed conversion of -0.0 into a positive value

[6.17.0] - 2017-10-10

Tools

• Updated Memory Map Scripts for TRACE library

[6.16.0] - 2017-09-27

Core Engine

• Fixed External Resource Loader link error (introduced in version 6.13.0)

3.6. VEE Porting Guide 767

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Thread.html#interrupt--

MicroEJ Documentation,

[6.15.0] - 2017-09-12

Core Engine

• Added a new option to configure the maximum number of monitors that can be owned per
thread (8 per thread by default, as it was fixed before)

Foundation Libraries

• Fixed ECOM-COMM internal heap calibration

SOAR

• Added log of the class loading cause

[6.14.2] - 2017-08-24

Tools

• Fixed Firmware Linker tool script (load activity.xml from the wrong folder)

• Fixed load of symbol _java_Ljava_io_EOFException that can be required by some linkers
even if this symbol is not touched

[6.14.1] - 2017-08-02

Simulator

• Fixed Device Mockup too long initialization that may block the Front Panel Mockup

Foundation Libraries

• Fixed BON .types.list potential conflicts with KF

Tools

• Modified Firmware Linker internal scripts structure for new Virtual Devices tools

3.6. VEE Porting Guide 768

MicroEJ Documentation,

[6.13.0] - 2017-07-21

Core Engine

• Added support for ej.bon.ResourceBuffer

Foundation Libraries

• Updated to BON-1.3

SOAR

• Added support for *.resourcesext.list (resources excluded from the firmware)

Tools

• Added BON Resource Buffer generator

[6.12.0] - 2017-07-07

Core Engine

• Added a trace when IllegalMonitorStateException is thrown on a monitorexit

Tools

• Added property skip.mergeLibraries for Platform Builder.

• Updated the serial PC connector to JSSC 2.8.0 .

Simulator

• Fixed unexpexted java.lang.NullPointerException in some cases

[6.11.0] - 2017-06-13

Integration

• Fixed useless watchdog library copied in root folder

3.6. VEE Porting Guide 769

https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/ResourceBuffer.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/IllegalMonitorStateException.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/NullPointerException.html

MicroEJ Documentation,

[6.11.0-beta1] - 2017-06-02

Core Engine

• Added an option to enable execution traces

• Added Low Level API LLMJVM_MONITOR_impl.h

• Added Low Level API LLTRACE_impl.h

Foundation Libraries

• Added TRACE-1.0

[6.10.0] - 2017-06-02

Core Engine

• Optimized java.lang.Runtime.gc() (removed useless heap compaction in some cases)

[6.9.2] - 2017-06-02

Integration

• Fixed missing properties in release.properties (introduced in version v6.9.1)

• Fixed artifacts build dependencies to private dependencies

[6.9.1] - 2017-05-29

SOAR

• [Multi] - Fixed selected methods list in report generation (removed Kernel related method)

[6.9.0] - 2017-03-15

Base version, included into SDK 4.1.

Release Notes

Foundation Libraries

The following table describes Foundation Libraries API versions implemented inMicroEJ Archi-
tectures.

3.6. VEE Porting Guide 770

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#gc--

MicroEJ Documentation,

Table 40: Architecture API Implementation
Architecture Range EDC BON KF SNI SP Trace Device ECOM-COMM
[8.0.0-8.3.0] 1.3 1.4 1.7 1.4 2.0 1.1 N/A1 N/A2

[7.17.0-7.20.1] 1.3 1.4 1.6 1.4 2.0 1.1 1.0 1.1
[7.13.0-7.16.0] 1.3 1.4 1.5 1.4 2.0 1.1 1.0 1.1
[7.11.0-7.12.0] 1.3 1.4 1.5 1.3 2.0 1.1 1.0 1.1
[7.10.0-7.10.1] 1.2 1.3 1.5 1.3 2.0 1.0 1.0 1.1
[7.0.0-7.9.1] 1.2 1.3 1.4 1.3 2.0 1.0 1.0 1.1
[6.13.0-6.18.0] 1.2 1.3 1.4 1.2 2.0 1.0 1.0 1.1
[6.11.0-6.12.0] 1.2 1.2 1.4 1.2 2.0 1.0 1.0 1.1
[6.9.0-6.10.0] 1.2 1.2 1.4 1.2 2.0 N/A 1.0 1.1

Default Application

As of Architecture 8.1.0, a default pre-built application (microejapp.o) is provided with the VEE
Port. It simplifies theearly-stage integration intoaBSPproject byeliminating theneed to create
and build an Application project within the SDK, thereby removing the requirement to obtain a
valid SDK license.

The default pre-built application is available at [VEE_PORT_DIR]/defaultApp/
microejapp.o . It prints a splash with Architecture Characteristics on the standard output:

MicroEJ START

,--. ,--.,--. ,----. ,--. ,--. ,--.,----.,----.
| `.' |`--' ,--.,--.--. ,--. | .--' | | \ `.' / | .--'| .--'
| |'.'| |,--.| .--'| .--'| .-. || `--, ,--. | | \ / | `--, | `--,
| | | || |\ `--.| | ' '-' '| `--.| '-' / \ / | `--.| `--.
`--' `--'`--' `--'`--' `--' `----' `----' `-' `----'`----'

**********+=--::::--=++**********

*******++:... ..:=+*******
******+:.. ...+******
*****+:. .:+*****
****+....--. .:-: .=****
+...:*-. .****=...=****

****-...=****+. -****+...:****
****:...-****=. :****+...:+***
****:....-++- :++=....:+***
+........=*

******=..........-******
*******+.......++-:......:-=+:......=*******
*********=.......:=++++++=:.......-*********

************+-..................:+************
****** ***********+=-:......:-=++********** ******
***** #*********************************** *****
*** #********************************* ***

(continues on next page)

1 See Migrate Device Module.
2 See Migrate ECOM-COMM Module.

3.6. VEE Porting Guide 771

https://repository.microej.com/modules/ej/api/edc/1.3.7/
https://repository.microej.com/modules/ej/api/bon/1.4.4/
https://repository.microej.com/modules/ej/api/kf/1.7.0/
https://repository.microej.com/modules/ej/api/sni/1.4.3/
https://repository.microej.com/modules/ej/api/sp/2.0.4/
https://repository.microej.com/modules/ej/api/trace/1.1.1/
https://repository.microej.com/modules/ej/api/edc/1.3.7/
https://repository.microej.com/modules/ej/api/bon/1.4.4/
https://repository.microej.com/modules/ej/api/kf/1.6.1/
https://repository.microej.com/modules/ej/api/sni/1.4.3/
https://repository.microej.com/modules/ej/api/sp/2.0.4/
https://repository.microej.com/modules/ej/api/trace/1.1.1/
https://repository.microej.com/modules/ej/api/device/1.0.2/
https://repository.microej.com/modules/ej/api/ecom-comm/1.1.4/
https://repository.microej.com/modules/ej/api/edc/1.3.7/
https://repository.microej.com/modules/ej/api/bon/1.4.4/
https://repository.microej.com/modules/ej/api/kf/1.5.1/
https://repository.microej.com/modules/ej/api/sni/1.4.3/
https://repository.microej.com/modules/ej/api/sp/2.0.4/
https://repository.microej.com/modules/ej/api/trace/1.1.1/
https://repository.microej.com/modules/ej/api/device/1.0.2/
https://repository.microej.com/modules/ej/api/ecom-comm/1.1.4/
https://repository.microej.com/modules/ej/api/edc/1.3.7/
https://repository.microej.com/modules/ej/api/bon/1.4.4/
https://repository.microej.com/modules/ej/api/kf/1.5.1/
https://repository.microej.com/modules/ej/api/sni/1.3.1/
https://repository.microej.com/modules/ej/api/sp/2.0.4/
https://repository.microej.com/modules/ej/api/trace/1.1.1/
https://repository.microej.com/modules/ej/api/device/1.0.2/
https://repository.microej.com/modules/ej/api/ecom-comm/1.1.4/
https://repository.microej.com/modules/ej/api/edc/1.2.3/
https://repository.microej.com/modules/ej/api/bon/1.3.0/
https://repository.microej.com/modules/ej/api/kf/1.5.1/
https://repository.microej.com/modules/ej/api/sni/1.3.1/
https://repository.microej.com/modules/ej/api/sp/2.0.4/
https://repository.microej.com/modules/ej/api/trace/1.0.0/
https://repository.microej.com/modules/ej/api/device/1.0.2/
https://repository.microej.com/modules/ej/api/ecom-comm/1.1.4/
https://repository.microej.com/modules/ej/api/edc/1.2.3/
https://repository.microej.com/modules/ej/api/bon/1.3.0/
https://repository.microej.com/modules/ej/api/kf/1.4.4/
https://repository.microej.com/modules/ej/api/sni/1.3.1/
https://repository.microej.com/modules/ej/api/sp/2.0.4/
https://repository.microej.com/modules/ej/api/trace/1.0.0/
https://repository.microej.com/modules/ej/api/device/1.0.2/
https://repository.microej.com/modules/ej/api/ecom-comm/1.1.4/
https://repository.microej.com/modules/ej/api/edc/1.2.3/
https://repository.microej.com/modules/ej/api/bon/1.3.0/
https://repository.microej.com/modules/ej/api/kf/1.4.4/
https://repository.microej.com/modules/ej/api/sni/1.2.5/
https://repository.microej.com/modules/ej/api/sp/2.0.4/
https://repository.microej.com/modules/ej/api/trace/1.0.0/
https://repository.microej.com/modules/ej/api/device/1.0.2/
https://repository.microej.com/modules/ej/api/ecom-comm/1.1.4/
https://repository.microej.com/modules/ej/api/edc/1.2.3/
https://repository.microej.com/modules/ej/api/bon/1.2.3/
https://repository.microej.com/modules/ej/api/kf/1.4.4/
https://repository.microej.com/modules/ej/api/sni/1.2.5/
https://repository.microej.com/modules/ej/api/sp/2.0.4/
https://repository.microej.com/modules/ej/api/trace/1.0.0/
https://repository.microej.com/modules/ej/api/device/1.0.2/
https://repository.microej.com/modules/ej/api/ecom-comm/1.1.4/
https://repository.microej.com/modules/ej/api/edc/1.2.3/
https://repository.microej.com/modules/ej/api/bon/1.2.3/
https://repository.microej.com/modules/ej/api/kf/1.4.4/
https://repository.microej.com/modules/ej/api/sni/1.2.5/
https://repository.microej.com/modules/ej/api/sp/2.0.4/
https://repository.microej.com/modules/ej/api/device/1.0.2/
https://repository.microej.com/modules/ej/api/ecom-comm/1.1.4/

MicroEJ Documentation,

(continued from previous page)

***** ******************************** *****
******** ##**************************** ********
**** *** ###***********************## *** ****
*** * ###******************### * ***
** #####************##### **

##################
##############

######

::::::::::::::::::::::::::::
::::::::::::::::::::::

You successfully linked your first Application with the following Architecture characteristics:
- Name: atsauce6
- Version: 8.1.0 (20231220-1011)
- Usage: Production
- Core Engine Capability: Multi-Sandbox
- Instruction Set Architecture: x86
- Compilation Toolchain: GNU GCC (GNUvX_X86Linux)
MicroEJ END (exit code = 0)

3.6.3 MicroEJ Packs

Overview

On top of a MicroEJ Architecture can be imported MicroEJ Packs which provide additional fea-
tures such as:

• Serial Communications,

• Graphical User Interface,

• Networking,

• Bluetooth,

• Audio,

• MicroAI,

• File System,

• etc.

Each MicroEJ Pack is optional and can be selected on demand in the VEE Port configuration.
Refer to SDK 6 or SDK 5 documentation to learn how to do it.

3.6. VEE Porting Guide 772

MicroEJ Documentation,

Naming Convention

MicroEJ Packs are distributed in two packages:

• MicroEJ Architecture Specific Pack under the com/microej/architecture/* organization.

• MicroEJ Generic Pack under the com/microej/pack/* organization.

See the Pack Import documentation for SDK 6 or SDK 5 for usage.

Architecture Specific Pack

MicroEJArchitectureSpecific Packs contain compiled libraries archivesandare thusdependent
on the MicroEJ Architecture and toolchain used in the MicroEJ Platform.

MicroEJ Architecture Specific Packs files endswith the .xpfp extension and are classified using
the following naming convention:

com/microej/architecture/[ISA]/
→˓[TOOLCHAIN]/[UID]-[NAME]-pack/[VERSION]/[UID]-[NAME]-pack-[VERSION].xpfp

• ISA : instruction set architecture (e.g. CM4 for Arm® Cortex®-M4, ESP32 for Espressif ESP32, …).

• TOOLCHAIN : C compilation toolchain (e.g. CM4hardfp_GCC48).

• UID : Architecture unique ID (e.g. flopi4G25).

• NAME : pack name (e.g. ui).

• VERSION : pack version (e.g. 13.0.4).

For example, MicroEJ Architecture Specific Pack UI versions for Arm® Cortex®-M4 micro-
controllers compiled with GNU CC toolchain are available at https://repository.microej.com/
modules/com/microej/architecture/CM4/CM4hardfp_GCC48/flopi4G25-ui-pack/.

Generic Pack

MicroEJ Generic Packs can be imported on top of any MicroEJ Architecture.

They are classified using the following naming convention:

com/microej/pack/[NAME]/[NAME]-pack/[VERSION]/

• NAME : pack name (e.g. bluetooth).

• VERSION : pack version (e.g. 2.1.0).

For example, MicroEJ Generic Pack Bluetooth versions are available at https://repository.
microej.com/modules/com/microej/pack/bluetooth/bluetooth-pack/.

3.6. VEE Porting Guide 773

https://repository.microej.com/modules/com/microej/architecture
https://repository.microej.com/modules/com/microej/pack/
https://repository.microej.com/modules/com/microej/architecture/CM4/CM4hardfp_GCC48/flopi4G25-ui-pack/
https://repository.microej.com/modules/com/microej/architecture/CM4/CM4hardfp_GCC48/flopi4G25-ui-pack/
https://repository.microej.com/modules/com/microej/pack/bluetooth/bluetooth-pack/
https://repository.microej.com/modules/com/microej/pack/bluetooth/bluetooth-pack/

MicroEJ Documentation,

Legacy Generic Pack

Legacy MicroEJ Generic Packs files end with the .xpfp extension. These Packs contain one or
more VEE Port modules. They are classified using the following naming convention:

com/microej/pack/[NAME]/[VERSION]/[NAME]-[VERSION].xpfp

• NAME : pack name (e.g. net).

• VERSION : pack version (e.g. 9.2.3).

For example, the Legacy MicroEJ Generic Pack NET version 9.2.3 is available at https://
repository.microej.com/modules/com/microej/pack/net/9.2.3/net-9.2.3.xpfp.

3.6.4 BSP Connection

Principle

Using a VEE Port, the user can compile an Application on that VEE Port. The result of this com-
pilation is a microejapp.o file.

This file has to be linked with the VEE Port runtime file (microejruntime.a) and a third-party C
project, called the Board Support Package (BSP), to obtain the final binary file (the Executable).
For more information, please consult theMicroEJ build process overview.

The BSP connection can be configured by defining 4 folders where the following files are lo-
cated:

• Application file (microejapp.o).

• VEE Port runtime file (microejruntime.a , also available in the VEE Port lib folder).

• VEE Port header files (*.h , also available in the VEE Port include folder).

• BSP project build script file (build.bat or build.sh).

Once the Application file (microejapp.o) is built, the files are then copied to these locations
and the build.bat or build.sh file is executed to produce the Executable (application.out).

Note: The final build stage toproduce theExecutable canbedoneoutsideof the SDK, and thus theBSP connection
configuration is optional.

BSP connection configuration is only required in the following cases:

• Use the SDK to produce the Executable of a Mono-Sandbox Application (recommended).

• Use the SDK to run a VEE Port Test Suite on device.

• Build a the Executable of a Multi-Sandbox Application.

MicroEJ provides a flexible way to configure the BSP connection to target any kind of projects,
teams organizations and company build flows. To achieve this, the BSP connection can be con-
figured either at VEE Port level or at Application level (or a mix of both).

The 3 most common integration cases are:

• Case 1: No BSP connection

The VEE Port does not know the BSP at all.

3.6. VEE Porting Guide 774

https://repository.microej.com/modules/com/microej/pack/net/9.2.3/net-9.2.3.xpfp
https://repository.microej.com/modules/com/microej/pack/net/9.2.3/net-9.2.3.xpfp

MicroEJ Documentation,

BSP connection can be configured when building the Application (absolute locations).

Fig. 163: VEE Port with no BSP connection

This case is recommended when:

– the Executable is built outside the SDK.

– the same VEE Port is intended to be reused on multiple BSP projects which do not share the
same structure.

• Case 2: Partial BSP connection

The VEE Port knows how the BSP is structured.

BSP connection is configured when building the VEE Port (relative locations within the BSP),
and the BSP root location is configured when building the Application (absolute directory).

Fig. 164: VEE Port with partial BSP connection

This case is recommended when:

– the VEE Port is used to build one Application on top of one BSP.

– the Application and BSP are slightly coupled, thus making a change in the BSP just requires to
build the Executable again.

• Case 3: Full BSP connection

The VEE Port includes the BSP.

BSP connection is configuredwhen building the VEE Port (relative locations within the BSP), as
well as the BSP root location (absolute directory). No BSP connection configuration is required
when building the Application.

3.6. VEE Porting Guide 775

MicroEJ Documentation,

Fig. 165: VEE Port with full BSP connection

This case is recommended when:

– the VEE Port is used to build various Applications.

– the VEE Port is validated using Test suites.

– the VEE Port and BSP are delivered as a single standalone module (same versioning), perhaps
subcontracted to a team or a company outside the Application project(s).

Options

BSP connection options can be specified as VEE Port options or as Application options or amix
of both.

The following table describes the VEE Port options.

SDK 6

SDK 5

In SDK 6, the options must be set in the configuration.properties file of the VEE Port project ,
prefixed by bsp. .

In SDK 5, the options must be set in the bsp/bsp.properties file of the VEE Port configuration
project.

3.6. VEE Porting Guide 776

MicroEJ Documentation,

Table 41: VEE Port Options for BSP Connection
Option
Name

Description Example

microejapp.
relative.
dir

The path relative to BSP root.dir where to deploy the Appli-
cation file (microejapp.o). MicroEJ/lib

microejlib.
relative.
dir

The path relative to BSP root.dir where to deploy the VEE
Port runtime file (microejruntime.a). MicroEJ/lib

microejinc.
relative.
dir

The path relative to BSP root.dir where to deploy the VEE
Port header files (*.h). MicroEJ/inc

microejscript.
relative.
dir

The path relative to BSP root.dir where to execute the BSP
build script file (build.bat or build.sh). Project/MicroEJ

root.dir
The 3rd-party BSP project absolute directory, to be included
to the VEE Port. c:\\Users\\user\\mybsp on Win-

dows systems or /home/user/bsp
on Unix systems.

The following table describes the Application options, which can be set as regular Application
Options.

Table 42: Application Options for BSP Connection
Option Name Description

deploy.bsp.
microejapp

Deploy the Application file (microejapp.o) to the location defined by the VEE Port (defaults
to true when VEE Port option microejapp.relative.dir is set).

deploy.bsp.
microejlib

Deploy the VEE Port runtime file (microejruntime.a) to the location defined by the VEE Port
(defaults to true when VEE Port option microejlib.relative.dir is set).

deploy.bsp.
microejinc

Deploy the VEE Port header files (*.h) to the location defined by the VEE Port (defaults to
true when VEE Port option microejinc.relative.dir is set).

deploy.bsp.
microejscript

Execute the BSP build script file (build.bat or build.sh) at the location specified by the VEE
Port. (defaults to false and requires microejscript.relative.dir VEE Port option to be set).

deploy.bsp.
root.dir

The 3rd-party BSP project absolute directory. This option is required if at least one the 4
options described above is set to true and the VEE Port does not include the BSP.

deploy.dir.
microejapp

Absolutepath to thedirectorywhere todeploy theApplication file (microejapp.o). Anempty
value means no deployment.

deploy.dir.
microejlib

Absolute path to the directory where to deploy the VEE Port runtime file (microejruntime.a
) to this absolute directory. An empty value means no deployment.

deploy.dir.
microejinc

Absolutepath to thedirectorywhere todeploy theVEEPort header files (*.h) to this absolute
directory. An empty value means no deployment.

deploy.dir.
microejscript

Absolute path to the directory that contains the BSP build script file (build.bat or build.sh
). An empty value means no build script execution.

3.6. VEE Porting Guide 777

MicroEJ Documentation,

Note: It is also possible to configure the BSP root directory by setting the build option toolchain.dir , instead of the
application option deploy.bsp.root.dir . This allows to build the Executable by specifying both the VEE Port (using
the target.platform.dir option) and the BSP at build level, without having tomodify the application options files.

For each VEE Port BSP connection case, here is a summary of the options to set:

• No BSP connection, Executable built outside the SDK

VEE Port Options:
[NONE]

Application Options:
[NONE]

• No BSP connection, Executable built using the SDK

VEE Port Options:
[NONE]

Application Options:
deploy.dir.microejapp=[absolute_path]
deploy.dir.microejlib=[absolute_path]
deploy.dir.microejinc=[absolute_path]
deploy.dir.microejscript=[absolute_path]

• Partial BSP connection, Executable built outside the SDK

SDK 6

SDK 5

VEE Port Options:
bsp.microejapp.relative.dir=[relative_path]
bsp.microejlib.relative.dir=[relative_path]
bsp.microejinc.relative.dir=[relative_path]

Application Options:
deploy.bsp.root.dir=[absolute_path]

VEE Port Options:
microejapp.relative.dir=[relative_path]
microejlib.relative.dir=[relative_path]
microejinc.relative.dir=[relative_path]

Application Options:
deploy.bsp.root.dir=[absolute_path]

• Partial BSP connection, Executable built using the SDK

SDK 6

SDK 5

VEE Port Options:
bsp.microejapp.relative.dir=[relative_path]
bsp.microejlib.relative.dir=[relative_path]
bsp.microejinc.relative.dir=[relative_path]

(continues on next page)

3.6. VEE Porting Guide 778

MicroEJ Documentation,

(continued from previous page)

bsp.microejscript.relative.dir=[relative_path]

Application Options:
deploy.bsp.root.dir=[absolute_path]
deploy.bsp.microejscript=true

VEE Port Options:
microejapp.relative.dir=[relative_path]
microejlib.relative.dir=[relative_path]
microejinc.relative.dir=[relative_path]
microejscript.relative.dir=[relative_path]

Application Options:
deploy.bsp.root.dir=[absolute_path]
deploy.bsp.microejscript=true

• Full BSP connection, Executable built using the SDK

SDK 6

SDK 5

VEE Port Options:
bsp.microejapp.relative.dir=[relative_path]
bsp.microejlib.relative.dir=[relative_path]
bsp.microejinc.relative.dir=[relative_path]
bsp.microejscript.relative.dir=[relative_path]
bsp.root.dir=[absolute_path]

Application Options:
deploy.bsp.microejscript=true

VEE Port Options:
microejapp.relative.dir=[relative_path]
microejlib.relative.dir=[relative_path]
microejinc.relative.dir=[relative_path]
microejscript.relative.dir=[relative_path]
root.dir=[absolute_path]

Application Options:
deploy.bsp.microejscript=true

Build Script File

The BSP build script file is used to invoke the third-party C toolchain (compiler and linker) to
produce the Executable (application.out).

The build script must comply with the following specification:

• OnWindows operating system, it is a Windows batch file named build.bat .

• OnmacOS or Linux operating systems, it is a shell script named build.sh , with execution per-
mission enabled.

• On error, the script must end with a non zero exit code.

• On success

3.6. VEE Porting Guide 779

MicroEJ Documentation,

– The Executable must be copied to a file named application.out in the directory from where
the script has been executed.

– The script must end with zero exit code.

Many build script templates are available formost commonly used C toolchains in the VEE Port
Qualification Tools repository.

The build script can also be launched before the VEE Port publication, see the VEE Port Publi-
cation documentation for SDK 6 or SDK 5 for more details.

Note: The Executable must be an ELF executable file. On Unix, the command file(1) can be use to check the
format of a file. For example:

~$ file application.out
ELF 32-bit LSB executable

Run Script File

This script is required only for VEE Ports intended to run a VEE Port Testsuite on device.

The BSP run script is used to invoke a third-party tool to upload and start the Executable on
device.

The run script must comply with the following specification:

• OnWindows operating system, it is a Windows batch file named run.bat .

• On macOS or Linux operating systems, it is a shell script named run.sh , with execution per-
mission enabled.

• The Executable filename is passed as first script parameter if there is one, otherwise it is the
application.out file located in the directory fromwhere the script has been executed.

• On error, the script must end with a non zero exit code.

• On success:

– The Executable (application.out) has been uploaded and started on the device

– The script must end with zero exit code.

The runscript canoptionally redirect execution traces. If it doesnot implementexecution traces
redirection, the testsuitemust be configuredwith the following Standalone ApplicationOptions
in order to take its input from a TCP/IP socket server, such as Serial to Socket Transmitter (see
documentation for SDK 6 or SDK 5).

testsuite.trace.ip=localhost
testsuite.trace.port=5555

3.6. VEE Porting Guide 780

https://github.com/MicroEJ/VEEPortQualificationTools/tree/master/framework/platform/scripts
https://github.com/MicroEJ/VEEPortQualificationTools/tree/master/framework/platform/scripts

MicroEJ Documentation,

3.6.5 VEE Port Qualification

Introduction

AVEEPort integratesoneormoreFoundationLibrarieswith their respectiveAbstractionLayers.

VEEPortQualification is theprocess of validating the conformanceof theAbstraction Layer that
implements the Low Level APIs of a Foundation Library.

Fig. 166: VEE Port Qualification Overwiew

For each Low Level API, an Abstraction Layer implementation is required. The validation of the
Abstraction Layer implementation is performed by running tests at two-levels:

• In C, by calling Low Level APIs (usually manually).

• In Java, by calling Foundation Library APIs (usually automatically using VEE Port Test Suite).

The following figure depicts an example for the FS Pack:

3.6. VEE Porting Guide 781

MicroEJ Documentation,

Fig. 167: VEE Port Qualification Example for FS Pack

MicroEJ provides a set of tools and pre-defined projects aimed at simplifying the steps for val-
idating VEE Ports in the form of the VEE Port Qualification Tools (PQT):

SDK 6

SDK 5

In SDK 6, it is located at:

• the validation folder of the VEE Port Project Template for the Java Testsuites.

• the AbstractionLayer Tests repository for the C tests.

In SDK 5, it is located at the VEE Port Qualification Tools (PQT) repository.

VEE Port Qualification Tools Overview

The VEE Port Qualification Tools provide the following components:

• Build and Run Scripts examples:

– Used to generate and deploy an Executable on a device by invoking a third-party toolchain for
the BSP.

– Addedwhen integrating theBSP to the VEEPort (seeBuild Script File andRunScript Fileor check
the training Create MicroEJ Platform Build and Run Scripts).

• C and Java Test Suites:

– Used to validate the Low Level APIs implementations.

3.6. VEE Porting Guide 782

https://github.com/MicroEJ/Tool-Project-Template-VEEPort/tree/1.3.0/vee-port/validation
https://github.com/MicroEJ/AbstractionLayer-Tests
https://github.com/MicroEJ/VEEPortQualificationTools

MicroEJ Documentation,

– Validated during the BSP development and whenever an Abstraction Layer implementation is
addedor changed (see VEEPort Test Suiteor check the sectionConfigure andRun the Test Suite).

• (Only for SDK 5) Platform Configuration Additions (PCA):

– Used to:

∗ ManageArchitecture, Packsdependenciesand theVEEPortbuildwith theMicroEJModuleMan-
ager.

∗ Configure the BSP connection to call the build and run scripts.

– Added when creating a VEE Port (see Create a VEE Port or check the training Create a MicroEJ
Firmware From Scratch).

Please refer to the VEE Port Qualification Tools README in SDK 5 or in SDK 6 for more details
and the location of the components.

VEE Port Test Suite

The purpose of a VEE Port Test Suite is to validate the Abstraction Layer that implements the
Low Level APIs of a Foundation Libraries by automatically running Java tests on the device.

TheMicroEJ Test Suite Engine is used for building, running a Test Suite, and providing a report.

A Test Suite contains one or more tests. For each test, the Test Suite Engine will:

1. Build an Executable for the test.

2. Run the Executable onto the device.

3. Retrieve the execution traces.

4. Analyze the traces to determine whether the test has PASSED or FAILED .

5. Append the result to the Test Report.

6. Repeat until all tests of the Test Suite have been executed.

3.6. VEE Porting Guide 783

https://github.com/MicroEJ/VEEPortQualificationTools
https://github.com/MicroEJ/Tool-Project-Template-VEEPort/tree/1.2.0/vee-port/validation

MicroEJ Documentation,

Fig. 168: VEE Port Test Suite on Device Overview

Test Suite Versioning

Foundation Libraries are integrated in aVEEPort usingPacks. Use theTest Suite version compli-
ant with the API version provided by the Foundation Library to validate the Abstraction Layer
implementation. For example, the Test Suite FS module 3.0.3 should be used to validate the
Abstraction Layer implementation of the Low Level API FS provided by the FS Pack 5.1.2.

Note: A Pack can provide several Foundation Libraries.

Core Engine

Table 43: Core Engine Validation
Architecture Test Suite
7.0.0 or higher Core Engine Test Suite

3.6. VEE Porting Guide 784

https://repository.microej.com/modules/com/microej/pack/fs/fs-testsuite/3.0.3/
https://repository.microej.com/modules/com/microej/pack/fs/5.1.2/
https://github.com/MicroEJ/VEEPortQualificationTools/tree/master/tests/core

MicroEJ Documentation,

UI Pack

Table 44: UI Validation
UI Pack C Test Suite
13.0.0 or higher (UI3) Graphical User Interface Test Suite
[6.0.0-12.1.5] (UI2) Graphical User Interface Test Suite

FS Pack

Table 45: FS API Implementation and Validation
FS Pack FS API Java Test Suite
[6.0.0-6.1.0[2.1.1 3.0.8
[5.1.2-5.2.0[2.0.6 3.0.3
[4.0.0-4.1.0[2.0.6 On demand1

GNSS Pack

Table 46: GNSS API Implementation and Validation
GNSS Pack GNSS API Java Test Suite
2.0.0 2.0.0 2.0.0

Bluetooth Pack

Table 47: Bluetooth API Implementation and Validation
Bluetooth Pack Bluetooth API Java Test Suite
[2.3.0-2.5.0[2.2.2 2.1.0
[2.1.0-2.3.0[2.1.1 2.0.1
[2.0.0-2.1.0[2.0.0 2.0.1

1 Test Suite available on demand, please contact MicroEJ Support.

3.6. VEE Porting Guide 785

https://github.com/MicroEJ/VEEPortQualificationTools/blob/master/tests/ui/ui3
https://github.com/MicroEJ/VEEPortQualificationTools/blob/master/tests/ui/ui2
https://repository.microej.com/modules/ej/api/fs/2.1.1/
https://repository.microej.com/modules/com/microej/pack/fs/fs-testsuite/3.0.8/
https://repository.microej.com/modules/ej/api/fs/2.0.6/
https://repository.microej.com/modules/com/microej/pack/fs/fs-testsuite/3.0.3/
https://repository.microej.com/modules/ej/api/fs/2.0.6/
https://forge.microej.com/artifactory/microej-developer-repository-release/ej/api/gnss/2.0.0/
https://forge.microej.com/artifactory/microej-developer-repository-release/com/microej/pack/gnss/gnss-testsuite/2.0.0/
https://repository.microej.com/modules/ej/api/bluetooth/2.2.2/
https://repository.microej.com/modules/com/microej/pack/bluetooth/bluetooth-testsuite/2.1.0/
https://repository.microej.com/modules/ej/api/bluetooth/2.1.1/
https://repository.microej.com/modules/com/microej/pack/bluetooth/bluetooth-testsuite/2.0.1/
https://repository.microej.com/modules/ej/api/bluetooth/2.0.0/
https://repository.microej.com/modules/com/microej/pack/bluetooth/bluetooth-testsuite/2.0.1/

MicroEJ Documentation,

NET Pack

Table 48: NET, SSL and SECURITY APIs Implementations and Valida-
tions

NET Pack NET API SSL API SECU-
RITY
API

NET Java Test
Suite

SSL Java Test
Suite

SECURITY Java
Test Suite

[8.1.2-8.2.0] 1.1.0 2.1.0 N/A 3.4.0 (On de-
mandPage 785, 1)

3.0.1 (On de-
mandPage 785, 1)

N/A

9.0.0 1.1.0 2.2.0 1.3.1 3.4.0 (On de-
mandPage 785, 1)

3.1.4 (On de-
mandPage 785, 1)

1.1.0 (On de-
mandPage 785, 1)

[9.0.1-9.4.1] 1.1.1 2.2.0 1.3.1 3.5.2 (On de-
mandPage 785, 1)

3.1.4 (On de-
mandPage 785, 1)

1.1.0 (On de-
mandPage 785, 1)

[10.0.0-10.5.0] 1.1.4 2.2.3 1.4.2 4.1.2 4.0.1 1.3.1
[11.0.1-11.0.2] 1.1.4 2.2.3 1.4.2 4.1.2 4.0.2 1.3.1
11.1.0 1.1.4 2.2.3 1.7.0 4.1.2 4.0.2 1.7.0
11.2.0 1.1.4 2.2.3 1.7.0 4.1.2 4.0.2 1.8.0

Audio Pack

Table 49: Audio API Implementation and Validation
Audio Pack Audio API Java Test Suite
[1.0.0-1.1.0[1.0.0 1.0.0

MicroAI Pack

Table 50: MicroAI Library and Validation
MicroAI Library Java Test Suite
1.0.0 (On demandPage 785, 1) 1.0.0 (On demandPage 785, 1)

3.6. VEE Porting Guide 786

https://repository.microej.com/modules/ej/api/net/1.1.0/
https://repository.microej.com/modules/ej/api/ssl/2.1.0/
https://repository.microej.com/modules/ej/api/net/1.1.0/
https://repository.microej.com/modules/ej/api/ssl/2.2.0/
https://repository.microej.com/modules/ej/api/security/1.3.1/
https://repository.microej.com/modules/ej/api/net/1.1.1/
https://repository.microej.com/modules/ej/api/ssl/2.2.0/
https://repository.microej.com/modules/ej/api/security/1.3.1/
https://repository.microej.com/modules/ej/api/net/1.1.4/
https://repository.microej.com/modules/ej/api/ssl/2.2.3/
https://repository.microej.com/modules/ej/api/security/1.4.2/
https://repository.microej.com/modules/com/microej/pack/net/net-1_1-testsuite/4.1.2/
https://repository.microej.com/modules/com/microej/pack/net/net-ssl-2_2-testsuite/4.0.1/
https://repository.microej.com/modules/com/microej/pack/security/security-1_4-testsuite/1.3.1/
https://repository.microej.com/modules/ej/api/net/1.1.4/
https://repository.microej.com/modules/ej/api/ssl/2.2.3/
https://repository.microej.com/modules/ej/api/security/1.4.2/
https://repository.microej.com/modules/com/microej/pack/net/net-1_1-testsuite/4.1.2/
https://repository.microej.com/modules/com/microej/pack/net/net-ssl-2_2-testsuite/4.0.2/
https://repository.microej.com/modules/com/microej/pack/security/security-1_4-testsuite/1.3.1/
https://repository.microej.com/modules/ej/api/net/1.1.4/
https://repository.microej.com/modules/ej/api/ssl/2.2.3/
https://repository.microej.com/modules/ej/api/security/1.7.0/
https://repository.microej.com/modules/com/microej/pack/net/net-1_1-testsuite/4.1.2/
https://repository.microej.com/modules/com/microej/pack/net/net-ssl-2_2-testsuite/4.0.2/
https://repository.microej.com/modules/com/microej/pack/net/security-1_7-testsuite/1.7.0/
https://repository.microej.com/modules/ej/api/net/1.1.4/
https://repository.microej.com/modules/ej/api/ssl/2.2.3/
https://repository.microej.com/modules/ej/api/security/1.7.0/
https://repository.microej.com/modules/com/microej/pack/net/net-1_1-testsuite/4.1.2/
https://repository.microej.com/modules/com/microej/pack/net/net-ssl-2_2-testsuite/4.0.2/
https://repository.microej.com/modules/com/microej/pack/net/security-1_7-testsuite/1.8.0/
https://repository.microej.com/modules/ej/api/audio/1.0.0/
https://repository.microej.com/modules/com/microej/pack/audio/audio-testsuite/1.0.0/

MicroEJ Documentation,

EVENT QUEUE Pack

Table 51: EVENT QUEUE API Implementation and Validation
EVENT QUEUE Pack EVENT QUEUE API Java Test Suite
2.0.1 2.0.0 2.0.0

3.6.6 Core Engine

The Core Engine is the core component of the Architecture. It executes at runtime the Applica-
tion code.

Note: In the following explanations, the term task refers to native tasks scheduled by the underlying OS or RTOS,
while thread refers to MicroEJ threads scheduled by the Core Engine.

Block Diagram

Fig. 169: Core Engine Block Diagram

Link Flow

The following diagram shows the overall build flow. Application development is performed within MICROEJ SDK.
The remaining steps are performed within the C third-party IDE.

3.6. VEE Porting Guide 787

https://forge.microej.com/artifactory/microej-developer-repository-release/ej/api/event/2.0.0/
https://forge.microej.com/artifactory/microej-developer-repository-release/com/microej/pack/event/event-testsuite/2.0.0/

MicroEJ Documentation,

Fig. 170: Core Engine Flow

1. Step 1 consists in writing an Application against a set of Foundation Libraries available in the
VEE Port.

2. Step 2 consists in compiling the Application code and the required libraries in an ELF library,
using the SOAR.

3. Step 3 consists in linking the previous ELF filewith the Core Engine library and a third-party BSP
(OS, drivers, etc.). This step requires a third-party linker provided by a C toolchain.

Architecture

The Core Engine and its components have been compiled for one specific CPU architecture and
for use with a specific C compiler.

The Core Engine implements a green thread architecture. It runs in a single task.

Green threads are threads that are internally managed by the Core Engine instead of be-
ing natively managed by the underlying OS/RTOS scheduler. The Core Engine defines a
multi-threaded environment without relying on any native OS capabilities.

Therefore, the whole Managed world runs in one single task, within which the Core En-
gine re-creates a layer of (green) threads. One immediate advantage is that the Java-world
CPU consumption is fully controlled by the task it is running in, allowing embedded engi-
neers to easily arbitrate between the different parts of their application. In particular in an

3.6. VEE Porting Guide 788

MicroEJ Documentation,

open-to-third-parties framework, the maximum CPU time given to the Managed world is fully
under control at no risk, whatever the number and/or the activities of the threads.

The next illustration shows 4 tasks, with the last one running the Core Engine with 2 threads.
When the last task is scheduled by the underlying OS, the Core Engine executes and schedules
the threads.

Fig. 171: A Green Threads Architecture Example

The activity of the Core Engine is defined by the Application. When the Application is blocked
(i.e., when all the MicroEJ threads sleep), the task running the Core Engine sleeps.

Capabilities

The Core Engine defines 3 exclusive capabilities:

• Mono-Sandbox: capability to produce a monolithic Executable (default one).

• Multi-Sandbox: capability to produce a extensible Executable on which new applications can
be dynamically installed. See sectionMulti-Sandbox.

• Tiny-Sandbox: capability to produce a compacted Executable (optimized for size). See section
Tiny-Sandbox.

All the Core Engine capabilities may not be available on all architectures. Refer to section Sup-
ported Core Engine Capabilities by Architecture Matrix for more details.

To select the Core Engine capability, define the property com.microej.runtime.capability in
the configuration.properties file (SDK 6) or in the mjvm/mjvm.properties file (SDK 5) of the
VEE Port project, with one of the following values:

• mono for Mono-Sandbox (default value)

3.6. VEE Porting Guide 789

MicroEJ Documentation,

• multi for Multi-Sandbox

• tiny for Tiny-Sandbox

If theproperty com.microej.runtime.capability is not defined, theMono-SandboxCoreEngine
capability is used.

Implementation

The Core Engine implements the [SNI] specification. It is created and initialized with the
C function SNI_createVM . Then it is started and executed in the current task by calling
SNI_startVM . The function SNI_startVM returns when the Application exits or if an er-
ror occurs (see section Error Codes). The function SNI_destroyVM handles the Core Engine
termination andmust be called after the return of the function SNI_startVM .

Only one instance of the Core Engine can be created in the system, and both SNI_createVM
and SNI_destroyVM should only be called once. When restarting the Core Engine, don’t call
SNI_createVM or SNI_destroyVM before calling SNI_startVM again. For more informa-
tion, refer to the Restart the Core Engine section.

The file LLMJVM_impl.h that comes with the Architecture defines the API to be imple-
mented. See section LLMJVM: Core Engine.

Initialization

The Low Level Core Engine API deals with two objects: the structure that represents the Core
Engine, and the task that runs the Core Engine. Two callbacks allow engineers to interact with
the initialization of both objects:

• LLMJVM_IMPL_initialize : Called once the structure representing the Core Engine is initialized.

• LLMJVM_IMPL_vmTaskStarted : Calledwhen theCoreEnginestarts its execution. This function is called
within the task of the Core Engine.

Scheduling

Tosupport thegreen thread round-robinpolicy, theCoreEngineassumes there is anRTOStimer
or some other mechanism that counts (down) and fires a call-back when it reaches a specified
value. The Core Engine initializes the timer using the LLMJVM_IMPL_scheduleRequest
function with one argument: the absolute time at which the timer should fire. When the timer
fires, it must call the LLMJVM_schedule function, which tells the Core Engine to execute a
green thread context switch (which gives another MicroEJ thread a chance to run).

When several MicroEJ threadswith the samepriority are eligible for execution, the round-robin
algorithm will automatically switch between these threads after a certain amount of time,
called the time slice. The time slice is expressed in milliseconds, and its default value is 20
ms. It can be configured at link time with the symbol _java_round_robin_period , de-
fined in the linker configuration file linkVMConfiguration.lscf located in the VEE Port folder
/MICROJVM/link/ . To override the content of this file, create, in the VEE Port configura-
tion project, a folder named /dropins/MICROJVM/link/ , and copy into this folder the file
linkVMConfiguration.lscf retrieved from an existing VEE Port. Since a symbol cannot be null,

the actual time slice value in milliseconds is _java_round_robin_period - 1 . Set the symbol to 1 (i.e., time slice
to 0) to disable the round-robin scheduling.

3.6. VEE Porting Guide 790

MicroEJ Documentation,

Warning: Modifying the time slice value is an advanced configuration that can impact the per-
formances.

Decreasing the time slicewill increase thenumber of context switches. Therefore schedulerwill
use more CPU time.

Increasing the time slice can create a latency with intensive threads monopolizing the CPU.

Idle Mode

When the Core Engine has no activity to execute, it calls the LLMJVM_IMPL_idleVM func-
tion,which is assumed toput theCoreEngine task intoa sleepstate. LLMJVM_IMPL_wake-
upVM is called to wake up the Core Engine task. When the Core Engine task really starts to ex-
ecute again, it calls the LLMJVM_IMPL_ackWakeup function to acknowledge the restart
of its activity.

Time

The Core Engine defines two different times:

• the application time: the difference, measured in milliseconds, between the current time and
midnight, January 1, 1970, UTC.

• the monotonic time: this time always moves forward and is not impacted by application time
modifications (NTP or Daylight Savings Time updates). It can be implemented by returning the
running time since the start of the device.

The Core Engine relies on the following C functions to provide those times to the Application:

• LLMJVM_IMPL_getCurrentTime : must return the monotonic time in milliseconds if the given parame-
ter is 1 , otherwise must return the application time in milliseconds. This function is called by the method
java.lang.System.currentTimeMillis() It is also used by the Core Engine scheduler, and should be imple-
mented efficiently.

• LLMJVM_IMPL_getTimeNanos : must return a monotonic time in nanoseconds.

• LLMJVM_IMPL_setApplicationTime : must set the difference between the current time and midnight,
January 1, 1970, UTC. Implementations may apply this time to the whole underlying system or only to the
Core Engine (i.e., the value returned by LLMJVM_IMPL_getCurrentTime(0)).

Error Codes

The C function SNI_createVM returns a negative value if an error occurred during the Core
Engine initialization or execution. The file LLMJVM.h defines the Core Engine error code
constants. The following table describes these error codes.

3.6. VEE Porting Guide 791

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#currentTimeMillis--

MicroEJ Documentation,

Table 52: Core Engine Error Codes
Error Code Meaning
0 The Application ended normally (i.e., all the

non-daemon threads are terminated or System.
exit(exitCode) has been called). See section Exit
Codes.

-1 The microejapp.o produced by SOAR is not compati-
blewith the Core Engine (microejruntime.a). The ob-
ject file has been built from another Architecture.

-2 Internal error. Invalid link configuration in the Archi-
tecture or the VEE Port.

-3 Evaluation version limitations reached: terminationof
the application. See section Limitations.

-5 Not enough resources to start the very first MicroEJ
thread that executes main method. See section Op-
tion(text): Managed heap size (in bytes).

-12 Number of threads limitation reached. See sections
Limitations and Option(text): Number of threads.

-13 Fail to start the Application because the specified
managed heap is too large or too small. See section
Option(text): Managed heap size (in bytes).

-14 InvalidApplication stack configuration. The stack start
or end is not eight-byte aligned, or stack block size is
too small. See section Option(text): Number of blocks
in pool.

-16 The Core Engine cannot be restarted.
-17 The Core Engine is not in a valid state because of one

of the following situations:
• SNI_startVM called before SNI_createVM .
• SNI_startVM called while the Appplication is

running.
• SNI_createVM called several times.

-18 The memory used for the managed heap or immor-
tal heap does not work properly. Read/Write mem-
ory checks failed. This may be caused by an invalid
external RAM configuration. Verify _java_heap and
_java_immortals sections locations.

-19 Thememory used for the Application static fields does
not work properly. Read/Write memory checks failed.
This may be caused by an invalid external RAM config-
uration. Verify .bss.soar section location.

-20 KF configuration internal error. Invalid link configura-
tion in the Architecture or the VEE Port.

-21 Number of monitors per thread limitation reached.
See sections Limitations and Options .

-22 Internal error. Invalid FPU configuration in the Archi-
tecture.

-23 The function LLMJVM_IMPL_initialize defined in
the Abstraction Layer implementation returns an er-
ror.

-24 The function LLMJVM_IMPL_vmTaskStarted de-
fined in the Abstraction Layer implementation returns
an error.

-25 The function LLMJVM_IMPL_shutdown defined
in theAbstraction Layer implementation returns aner-
ror.

3.6. VEE Porting Guide 792

MicroEJ Documentation,

Example

The following example shows how to create and launch the Core Engine from the Cworld. This
function (microej_main) should be called from a dedicated task.

#include <stdio.h>
#include ”microej_main.h”
#include ”LLMJVM.h”
#include ”sni.h”

#ifdef __cplusplus
extern ”C” {

#endif

/**
* @brief Creates␣
→˓and starts a MicroEJ instance. This function returns when the MicroEJ execution ends.
* @param argc arguments count
* @param argv arguments vector
* @param app_exit_code_ptr pointer where this function␣
→˓stores the application exit code or 0 in case of error in the Core Engine. May be null.
* @return the Core Engine error code in case of error, or 0 if the execution ends without error.
*/
int microej_main(int argc, char **argv, int* app_exit_code_ptr) {

void* vm;
int core_engine_error_code = -1;
int32_t app_exit_code = 0;
// create Core Engine
vm = SNI_createVM();

if (vm == NULL) {
printf(”MicroEJ initialization error.\n”);

} else {
printf(”MicroEJ START\n”);

// Error codes documentation is available in LLMJVM.h
core_engine_error_code = (int)SNI_startVM(vm, argc, argv);

if (core_engine_error_code < 0) {
// Error occurred
if (core_engine_error_code == LLMJVM_E_EVAL_LIMIT) {

printf(”Evaluation limits reached.\n”);
} else {

␣
→˓ printf(”MicroEJ execution error (err = %d).\n”, (int) core_engine_error_code);

}
} else {

// Core Engine execution ends normally
app_exit_code = SNI_getExitCode(vm);
printf(”MicroEJ END (exit code = %d)\n”, (int) app_exit_code);

}

// delete Core Engine
SNI_destroyVM(vm);

}

if(app_exit_code_ptr != NULL){
(continues on next page)

3.6. VEE Porting Guide 793

MicroEJ Documentation,

(continued from previous page)

*app_exit_code_ptr = (int)app_exit_code;
}

return core_engine_error_code;
}

#ifdef __cplusplus
}

#endif

Restart the Core Engine

The Core Engine supports the restart of the Application after the end of its execution. The ap-
plication stops when all non-daemon threads are terminated or when System.exit(exitCode)
is called. When the application ends, the C function SNI_startVM returns.

To restart the application, call again the SNI_startVM function (see the following pattern).

// create Core Engine (called only once)
vm = SNI_createVM();
...
// start a new execution of the Application at each iteration of the loop
while(...){

...
core_engine_error_code = SNI_startVM(vm, argc, argv);
...
// Get exit status passed to System.exit()
app_exit_code = SNI_getExitCode(vm);
...

}
...
// delete Core Engine (called before stopping the whole system)
SNI_destroyVM(vm);

Note: Please note that while the Core Engine supports restart, MicroUI does not. Attempting to restart the Appli-
cation on a VEE Port with UI support may result in undefined behavior.

Note: Please note that SNI_createVM and SNI_destroyVM should only be called once. When restarting the
Core Engine, don’t call SNI_createVM or SNI_destroyVM before calling SNI_startVM again.

3.6. VEE Porting Guide 794

MicroEJ Documentation,

Dump the State of the Core Engine

The internal Core Engine function called LLMJVM_dump allows you to dump the state of
all MicroEJ threads: name, priority, stack trace, etc. This functionmust only be called from the
Core Engine thread context and only from a native function or callback. Calling this function
from another context may lead to undefined behavior and should be done only for debug pur-
pose.

This is an example of a dump:

===================================␣
→˓VM Dump ====================================
Java threads count: 3
Peak java threads count: 3
Total created java threads: 3
Last executed native function: 0x90035E3D
Last executed external hook function: 0x00000000
State: running
--
Java Thread[1026]
name=”main” prio=5 state=RUNNING max_java_stack=456 current_java_stack=184

java.lang.MainThread@0xC0083C7C:
at (native) [0x90003F65]
at com.microej.demo.widget.main.MainPage.getContentWidget(MainPage.java:95)

Object References:
- com.microej.demo.widget.main.MainPage@0xC00834E0
- com.microej.demo.widget.main.MainPage$1@0xC0082184
- java.lang.Thread@0xC0082194
- java.lang.Thread@0xC0082194

at com.microej.demo.widget.common.Navigation.createRootWidget(Navigation.java:104)
Object References:

- com.microej.demo.widget.main.MainPage@0xC00834E0
at com.microej.demo.widget.common.Navigation.createDesktop(Navigation.java:88)

Object References:
- com.microej.demo.widget.main.MainPage@0xC00834E0
- ej.mwt.stylesheet.CachedStylesheet@0xC00821DC

at com.microej.demo.widget.common.Navigation.main(Navigation.java:40)
Object References:

- com.microej.demo.widget.main.MainPage@0xC00834E0
at java.lang.MainThread.run(Thread.java:855)

Object References:
- java.lang.MainThread@0xC0083C7C

at java.lang.Thread.runWrapper(Thread.java:464)
Object References:

- java.lang.MainThread@0xC0083C7C
at java.lang.Thread.callWrapper(Thread.java:449)

--
Java Thread[1281]
name=”UIPump”␣
→˓prio=5 state=WAITING timeout(ms)=INF max_java_stack=120 current_java_stack=117
external event: status=waiting

java.lang.Thread@0xC0083628:
at ej.microui.MicroUIPump.read(Unknown Source)

Object References:
- ej.microui.display.DisplayPump@0xC0083640

(continues on next page)

3.6. VEE Porting Guide 795

MicroEJ Documentation,

(continued from previous page)

at ej.microui.MicroUIPump.run(MicroUIPump.java:176)
Object References:

- ej.microui.display.DisplayPump@0xC0083640
at java.lang.Thread.run(Thread.java:311)

Object References:
- java.lang.Thread@0xC0083628

at java.lang.Thread.runWrapper(Thread.java:464)
Object References:

- java.lang.Thread@0xC0083628
at java.lang.Thread.callWrapper(Thread.java:449)

--
Java Thread[1536]
name=”Thread1” prio=5 state=READY max_java_stack=60 current_java_stack=57

java.lang.Thread@0xC0082194:
at java.lang.Thread.runWrapper(Unknown Source)

Object References:
- java.lang.Thread@0xC0082194

at java.lang.Thread.callWrapper(Thread.java:449)
==

==============================␣
→˓Garbage Collector ===============================
State: Stopped
Last analyzed object: null
Total memory: 15500
Current allocated memory: 7068
Current free memory: 8432
Allocated memory after last GC: 0
Free memory after last GC: 15500
==

===============================␣
→˓Native Resources ===============================
Id CloseFunc Owner Description
--
==

See Stack Trace Reader documentation for SDK 6 or SDK 5 for additional info related toworking
with Core Engine dumps.

Dump The State Of All MicroEJ Threads From A Fault Handler

It is recommended to call the LLMJVM_dump API as a last resort in a fault handler. Calling
LLMJVM_dump is undefined if the Core Engine is not paused. The call to LLMJVM_dump
MUST be done last in the fault handler.

3.6. VEE Porting Guide 796

MicroEJ Documentation,

Trigger Core Engine Dump From Debugger

To trigger a Core Engine dump manually from the debugger, you need to set the PC (Program
Counter) register to the physical memory address of the LLMJVM_dump function.

Follow these steps:

1. Ensure LLMJVM_dump is not optimized out

Explicitly reference the LLMJVM_dump function in your BSP code. It is declared in the
LLMJVM.h header file.

Note: If the function is not used anywhere, linker optimization may remove it, making it un-
available in the final binary.

2. Locate the symbol in themap file

Search for the symbol __icetea__virtual__com_is2t_microjvm_IGreenThreadMicro-
Jvm___dump in your C toolchain’s .map file. Thiswill give you the runtimememory address
of the function.

3. Trigger the dump via the debugger

In your debugger, set the PC register to the retrieved address. Then, resume execution to trig-
ger the dump.

Note: LLMJVM_dump is analiasdefined in intern/LLMJVM.h header file. If youcannot find the symbol listed
above, check the macro definition in that header file to determine the actual function name being referenced and
exported.

Requirements:

• Embedded debugger is attached and the processor is halted in an exception handler.

• A way to read stdout (usually UART).

Check Internal Structure Integrity

The internal Core Engine function called LLMJVM_checkIntegrity checks the internal struc-
ture integrity of the Core Engine and returns its checksum.

• If an integrity error is detected, the LLMJVM_on_CheckIntegrity_error hook is called and
this method returns 0 .

• If no integrity error is detected, a non-zero checksum is returned.

This function must only be called from the Core Engine thread context and only from a native
function or callback. Calling this function multiple times in a native function should always
produce the same checksum. If the returned checksums are different, a corruption must have
occurred.

Please note that returning a non-zero checksum does not mean the Core Engine data has not
been corrupted, as it is not possible for the Core Engine to detect the complete memory in-
tegrity.

3.6. VEE Porting Guide 797

MicroEJ Documentation,

The internal structures of the Core Engine that can be altered legitimately by a native function
do not impact the checksum calculation. The following internal structures may be modified
without affecting the checksum:

• basetype fields in Java objects or content of Java arrays of base type,

• internal structures modified by a LLMJVM function call (e.g., set a pending Java exception,
suspend or resume the thread, register a resource, …).

This function affects the performances and should only be used for debug purpose. A typical
use of this API is to verify that a native implementation does not corrupt the internal structures:

#include <stdio.h>
#include ”LLMJVM.h”

void Java_com_mycompany_MyClass_myNativeFunction(void) {
int32_t crcBefore = LLMJVM_checkIntegrity();
myNativeFunctionDo();
int32_t crcAfter = LLMJVM_checkIntegrity();
if(crcBefore != crcAfter){

// Corrupted Core Engine internal structures
while(1);

}
}

// Hook called by the Core Engine when an integrity error is detected
void LLMJVM_on_CheckIntegrity_error(uint32_t errorCode, void* errorAddress) {

␣
→˓printf(”Integrity error detected at address %p (error code: %d)\n”, errorAddress, errorCode);
}

Generic Output

The System.err stream is connected to the System.out print stream. See below for how to con-
figure the destination of these streams.

Link

Several sections are defined by the Core Engine. Each sectionmust be linked by the third-party
linker. Read-Only (RO) sections can be placed in writable memories. In such cases, it is the
responsibility of the BSP to prevent these sections from being written.

Starting fromArchitecture 8.0.0, sectionshavebeen renamed to follow the standardELFnaming
convention.

Linker Sections (Architecture 8.x)

Linker Sections (Architecture 7.x)

3.6. VEE Porting Guide 798

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#err
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#out

MicroEJ Documentation,

Section name Aim Loca-
tion

Align-
ment
(in
bytes)

.bss.microej.heap
Application heap RW 4

.bss.microej.immortals
Application immortal heap RW 4

.bss.microej.stacks
Application threads stack blocks RW1 8

.bss.microej.statics
Application static fields RW 8

.rodata.microej.resource.*
Application resources (one section per resource) RO 16

.rodata.microej.soar
Application and library code RO 16

.bss.microej.runtime
Core Engine internal structures RWPage 799, 18

.text.__icetea__*
Core Engine generated code RX ISA

Spe-
cific

.bss.microej.kernel
Core Engine Multi-Sandbox section (Feature code chunk) RW 4

Note: During its startup, the Core Engine automatically zero-initializes the sections .bss.microej.runtime , .bss.
microej.heap , and .bss.microej.immortals .

Section name Aim Loca-
tion

Align-
ment
(in
bytes)

_java_heap
Application heap RW 4

_java_immortals
Application immortal heap RW 4

.bss.vm.stacks.java
Application threads stack blocks RW1 8

.bss.soar
Application static fields RW 8

.rodata.resources
Application resources RO 16

.text.soar
Application and library code RO 16

ICETEA_HEAP
Core Engine internal structures RW1 8

.text.__icetea__*
Core Engine generated code RX ISA

Spe-
cific

Note: During its startup, the Core Engine automatically zero-initializes the sections ICETEA_HEAP ,
_java_heap , and _java_immortals .

1 Among all RW sections, those should be always placed into internal RAM for performance purpose.

3.6. VEE Porting Guide 799

MicroEJ Documentation,

Dependencies

The Core Engine requires an implementation of its low level APIs in order to run. Refer to the
chapter Implementation for more information.

Installation

The Core Engine and its components are mandatory. By default, it is configured with
Mono-Sandbox capability. See the Capabilities section to update the Core Engine with
Multi-Sandbox or Tiny-Sandbox capability.

Abstraction Layer

Core Engine Abstraction Layer implementations can be found on MicroEJ Github for several
RTOS.

Memory Considerations

The memory consumption of main Core Engine runtime elements are described in the table
below.

Table 53: Memory Considerations
Runtime ele-
ment

Mem-
ory

Size in bytes
(Mono-sandbox)

Size in bytes
(Multi-Sandbox)

Size in bytes
(Tiny-Sandbox)

Object Header RW 4 8 (+4) 4
Thread RW 168 192 (+24) 168
Stack Frame
Header

RW 12 20 (+8) 12

Class Type RO 32 36 (+4) 32
Interface Type RO 16 24 (+8) 16

Note: To get the full size of an Object, search for the type in the SOAR Information File and read the attribute
instancesize (this includes the Object header).

Note: Toget the full size of a Stack Frame, search for themethod in the SOAR Information File and read the attribute
stacksize (this includes the Stack Frame header).

3.6. VEE Porting Guide 800

https://github.com/orgs/MicroEJ/repositories?q=AbstractionLayer-Core&type=all&language=&sort=

MicroEJ Documentation,

Use

Refer to theMicroEJ Runtime documentation.

3.6.7 Advanced Event Tracing

Principle

Core Engine allows method execution to be profiled. The following two new hooks functions
are used for that:

• LLMJVM_MONITOR_IMPL_on_invoke_method called at the start of the method invocation.

• LLMJVM_MONITOR_IMPL_on_return_method called when returning from the invokedmethod.

Calling these functionseach timeamethod is invokedwill slowdowntheapplicationexecution,
so these functions are not called by default when event tracing is enabled and started.

Note: This feature requires Architecture version 7.17.0 or higher and is only available on the Core Engine, not on
the Simulator.

To activate them, you need to follow these steps:

• Enable and start the trace see here

• Tell the third-party linker program to redirect all calls to LLMJVM_invoke_method
and LLMJVM_return_method symbols to respectively LLMJVM_in-
voke_method_with_trace and LLMJVM_return_method_with_trace symbols.

Platforms using GNU LD linker

Add the following options to the LD linker command line:

--require-defined=LLMJVM_invoke_method_with_trace
--defsym=LLMJVM_invoke_method=LLMJVM_invoke_method_with_trace
--require-defined=LLMJVM_return_method_with_trace
--defsym=LLMJVM_return_method=LLMJVM_return_method_with_trace

Platforms using IAR ILINK linker

Pass the following options to the ILINK linker program

--redirect LLMJVM_invoke_method=LLMJVM_invoke_method_with_trace
--redirect LLMJVM_return_method=LLMJVM_return_method_with_trace

3.6. VEE Porting Guide 801

MicroEJ Documentation,

3.6.8 Multi-Sandbox

Principle

The Multi-Sandbox capability of the Core Engine allows a main application (called Standalone
Application) to install and execute at runtime additional applications (called Sandboxed Appli-
cations).

The Core Engine implements the Kernel & Features Specification (KF). A Kernel is a Standalone
Application generated on a Multi-Sandbox-enabled VEE Port. A Feature is a Sandboxed Appli-
cation generated against a specific Kernel.

Functional Description

TheMulti-Sandboxprocess extends theoverall processdescribed in theoverviewof theplatform
process.

Fig. 172: Multi-Sandbox Process

Once a Kernel has been generated, additional Sandboxed Application code (Feature) can be
built against the Kernel. The binary file produced (the .fo file) can be installed on the Kernel
on which it was generated.

For more details on the build flow, please refer to Multi-Sandbox Kernel link and Sandboxed
Application link sections.

3.6. VEE Porting Guide 802

MicroEJ Documentation,

Memory Considerations

Multi-Sandbox memory overhead of Core Engine runtime elements are described in Memory
Considerations table.

Dependencies

• LLKERNEL_impl.h implementation (see Feature Installation section).

Installation

Multi-Sandbox is an option disabled by default. To enable the Multi-Sandbox capability of the
CoreEngine, set theproperty com.microej.runtime.capability to multi in theVEEPortproject:

SDK 6

SDK 5

In the configuration.properties file:

com.microej.runtime.capability=multi

In the mjvm/mjvm.properties file of the VEE Port Configuration module:

com.microej.runtime.capability=multi

Note: In SDK 5, before Architecture 8.1.0, to enable the Multi-Sandbox capability of the Core Engine, select the
Multi Applications module in the platform configuration file.

Use

The KF API Module must be added to the build file of the Application project to use Kernel &
Features Specification (KF) library.

SDK 6

SDK 5

In the build.gradle.kts file:

implementation(”ej.api:kf:1.7.0”)

In the module.ivy file:

<dependency org=”ej.api” name=”kf” rev=”1.7.0” />

This library provides a set of options. Refer to the chapterStandaloneApplicationOptionswhich
lists all available options.

3.6. VEE Porting Guide 803

https://repository.microej.com/modules/ej/api/kf/

MicroEJ Documentation,

Feature Installation

Introduction

Feature installation is triggered by a call to the Kernel.install(InputStream) method. It consists
of the following steps:

• loading Feature’s content from .fo file,

• linking Feature’s code with the Kernel,

• storing Feature’s content into the target memory.

A Feature .fo file is composed of the following elements:

• Code: Application code (methods, types, …) as well as built-in objects (strings and immuta-
bles),

• RO Data: Application Resources that do not require content modification,

• RWData: Reservedmemory for Feature execution (Application static fields and Feature internal
structures),

• Metadata: Temporary information required during the installation phase, such as code reloca-
tions.

Fig. 173: Feature .fo File Content

Feature installation flow allows to install Features in any byte-addressablememorymapped to
the CPU’s address space. The Feature content is read chunk-by-chunk from the InputStream
and progressively transferred to the target memory. Only a small amount of RAM is required.
The LLKERNEL_impl.h Abstraction Layer interface provides Low Level APIs for allocating
and transferring Feature content in different memory areas, including ROM.

3.6. VEE Porting Guide 804

https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#install-java.io.InputStream-

MicroEJ Documentation,

Installation Flow

The RO Data (Application Resources) is directly transferred to the target location. The Code
is divided into chunks. Each chunk is temporarily copied to RAM to be relocated. Then it is
transferred to the target location.

A minimum amount of RAM is required:

• A temporary buffer is allocated in the Managed heap for reading bytes from the InputStream,

• Metadata is allocated in the Managed heap,

• Code chunk is temporarily copied in a memory area to be relocated (see more details below).

Fig. 174: Feature Installation Steps

The Abstraction Layer implementation is responsible for providing the following elements:

• the location where the Feature will be installed,

• the implementation to copy a chunk of bytes to the target location.

The detailed installation flow is described in the following sequence diagram:

3.6. VEE Porting Guide 805

MicroEJ Documentation,

Fig. 175: Feature Installation Flow

The detailed uninstallation flow is described in the following sequence diagram:

3.6. VEE Porting Guide 806

MicroEJ Documentation,

Fig. 176: Feature Uninstallation Flow

Feature Persistency

Feature Persistency is the ability of the Core Engine to gather installed Features from prior exe-
cutions of the Kernel upon start up. This means that the Kernel will boot with a set of available
Features that were already installed. To ensure that the Features remain available even after
the device restarts, you will have to implement an Abstraction Layer that stores the Features
into a Read-Only memory.

3.6. VEE Porting Guide 807

MicroEJ Documentation,

Fig. 177: Feature Installation Boot Flow

Note: Features are available in the INSTALLED state. It is the responsibility of the Kernel to manually start the
desired Features.

Advanced Options

Code Chunk Size

Feature .fo Code section is divided into chunks that are temporary copied to RAM to be relo-
cated. The Code chunk size can be configured with the following option:

Option Name: com.microej.soar.kernel.featurecodechunk.size

Default Value: 65536 (bytes)

A small number will reduce the RAM consumption but will increase the .fo size and will affect
the installation time.

3.6. VEE Porting Guide 808

MicroEJ Documentation,

InputStream Transfer Buffer Size

When calling the Kernel.install(InputStream) method, the Feature .fo bytes are read from the
InputStreamusing a temporary byte array allocated in theManaged heap. The size of this array
can be configured with the following option:

Option Name: com.microej.runtime.kf.link.transferbuffer.size

Default Value: 512 (bytes)

Relocation Process Yield

When a Feature file has a large amount of code, it may appear that the Core Engine blocks
while applying relocations during the Feature installation. The number of relocations to apply
in batch can be configured with the following option:

Option Name: com.microej.runtime.kf.link.chunk.relocations.count

Default Value: 128

Once the Core Engine has processed the given number of relocations, the thread that called the
Kernel.install(InputStream) method yields the execution to other threads. A small number will
give more smooth execution for threads but a slowest installation execution. A large number
will make the Core Engine block for applying relocations but a faster installation execution.

Determining the Amount of Required Memory

The amount of memory required for installing a .fo file is determined by analyzing the sizes of
the ELF sections.

Sections can be dumped using the standard binutils readelf tool:

readelf -WS application.fo
There are 8 section headers, starting at offset 0x34:

Section Headers:
[Nr] Name Type Addr Off Size ES Flg Lk Inf Al
[0] NULL 00000000 000000 000000 00 0 0 0
[1] .soar.rel LOPROC+0 00000000 000174 000bcc 00 6 0 4
[2] .strtab STRTAB 00000000 000d40 000063 00 0 0 1
[3] .symtab SYMTAB 00000000 000da4 000050 10 2 1 4
[4] .bss.soar.feature NOBITS 00000000 000df4 000050 00 A 0 0 4
[5] .rodata.microej.resources PROGBITS 00000000 000e00 079080 00 A 0 0 64
[6] .rodata PROGBITS 00000000 079e80 001974 00 A 0 0 16
[7] .shstrtab STRTAB 00000000 07b7f4 000059 00 0 0 1

The following table summarizes the sections and their content:

3.6. VEE Porting Guide 809

https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#install-java.io.InputStream-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#install-java.io.InputStream-

MicroEJ Documentation,

Section Description Temporary Memory Lo-
cation

Target Memory Loca-
tion

.soar.rel
Metadata Managed heap None

.strtab
Metadata Managed heap None

.symbtab
Metadata Managed heap None

.bss.soar.feature
RW Data None Features RAM area

.rodata.microej.
resources

RO Data None Features ROM area

.rodata
Code chunk RAM Features ROM area

.shstrtab
Metadata Managed heap None

In-Place Installation

Note: This section describes the legacy Feature installation flow, based on a malloc/free implementation in RAM.
It is deprecated and available up to Architecture 8.0.0.

SeeMigrate Your LLKERNEL Implementation for migrating to the latest installation flow.

Feature content is installed in RAM. The required memory is allocated in the Kernel Working
Buffer. This includes code, resources, static fields, and internal structures. When the Feature is
uninstalled, allocated memory is reclaimed. When the Core Engine or the device restarts, the
Kernel Working Buffer is reset; thus there is no persistent Feature.

Fig. 178: In-Place Feature Installation Overview

The In-Place installation flow is described in the following sequence diagram:

3.6. VEE Porting Guide 810

MicroEJ Documentation,

Fig. 179: In-Place Feature Installation Flow

The In-Place uninstallation flow is described in the following sequence diagram:

Fig. 180: In-Place Feature Uninstallation Flow

3.6. VEE Porting Guide 811

MicroEJ Documentation,

RAM Control

Note: This feature requires Architecture 8.1.0 or higher.

In a Multi-Sandbox environment, RAM Control automatically stops less critical Features when
a more critical Feature cannot allocate new objects. See the RAM Control: Feature Criticality
section of the Kernel & Features Specification (KF) for more details.

By default, RAM Control is disabled in the Core Engine. To enable it, set the property com.
microej.runtime.kf.ramcontrol.enabled to true in the VEE Port configuration:

SDK 6

SDK 5

In the configuration.properties file:

com.microej.runtime.mjvm.com.microej.runtime.kf.ramcontrol.enabled=true

In the mjvm/mjvm.properties file of the VEE Port Configuration module:

com.microej.runtime.kf.ramcontrol.enabled=true

When RAM Control is enabled, all Foundation Libraries must declare their native resources us-
ing SNI (see sni.h header file). This is necessary for the automatic release of native resources
when the Core Engine abruptly stops a Feature to recover heapmemory. Foundation Libraries
can no longer register native resources using the deprecated class ej.lang.ResourceManager .
Attempting to do so will result in an exception being thrown.

3.6.9 Tiny-Sandbox

Principle

The Tiny-Sandbox capability of the Core Engine allows to build a Standalone Application opti-
mized for size. This capability is suitable for environments requiring a small memory footprint.

Installation

Tiny-Sandbox is an option disabled by default. To enable the Tiny-Sandbox capability of the
Core Engine, set the property com.microej.runtime.capability to tiny in the configuration.
properties file (SDK 6) or in the mjvm/mjvm.properties file (SDK 5) of the VEE Port project.
See the example below:

com.microej.runtime.capability=tiny

Note: In SDK 5, before Architecture 8.1.0, enabling the Tiny-Sandbox capability was done by setting the property
mjvm.standalone.configuration in the configuration.xml file as follows:

<property name=”mjvm.standalone.configuration” value=”tiny”/>

See section VEE Port Customization for more info on the configuration.xml file.

3.6. VEE Porting Guide 812

MicroEJ Documentation,

Limitations

In addition to general Limitations:

• The maximum application code size (classes and methods) cannot exceed 256KB . This does
not includeapplication resources, immutableobjects and internal stringswhicharenot limited.

• The option SOAR > Debug > Embed all type names has no effect. Only the fully qualified
names of types marked as required types are embedded.

• Incompatible with dynamic linkers enabling Address Space Layout Randomization (ASLR).

3.6.10 Native Interface Mechanisms

The Core Engine provides two ways to link MicroEJ Application code with native C code. The
two ways are fully complementary, and can be used at the same time.

Shielded Plug (SP)

Principle

TheShieldedPlug (SP) library providesdata segregationwith a clear publish-subscribeAPI. The
data-sharing betweenmodules uses the concept of sharedmemory blocks, with introspection.
The database is made of blocks: chunks of RAM.

Fig. 181: A Shielded Plug Between Two Application (Java/C) Modules.

Documentation Link
Java APIs https://repository.microej.com/javadoc/microej_5.x/apis/ej/sp/

package-summary.html
Specification https://repository.microej.com/packages/ESR/ESR-SPE-0014-SP-2.0-B.pdf
Module https://repository.microej.com/modules/ej/api/sp/

Functional Description

Theusageof theShieldedPlug (SP) startswith thedefinitionofadatabase. The implementation
uses an XML file description to describe the database; the syntax follows the one proposed by
the [SP] specification.

Once this database is defined, it can be accessed within the MicroEJ Application or the C appli-
cation. The SP Foundation Library is accessible from the [SP] API Module. This library contains
the classes and methods to read and write data in the database. The C header file sp.h avail-
able in the MicroEJ Platform source/include folder contains the C functions for accessing the
database.

3.6. VEE Porting Guide 813

https://repository.microej.com/javadoc/microej_5.x/apis/ej/sp/package-summary.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/sp/package-summary.html
https://repository.microej.com/packages/ESR/ESR-SPE-0014-SP-2.0-B.pdf
https://repository.microej.com/modules/ej/api/sp/
https://repository.microej.com/packages/ESR/ESR-SPE-0014-SP-2.0-B.pdf

MicroEJ Documentation,

To embed the database in your binary file, the XML file descriptionmust be processed by the SP
compiler. This compiler generates a binary file (.o) that will be linked to the overall application
by the linker. It also generates two descriptions of the block ID constants, one in Java and one
in C. These constants can be used by either the Java or the C application modules.

Shielded Plug Compiler

AMicroEJ tool is available to launch the compiler. The tool name is Shielded Plug Compiler .
It outputs:

• A description of the requested resources of the database as a binary file (.o) that will be linked
to the overall application by the linker. It is an ELF format description that reserves both the
necessary RAM and the necessary Flash memory for the Shielded Plug database.

• Two descriptions, one in Java and one in C, of the block ID constants to be used by either Java
or C application modules.

Fig. 182: Shielded Plug Compiler Process Overview

Example

Below is an example of using a database. The code that publishes the data is written in C, and
the code that receives the data is written in Java. The data is transferred using two memory
blocks. TEMP is a scalar value, THERMOSTAT is a boolean.

Database Description

The database is described as follows:

<shieldedPlug>
<database name=”Forecast” id=”0” immutable=”true” version=”1.0.0”>

<block id=”1” name=”TEMP” length=”4” maxTasks=”1”/>
<block id=”2” name=”THERMOSTAT” length=”4” maxTasks=”1”/>

</database>
</shieldedPlug>

3.6. VEE Porting Guide 814

MicroEJ Documentation,

Java Code

From the database description we can create an interface.

public interface Forecast {
public static final int ID = 0;
public static final int TEMP = 1;
public static final int THERMOSTAT = 2;

}

Below is the task that reads the published temperature and controls the thermostat.

public void run(){
ShieldedPlug database = ShieldedPlug.getDatabase(Forecast.ID);
while (isRunning) {

//reading the temperature every 30 seconds
//and update thermostat status
try {

int temp = database.readInt(Forecast.TEMP);
print(temp);
//update the thermostat status
database.writeInt(Forecast.THERMOSTAT,temp>tempLimit ? 0 : 1);

}
catch(EmptyBlockException e){

print(”Temperature not available”);
}
sleep(30000);

}
}

C Code

Here is a C header that declares the constants defined in the XML description of the database.

#define Forecast_ID 0
#define Forecast_TEMP 1
#define Forecast_THERMOSTAT 2

Below, the code shows the publication of the temperature and thermostat controller task.

void temperaturePublication() {
ShieldedPlug database = SP_getDatabase(Forecast_ID);
int32_t temp = temperature();
SP_write(database, Forecast_TEMP, &temp);

}

void thermostatTask(){
int32_t thermostatOrder;
ShieldedPlug database = SP_getDatabase(Forecast_ID);
while(1){

SP_waitFor(database, Forecast_THERMOSTAT);
SP_read(database, Forecast_THERMOSTAT, &thermostatOrder);
if(thermostatOrder == 0) {

thermostatOFF();
}

(continues on next page)

3.6. VEE Porting Guide 815

MicroEJ Documentation,

(continued from previous page)

else {
thermostatON();

}
}

}

Dependencies

• LLSP_impl.h implementation (see LLSP: Shielded Plug).

Installation

The [SP] library and its relative tools are an optional feature of the VEE Port. The installation
process is different in SDK 5 and SDK 6:

SDK 6

SDK 5

In the VEE Port configuration file, add the following property:

com.microej.runtime.shieldedplug.enabled=true

In the VEE Port configuration file, check Java to C Interface > Shielded Plug to install the
library and its relative tools.

Use

The Shielded Plug API Module must be added to the project build file:

SDK 6 (build.gradle.kts)

SDK 5 (module.ivy)

implementation(”ej.api:sp:2.0.4”)

<dependency org=”ej.api” name=”sp” rev=”2.0.4”/>

This library provides a set of options. Refer to the chapterStandaloneApplicationOptionswhich
lists all available options.

MicroEJ Java H

Principle

This MicroEJ tool is useful for creating the skeleton of a C file, to which some Java native im-
plementation functions will later be written. This tool helps prevent misses of some #include
files, and helps ensure that function signatures are correct.

3.6. VEE Porting Guide 816

https://repository.microej.com/modules/ej/api/sp/

MicroEJ Documentation,

Functional Description

MicroEJ Java H tool takes as input one or several Java class files (*.class) from directories and
/ or JAR files. It looks for Java native methods declared in these class files, and generates a
skeleton(s) of the C file(s).

Fig. 183: MicroEJ Java H Process

Dependencies

No dependency.

Installation

SDK 6

SDK 5

In SDK 6, the MicroEJ Java H tool is enabled by default. It can be disabled in the VEE Port con-
figuration file, by adding the following property:

com.microej.runtime.extensible.MicroEJavah.enabled=false

This is an additional tool. In the VEE Port configuration file, check Java to C Interface >
MicroEJ Java H to install the tool.

Use

This chapter explains the MicroEJ tool options.

3.6. VEE Porting Guide 817

MicroEJ Documentation,

3.6.11 External Resources Loader

Functional Description

The External Resources Loader is an optional module. When not installed, only internal re-
sources are available for the MicroEJ Application. When the External Resources Loader is in-
stalled, the Core Engine tries first to retrieve the expected resource from its available list of in-
ternal resources, before asking the BSP to load it (using LLEXT_RES_impl.h functions).

See Application Resources for more information on how to declare external resources depend-
ing on its kind (raw resources, images, fonts, NLS).

Implementations

External Resources Loader module provides some Low Level API (LLEXT_RES) to let the BSP
manage the external resources.

Open a Resource

The LLAPI to implement in the BSP are listed in the header file LLEXT_RES_impl.h . First,
the framework tries to open an external resource using the open function. This function re-
ceives the resourcespath as aparameter. This path is the absolutepathof the resource from the
MicroEJ Application classpath (the MicroEJ Application source base directory). For example,
when the resource is located here: com.mycompany.myapplication.resource.MyResource.
txt , the given path is: com/mycompany/myapplication/resource/MyResource.txt .

The external resources loader implementation should, when possible, lock the resource when
it is opened. Any modification of an opened resource may not be properly handled by the ap-
plication.

Resource Identifier

This open functionhas to returnaunique ID (positive value) for theexternal resource, or returns
anerror code (negative value). This IDwill beusedby the framework tomanipulate the resource
(read, seek, close, etc.).

Several resources can be opened at the same time. The BSP does not have to return the same
identifier for two resources living at the same time. However, it can return this ID for a new
resource as soon as the old resource is closed.

Resource Offset

The BSPmust hold an offset for each opened resource. This offset must be updated after each
call to read and seek .

3.6. VEE Porting Guide 818

MicroEJ Documentation,

Resource Inside the CPU Address Space Range

An external resource can be programmed inside the CPUaddress space range. Thismemory (or
a part of memory) is not managed by the SOAR and so the resources inside are considered as
external.

Most of the time the content of an external resourcemust be copied in amemory inside theCPU
address space range in order to be accessible by the MicroEJ algorithms (draw an image etc.).
However, when the resource is already inside the CPU address space range, this copy is useless.
The function LLEXT_RES_getBaseAddress must return a valid CPU memory address in
order to avoid this copy. The MicroEJ algorithms are able to target the external resource bytes
without using the other LLEXT_RES APIs such as read , mark etc.

External Resources Folder

When working with Application Resources declared as external resources, the Application
build process will output those external resources in a dedicated output folder named
externalResources/ .

This folder gathers all the Application Resources that should be deployed on the device. This
folder not only contains the pre-processed resources but also all the other external resources
from the project that are not pre-processed:

• Pre-processed resources: resources formatted by MICROEJ SDK to optimize footprint and/or
parsing/processing. That is for example the case of MicroUI Fonts, NLS Resources and MicroUI
Images embedded in RAW format.

• Unprocessed resources: resources embedded as-is, like Raw Resources or Imageswith no out-
put format defined (e.g. image embedded as a .png).

The location of the externalResources/ folder is different between SDK 5 and SDK 6:

SDK 6

SDK 5

The externalResources/ folder is located in the build/application/object folder of the appli-
cation project.

It is generated when building the application for the device (buildApplicationObjectFile).

The externalResources/ folder is located in the output folder of the application project.
This folder is defined in the Execution tab of the MicroEJ Launch configuration (e.g.
Example-ExternalResourceLoader/com.microej.externalresourceloader.ExternalImages/
externalResources).

Dependencies

• LLEXT_RES_impl.h implementation (see LLEXT_RES: External Resources Loader).

3.6. VEE Porting Guide 819

MicroEJ Documentation,

Installation

The External Resources Loader is an additional module. The installation process is different in
SDK 5 and SDK 6:

SDK 6

SDK 5

In the VEE Port configuration file, add the following property:

com.microej.runtime.externalresourceloader.enabled=true

In the VEE Port configuration file, check External Resources Loader to install this module.

Use

TheExternalResourcesLoader is automaticallyusedwhen theMicroEJApplication tries toopen
an external resource.

A simple implementation of the External Resources Loader is available on GitHub:
Example-ExternalResourceLoader.

On Simulator

The Application Resources provided by the application project, pre-processed and/or unpro-
cessed, are automatically made available to the application during the simulation.

On Device

The external resources must be deployed on the device before they can be consumed by the
application.

After that, the external resources can be updated (without re-building the application) with the
following development flow:

1. Update the external resources in the application project.

2. Test the application with the updated resources on the simulator.

3. Whengood, re-build the application, and collect the external resources in the output folder (the
build is required to trigger the processing of the resources).

4. Deploy the external resources on the device (e.g. copy them to the file system of the device:
removable SD card, USBmass storage, …).

3.6. VEE Porting Guide 820

https://github.com/MicroEJ/Example-ExternalResourceLoader

MicroEJ Documentation,

3.6.12 Serial Communications

MicroEJprovides someFoundationLibraries to instantiate somecommunicationswithexternal
devices. Eachcommunicationmethodhas itsown library. Aglobal library calledECOMprovides
support for abstract communication streams (communication framework only), and a generic
devices manager.

ECOM

Warning: This chapter describes the Foundation Library ECOM-1.1 .

ECOM-1.1 is discontinued since Architecture 8.0.0.

Principle

The Embedded COMmunication Foundation Library (ECOM) is a generic communication library
with abstract communication streamsupport (a communication frameworkonly). It allows you
to open and use streams on communication devices such as a COMM port.

This library also provides a device manager, including a generic device registry and a notifica-
tion mechanism, which allows plug&play-based applications.

This library does not provide APIs tomanipulate some specific options for each communication
method, but it does provide some generic APIs which abstract the communication method.
After the opening step, theMicroEJ Application canuse every communicationsmethod (COMM,
USB etc.) as generic communication in order to easily change the communication method if
needed.

Functional Description

The diagram below shows the overall process to open a connection on a hardware device.

3.6. VEE Porting Guide 821

MicroEJ Documentation,

Fig. 184: ECOM Flow

1. Step 1 consists of opening a connection on a hardware device. The connection kind and its
configuration are fixed by the String parameter of the method Connector.open(String).

2. Step 2 consists of opening an InputStream on the connection. This stream allows the MicroEJ
Application to access the “RX” feature of the hardware device.

3. Step 3 consists of using the InputStreamAPIs to receive in theMicroEJ Application all hardware
device data.

4. Step 4 consists of opening anOutputStreamon the connection. This streamallows theMicroEJ
Application to access the “TX” feature of the hardware device.

5. Step 5 consists of using the OutputStream APIs to transmit some data from the MicroEJ Appli-
cation to the hardware device.

Note that steps 2 and 4may be performed in parallel, and do not depend on each other.

Device Management API

A device is defined by implementing ej.ecom.Device. It is identified by a name and a descriptor
(ej.ecom.HardwareDescriptor), which is composed of a set of MicroEJ properties. A device can
be registered/unregistered in the ej.ecom.DeviceManager.

A device registration listener is defined by implementing ej.ecom.RegistrationListener. When
a device is registered to or unregistered from the device manager, listeners registered for the
device type are notified. The notificationmechanism is done in a dedicated thread. Themech-
anism can be enabled or disabled (see Standalone Application Options).

3.6. VEE Porting Guide 822

https://repository.microej.com/javadoc/microej_5.x/apis/ej/ecom/io/Connector.html#open-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/io/InputStream.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/io/InputStream.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/io/OutputStream.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/io/OutputStream.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/ecom/Device.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/ecom/HardwareDescriptor.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/ecom/DeviceManager.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/ecom/RegistrationListener.html

MicroEJ Documentation,

Dependencies

No dependency.

Installation

ECOM Foundation Library is an additional library.

SDK 6

SDK 5

In the VEE Port build file, add a dependency to the ?? pack:

microejPack(”com.microej.pack.??:??:??”)

In the VEEPort configuration file, check Serial Communication > ECOM to install the library
and its relative tools.

Use

The ECOM API Module must be added to the Application project build file to use the ECOM li-
brary:

SDK 6 (build.gradle.kts)

SDK 5 (module.ivy)

implementation(”ej.api:ecom:1.1.4”)

<dependency org=”ej.api” name=”ecom” rev=”1.1.4”/>

This Foundation Library is always requiredwhen developing aMicroEJ Applicationwhich com-
municates with some external devices. It is automatically embedded as soon as a sub commu-
nication library is added in the classpath.

ECOM Comm

Warning: This chapter describes the Foundation Library ECOM-COMM-1.1 .

ECOM-COMM-1.1 is deprecated in favor of ECOM-COMM-2.0 and has been removed from Architecture
8.0.0. SeeMigrate ECOM-COMMModule for more details.

Principle

TheECOMCommJava libraryprovides support for serial communication. ECOMCommextends
ECOM to allow stream communication via serial communication ports (typically UARTs). In the
MicroEJ Application, the connection is established using the Connector.open() method. The
returned connection is a ej.ecom.io.CommConnection, and the input and output streams can
be used for full duplex communication.

The use of ECOM Comm in a custom platform requires the implementation of an UART driver.
There are two different modes of communication:

3.6. VEE Porting Guide 823

https://repository.microej.com/modules/ej/api/ecom/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/ecom/io/Connector.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/ecom/io/CommConnection.html

MicroEJ Documentation,

• In Bufferedmode, ECOM Commmanages software FIFO buffers for transmission and reception
of data. The driver copies data between the buffers and the UART device.

• In Custommode, the buffering of characters is notmanaged by ECOMComm. The driver has to
manage its own buffers tomake sure no data is lost in serial communications because of buffer
overruns.

This ECOM Comm implementation also allows dynamic add or remove of a connection to the
pool of available connections (typically hot-plug of a USB Comm port).

Functional Description

The ECOM Comm process respects the ECOM process. Please refer to the illustration “ECOM
flow”.

Component Architecture

The ECOM Comm C module relies on a native driver to perform actual communication on the
serial ports. Each port can be bound to a different driver implementation, butmost of the time,
it is possible to use the same implementation (i.e. same code) for multiple ports. Exceptions
are the use of different hardware UART types, or the need for different behaviors.

Five C header files are provided:

• LLCOMM_impl.h

Defines the set of functions that the driver must implement for the global ECOM comm stack,
such as synchronization of accesses to the connections pool.

• LLCOMM_BUFFERED_CONNECTION_impl.h

Defines the set of functions that the driver must implement to provide a Buffered connection

• LLCOMM_BUFFERED_CONNECTION.h

Defines the set of functions provided by ECOM Comm that can be called by the driver (or other
C code) when using a Buffered connection

• LLCOMM_CUSTOM_CONNECTION_impl.h

Defines the set of functions that the driver must implement to provide a Custom connection

• LLCOMM_CUSTOM_CONNECTION.h

Defines the set of functions provided by ECOM Comm that can be called by the driver (or other
C code) when using a Custom connection

The ECOM Comm drivers are implemented using standard LLAPI features. The diagram below
shows an example of the objects (both Java and C) that exist to support a Buffered connection.

3.6. VEE Porting Guide 824

MicroEJ Documentation,

Fig. 185: ECOM Comm components

The connection is implemented with three objects1 :

• The Java object used by the application; an instance of ej.ecom.io.CommConnection

• The connection object within the ECOM CommCmodule

• The connection object within the driver

Each driver implementation provides one or more connections. Each connection typically cor-
responds to a physical UART.

CommPort Identifier

Each serial port available for use in ECOM Comm can be identified in three ways:

• An application port number. This identifier is specific to the application, and should be used to
identify the data stream that the port will carry (for example, “debug traces” or “GPS data”).

• A platform port number. This is specific to the platform, and may directly identify a hardware
device2.

• A platform port name. This is mostly used for dynamic connections or on platforms having a
file-system based device mapping.

When theCommPort is identifiedbyanumber, its string identifier is the concatenationof “com”
and the number (e.g. com11).

Application Port Mapping

Themapping fromapplicationport numbers toplatformports is done in the application launch
configuration. This way, the application can refer only to the application port number, and the
data stream can be directed to the matching I/O port on different versions of the hardware.

Ultimately, the application port number is only visible to the application. The platform identi-
fier will be sent to the driver.

1 This is a conceptual description to aid understanding - the reality is somewhat different, although that is largely invisible
to the implementor of the driver.

2 Some drivers may reuse the same UART device for different ECOM ports with a hardware multiplexer. Drivers can even
treat the platform port number as a logical id and map the ids to various I/O channels.

3.6. VEE Porting Guide 825

https://repository.microej.com/javadoc/microej_5.x/apis/ej/ecom/io/CommConnection.html

MicroEJ Documentation,

Opening Sequence

The following flow chart explains Comm Port opening sequence according to the given Comm
Port identifier.

Fig. 186: Comm Port Open Sequence

Dynamic Connections

The ECOMCommstack allows to dynamically add and remove connections from theDriver API.
When a connection is added, it can be immediately open by the application. When a connec-
tion is removed, the connection cannot be open anymore and java.io.IOException is thrown in
threads that are using it.

In addition, a dynamic connection can be registered and unregistered in ECOMdevicemanager
(see Device Management API). The registration mechanism is done in dedicated thread. It can
be enabled or disabled, see Standalone Application Options.

A removed connection is alive until it is closed by the application and, if enabled, unregistered
from ECOM device manager. A connection is effectively uninstalled (and thus eligible to be
reused) only when it is released by the stack.

The following sequence diagram shows the lifecycle of a dynamic connection with ECOM reg-
istration mechanism enabled.

3.6. VEE Porting Guide 826

https://repository.microej.com/javadoc/microej_5.x/apis/java/io/IOException.html

MicroEJ Documentation,

Fig. 187: Dynamic Connection Lifecycle

Java API

Opening a connection is done using ej.ecom.io.Connector.open(String url). The connection
string (the url parameter) must start with “comm:”, followed by the Commport identifier, and
a semicolon-separated list of options. Options are the baudrate, the parity, the number of bits
per character, and the number of stop bits:

• baudrate=n (9600 by default)

• bitsperchar=n where n is in the range 5 to 9 (8 by default)

• stopbits=n where n is 1, 2, or 1.5 (1 by default)

• parity=x where x is odd, even or none (none by default)

All of these are optional. Illegal or unrecognized parameters cause an IllegalArgumentExcep-
tion.

3.6. VEE Porting Guide 827

https://repository.microej.com/javadoc/microej_5.x/apis/ej/ecom/io/Connector.html#open-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/IllegalArgumentException.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/IllegalArgumentException.html

MicroEJ Documentation,

Driver API

The ECOM Comm Low Level API is designed to allow multiple implementations (e.g. drivers
that support different UART hardware) and connection instances (see Low Level API Pattern
chapter). Each ECOMCommdriver defines a data structure that holds information about a con-
nection, and functions take an instance of this data structure as the first parameter.

The name of the implementation must be set at the top of the driver C file, for example3:

#define LLCOMM_BUFFERED_CONNECTION MY_LLCOMM

This defines the name of this implementation of the LLCOMM_BUFFERED_CONNEC-
TION interface to be MY_LLCOMM .

The data structure managed by the implementation must look like this:

typedef struct MY_LLCOMM{
struct LLCOMM_BUFFERED_CONNECTION header;
// extra data goes here

} MY_LLCOMM;

void MY_LLCOMM_new(MY_LLCOMM* env);

In this example the structure contains only the default data, in the header field. Note that the
header must be the first field in the structure. The name of this structure must be the same as
the implementation name (MY_LLCOMM in this example).

The driver must also declare the “new” function used to initialize connection instances. The
name of this function must be the implementation name with _new appended, and it takes
as its sole argument a pointer to an instance of the connection data structure, as shown above.

The driver needs to implement the functions specified in the LLCOMM_impl.h file and
for each kind of connection, the LLCOMM_BUFFERED_CONNECTION_impl.h (or
LLCOMM_CUSTOM_CONNECTION_impl.h) file.

The driver defines the connections it provides by adding connection objects using LL-
COMM_addConnection . Connections can be added to the stack as soon as the LL-
COMM_initialize function is called. Connections added during the call of the LL-
COMM_impl_initialize function are static connections. A static connection is registered to
the ECOM registry and cannot be removed. When a connection is dynamically added outside
the Core Engine task context, a suitable reentrant synchronization mechanism must be im-
plemented (see LLCOMM_IMPL_syncConnectionsEnter and LLCOMM_IMPL_sync-
ConnectionsExit).

When opening a port from the MicroEJ Application, each connection declared in the connec-
tions pool will be asked about its platform port number (using the getPlatformId method) or
its name (using the getName method) depending on the requested port identifier. The first
matching connection is used.

The life of a connection starts with the call to getPlatformId() or getName() method. If the
the connection matches the port identifier, the connection will be initialized, configured and
enabled. Notifications and interrupts are then used to keep the streamof data going. When the
connection is closed by the application, interrupts are disabled and the driver will not receive
any more notifications. It is important to remember that the transmit and receive sides of the
connection are separate Java stream objects, thus, theymay have a different life cycle and one
side may be closed long before the other.

3 The following examples use Buffered connections, but Custom connections follow the same pattern.

3.6. VEE Porting Guide 828

MicroEJ Documentation,

The Buffered CommStream

In Buffered mode, two buffers are allocated by the driver for sending and receiving data. The
ECOM CommCmodule will fill the transmit buffer, and get bytes from the receive buffer. There
is no flow control.

When the transmit buffer is full, an attempt to write more bytes from the MicroEJ Application
will block the thread trying to write, until some characters are sent on the serial line and space
in the buffer is available again.

When the receive buffer is full, characters coming from the serial line will be discarded. The
driver must allocate a buffer big enough to avoid this, according to the UART baudrate, the ex-
pected amount of data to receive, and the speed at which the application can handle it.

The Buffered Cmodule manages the characters sent by the application and stores them in the
transmit buffer. On notification of available space in the hardware transmit buffer, it handles
removing characters from this buffer and putting them in the hardware buffer. On the other
side, thedriver notifies theCmoduleof data availability, and theCmodulewill get the incoming
character. This character is added to the receive buffer and stays there until the application
reads it.

The driver should take care of the following:

• Setting up interrupt handlers on reception of a character, and availability of space in the trans-
mit buffer. The C module may mask these interrupts when it needs exclusive access to the
buffers. If no interrupt is available from the hardware or underlying software layers, it may be
faked using a polling thread that will notify the Cmodule.

• Initialization of the I/O pins, clocks, and other things needed to get the UART working.

• Configuration of the UART baudrate, character size, flow control and stop bits according to the
settings given by the Cmodule.

• Allocation of memory for the transmit and receive buffers.

• Getting the state of the hardware: is it running, is there space left in the TX and RX hardware
buffers, is it busy sending or receiving bytes?

The driver is notified on the following events:

• Opening and closing a connection: the driver must activate the UART and enable interrupts for
it.

• A new byte is waiting in the transmit buffer and should be copied immediately to the hardware
transmit unit. The C module makes sure the transmit unit is not busy before sending the noti-
fication, so it is not needed to check for that again.

The driver must notify the Cmodule on the following events:

• Data has arrived that should be added to the receive buffer (using the LL-
COMM_BUFFERED_CONNECTION_dataReceived function)

• Space available in the transmit buffer (using the LLCOMM_BUFFERED_CONNEC-
TION_transmitBufferReady function)

3.6. VEE Porting Guide 829

MicroEJ Documentation,

The Custom CommStream

In custommode, the ECOMCommCmodule will not do any buffering. Read andwrite requests
from the application are immediately forwarded to the driver.

Since there is no buffer on the C module side when using this mode, the driver has to define a
strategy to store received bytes that were not handed to the Cmodule yet. This could be a fixed
or variable side FIFO, the older received but unread bytes may be dropped, or a more complex
priority arbitration could be set up. On the transmit side, if the driver does not do any buffering,
the threadwaiting to send somethingwill be blocked andwait for theUART to send all the data.

In Custommode flow control (eg. RTS/CTS or XON/XOFF) can be used to notify the device con-
nected to the serial line and so avoid losing characters.

BSP File

The ECOM Comm C module needs to know, when the MicroEJ Application is built, the name
of the implementation. This mapping is defined in a BSP definition file. The name of this file
must be bsp.xml and must be written in the ECOM comm module configuration folder (near
the ecom-comm.xml file). In previous example the bsp.xml file would contain:

Listing 31: ECOM CommDriver Declaration (bsp.xml)

<bsp>
<nativeImplementation

name=”MY_LLCOMM”
nativeName=”LLCOMM_BUFFERED_CONNECTION”

/>
</bsp>

where nativeName is the nameof the interface, and name is the nameof the implementation.

XML File

The Java platform has to know the maximum number of Comm ports that can be managed
by the ECOM Comm stack. It also has to know each Comm port that can be mapped from an
application port number. Such Comm port is identified by its platform port number and by an
optional nickname (The port and its nickname will be visible in the MicroEJ launcher options,
see Standalone Application Options).

A XML file is so required to configure the Java platform. The name of this file must be
ecom-comm.xml . It has to be stored in the module configuration folder (see Installation).

This file must start with the node <ecom> and the sub node <comms> . It can con-
tain several time this kind of line: <comm platformId=”A_COMM_PORT_NUMBER”
nickname=”A_NICKNAME”/> where:

• A_COMM_PORT_NUMBER refers the Commport the Java platform user will be able to use (see Appli-
cation Port Mapping).

• A_NICKNAME is optional. It allows to fix a printable name of the Comm port.

The maxConnections attribute indicates the maximum number of connections allowed, in-
cluding static and dynamic connections. This attribute is optional. By default, it is the number
of declared Comm Ports.

3.6. VEE Porting Guide 830

MicroEJ Documentation,

Example:

Listing 32: ECOM CommModule Configuration (ecom-comm.xml)

<ecom>
<comms maxConnections=”20”>

<comm platformId=”2”/>
<comm platformId=”3” nickname=”DB9”/>
<comm platformId=”5”/>

</comms>
</ecom>

First Comm port holds the port 2, second “3” and last “5”. Only the second Comm port holds a
nickname “DB9”.

ECOM CommMock

In the simulation environment, no driver is required. The ECOM Commmock handles commu-
nication for all the serial ports and can redirect each port to one of the following:

• An actual serial port on the host computer: any serial port identified by your operating system
can be used. The baudrate and flow control settings are forwarded to the actual port.

• A TCP socket. You can connect to a socket on the local machine and use netcat or telnet to see
the output, or you can forward the data to a remote device.

• Files. You can redirect the input and output each to a different file. This is useful for sending
precomputed data and looking at the output later on for offline analysis.

When using the socket and file modes, there is no simulation of an UART baudrate or flow con-
trol. On a file, data will always be available for reading and will be written without any delay.
On a socket, you can reach the maximal speed allowed by the network interface.

Dependencies

• ECOM (see Serial Communications).

• LLCOMM_impl.h and LLCOMM_xxx_CONNECTION_impl.h implmentations (see LL-
COMM: Serial Communications).

Installation

ECOM-Comm Java library is an additional library. In the platform configuration file, check
Serial Communication > ECOM-COMM to install it. Whenchecked, thexml file ecom-comm/
ecom-comm.xml is required during platform creation to configure the module (see XML File).

3.6. VEE Porting Guide 831

MicroEJ Documentation,

Use

The ECOM Comm API Module must be added to the module.ivy of the MicroEJ Application
project to use the ECOM Comm library.

<dependency org=”ej.api” name=”ecom-comm” rev=”1.1.4”/>

This Foundation Library is always requiredwhen developing aMicroEJ Applicationwhich com-
municates with some external devices using the serial communication mode.

This library provides a set of options. Refer to the chapterStandaloneApplicationOptionswhich
lists all available options.

3.6.13 Graphical User Interface

Note: This chapter describes the current Graphical User Interface version 3 , provided by UI Pack version 14.0.0
or higher. The UI Pack Changelog and aMigration Guide are provided at the end of this chapter.

• If you are using the former Graphical User Interface version 3 provided by MicroEJ UI Pack
version 13.x , please refer to this MicroEJ Documentation Archive.

• If you are using the former Graphical User Interface version 2 provided by MicroEJ UI Pack
version up to 12.1.x , please refer to this MicroEJ Documentation Archive.

Principle

The User Interface Extension features one of the fastest graphics engines, associated with a
unique int-based event management system.

This chapter describes the UI3 notions, available since MicroEJ Architecture UI pack 13.0.0 and
higher: MicroUI 3.0, Front Panel v6, Abstraction Layer APIs LLUI_xxx , etc.

The diagram below shows a simplified view of the components involved in the provisioning of
User Interface Extension.

3.6. VEE Porting Guide 832

https://repository.microej.com/modules/ej/api/ecom-comm/
https://docs.microej.com/_/downloads/en/20240215/pdf/
https://docs.microej.com/_/downloads/en/20201009/pdf/

MicroEJ Documentation,

Fig. 188: Overview

The modules responsible to manage the Display, the Input and the LED are respectively called
Display module, Input module and LED module. These three low-level parts connect MicroUI
library to theuser-supplieddrivers code (coded inC). Thedrivers canusehardware accelerators
like DMA and GPU to perform specific actions (buffers copy, drawings, etc.).

The MicroEJ Simulator provides all features of MicroUI library. The three modules are grouped
together in amodule called Front Panel. The Front Panel is supplied with a set of software wid-
gets that generically support a range of input devices such as buttons, joysticks and touch-
screens, and output devices such as displays and LEDs. With the help of the Front Panel
Designer tool that forms part of the MicroEJ Workbench the user must define a Front Panel
mock-up using these widgets.

The Display module also manages fonts and images. The fonts and images are pre-processed
before compiling the application. The following diagram depicts the components involved in
its design, along with the provided tools:

3.6. VEE Porting Guide 833

MicroEJ Documentation,

Fig. 189: The User Interface Extension Components along with a VEE Port

UI Port

This chapter summarizes all the steps to port the UI Pack: from the VEE Port Configuration
project to more advanced features like using a GPU. This chapter only introduces the concepts
and references the following chapters. The concepts are overviewed and incomplete (only the
typical case is described).

It is recommended to follow the steps in this order:

1. Edit the VEE Port Configuration project to add the UI Pack dependency and configuration,

2. Create the Simulator extension project,

3. Port the minimal implementation of the BSP,

4. Extend the implementation by connecting a GPU.

3.6. VEE Porting Guide 834

MicroEJ Documentation,

UI Port Configuration

Principle

The first step is to update the VEEPort project: this project holds thebuild descriptor file (build.
gradle.kts in SDK 6, module.ivy in SDK 5). This update is done in several steps, described in
the sections below. Some steps are optional, depending on the capabilities of the hardware.

Warning: This chapter assumes that a valid VEE Port has been created, as described in the
chapter

• Create a VEE Port in SDK 6

• Create a VEE Port in SDK 5

UI Pack Selection

The UI Pack bundles several modules, including the Graphics Engine. The Graphics Engine is a
library already compiled for an MCU and a C compiler. TheMicroEJ Central Repository provides
UI Packs for a set of MCU/Compiler pairs (like for MicroEJ Architectures).

Refer to the chapter Pack Import to add the required UI Pack. As an example, the module de-
pendency to add for a Cortex-M4 and GCC toolchain would be:

SDK 6 (build.gradle.kts)

SDK 5 (module.ivy)

dependencies {
microejPack(

→˓”com.microej.architecture.CM4.CM4hardfp_GCC48:flopi4G25-ui-pack:[UI Pack version]”)
}

<dependencies>
<!-- MicroEJ Architecture Specific Pack -->
<dependency org=”com.microej.architecture.

→˓CM4.CM4hardfp_GCC48” name=”flopi4G25-ui-pack” rev=”[UI Pack version]”/>
</dependencies>

Note: The latest version of the UI Pack is 14.4.2.

UI Pack Modules

The following sections describe eachmodule that comeswith the UI Pack (purpose and config-
uration).

Themodules provided by the UI Pack are not installed by default. When amodule is required,
it has to be enabled and configured using the VEE Port Editor.

3.6. VEE Porting Guide 835

MicroEJ Documentation,

Fig. 190: UI Pack Modules

Refer to the chapter PlatformModule Configuration to add the UI Pack modules.

Module MicroUI

MicroUI is a Foundation Library that defines a Low Level UI framework (refer to the chapterMi-
croUI for more information). The mandatory module MicroUI (it must be checked in the VEE
Port configuration file) provides the MicroUI implementation library. It requires a static initial-
ization step to specify what MicroUI features are available for the application layer:

1. Create the file

• [VEE Port project]/extensions/microui/microui.xml in SDK 6

• [VEE Port Configuration project]/microui/microui.xml in SDK 5

2. Edit the file as described here: Static Initialization.

<microui>

<display name=”DISPLAY”/>

<eventgenerators>
<command name=”COMMANDS”/>
<buttons name=”BUTTONS” extended=”3”/>
<buttons name=”JOYSTICK” extended=”5”/>
<touch name=”TOUCH” display=”DISPLAY”/>

</eventgenerators>

<fonts>

</fonts>

</microui>

3.6. VEE Porting Guide 836

MicroEJ Documentation,

Module LEDs

MicroUI provides some API tomanipulate the LEDs. This module allows the UI Port to drive the
LEDs. Refer to the chapter LED to have more information.

This module is optional: when not selected, a stub implementation is used, and the UI Port
does not need to provide one.

Modules Image Decoders

Note: This chapter only applies when the device has a display.

This module adds an internal image decoder: it allows the application to embed an encoded
image (e.g., PNG or BMP Monochrom) and let the Graphics Engine decode it at runtime. Both
decoders (PNG and BMPMonochrom) are optional and can be selected (or not) independently.
Refer to the chapter Encoded Image to have more information.

This module is optional: when no image decoder is embedded, the Graphics Engine relies on
the UI Port (thanks to Abstraction Layer API) to decode the images.

Module Image Generator

Note: This chapter only applies when the device has a display.

This module allows decoding the application’s images at compile-time. The application’s im-
agesaredecodedandstored inabinary format compatiblewith theGraphicsEngine. Themem-
ory footprintof theapplication ishigher, but the image loading timeat runtime is very low. Refer
to the chapter Image Generator to have more information.

This module is optional: when not selected, the application cannot embed generated images
compatible with the Graphics Engine.

Module Font Generator

Note: This chapter only applies when the device has a display.

This module allows for embedding the MicroEJ bitmap fonts of the application. The applica-
tion’s fonts are decoded and stored in a binary format compatible with the Graphics Engine.
Refer to the chapter Font Generator to have more information.

This module is optional: when not selected, the application cannot embed fonts compatible
with the Graphics Engine.

3.6. VEE Porting Guide 837

MicroEJ Documentation,

Module Display

Note: This chapter only applies when the device has a display.

This chapter takes the concepts described in chapter Display. The first step is determining the
kind of display: size, pixel format, and constraints. This information will be used later by the UI
Port configuration project, the Simulator extension project, and the BSP.

Size

The size is expressed in pixels, often 320x240 or 480x272. This size defines the area the applica-
tion can target; it can retrieve this size by calling Display.getWidth() and Display.getHeight()
. It is always a rectangular area, even for the rounded displays (a square area frames a rounded
display).

The display size is fixed for a display: retrieve this size in the board’s datasheet.

Pixel Format

The display pixel format (or pixel structure) gives two notions: the number of bits-per-pixel and
the organization of color components in these bits.

The number of bits-per-pixel (bpp) is an integer value among this list: 1, 2, 4, 8, 16, 24, or 32.

The color components organization defines how the color components (Red, Green, and Blue)
are distributed in the pixel. The greater the display pixel format (in bits), the better is the defini-
tion. This format also indicates the number of bits-per-pixel. For instance, the format RGB565 is
a 16-BPP format, indicating that the five MSB bits are for the Red color component, the six next
bits are for the Green component, and the five LSB bits are for the Blue component. This pixel
format can be symbolized by RRRRRGGGGGGBBBBB or RRRR RGGG GGGB BBBB .

The display pixel format is often fixed by the display itself (its capabilities) and by the memory
bus between the MCU and the LCD module. However, the display pixel format is often config-
urable by the LCD controller. Note that the number of bits-per-pixel and the display size fix the
required memory to allocate: memory_size = width x height x bpp / 8 . Consequently,
the pixel format may be less precise than the display capabilities depending on the memory
available on the device. For instance, the RGB565 format may be used whereas the display is a
24-bit display (RGB888).

Constraints

The hardware constraints (display, bus, memory, etc.) may drive the configuration:

• The pixel format: Some hardware cannot use another pixel format other than the one of the
display. This format may be standard or custom. See Pixel Structure.

• The size of the buffers: The available memory may be limited. This limitation can drive the
chosen pixel format.

• Memory alignment: Some LCD controllers require a memory alignment on the display front
buffer (alignment on 64 bits, for instance).

3.6. VEE Porting Guide 838

MicroEJ Documentation,

• Buffer width alignment: Some LCD controllers also require an alignment for each line. The line
size (in pixels) inmemorymay be larger than the display line size (width): this is the stride. The
alignment constraint may be expressed in pixels or bytes. The required memory to allocate
becomes: memory_size = stride (in pixels) x height x bpp / 8 .

Configuration

SDK 6

SDK 5

In the configuration.properties file of the VEE Port project, fill the file as described here: In-
stallation, according to the pixel format and the display constraints.

com.microej.runtime.display.bpp=rgb565
com.microej.runtime.display.imageBuffer.memoryAlignment=32
com.microej.runtime.display.memoryLayout=line
com.microej.runtime.display.byteLayout=line

In the VEE Port Configuration project:

1. Create the file [VEE Port Configuration project]/display/display.properties

2. Fill the file as described here: Installation, according to the pixel format and the display con-
straints.

bpp=rgb565
imageBuffer.memoryAlignment=32
memoryLayout=line
byteLayout=line

VEE Port Build

Oncemodules are selected and configured, the VEE Port can be built again; see VEE Port Build.

Simulation

Principle

The simulation part of the UI port requires the creation (or extension) of a Front Panel project
which is compatible with the UI Pack.

First, if no Front Panel project exists, follow the steps described here: Front Panel Mock. Then,
follow the next chapters to extend the Front Panel project with UI Pack notions.

3.6. VEE Porting Guide 839

MicroEJ Documentation,

Project Extension

The Front Panel project must depend on the UI Pack. Add the following dependency to the
project build file:

SDK 6 (build.gradle.kts)

SDK 5 (module.ivy)

implementation(”ej.tool.frontpanel:framework:[Front Panel Framework version]”)
implementation(”com.microej.pack.ui:ui-pack:[UI Pack version]”) {

artifact {
name = ”frontpanel”
extension = ”jar”

}
}

<dependency org=”com.microej.pack.ui” name=”ui-pack” rev=”[UI Pack version]”>
<artifact name=”frontpanel” type=”jar”/>

</dependency>

Note: The latest version of the UI Pack is 14.4.2 and the latest version of the Front Panel Framework is 1.3.0.

See Simulation for more information about the Front Panel project dependencies.

LEDs

When the VEE Port Configuration project LEDs module is checked, the Front Panel project
should add a widget LED for each led.

1. With an image editor, create an image for the LED off and an image for the LED on. Both images
must have the same size.

2. Create a couple of images for each LED.

3. In the Front Panel description file, add this line for each LED:

<ej.fp.widget.LED label=
→˓”0” x=”170” y=”753” ledOff=”Led-0.png” ledOn=”Led-GREEN.png” overlay=”false”/>

The label must have an integer value from 0 to NUMBER_OF_LEDS - 1 . The ej.microui.
led.Leds class uses this value as the LED identifier in setLedOff(int ledId) , setLedOn(int
ledId) , and other methods of the class.

Buttons

The widget Button can simulate any hardware button.

1. With an image editor, create an image for the button released and an image for the button
pressed. Both images must have the same size.

2. Create a couple of images for each button.

3. In the Front Panel description file, add this line for each button:

3.6. VEE Porting Guide 840

MicroEJ Documentation,

<ej.fp.
→˓widget.Button label=”0” x=”316” y=”769” skin=”W-U-0.png” pushedSkin=”W-U-1.png”/>

The label must have an integer value from 0 to NUMBER_OF_BUTTONS - 1 . The label is
used by the application to listen to the button.

By default, the widget sends a MicroUI Button event to the Buttons Event Generator whose
name is BUTTONS andwhose identifier is the button’s label. To target another Buttons Event
Generator, refer to the chapter Inputs Extensions.

Widget Button Code

public static class ButtonListenerToButtonEvents implements ButtonListener {

@Override
public void press(Button widget) {

EventButton.sendPressedEvent(getMicroUIGeneratorTag(), widget.getID());
}

@Override
public void release(Button widget) {

EventButton.sendReleasedEvent(getMicroUIGeneratorTag(), widget.getID());
}

/**
* Gets the MicroUI␣
→˓Buttons events generator tag. This generator has to match the generator set during the
* VEE Port build in <code>microui/microui.xml</code>
*
* @return a MicroUI Buttons events generator tag
*/
protected String getMicroUIGeneratorTag() {

return EventButton.COMMON_MICROUI_GENERATOR_TAG;
}

Application Code

To listen to the button, two ways are possible:

• By default, the current Displayable receives all events. The subclass has to implement the
method boolean handleEvent(int event); .

• A class must extend the interface EventHandler , and this class must be set as the handler of
the event generators Buttons:

Buttons[] buttonsHandlers = (Buttons[]) EventGenerator.get(Buttons.class);
for (EventGenerator buttonsHandler : generators) {

buttonsHandler.setEventHandler(this);
}

Here is an example of a handler:

@Override
public boolean handleEvent(int event) {

(continues on next page)

3.6. VEE Porting Guide 841

MicroEJ Documentation,

(continued from previous page)

// get the event's data
int data = Event.getData(event);

String state = null;

// print its state(s)
if (Buttons.isPressed(data)) {

state = ”pressed ”;
}
if (Buttons.isReleased(data)) {

state = ”released ”;
}
if (Buttons.isRepeated(data)) {

state = ”repeated ”;
}
if (Buttons.isLong(data)) {

state = ”long ”;
}
if (Buttons.isClicked(data)) {

state = ”clicked ”;
}
if (Buttons.isDoubleClicked(data)) {

state = ”double-clicked ”;
}

if (state != null) {
System.out.print(”button\t\t”);

// get the button's id
int id = Buttons.getButtonId(data);
System.out.print(id+” ”);
System.out.println(state);

}

return true;
}

Button to Command Event

A recommendedapproach is to favorCommandeventsoverButtonsevents. MicroUICommand
events are more generic because they are not tied to a hardware component like a physical
button. Command events make the application code more flexible to hardware changes. For
instance, instead of reacting to Button event 0, the applicationwill respond to Command event
Enter or Up . The application does not care about the source of the Command event: it may
be the button 0, 1, 10, or any other input device.

To map a MicroUI Command on the widget Button:

1. Update the widget description by adding a listenerClass .

<ej.fp.widget.Button label=”0” x=”316” y=”769” skin=”W-U-
→˓0.png” pushedSkin=”W-U-1.png” listenerClass=”com.is2t.microej.fp.Button2Command”/>

2. In the Front Panel project, create the class com.is2t.microej.fp.Button2Command , for in-
stance:

3.6. VEE Porting Guide 842

MicroEJ Documentation,

public class Button2Command implements ej.fp.widget.Button.ButtonListener {

public int getCommand(int buttonId) {
// same command as EmbJPF (see buttons_listener.c)
switch (buttonId) {
default:
case 0:

return EventCommand.ESC;
case 1:

return EventCommand.MENU;
}

}

@Override
public void press(Button widget) {

EventCommand.sendEvent(getCommand(widget.getID()));
}

@Override
public void release(Button widget) {

// nothing to send
}

}

The application code becomes:

// [...]

Command[] commandHandlers = (Command[]) EventGenerator.get(Command.class);
for (EventGenerator commandHandler : generators) {

commandHandler.setEventHandler(this);
}

// [...]

@Override
public boolean handleEvent(int event) {

// get the event's data
int data = Event.getData(event);

switch (data) {
case Command.ESC:

System.out.println(”ESC”);
break;

case Command.BACK:
System.out.println(”BACK”);
break;

// [...]
}

3.6. VEE Porting Guide 843

MicroEJ Documentation,

Touch Panel

Contrary to the other input devices, no image is required because a touch panel covers the
display area.

1. Retrieve the display size in pixels.

2. In the Front Panel description file, add this line:

<ej.fp.widget.Pointer x=”185” y=”395” width=”480” height=”272” touch=”true”/>

By default, the widget sends a MicroUI Pointer event to the Pointer Event Generator, whose
name is TOUCH (a touch panel is considered a Pointer with only dragged events). To target
another Pointer Event Generator, refer to the chapter Inputs Extensions.

A snippet of application code that handles Pointer events:

// [...]

Pointer[] pointerHandlers = (Pointer[]) EventGenerator.get(Pointer.class);
for (EventGenerator pointerHandler : generators) {

pointerHandler.setEventHandler(this);
}

// [...]

@Override
public boolean handleEvent(int event) {

Pointer pointer = (Pointer) Event.getGenerator(event);
int x = pointer.getX();
int y = pointer.getY();
System.out.println(”(” + x + ”,” + y + ”)”);

}

Display

The widget Display features a lot of options to simulate the hardware specificities.

1. Retrieve the display size in pixels.

2. In the Front Panel description file, add this line:

<ej.fp.widget.Display x=”185” y=”395” width=”480” height=”272”/>

For more information, refer to the java-doc of the widget Display and the chapter Display Wid-
get.

3.6. VEE Porting Guide 844

MicroEJ Documentation,

Build

Once the Front Panel project is created or modified, the VEE Port must be built again (the front
panel is built simultaneously with the VEE Port; see VEE Port Build).

BSP Port

Principle

The BSP Port (or Embedded Port) involves implementing some Abstraction Layer APIs
(low-level APIs: LLAPI). There are several kinds of LLAPI:

• Themandatory LLAPI to manipulate the LEDs,

• Themandatory LLAPI to send the input events,

• Themandatory LLAPI to initialize, use and flush the drawings to the display,

• The optional LLAPI to customize the Graphics Engine to be compatible with the display con-
straints,

• The optional LLAPI to manipulate the optional display features (backlight, contrast, etc.),

• The optional LLAPI to add some features as new image decoders,

• The optional LLAPI to use a GPU.

The following chapters describe each group of Abstraction Layer APIs, except the GPU acceler-
ation (see the dedicated section GPU Port).

MicroUI C Module

The UI Pack requires theMicroUI C module. This C module

• implements some MicroUI native functions,

• manages the drawings synchronization with the Graphics Engine,

• features an image heap allocator,

• features an input events decoder.

Before all, install the MicroUI C Module:

1. Find the correct version of the Cmodule according to the UI Pack version; see C Modules.

2. Unzip it in the BSP project.

3. Add the mandatory files to the list of the BSP project’s compiled files: ui_image_drawing.c
, ui_drawing.c , ui_rect_util.c , LLUI_PAINTER_impl.c , ui_display_brs_single.
c , LLDW_PAINTER_impl.c , ui_display_brs.c , ui_drawing_stub.c ,
ui_display_brs_legacy.c and ui_display_brs_predraw.c .

4. Add the optional files in the BSP project (if their associated feature is used/needed):

• LLUI_DISPLAY_HEAP_impl.c : to use another image heap allocator,

• LLUI_INPUT_LOG_impl.c and microui_event_decoder.c : to decode the MicroUI event (input
events and MicroUI internal events).

5. Add the C Module’s include folder to the BSP project’s include directories list.

3.6. VEE Porting Guide 845

MicroEJ Documentation,

LEDs

As soonas the VEEPort Configurationproject LEDsmodule is checked, the VEEPort features the
header file LLAPI LLUI_LED_impl.h . This header must be implemented. The mandatory
functions to implement are:

• LLUI_LED_IMPL_initialize : initialize the LED driver (if required) and return the available number of
LEDs.

• LLUI_LED_IMPL_getIntensity : return, if possible, the LED intensity.

• LLUI_LED_IMPL_setIntensity : set the LED intensity.

Refer to Abstraction Layer API to have more information. Refer too to the C-doc in the header
file itself.

Inputs

The VEE Port always features the header file LLAPI LLUI_INPUT_impl.h . This header must
be implemented even if there is no input device: the critical section management is required
by the MicroUI library itself. The mandatory functions to implement are:

• LLUI_INPUT_IMPL_initialize : can be empty if nothing is to initialize.

• LLUI_INPUT_IMPL_getInitialStateValue : empty if there is no State Event Generator.

• LLUI_INPUT_IMPL_enterCriticalSection : disable all input events (disable input devices interrupts
and/or disable the OS scheduling).

• LLUI_INPUT_IMPL_leaveCriticalSection : re-enable all inputs events.

Refer to Abstraction Layer API to have more information. Refer too to the C-doc in the header
file itself.

Display

As soon as the VEE Port Configuration project Display module is checked, the VEE Port fea-
tures the header file LLAPI LLUI_DISPLAY_impl.h . This headermust be implemented. The
mandatory functions to implement are:

• LLUI_DISPLAY_IMPL_initialize : fill the given structure LLUI_DISPLAY_SInitData (display size,
buffer address, etc.).

• LLUI_DISPLAY_IMPL_binarySemaphoreTake : takes the given semaphore.

• LLUI_DISPLAY_IMPL_binarySemaphoreGive : gives the given semaphore.

• LLUI_DISPLAY_IMPL_flush : copy/transmit the buffer content to the LCD.

Refer to Abstraction Layer API to have more information. Refer to the C-doc in the header file
itself too.

3.6. VEE Porting Guide 846

MicroEJ Documentation,

Display: LCD Constraints

According to the LCD constraints (see UI Port Configuration), some additional LLAPI must be
implemented:

• LLUI_DISPLAY_IMPL_convertARGBColorToDisplayColor and LLUI_DISPLAY_IMPL_convert-
DisplayColorToARGBColor : required when the pixel format is custom (not standard, see Dependencies).

• LLUI_DISPLAY_IMPL_prepareBlendingOfIndexedColors : required when the display back buffer is a
LUT buffer, not a pixel buffer.

• LLUI_DISPLAY_IMPL_isDoubleBuffered : the default implementation returns always true ; only useful
as information for the application.

• LLUI_DISPLAY_IMPL_isColor : thedefault implementationalways returns true when theBPP ishigher
than 8; only useful as information for the application.

• LLUI_DISPLAY_IMPL_getNumberOfColors : the default implementation returns always 1 << BPP ;
only useful as information for the application.

Display: Buffer Configuration

This configuration consists in declaring theavailable number of bufferswhereMicroUI candraw
(back buffer) and the strategy to apply to update these buffers after a flush. Read and update
the configuration file ui_configuration.h ; more details in the chapter Display.

Display: Optional Features

Several kinds of features can be implemented.

Hardware features:

• LLUI_DISPLAY_IMPL_setContrast and LLUI_DISPLAY_IMPL_getContrast : to configure the dis-
play contrast.

• LLUI_DISPLAY_IMPL_hasBacklight , LLUI_DISPLAY_IMPL_setBacklight and LLUI_DIS-
PLAY_IMPL_getBacklight : to turn on or off the display backlight.

Runtime Image Decoders

The BSP can add some runtime image decoders with the runtime decoders selected in the VEE
Port configuration project (modules PNG and BMPMonochrom decoders).

• LLUI_DISPLAY_IMPL_decodeImage : called by MicroUI to decode an image whose format is unknown
by the internal runtime image decoders.

Image Heap Management

By default, a best-fit allocator manages the image heap. To add another allocator, implement
these functions:

• LLUI_DISPLAY_IMPL_imageHeapInitialize : initialize the allocator.

• LLUI_DISPLAY_IMPL_imageHeapAllocate : allocates the expected buffer.

• LLUI_DISPLAY_IMPL_imageHeapFree : frees the given buffer.

MicroUI Image Management

These three functions are only helpful for compatibility with a GPU; see GPU Port.

3.6. VEE Porting Guide 847

MicroEJ Documentation,

• LLUI_DISPLAY_IMPL_getNewImageStrideInBytes

• LLUI_DISPLAY_IMPL_adjustNewImageCharacteristics

• LLUI_DISPLAY_IMPL_initializeNewImage

Test Suite

The Port Qualification Toolkit (PQT) provides a UI test suite to validate the UI Port (see VEE Port
TestSuite tohavemore information). This test suitemustbeexecuted tovalidate theUIPort and
after eachmodification on this UI Port (for instance, after changes to improve performances).

The UI Port test suite is available here:

• SDK 5: https://github.com/MicroEJ/VEEPortQualificationTools/tree/master/tests/ui/ui3

• SDK 6: https://github.com/MicroEJ/Tool-Project-Template-VEEPort/tree/1.3.0/vee-port/
validation/ui

The test suite is constituted of two blocks:

• The minimal Display test suite: a simple application test (with source code) to validate the
mandatory functions to implement to target a Display.

• An extendedDisplay test suite: a library that tests several MicroUI drawings. This test suite only
applies when the BSP uses a GPU to perform the drawings. See GPU Port.

The test suite doesnot check all UI Port features. However, someexampleprojects are available
in MicroEJ GitHub:

• LED: refer to the application https://github.com/MicroEJ/
Example-Standalone-Foundation-Libraries/tree/master/microui.led.

• Input: refer to the application https://github.com/MicroEJ/
Example-Standalone-Foundation-Libraries/tree/master/microui.input

Some other example projects are also available in MicroEJ GitHub and can be used to check if
the UI Port is valid:

• Hello World: https://github.com/MicroEJ/Example-Standalone-Foundation-Libraries/tree/
master/microui.helloworld

• Use of images: https://github.com/MicroEJ/Example-Standalone-Foundation-Libraries/tree/
master/microui.image

GPU Port

Principle

MicroUIandMicroUICmodulearedesigned tobeextendedusingaGPUhardwaredrawingaccel-
eration. This acceleration is optional and should be performed after themandatory operations
(see BSP Port).

A GPU can be used to draw shapes and/or images. Most of the time, the minimal implemen-
tation consists in filling the rectangles and drawing the images. The MicroUI C module is de-
signed to let the BSP implement only the GPU features. When a drawing is not implemented
over a GPU, the software implementation is automatically used instead. No extra code should
be added to the BSP to use the software algorithms.

The main advantages of using a GPU are:

3.6. VEE Porting Guide 848

https://github.com/MicroEJ/VEEPortQualificationTools/tree/master/tests/ui/ui3
https://github.com/MicroEJ/Tool-Project-Template-VEEPort/tree/1.3.0/vee-port/validation/ui
https://github.com/MicroEJ/Tool-Project-Template-VEEPort/tree/1.3.0/vee-port/validation/ui
https://github.com/MicroEJ/Example-Standalone-Foundation-Libraries/tree/master/microui.led
https://github.com/MicroEJ/Example-Standalone-Foundation-Libraries/tree/master/microui.led
https://github.com/MicroEJ/Example-Standalone-Foundation-Libraries/tree/master/microui.input
https://github.com/MicroEJ/Example-Standalone-Foundation-Libraries/tree/master/microui.input
https://github.com/MicroEJ/Example-Standalone-Foundation-Libraries/tree/master/microui.helloworld
https://github.com/MicroEJ/Example-Standalone-Foundation-Libraries/tree/master/microui.helloworld
https://github.com/MicroEJ/Example-Standalone-Foundation-Libraries/tree/master/microui.image
https://github.com/MicroEJ/Example-Standalone-Foundation-Libraries/tree/master/microui.image

MicroEJ Documentation,

• the drawing is rendered faster than using the software algorithms,

• the drawing is performed asynchronously, allowing theMCU to perform other actions (no need
to wait until the end of the drawing).

Existing C Modules

Some CModules are available on the MicroEJ Repository. These Cmodules already implement
compatible features with a GPU. Add the mandatory files to the list of the BSP project’s com-
piled files to use the associatedGPU (and add the CModule’s include folder to the BSP project’s
include directories list). Refer to C Modules to have more information.

Port a GPU

Drawing Function

As described in Painter Abstraction Layer API, the idea of the implementation of
LLUI_PAINTER_impl.h (and LLDW_PAINTER_impl.h) is first to manage the syn-
chronization with the Graphics Engine and then, to dispatch the drawing itself to a third party
implementation through the header file ui_drawing.h . The files LLUI_PAINTER_impl.c
and LLDW_PAINTER_impl.c available in the MicroUI C module already perform this op-
eration for all MicroUI drawings. Consequently, only the drawing itself should be implemented
in the BSP.

For example:

DRAWING_Status UI_DRAWING_
→˓fillRectangle(MICROUI_GraphicsContext* gc, jint x1, jint y1, jint x2, jint y2) {
// TODO

}

The drawing function has to take into account these properties:

• the color: the structure MICROUI_GraphicsContext gives the shape color (always fully
opaque),

• the clip: the LLUI_DISPLAY.h file provides some functions to retrieve the current MI-
CROUI_GraphicsContext ’s clip,

• the buffer destination address by calling the LLUI_DISPLAY_getBufferAddress function,

• the shape bounds: the drawing function parameters.

The drawing function must return the drawing status. This status indicates to the Graphics En-
gine the kind of drawing:

• synchronous drawing: the drawing is performed by the GPU and entirely performed before re-
turning. In that case, the drawing function has to return DRAWING_DONE .

• asynchronous drawing: the drawing is started, maybe processed by the GPU before returning.
In that case, the drawing function has to return DRAWING_RUNNING .

As explained above, the second case should be the rule. That means that the Graphics Engine
cannot ask for another drawing (accelerated or not) before the end of the drawing currently
performed by the GPU. To unlock the Graphics Engine, the GPU interrupt routine must call the
Graphics Engine function LLUI_DISPLAY_notifyAsynchronousDrawingEnd to notify the

3.6. VEE Porting Guide 849

MicroEJ Documentation,

end of the drawing. The Graphics Enginemanages the synchronization alone; no extra support
in the BSP is mandatory.

Note: The end of the asynchronous drawing may occur before the end of the drawing function execution (before
returning). The Graphics Engine also manages this use case, and the BSP implementation does not need to check
this use case.

Fallback

A GPUmay not be able tomanage all the drawing functions. For instance, it cannot manage all
image formats, or it cannot manage all rotation angles, etc. In that case, the drawing function
can call the software drawing function instead.

DRAWING_Status UI_DRAWING_
→˓fillRectangle(MICROUI_GraphicsContext* gc, jint x1, jint y1, jint x2, jint y2) {
DRAWING_Status ret;
if (!compatible_drawing(gc, x1, y1, x2, y2)) {

UI_DRAWING_SOFT_fillRectangle(gc, x1, y1, x2, y2);
ret = DRAWING_DONE;

}
else {

gpu_fill_rect(LLUI_DISPLAY_getBufferAddress(&gc->image), x1, y1, x2, y2);
ret = DRAWING_RUNNING;

}
return ret;

}

Image Constraints

The GPUmay have strong requirements on the images:

• the pixels buffer start address alignment,

• an image stride different than the image width.

These constraints affect the compile-time images (Image Generator) and the runtime images
(decoded images and MicroUI BufferedImage).

Address Alignment

In the VEE Port Configuration project, specify the property imageBuffer.memoryAlignment in
the display.properties file. The value is the alignment in bits. This value will be taken into
account by the compile-time images (Image Generator) and the runtime images.

Note: For the runtime images, this alignment value may be customized thanks to the function LLUI_DIS-
PLAY_IMPL_adjustNewImageCharacteristics .

3.6. VEE Porting Guide 850

MicroEJ Documentation,

Stride (Compile-time Images)

The stride is dynamic, often depending on the image format and width. Consequently, the
stride cannot be set as a property in the display.properties file for example.

For the compile-time images (Image Generator), a specific extension of the ImageGenerator is
required.

1. See Extended Mode to create the ImageGenerator extension project.

2. Create a class that implements BufferedImageLoader . The value to be returned is expressed
in pixels.

public class MicroUIGeneratorExtension extends BufferedImageLoader{

private static final int ALIGNMENT_PIXELS = 16;

@Override
public int getStride(int defaultStride) {

return (getWidth() + ALIGNMENT_PIXELS - 1) & ~(ALIGNMENT_PIXELS - 1);
}

}

3. Create the file /META-INF/services/com.microej.tool.ui.generator.
MicroUIRawImageGeneratorExtension

4. Fill it with the class name:

my.package.MicroUIGeneratorExtension

5. Build the project and copy the result in the VEE Port Configuration project, subfolder dropins/
tools .

6. Rebuild the VEE Port.

Stride (Runtime Images)

For the compile-time images, the BSP has to implement the LLAPI LLUI_DIS-
PLAY_IMPL_getNewImageStrideInBytes (the value to be returned is expressed in
bytes):

uint32_t UI_DRAWING_getNewImageStrideInBytes(jbyte␣
→˓image_format, uint32_t image_width, uint32_t image_height, uint32_t default_stride) {

uint32_t bpp = DISPLAY_UTILS_get_bpp((MICROUI_ImageFormat)image_format);
return (bpp >= (uint32_t)8) ? ALIGN(image_

→˓width, (uint32_t)16) * (bpp / (uint32_t)8) : ALIGN(image_width, (uint32_t)8);
}

3.6. VEE Porting Guide 851

MicroEJ Documentation,

Test Suite

As described here, the Port Qualification Toolkit (PQT) provides a UI test suite to validate the
UI Port. The second block of the UI test suite (extended Display test suite) uses a library that
tests several MicroUI drawings. This test suitemust be executed to validate the UI Port over a
GPU and after each modification on this UI Port (for instance, after changes to improve perfor-
mances).

MicroUI

Principle

MicroUI library defines a Low Level UI framework for embedded devices. This module allows
the creation of basic Human-Machine-Interfaces (HMI), with output on a pixel-based screen.

Architecture

MicroUI library is the entry point to perform some drawings on a display and to interact with
user input events. This library contains only aminimal set of basic APIs. High-level libraries can
be used to have more expressive power, such asMWT (Micro Widget Toolkit). In addition to this
restricted set of APIs, the MicroUI implementation has been designed so that the EDC and BON
footprint is minimal.

At application startup all MicroUI objects relative to the I/O devices are created and accessible.
The following MicroUI methods allow you to access these objects:

• Display.getDisplay() : returns the instance of the display which drives the main display screen.

• Leds.getNumberOfLeds(): returns the numbers of available LEDs.

MicroUI is not a standalone library. It requires a configuration step and several extensions to
drive I/O devices (display, inputs, LEDs).

First, MicroUI requires a configuration step in order to create these internal objects before the
call to the main() method. The chapter Static Initialization explains how to perform the con-
figuration step.

Note: This configuration step is the same for both embedded and simulated VEE Ports.

The embedded VEE Port requires some additional C libraries to drive the I/O devices. Each C
library is dedicated to a specific kind of I/O device. A specific chapter is available to explain
each kind of I/O device.

Table 54: MicroUI C libraries
I/O devices Extension Name Chapter
Graphical / pixel-based display Display Display
Inputs (buttons, joystick, touch, pointers, etc.) Input Input
LEDs LED LED

The simulation VEE Port uses amock which simulates all I/O devices. Refer to the chapter Sim-
ulation.

3.6. VEE Porting Guide 852

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#getDisplay--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/led/Leds.html#getNumberOfLeds--

MicroEJ Documentation,

Library ej.api.Drawing

This Foundation Library provides additional drawing APIs. This library is fully integrated in Dis-
play module.

Thread

Principle

TheMicroUI implementation forMicroEJ uses one internal thread. This thread is createdduring
the MicroUI initialization step, and is started by a call to MicroUI.start().

Role

This thread has several roles:

• It manages all display events (requestRender(), requestShow(), etc.).

• It reads the I/O devices inputs and dispatches them into the event generators’ listeners. See
input section: Input.

• It allows to run some piece of code using the callSerially() method.

Memory

The thread is always running. The user has to count it to determine the number of concurrent
threads the Core Engine can run (seeMemory options in Standalone Application Options).

Exceptions

The thread cannot be stoppedwith a Java exception: the exceptions are always checked by the
framework.

When an exception occurs in a usermethod called by the internal thread (for instance render()),
the current UncaughtExceptionHandler receives the exception. When no exception handler
is set, a default handler prints the stack trace.

Native Calls

The MicroUI implementation for MicroEJ uses native methods to perform some actions (read
input devices events, perform drawings, turn on LEDs, etc.). The library implementation has
been designed to not use blocking native methods (wait input devices, wait end of drawing,
etc.) which can lock the full Core Engine execution.

The specification of the native methods is to perform the action as fast as possible. The action
execution may be sequential or parallel because an action is able to use a third-party device
(software or hardware). In this case, some callbacks are available to notify the end of this kind
of parallel actions.

However some actions have to wait the end of a previous parallel action. By consequence the
caller thread is blocked until the previous action is done; in other words, until the previous

3.6. VEE Porting Guide 853

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/MicroUI.html#start--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#requestRender--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#requestShow-ej.microui.display.Displayable-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/MicroUI.html#callSerially-java.lang.Runnable-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Displayable.html#render-ej.microui.display.GraphicsContext-

MicroEJ Documentation,

parallel action has called its callback. In this case, only the current thread is locked (because it
cannot continue its execution until both actions are performed). All other threads can run, even
a thread with a lower priority than current thread. If no thread has to be run, the Core Engine
goes in sleepmode until the native callback is called.

Antialiasing

MicroUI provides several policies to use the antialiasing. These policies depend on several fac-
tors, including the kind of drawing and the display pixel rendering format. The main concept
is that MicroUI does not allow you to draw something with a transparency level different from
255 (fully opaque). There are two exceptions: the images and the fonts.

For each pixel to draw, the antialiasing process blends the foreground color with a background
color. This background color can be specified or not by the application:

• specified: The background color is fixed by the application (GraphicsContext.setBackground-
Color()).

• not specified: The background color is the original color of the destination pixel (a “read pixel”
operation is performed for each pixel).

Images

Drawing an image (a pre-generated image or an image decoded at runtime) which contains
some transparency levels does not depend on the display pixel rendering format. During the
image drawing, each pixel is converted into 32 bits by pixel format.

This pixel format contains 8 bits to store the transparency level (alpha). This byte is used to
merge the foreground pixel (image transparent pixel) with the background pixel (buffer opaque
pixel). The formula to obtain the pixel is:

𝛼𝑀𝑢𝑙𝑡 = (𝛼𝐹𝐺 * 𝛼𝐵𝐺)/255

𝛼𝑂𝑢𝑡 = 𝛼𝐹𝐺+ 𝛼𝐵𝐺− 𝛼𝑀𝑢𝑙𝑡

𝐶𝑂𝑢𝑡 = (𝐶𝐹𝐺 * 𝛼𝐹𝐺+ 𝐶𝐵𝐺 * 𝛼𝐵𝐺− 𝐶𝐵𝐺 * 𝛼𝑀𝑢𝑙𝑡)/𝛼𝑂𝑢𝑡

The destination buffer is always opaque, so:

𝐶𝑂𝑢𝑡 = (𝐶𝐹𝐺 * 𝛼𝐹𝐺+ 𝐶𝐵𝐺 * (255− 𝛼𝑀𝑢𝑙𝑡))/255

where:

• 𝛼FG is the alpha level of the foreground pixel (layer pixel),

• 𝛼BG is the alpha level of the background pixel (working buffer pixel),

• Cxx is a color component of a pixel (Red, Green or Blue),

• 𝛼Out is the alpha level of the final pixel.

3.6. VEE Porting Guide 854

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html#setBackgroundColor-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html#setBackgroundColor-int-

MicroEJ Documentation,

Fonts

A font holds only a transparency level (alpha). This fixed alpha level is defined during the
pre-generation of a font (see Fonts).

• 1 means 2 levels are managed: fully opaque and fully transparent.

• 2 means 4 levels are managed: fully opaque, fully transparent and 2 intermediate levels.

• 4 means 16 levels are managed: fully opaque, fully transparent and 14 intermediate levels.

• 8 means 256 levels are managed: fully opaque, fully transparent and 254 intermediate levels.

Note: The antialiasing mode for the fonts concerns only the fonts with more than 1 bit per pixel (see Font Genera-
tor).

Installation

The MicroUI library is an additional module. To enable it, refer to the UI Port Configuration.

Use

SeeMicroUI chapter in Application Developer Guide.

Static Initialization

Principle

The MicroUI implementation for MicroEJ requires a configuration step (also called extension
step) to customize itself before application startup (see Architecture). This configuration step
uses an XML file. In order to save both runtime execution time and flashmemory, the file is pro-
cessed by the Static MicroUI Initializer tool, avoiding the need to process the XML configuration
file at runtime. The tool generates appropriate initialized objects directly within the MicroUI
library, as well as Java and C constants files for sharing MicroUI event generator IDs.

This XML file (also called the initialization file) defines:

• The MicroUI event generators that will exist in the application in relation to low-level drivers
that provide data to these event generators (see Input).

• Whether the application has a display; and if so, it provides its logical name.

• Which fonts will be provided to the application.

The next chapters describe succinctly the XML file. For more information about grammar,
please consult appendixMicroUI Static Initializer.

3.6. VEE Porting Guide 855

MicroEJ Documentation,

Functional Description

The Static MicroUI Initializer tool takes as entry point the initialization file which describes the
MicroUI library extension. This tool is automatically launched during the VEE Port build (see
Installation).

The Static MicroUI Initializer tool is able to generate two files:

• A Java library which extends MicroUI library. This library is automatically added to theMicroEJ
Application classpathwhenMicroUI API library is fetched. This library is used atMicroUI startup
to create all instances of I/O devices (Display, EventGenerator, etc.) and contains the fonts de-
scribed into the configuration file (these fonts are also called “system fonts”).

Warning: This MicroUI extension library is always generated and MicroUI library cannot run
without this extension.

• A C header file (*.h). This header file contains some IDswhich are used tomake a link between
an input device (buttons, touch) and its MicroUI event generator (see Input).

Note: The Front Panel project does not need a configuration file (like C header file for embedded VEE Port).

Fig. 191: Static MicroUI Initializer Process

XML File

The XML file must be created in VEE Port configuration project, in folder microui and called
microui.xml .

Fig. 192: Static MicroUI Initializer XML File

The XML file grammar is detailed here. The following list gives a short description of each ele-
ment:

3.6. VEE Porting Guide 856

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/EventGenerator.html

MicroEJ Documentation,

• Root element: The initialization file root element is <microui> and contains
component-specific elements.

<microui>
[component specific elements]

</microui>

• Display element: The display element augments the initialization file with the configuration
of the display. The following snippet is an example of display element:

<display name=”DISPLAY”/>

• Fonts element: The fonts element augments the initialization filewith the fonts that are implic-
itly embedded within the application (also called system fonts). Applications can also embed
their own fonts.

Note: The system fonts are optional, in which case application has to provide some fonts to be
able to draw characters.

The following snippet is an example of fonts element:

<fonts>

<range name=”LATIN” sections=”0-2”/>
<customrange start=”0x21” end=”0x3f”/>

</fonts>

• Event generators element: The eventgenerators element augments the initialization file with:

– the configuration of the predefined MicroUI EventGenerator: Command, Buttons, States,
Pointer and Touch.

– the configuration of the generic MicroUI EventGenerator.

The following snippet is an example of eventgenerators element:

<eventgenerators>
<!-- Generic Event Generators -->
<eventgenerator name=”GENERIC” class=”foo.bar.Zork”>

<property name=”PROP1” value=”3”/>
<property name=”PROP2” value=”aaa”/>

</eventgenerator>

<!-- Predefined Event Generators -->
<command name=”COMMANDS”/>
<buttons name=”BUTTONS” extended=”3”/>
<buttons name=”JOYSTICK” extended=”5”/>
<pointer name=”POINTER” width=”1200” height=”1200”/>
<touch name=”TOUCH” display=”DISPLAY”/>
<states name=”STATES” numbers=”NUMBERS” values=”VALUES”/>

</eventgenerators>

<array name=”NUMBERS”>
<elem value=”3”/>

(continues on next page)

3.6. VEE Porting Guide 857

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/EventGenerator.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Command.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Buttons.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/States.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Pointer.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/EventGenerator.html

MicroEJ Documentation,

(continued from previous page)

<elem value=”2”/>
<elem value=”5”/>

</array>

<array name=”VALUES”>
<elem value=”2”/>
<elem value=”0”/>
<elem value=”1”/>

</array>

XML File Example

This common MicroUI initialization file initializes MicroUI with:

• a Display,

• a Command event generator,

• a Buttons event generator which targets n buttons (3 first buttons having extended features),

• a Buttons event generator which targets the buttons of a joystick,

• a Pointer event generator which targets a touch panel,

• a Font whose path is relative to this file.

<microui>

<display name=”DISPLAY”/>

<eventgenerators>
<command name=”COMMANDS”/>
<buttons name=”BUTTONS” extended=”3”/>
<buttons name=”JOYSTICK” extended=”5”/>
<touch name=”TOUCH” display=”DISPLAY”/>

</eventgenerators>

<fonts>

</fonts>

</microui>

Dependencies

No dependency.

3.6. VEE Porting Guide 858

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Command.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Buttons.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Buttons.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Pointer.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Font.html

MicroEJ Documentation,

Installation

TheStatic Initialization tool is part of theMicroUImodule (seeMicroUI). Install theMicroUImod-
ule to install the Static Initialization tool and fill all properties in MicroUI module configuration
file (which must specify the name of the initialization file).

Use

The Static MicroUI Initializer tool is automatically launched during the VEE Port build.

Abstraction Layer API

Principle

The MicroUI implementation for MicroEJ requires an Abstraction Layer implementation. This
Abstraction Layer implementation finalizes the MicroUI implementation started with the static
initialization step (see Static Initialization) for a given VEE Port.

The Abstraction Layer implementation consists in a set of headers files to implement in C to tar-
get the hardware drivers. Some functions are mandatory, others are not. Some other headers
files are also available to call UI engines internal functions.

For the simulator, some Front Panel interfaces and classes allow to specify the simulated VEE
Port characteristics.

Embedded VEE Port

Fig. 193: MicroUI Embedded Abstraction Layer API

The specification of header files names is:

• Name starts with LLUI_ .

3.6. VEE Porting Guide 859

MicroEJ Documentation,

• Second part name refers the UI engine: DISPLAY , INPUT , LED .

• Files whose name ends with _impl list functions to implement over hardware.

• Files whose name has no suffix list internal UI engines functions.

There are some exceptions :

• LLUI_PAINTER_impl.h and LLDW_PAINTER_impl.h list a subpart of UI Graphics Engine functions
to implement (all MicroUI native drawing methods).

• ui_drawing_soft.h and dw_drawing_soft.h list all drawing methods implemented by the Graphics En-
gine.

• microui_constants.h is the file generated by the MicroUI Static Initializer (see Static Initialization).

TheMicroUI C module provides a default implementation of the UI Pack Abstraction Layer API:

• LLUI_PAINTER_impl.c and LLDW_PAINTER_impl.c manage the synchronizationwith theGraphics
Engine and redirect all drawings to ui_drawing.h and ui_image_drawing.h .

• ui_drawing.h and ui_image_drawing.h list all drawing methods the VEE Port can implement.

• ui_drawing.c and ui_image_drawing.c are the default implementation of ui_drawing.h and
ui_image_drawing.h that redirects all drawings to ui_drawing_soft.h and dw_drawing_soft.h .

The BSP has to implement LLUI_xxx header files and optionally ui_drawing.h and
ui_image_drawing.h (to draw using a GPU and/or to draw in a custom BufferedImage).

All header files and their aims are described in next UI engines chapters: LED, Input andDisplay.

Simulator

Fig. 194: MicroUI Simulator Abstraction Layer API

In the simulator the three UI engines are grouped in amock called Front Panel. The Front Panel
comes with a set of classes and interfaces which are the equivalent of headers file (*.h) of
Embedded VEE Port.

The specification of class names is:

• Package are the same than the MicroUI library (ej.microui.display, ej.microui.event, ej.mi-
croui.led).

• Name start with LLUI .

3.6. VEE Porting Guide 860

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/package-summary.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/package-summary.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/led/package-summary.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/led/package-summary.html

MicroEJ Documentation,

• The second part of the name refers the UI engine: Display , Input , Led .

• Files whose name ends with Impl list methods to implement like in the embedded VEE Port.

• Files whose name has no suffix list internal UI engine functions.

There are some exceptions :

• LLUIPainter.java and LLDWPainter.java list a subpart of UI Graphics Engine functions (all MicroUI native
drawing methods).

• UIDrawing.java and DWDrawing.java list all drawing methods the VEE Port can implement (and already
implemented by the Graphics Engine).

• EventXXX list methods to create input events compatible with MicroUI implementation.

All files and their aims are described in Simulation.

LED

Principle

The LED module contains the C part of the MicroUI implementation which manages LED de-
vices. This module is composed of only one element: an implementation of the Abstraction
Layer APIs for the LEDs which must be provided by the BSP (see LLUI_LED: LEDs).

Functional Description

The LEDmodule implements the MicroUI Leds framework. LLUI_LED specifies the Abstrac-
tion Layer APIs that receive orders from the Managed world.

The Abstraction Layer APIs are the same for the LED which is connected to a GPIO (0 or 1
), to a PWM , to a bus (I2C , SPI), etc. The BSP has the responsibility of interpreting the
application parameter intensity .

Typically, when the LED is connected to a GPIO , the intensity “0”means “OFF”, and all other
values “ON”. When the LED is connected via a PWM , the intensity “0” means “OFF”, and all
other values must configure the PWM duty cycle signal.

The BSP should be able to return the state of an LED. If it is not able to do so (for example GPIO
is not accessible in readmode), the BSP has to save the LED state in a global variable. If not, the
returned value may be wrong and the application may not be able to know the LEDs states.

Abstraction Layer API

The LED module provides Abstraction Layer APIs that allow the BSP to manage the LEDs. The
BSPhas to implement theseAbstractionLayerAPIs,making the linkbetween theMicroUI library
and the BSP LEDs drivers.

The Abstraction Layer APIs to implement are listed in the header file LLUI_LEDS_impl.h .
First, in the initialization function, the BSPmust return the available number of LEDs the board
provides. The other functions are used to turn the LEDs on and off.

3.6. VEE Porting Guide 861

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/led/Leds.html

MicroEJ Documentation,

Fig. 195: Led Abstraction Layer API

When there is no LEDon theboard, a stub implementation of C library is available. This C library
must be linked by the third-party C IDE when the MicroUI module is installed in the VEE Port.
This stub library does not provide any Abstraction Layer API files.

Typical Implementation

This chapter helps to write a basic LLUI_LEDS_impl.h implementation. This implementa-
tion manages some two-state LEDs: on or off.

The pseudo-code calls external functions such as LEDS_DRIVER_xxx to symbolize the use
of external drivers.

static void get_led_port_and_pin(int32_t ledID, int32_t* port, int32_t* pin)
{

switch(ledID)
{

/* TODO */
*port = ...;
*pin = ...;

}
}

jint LLUI_LED_IMPL_getIntensity(jint ledID)
{

int32_t port;
int32_t pin;
get_led_port_and_pin(ledID, &port, &pin);

(continues on next page)

3.6. VEE Porting Guide 862

MicroEJ Documentation,

(continued from previous page)

return GPIO_ReadPin(port, pin) ==␣
→˓GPIO_PIN_RESET ? LLUI_LED_MAX_INTENSITY : LLUI_LED_MIN_INTENSITY;
}

jint LLUI_LED_IMPL_initialize(void)
{

return DRIVER_LEDS_Init(); // return the available number of leds
}

void LLUI_LED_IMPL_setIntensity(jint ledID, jint intensity)
{

int32_t port;
int32_t pin;
get_led_port_and_pin(ledID, &port, &pin);

GPIO_WritePin(port, pin, 0 == intensity ? GPIO_PIN_RESET : GPIO_PIN_SET);
}

Dependencies

• MicroUI module (seeMicroUI).

• LLUI_LED_impl.h implementation if standard implementation is chosen (seeFunctionalDe-
scription and LLUI_LED: LEDs).

Installation

LEDs is a sub-part of MicroUI library. When the MicroUI module is installed, the LED module
must be installed in order to be able to connect physical LEDswith VEE Port. If not installed, the
stubmodule will be used.

In the VEE Port configuration file, check UI > LEDs to install LEDs.

Use

The MicroUI LEDs APIs are available in the class ej.microui.led. Leds.

Input

Principle

The Inputmodule contains the C part of the MicroUI implementation whichmanages input de-
vices. This module is composed of two elements:

• the C part of MicroUI input API (a built-in C archive) called Input Engine,

• an implementation of Abstraction Layer APIs for the input devices thatmust be provided by the
BSP (see LLUI_INPUT: Input).

3.6. VEE Porting Guide 863

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/led/Leds.html

MicroEJ Documentation,

Functional Description

The Input module implements the MicroUI int -based event generators’ framework.
LLUI_INPUT specifies the Abstraction Layer APIs that send events to the Managed world.

Drivers for input devices must generate events that are sent, via a MicroUI Event Generator,
to the application. An event generator accepts notifications from devices, and generates an
event in a standard format that can be handled by the application. Depending on the MicroUI
configuration, there can be several different types of event generator in the system, and one or
more instances of each type.

Each MicroUI Event Generator represents one side of a pair of collaborative components that
communicate using a shared buffer:

• The producer: the C driver connected to the hardware. As a producer, it sends its data into the
communication buffer.

• The consumer: the MicroUI Event Generator. As a consumer, it reads (and removes) the data
from the communication buffer.

Fig. 196: Drivers and MicroUI Event Generators Communication

The LLUI_INPUT API allowsmultiple pairs of <driver - event generator> to use the same
buffer, and associates drivers and event generators using an int ID. The ID used is the event
generator IDheldwithin theMicroUI global registry. Apart fromsharing the IDused to “connect”
one driver’s data to its respective event generator, both entities are completely decoupled.

The MicroUI thread waits for data to be published by drivers into the “input buffer”, and dis-
patches to the correct (according to the ID) event generator to read the received data. This
“driver-specific-data” is then transformed into MicroUI events by event generators and sent to
objects that listen for input activity.

3.6. VEE Porting Guide 864

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/EventGenerator.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/EventGenerator.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/EventGenerator.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/MicroUI.html

MicroEJ Documentation,

Fig. 197: MicroUI Events Framework

Driver Listener

Drivers may either interface directly with event generators, or they can send their notifications
to a Listener, also written in C, and the listener passes the notifications to the event generator.
This decoupling has twomajor benefits:

• The drivers are isolated from the MicroEJ libraries – they can even be existing code.

• The listener can translate the notification; so, for example, a joystick could generate pointer
events.

Static Initialization

The event generators available onMicroUI startup (after the call toMicroUI.start()) are the event
generators listed in the MicroUI description file (XML file). This file is a part of the MicroUI Static
Initialization step (Static Initialization).

The order of event generators defines the unique identifier for each event generator. These
identifiers are generated in a header file called microui_constants.h . The input driver (or its
listener) has to use these identifiers to target a specific event generator.

If an unknown identifier is used or if two identifiers are swapped, the associated event may be
never received by the application or may bemisinterpreted.

3.6. VEE Porting Guide 865

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/MicroUI.html#start--

MicroEJ Documentation,

Standard Event Generators

MicroUI provides a set of standard event generators: Command, Buttons, Pointer and States.
For each standard generator, the Input Engine proposes a set of functions to create and send
an event to this generator.

Static Initialization proposes an additional event generator: Touch . A touch event generator
is a Pointer event generator whose area size is the display size where the touch panel is placed.
Furthermore, contrary to a pointer, a press action is required to be able to have amove action
(and so a drag action). The Input Engine proposes a set of functions to target a touch event
generator (equal to a pointer event generator butwith some constraints). The touch event gen-
erator is identified as a standard Pointer event generator, by consequence the Java application
has to use the Pointer API to deal with a touch event generator.

According to the event generator, one or several parameters are required. The parameter for-
mat is event generator dependant. For instance a Pointer X-coordinate is encoded on 16 bits
(0-65535 pixels).

Note: Pointer and Touch origin (point 0,0) is the top-left point.

Generic Event Generators

MicroUI provides an abstract class GenericEventGenerator (package ej.microui.event). The
aim of a generic event generator is to be able to send custom events from native world to the
application. Theseeventsmaybeconstitutedbyonlyone32-bitwordorby several 32-bitwords
(maximum 255).

On the application side, a subclass must be implemented by clients who want to define their
own event generators. Two abstract methods must be implemented by subclasses:

• eventReceived : The event generator received an event from a C driver through the Abstraction Layer API
sendEvent function.

• eventsReceived : The event generator received an event made of several int s.

The event generator is responsible for converting incoming data into aMicroUI event and send-
ing the event to its listener. It should be defined during MicroUI Static Initialization step (in the
XML file, see Static Initialization). This allows the MicroUI implementation to instantiate the
event generator on startup.

If the event generator is not available in the application classpath, a warning is thrown (with
a stack trace) and the application continues. In this case, all events sent by BSP to this event
generator are ignored because no event generator is able to decode them.

3.6. VEE Porting Guide 866

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Command.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Buttons.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Pointer.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/States.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Pointer.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Pointer.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Pointer.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/GenericEventGenerator.html

MicroEJ Documentation,

Abstraction Layer API

The implementation of the MicroUI Event Generator APIs provides some Abstraction Layer
APIs. The BSP has to implement these Abstraction Layer APIs, making the link between the
MicroUI C library inputs and the BSP input devices drivers.

The Abstraction Layer APIs to implement are listed in the header file LLUI_INPUT_impl.h
. It allows events to be sent to the MicroUI implementation. The input drivers are allowed to
add events directly using the event generator’s unique ID (see Static Initialization). The drivers
are fully dependent on theMicroEJ framework (a driver or a driver listener cannot bedeveloped
withoutMicroEJbecause it uses theheader file generatedduring theMicroUI initializationstep).

To send an event to the application, the driver (or its listener) has to call one of the event engine
function, listed in LLUI_INPUT.h . These functions take as parameter the MicroUI Event-
Generator to target and the data. The event generator is represented by a unique ID. The data
depends on the type of the event. To run correctly, the event engine requires an implementa-
tion of functions listed in LLUI_INPUT_impl.h . When an event is added, the event engine
notifies MicroUI library.

Fig. 198: Input Abstraction Layer API

When there is no input device on the board, a stub implementation of C library is available. This
C librarymust be linked by the third-party C IDEwhen theMicroUImodule is installed in the VEE
Port. This stub library does not provide any Abstraction Layer API files.

3.6. VEE Porting Guide 867

MicroEJ Documentation,

Typical Implementation

This chapter helps to write a basic LLUI_INPUT_impl.h implementation. This implemen-
tation should be divided into several files:

• LLUI_INPUT_impl.c : implements LLUI_INPUT_imp.h and receives the input devices interrupts /
callbacks (button press, touchmove, etc.).

• xxx_helper.c : one helper per kind of input device (group of buttons, touch, etc.).

• It links the input device hardware status and the software status (MicroUI event status).

• event_generator.c : converts the input device hardware events in MicroUI events.

The pseudo-code calls external functions such as BUTTONS_DRIVER_xxx or
TOUCH_DRIVER_xxx to symbolize the use of external drivers.

LLUI_INPUT_impl.c

Its main aim is to synchronize the Input Engine with the input devices. The Input Engine holds
a circular FIFO to store the input devices’ events. The use of this FIFO must be performed un-
der the critical section. The concurrent actions “an input device adds a new event in the Input
Engine” and “the Input Engine reads an event from the FIFO” must not be performed simulta-
neously. The implementation does not need to manage the concurrency: the Input Engine au-
tomatically calls the functions LLUI_INPUT_IMPL_enterCriticalSection and LLUI_IN-
PUT_IMPL_leaveCriticalSection when an event is added or read.

• If the input devices add events under interrupt, the critical section must disable and re-enable
the input devices’ interrupts.

• If the input devices add events from an OS task, the critical section must use a semaphore to
prevent scheduling.

• If bothmodes are used (typical use case), the critical sectionmust be designed in consequence.

The following pseudo-code shows a typical implementation with:

• buttons under interrupt.

• touch panel from an OS task.

static xSemaphoreHandle _sem_input;

void LLUI_INPUT_IMPL_initialize(void)
{

_sem_input = xSemaphoreCreateBinary();
xSemaphoreGive(g_sem_input); // first take must pass

BUTTONS_DRIVER_initialize();
TOUCH_DRIVER_initialize();

}

jint LLUI_INPUT_IMPL_getInitialStateValue(jint stateMachinesID, jint stateID)
{

// no state on this BSP
return 0;

}

void LLUI_INPUT_IMPL_enterCriticalSection()
(continues on next page)

3.6. VEE Porting Guide 868

MicroEJ Documentation,

(continued from previous page)

{
if (MICROEJ_FALSE == interrupt_is_in())
{

xSemaphoreTake(_sem_input, portMAX_DELAY);
BUTTONS_DRIVER_disable_interrupts();

}
// else: already in secure state (under interrupt)

}

void LLUI_INPUT_IMPL_leaveCriticalSection()
{

if (MICROEJ_FALSE == interrupt_is_in())
{

BUTTONS_DRIVER_enable_interrupts();
xSemaphoreGive(_sem_input);

}
// else: already in secure state (under interrupt)

}

The other aim of this implementation is to receive the input devices’ hardware events and to
redirect these events to the dedicated helper.

// called by the touch panel dedicated task
void TOUCH_DRIVER_callback(uint8_t pressed, int32_t x, int32_t y)
{

if (pressed)
{

// here, pen is down for sure
TOUCH_HELPER_pressed(x, y);

}
else
{

// here, pen is up for sure
TOUCH_HELPER_released();

}
}

void GPIO_IRQHandler(int32_t button, uint32_t port, uint32_t pin)
{

if (GPIO_PIN_SET == GPIO_ReadPin(port, pin))
{

// GPIO == 1 means ”pressed”
BUTTONS_HELPER_pressed(button);

}
else
{

// GPIO == 0 means ”released”
BUTTONS_HELPER_released(button);

}
}

3.6. VEE Porting Guide 869

MicroEJ Documentation,

buttons_helper.c

The Input Engine’s FIFOmight be full. In sucha case, a new input device event cannot be added.
Consequently, a button release event should not be added to the FIFO if the previous button
press event had not been added. This helper keeps the software state: the input device’s state
seen by the application.

Note: This helper does not convert the hardware event into a MicroUI event. It lets event_generator.c performs
this job.

static uint8_t buttons_pressed[NUMBER_OF_BUTTONS];

void BUTTONS_HELPER_initialize(void)
{

for(uint32_t i = 0; i < NUMBER_OF_BUTTONS; i++)
{

buttons_pressed[i] = MICROEJ_FALSE;
}

}

void BUTTONS_HELPER_pressed(int32_t buttonId)
{

// button is pressed

if (MICROEJ_TRUE == buttons_pressed[buttonId])
{

// button was pressed => repeat event (don't care if event is lost)
EVENT_GENERATOR_button_repeated(buttonId);

}
else
{

// button was released => press event
if (LLUI_INPUT_OK == EVENT_GENERATOR_button_pressed(buttonId))
{

// the event has been managed: we can store the new button state
// button is pressed now
buttons_pressed[buttonId] = MICROEJ_TRUE;

}
// else: event has been lost: stay in ”release” state

}
}

void BUTTONS_HELPER_repeated(int32_t buttonId)
{

// manage this repeat event like a press event to check ”software” button state
BUTTONS_HELPER_pressed(buttonId);

}

void BUTTONS_HELPER_released(int32_t buttonId)
{

// button is now released

if (MICROEJ_TRUE == buttons_pressed[buttonId])
{

// button was pressed => release event
(continues on next page)

3.6. VEE Porting Guide 870

MicroEJ Documentation,

(continued from previous page)

if (LLUI_INPUT_OK == EVENT_GENERATOR_button_released(buttonId))
{

// the event has been managed: we can store the new button state
// button is released now
buttons_pressed[buttonId] = MICROEJ_FALSE;

}
// else: event has been lost: stay in ”press” state

}
// else: already released

}

touch_helper.c

The Input Engine’s FIFOmight be full. In sucha case, a new input device event cannot be added.
Consequently, a touchmove / drag event should not be added to the FIFO if the previous touch
press event had not been added. This helper keeps the software state: the input device’s state
seen by the application.

This helper also filters the touch panel events. It uses two defines
FIRST_MOVE_PIXEL_LIMIT and MOVE_PIXEL_LIMIT to reduce the number
of events sent to the application (values are expressed in pixels).

Note: This helper does not convert the hardware event in the MicroUI event. It lets event_generator.c performs
this job.

// Number of pixels to generate a move after a press
#ifndef FIRST_MOVE_PIXEL_LIMIT
#error ”Please set the define FIRST_MOVE_PIXEL_LIMIT (in pixels)”
#endif

// Number of pixels to generate a move after a move
#ifndef MOVE_PIXEL_LIMIT
#error ”Please set the define MOVE_PIXEL_LIMIT (in pixels)”
#endif

#define DIFF(a,b) ((a) < (b) ? (b-a) : (a-b))
#define KEEP_
→˓COORD(p,n,limit) (DIFF(p,n) <= limit ? MICROEJ_FALSE : MICROEJ_TRUE)
#define␣
→˓KEEP_PIXEL(px,x,py,y,limit) (KEEP_COORD(px,x,limit) || KEEP_COORD(py,y,limit))
#define KEEP_
→˓FIRST_MOVE(px,x,py,y) (KEEP_PIXEL(px,x,py,y, FIRST_MOVE_PIXEL_LIMIT))
#define KEEP_MOVE(px,x,py,y) (KEEP_PIXEL(px,x,py,y, MOVE_PIXEL_LIMIT))

static uint8_t touch_pressed = MICROEJ_FALSE;
static uint8_t touch_moved = MICROEJ_FALSE;
static uint16_t previous_touch_x, previous_touch_y;

void TOUCH_HELPER_pressed(int32_t x, int32_t y)
{

// here, the pen is down for sure

if (MICROEJ_TRUE == touch_pressed)
(continues on next page)

3.6. VEE Porting Guide 871

MicroEJ Documentation,

(continued from previous page)

{
// pen was down => move event

// keep pixel according first ”move” event or not
int keep_pixel;
if(MICROEJ_TRUE == touch_moved)
{

keep_pixel = KEEP_MOVE(previous_touch_x, x, previous_touch_y, y);
}
else
{

keep_pixel = KEEP_FIRST_MOVE(previous_touch_x, x, previous_touch_y, y);
}

if (MICROEJ_TRUE == keep_pixel)
{

// store the new pixel
previous_touch_x = x;
previous_touch_y = y;
touch_moved = MICROEJ_TRUE;

// send a MicroUI touch event (don't care if event is lost)
EVENT_GENERATOR_touch_moved(x, y);

}
// else: same position; no need to send an event

}
else
{

// pen was up => press event
if (LLUI_INPUT_OK == EVENT_GENERATOR_touch_pressed(x, y))
{

// the event has been managed: we can store the new touch state
// touch is pressed now
previous_touch_x = x;
previous_touch_y = y;
touch_pressed = MICROEJ_TRUE;
touch_moved = MICROEJ_FALSE;

}
// else: event has been lost: stay in ”release” state

}
}

void TOUCH_HELPER_moved(int32_t x, int32_t y)
{

// manage this move like a press event to check ”software” touch state
TOUCH_HELPER_pressed(x, y);

}

void TOUCH_HELPER_released(void)
{

// here, the pen is up for sure

if (MICROEJ_TRUE == touch_pressed)
{

// pen was down => release event
if (LLUI_INPUT_OK == EVENT_GENERATOR_touch_released())

(continues on next page)

3.6. VEE Porting Guide 872

MicroEJ Documentation,

(continued from previous page)

{
// the event has been managed: we can store the new touch state
// touch is released now
touch_pressed = MICROEJ_FALSE;

}
// else: event has been lost: stay in ”press | move” state

}
// else: the pen was already up

}

event_generator.c

This file aims to convert the events (received by LLUI_INPUT_impl.c and then filtered by
xxx_helper.c) to the application through the Input Engine.

This C file should be the only C file to include the header file microui_constants.h . This header
file hasbeengeneratedduring theVEEPort build (seeStatic Initialization). It holds somedefines
that describe the available list of MicroUI Event Generators. Each MicroUI Event Generator has
its identifier: 0 to n-1.

A button event is often converted in the MicroUI Command event. That allows the application
to be button-independent: the application is not waiting for button 0 or button 1 events but Mi-
croUI Command ESC or LEFT for instance. The following pseudo-code converts the buttons
events in MicroUI Command events.

Note: Each hardware event can be converted into another kind of MicroUI event. For instance, a joystick can
simulate a MicroUI Pointer; a touch panel can be reduced to a set of MicroUI Commands (left, right, top, left), etc.

#include ”microui_constants.h”

static uint32_t _get_button_command(int32_t button_id)
{

switch (button_id)
{
default:
case BUTTON_WAKEUP_ID:

return LLUI_INPUT_COMMAND_ESC;
case BUTTON_TAMPER_ID:

return LLUI_INPUT_COMMAND_MENU;
}

}

int32_t EVENT_GENERATOR_button_pressed(int32_t buttonId)
{

return LLUI_INPUT_sendCommandEvent(MICROUI_
→˓EVENTGEN_COMMANDS, _get_button_command(buttonId));
}

int32_t EVENT_GENERATOR_button_repeated(int32_t buttonId)
{

return LLUI_INPUT_sendCommandEvent(MICROUI_
→˓EVENTGEN_COMMANDS, _get_button_command(buttonId));
}

(continues on next page)

3.6. VEE Porting Guide 873

MicroEJ Documentation,

(continued from previous page)

int32_t EVENT_GENERATOR_button_released(int32_t buttonId)
{

// do not send a Command event on the release event
return LLUI_INPUT_OK; // the event has been managed

}

int32_t EVENT_GENERATOR_touch_pressed(int32_t x, int32_t y)
{

return LLUI_INPUT_sendTouchPressedEvent(MICROUI_EVENTGEN_TOUCH, x, y);
}

int32_t EVENT_GENERATOR_touch_moved(int32_t x, int32_t y)
{

return LLUI_INPUT_sendTouchMovedEvent(MICROUI_EVENTGEN_TOUCH, x, y);
}

int32_t EVENT_GENERATOR_touch_released(void)
{

return LLUI_INPUT_sendTouchReleasedEvent(MICROUI_EVENTGEN_TOUCH);
}

Event Buffer

MicroUI is using a circular buffer to manage the input events. As soon as an event is added,
removed, or replaced in the queue, the event engine calls the associated Abstraction Layer
API (LLAPI) LLUI_INPUT_IMPL_log_queue_xxx() . This LLAPI allows the BSP to log this
event to dump it later thanks to a call to LLUI_INPUT_dump() .

Note: When the functions LLUI_INPUT_IMPL_log_queue_xxx() are not implemented, a call to LLUI_IN-
PUT_dump() has no effect (there is no default logger).

The following steps describe how the logger is called:

1. On startup, MicroUI calls LLUI_INPUT_IMPL_log_queue_init() : it gives the event buffer.
The implementation should prepare its logger.

2. The BSP adds or replaces an event in the queue, the event engine calls LLUI_IN-
PUT_IMPL_log_queue_add() or LLUI_INPUT_IMPL_log_queue_replace() . The im-
plementation should store the event metadata: buffer index, event size, etc.

3. If the event cannot be added because the queue is full, the event engine calls LLUI_IN-
PUT_IMPL_log_queue_full() . The implementation can print a warning, throw an error,
etc.

4. MicroUI reads an event, the event engine calls LLUI_INPUT_IMPL_log_queue_read() .
The implementation has to update its metadata (if required).

The following steps describe how the dump is performed:

1. The BSP calls LLUI_INPUT_dump() : the event engine starts a dump of the event buffer.

2. First, the event engine dumps the older events. It calls LLUI_INPUT_IMPL_log_dump()
for each old event. The log type value is 0 ; it means that all logs are the events or events’ data
already consumed (past events), and the first log is the latest event or data stored in the queue.

3.6. VEE Porting Guide 874

MicroEJ Documentation,

3. Then, the event engine dumps the future events (events not consumed yet by MicroUI). It calls
LLUI_INPUT_IMPL_log_dump() for each new event. The log type value is 1 ; it means
that all logs are the events or data not consumed yet (future events).

4. The future events can target a MicroUI object (a Displayable for a requestRender event, a
Runnable for a callSerially event, etc.). The event engine notifies the logger to print theMicroUI
objects by calling LLUI_INPUT_IMPL_log_dump() with 2 as log type value.

5. Finally, the event engine notifies the logger about the end of the dump by calling LLUI_IN-
PUT_IMPL_log_dump() with 3 as log type value.

Warning: The dump of MicroUI objects linked to the future events is only available with the
MicroEJ Architectures 7.16 and higher. With older MicroEJ Architectures, nothing is dumped.

An implementation is available on the MicroUI C module. This logger is constituted with two
files:

• LLUI_INPUT_LOG_impl.c : this file holds some metadata for each event. When the event en-
gine calls LLUI_INPUT_IMPL_log_dump() , the logger retrieves the event metadata and calls
microui_event_decoder.c functions. To enable this logger, set the define UI_FEATURE_EVENT_DE-
CODER in ui_configuration.h .

• microui_event_decoder.c : this file describes the MicroUI events. It has to be customized with the MicroUI
event generators identifiers. See ui_configuration.h .

Example of a dump:

==============================␣
→˓MicroUI FIFO Dump ===============================
---------------------------------- Old Events ----------------------------------
[27: 0x00000000] garbage
[28: 0x00000000] garbage
[...]
[99: 0x00000000] garbage
[00: 0x08000000] Display SHOW Displayable (Displayable index = 0)
[01: 0x00000008] Command HELP (event generator 0)
[02: 0x0d000000] Display REPAINT Displayable (Displayable index = 0)
[03: 0x07030000] Input event: Pointer pressed (event generator 3)
[04: 0x009f0063] at 159,99 (absolute)
[05: 0x07030600] Input event: Pointer moved (event generator 3)
[06: 0x00aa0064] at 170,100 (absolute)
[07: 0x02030700] Pointer dragged (event generator 3)
[08: 0x0d000000] Display REPAINT Displayable (Displayable index = 0)
[09: 0x07030600] Input event: Pointer moved (event generator 3)
[10: 0x00b30066] at 179,102 (absolute)
[11: 0x02030700] Pointer dragged (event generator 3)
[12: 0x0d000000] Display REPAINT Displayable (Displayable index = 0)
[13: 0x07030600] Input event: Pointer moved (event generator 3)
[14: 0x00c50067] at 197,103 (absolute)
[15: 0x02030700] Pointer dragged (event generator 3)
[16: 0x0d000000] Display REPAINT Displayable (Displayable index = 0)
[17: 0x07030600] Input event: Pointer moved (event generator 3)
[18: 0x00d00066] at 208,102 (absolute)
[19: 0x02030700] Pointer dragged (event generator 3)
[20: 0x0d000000] Display REPAINT Displayable (Displayable index = 0)
[21: 0x07030100] Input event: Pointer released (event generator 3)
[22: 0x00000000] at 0,0 (absolute)

(continues on next page)

3.6. VEE Porting Guide 875

MicroEJ Documentation,

(continued from previous page)

[23: 0x00000008] Command HELP (event generator 0)
---------------------------------- New Events ----------------------------------
[24: 0x0d000000] Display REPAINT Displayable (Displayable index = 0)
[25: 0x07030000] Input event: Pointer pressed (event generator 3)
[26: 0x002a0029] at 42,41 (absolute)
--------------------------- New Events' Java objects ------------------
[java/lang/Object[2]@0xC000FD1C

[0] com/microej/examples/microui/mvc/MVCDisplayable@0xC000BAC0
[1] null

==

Notes:

• The event 24 holds an object in the events objects array (a Displayable); its object index is 0 .

• An object is null when the memory slot has been used during the application execution but
freed at the dump time.

• Theobject array’ size is themaximumofnon-null objects reachedduring applicationexecution.

• The indices of old events are out-of-date: the memory slot is now null or reused by a newer
event.

• The event 25 targets the event generator 3 ; the identifier is available in microui_constants.h
(created during the VEE Port build, see Static Initialization).

• The events 27 to 99 cannot be identified (nometadata or partial event content due to circular
queuemanagement).

• Refers to the implementation on theMicroUI Cmodule to havemore information about the for-
mat of the event; this implementation is always up-to-date with the MicroUI implementation.

Dependencies

• MicroUI module (seeMicroUI)

• Static MicroUI initialization step (see Static Initialization). This step generates a header file
which contains some unique event generator IDs. These IDs must be used in the BSP to make
the link between the input devices drivers and the MicroUI Event Generator s.

• LLUI_INPUT_impl.h implementation (see LLUI_INPUT: Input).

• TheMicroUI C module to optionally use the default input logger.

Installation

Input module is a sub-part of the MicroUI library. The Input module is installed at same time
than MicroUI module.

3.6. VEE Porting Guide 876

MicroEJ Documentation,

Use

The MicroUI Input APIs are available in the classes of packages ej.microui.event and ej.
microui.event.generator .

Display

Principle

The Displaymodule contains the C part of the MicroUI implementation, whichmanages graph-
ical displays. This module is composed of three elements:

• the C part of MicroUI Display API (a built-in C archive) called Graphics Engine,

• an implementation of Abstraction Layer APIs for the displays (LLUI_DISPLAY) that the BSPmust
provide (see LLUI_DISPLAY: Display),

• an implementation of Abstraction Layer APIs for MicroUI drawings.

The Display module implements the MicroUI graphics framework. This framework is consti-
tuted of several notions: the display characteristics (size, format, backlight, contrast, etc.), the
drawing state machine (render, flush, wait flush completed), the image life cycle, and the fonts
and drawings. The main part of the Display module is provided by a built-in C archive called
Graphics Engine. This librarymanages the drawing statemachinemechanism, the images, and
the fonts. The LLUI_DISPLAY implementationmanages the display characteristics and the
drawings.

The Graphics Engine is designed to let the BSP use an optional graphics processor unit (GPU) or
an optional third-party drawing library. Each drawing can be implemented independently. If
no extra framework is available, the Graphics Engine performs all drawings in software. In this
case, the BSP has to performa straightforward implementation (four functions) of the Graphics
Engine Abstraction Layer.

MicroUI library also gives thepossibility toperformsomeadditional drawings that arenot avail-
able asAPI in theMicroUI library. TheGraphicsEngineprovidesa setof functions to synchronize
the drawings between them, to get the destination (and sometimes source) characteristics, to
call internal software drawings, etc.

Front Panel (simulator Graphics Engine part) gives the samepossibilities. The same constraints
canbe applied, the samedrawings canbeoverriddenor added, and the same software drawing
rendering is performed (down to the pixel).

Chapters Organization

Formore convenience, this chapter only describes how a display device works and how to con-
nect it to the MicroUI Graphics Engine. Dedicated chapters deal with related concepts:

• Buffer Refresh Strategy: how the front buffer is refreshed.

• Drawings: how the drawings are performed, the use of a GPU, etc.

• Images: how the images are generated and drawn.

• Fonts: how the fonts are generated and drawn.

• C Modules: how the BSP extends the Graphics Engine.

• Simulation: how the Graphics Engine is simulated.

3.6. VEE Porting Guide 877

MicroEJ Documentation,

Display Configuration

TheGraphics Engine provides a number of different configurations. The appropriate configura-
tion shouldbe selecteddependingon the capabilities of the screenandother relatedhardware,
such as display controllers.

The policies can vary in four ways:

• the display device connection to the Graphics Engine,

• the number of buffers,

• pixel format or depth,

• the memory layout of the pixels.

Display Connection

A display is always associated with a memory buffer whose size depends on the display panel
size (width and height) and the number of bits per pixel. Thismemory buffer holds all the pixels
the display panel has to show. The display panel continuously refreshes its content by reading
the data from amemory buffer. This refreshing cannot be stopped; otherwise, the image fades
away. Most of the time, a new frame often appears every 16.6ms (60Hz).

Fig. 199: Display Continuous Refresh

There are two types of connection with the MCU: Serial and Parallel.

Serial

TheMCU transmits the data to show (the pixels) to the displaymodule through a serial bus (SPI,
DSI). The display module holds its memory and fills it with the received data. It continuously
refreshes its content by reading the data from this memory. This memory is usually not acces-
sible to the MCU: the MCU can only write into it with the right macro (SPI or DSI). This is the
notion of unmappedmemory.

Fig. 200: Display Serial Connection

3.6. VEE Porting Guide 878

MicroEJ Documentation,

Parallel

The MCU features an LCD controller that transmits the content of an MCU’s buffer to the dis-
play module. The display module doesn’t hold its memory. The LCD controller continuously
updates the display panel’s content by reading theMCUmemory data. By definition, thismem-
ory is addressed by the MCU: the MCU can write (and read) into it (the memory is in the MCU
addresses range). This is the notion ofmappedmemory.

Fig. 201: Display Parallel Connection

Buffer Policy

Overview

The notion of buffer policy depends on the available number of buffers allocated in the MCU
memory and on the display connection. The Graphics Engine does not depend on the type of
buffer policy, and it manipulates these buffers in two steps:

1. It renders the application drawings into an MCU buffer; this buffer is called back buffer.

2. It flushes the buffer’s content to the display panel; this buffer is called front buffer.

The implementation of Display.flush() calls the Abstraction Layer API LLUI_DIS-
PLAY_IMPL_flush to let the BSP update the display data.

Decision Tree

The following flow charts provide handy guides to pick the buffer policy suited to the hardware
configuration.

Serial Connection

Fig. 202: Buffer Policies for Serial Connection

3.6. VEE Porting Guide 879

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#flush--

MicroEJ Documentation,

Parallel Connection

Fig. 203: Buffer Policies for Parallel Connection

Chapter Sum-up

The following table redirects to the right chapter according to the display buffer policy:

Table 55: Display Connections
Connection Nb MCU Buffers Chapters
Serial partial Partial
Serial 1 Single
Serial 2 Transmit and Swap
Parallel 1 Direct
Parallel 1 + partial Partial
Parallel 2 Swap Double or Single
Parallel 3 Swap Triple or Transmit and Swap

Direct Buffer (parallel)

There is only one buffer, and the display panel continuously refreshes its content on this MCU
buffer. ThisMCUbuffer is, at the sametime, thebackand frontbuffer. Consequently, thedisplay
panel can show incomplete frames and partial drawings since the drawings can be done during
the refresh cycle of the display panel. This is the notion of direct buffer. This buffer policy is
recommended for static display-based applications and/or to save memory.

In this policy, the flush step has nomeaning (there is only one buffer).

Fig. 204: Direct Buffer

3.6. VEE Porting Guide 880

MicroEJ Documentation,

Swap Double Buffer (parallel)

To prevent flickering in the display panel, the BSP should provide anotherMCUbuffer (the same
size as the first buffer) where the drawings are performed. The first buffer, for its part, is dedi-
cated to the refreshing of the display panel. Double buffering avoids flickering and inconsistent
rendering: it is well suited to high-quality animations. This is the notion of double buffer. This
new buffer is usually called back buffer, and the first buffer is usually called front buffer. The
twobuffers inMCUmemory alternately play the role of the back buffer and the front buffer. The
front buffer address is alternatively changed from one buffer to the other.

The flush step consists in switching (or swapping) the two buffers: the front buffer becomes the
back buffer, and the back buffer becomes the front buffer.

Fig. 205: Swap Double Buffer

This swap may not be atomic and may be done asynchronously: the display panel often fully
refreshes an entire frame before changing its buffer address. During this time, the front buffer
is used (the display panel refreshes itself on it), and the back buffer is locked (reserved for the
next frame to show). Consequently, the application cannot draw again: the swapping must be
performedbefore. As soonas the swap is done, bothbuffers are switched. Now, the application
can draw in the new back buffer (previously the front buffer).

Swap Triple Buffer (parallel)

When the display is large, it is possible to introduce a third mapped buffer. This third buffer
saves fromwaiting the end of the swapping before starting a new drawing. The buffers are usu-
ally called back buffer 1, back buffer 2, and back buffer 3.

The flush step consists in swapping two buffers and letting the application draw in the third
buffer:

• The back buffer 1 is the front buffer: it is currently used by the LCD controller to refresh the
display panel.

• Thebackbuffer 2 is thenext front buffer: thedrawingshavebeendone, anda flush is requested.

• The back buffer 3 is not used: the application can immediately draw into it without waiting for
the swapping between the back buffers 1 & 2.

• When the drawings are done in the back buffer 3, this buffer becomes the next front buffer, the
back buffer 2 is the front buffer, and the back buffer 1 is free.

Fig. 206: Swap Triple Buffer

3.6. VEE Porting Guide 881

MicroEJ Documentation,

Single Buffer

Serial Connection

For the display connection serial, there are two distinct buffers: the buffer where the drawings
are rendered is usually called back buffer, and the displaymodule buffer front buffer. As long
as only the back buffer is stored in the MCU-mapped memory (the front buffer is stored in the
display module unmapped memory), there is only one buffer to allocate. This is the notion of
single buffer.

The flush step consists in transmitting the data through the right bus (SPI, DSI).

Fig. 207: Single Buffer (serial)

The display panel only shows complete frames; it cannot show partial drawings because the
flush step is performed after all the drawings. The application cannot draw in the back buffer
while the data is transmitted to the front buffer. As soon as the data is fully transmitted, the
application can draw again in the back buffer.

The time to transmit the data from the back buffer to the front buffer may be long. During this
time, no drawing can be anticipated, and the global framerate is reduced.

Parallel Connection

When the swap policy is not possible (the front buffer is mapped on a fixed MCU memory ad-
dress), the policy single buffer can be used. Like the swap policy, this double buffering avoids
flickering and inconsistent rendering: it is well suited to high-quality animations.

The flush step consists in copying the back buffer content to the front buffer (often by using a
DMA).

Fig. 208: Single Buffer (parallel)

When the swappolicy can be used, the single buffer policy can also be used. However, there are
some differences:

• In the Swap Double policy, the new front buffer data is available instantly. As soon as the LCD
controller has updated its front buffer address, the data is ready to be read by the LCD con-
troller. In the Single policy, the process of copying the data to the front buffer occurs while the
LCD controller is reading it. Therefore, the buffer copy has to be faster than the LCD controller
reading. If this requirement is not met, the LCD controller will read a mix of new and old data
(because the buffer copy is not entirely finished).

3.6. VEE Porting Guide 882

MicroEJ Documentation,

• In the Swap Double policy, the synchronization with the LCD controller is more effortless. An
interrupt is thrown as soon as the LCD controller has updated its front buffer address. In the
Single policy, the copy buffer process should be synchronized with the LCD tearing signal.

• In the Single policy, during the copy, the destination buffer (the front buffer) is used by the copy
buffer process (DMA, memcopy, etc.) and by the LCD controller. Both masters are using the
same RAM section. This same RAM section switches in Write mode (copy buffer process) and
Readmode (LCD controller).

Transmit and Swap Buffer

Serial Connection

When the time to transmit the data from the back buffer to the front buffer is too long, a second
buffer can be allocated in the MCU memory. The application can use this buffer while the first
buffer is transmitted. This allows to anticipate the drawings even if the first drawings are not
fully transmitted. This is the notionof transmit and swapbuffer. The buffers are usually called
back buffer 1 and back buffer 2 (the display module’s buffer is the front buffer).

The flush step consists in transmitting the back buffer data to the display module memory and
swapping both back buffers:

• The back buffer 1 is used as transmission buffer.

• The back buffer 2 is not used: the application can immediately draw into it without waiting for
the back buffer 1 to be transmitted.

• At the end of the drawings in the back buffer 2, the back buffer 2 takes the role of the transmis-
sion buffer, and the back buffer 1 is free.

Fig. 209: Transmit and Swap (serial)

Parallel Connection

When the time to copy the data from the back buffer to the front buffer is too long, a third buffer
canbeallocated in theMCUmemory. This buffer canbeusedby theapplicationduring the copy
of the first buffer. This allows to anticipate thedrawings even if the first drawings still need tobe
entirely copied. This is the notion of transmit and swap buffer. The buffers are usually called
back buffer 1 and back buffer 2 (the third buffer is the front buffer). The flush step consists in
copying the back buffer data to the front buffer and swapping both back buffers.

• The back buffer 1 is used as copying buffer.

• The back buffer 2 is not used: the application can immediately draw into it without waiting for
the back buffer 1 to be copied.

• At the end of the drawings in the back buffer 2, the back buffer 2 takes the role of the copying
buffer, and the back buffer 1 is free.

3.6. VEE Porting Guide 883

MicroEJ Documentation,

Fig. 210: Transmit and Swap (parallel)

Partial Buffer

When RAM usage is not a constraint, the back buffer is sized to store all the pixel data of the
screen. But when the RAM available on the device is very limited, a partial buffer can be used
instead. In that case, the buffer is smaller and can only store a part of the screen (one-third, for
example).

When this technique is used, the application draws in the partial buffer. To flush the drawings,
the content of the partial buffer is copied to the display (to its internalmemory or to a complete
buffer fromwhich the display reads).

If the display does not have its own internal memory and if the device does not have enough
RAM to allocate a complete buffer, then it is not possible to use a partial buffer. In that case,
only the direct buffer policy can be used.

Workflow

A partial buffer of the desired size has to be allocated in RAM. If the display does not have its
own internalmemory, a complete buffer also has to be allocated in RAM, and the display has to
be configured to read from the whole buffer.

The implementation should follow these steps:

1. First, the application draws in the partial buffer.

2. Then, to flush the drawings on the screen, the data of the partial buffer is flushed to the display
(either copied to its internal memory or the complete buffer in RAM).

3. Finally, synchronization is required before starting the next drawing operation.

Dual Partial Buffer

A second partial buffer can be used to avoid the synchronization delay between two drawing
cycles. While one of the two partial buffers is being copied to the display, the application can
start drawing in the second partial buffer.

This technique is interesting when the copy time is long. The downside is that it either requires
more RAM or requires reducing the size of the partial buffers.

Using a dual partial buffer has no impact on the application code.

3.6. VEE Porting Guide 884

MicroEJ Documentation,

Application Limitations

Using a partial buffer rather than a complete buffermay require adapting the code of the appli-
cation since rendering a graphical elementmay requiremultiple passes. If the application uses
MWT, a custom render policy has to be used.

Besides, the GraphicsContext.readPixel() and the GraphicsContext.readPixels() APIs can not be
used on the graphics context of the display in partial buffer policy. Indeed, we cannot rely on
the current content of the back buffer as it doesn’t contain what is seen on the screen.

Likewise, the Painter.drawDisplayRegion() API can not be used in partial buffer policy. Indeed,
this API reads the content of the back buffer in order to draw a region of the display. Instead
of relying on the drawings that were performed previously, this API should be avoided, and the
drawings should be performed again.

Using a partial buffer can have a significant impact on animation performance. Refer to Anima-
tions for more information on the development of animations in an application.

Implementation Example

The partial buffer demo provides an example of partial buffer implementation. This example
explains how to implement partial buffer support in theBSPandhow touse it in an application.

Pixel Structure

Principle

The Display module provides pre-built display configurations with a standard pixel memory
layout. The layoutof thebitswithin thepixelmaybe standard ordriver-specific. When installing
the Displaymodule, a property bpp is required to specify the kind of pixel representation (see
Installation).

Standard

When the value is one among this list: ARGB8888 | RGB888 | RGB565 | ARGB1555 |
ARGB4444 | C4 | C2 | C1 , the Display module considers the pixels representation as stan-
dard. All standard representations are internally managed by the Displaymodule, by the Front
Panel and by the Image Generator. No specific support is required as long as a VEE Port is using
a standard representation. It can:

• generate at compile-time RAW images in the same format as display pixel format,

• convert at runtime MicroUI 32-bit colors in display pixel format,

• simulate the display pixel format at runtime.

Note: The custom implementations of the image generator, some Abstraction Layer APIs, and Front Panel APIs are
ignored by the Display module when a standard pixel representation is selected.

According to the chosen format, some color data can be lost or cropped.

• ARGB8888: the pixel uses 32 bits-per-pixel (alpha[8], red[8], green[8] and blue[8]).

3.6. VEE Porting Guide 885

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html#readPixel-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html#readPixels-int:A-int-int-int-int-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Painter.html
https://github.com/MicroEJ/Demo-PartialBuffer

MicroEJ Documentation,

u32 convertARGB8888toLCDPixel(u32 c) {
return c;

}

u32 convertLCDPixeltoARGB8888(u32 c) {
return c;

}

• RGB888: the pixel uses 24 bits-per-pixel (alpha[0], red[8], green[8] and blue[8]).

u32 convertARGB8888toLCDPixel(u32 c) {
return c & 0xffffff;

}

u32 convertLCDPixeltoARGB8888(u32 c) {
return 0

| 0xff000000
| c
;

}

• RGB565: the pixel uses 16 bits-per-pixel (alpha[0], red[5], green[6] and blue[5]).

u32 convertARGB8888toLCDPixel(u32 c) {
return 0

| ((c & 0xf80000) >> 8)
| ((c & 0x00fc00) >> 5)
| ((c & 0x0000f8) >> 3)
;

}

u32 convertLCDPixeltoARGB8888(u32 c) {
return 0

| 0xff000000
| ((c & 0xf800) << 8)
| ((c & 0x07e0) << 5)
| ((c & 0x001f) << 3)
;

}

• ARGB1555: the pixel uses 16 bits-per-pixel (alpha[1], red[5], green[5] and blue[5]).

u32 convertARGB8888toLCDPixel(u32 c) {
return 0

| (((c & 0xff000000) == 0xff000000) ? 0x8000 : 0)
| ((c & 0xf80000) >> 9)
| ((c & 0x00f800) >> 6)
| ((c & 0x0000f8) >> 3)
;

}

u32 convertLCDPixeltoARGB8888(u32 c) {
return 0

| ((c & 0x8000) == 0x8000 ? 0xff000000 : 0x00000000)
| ((c & 0x7c00) << 9)
| ((c & 0x03e0) << 6)
| ((c & 0x001f) << 3)

(continues on next page)

3.6. VEE Porting Guide 886

MicroEJ Documentation,

(continued from previous page)

;
}

• ARGB4444: the pixel uses 16 bits-per-pixel (alpha[4], red[4], green[4] and blue[4]).

u32 convertARGB8888toLCDPixel(u32 c) {
return 0

| ((c & 0xf0000000) >> 16)
| ((c & 0x00f00000) >> 12)
| ((c & 0x0000f000) >> 8)
| ((c & 0x000000f0) >> 4)
;

}

u32 convertLCDPixeltoARGB8888(u32 c) {
return 0

| ((c & 0xf000) << 16)
| ((c & 0xf000) << 12)
| ((c & 0x0f00) << 12)
| ((c & 0x0f00) << 8)
| ((c & 0x00f0) << 8)
| ((c & 0x00f0) << 4)
| ((c & 0x000f) << 4)
| ((c & 0x000f) << 0)
;

}

• C4: the pixel uses 4 bits-per-pixel (grayscale[4]).

u32 convertARGB8888toLCDPixel(u32 c) {
return (toGrayscale(c) & 0xff) / 0x11;

}

u32 convertLCDPixeltoARGB8888(u32 c) {
return 0xff000000 | (c * 0x111111);

}

• C2: the pixel uses 2 bits-per-pixel (grayscale[2]).

u32 convertARGB8888toLCDPixel(u32 c) {
return (toGrayscale(c) & 0xff) / 0x55;

}

u32 convertLCDPixeltoARGB8888(u32 c) {
return 0xff000000 | (c * 0x555555);

}

• C1: the pixel uses 1 bit-per-pixel (grayscale[1]).

u32 convertARGB8888toLCDPixel(u32 c) {
return (toGrayscale(c) & 0xff) / 0xff;

}

u32 convertLCDPixeltoARGB8888(u32 c) {
return 0xff000000 | (c * 0xffffff);

}

3.6. VEE Porting Guide 887

MicroEJ Documentation,

Driver-Specific

TheDisplaymodule considers the pixel representation asdriver-specificwhen the value is one
among this list: 1 | 2 | 4 | 8 | 16 | 24 | 32 . Thismode is oftenusedwhen thepixel representation
is not ARGB or RGB but BGRA or BGR instead. This mode can also be used when
the number of bits for a color component (alpha, red, green, or blue) is not standard or when
the value does not represent a color but an index in a CLUT . This mode requires some specific
support in the VEE Port:

• Anextensionof the imagegenerator ismandatory: seeExtendedMode to convertMicroUI’s stan-
dard 32-bit ARGB colors to display pixel format.

• The Front Panel widget Display requires an extension to convert the MicroUI 32-bit colors in
display pixel format and vice-versa, see Display Widget.

• The drivermust implement functions that convertMicroUI’s standard 32-bit ARGB colors to dis-
play pixel format and vice-versa: see Color Conversions.

The following example illustrates the use of specific format BGR565 (the pixel uses 16
bits-per-pixel (alpha[0], red[5], green[6] and blue[5]):

1. Configure the VEE Port:

• Create or open the VEE Port configuration project file display/display.properties :

bpp=16

2. Image Generator:

• Create a project as described here.

• Create the class com.microej.graphicalengine.generator.MicroUIGeneratorExtension that
extends the class com.microej.tool.ui.generator.BufferedImageLoader .

• Fill the method convertARGBColorToDisplayColor() :

public class MicroUIGeneratorExtension extends BufferedImageLoader {
@Override
public int convertARGBColorToDisplayColor(int color) {
␣

→˓ return ((color & 0xf80000) >> 19) | ((color & 0x00fc00) >> 5) | ((color & 0x0000f8) << 8);
}

}

• Configure the Image Generator’ service loader: add the file /META-INF/services/com.
microej.tool.ui.generator.MicroUIRawImageGeneratorExtension :

com.microej.graphicalengine.generator.MicroUIGeneratorExtension

• Build the module (click on the blue button).

• Copy the generated jar file (imageGeneratorMyPlatform.jar) in the VEE Port configuration
project: /dropins/tools/ .

2. Simulator (Front Panel):

• Create the class com.microej.fp.MyDisplayExtension that implements the interface ej.fp.
widget.Display.DisplayExtension :

3.6. VEE Porting Guide 888

MicroEJ Documentation,

public class MyDisplayExtension implements DisplayExtension {

@Override
public int convertARGBColorToDisplayColor(Display display, int color) {
␣

→˓ return ((color & 0xf80000) >> 19) | ((color & 0x00fc00) >> 5) | ((color & 0x0000f8) << 8);
}

@Override
public int convertDisplayColorToARGBColor(Display display, int color) {

return␣
→˓((color & 0x001f) << 19) | ((color & 0x7e00) << 5) | ((color & 0xf800) >> 8) | 0xff000000;
}

@Override
public boolean isColor(Display display) {

return true;
}

@Override
public int getNumberOfColors(Display display) {

return 1 << 16;
}

}

• Configure the widget Display in the .fp file by referencing the display extension:

<ej.fp.widget.Display x=”41”␣
→˓y=”33” width=”320” height=”240” extensionClass=”com.microej.fp.MyDisplayExtension”/>

3. Build the VEE Port as usual

4. Update the LLUI_DISPLAY implementation by adding the following functions:

uint32_t LLUI_DISPLAY_IMPL_convertARGBColorToDisplayColor(uint32_t color) {
return ((color & 0xf80000) >> 19) | ((color & 0x00fc00) >> 5) | ((color & 0x0000f8) << 8);

}

uint32_t LLUI_DISPLAY_IMPL_convertDisplayColorToARGBColor(uint32_t color) {
return␣

→˓((color & 0x001f) << 19) | ((color & 0x7e00) << 5) | ((color & 0xf800) >> 8) | 0xff000000;
}

3.6. VEE Porting Guide 889

MicroEJ Documentation,

CLUT

The Display module allows the targeting of a display that uses a pixel indirection table (CLUT).
This kind of display is considered as generic but not standard (see Pixel Structure). It consists in
storing color indexes in the imagememory buffer instead of colors themselves.

Color Conversion

The driver must implement functions that convert MicroUI’s standard 32-bit ARGB colors (see
LLUI_DISPLAY: Display) to display color representation. For each application ARGB8888 color,
the display driver has to find the corresponding color in the table. The Graphics Engine will
store the index of the color in the table instead of using the color itself.

When an application color is not available in the display driver table (CLUT), the display driver
can try to find the closest color or return a default color. The first solution is often quite tricky
towrite and can cost a lot of time at runtime. That’s why the second solution is preferred. How-
ever, a consequence is that the application only uses a range of colors provided by the display
driver.

Alpha Blending

MicroUI and theGraphics Engine use blendingwhendrawing some texts or anti-aliased shapes.
For each pixel to draw, the display stack blends the current application foreground color with
the targeted pixel’s current color or with the current application background color (when en-
abled). This blending creates some intermediate colors which the display driver manages.

Most of the time, the intermediate colors do not match with the palette. The default color is so
returned, and the rendering becomes wrong. To prevent this use case, the Graphics Engine of-
fers a specific Abstraction Layer API LLUI_DISPLAY_IMPL_prepareBlendingOfIndexed-
Colors(void *foreground, void *background) .

This API is only used when a blending is required and when the background color is enabled.
TheGraphics Engine calls the API just before the blending and gives as a parameter the pointers
on both ARGB colors.The display driver should replace the ARGB colors with the CLUT indexes.
Then, the Graphics Engine will only use between both indexes.

For instance, when the returned indexes are 20 and 27 , the display stack will use the indexes
20 to 27 , where all indexes between 20 and 27 target some intermediate colors between
both the original ARGB colors.

This solution requires several conditions:

• Background color is enabled, and it is an available color in the CLUT.

• The application can only use foreground colors provided by the CLUT. The VEE Port designer
should give to the application developer the available list of colors the CLUTmanages.

• The CLUT must provide a set of blending ranges the application can use. Each range can have
its own size (different number of colors between two colors). Each range is independent. For
instance, if the foreground color RED (0xFFFF0000) can be blended with two background
colors WHITE (0xFFFFFFFF) and BLACK (0xFF000000), two rangesmust be provided.
Both the ranges have to contain the same index for the color RED .

• Application can only use blending ranges provided by the CLUT. Otherwise, the display driver
is not able to find the range, and the default color will be used to perform the blending.

3.6. VEE Porting Guide 890

MicroEJ Documentation,

• Rendering of dynamic images (images decoded at runtime) may be wrong because the ARGB
colors may be out of the CLUT range.

Memory Layout

For the display with a number of bits-per-pixel (BPP) higher or equal to 8, the Graphics Engine
supports the line-by-line memory organization: pixels are laid out from left to right within a
line, starting with the top line. For a display with 16 bits-per-pixel, the pixel at (0,0) is stored at
memory address 0, the pixel at (1,0) is stored at address 2, the pixel at (2,0) is stored at address
4, and so on.

Table 56: Memory Layout for BPP >= 8
BPP @ + 0 @ + 1 @ + 2 @ + 3 @ + 4
32 pixel 0 [7:0] pixel 0 [15:8] pixel 0 [23:16] pixel 0 [31:24] pixel 1 [7:0]
24 pixel 0 [7:0] pixel 0 [15:8] pixel 0 [23:16] pixel 1 [7:0] pixel 1 [15:8]
16 pixel 0 [7:0] pixel 0 [15:8] pixel 1 [7:0] pixel 1 [15:8] pixel 2 [7:0]
8 pixel 0 [7:0] pixel 1 [7:0] pixel 2 [7:0] pixel 3 [7:0] pixel 4 [7:0]

For the display with a number of bits-per-pixel (BPP) lower than 8, the Graphics Engine sup-
ports bothmemory organizations: line by line (pixels are laid out from left to right within a line,
starting with the top line) and column by column (pixels are laid out from top to bottomwithin
a line, starting with the left line). These byte organizations concern until 8 consecutive pixels
(see Byte Layout). When installing the Display module, a property memoryLayout is required
to specify the kind of pixel representation (see Installation).

Table 57: Memory Layout ‘line’ for BPP < 8 and byte layout ‘line’
BPP @ + 0 @ + 1 @ + 2 @ + 3 @ + 4
4 (0,0) to (1,0) (2,0) to (3,0) (4,0) to (5,0) (6,0) to (7,0) (8,0) to (9,0)
2 (0,0) to (3,0) (4,0) to (7,0) (8,0) to (11,0) (12,0) to (15,0) (16,0) to (19,0)
1 (0,0) to (7,0) (8,0) to (15,0) (16,0) to (23,0) (24,0) to (31,0) (32,0) to (39,0)

Table 58: Memory Layout ‘line’ for BPP < 8 and byte layout ‘column’
BPP @ + 0 @ + 1 @ + 2 @ + 3 @ + 4
4 (0,0) to (0,1) (1,0) to (1,1) (2,0) to (2,1) (3,0) to (3,1) (4,0) to (4,1)
2 (0,0) to (0,3) (1,0) to (1,3) (2,0) to (2,3) (3,0) to (3,3) (4,0) to (4,3)
1 (0,0) to (0,7) (1,0) to (1,7) (2,0) to (2,7) (3,0) to (3,7) (4,0) to (4,7)

Table 59: Memory Layout ‘column’ for BPP < 8 and byte layout ‘line’
BPP @ + 0 @ + 1 @ + 2 @ + 3 @ + 4
4 (0,0) to (1,0) (0,1) to (1,1) (0,2) to (1,2) (0,3) to (1,3) (0,4) to (1,4)
2 (0,0) to (3,0) (0,1) to (3,1) (0,2) to (3,2) (0,3) to (3,3) (0,4) to (3,4)
1 (0,0) to (7,0) (0,1) to (7,1) (0,2) to (7,2) (0,3) to (7,3) (0,4) to (7,4)

Table60: Memory Layout ‘column’ forBPP<8andbyte layout ‘column’
BPP @ + 0 @ + 1 @ + 2 @ + 3 @ + 4
4 (0,0) to (0,1) (0,2) to (0,3) (0,4) to (0,5) (0,6) to (0,7) (0,8) to (0,9)
2 (0,0) to (0,3) (0,4) to (0,7) (0,8) to (0,11) (0,12) to (0,15) (0,16) to (0,19)
1 (0,0) to (0,7) (0,8) to (0,15) (0,16) to (0,23) (0,24) to (0,31) (0,32) to (0,39)

3.6. VEE Porting Guide 891

MicroEJ Documentation,

Byte Layout

This chapter concerns only displays with a number of bits-per-pixel (BPP) smaller than 8. For
this kind of display, a byte contains several pixels, and the Graphics Engine allows to customize
how to organize the pixels in a byte.

Two layouts are available:

• line: The byte contains several consecutive pixels on the same line. When the end of the line is
reached, padding is added in order to start a new line with a new byte.

• column: The byte contains several consecutive pixels on the same column. When the end of
the column is reached, padding is added in order to start a new column with a new byte.

When installing the Display module, a property byteLayout is required to specify the kind of
pixel representation (see Installation).

Table 61: Byte Layout: line
BPP MSB LSB
4 pixel 1 pixel 0
2 pixel 3 pixel 2 pixel 1 pixel 0
1 pixel 7 pixel 6 pixel 5 pixel 4 pixel 3 pixel 2 pixel 1 pixel 0

Table 62: Byte Layout: column
BPP 4 2 1
MSB pixel 1 pixel 3 pixel 7

pixel 6
pixel 2 pixel 5

pixel 4
pixel 0 pixel 1 pixel 3

pixel 2
pixel 0 pixel 1

LSB pixel 0

Display Synchronization

Overview

The Graphics Engine is designed to be synchronized with the display refresh rate by defining
some points in the rendering timeline. It is optional; however, it is mainly recommended. This
chapter explains why to use display tearing signal and its consequences. Some chronograms
describe several use cases: with and without display tearing signal, long drawings, long flush
time, etc. Times are in milliseconds. To simplify chronograms views, the display refresh rate is
every 16ms (62.5Hz).

Captions definition:

• UI: It is the UI task that performs the drawings in the back buffer. At the end of the drawings,
the examples consider that the UI thread calls Display.flush() 1 millisecond after the end of the
drawings. At thismoment, a flush can start (the call to Display.flush() is symbolized by a simple
peak in chronograms).

• Flush: In single buffer policy, it is the time to flush the content of the back buffer to the front
buffer. In double or triple policy, it is the time to swap back and front buffers (the instruction

3.6. VEE Porting Guide 892

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#flush--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#flush--

MicroEJ Documentation,

is often instantaneous but the action is usually performed at the beginning of the next display
refresh rate). During this time, the back buffer is in use, and the UI task has to wait until the end
of the swap before starting a new drawing.

• Tearing: The peaks show the tearing signals.

• Rendering frequency: the frequency between the start of a drawing and the end of the flush.

Tearing Signal

In this example, the drawing time is 7ms, the time between the end of the drawing and the call
to Display.flush() is 1ms, and the flush time is 6ms. So the expected rendering frequency is 7 + 1
+ 6 = 14ms (71.4Hz). Flush starts just after the call to Display.flush(), and the next drawing starts
just after the end of flush. Tearing signal is not taken into consideration. As a consequence,
the display content is refreshed during the display refresh time. The content can be corrupted:
flickering, glitches, etc. The rendering frequency is faster than the display refresh rate.

In this example, the times are identical to the previous example. The tearing signal is used to
start the flush to respect thedisplay refreshing time. The rendering frequencybecomessmaller:
it is cadenced on the tearing signal every 16ms (62.5Hz). During 2ms, the CPU can schedule
other tasks or go into idle mode. The rendering frequency is equal to the display refresh rate.

In this example, the drawing time is 14ms, the time between the end of the drawing and the call
to Display.flush() is 1ms, and the flush time is 6ms. So the expected rendering frequency is 14
+ 1 + 6 = 21ms (47.6Hz). Flush starts just after the call to Display.flush(), and the next drawing
starts just after the end of flush. Tearing signal is not taken into consideration.

In this example, the times are identical to the previous example. The tearing signal is used to
start the flush to respect the display refreshing time. The drawing time + flush time is higher
than the display tearing signal period. So, the flush cannot start at every tearing peak: it is
cadenced on two tearing signals every 32ms (31.2Hz). During 11ms, the CPU can schedule other
tasks or go into idle mode. The rendering frequency is equal to the display refresh rate divided
by two.

3.6. VEE Porting Guide 893

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#flush--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#flush--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#flush--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#flush--

MicroEJ Documentation,

Additional Buffer

Some devices take a lot of time to flush the back buffer content to the front buffer. The follow-
ing examples demonstrate the consequence of rendering frequency. The use of an additional
buffer optimizes this frequency; however, it uses a lot of RAM.

In this example, the drawing time is 7ms, the time between the end of the drawing and the call
to Display.flush() is 1ms, and the flush time is 12ms. So the expected rendering frequency is 7
+ 1 + 12 = 20ms (50Hz). Flush starts just after the call to Display.flush(), and the next drawing
starts just after the end of flush. Tearing signal is not taken into consideration. The rendering
frequency is cadenced on drawing time + flush time.

As mentioned above, the idea is to use two back buffers. First, the UI task is drawing in the
back buffer A . Just after the call to Display.flush(), the flush can start. During the flush time
(copy of the back buffer A to the front buffer), the back buffer B can be used by the UI task
to continue the drawings. When the drawings in the back buffer B are done (and after the call
to Display.flush()), the application cannot start a third frame by drawing into the back buffer A
because the flush is using it. As soon as the flush is done, a new flush (of the back buffer B)
can start. The rendering frequency is cadenced on flush time, i.e., 12ms (83.3Hz).

The previous example doesn’t take into consideration the display tearing signal. With a tearing
signal and only one back buffer, the frequency is cadenced on two tearing signals (see above).
With two back buffers, the frequency is now cadenced on only one tearing signal despite the
long flush time.

3.6. VEE Porting Guide 894

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#flush--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#flush--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#flush--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#flush--

MicroEJ Documentation,

Time Sum-up

The following table resumes the previous examples times:

• It considers the display frequency is 62.5Hz (16ms).

• Drawing time is the time left for the application to perform its drawings and call Display.flush().
In our examples, the time between the last drawing and the call to Display.flush() is 1 ms.

• FPS and CPU load are calculated from examples times.

• Max drawing time is themaximum time left for the application to perform its drawings without
overlapping the next display tearing signal (when tearing is enabled).

Tear-
ing

Nb
buffers

Drawing time
(ms)

Flush time
(ms)

FPS
(Hz)

CPU load
(%)

Max drawing time
(ms)

no 1 7+1 6 71.4 57.1
yes 1 7+1 6 62.5 50 10
no 1 14+1 6 47.6 71.4
yes 1 14+1 6 31.2 46.9 20
no 1 7+1 12 50 40
yes 1 7+1 12 31.2 25 8
no 2 7+1 12 83.3 66.7
yes 2 7+1 12 62.5 50 16

Abstraction Layer API

Overview

Fig. 211: Display Abstraction Layer API

• MicroUI library calls the BSP functions through the Graphics Engine and header file
LLUI_DISPLAY_impl.h .

3.6. VEE Porting Guide 895

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#flush--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#flush--

MicroEJ Documentation,

• Implementation of LLUI_DISPLAY_impl.h can call Graphics Engine functions through
LLUI_DISPLAY.h .

• To perform some drawings, MicroUI uses LLUI_PAINTER_impl.h functions.

• The MicroUI C module provides a default implementation of the drawing native functions of
LLUI_PAINTER_impl.h and LLDW_PAINTER_impl.h :

– It implements the synchronization layer, then redirects drawings implementations to
ui_drawing.h .

– ui_drawing.h is already implemented by built-in software algorithms (library provided by the
UI Pack).

– It is possible to implement someof the ui_drawing.h functions in the BSP to provide a custom
implementation (for instance, a GPU).

– Custom implementation is still allowed to call software algorithms declared in
ui_drawing_soft.h and dw_drawing_soft.h .

Display Size

The Abstraction Layer distinguishes between the display virtual size and the display physical
size (in pixels).

• The display virtual size is the size of the area where the drawings are visible. Virtual memory
size is: lcd_width * lcd_height * bpp / 8 .

• The display physical size is the requiredmemory sizewhere the virtual area is located. On some
devices, the memory width (in pixels) is higher than the virtual width. In this way, the graphics
buffer memory size is: memory_width * memory_height * bpp / 8 .

Note: The physical size may not be configured; in that case, the Graphics Engine considers the virtual size os
physical size.

Semaphores

The Graphics Engine requires two binary semaphores to synchronize its internal states. These
semaphores are reserved for the Graphics Engine. The LLUI_DISPLAY_impl.h imple-
mentation is not allowed to use these semaphores to synchronize the function LLUI_DIS-
PLAY_IMPL_flush() with the display driver (or for any other synchronization actions). The
implementation must create its semaphores in addition to these dedicated Graphics Engine’s
semaphores.

The binary semaphores must be configured in a state such that the semaphore must first
be given before it can be taken (this initialization must be performed in the LLUI_DIS-
PLAY_IMPL_initialize function).

3.6. VEE Porting Guide 896

MicroEJ Documentation,

Required Abstraction Layer API

Four Abstraction Layer APIs are required to connect the Graphics Engine to the display driver.
The functions are listed in LLUI_DISPLAY_impl.h .

• LLUI_DISPLAY_IMPL_initialize : The initialization function is called when the application is calling Mi-
croUI.start(). Before this call, the display is useless and doesn’t need to be initialized. This function consists
in initializing the LCD driver and filling the given structure LLUI_DISPLAY_SInitData . This structure has
to contain pointers on the two binary semaphores, the back buffer address (see Display Configuration), the
display virtual size in pixels (lcd_width and lcd_height), and optionally the display physical size in pixels
(memory_width and memory_height).

• LLUI_DISPLAY_IMPL_binarySemaphoreTake and LLUI_DISPLAY_IMPL_binarySemaphore-
Give : Two distinct functions have to be implemented to take and give a binary semaphore.

• LLUI_DISPLAY_IMPL_flush : According to the display buffer policy (see Display Configuration), the
flush function has to be implemented. This function must not block and not perform the flush directly. An-
other OS task or dedicated hardware must be configured to perform the flush.

Optional Abstraction Layer API

Several optional Abstraction Layer APIs are available in LLUI_DISPLAY_impl.h . They are
already implemented asweak functions in the Graphics Engine and return no error. These op-
tional features concern the display backlight and contrast, display characteristics (is colored
display, doublebuffer), color conversions (seePixel StructureandCLUT), etc. Refer to each func-
tion comment to have more information about the default behavior.

Painter Abstraction Layer API

All MicroUI drawings (available in the Painter class) call a native function. The MicroUI native
drawing functions are listed in LLUI_PAINTER_impl.h . The principle of implementing a
MicroUI drawing function is described in the chapter Drawings.

Graphics Engine API

The Graphics Engine provides a set of functions to interact with the C archive. The functions
allow the retrieval of some drawing characteristics, the synchronization of drawings between
them, the notification of the end of flush and drawings, etc.

The functions are available in LLUI_DISPLAY.h .

Typical Implementations

This chapter helps towrite some basic LLUI_DISPLAY_impl.h implementations according
to the display buffer policy (see Display Configuration). The pseudo-code calls external func-
tions suchas LCD_DRIVER_xxx or DMA_DRIVER_xxx to symbolize theuseof external
drivers.

Note: The pseudo code does not use the const ui_rect_t areas[] bounds to simplify the reading.

3.6. VEE Porting Guide 897

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/MicroUI.html#start--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/MicroUI.html#start--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Painter.html

MicroEJ Documentation,

Common Functions

The three functions LLUI_DISPLAY_IMPL_initialize , LLUI_DISPLAY_IMPL_bi-
narySemaphoreTake and LLUI_DISPLAY_IMPL_binarySemaphoreGive are often the
same. The following example shows an implementation with FreeRTOS.

void LLUI_DISPLAY_IMPL_initialize(LLUI_DISPLAY_SInitData *init_data) {
// fill the LLUI_DISPLAY_SInitData structure
init_data->binary_semaphore_0 = (void*)xSemaphoreCreateBinary();
init_data->binary_semaphore_1 = (void*)xSemaphoreCreateBinary();
init_data->lcd_width = LCD_DRIVER_get_width();
init_data->lcd_height = LCD_DRIVER_get_height();
/* init_data->back_buffer_address = [...]; see next chapters */

}

void LLUI_DISPLAY_IMPL_binarySemaphoreTake(void *sem) {
xSemaphoreTake((xSemaphoreHandle)sem, portMAX_DELAY);

}

void LLUI_DISPLAY_IMPL_binarySemaphoreGive(void *sem, bool under_isr) {
if (under_isr) {

portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE;
xSemaphoreGiveFromISR((xSemaphoreHandle)sem, &xHigherPriorityTaskWoken);
if (xHigherPriorityTaskWoken != pdFALSE) {

// Force a context switch here.
portYIELD_FROM_ISR(xHigherPriorityTaskWoken);

}
}
else {

xSemaphoreGive((xSemaphoreHandle)sem);
}

}

Direct Buffer (parallel)

This policy considers the application and the LCD driver share the same buffer. In other words, all drawings made
by the application are immediately shown on the display. This particular case is the easiest to write because the
flush() stays empty:

void LLUI_DISPLAY_IMPL_initialize(LLUI_DISPLAY_SInitData *init_data) {
// [...]

// use same buffer between the LCD driver and the Graphics Engine
LCD_DRIVER_initialize(lcd_buffer);
init_data->back_buffer_address = lcd_buffer;

}

void LLUI_DISPLAY_IMPL_flush(MICROUI_
→˓GraphicsContext *gc, uint8_t flush_identifier, const ui_rect_t areas[], size_t length) {
// nothing to␣

→˓flush to the LCD, just have to unlock the Graphics Engine by giving the same buffer address
LLUI_DISPLAY_

→˓setBackBuffer(flush_identifier, LLUI_DISPLAY_getBufferAddress(&gc->image), false);
}

3.6. VEE Porting Guide 898

MicroEJ Documentation,

Swap Double Buffer (parallel)

This buffer policy requires two buffers in RAM. The first buffer is used by the application (buffer A), and the LCD
controller uses the second buffer to update the display panel (buffer B). The LCD controller is reconfigured to use
the buffer A when the Graphics Engine calls the flush() function.

Before executing the next application drawing after a flush, the Graphics Engine automatically
waits for the end of the flush buffer processing: buffer B (which currently used by the LDC con-
troller) is updatedat the endof the swap. The LCDdriver is responsible for unlocking theGraph-
ics Engine by calling the function LLUI_DISPLAY_setBackBuffer() at the end of the swap.

static uint8_t *buffer_A;
static uint8_t *buffer_B;
static uint8_t _flush_identifier;

void LLUI_DISPLAY_IMPL_initialize(LLUI_DISPLAY_SInitData *init_data) {
// [...]

// use two distinct buffers between the LCD driver and the Graphics Engine
LCD_DRIVER_initialize(buffer_B);
init_data->back_buffer_address = buffer_A;

}

void LLUI_DISPLAY_IMPL_flush(MICROUI_
→˓GraphicsContext *gc, uint8_t flush_identifier, const ui_rect_t areas[], size_t length) {
// store the identifier of the flush used to unlock the Graphics Engine later
_flush_identifier = flush_identifier;

// change the LCDC address (executed at the next LCD refresh loop)
LCDC_set_address(LLUI_DISPLAY_getBufferAddress(&gc->image));

}

// only called when reloading a new LCDC address
void LCDC_RELOAD_IRQHandler(void) {

LCDC_DRIVER_clear_interrupt();

// end of the swap, unlock the Graphics Engine, update the back buffer address
uint8_t *new_back_buffer = (LCDC_get_address() == buffer_A) ? buffer_B : buffer_A;
LLUI_DISPLAY_

→˓setBackBuffer(_flush_identifier, new_back_buffer, true); // true: called under interrupt
}

Swap Triple Buffer (parallel)

The behavior of this policy is very similar to that of the double buffer policy (see above): it
consists in alternating between three buffers instead of two.

3.6. VEE Porting Guide 899

MicroEJ Documentation,

Single Buffer (serial)

A display connected to the CPU through a serial bus (DSI, SPI, etc.) requires the single buffer
policy: the application uses a buffer to perform its drawings, and the buffer’s content has to be
transmitted to the display when the Graphics Engine is calling the flush() function.

The specification of the flush() function is to be not blocker (atomic). Its aim is to prepare /
configure the serial bus and data to transmit and then to start the asynchronous transmission.
The flush() function has to return as soon as possible.

Before executing the next application drawing after a flush, the Graphics Engine automatically
waits for the end of the serial data transmission: the back buffer (currently used by the serial
device) is updated at the end of data transmission. The serial device driver is responsible for
unlocking the Graphics Engine by calling the function LLUI_DISPLAY_setBackBuffer() at
the end of the transmission.

There are two use cases:

Hardware

The serial data transmission is performed in hardware. In that case, the serial driver must con-
figure an interrupt to be notified about the end of the transmission.

static uint8_t _flush_identifier;

void LLUI_DISPLAY_IMPL_initialize(LLUI_DISPLAY_SInitData *init_data) {
// [...]

LCD_DRIVER_initialize();
init_data->back_buffer_address = back_buffer;

// initialize the serial driver & device: GPIO, etc.
SERIAL_DRIVER_initialize();

}

void LLUI_DISPLAY_IMPL_flush(MICROUI_
→˓GraphicsContext *gc, uint8_t flush_identifier, const ui_rect_t areas[], size_t length) {
// store the identifier of the flush used to unlock the Graphics Engine later
_flush_identifier = flush_identifier;

// configure the serial device to transmit n bytes
// srcAddr == back_buffer
SERIAL_

→˓DRIVER_prepare_transmit(srcAddr, LCD_WIDTH * LCD_HEIGHT * LCD_BPP / 8);

// configure the ”end of transmission” interrupt
SERIAL_DRIVER_enable_interrupt(END_OF_TRANSMIT);

// start the transmission
SERIAL_DRIVER_start();

}

void SERIAL_DEVICE_IRQHandler(void) {
SERIAL_DRIVER_clear_interrupt();
SERIAL_DRIVER_disable_interrupt(END_OF_TRANSMIT);

// end of transmission, unlock the Graphics Engine without changing the back buffer address
LLUI_DISPLAY_

(continues on next page)

3.6. VEE Porting Guide 900

MicroEJ Documentation,

(continued from previous page)

→˓setBackBuffer(_flush_identifier, back_buffer, true); // true: called under interrupt
}

Software

The serial data transmission cannot be performed in hardware or requires a software loop to
transmit all data. This transmissionmust not be performed in the flush() function (see above).
A dedicated OS task is required to perform this transmission.

static void *_transmit_task_semaphore;
static uint8_t _flush_identifier;

static void _task_flush(void *p_arg) {
while(1) {

// wait until the Graphics Engine gives the order to flush
LLUI_DISPLAY_IMPL_binarySemaphoreTake(_transmit_task_semaphore);

// transmit data
SERIAL_

→˓DRIVER_transmit_data(back_buffer, LCD_WIDTH * LCD_HEIGHT * LCD_BPP / 8);

// end of flush, unlock the Graphics Engine without changing the back buffer address
LLUI_DISPLAY_

→˓setBackBuffer(_flush_identifier, back_buffer, false); // false: called outside interrupt
}

}

void LLUI_DISPLAY_IMPL_initialize(LLUI_DISPLAY_SInitData *init_data) {
// [...]

LCD_DRIVER_initialize();
init_data->back_buffer_address = back_buffer;

// create a ”flush” task and a dedicated semaphore
_transmit_task_semaphore = (void*)xSemaphoreCreateBinary();
xTaskCreate(_task_flush, ”FlushTask”, 1024, NULL, 12, NULL);

}

void LLUI_DISPLAY_IMPL_flush(MICROUI_
→˓GraphicsContext *gc, uint8_t flush_identifier, const ui_rect_t areas[], size_t length) {
// store the identifier of the flush used to unlock the Graphics Engine later
_flush_identifier = flush_identifier;

// unlock the flush task
LLUI_DISPLAY_IMPL_binarySemaphoreGive(_transmit_task_semaphore, false);

}

3.6. VEE Porting Guide 901

MicroEJ Documentation,

Single Buffer (parallel) and Tearing Disabled

Note: This policy should synchronize the copy buffer process with the LCD tearing signal. However, this notion is
sometimes not available. This chapter describes the copy buffer process without using the tearing signal (see next
chapter).

This buffer policy requires two buffers in RAM. The first buffer is used by the application (back buffer), and the LCD
controller uses the second buffer to update the display panel (front buffer). The content of the front buffermust be
updated with the content of the back buffer when the Graphics Engine is calling the flush() function.

The specification of the flush() function is to be not blocker (atomic, see above). Its aim is to
prepare / configure the copy buffer process and then start the asynchronous copy. The flush()
function has to return as soon as possible.

Before executing the next application drawing after a flush, the Graphics Engine automatically
waits for the end of the copy buffer process: the back buffer (currently used by the copy buffer
process) is updated at the end of the copy. The copy driver is responsible for unlocking the
Graphics Engine by calling the function LLUI_DISPLAY_setBackBuffer() at the end of the
copy.

There are two use cases:

Hardware

The copy buffer process is performed in hardware (DMA). In that case, the DMAdrivermust con-
figure an interrupt to be notified about the end of the copy.

static uint8_t _flush_identifier;

void LLUI_DISPLAY_IMPL_initialize(LLUI_DISPLAY_SInitData *init_data) {
// [...]

// use two distinct buffers between the LCD driver and the Graphics Engine
LCD_DRIVER_initialize(frame_buffer);
init_data->back_buffer_address = back_buffer;

// initialize the DMA driver: GPIO, etc.
DMA_DRIVER_initialize();

}

void LLUI_DISPLAY_IMPL_flush(MICROUI_
→˓GraphicsContext *gc, uint8_t flush_identifier, const ui_rect_t areas[], size_t length) {
// store the identifier of the flush used to unlock the Graphics Engine later
_flush_identifier = flush_identifier;

// configure the DMA to copy n bytes
// back_buffer == LLUI_DISPLAY_getBufferAddress(&gc->image)
DMA_DRIVER_prepare_sent(frame_

→˓buffer, back_buffer, LCD_WIDTH * LCD_HEIGHT * LCD_BPP / 8); // dest / src / size

// configure the ”end of copy” interrupt
DMA_DRIVER_enable_interrupt(END_OF_COPY);

// start the copy
DMA_DRIVER_start();

}
(continues on next page)

3.6. VEE Porting Guide 902

MicroEJ Documentation,

(continued from previous page)

void DMA_IRQHandler(void) {
DMA_DRIVER_clear_interrupt();
DMA_DRIVER_disable_interrupt(END_OF_COPY);

// end of copy, unlock the Graphics Engine without changing the back buffer address
LLUI_DISPLAY_

→˓setBackBuffer(_flush_identifier, back_buffer, true); // true: called under interrupt
}

Software

Thecopybufferprocess cannotbeperformed inhardwareor requires a software loop tocopyall
data (DMA linked list). This copy buffer processmust not be performed in the flush() function.
A dedicated OS task is required to perform this copy.

static void *_copy_task_semaphore;
static uint8_t _flush_identifier;

static void _task_flush(void *p_arg) {
while(1) {

int32_t size = LCD_WIDTH * LCD_HEIGHT * LCD_BPP / 8;
uint8_t *dest = frame_buffer;
uint8_t *src = back_buffer;

// wait until the Graphics Engine gives the order to copy
LLUI_DISPLAY_IMPL_binarySemaphoreTake(_copy_task_semaphore);

// copy data
while(size) {

int32_t s = min(DMA_MAX_SIZE, size);
DMA_DRIVER_copy_data(dest, src, s); // dest / src / size
dest += s;
src += s;
size -= s;

}

// end of copy, unlock the Graphics Engine without changing the back buffer address
LLUI_DISPLAY_

→˓setBackBuffer(_flush_identifier, back_buffer, false); // false: called outside interrupt
}

}

void LLUI_DISPLAY_IMPL_initialize(LLUI_DISPLAY_SInitData *init_data) {
// [...]

// use two distinct buffers between the LCD driver and the Graphics Engine
LCD_DRIVER_initialize(frame_buffer);
init_data->back_buffer_address = back_buffer;

// create a ”flush” task and a dedicated semaphore
_copy_task_semaphore = (void*)xSemaphoreCreateBinary();
xTaskCreate(_task_flush, ”FlushTask”, 1024, NULL, 12, NULL);

}

void LLUI_DISPLAY_IMPL_flush(MICROUI_
→˓GraphicsContext *gc, uint8_t flush_identifier, const ui_rect_t areas[], size_t length) {

(continues on next page)

3.6. VEE Porting Guide 903

MicroEJ Documentation,

(continued from previous page)

// store the identifier of the flush used to unlock the Graphics Engine later
_flush_identifier = flush_identifier;

// unlock the copy task
LLUI_DISPLAY_IMPL_binarySemaphoreGive(_copy_task_semaphore, false);

}

Single Buffer (parallel) and Tearing Enabled

This buffer policy is the same as the previous chapter, but it uses the LCD tearing signal to synchronize the LCD
refresh rate with the copy buffer process. The copy buffer process should not start during the call of flush() but
should wait for the next tearing signal to start the copy.

There are two use cases:

Hardware

static uint8_t _start_DMA;
static uint8_t _flush_identifier;

void LLUI_DISPLAY_IMPL_initialize(LLUI_DISPLAY_SInitData *init_data) {
// [...]

// use two distinct buffers between the LCD driver and the Graphics Engine
LCD_DRIVER_initialize(frame_buffer);
init_data->back_buffer_address = back_buffer;

// enable the tearing interrupt
_start_DMA = 0;
TE_enable_interrupt();

// initialize the DMA driver: GPIO, etc.
DMA_DRIVER_initialize();

}

void LLUI_DISPLAY_IMPL_flush(MICROUI_
→˓GraphicsContext *gc, uint8_t flush_identifier, const ui_rect_t areas[], size_t length) {
// store the identifier of the flush used to unlock the Graphics Engine later
_flush_identifier = flush_identifier;

// configure the DMA to copy n bytes
// back_buffer == LLUI_DISPLAY_getBufferAddress(&gc->image)
DMA_DRIVER_prepare_sent(frame_

→˓buffer, back_buffer, LCD_WIDTH * LCD_HEIGHT * LCD_BPP / 8); // dest / src / size

// configure the ”end of copy” interrupt
DMA_DRIVER_enable_interrupt(END_OF_COPY);

// unlock the job of the tearing interrupt
_start_DMA = 1;

}

void TE_IRQHandler(void) {
TE_clear_interrupt();

(continues on next page)

3.6. VEE Porting Guide 904

MicroEJ Documentation,

(continued from previous page)

if (_start_DMA) {
_start_DMA = 0;

// start the copy
DMA_DRIVER_start();

}
}

void DMA_IRQHandler(void) {
DMA_DRIVER_clear_interrupt();
DMA_DRIVER_disable_interrupt(END_OF_COPY);

// end of copy, unlock the Graphics Engine without changing the back buffer address
LLUI_DISPLAY_

→˓setBackBuffer(_flush_identifier, back_buffer, true); // true: called under interrupt
}

Software

static void *_copy_task_semaphore;
static uint8_t _start_copy;
static uint8_t _flush_identifier;

static void _task_flush(void *p_arg) {
while(1) {

// wait until the Graphics Engine gives the order to copy
LLUI_DISPLAY_IMPL_binarySemaphoreTake(_copy_task_semaphore);

int32_t size = LCD_WIDTH * LCD_HEIGHT * LCD_BPP / 8;
uint8_t *dest = frame_buffer;
uint8_t *src = back_buffer;

// copy data
while(size) {

int32_t s = min(DMA_MAX_SIZE, size);
DMA_DRIVER_copy_data(dest, src, s); // dest / src / size
dest += s;
src += s;
size -= s;

}

// end of copy, unlock the Graphics Engine without changing the back buffer address
LLUI_DISPLAY_

→˓setBackBuffer(_flush_identifier, back_buffer, false); // false: called outside interrupt
}

}

void LLUI_DISPLAY_IMPL_initialize(LLUI_DISPLAY_SInitData *init_data) {
// [...]

// use two distinct buffers between the LCD driver and the Graphics Engine
LCD_DRIVER_initialize(frame_buffer);
init_data->back_buffer_address = back_buffer;

// create a ”flush” task and a dedicated semaphore
_copy_task_semaphore = (void*)xSemaphoreCreateBinary();

(continues on next page)

3.6. VEE Porting Guide 905

MicroEJ Documentation,

(continued from previous page)

xTaskCreate(_task_flush, ”FlushTask”, 1024, NULL, 12, NULL);

// enable the tearing interrupt
_start_copy = 0;
TE_enable_interrupt();

}

void LLUI_DISPLAY_IMPL_flush(MICROUI_
→˓GraphicsContext *gc, uint8_t flush_identifier, const ui_rect_t areas[], size_t length) {
// store the identifier of the flush used to unlock the Graphics Engine later
_flush_identifier = flush_identifier;

// unlock the job of the tearing interrupt
_start_copy = 1;

}

void TE_IRQHandler(void) {
TE_clear_interrupt();

if (_start_copy) {
_start_copy = 0;

// unlock the copy task
LLUI_DISPLAY_IMPL_binarySemaphoreGive(_copy_task_semaphore, true);

}
}

Transmit and Swap Buffer

This buffer policy is a mix between the buffer policies Single and Swap Double. It requires two back buffers: the
application uses a buffer to perform its drawings and the second buffer is used to transmit the data to the display
frame buffer when the Graphics Engine is calling the flush() function. At the end of the transmission, the applica-
tion buffer becomes the transmission buffer and vice-versa.

The subtlety consists in reusing the transmission buffer as the application buffer at the end
of the transmission if, and only if, the application has not drawn anything yet in the current
application buffer. This avoids handling the restoration of the past: the application reuses the
same buffer as before the last flush.

This policy requires a dedicated OS task that will manage the transmission and the unlocking
of the Graphics Engine by calling the function LLUI_DISPLAY_setBackBuffer() . The spec-
ification of the flush() function is to be non-blocking. Its aim is to unlock the flush task. The
flush() function has to return as soon as possible.

As soon as a transmission is started, the second buffer is freed. The Graphics Engine does not
need to wait for the end of the serial data transmission: the application can draw immediately
in the new back buffer. Note that the second flush has to wait the end of the first flush (the end
of the transmission) before configuring and launching a new transmission.

The serial data transmission is performed in hardware or in software. In hardware, the serial
drivermust configure an interrupt to be notified about the end of the transmission. In software,
the transmission step is synchronous and blocking.

Note: This pseudo implementation considers a display with a serial connection but the reasoning is similar with

3.6. VEE Porting Guide 906

MicroEJ Documentation,

a parallel connection.

static uint8_t _flush_identifier;
static uint8_t _buffer_index;
static void *_transmit_task_semaphore;
static uint8_t _flush_identifier;

static void _task_flush(void *p_arg) {
while(1) {

// wait until the Graphics Engine gives the order to flush
LLUI_DISPLAY_IMPL_binarySemaphoreTake(_transmit_task_semaphore);

// save the flush configuration: can be modified by the next␣
→˓call to flush() as soon as LLUI_DISPLAY_setBackBuffer() wakes up the Graphics Engine

uint8_t flush_identifier = _flush_identifier;

// retrieve the transmit buffer: the current back buffer
uint8_t *transmit_buffer = back_buffers[_buffer_index];

// swap both buffers (_buffer_index now points to the new back buffer)
_buffer_index = (_buffer_index + 1) & ~1;

// the new back buffer can be used for the next drawings
if (LLUI_DISPLAY_setBackBuffer(flush_identifier, back_buffers[_buffer_index], false)) {

␣
→˓ // here: the Graphics Engine is unlocked, the application can draw in the new back buffer

// **and** can call flush() again

␣
→˓ // configure and start the serial device to transmit n bytes (synchronous or asynchronous

// transmission)
SERIAL_DRIVER_

→˓transmit_data(transmit_buffer, LCD_WIDTH * LCD_HEIGHT * LCD_BPP / 8);

// wait for the end of the transmission (blocking call or use an interrupt)
SERIAL_DRIVER_transmit_wait();

// here: the back buffer has been sent to the LCD, the buffer can be used again for the
// next drawings only if no new drawing has been already performed in the current back
// buffer

// reuse the old back buffer if no drawing has been already performed
if (LLUI_DISPLAY_setBackBuffer(flush_identifier, transmit_buffer, false)) {

// the new back buffer is set: cancel the previous swap to synchronize the driver with
// the Graphics Engine
_buffer_index = (_buffer_index + 1) & ~1;

}
// else: too late to reuse this old transmission back buffer; nothing to do

}
else {

// unexpected end of flush; the Graphics Engine keeps using the previous back buffer;
// we have to cancel the buffer swap
_buffer_index = (_buffer_index + 1) & ~1;

}
}

}
(continues on next page)

3.6. VEE Porting Guide 907

MicroEJ Documentation,

(continued from previous page)

void LLUI_DISPLAY_IMPL_initialize(LLUI_DISPLAY_SInitData *init_data) {
// [...]

LCD_DRIVER_initialize();

// buffer 0 is the first back buffer; buffer 1 is not used
_buffer_index = 0;
init_data->back_buffer_address = back_buffers[_buffer_index];

// initialize the serial driver & device: GPIO, etc.
SERIAL_DRIVER_initialize();

// create a ”flush” task and a dedicated semaphore
_transmit_task_semaphore = (void*)xSemaphoreCreateBinary();
xTaskCreate(_task_flush, ”FlushTask”, 1024, NULL, 12, NULL);

}

void LLUI_DISPLAY_IMPL_flush(MICROUI_
→˓GraphicsContext *gc, uint8_t flush_identifier, const ui_rect_t areas[], size_t length) {
// store the flush identifier to unlock the Graphics Engine later
_flush_identifier = flush_identifier;

// unlock the flush task
LLUI_DISPLAY_IMPL_binarySemaphoreGive(_transmit_task_semaphore, false);

}

Dependencies

• MicroUI module (seeMicroUI)

• LLUI_DISPLAY_impl.h implementation if standard or custom implementation is chosen
(see Dependencies and LLUI_DISPLAY: Display).

• TheMicroUI C module.

Installation

The Display module is a sub-part of the MicroUI library.

SDK 6

SDK 5

When the MicroUI Pack module is installed, the Display module is automatically enabled.

When theMicroUImodule is installed, the Displaymodulemust be installed in order to connect
the physical display with the VEE Port. If not installed, the stubmodule will be used.

In the VEE Port configuration file, check UI > Display to install the Display module.

When enabled, the Display module must be configured. This configuration step is used to
choose the kind of implementation (see Dependencies).

SDK 6

3.6. VEE Porting Guide 908

MicroEJ Documentation,

SDK 5

In SDK 6, the configuration is done in the properties file configuration.properties of the VEE Port project.
All the properties names listed belowmust be prefixed by com.microej.runtime.display. . For
example the bpp properties is defined by the com.microej.runtime.display.bpp property.

In SDK 5, the configuration is done in the properties file display/display.properties .

The properties file must / can contain the following properties:

• bpp [mandatory]: Defines the number of bits per pixel the display device is using to render a pixel. The
expected value is one among these lists:

Standard formats:

– ARGB8888 : Alpha 8 bits; Red 8 bits; Green 8 bits; Blue 8 bits,

– RGB888 : Alpha 0 bit; Red 8 bits; Green 8 bits; Blue 8 bits (fully opaque),

– RGB565 : Alpha 0 bit; Red 5 bits; Green 6 bits; Blue 5 bits (fully opaque),

– ARGB1555 : Alpha 1bit; Red5bits; Green5bits; Blue 5bits (fully opaqueor fully transparent),

– ARGB4444 : Alpha 4 bits; Red 4 bits; Green 4 bits; Blue 4 bits,

– C4 : 4 bits to encode linear grayscale colors between 0xff000000 and 0xffffffff (fully opaque),

– C2 : 2 bits to encode linear grayscale colors between 0xff000000 and 0xffffffff (fully opaque),

– C1 : 1 bit to encode grayscale colors 0xff000000 and 0xffffffff (fully opaque).

Custom formats:

– 32 : up to 32 bits to encode Alpha, Red, Green, and Blue (in any custom arrangement),

– 24 : up to 24 bits to encode Alpha, Red, Green, and Blue (in any custom arrangement),

– 16 : up to 16 bits to encode Alpha, Red, Green, and Blue (in any custom arrangement),

– 8 : up to 8 bits to encode Alpha, Red, Green, and Blue (in any custom arrangement),

– 4 : up to 4 bits to encode Alpha, Red, Green, and Blue (in any custom arrangement),

– 2 : up to 2 bits to encode Alpha, Red, Green, and Blue (in any custom arrangement),

– 1 : 1 bit to encode Alpha, Red, Green, or Blue.

All other values are forbidden (throw a generation error).

• byteLayout [optional, the default value is “line”]: Defines the pixels data order in a byte the display device is
using. A byte can contain several pixels when the number of bits per pixel (see ‘bpp’ property) is lower than
8. Otherwise, this property is useless. Two modes are available: the next bit(s) on the same byte can target
the next pixel on the same line or the same column. In the first case, when the end of the line is reached, the
next byte contains the first pixels of the next line. In the second case, when the end of the column is reached,
the next byte contains the first pixels of the next column. In both cases, a new line or a new column restarts
with a new byte, even if some free bits remain in the previous byte.

– line : the next bit(s) on current byte contains the next pixel on same line (x increment),

– column : the next bit(s) on current byte contains the next pixel on the same column (y increment).

Note:

– Default value is ‘line’.

– All other modes are forbidden (throw a generation error).

3.6. VEE Porting Guide 909

MicroEJ Documentation,

– When the number of bits-per-pixels (see ‘bpp’ property) is higher or equal to 8, this property is
useless and ignored.

• memoryLayout [optional, the default value is “line”]: Defines the pixels data order in memory the display
device is using. This option concerns only the display with a bpp lower than 8 (see ‘bpp’ property). Two
modes are available: when the bytememory address is incremented, the next targeted group of pixels is the
next group on the same line or the next group on the same column. In the first case, when the end of the line
is reached, the next group of pixels is the first group of the next line. In the second case, when the end of the
column is reached, the next group of pixels is the first group of the next column.

– line : the next memory address targets the next group of pixels on same line (x increment),

– column : the next memory address targets the next group of pixels on the same column (y increment).

Note:

– Default value is ‘line’.

– All other modes are forbidden (throw a generation error).

– When the number of bits-per-pixels (see ‘bpp’ property) is higher or equal to 8, this property is
useless and ignored.

• imageBuffer.memoryAlignment [optional, default value is “4”]: Defines the image memory alignment to
respect when creating an image. This notion is useful when image drawings are performed by a third-party
hardware accelerator (GPU): it can require some constraints on the image to draw. This value is used by the
Graphics Engine when creating a dynamic image and by the image generator to encode a RAW image. See
GPU Format Support and CustomizeMicroEJ Standard Format. Allowed values are 1, 2, 4, 8, 16, 32, 64, 128 and
256.

• imageHeap.size [optional, the default value is “not set”]: Defines the image heap size. It is useful to fix a VEE
Port heap size when building firmware in the command line. When using a MicroEJ launcher, the size set in
this launcher has priority over the VEE Port value.

Use

The MicroUI Display APIs are available in the class ej.microui.display.Display.

Buffer Refresh Strategy

Overview

The Buffer Refresh Strategy (BRS) ensures that the front buffer contains all the drawings before
letting the display driver flush this buffer into the display panel. The drawings are the drawings
made since the last flush and the past. The past symbolizes the drawings made before the last
flush and that has not been altered by the new drawings.

3.6. VEE Porting Guide 910

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html

MicroEJ Documentation,

Table 63: Automatic Refresh
Drawing Steps Back Buffer Front Buffer

Startup

Draw “background”

Draw “A”

Flush (swap)

Draw “B”

Refresh the past

Flush (swap)

This refreshing avoids running again all drawing algorithms (and layout) to fill the back buffer
(here: the entire background, the “A” green background, and the “A”). Without this refreshing,
the display will show the incomplete frame Draw “B”:

Table 64: Missing Refresh
Drawing Steps Back Buffer Front Buffer

Startup

Draw “background”

Draw “A”

Flush (swap)

Draw “B”

Flush (swap)

When the new drawings overlap the past, it is useless to refresh the past:

Table 65: Useless Refresh
Drawing Steps Back Buffer Front Buffer

Draw “C”

Flush (swap)

Draw “D”

Flush (swap)

3.6. VEE Porting Guide 911

MicroEJ Documentation,

Timeline

Basic Principle

This illustration symbolizes the basic principle of the Graphics Engine’s timeline:

• drawing(s) symbolizes one or several drawings in the back buffer.

• flush symbolizes the call to the LLAPI LLUI_DISPLAY_IMPL_flush() that allows the dis-
play driver to update the display panel content according to the display connection (serial or
parallel).

• post-flush symbolizes themoment between the end of flush (end of swap, end of transmission,
or end of copy) and the unlocking of the Graphics Engine (the call to LLUI_DISPLAY_set-
BackBuffer()). Before this call, the Graphics Engine is not allowed to draw in the buffer.

Note: The time between the post-flush and drawing(s) depends on the application: the first drawing after a flush
can occur immediately after the post-flush or later.

Additional Hooks

The Graphics Engine provides some hooks (through dedicated LLAPI) to be notified of further
details:

• new region symbolizes that the following drawing(s) will be drawn in a region other than the
previous drawings.

3.6. VEE Porting Guide 912

MicroEJ Documentation,

• refresh symbolizes that the last drawing has been done, and a call to LLUI_DIS-
PLAY_IMPL_flush() will be performed just after.

During these two new steps, the implementation can render into the back buffer (to restore the
past), prepare the next flush (store the regions to flush), etc.

Implicit Region

A region is considered a new implicit region as soon as the MicroUI clip is updated and a
drawing is performed. When a clip is considered an implicit region, a call to the LLAPI
LLUI_DISPLAY_IMPL_newDrawingRegion(...) is performed. The following sequence il-
lustrates when the LLAPI is called:

Application Calls LLAPI
1

gc.setClip(...)
21

Painter.drawXX(...)
LLUI_DISPLAY_IMPL_newDrawingRegion(.
..,
true)
LLUI_PAINTER_IMPL_drawXX(...)

32

Painter.drawYY(...) LLUI_PAINTER_IMPL_drawYY(...)
43

gc.setClip(...)
5

gc.setClip(...)
6

Painter.drawZZ(...)
LLUI_DISPLAY_IMPL_newDrawingRegion(.
..,
true)
LLUI_PAINTER_IMPL_drawZZ(...)

Note: The very first drawing’s region after a flush is systematically considered as implicit.

1 The LLAPI argument drawing_now is valued to true : this means a call to a drawing action will be called just after
(implicit region).

2 The second drawing uses the same region as the first one: the region is not notified again.
3 The clip is not recognized as an implicit region because no drawing is performed just after.

3.6. VEE Porting Guide 913

MicroEJ Documentation,

Explicit Region

The application can explicitly call the LLAPI LLUI_DISPLAY_IMPL_newDrawingRegion(.
..) by calling the API GraphicsContext.notifyDrawingRegion() . The LLAPI parameters are:

• the region is the current MicroUI clip,

• the argument drawing_now is valued to false : this means no drawing will follow this call
(explicit region).

Declaring explicit regions is mainly useful when it is performed before the very first drawing.
It indicates to the BRS that several regions will be altered before the next flush. These regions
don’t need to be restored with the past (their content will change).

Application Calls LLAPI
1

gc.setClip(...)
24

gc.notifyDrawingRegion(...) LLUI_DISPLAY_IMPL_newDrawingRegion(.
.., false)

35

Painter.drawXX(...)
LLUI_DISPLAY_IMPL_newDrawingRegion(.
..,
true)
LLUI_PAINTER_IMPL_drawXX(...)

4
Painter.drawYY(...) LLUI_PAINTER_IMPL_drawYY(...)

56

gc.notifyDrawingRegion(...) LLUI_DISPLAY_IMPL_newDrawingRegion(.
.., false)

67

Painter.drawZZ(...) LLUI_PAINTER_IMPL_drawZZ(...)

Flush vs Refresh

The Graphics Engine does not store the regions (implicit or explicit). The BRS is responsible for
implementing the LLAPI (the hooks, see above) andmanaging these regions.

When the application calls Display.flush() , the Graphics Engine immediately calls the LLAPI
LLUI_DISPLAY_IMPL_refresh() . This call allows the BRS:

• to finalize (if required) the back buffer (no drawing will be performed into the buffer until the
next call to LLUI_DISPLAY_setBackBuffer()),

• and to call the LCD driver flush function LLUI_DISPLAY_IMPL_flush() by giving the re-
gion(s) to update on the display panel.

4 The LLAPI is immediately called.
5 The step 2 doesnt change the flow of the implicit region: a call to LLUI_DISPLAY_IMPL_newDrawingRegion(..., true)

is always performed even if a call to LLUI_DISPLAY_IMPL_newDrawingRegion(..., false) is performed just before.
6 The clip has not changed, but the LLAPI is explicitly called again.
7 The clip has not changed, so the implicit region is not notified.

3.6. VEE Porting Guide 914

MicroEJ Documentation,

Strategies

Several strategies are available according to different considerations:

• the display connection (serial or parallel),

• the buffer policy (direct, single, swap),

• if the past has to be restored,

• if the past is systematically restored,

• when the past is restored,

• etc.

The following chapters describe the strategies:

• For the single buffer policy, the restoration is useless; the recommended strategy is Strategy:
Single.

• For the multiple buffers policy, the recommended strategy is Strategy: Predraw.

• The strategies Strategy: Default, Strategy: Custom and Strategy: Legacy can be used for other
use-cases.

Strategy: Single

Principle

This strategy considers that the drawings are always performed in the same back buffer (single
buffer policy). In this case, the restoration is useless because the back buffer always contains
the past.

Serial Connection

Parallel Connection

Fig. 212: Single Buffer (serial)

Fig. 213: Single Buffer (parallel)

The principle of this strategy is to cumulate the drawing regions. The refresh consists in
transmitting these regions (a list of rectangles) that have been modified since the last flush
(or a unique rectangle that encapsulates all the regions) to the LCD driver through the LLAPI
LLUI_DISPLAY_IMPL_flush() .

3.6. VEE Porting Guide 915

MicroEJ Documentation,

The implicit and explicit regions have the same meaning: a dirty region to flush to the front
buffer.

Behavior

The following table illustrates how the strategy works:

Table 66: Strategy “Single”
Drawing Steps Strategy Work Back Buffer Front Buffer

Startup

Implicit region back-
ground

Store the region full-screen

Draw “background”

Implicit region A The region A is included in the region full-screen:
nothing to do

Draw “A”

Refresh

Call LLUI_DISPLAY_IMPL_flush() (flush
the region full-screen)
Clear the list of regions

Implicit region B Store the region B

Draw “B”

Implicit region C Store the region C

Draw “C”

Refresh

Call LLUI_DISPLAY_IMPL_flush() (flush
the regions B and C)
Clear the list of regions

Note: This illustration considers that the clip changes before each drawing and fits the drawing’s bounds

3.6. VEE Porting Guide 916

MicroEJ Documentation,

Use

Here are the steps around the strategy describing how to use it:

1. Some drawings are performed in the back buffer.

2. A Display.flush() is asked, the Graphics Engine calls LLUI_DISPLAY_IMPL_refresh() .

3. The strategy calls LLUI_DISPLAY_IMPL_flush() .

4. The display driver has to implement LLUI_DISPLAY_IMPL_flush() , which consists in
transmitting the back buffer data to the front buffer.

5. As soon as the transmission is performed, the BSP has to notify the Graphics Engine by calling
LLUI_DISPLAY_setBackBuffer() , giving the same back buffer address (there is only one
buffer).

6. The Graphics Engine is now unlocked, and a new drawing can start in the back buffer.

Strategy: Predraw

Principle

This strategy considers that the drawings are always performed in a buffer, and a swap with
another buffer is made by the implementation of LLUI_DISPLAY_IMPL_flush() . In this
case, the restoration is mandatory because the new back buffer must contain the past before
the buffer swapping.

The principle of this strategy is to cumulate the drawing regions and restore them just be-
fore the very first drawing after a flush. The refresh consists in calling the LLAPI LLUI_DIS-
PLAY_IMPL_flush() that will swap the buffers.

Some regions to restore are updated or removed according to the implicit and explicit regions
given before the very first drawing after a flush. These regions are the regions that the applica-
tion will alter, so it is useless to restore them. For instance, if the very first drawing after a flush
fully fills the buffer (erase the buffer), the past is not restored.

The implicit and explicit regions after the very first drawing have the same signification: a dirty
region to restore before the very first drawing after the next flush.

Behavior

The following table illustrates how the strategy works:

3.6. VEE Porting Guide 917

MicroEJ Documentation,

Table 67: Strategy “Predraw”
Drawing Steps Strategy Work Back Buffer Front Buffer

Startup

Implicit region back-
ground

Store the region full-screen

Draw “background”

Implicit region A The region A is included in the region full-screen:
nothing to do

Draw “A”

Refresh Call LLUI_DISPLAY_IMPL_flush() (swap
the buffers)

Implicit region B

Restore the region full-screen expect the region B
Clear the list of regions
Store the region B

Draw “B”

Refresh Call LLUI_DISPLAY_IMPL_flush() (swap
the buffers)

Implicit region C Nothing to restore because the region B equals
the region C

Draw “C”

Refresh Call LLUI_DISPLAY_IMPL_flush() (swap
the buffers)

Note: This illustration considers that the clip changes before each drawing and fits the drawing’s bounds

Read the Display

Before the very first drawing after a flush, the content of the back buffer does not contain
the past (the restoration has not been performed). As a consequence, the first read actions
(GraphicsContext.readPixel() , Painter.drawDisplayRegion() , etc.) cannot use the back
buffer as the source buffer. The algorithm has to call LLUI_DISPLAY_getSourceImage()
to retrieve a pointer to the front buffer address.

3.6. VEE Porting Guide 918

MicroEJ Documentation,

Use (Swap Double Buffer)

Here are the steps around the strategy describing how to use it in double buffer policy.

Fig. 214: Swap Double Buffer

The two buffers have the same role alternatively, back buffer and front buffer:

1. Some drawings are performed in the back buffer.

2. A Display.flush() is asked, the Graphics Engine calls LLUI_DISPLAY_IMPL_refresh() .

3. The strategy calls LLUI_DISPLAY_IMPL_flush() .

4. The display driver has to implement LLUI_DISPLAY_IMPL_flush() that consists in swap-
ping the back and front buffers.

5. As soon as the display uses the new front buffer (the new back buffer is now freed), the BSP has
to notify the Graphics Engine by calling LLUI_DISPLAY_setBackBuffer() , giving the new
back buffer address (== previous front buffer).

6. The Graphics Engine is now unlocked.

7. Before the very first drawing, this strategy copies the regions to restore from the previous back
buffer to the new back buffer.

8. A new drawing can start in the new back buffer.

Use (Swap Triple Buffer)

Here are the steps around the strategy describing how to use it in triple buffer policy.

Fig. 215: Swap Triple Buffer

The three buffers have the same role alternatively: back buffers (A and B) and front buffer (C).
On startup, the front buffer is mapped on buffer (C), buffer (A) is the back buffer, and the buffer
(B) is not used yet:

• buffer (A): the application’s back buffer

• buffer (B): free

• buffer (C): LCD driver’s buffer

1. Some drawings are performed in the back buffer (A).

3.6. VEE Porting Guide 919

MicroEJ Documentation,

2. A Display.flush() is asked, the Graphics Engine calls LLUI_DISPLAY_IMPL_refresh() .

3. The strategy calls LLUI_DISPLAY_IMPL_flush() .

4. The display driver has to implement LLUI_DISPLAY_IMPL_flush() that consists in swap-
ping the buffers: the new LCD refresh task will read the data from buffer (A), and the next draw-
ings will be done in buffer (B), but the buffer (C) is still in use (the LCD driver keeps using this
buffer to refresh the LCD).

• buffer (A): next LCD driver’s buffer

• buffer (B): new the application’s back buffer

• buffer (C): current LCD driver’s buffer

5. The buffer (B) is immediately available (free): the BSP has to notify the Graphics Engine by call-
ing LLUI_DISPLAY_setBackBuffer() , giving the buffer (B)’s address.

6. The Graphics Engine is now unlocked.

7. Before the very first drawing, this strategy copies the regions to restore from the previous back
buffer (A) to the new back buffer (B).

8. Some drawings are performed in the back buffer (B).

9. A second Display.flush() is asked, the Graphics Engine calls LLUI_DISPLAY_IMPL_re-
fresh() .

10. The strategy calls LLUI_DISPLAY_IMPL_flush() .

11. The system is locked: the LCD driver does not use the buffer (A) as the source buffer yet.

12. As soon as the LCD driver uses the buffer (A) (the LCD driver keeps using this buffer to refresh
the LCD), the buffer (C) becomes available (free).

• buffer (A): current LCD driver’s buffer

• buffer (B): application’s back buffer

• buffer (C): free

13. The buffer (C) will now be used for the next drawings. Go to step 5.

Use (Transmit and Swap Buffer)

Here are the steps around the strategy describing how to use it in transmit and swap buffer
policy.

Serial Connection

Parallel Connection

Fig. 216: Transmit and Swap (serial)

3.6. VEE Porting Guide 920

MicroEJ Documentation,

Fig. 217: Transmit and Swap (parallel)

The two buffers have the same role alternatively: back buffer and transmission buffer. On
startup, the transmission buffer has yet to be used.

In this policy, the implementation of LLUI_DISPLAY_IMPL_flush() consists in swapping
the back buffers and transmitting the content of the back buffer to the front buffer (SPI, DSI,
etc.). This subtlety allows the reuse of the same back buffer after the end of the transmission:
this prevents the restoration of the past.

1. Some drawings are performed in the back buffer.

2. A Display.flush() is asked, the Graphics Engine calls LLUI_DISPLAY_IMPL_refresh() .

3. The strategy calls LLUI_DISPLAY_IMPL_flush() .

4. Thedisplaydriver has to implement LLUI_DISPLAY_IMPL_flush() whichconsists in start-
ing the transmission of the back buffer content to the LCD device’s buffer and swapping both
buffers (back and transmission buffers).

5. Thenewbackbuffer is immediately available (free); theBSPhas tonotify theGraphicsEngineby
calling LLUI_DISPLAY_setBackBuffer() , giving the new back buffer address (== previous
transmission buffer).

6. The Graphics Engine is now unlocked.

7. Before the very first drawing, this strategy copies the regions to restore from the previous back
buffer to the new back buffer.

8. Some drawings are performed in the back buffer.

9. A second Display.flush() is asked, the Graphics Engine calls LLUI_DISPLAY_IMPL_re-
fresh() .

10. The strategy calls LLUI_DISPLAY_IMPL_flush() .

11. The system is locked: the LCD driver still needs to finish transmitting the transmission buffer
data to the LCD device’s buffer.

12. As soon as the transmission is done, the BSP has to notify the Graphics Engine by calling
LLUI_DISPLAY_setBackBuffer() , giving the new back buffer address (== previous trans-
mission buffer).

13. The application is sleeping (doesn’t want to draw in the back buffer)

Hint: Optimization: As soon as the transmission to the LCD device’s buffer is done, the BSP
should call again LLUI_DISPLAY_setBackBuffer() bygiving the transmissionbuffer (which
is now free). If the drawing has yet to start in the back buffer, the Graphics Engine will reuse
this transmission buffer as a new back buffer instead of using the other one; the restoration
becomes useless.

3.6. VEE Porting Guide 921

MicroEJ Documentation,

14. The BSP should notify the Graphics Engine again by calling LLUI_DISPLAY_setBack-
Buffer() , giving the transmission buffer address: the Graphics Engine will reuse this buffer for
future drawings, and the strategy will not need to restore anything.

Strategy: Default

Principle

This strategy is the default strategy used when no explicit strategy is selected. This strategy is
implemented in the Graphics Engine, and its behavior isminimalist. However, this strategy can
be used for the direct buffer policy.

Fig. 218: Direct Buffer

This strategy considers that the drawings are always performed in the same back buffer. In this
case, the restoration is useless because the buffer always contains the past. Furthermore, as
the LCDdriver uses the samebuffer to refresh the display panel, this strategy has nothing to do.

Behavior

The following table illustrates how the strategy works:

Table 68: Strategy “Direct”
Drawing Steps Strategy Work Front Buffer

Startup

Implicit region background

Draw “background”

Implicit region A

Draw “A”

Refresh Call LLUI_DISPLAY_IMPL_flush() (nothing to do)

Note: This illustration considers that the clip changes before each drawing and fits the drawing’s bounds

3.6. VEE Porting Guide 922

MicroEJ Documentation,

Use

Here are the steps around the strategy describing how to use it:

1. Some drawings are performed in the buffer.

2. A Display.flush() is asked, the Graphics Engine calls LLUI_DISPLAY_IMPL_refresh() .

3. The strategy calls LLUI_DISPLAY_IMPL_flush() .

4. The display driver has to implement LLUI_DISPLAY_IMPL_flush() : at least enable the
LCD refresh interrupt to wait until the end of the refresh (or use a software task).

5. In the LCD refresh interrupt (here, the display panel shows the latest frame for sure), the BSP
has to notify the Graphics Engine by calling LLUI_DISPLAY_setBackBuffer() , giving the
same buffer address.

6. The Graphics Engine is now unlocked.

7. Some drawings are performed in the back buffer.

Strategy: Custom

Principle

This strategy symbolizes the strategy implemented by the BSP (the other strategies are imple-
mented in the MicroUI C Module or in the Graphics Engine). This strategy is useful to map a
specific behavior according to a specific application, the number of buffers, how the display
panel is mapped, etc.

TheBSPhas the responsibility to implement the following functions (inaddition to LLUI_DIS-
PLAY_IMPL_flush()):

• LLUI_DISPLAY_IMPL_newDrawingRegion()

• LLUI_DISPLAY_IMPL_refresh()

Warning: Both functions are already implemented as weak functions in the Graphics Engine
(see Strategy: Default)

Behavior

The following table illustrates how the strategy works:

3.6. VEE Porting Guide 923

MicroEJ Documentation,

Table 69: Strategy “Custom”
Drawing Steps Strategy Work Back Buffer

Startup

Implicit region background Implement LLUI_DISPLAY_IMPL_newDrawingRe-
gion()

Draw “background”

Implicit region A Implement LLUI_DISPLAY_IMPL_newDrawingRe-
gion()

Draw “A”

Refresh Implement LLUI_DISPLAY_IMPL_refresh()

Note: This illustration considers that the clip changes before each drawing and fits the drawing’s bounds

Use

Here are the steps around the strategy describing how to use it:

1. Some drawings are performed in the buffer.

2. A Display.flush() is asked, the Graphics Engine calls LLUI_DISPLAY_IMPL_refresh() .

3. The strategy has to implement LLUI_DISPLAY_IMPL_refresh() and call LLUI_DIS-
PLAY_IMPL_flush() .

4. The display driver has to implement LLUI_DISPLAY_IMPL_flush() .

5. When the display panel shows the latest frame, the BSP has to notify the Graphics Engine by
calling LLUI_DISPLAY_setBackBuffer() , giving the buffer address.

6. The Graphics Engine is now unlocked.

7. Some drawings are performed in the buffer.

Strategy: Legacy

Principle

This strategy mimics the behavior of the specification of the UI Pack 13.x, dedicated to the
multi-buffers policies.

The specification consisted in:

1. swapping the back buffer and the front buffer at flush time,

2. letting the BSP restore itself to the back buffer with the content of the previous drawings (the
past) before unlocking the Graphics Engine after a flush.

As a consequence, the past was always available before making the very first drawing after a
flush.

3.6. VEE Porting Guide 924

MicroEJ Documentation,

The strategy Legacy is useful to keep thebehavior of theVEEPortsmade forUI Pack 13.xwithout
updating them (except the signature of the LLAPI LLUI_DISPLAY_IMPL_flush()). This
strategymerges all drawing regions into only one rectangle (that includes all drawing regions).
This single rectangle is given to the function LLUI_DISPLAY_IMPL_flush() .

Note: For the single buffer policy, it is recommended to migrate to the strategy single.

Behavior

The following table illustrates how the strategy works:

Table 70: Strategy “Legacy”
Drawing Steps Strategy Work Back Buffer Front Buffer

Startup

Implicit region back-
ground

Store the region full-screen

Draw “background”

Implicit region A Calculate the bounding box of the regions
full-screen and A

Draw “A”

Refresh Call LLUI_DISPLAY_IMPL_flush() : swap
the buffers and restore the past

Implicit region B Store the region B

Draw “B”

Refresh Call LLUI_DISPLAY_IMPL_flush() : swap
the buffers and restore the past

Note: This illustration considers that the clip changes before each drawing and fits the drawing’s bounds

Use

Here are the steps around the strategy describing how to use it:

1. Some drawings are performed in the buffer.

2. A Display.flush() is asked, the Graphics Engine calls LLUI_DISPLAY_IMPL_refresh() .

3. The strategy calls LLUI_DISPLAY_IMPL_flush() .

4. The display driver has to implement LLUI_DISPLAY_IMPL_flush() : swap the back buffer
and the front buffer.

5. As soon as the display uses the new front buffer (the new back buffer is now freed), the BSP has
to launch a copy of the new front buffer to the new back buffer (use the bounding box).

3.6. VEE Porting Guide 925

MicroEJ Documentation,

6. As soon as the copy is done (the copymay be asynchronous), the BSP has to notify the Graphics
Engine by calling LLUI_DISPLAY_setBackBuffer() , giving the new back buffer address.

7. The Graphics Engine is now unlocked.

8. Some drawings are performed in the back buffer.

MicroUI C Module

Principle

The MicroUI C module features some Buffer Refresh Strategies. To select a strategy, configure
the define UI_FEATURE_BRS in the configuration file ui_configuration.h :

• Set UI_FEATURE_BRS_SINGLE to select the strategy Single.

• Set UI_FEATURE_BRS_PREDRAW to select the strategy Predraw.

• Set UI_FEATURE_BRS_LEGACY to select the strategy Legacy.

• Unset the define UI_FEATURE_BRS to select the strategy Default or to implement a Cus-
tom strategy.

Options

Somestrategies require someoptions to configure them. Theoptions (somedefines) are shared
between the strategies:

• UI_FEATURE_BRS_DRAWING_BUFFER_COUNT (ui_configuration.h): configures the available
number of back buffers. Used by:

– Predraw: allowed values are 1 , 2 , or 3 (1 is valid, but this strategy is not optimized for this
use case). See the comment of the define UI_DISPLAY_BRS_PREDRAW to increase this
value.

– Single: allowed value is 1 (sanity check).

• UI_FEATURE_BRS_FLUSH_SINGLE_RECTANGLE (ui_configuration.h): configures the number
of rectangles that the strategy gives to the implementation of LLUI_DISPLAY_IMPL_flush() . If not set,
the number of regions depends on the strategy. If set, only one region is given: the bounding box of all
drawing regions. Used by:

– Predraw: The list of regions is often useless (the LCD driver just has to swap the back and front
buffers); however, this list can be used for the buffer policy Transmit and Swap Buffer. Calculat-
ing the bounding box uses takes a bit of memory and time; if the bounding box is not used, it is
recommended to refrain from enabling this option.

– Single: The list of regions can be useful to refresh small parts of the front buffer.

– Legacy: This option is never used, and the bounding box of all drawing regions is given to the
implementation of LLUI_DISPLAY_IMPL_flush() .

• UI_RECT_COLLECTION_MAX_LENGTH (ui_rect_collection.h): configures the size of the arrays
that hold a list of regions (ui_rect_collection_t). The default value is 8 ; when the collection is full, the
strategy replaces all the regions with the bounding box of all regions. Used by:

– Predraw: number of regions to restore per back buffer.

– Single: number of regions that the LCD driver has to flush to the front buffer.

3.6. VEE Porting Guide 926

MicroEJ Documentation,

Weak Functions

Some strategies use the function UI_DISPLAY_BRS_restore() to copy a region from a
buffer to another buffer. A default implementation of this function is available in the C file
ui_display_brs.c . This implementation uses the standard memcpy . Override this function
to use a GPU for instance.

Debug Traces

The strategies log some events; see Debug Traces (see “[BRS]” comments).

Simulation

Principle

The Display widget in the Front Panel is able to simulate the buffer refresh strategy. It also
simulates the Buffer Policy.

The default values are:

• Swap Double Buffer for the buffer policy.

• Predraw for the buffer refresh strategy.

Usage

The buffer policy and the refresh strategy can be configured by adding an attribute to the Dis-
play widget in the .fp file. The value of these attributes is the fully qualified name of the class
implementing the buffer policy or the refresh strategy. The attributes are:

• bufferPolicyClass to set the buffer policy.

• refreshStrategyClass to set the refresh strategy.

Example:

<ej.fp.widget.Display
x=”0” y=”0” width=”480” height=”272”
bufferPolicyClass=”ej.fp.widget.display.buffer.SwapTripleBufferPolicy”
refreshStrategyClass=”ej.fp.widget.display.brs.PredrawRefreshStrategy”

/>

Available Implementations

The available buffer policies are:

• Swap Double Buffer: ej.fp.widget.display.buffer.SwapDoubleBufferPolicy .

• Swap Triple Buffer: ej.fp.widget.display.buffer.SwapTripleBufferPolicy .

• Direct Buffer: ej.fp.widget.display.buffer.DirectBufferPolicy .

• Single Buffer: ej.fp.widget.display.buffer.SingleBufferPolicy .

• Transmit and Swap Buffer: ej.fp.widget.display.buffer.TransmitSwapBufferPolicy .

3.6. VEE Porting Guide 927

MicroEJ Documentation,

The available refresh strategies are:

• Single: ej.fp.widget.display.brs.SingleRefreshStrategy .

• Predraw: ej.fp.widget.display.brs.PredrawRefreshStrategy .

• Legacy: ej.fp.widget.display.brs.LegacyRefreshStrategy .

Custom Implementation

It is possible to create a new buffer policy by implementing ej.fp.widget.display.buffer.
DisplayBufferPolicy .

The buffer policy is responsible for:

• Allocating the necessary buffers, usually in setDisplayProperties(Widget, int, int, int) :

FrontPanel.getFrontPanel().newImage(width, height, initialColor, false);

• Giving access to the back buffer (the buffer used to draw) in getBackBuffer() .

• Giving access to the front buffer (the buffer displayed in the Display widget) in getFront-
Buffer() .

• Flushing the set of modified rectangles from the back buffer to the front buffer in
flush(DisplayBufferManager, Rectangle[]) and requesting the displaywidget to be refreshed.

this.displayWidget.repaint();

It is possible to create a new refresh strategy by implementing ej.fp.widget.display.brs.
BufferRefreshStrategy .

The refresh strategy is responsible for:

• Restoring the past to ensure that the content of the display is correct by calling
DisplayBufferManager.restore(Rectangle) .

• Refreshing the display with what has been modified by calling DisplayBufferManager.
flush(Rectangle[]) in refresh(DisplayBufferManager) .

It is notified of the modified regions in newDrawingRegion(DisplayBufferManager,
Rectangle, boolean) .

Drawings

Abstraction Layer

All MicroUI drawings (available in the Painter class) call a native function. These native func-
tions are already implemented (in the MicroUI C Module for the Embedded VEE Port and in the
Front Panel for the Simulator). These implementations use the Graphics Engine’s software al-
gorithms to perform the drawings.

Each drawing can be overwritten independently in the VEE Port:

• to use another software algorithm (custom algorithm, no third-party library, etc.),

• to use a GPU to perform the operation,

• to target a destination whose format is different from the display back buffer format,

3.6. VEE Porting Guide 928

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Painter.html

MicroEJ Documentation,

• etc.

The MicroUI native drawing functions are listed in LLUI_PAINTER_impl.h and
LLDW_PAINTER_impl.h (for the Drawing library) for the Embedded VEE Port and,
respectively, LUIPainter.java and LLDWPainter.java for the Simulation VEE Port.

The implementation must handle many constraints: synchronization between drawings,
Graphics Engine notification, MicroUI GraphicsContext clip and colors, dirty flush area, etc. The
principle of implementing aMicroUI drawing function is described in the chapter CustomDraw-
ing.

Destination Format

Since MicroUI 3.2, the destination buffer of the drawings can be different than the display back
buffer format (see MicroEJ Format: Display). This destination buffer format can be a standard
format (ARGB8888, A8, etc.) or a custom format.

See Buffered Image for more information about how to create buffered images with another
format than the display format and how to draw in them.

Graphics Engine Software Algorithms

TheGraphics Engine features a software implementation for eachMicroUI andDrawing libraries
drawing. These software algorithms respect the MicroUI GraphicsContext clip and use the cur-
rent MicroUI GraphicsContext foreground color and optional background color.

The Graphics Engine provides a header file ui_drawing_soft.h (emb), and an implemen-
tation instance of UIDrawing that can be retrieved with ej.microui.display.LLUIDisplay.
getUIDrawerSoftware() (sim) to let the VEE Port use these algorithms. For instance, a GPU
may be able to draw an image whose format is RGB565 but not ARGB1555. For this image for-
mat, BSP implementation can call the UI_DRAWING_SOFT_drawImage function.

Warning: These software algorithms only target buffers whose format is the display back
buffer format.

MicroUI C Module

Principle

An implementation of LLUI_PAINTER_impl.h is already available on theMicroUI Cmodule.
This implementation respects the synchronization between drawings and the Graphics Engine
notification and reduces (when possible) the MicroUI GraphicsContext clip constraints.

This implementation does not perform the drawings; it only calls the equivalent of drawing
available in ui_drawing.h . This allows simplifyinghow touseaGPU (or a third-party library) to
perform a drawing: the ui_drawing.h implementation just has to take into consideration the
MicroUI GraphicsContext clip and colors. Synchronization with the Graphics Engine is already
performed.

In addition to the implementation of LLUI_PAINTER_impl.h , an implementation of
ui_drawing.h is already available in MicroUI C module (in weak mode). This allows to imple-
ment only the functions the GPU can perform. For a given drawing, the weak function imple-

3.6. VEE Porting Guide 929

https://repository.microej.com/modules/ej/api/drawing
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html

MicroEJ Documentation,

mentation is calling the equivalent of the drawing available in ui_drawing_soft.h (this file
lists all drawing functions implemented by the Graphics Engine in software).

Note: More details are available in LLUI_PAINTER_impl.h , ui_drawing.h , LLUI_Display.h , and
LLUI_Display_impl.h files.

Default Implementation

The default implementation is the most used. It takes into account:

• there is only one destination format (the display back buffer format),

• no drawing is overwritten in the BSP (no GPU, third-party library, etc.),

• non-standard images cannot be used as a source.

TheMicroUI C module is designed to simplify the UI VEE Port:

• just need to add the Cmodule in the BSP (no extra code is needed),

• flash footprint is reduced (no extra table to manage several destination formats and several
sources),

• functions indirections are limited (the software drawing algorithm is called as faster as possi-
ble).

The following diagram illustrates the steps to perform a shape drawing (not an image):

3.6. VEE Porting Guide 930

MicroEJ Documentation,

[MicroUI]
Painter.drawXXX();

[LLUI_PAINTER_impl.h]
LLUI_PAINTER_IMPL_drawXXX();

[Graphics Engine]

[LLUI_PAINTER_impl.c]
LLUI_PAINTER_IMPL_drawXXX();

[ui_drawing.h]
UI_DRAWING_drawXXX();

[ui_drawing.c]
weak UI_DRAWING_drawXXX();

[ui_drawing_soft.h]
UI_DRAWING_SOFT_drawXXX();

LLUI_PAINTER_IMPL_drawLine (available in MicroUI C Module)

3.6. VEE Porting Guide 931

MicroEJ Documentation,

void LLUI_PAINTER_IMPL_
→˓drawLine(MICROUI_GraphicsContext* gc, jint startX, jint startY, jint endX, jint endY) {
// Synchronize the native function of MicroUI Painter.drawLine() with the Graphics Engine
if (LLUI_

→˓DISPLAY_requestDrawing(gc, (SNI_callback)&LLUI_PAINTER_IMPL_drawLine)) {
// Call ui_drawing.h function
DRAWING_Status status = UI_DRAWING_drawLine(gc, startX, startY, endX, endY);
// Update the status of the Graphics Engine
LLUI_DISPLAY_setDrawingStatus(status);

}
}

TheGraphics Engine requires synchronization between the drawings. Doing that requires a call
to LLUI_DISPLAY_requestDrawing at the beginning of native function implementation.
This function takes as a parameter the MicroUI GraphicsContext and the pointer on the native
function itself. This pointer must be cast in a SNI_callback .

UI_DRAWING_drawLine (available in MicroUI C Module)

#define UI_DRAWING_DEFAULT_drawLine UI_DRAWING_drawLine

The function name is set with preprocessor macros. This name redirection is useful when the
VEE Port features multiple destination formats (not the use-case here).

UI_DRAWING_DEFAULT_drawLine (available in MicroUI C Module)

// Use the compiler's 'weak' attribute
__weak DRAWING_Status UI_DRAWING_DEFAULT_
→˓drawLine(MICROUI_GraphicsContext* gc, jint startX, jint startY, jint endX, jint endY) {
// Default behavior: call the Graphics Engine's software algorithm
return UI_DRAWING_SOFT_drawLine(gc, startX, startY, endX, endY);

}

Implementing the weak function only consists in calling the Graphics Engine’s software algo-
rithm. This software algorithmwill respect the GraphicsContext color and clip.

Custom Implementation

The custom implementation helps connect a GPU or a third-party library. It takes into account:

• there is only one destination format (the display back buffer format),

• non-standard images cannot be used as a source.

TheMicroUI C module is designed to simplify the adding of third-party drawers:

• just need to add the Cmodule in the BSP,

• overwrite only the expected drawing(s),

• a drawing implementation has just to respect the clip and color (synchronization with the
Graphics Engine already done),

• flash footprint is reduced (no extra table to manage several destination formats and several
sources),

• functions indirections are limited (the drawing algorithm is called as faster as possible).

The following diagram illustrates the steps to perform a shape drawing (not an image):

3.6. VEE Porting Guide 932

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html

MicroEJ Documentation,

[MicroUI]
Painter.drawXXX();

[LLUI_PAINTER_impl.h]
LLUI_PAINTER_IMPL_drawXXX();

[Graphics Engine][GPU]

[LLUI_PAINTER_impl.c]
LLUI_PAINTER_IMPL_drawXXX();

[ui_drawing.h]
UI_DRAWING_drawXXX();

Function implemented?

[ui_drawing_soft.h]
UI_DRAWING_SOFT_drawXXX();

[ui_drawing_gpu.c]
UI_DRAWING_drawXXX();

GPU compatible?

[GPU driver]

[ui_drawing.c]
weak UI_DRAWING_drawXXX();

yes no

noyes

3.6. VEE Porting Guide 933

MicroEJ Documentation,

Take the same example as the default implementation (draw a line): the BSP just has to over-
write the weak function UI_DRAWING_drawLine :

UI_DRAWING_drawLine (to write in the BSP)

#define UI_DRAWING_GPU_drawLine UI_DRAWING_drawLine

The function name should be set with preprocessor macros. This name redirection is useful
when the VEE Port features multiple destination formats (not the use-case here).

UI_DRAWING_GPU_drawLine (to write in the BSP)

// Contrary to the MicroUI C Module, this function is not ”weak”
DRAWING_Status UI_DRAWING_GPU_
→˓drawLine(MICROUI_GraphicsContext* gc, jint startX, jint startY, jint endX, jint endY) {

DRAWING_Status status;

if (is_gpu_compatible(xxx)) {
// Can use the GPU to draw the line

// Retrieve the destination buffer address
uint8_t* destination_address = LLUI_DISPLAY_getBufferAddress(&gc->image);

// Configure the GPU clip
gpu_set_clip(startX, startY, endX, endY);

// Draw the line
gpu_draw_line(destination_address, startX, startY, endX, endY, gc->foreground_color);

// GPU is running: set the right status for the Graphics Engine
status = DRAWING_RUNNING;

}
else {

// Default behavior: call the Graphics Engine's software algorithm (like ”weak” function)
status = UI_DRAWING_SOFT_drawLine(gc, startX, startY, endX, endY);

}
return status;

}

First, the drawing function must ensure the GPU can render the expected drawing. If not, the
drawing functionmust perform the same thing as the default weak function: calls the Graphics
Engine software algorithm.

TheGPUdrawing functionusually requires thedestinationbufferaddress: thedrawing function
calls LLUI_DISPLAY_getBufferAddress(&gc->image); .

The drawing function has to respect the GraphicsContext clip The MICROUI_GraphicsCon-
text structure holds the clip, and the drawer cannot perform a drawing outside this clip (oth-
erwise, the behavior is unknown). Note the bottom-right coordinates might be smaller than
the top-left (in x and/or y) when the clip width and/or height is null. The clip may be dis-
abled (when the current drawing fits the clip); this allows to reduce runtime. See LLUI_DIS-
PLAY_isClipEnabled() .

3.6. VEE Porting Guide 934

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html

MicroEJ Documentation,

Hint: Several clip functions are available in LLUI_DISPLAY.h to check if a drawing fits the clip.

Finally, after the drawing, the drawing function has to return the drawing status. Most of the
time, the GPU performs asynchronous drawings: the drawing is started but not completed. To
notify the Graphics Engine, the status to return is DRAWING_RUNNING . In case of the
drawing is done after the call to gpu_draw_line() , the status to return is DRAWING_DONE
.

Warning: If the drawing status is not set to the Graphics Engine, the global VEE execution
is locked: the Graphics Engine waits indefinitely for the status and cannot perform the next
drawing.

GPU Synchronization

When aGPU is used to performadrawing, the caller (MicroUI painter nativemethod) returns im-
mediately. This allows the application to perform other operations during the GPU rendering.
However, as soon as the application is trying to perform another drawing, the previous draw-
ing made by the GPU must be done. The Graphics Engine is designed to be synchronized with
the GPU asynchronous drawings by defining some points in the rendering timeline. It is not
optional: MicroUI assumes that a drawing is fully done when it starts a new one. The end of a
GPUdrawingmustnotify theGraphicsEnginecalling LLUI_DISPLAY_notifyAsynchronous-
DrawingEnd() .

Extended C Modules

Several C Modules are available on the MicroEJ Repositories. These modules are compatible
with the MicroUI C module (they follow the rules described above) and use one GPU (a C Mod-
ule per GPU). These C Modules should be fetched in the VEE Port in addition to the MicroUI C
Module; it avoids re-writing the GPU port.

Simulation

Principle

This is the same principle asMicroUI C Module for the Embedded side:

• The drawing primitive natives called the matching method in LLUIPainter .

• The LLUIPainter synchronizes the drawings with the Graphics Engine and dispatches the
drawing itself to an implementation of the interface UIDrawing .

• The Front Panel provides a software implementation of UIDrawing available by calling ej.
microui.display.LLUIDisplay.getUIDrawerSoftware() .

• The DisplayDrawer implements UIDrawing and is used to draw in the display back buffer
and the images with the same format.

These classes are available in the UI Pack extension of the Front Panel Mock.

3.6. VEE Porting Guide 935

MicroEJ Documentation,

Note: More details are available in LLUIPainter , UIDrawing , LLUIDisplay , and LLUIDisplayImpl files.

Default Implementation

The default implementation is the most used. It considers that:

• there is only one destination format (the display back buffer format),

• no drawing is overwritten in the BSP (no third-party library),

• non-standard images cannot be used as a source.

The UI Pack extension is designed to simplify the UI VEE Port:

• Simply add the dependency to the UI Pack extension in the VEE Port Front Panel project.

• Function indirections are limited (the software drawing algorithm is called as fast as possible).

The following diagram illustrates the steps to perform a shape drawing (not an image):

3.6. VEE Porting Guide 936

MicroEJ Documentation,

[MicroUI]
Painter.drawXXX();

[FrontPanel]
LLUIPainter.drawXXX();

[Graphics Engine]

[FrontPanel]
getUIDrawer().drawXXX();

[FrontPanel]
DisplayDrawer.drawXXX();

[FrontPanel]
getUIDrawerSoftware()

.drawXXX();

LLUIPainter.drawLine (available in UI Pack extension)

public static void drawLine(byte[] target, int x1, int y1, int x2, int y2) {

// Retrieve the Graphics Engine instance
LLUIDisplay graphicalEngine = LLUIDisplay.Instance;

// Synchronize the native function of MicroUI Painter.drawLine() with the Graphics Engine
(continues on next page)

3.6. VEE Porting Guide 937

MicroEJ Documentation,

(continued from previous page)

synchronized (graphicalEngine) {

// Retrieve the Front Panel instance of the MicroUI GraphicsContext (the destination)
MicroUIGraphicsContext gc = graphicalEngine.mapMicroUIGraphicsContext(target);

// Ask to the Graphics Engine if a drawing can be performed on the target
if (gc.requestDrawing()) {

// Retrieve the drawer for the GraphicsContext (by default: DisplayDrawer)
UIDrawing drawer = getUIDrawer(gc);

// Call UIDrawing function
drawer.drawLine(gc, x1, y1, x2, y2);

}
}

}

The Graphics Engine requires synchronization between the drawings. To do that, the drawing
is synchronized on the instance of the Graphics Engine itself.

The target (the Front Panel object that maps the MicroUI GraphicsContext) is retrieved in the
native drawing method by asking the Graphics Engine to map the byte array (returned by
GraphicsContext.getSNIContext()). Like the embedded side, this object holds a clip, and
the drawer cannot perform a drawing outside of this clip (otherwise, the behavior is unknown).

DisplayDrawer.drawLine (available in UI Pack extension)

@Override
public void drawLine(MicroUIGraphicsContext gc, int x1, int y1, int x2, int y2) {

LLUIDisplay.Instance.getUIDrawerSoftware().drawLine(gc, x1, y1, x2, y2);
}

The implementation of DisplayDrawer simply calls the Graphics Engine’s software algorithm.
This software algorithmwill use the GraphicsContext color and clip.

Custom Implementation

The custom implementation helps connect a third-party library or to simulate the same con-
straints as the embedded side (the same GPU constraints). It considers that:

• there is only one destination format (the display back buffer format),

• non-standard images cannot be used as a source.

The UI Pack extension is designed to simplify the adding of third-party drawers:

• Add the dependency to the UI Pack extension in the VEE Port Front Panel project.

• Create a subclass of DisplayDrawer (implementation of the interface UIDrawing).

• Overwrite only the desired drawing(s).

– Each drawing implementation must comply with the clip and color (synchronization with the
Graphics Engine already done).

– Function indirections are limited (the drawing algorithm is called as fast as possible).

• Register this drawer in place of the default display drawer.

3.6. VEE Porting Guide 938

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html

MicroEJ Documentation,

The following diagram illustrates the steps to perform a shape drawing (not an image):

3.6. VEE Porting Guide 939

MicroEJ Documentation,

[MicroUI]
Painter.drawXXX();

[FrontPanel]
LLUIPAINTER.drawXXX();

[Graphics Engine]

[Third-party lib]

[FrontPanel]
getUIDrawer().drawXXX();

[FrontPanel]
DisplayDrawer.drawXXX();

[FrontPanel]
getUIDrawerSoftware()

.drawXXX();

[VEE Port FP]
DisplayDrawerExtension

.drawXXX();

can draw algo?

method overridden?

no

yes

yesno

3.6. VEE Porting Guide 940

MicroEJ Documentation,

Let’s use the same example as the previous section (draw line function): the Front Panel project
has to create its drawer based on the default drawer:

MyDrawer (to write in the Front Panel project)

public class MyDrawer extends DisplayDrawer {

@Override
public void drawLine(MicroUIGraphicsContext gc, int x1, int y1, int x2, int y2) {

if (isCompatible(xxx)) {
// Can use the GPU to␣

→˓draw the line on the embedded side: can use another algorithm than the software algorithm

// Retrieve the AWT Graphics2D
Graphics2D␣

→˓src = (Graphics2D)((BufferedImage)gc.getImage().getRAWImage()).getGraphics();

// Draw the line using AWT (have to respect clip & color)
src.setColor(new Color(gc.getRenderingColor()));
src.drawLine(x1, y1, x2, x2);

}
else {

// Default behavior: call the Graphics Engine's software algorithm
super.drawLine(gc, x1, y1, x2, y2);

}
}

}

The Front Panel framework is running over AWT. The method gc.getImage() returns a ej.fp.
Image . It is the representation of a MicroUI Image in the Front Panel framework. The method
gc.getImage().getRAWImage() returns the implementation of the Front Panel image on the
Java SE framework: an AWT BufferedImage. The AWT graphics 2D can be retrieved from this
buffered image.

The MicroUI color (gc.getRenderingColor()) is converted to an AWT color.

The method behavior is exactly the same as the embedded side; see Custom Implementation.

This newly createddrawermust now replace the default display drawer. There are twopossible
ways to register it:

• Declare it as a UIDrawing service.

• Declare it programmatically.

UIDrawing Service

• Create a new file in the resources of the Front Panel project named META-INF/services/
ej.microui.display.UIDrawing and write the fully qualified name of the previously created
drawer:

com.mycompany.MyDrawer

Programmatically

• Create an empty widget to invoke the new implementation:

3.6. VEE Porting Guide 941

https://docs.oracle.com/javase/7/docs/api/java/awt/image/BufferedImage.html

MicroEJ Documentation,

@WidgetDescription(attributes = { })
public class Init extends Widget{

@Override
public void start() {

super.start();
LLUIDisplay.Instance.registerUIDrawer(new MyDrawer());

}
}

• Invoke this widget in the .fp file:

<frontpanel xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance” xmlns=”https:/
→˓/developer.microej.com” xsi:schemaLocation=”https://developer.microej.com .widget.xsd”>
<device name=”STM32429IEVAL” skin=”Board-480-272.png”>

<com.is2t.microej.fp.Init/>
[...]

</device>
</frontpanel>

Custom Drawing

Principle

MicroUI allows adding some custom drawings (drawings not listed in the MicroUI Painter
classes). A custom drawing has to respect the same rules as the MicroUI drawings to avoid
corrupting the MicroUI execution (flickering, memory corruption, unknown behavior, etc.).

As explainedabove,MicroUI implementationprovides anAbstractionLayer that lists allMicroUI
Painter drawing native functions and their implementations (MicroUI CModule and Simulation).
The implementation of MicroUI Painter drawings should be used as a model to implement the
custom drawings.

Application Method

// Application drawing method
protected void render(GraphicsContext gc) {

// [...]

// Set the GraphicsContext color
gc.setColor(Colors.RED);
// Draw a red line
Painter.drawLine(gc, 0, 0, 10, 10);
// Draw a red custom drawing
drawCustom(gc.getSNIContext(), 5, 5);

// [...]
}

// Custom drawing native method
private static native void drawCustom(byte[] graphicsContext, int x, int y);

All native functionsmust have aMicroUI GraphicsContext as a parameter (often the first param-
eter) that identifies the destination target. The application retrieves this target by calling the

3.6. VEE Porting Guide 942

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html

MicroEJ Documentation,

method GraphicsContext.getSNIContext() . This method returns a byte array to give as-is to
the drawing native method.

BSP Implementation

The native drawing function implementation pattern is:

void Java_com_mycompany_
→˓MyPainterClass_drawCustom(MICROUI_GraphicsContext* gc, jint x, jint y) {

// Tell the Graphics Engine if the drawing can be performed
if (LLUI_DISPLAY_requestDrawing(gc,

→˓ (SNI_callback)&Java_com_mycompany_MyPainterClass_drawCustom)) {
DRAWING_Status status;

// Perform the drawing (respecting clip if not disabled)
status = custom_drawing(LLUI_DISPLAY_getBufferAddress(&gc->image), x, y);

// Set drawing status
LLUI_DISPLAY_setDrawingStatus(status);

}
// Else: refused drawing

}

The target (theMicroUIGraphicsContext) is retrieved in thenativedrawing functionbymapping
the MICROUI_GraphicsContext structure in MicroUI native drawing function declaration.

This implementation has to follow the same rules as the custom MicroUI drawings implemen-
tation: see Custom Implementation.

Simulation

Note: This chapter considers the VEE Port Front Panel project already features a custom drawer that replaces the
default drawer DisplayDrawer . See Custom Implementation.

The native drawing function implementation pattern is as follows (see below for the explana-
tions):

public static void drawCustom(byte[] target, int x, int y) {

// Retrieve the Graphics Engine instance
LLUIDisplay graphicalEngine = LLUIDisplay.Instance;

// Synchronize the native function with the Graphics Engine
synchronized (graphicalEngine) {

// Retrieve the Front Panel instance of the MicroUI GraphicsContext (the destination)
MicroUIGraphicsContext gc = graphicalEngine.mapMicroUIGraphicsContext(target);

// Ask to the Graphics Engine if a drawing can be performed on the target
if (gc.requestDrawing()) {

// Retrieve the drawer for the GraphicsContext (by default: DisplayDrawer)
(continues on next page)

3.6. VEE Porting Guide 943

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html

MicroEJ Documentation,

(continued from previous page)

UIDrawing drawer = getUIDrawer(gc);

// Call UIDrawing function
MyDrawer.Instance.drawSomething(gc, x, y);

}
}

}

This implementation has to follow the same rules as the custom MicroUI drawings implemen-
tation: see Custom Implementation.

Drawing Logs

When performing drawing operations, the program may fail or encounter an incident of some
kind. MicroUI offers a mechanism allowing the VEE Port to report such incidents to the appli-
cation through the use of flags.

Usage Overview

When an incident occurs, the VEEPort can report it to the application by setting the drawing log
flags stored in the graphics context. The flags will then be made available to the application.
See Drawing Logs for more information on reading the flags in the application.

Without an intervention from the application, the drawing log flags retain their values through
every call to drawing functions and are cleared when a flush is performed.

Note: The clearing of drawing log flags can be disabled at build time by the application developer.

Incidents are split into two categories:

• Non-critical incidents, or warnings, are incidents that the application developer may ignore.
The flags are made available for the application to check, but without an explicit statement in
the application, these incidents will be ignored silently.

• Critical incidents, or errors, are failures significant enough that the application developer
should not ignore them. As for warnings, the application may check the drawing log flags ex-
plicitly. However, when flushing the display, the application checks the flags and throws an
exception if an error has been reported.

Warning: As this behavior can be disabled at build time, the drawing log flags aremeant to be
used as a debugging hint when the application does not display what the developer expects.
The VEE Port must not rely on applications throwing an exception if an error was reported or
on the drawing log flags being reset after the display is flushed.

Note: Any incident may be either a warning or an error. They are differentiated with the special flag DRAW-
ING_LOG_ERROR .

3.6. VEE Porting Guide 944

MicroEJ Documentation,

Available Constants

MicroUI offers a set of flag constants to report incidents to the application. They are defined
anddocumented in LLUI_PAINTER_impl.h (for embedded targets) and LLUIPainter (for
front panels).

Refer to the application documentation for the exhaustive list of drawing logs.

Hint: Sometimes, incidents may match more than one flag constant. In such cases, the VEE Port may report the
incident with multiple flags by combining them with the bitwise OR operator (|), just like any other flags. For
example, an out-of-memory incident occurring in an underlying drawing library may be reported with the value
DRAWING_LIBRARY_INCIDENT | DRAWING_OUT_OF_MEMORY .

Embedded Targets

MicroUI exposes two functions to be used in the VEE Port. Both functions are declared in
LLUI_DISPLAY.h , and their documentation is available in that file.

• LLUI_DISPLAY_reportWarning reports a warning to the application. It will set the flags passed as an ar-
gument in the graphics context. It will not reset the previous flag values, thus retaining all reported incidents
until the application clears the flags.

• LLUI_DISPLAY_reportError reports an error to the application. It behaves similarly to LLUI_DIS-
PLAY_reportWarning , except it will additionally set the flag DRAWING_LOG_ERROR . This special
flag will cause an exception to be thrown in the application the next time the application checks the flags.

For example, if the VEE Port contains a custom implementation to draw a line that may cause
an out-of-memory error, it could report this error this way:

void LLUI_PAINTER_IMPL_
→˓drawLine(MICROUI_GraphicsContext* gc, jint startX, jint startY, jint endX, jint endY) {
// This could cause an out-of-memory error.
unsigned int result = custom_line_drawing();

// Check if an error occurred.
if (result == OUT_OF_MEMORY) {

// If an error occurred, set the corresponding flag.
LLUI_DISPLAY_reportError(gc, DRAWING_LOG_OUT_OF_MEMORY);

}
}

Simulator

Similarly, MicroUI exposes two functions to set drawing log flags in the front panel implementa-
tion. Both functions are declared as methods of the interface MicroUIGraphicsContext and
are documented there. The Graphics Engine provides an implementation for these methods.

• MicroUIGraphicsContext.reportWarning behaves like LLUI_DISPLAY_reportWarning and reports a
warning to the application.

• MicroUIGraphicsContext.reportError behaves like LLUI_DISPLAY_reportError and reports an error
to the application.

3.6. VEE Porting Guide 945

MicroEJ Documentation,

The front panel version of the previous example that reported an out-of-memory error would
look like this:

public static void drawLine(byte[] target, int startX, int startY, int endX, int endY) {
LLUIDisplay engine = LLUIDisplay.Instance;

synchronized (engine) {
MicroUIGraphicsContext gc = engine.mapMicroUIGraphicsContext(target);

// This could cause an out-of-memory error.
int result = CustomDrawings.drawLine();

// Check if an error occurred.
if (result == Constants.OUT_OF_MEMORY) {

// If an error occurred, set the corresponding flag.
gc.reportError(gc, DRAWING_LOG_OUT_OF_MEMORY);

}
}

}

Images

Overview

Principle

The Image Engine is designed to make the distinction between three kinds of MicroUI images:

• the images which can be used by the application without a loading step: class Image,

• the images which requires a loading step before being usable by the application: class Resour-
ceImage,

• the buffered images where the application can draw into: class BufferedImage.

The first kindof image requires the ImageEngine tobeable touse (get, readanddraw) an image
referenced by its path without any loading step. The open step should be very fast: just have
to find the image in the application resources list and create an Image object which targets the
resource. No RAMmemory to store the image pixels is required: the Image Engine directly uses
the resourceaddress (often inFLASHmemory). And finally, closing step is uselessbecause there
is nothing to free (except Image object itself, via the garbage collector).

The second kind of image requires the Image Engine to be able to use (load, read and draw)
an image referenced by its path with or without any loading step. When the image is under-
standable by the Image Engine without any loading step, the image is considered like the first
kind of image (fast open step, no RAM memory, useless closing step). When a loading step is
required (dynamic decoding, external resource loading, image format conversion), the open
state becomes longer and a buffer in RAM is required to store the image pixels. By consequence
a closing step is required to free the buffer when image becomes useless.

The third kind of image requires, by definition, a buffer to store the image data. Image Engine
must be able to use (create, read and draw) this kind of image. The open state consists in cre-
ating a buffer. By consequence a closing step is required to free the buffer when the image
becomes useless. Contrary to the other kinds of images, the application will be able to draw
into this image.

3.6. VEE Porting Guide 946

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Image.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/ResourceImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/ResourceImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/BufferedImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Image.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Image.html

MicroEJ Documentation,

Functional Description

The Image Engine is composed of:

• An “Image Generator” module, for converting images into a MicroEJ format (known by the Im-
age Engine Renderer) or into a VEE Port binary format (cannot be used by the Image Engine
Renderer), before runtime (pre-generated images).

• The “Image Loader” module, for loading, converting and closing the images.

• Asetof “ImageDecoder”modules, for converting standard image formats intoaMicroEJ format
(known by the Image Renderer) at runtime. Each Image Decoder is an additionalmodule of the
main module “Image Loader”.

• The “Image Renderer” module, for reading and drawing the images in MicroEJ format.

3.6. VEE Porting Guide 947

MicroEJ Documentation,

Input Files
(png, xxx)

Image Generator

png | xxx

Flash
(internal ROM, NOR)

png | xxx

External Flash
(SDCard etc.)

png | xxx

png | xxx | mej | binpng | xxx | mej | bin

Image Loader

PNG Decoder

png

XXX Decoder

xxx

MEJ Converter

mej

RAM

mejmej

Image Renderer

BSP

mej

Software
Algorithms

Memory Buffer

mej

png | xxx | mej (to convert)

mej

bin

mej

png | xxx | mej

mej (byte @)

bin

GPU

mej mej | bin

• Colors:

– blue: off-board elements (tools, files).

– green: hardware elements (memory, processor).

3.6. VEE Porting Guide 948

MicroEJ Documentation,

– orange: on-board Graphics Engine elements.

– gray: BSP.

• Line labels:

– png : symbolizes all standard image input formats (PNG, JPG, etc.).

– xxx : symbolizes a non-standard input format.

– mej : symbolizes the MicroEJ output format (MicroEJ Format: Standard).

– bin : symbolizes a VEE Port binary format (Binary Format).

Process overview:

1. The user specifies the pre-generated images to embed (see Image Generator) and / or the im-
ages to embed as regular resources (see Encoded Image).

2. The files are embedded as resources with the application. The files’ data are linked into the
FLASHmemory.

3. When the application creates aMicroUI Imageobject, the Image Loader loads the image, calling
the right sub Image Engine module (see Image Generator and Encoded Image) to decode the
specified image.

4. When the application draws this MicroUI Image on the display (or on buffered image), the de-
coded imagedata is used, andnomoredecoding is required, so thedecoding is doneonly once.

5. When theMicroUI Image is no longerneeded, itmustbe closedexplicitly by theapplication. The
Image Engine Core asks the right sub Image Enginemodule (see Image Generator and Encoded
Image) to free the image working area.

Dependencies

• MicroUI module (seeMicroUI),

• Displaymodule (see Display): the characteristics of the target display are used to configure the
Image Generator.

Image Format

The Image Engine makes the distinction between:

• The input format: the format of the original image.

• The output format: the image format used by the Image Renderer.

Several formats are managed in input: PNG, JPEG, BMP, etc. A specific VEE Port can support
additional input formats.

Several formats aremanaged in output: theMicroEJ formats and thebinary format. Theoutput
format can be:

• Generated from the input format using the off-board tool Image Generator at application
compile-time.

• Generated from the input format by using a runtime decoder of the Image Loader at application
run-time.

• Dynamically created when using a BufferedImage.

3.6. VEE Porting Guide 949

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/BufferedImage.html

MicroEJ Documentation,

The Image Renderer manages only the MicroEJ formats (MicroEJ Format: Standard, MicroEJ
Format: Display, andMicroEJ Format: Custom).

The following table lists all the formats and their usage.

Table 71: Image Formats
Format Input Output BufferedImage
MicroEJ Format: Display no yes yes
MicroEJ Format: Standard no yes yes1

MicroEJ Format: Grayscale no yes yesPage 950, 1

MicroEJ Format: RLE Compressed no yes no
MicroEJ Format: Custom no not yet yes1

Binary Format no yes no
Original Input Format yes no no

The following sections list all the formats and their usage.

MicroEJ Format: Display

The display back buffer holds a pixel encoding which is:

• standard: see Standard Output Formats,

• grayscale: see Grayscale Output Formats,

• non-standard: see Display Output Format and Pixel Structure.

The non-standard display format can be customized to encode the pixel in the same encod-
ing as the display. The number of bits per pixel and the pixel bit organization is asked during
the MicroEJ format generation and when the drawImage algorithms are running. If the im-
age to encode contains some transparent pixels, the output file will embed the transparency
according to the display’s implementation capacity. When all pixels are fully opaque, no extra
information will be stored in the output file to free up somememory space.

Notes:

• From the Image Engine point of view, the non-standard display format stays a MicroEJ format,
readable by the Image Renderer.

• The required memory to encode an image with a non-standard display format is similar to Mi-
croEJ Format: Standard.

• When the display format is standard or grayscale, the encoded image format is replaced by the
related standard format.

• The Graphics Engine’s drawing software algorithms only target (are only compatible with) the
buffered images whose format is the same as the display format (standard or non-standard).

1 Need some support in the VEE Port to support formats different than the display one (see Buffered Image).

3.6. VEE Porting Guide 950

MicroEJ Documentation,

MicroEJ Format: Standard

See Standard Output Formats.

This format requires a small header (around 20 bytes) to store the image size (width, height),
format, flags (is_transparent, etc.), row stride, etc. The required memory also depends on the
number of bits per pixel of the MicroEJ format:

required_memory = header + (image_width * image_height) * bpp / 8;

The pixel array is stored after the MicroEJ image file header. A padding between the header
and the pixel array is added to force to start the pixel array at amemory address aligned on the
number of bits-per-pixels.

The pixel order follows this rule:

pixel_offset = (pixel_Y * image_width + pixel_X) * bpp / 8;

Here are the conversions of 32-bit to each format:

• ARGB8888: 32-bit format, 8 bits for transparency, 8 per color.

u32 convertARGB8888toRAWFormat(u32 c){
return c;

}

• ARGB4444: 16-bit format, 4 bits for transparency, 4 per color.

u32 convertARGB8888toRAWFormat(u32 c){
return 0

| ((c & 0xf0000000) >> 16)
| ((c & 0x00f00000) >> 12)
| ((c & 0x0000f000) >> 8)
| ((c & 0x000000f0) >> 4)
;

}

• ARGB1555: 16-bit format, 1 bit for transparency, 5 per color.

u32 convertARGB8888toRAWFormat(u32 c){
return 0

| (((c & 0xff000000) == 0xff000000) ? 0x8000 : 0)
| ((c & 0xf80000) >> 9)
| ((c & 0x00f800) >> 6)
| ((c & 0x0000f8) >> 3)
;

}

• RGB888: 24-bit format, 8 per color.

u32 convertARGB8888toRAWFormat(u32 c){
return c & 0xffffff;

}

• RGB565: 16-bit format, 5 for red, 6 for green, 5 for blue.

3.6. VEE Porting Guide 951

MicroEJ Documentation,

u32 convertARGB8888toRAWFormat(u32 c){
return 0

| ((c & 0xf80000) >> 8)
| ((c & 0x00fc00) >> 5)
| ((c & 0x0000f8) >> 3)
;

}

• A8: 8-bit format, only the source image’s transparency is encoded (option alpha), or the source
image is pre-processed (option grayscale); see Alpha Format.

Option alpha

Option grayscale

u32 convertARGB8888toRAWFormat(u32 c){
return (c >> 24) & 0xff;

}

u32 convertARGB8888toRAWFormat(u32 c){
return 0xff - (toGrayscale(c) & 0xff);

}

• A4: 4-bit format, only the source image’s transparency is encoded (option alpha), or the source
image is pre-processed (option grayscale); see Alpha Format.

Option alpha

Option grayscale

u32 convertARGB8888toRAWFormat(u32 c){
return (c >> 28) & 0xf;

}

u32 convertARGB8888toRAWFormat(u32 c){
return (0xff - (toGrayscale(c) & 0xff)) / 0x11;

}

• A2: 2-bit format, only the source image’s transparency is encoded (option alpha), or the source
image is pre-processed (option grayscale); see Alpha Format.

Option alpha

Option grayscale

u32 convertARGB8888toRAWFormat(u32 c){
return (c >> 30) & 0x3;

}

u32 convertARGB8888toRAWFormat(u32 c){
return (0xff - (toGrayscale(c) & 0xff)) / 0x55;

}

• A1: 1-bit format, only the source image’s transparency is encoded (option alpha), or the source
image is pre-processed (option grayscale); see Alpha Format.

Option alpha

Option grayscale

3.6. VEE Porting Guide 952

MicroEJ Documentation,

u32 convertARGB8888toRAWFormat(u32 c){
return (c >> 31) & 0x1;

}

u32 convertARGB8888toRAWFormat(u32 c){
return (0xff - (toGrayscale(c) & 0xff)) / 0xff;

}

MicroEJ Format: Grayscale

See Grayscale Output Formats.

This format requires a small header (around 20 bytes) to store the image size (width, height),
format, flags (is_transparent, etc.), row stride, etc. The required memory also depends on the
number of bits per pixel of the MicroEJ format:

required_memory = header + (image_width * image_height) * bpp / 8;

• AC44: 4 bits for transparency, 4 bits with grayscale conversion.

u32 convertARGB8888toRAWFormat(u32 c){
return 0

| ((color >> 24) & 0xf0)
| ((toGrayscale(color) & 0xff) / 0x11)
;

}

• AC22: 2 bits for transparency, 2 bits with grayscale conversion.

u32 convertARGB8888toRAWFormat(u32 c){
return 0

| ((color >> 28) & 0xc0)
| ((toGrayscale(color) & 0xff) / 0x55)
;

}

• AC11: 1 bit for transparency, 1 bit with grayscale conversion.

u32 convertARGB8888toRAWFormat(u32 c){
return 0

| ((c & 0xff000000) == 0xff000000 ? 0x2 : 0x0)
| ((toGrayscale(color) & 0xff) / 0xff)
;

}

• C4: 4 bits with grayscale conversion.

u32 convertARGB8888toRAWFormat(u32 c){
return (toGrayscale(c) & 0xff) / 0x11;

}

• C2: 2 bits with grayscale conversion.

u32 convertARGB8888toRAWFormat(u32 c){
return (toGrayscale(c) & 0xff) / 0x55;

}

3.6. VEE Porting Guide 953

MicroEJ Documentation,

• C1: 1 bit with grayscale conversion.

u32 convertARGB8888toRAWFormat(u32 c){
return (toGrayscale(c) & 0xff) / 0xff;

}

The pixel order follows this rule:

pixel_offset = (pixel_Y * image_width + pixel_X) * bpp / 8;

MicroEJ Format: RLE Compressed

See Compressed Output Formats.

MicroEJ Format: Custom

A custom format embeds a buffer whose data are VEE Port specific. This data may be:

• a pixel buffer whose encoding is different than the formats proposed before,

• a buffer that is not a pixel buffer.

This format is identified by a specific format value between 0 and 7: see custom formats.

Imageswith a custom format canbeusedas anyother image. For that, it requires some support
at different levels depending on their usage:

• To convert an image to this format at compile-time and embed it, an extension of the image
generator is necessary; see VEE Port MicroEJ Custom Format.

• To create a new one at runtime, some native extension is necessary; see Buffered Image.

• To use it as a source (to draw the image in another buffer), some native extension is necessary;
see Custom Format Support.

• To use it as a destination (to draw into the image), some native extension is necessary; see
Buffered Image.

Binary Format

This format is not compatible with the Image Renderer and MicroUI. It can be used by MicroUI
addon libraries which provide their imagemanagement procedures.

Advantages:

• Encoding is known by VEE Port.

• Compression is inherent to the format itself.

Disadvantages:

• This format cannot target a MicroUI Image (unsupported format).

3.6. VEE Porting Guide 954

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Format.html#CUSTOM_0

MicroEJ Documentation,

Original Input Format

See Unspecified Output Format.

An image can be embedded without any conversion/compression. This allows embedding the
resource as it is to keep the source image characteristics (compression, bpp, etc.). This option
produces the same result as specifying an image as a resource in the MicroEJ launcher.

The following table lists the original formats that can be decoded at run-time and/or
compile-time:

• Image Generator: the off-board tool that converts an image into an output format. All AWT
ImageIO default formats are supported and always enabled.

• Front Panel: the decoders embedded by the simulator part. All AWT ImageIO default formats
are supported but disabled by default.

• Runtime Decoders: the decoders embedded by the embedded part.

Table 72: Original Image Formats
Type Image Generator Front Panel Runtime Decoders
Graphics Interchange Format (GIF) yes yes2 no7

Joint Photographic Experts Group (JPEG) yes yes2 no7

Portable Network Graphics (PNG) yes yes3 yes3

Windows bitmap (BMP) yes yes4 yes/no4

Web Picture (WebP) yes5 yes5 yes6

GPU Format Support

TheMicroEJ formats display, standard and grayscalemaybe customized to be compatiblewith
thehardware (usually GPU). It canbe extendedbyoneor several restrictions on thepixels array:

• Its start address has to be aligned on a higher value than the number of bits-per-pixels.

• A padding has to be added after each line (row stride).

• TheMicroEJ format can hold a VEEPort-dependent header between theMicroEJ format header
(start of file) and the pixel array. The MicroEJ format is designed to let the VEE Port encode and
decode this additional header. This header is unnecessary and never used for Image Engine
software algorithms.

Note: From the Image Engine point of view, the format stays a MicroEJ format, readable by the Image Engine
Renderer.

Advantages:
2 The formats are disabled by default; see Image Decoders.
7 The UI-pack does not provide some runtime decoders for these formats, but a BSP can add its decoders (see Encoded

Image).
3 The PNG format is supported when the module PNG is selected in the VEE Port configuration file (see Encoded Image).
4 The Monochrome BMP is supported when the module BMPM is selected in the VEE Port configuration file (see Encoded

Image); the colored BMP format is only supported by the Front Panel (disabled by default, see Image Decoders).
5 Install the tool com.microej.tool#imageio-webp-1.0.1 from the Developer Repository in the VEE Port to support the

WEBP format (see Service Image Loader and Image Decoders).
6 Install the C component com.microej.clibrary.thirdparty#libwebp-1.0.1 in the BSP to support the WEBP format at

runtime.

3.6. VEE Porting Guide 955

https://docs.oracle.com/javase/7/docs/api/javax/imageio/ImageIO.html
https://docs.oracle.com/javase/7/docs/api/javax/imageio/ImageIO.html

MicroEJ Documentation,

• The GPU recognizes encoding.

• Drawing an image is often very fast.

• Supports opacity encoding.

Disadvantages:

• No compression: the image size in bytes is proportional to the number of pixels. The required
memory is similar toMicroEJ Format: Standard when no custom header exists.

When theMicroEJ formatholds anotherheader (called custom_header), the requiredmemory
is:

required_memory = header + custom_header + (image_width * image_height) * bpp / 8;

The row stride allows adding some padding at the end of each line to start the next line at an
address with a specificmemory alignment; it is often required by hardware accelerators (GPU).
The row stride is, by default, a value in relation to the image width: row_stride_in_bytes =
image_width * bpp / 8 . Thanks to the Abstraction Layer API LLUI_DISPLAY_IMPL_get-
NewImageStrideInBytes , it canbe customizedat imagebuffer creation. The requiredmemory
becomes:

required_memory = header + custom_header + row_stride * image_height;

Image Generator

Principle

The Image Generator module is an off-board tool that generates image data that is ready to
be displayed without needing additional runtime memory. The two main advantages of this
module are:

• Apre-generated image is already encoded in the format knownby the ImageRenderer (MicroEJ
format) or by the VEE Port (custom binary format). The time to create an image is very fast and
does not require any RAM (Image Loader is not used).

• No extra support is needed (no runtime Image Decoder).

3.6. VEE Porting Guide 956

MicroEJ Documentation,

Functional Description

Fig. 219: Image Generator Principle

Process overview (see too Functional Description)

1. The user defines, in a text file, the images to load.

2. The Image Generator outputs a binary file for each image to convert.

3. The raw files are embedded as (hidden) resources within the MicroEJ Application. The binary
files’ data are linked into the FLASHmemory.

4. When the application creates a MicroUI Image object which targets a pre-generated image, the
Image Engine has only to create a link from the MicroUI image object to the data in the FLASH
memory. Therefore, the loading is very fast; only the image data from the FLASH memory is
used: no copy of the image data is sent to the RAM first.

5. When theMicroUI Image is no longer needed, it is garbage-collected by the VEE Port, which just
deletes the useless link to the FLASHmemory.

The image generator can run in twomodes:

• Standalone mode: the image to convert (input files) are standard (PNG, JPEG, etc.), the gener-
ated binary files are inMicroEJ format and do not depend on VEE Port characteristics or restric-
tions (seeMicroEJ Format: Standard).

• Extendedmode: the image toconvert (input files)maybecustom, thegeneratedbinary files can
be encoded in customized MicroEJ format (can depend on several VEE Port characteristics and
restrictions, see MicroEJ Format: Display, GPU Format Support and MicroEJ Format: Custom)
or the generated files are encoded in another format than MicroEJ format (binary format, see
Binary Format).

3.6. VEE Porting Guide 957

MicroEJ Documentation,

Structure

The ImageGeneratormodule is constituted from several parts, the core part and services parts:

• “Core” part: it takes an images list file as entry point and generates a binary file (no specific
format) for each file. To read a file, it redirects the reading to the available service loaders. To
generate a binary file, it redirects the encoding to the available service encoders.

• “Service API” part: it provides some APIs used by the core part to load input files and to encode
binary files. It also provides some APIs to customize the MicroEJ format.

• “Standard input format loader” part: this service loads standard image files (PNG, JPEG, etc.).

• “MicroEJ format generator” part: this service encodes an image in MicroEJ format.

Standalone Mode

The standalone Image Generator embeds all parts described above. By consequence, once in-
stalled in a VEE Port, the standalone image generator does not need any extended module to
generate MicroEJ files from standard images files.

Extended Mode

To increase the capabilities of Image Generator, the extension must be built and added in the
VEE Port. As described above this extension will be able to:

• readmore input image file formats,

• extend the MicroEJ format with VEE Port characteristics,

• encode images in a third-party binary format.

To do that the Image Generator provides some services to implement. This chapter explain
how to create and include this extension in the VEE Port. Next chapters explain the aim of each
service.

1. Create a std-javalib project. Themodule namemust startwith the prefix imageGenerator (for
instance imageGeneratorMyVEEPort).

2. Add the dependency:

<dependency org=”com.microej.pack.ui” name=”ui-pack” rev=”x.y.z”>
<artifact name=”imageGenerator” type=”jar”/>

</dependency>

Where x.y.z is the UI Pack version used to build the VEE Port (minimum 13.0.0). The module.
ivy should look like:

<ivy-module version=”2.0” xmlns:ea=”http://www.easyant.org” xmlns:m=”http://
→˓www.easyant.org/ivy/maven” xmlns:ej=”https://developer.microej.com” ej:version=”2.0.0”>

<info organisation=”com.microej.
→˓microui” module=”imageGeneratorMyVEEPort” status=”integration” revision=”1.0.0”>

<ea:build␣
→˓organisation=”com.is2t.easyant.buildtypes” module=”build-std-javalib” revision=”2.+”/>
</info>

(continues on next page)

3.6. VEE Porting Guide 958

MicroEJ Documentation,

(continued from previous page)

<configurations defaultconfmapping=”default->default;provided->provided”>
<conf name=

→˓”default” visibility=”public” description=”Runtime dependencies to other artifacts”/>
<conf name=”provided” visibility=

→˓”public” description=”Compile-time dependencies to APIs provided by the VEE Port”/>
<conf name=”documentation

→˓” visibility=”public” description=”Documentation related to the artifact (javadoc, PDF)”/>
<conf name=”source” visibility=”public” description=”Source code”/>
<conf name=

→˓”dist” visibility=”public” description=”Contains extra files like README.md, licenses”/>
<conf name=”test” visibility=

→˓”private” description=”Dependencies for test execution. It is not required for normal use␣
→˓of the application, and is only available for the test compilation and execution phases.”/>
</configurations>

<publications/>

<dependencies>
<dependency org=”com.microej.pack.ui” name=”ui-pack” rev=”[UI Pack version]”>

<artifact name=”imageGenerator” type=”jar”/>
</dependency>

</dependencies>
</ivy-module>

3. Create the folder META-INF/services in source folder src/main/resources (this folder will
be filled in later).

4. When a service is added (see next chapters), build the project.

5. Copy the generated jar: target~/artifacts/imageGeneratorMyVEEPort.jar in the VEE Port
configuration project folder: MyVEEPort-configuration/dropins/tools/

6. Rebuild the VEE Port.

Advanced: Test the Extension Project

To quickly test an extension project without rebuilding the VEE Port or manually exporting the
project, add the Application Option ej.imagegenerator.extension.project to the absolute path
of an Image Generator Extension project (e.g. c:\mycompany\myimagegeneratorextension
). The Image Generator will use the specified Image Generator Extension project instead of the
one included in the VEE Port. This feature is useful for locally testing certain changes in the
Image Generator Extension project.

-Dej.imagegenerator.extension.project=${project_loc:myimagegeneratorextension}

Warning: This feature onlyworks if the VEEPort has been built with the ImageGeneratormod-
ule enabled.

The VEE Port will not actually contain the changes until a new VEE Port is built: the VEE Port
dropins folder must be updated after any changes to the Image Generator Extension project.

3.6. VEE Porting Guide 959

MicroEJ Documentation,

Warning: Using this feature automatically disables the image cache.

Service Image Loader

The standalone ImageGenerator is not able to load all images formats, for instance SVG format.
The service loader can be used to add this feature in order to generate an image file in MicroEJ
format. There are two ways to populate the service loader: create a custom implementation
of com.microej.tool.ui.generator.MicroUIRawImageGeneratorExtension or javax.imageio.
spi.ImageReaderSpi .

MicroUIRawImageGeneratorExtension

This service allows to add a custom image reader.

1. Open image generator extension project.

2. Create an implementation of interface com.microej.tool.ui.generator.
MicroUIRawImageGeneratorExtension .

3. Create the file META-INF/services/com.microej.tool.ui.generator.
MicroUIRawImageGeneratorExtension and open it.

4. Note down the name of created class, with its package and classname.

5. Rebuild the image generator extension, copy it in VEE Port configuration project (dropins/
tools/) and rebuild the VEE Port (see above).

Note: The class com.microej.tool.ui.generator.BufferedImageLoader already implements the interface. This
implementation is used to load standard images. It can be sub-classed to add some behavior.

ImageReaderSpi

This extension is part of AWT ImageIO. By default, the ImageIO class onlymanages the standard
image formats JPG, PNG, BMP and GIF. It allows to add some image readers by adding some
implementations of the service javax.imageio.spi.ImageReaderSpi.

SinceUI Pack 13.2.0, the ImageGenerator automatically includes new imagedecoders (new Im-
ageIO services, see the class com.microej.tool.ui.generator.BufferedImageLoader), compiled
in JAR files that follow this convention:

1. The JAR contains the service declaration /META-INF/services/javax.imageio.spi.
ImageReaderSpi ,

2. The JAR filename’s prefix is imageio-,

3. The JAR location is the VEE Port configuration project’s dropins/tools/ directory.

Note: The same JAR is used by the Image Generator and by the Front Panel.

3.6. VEE Porting Guide 960

https://docs.oracle.com/javase/7/docs/api/javax/imageio/ImageIO.html

MicroEJ Documentation,

Customize MicroEJ Standard Format

As mentioned above (MicroEJ Format: Display and GPU Format Support), the MicroEJ format
can be extended by notions specific to the VEE Port (and often to the GPU the VEE Port is using).
The generated file stays a MicroEJ file format, usable by the Image Renderer. Additionally, the
file becomes compatible with the VEE Port constraints.

1. Open image generator extension project.

2. Create a subclass of com.microej.tool.ui.generator.BufferedImageLoader (to be able to load
standard images) or create an implementation of interface com.microej.tool.ui.generator.
MicroUIRawImageGeneratorExtension (to load custom images).

3. Override method convertARGBColorToDisplayColor(int) if the VEE Port’s display pixel en-
coding is not standard (see Pixel Structure).

4. Override method getStride(int) if a padding must be added after each line.

5. Override method getOptionalHeader() if an additional header must be added between the
MicroEJ fileheaderandpixelsarray. Theheader size is alsoused toalign imagememoryaddress
(custom header is aligned on its size).

6. Create the file META-INF/services/com.microej.tool.ui.generator.
MicroUIRawImageGeneratorExtension and open it.

7. Note down the name of created class, with its package and classname.

8. Rebuild the image generator extension, copy it in VEEPort configurationproject and rebuild the
VEE Port (see above).

If the only constraint is the pixels array alignment, the Image Generator extension is not useful:

1. Open VEE Port configuration file display/display.properties .

2. Add the property imageBuffer.memoryAlignment .

3. Build again the VEE Port.

This alignment will be used by the Image Generator and also by the Image Loader.

VEE Port MicroEJ Custom Format

The Image Generator does not yet provide a service for generating theMicroEJ Format: Custom.
A custom image can only be created at runtime, see Buffered Image.

VEE Port Binary Format

The Image Generator can generate a binary file compatible with the VEE Port (and not with the
Image Renderer). This is very useful when a VEE Port features a foundation library that can use
other kinds of images than the MicroUI library. The binary file can be encoded according to the
user’s options in the images list file.

1. Open image generator extension project.

2. Create an implementation of the interface com.microej.tool.ui.generator.ImageConverter .

3. Create the file META-INF/services/com.microej.tool.ui.generator.ImageConverter and
open it.

4. Note the name of the created class, with its package and class name.

3.6. VEE Porting Guide 961

MicroEJ Documentation,

5. Rebuild the image generator extension, copy it into the VEE Port configuration project, and re-
build the VEE Port (see above).

The binary file can have two kinds of formats (see the API OutputFileType getType()):

• A simple resource: the binary output file is embedded as a resource; the application (or the
library) can retrieve the file by using an API like getResourceAsStream() .

• An immutable file: the output file contains one or several immutable objects; the application
(or the library) can retrieve the objects by using the Beyond Profile (BON) library.

Configuration File

The Image Generator uses a configuration file (also called the “list file”) for describing images
that need to be processed. The list file is a text file inwhich each line describes an image to con-
vert. The image is described as a resource path, and should be available from the application
classpath.

Note: The list filemust be specified in the application launcher (see Standalone Application Options). However, all
the files in the application classpathwith suffix .images.list are automatically parsed by the Image Generator tool.

Each line can add optional parameters (separated by a ‘:’) which define and/or describe the
output file format (raw format). When no option is specified, the image is not converted and
embedded as well.

Note: See Configuration File to understand the list file grammar.

• MicroEJ standard output format: to encode the image in a standardMicroEJ format, specify the
MicroEJ format:

Listing 33: Standard Output Format Examples

image1:ARGB8888
image2:RGB565
image3:A4

• MicroEJ “Display” output format: to encode the image in the same format as the display
(generic display or custom display, see Pixel Structure), specify display as output format:

Listing 34: Display Output Format Example

image1:display

• MicroEJ “GPU” output format: this format declaration is identical to standard format. It is a
format that is also supported by the GPU.

Listing 35: GPU Output Format Examples

image1:ARGB8888
image2:RGB565
image3:A4

• MicroEJ ARGB1565_RLE output format (formerly RLE1): to encode the image in ARGB1565_RLE
format, specify ARGB1565_RLE as output format:

3.6. VEE Porting Guide 962

MicroEJ Documentation,

Listing 36: ARGB1565_RLE Output Format Example

image1:ARGB1565_RLE
image1:RLE1 # Deprecated

• Without Compression: to keep original file, do not specify any format:

Listing 37: Unchanged Image Example

image1

• Binary format: to encode the image in a format only known by the VEE Port, refer to the VEE
Port documentation to knowwhich format are available.

Listing 38: Binary Output Format Example

image1:XXX

Link

Architecture 8

Architecture 7

Each image listed in an .images.list file (generatedor not) is embeddedby theapplication like a
resource. An image is aligned inmemory on the value specified by the Displaymodule property
imageBuffer.memoryAlignment (32 bits by default).

In addition to images binary files, the Image Generator module generates a linker file (*.lscf).
This linker file declares an image section called .rodata.images . This section follows the next
rules:

• The files are always listed in same order between two application builds.

• The section is aligned on the value specified by the Display module property imageBuffer.
memoryAlignment (32 bits by default).

• Each file is aligned on section alignment value.

External Resources

The Image Generator manages two configuration files when the External Resources Loader is
enabled. The first configuration file lists the images which will be stored as internal resources
within the MicroEJ Application. The second file lists the images the Image Generatormust con-
vert and store in the External Resource Loader output directory. It is the BSP’s responsibility to
load the converted images into an external memory.

• Refer to the chapter Images to have more details how to use this kind of resources.

• Refer to the chapter External Resource to havemore details how the Image Enginemanages this
kind of resources.

3.6. VEE Porting Guide 963

MicroEJ Documentation,

Installation

The Image Generator is an additionalmodule for theMicroUI library. When theMicroUImodule
is installed, also install this module in order to be able to target pre-generated images.

In the VEE Port configuration file, check UI > Image Generator to install the Image Gener-
ator module. When checked, the properties file imageGenerator/imageGenerator.properties
is required to specify the Image Generator extension project. When no extension is required
(standalone mode only), this property is useless.

Use

The MicroUI Image APIs are available in the class ej.microui.display.Image ant its subclasses.
There are no specific APIs that use a pre-generated image. When an image has been
pre-processed, the MicroUI Image APIs getImage and loadImage will get/load the images.

Refer to the chapter Standalone Application Options (Libraries > MicroUI > Image) for
more information about specifying the image configuration file.

Image Loader

Principle

The Image Loader is a module of the MicroUI runtime that:

• retrieves image data that is ready to be displayedwithout needing additional runtimememory,

• retrieves image data that is required to be converted into the format known by the Image Ren-
derer (MicroEJ format),

• retrieves image in external memories (External Resource loader),

• converts images in MicroEJ format,

• creates a runtime buffer to manage MicroUI Buffered Image,

• manages dynamic images life cycle.

Note: The Image Loader is managing images to be compatible with Image Renderer. It does manage image in
custom format (see Binary Format)

Functional Description

1. The application is using one of three ways to create a MicroUI Image object.

2. The Image Loader creates the image according to the MicroUI API, image location, image input
format and image output format to be compatible with Image Renderer.

3. When the application closes the image, the Image Loader frees the RAMmemory.

3.6. VEE Porting Guide 964

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Image.html

MicroEJ Documentation,

Images Heap

There are several ways to create a MicroUI Image. Except few specific cases, the Image Loader
requires some RAMmemory to store the image content inMicroEJ format. This format requires
a small header as explained here: MicroEJ Format: Standard. It can be GPU compatible as ex-
plained here: GPU Format Support.

The heap size is application dependant. In the application launcher, set its size in Libraries >
MicroUI > Images heap size (in bytes) . It will declare a sectionwhose name is .bss.microui.
display.imagesHeap .

By default, the Image Loader uses an internal best fit allocator to allocate the image buffers
(internal Graphics Engine’s allocator). Some specific Abstraction Layer API (LLAPI) are available
to override this default implementation. These LLAPIs may be helpful to control the buffers
allocation, retrieve the remaining space, etc. When not implemented by the BSP, the default
internal Graphics Engine’s allocator is used.

External Resource

Principle

An image is retrieved by its path (except for BufferedImage). The path describes a location in
the application classpath. The resource may be generated at the same time as the application
(internal resource) or be external (external resource). The Image Loader can load some images
located outside the CPU addresses’ space range. It uses the External Resource Loader.

When an image is located in such memory, the Image Loader copies it into RAM (into the CPU
addresses’ space range). Then it considers the image as an internal resource: it can continue
to load the image (see following chapters). The RAM section used to load the external image is
automatically freed when the Image Loader does not need it again.

The imagemay be located in externalmemory but be available in CPU addresses’ space ranges
(byte-addressable). In this case, the Image Loader considers the image as internal anddoes not
need to copy its content in RAM.

Configuration File

Like internal resources, the Image Generator uses a configuration file (also called the “list file”)
for describing images that need to be processed. The list file must be specified in the appli-
cation launcher (see Standalone Application Options). However, all the files in the application
classpathwith the suffix .imagesext.list are automatically parsed by the ImageGenerator tool.

Process

This chapter describes the steps to setup the loading of an external resource from the applica-
tion:

1. Add the image to the application project resources (typically in the source folder src/main/
resources and in the package images).

2. Create / open the configuration file (e.g. application.imagesext.list).

3.6. VEE Porting Guide 965

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/BufferedImage.html

MicroEJ Documentation,

3. Add the relative path of the image and its output format (e.g. /images/myImage.png:RGB565
see Images).

4. Build the application: the Image Generator converts the image in RAW format in the external
resources folder ([application_output_folder]/externalResources).

5. Deploy the external resources to the external memory (SDCard, flash, etc.) of the device.

6. (optional) Configure the External Resources Loader to load from this source.

7. Build the application and run it on the device.

8. The application loads the external resource using ResourceImage.loadImage(String).

9. The image loader looks for the image and copies it in the images heap (no copy if the external
memory is byte-addressable).

10. (optional) The image may be decoded (for instance: PNG), and the source image is removed
from the images heap.

11. The external resource is immediately closed: the image’s bytes have been copied in the images
heap, or the image’s bytes are always available (byte-addressable memory).

12. The application can use the image.

13. The application closes the image: the image is removed from the image heap.

Simulation

The Simulator automaticallymanages the external resources like internal resources. All images
listed in *.imagesext.list files are copied in the external resources folder, and this folder is
added to the Simulator’s classpath.

Image in MicroEJ Format

An image may be pre-processed (Image Generator) and so already in the format compatible
with Image Renderer: MicroEJ format.

• When application is loading an image which is in such format and without specifying another
output format, the Image Loader has just tomake a link between theMicroUI Image object and
the resource location. Nomore runtime decoder or converter is required, and so nomore RAM
memory.

• When application specifies another output format than MicroEJ format encoded in the image,
Image Loader has to allocate a buffer in RAM. It will convert the image in the expected MicroEJ
format.

• When application is loading an image in MicroEJ format stored as External Resource, the Image
Loader has to copy the image into RAMmemory to be usable by Image Renderer.

3.6. VEE Porting Guide 966

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/ResourceImage.html#loadImage-java.lang.String-

MicroEJ Documentation,

Encoded Image

An image can be encoded (PNG, JPEG, etc.). In this case Image Loader asks to its Image De-
codersmodule if a decoder is able to decode the image. The source image is not copied in RAM
(expect for images stored as External Resource). Image Decoder allocates the decoded image
buffer in RAM first and then inflates the image. The image is encoded in MicroEJ format speci-
fiedby the application,when specified. Whennot specified, the image in encoded in thedefault
MicroEJ format specified by the Image Decoder itself.

The UI extension provides two internal Image Decoders modules:

• PNG Decoder: a full PNG decoder that implements the PNG format (https://www.w3.org/
Graphics/PNG). Regular, interlaced, indexed (palette) compressions are handled.

• BMP Monochrome Decoder: .bmp format files that embed only 1 bit per pixel can be decoded
by this decoder.

Some additional decoders can be added. Implement the function LLUI_DIS-
PLAY_IMPL_decodeImage to add a new decoder. The implementation must respect
the following rules:

• Fills the MICROUI_Image structurewith the image characteristics: width, height and format.

Note: The output image format might be different than the expected format (given as argu-
ment). In this way, the Display module will perform a conversion after the decoding step. Dur-
ing this conversion, an out of memory error can occur because the final RAW image cannot be
allocated.

• Allocates the RAW image data calling the function LLUI_DISPLAY_allocateImageBuffer .
This function will allocates the RAW image data space in the display working buffer according
to the RAW image format and size.

• Decodes the image in the allocated buffer.

• Waiting the end of decoding step before returning.

Installation

The Image Decoders modules are some additional modules to the Display module. The de-
coders belong to distinct modules, and either or several may be installed.

In the VEE Port configuration file, check UI > Image PNG Decoder to install the runtime

PNG decoder. Check UI > Image BMP Monochrome Decoder to install the runtime BMP
monochrom decoder.

3.6. VEE Porting Guide 967

MicroEJ Documentation,

Use

The MicroUI Image APIs are available in the class ej.microui.display.Image. There is no specific
API that uses a runtime image. When an image has not been pre-processed (see Image Gener-
ator), the MicroUI Image APIs createImage* will load this image.

Image Renderer

Principle

The Image Renderer is a module of the MicroUI runtime that reads and draws the images (see
Image Format). It calls Abstraction Layer APIs to draw and transform the images (rotation, scal-
ing, deformation, etc.). It also includes software algorithms to perform the rendering.

Functional Description

All MicroUI image drawings are redirected to a set of Abstraction Layer APIs. All Abstraction
Layer APIs are implemented by weak functions, which call software algorithms. The BSP
can override this default behavior for each Abstraction Layer API independently. Further-
more, the BSP can override an Abstraction Layer API for a specific MicroEJ format (for instance
ARGB8888) and call the software algorithms for all other formats.

Destination Format

Since MicroUI 3.2, the destination buffer of the drawings can be different from the display back
buffer format (see MicroEJ Format: Display). This destination buffer format can be a standard
format (ARGB8888, A8, etc.) or a custom format.

See Buffered Image for more information about how to create buffered images with another
format than the display format and how to draw in them.

Input Formats

Standard

The Image Renderer is by default able to draw all standard formats. No extra support in the VEE
Port is required to draw this kind of image.

The image drawing resembles a shape drawing. The drawing is performed by default by the
Graphics EngineSoftwareAlgorithmsandcanbeoverridden touse a third-party library or aGPU.

3.6. VEE Porting Guide 968

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Image.html

MicroEJ Documentation,

Custom

AMicroEJ Format: Custom image can be:

• an image with a pixel buffer but whose pixel organization is not standard,

• an image with a data buffer: an image encoded with a third-party encoder (proprietary format
or not),

• an image with a “command” buffer: instead of performing the drawings on pixels, the image
stores the drawing actions to replay them later,

• etc.

The VEE Port must extend the Image Renderer to support the drawing of these images. This
extension can consist in:

• decoding the image at runtime to draw it,

• using a compatible GPU to draw it,

• using a command interpreter to perform some shape drawings,

• etc.

Todraw the custom images, the ImageRenderer introduces thenotionof custom imagedrawer.
This drawer is an engine that has the responsibility to draw the image. Each custom image
format (0 to 7) has its own image drawer.

Each drawing of a custom image is redirected to the associated image drawer.

Hint: A custom image drawer can call the UI Shapes Drawing API to draw its elements in the destination.

The implementation isnot the samebetween theEmbeddedsideand theSimulation. However,
the concepts are the same and are described in dedicated chapters.

MicroUI C Module

Principle

As described above, an image drawer allows drawing the images whose format is custom. The
MicroUI Cmodule is designed tomanage the notion of drawers: it does not support the custom
formats but allows adding some additional drawers.

This support uses several weak functions and tables to redirect the image drawings. When cus-
tom drawers are not used (when the VEE Port does not need to support custom images), this
support can be removed to reduce the memory footprint (by removing the indirection tables)
and improve the performances (by reducing the number of runtime function calls).

3.6. VEE Porting Guide 969

MicroEJ Documentation,

Standard Formats Only (Default)

The default implementation can only draw images with a standard format. In other words, the
application cannot drawa custom image. This is themost frequent use case, the only one avail-
able with MicroUI before version 3.2.

Attention: To select this implementation (to disable the custom format support), the define
UI_FEATURE_IMAGE_CUSTOM_FORMATS must be unset.

The image drawing is similar to UI_DRAWING_GPU_drawLine (see MicroUI C Module),
but, theoretically, it should let the image drawer handle the image instead of calling the soft-
ware drawer directly. However the MicroUI C Module (and the extended MicroUI modules that
handle a GPU) takes advantage of the define UI_FEATURE_IMAGE_CUSTOM_FOR-
MATS : as it is not set, the C Modules bypass the indirection to the image drawer, and as a
consequence, the implementation of the weak function only consists in calling the Graphics
Engine’s software algorithm. This tip reduces the footprint and the CPU usage.

An implementation of a third-party GPU can optionally take advantage of the define UI_FEA-
TURE_IMAGE_CUSTOM_FORMATS . The following diagrams illustrate the drawing of
an image with or without taking advantage of the define UI_FEATURE_IMAGE_CUS-
TOM_FORMATS (respectively default and optimized implementation).

Default Implementation

Optimized Implementation

3.6. VEE Porting Guide 970

MicroEJ Documentation,

[MicroUI]
Painter.drawImage();

[LLUI_PAINTER_impl.h]
LLUI_PAINTER_IMPL_drawImage();

[Graphics Engine]

[GPU]

-

[LLUI_PAINTER_impl.c]
LLUI_PAINTER_IMPL_drawImage();

[ui_drawing.h]
UI_DRAWING_drawImage();

algo implemented?

[ui_drawing_soft.h]
UI_DRAWING_SOFT_drawImage();

[ui_drawing_stub.h]
UI_DRAWING_STUB_drawImage();

[ui_drawing_stub.c]
UI_DRAWING_STUB_drawImage();

[ui_image_drawing.h]
UI_IMAGE_DRAWING_draw();

[ui_image_drawing.c]
UI_IMAGE_DRAWING_draw();

no

standard image?

no

[ui_drawing_gpu.c]
UI_DRAWING_drawImage();

GPU compatible?

[GPU driver]

[ui_drawing.c]
weak UI_DRAWING_drawImage();

built-in optim

yes no

noyes

yesno

3.6. VEE Porting Guide 971

MicroEJ Documentation,

[MicroUI]
Painter.drawImage();

[LLUI_PAINTER_impl.h]
LLUI_PAINTER_IMPL_drawImage();

[Graphics Engine][GPU]

[LLUI_PAINTER_impl.c]
LLUI_PAINTER_IMPL_drawImage();

[ui_drawing.h]
UI_DRAWING_drawImage();

algo implemented?

[ui_drawing_soft.h]
UI_DRAWING_SOFT_drawImage();

[ui_drawing_gpu.c]
UI_DRAWING_drawImage();

GPU compatible?

[GPU driver]

[ui_drawing.c]
weak UI_DRAWING_drawImage();

built-in optim

yes no

noyes

3.6. VEE Porting Guide 972

MicroEJ Documentation,

LLUI_PAINTER_IMPL_drawImage (available in MicroUI C Module)

Similar to LLUI_PAINTER_IMPL_drawLine , seeMicroUI C Module.

UI_DRAWING_drawImage

// Available in MicroUI C Module
#define UI_DRAWING_DEFAULT_drawImage UI_DRAWING_drawImage

// To write in the BSP (optional)
#define UI_DRAWING_GPU_drawImage UI_DRAWING_drawImage

The function names are set with preprocessor macros. These name redirections are helpful
when the VEE Port features more than one destination format (which is not the case here).

UI_DRAWING_GPU_drawImage (to write in the BSP)

Similar to UI_DRAWING_GPU_drawLine (see MicroUI C Module), but lets the image
drawer manage the image instead of calling the software drawer directly (Default Implemen-
tation) or takes advantage of the define UI_FEATURE_IMAGE_CUSTOM_FORMATS
(Optimized Implementation):

Default Implementation

Optimized Implementation

// Unlike the MicroUI C Module, this function is not ”weak”.
DRAWING_
→˓Status UI_DRAWING_GPU_drawImage(MICROUI_GraphicsContext* gc, MICROUI_
→˓Image* img, jint regionX, jint regionY, jint width, jint height, jint x, jint y, jint alpha) {

DRAWING_Status status;

if (is_gpu_compatible(xxx)) {

// See chapter ”Drawings”
// [...]

}
else {

// Let the image drawer manages the image (available in the C module)
status␣

→˓= UI_IMAGE_DRAWING_draw(gc, img, regionX, regionY, width, height, x, y, alpha);
}
return status;

}

// Unlike the MicroUI C Module, this function is not ”weak”.
DRAWING_
→˓Status UI_DRAWING_GPU_drawImage(MICROUI_GraphicsContext* gc, MICROUI_
→˓Image* img, jint regionX, jint regionY, jint width, jint height, jint x, jint y, jint alpha) {

DRAWING_Status status;

if (is_gpu_compatible(xxx)) {

// See chapter ”Drawings”
// [...]

}
else {

(continues on next page)

3.6. VEE Porting Guide 973

MicroEJ Documentation,

(continued from previous page)

#if !defined(UI_FEATURE_IMAGE_CUSTOM_FORMATS)
status␣

→˓= UI_DRAWING_SOFT_drawImage(gc, img, regionX, regionY, width, height, x, y, alpha);
#else

// Let the image drawer manages the image (available in the C module)
status␣

→˓= UI_IMAGE_DRAWING_draw(gc, img, regionX, regionY, width, height, x, y, alpha);
#endif

}
return status;

}

UI_DRAWING_DEFAULT_drawImage (available in MicroUI C Module)

// Use the compiler's 'weak' attribute
__weak DRAWING_Status␣
→˓UI_DRAWING_DEFAULT_drawImage(MICROUI_GraphicsContext* gc, MICROUI_
→˓Image* img, jint regionX, jint regionY, jint width, jint height, jint x, jint y, jint alpha) {
#if !defined(UI_FEATURE_IMAGE_CUSTOM_FORMATS)

return␣
→˓UI_DRAWING_SOFT_drawImage(gc, img, regionX, regionY, width, height, x, y, alpha);
#else

return UI_IMAGE_DRAWING_draw(gc, img, regionX, regionY, width, height, x, y, alpha);
#endif
}

The define UI_FEATURE_IMAGE_CUSTOM_FORMATS is not set, so the implemen-
tation of the weak function only consists in calling the Graphics Engine’s software algorithm.

Custom Format Support

In addition to the standard formats, this implementation allows drawing images with a custom
format. This advanced use case is available only with MicroUI 3.2 or higher.

Attention: To select this implementation, the define UI_FEATURE_IMAGE_CUS-
TOM_FORMATS must be set (no specific value).

The MicroUI C module uses some tables to redirect the image management to the expected
extension. There is one table per Image Abstraction Layer API (draw, copy, region, rotate, scale,
flip) to embed only the necessary algorithms (a table and its functions are only embedded in
the final binary file if and only if the MicroUI drawing method is called).

Each table contains ten elements:

static const UI_IMAGE_DRAWING_draw_t UI_IMAGE_DRAWING_draw_custom[] = {
&UI_DRAWING_STUB_drawImage,
&UI_DRAWING_SOFT_drawImage,
&UI_IMAGE_DRAWING_draw_custom0,
&UI_IMAGE_DRAWING_draw_custom1,
&UI_IMAGE_DRAWING_draw_custom2,
&UI_IMAGE_DRAWING_draw_custom3,
&UI_IMAGE_DRAWING_draw_custom4,
&UI_IMAGE_DRAWING_draw_custom5,

(continues on next page)

3.6. VEE Porting Guide 974

MicroEJ Documentation,

(continued from previous page)

&UI_IMAGE_DRAWING_draw_custom6,
&UI_IMAGE_DRAWING_draw_custom7,

};

• UI_DRAWING_STUB_drawImage is the drawing function called when the drawing function is not im-
plemented,

• UI_DRAWING_SOFT_drawImage is the drawing function that redirects the drawing to the Graphics En-
gine Software Algorithms,

• UI_IMAGE_DRAWING_draw_customX (0 to 7) are the drawing functions for each custom format.

The MicroUI C Module retrieves the table index according to the image format.

The following diagram illustrates the drawing of an image:

3.6. VEE Porting Guide 975

MicroEJ Documentation,

[MicroUI]
Painter.drawImage();

[LLUI_PAINTER_impl.h]
LLUI_PAINTER_IMPL_drawImage();

[Graphics Engine]

[GPU]

-

[custom drawing]

[ui_drawing.h]
@see Simple Flow (chapter Drawings)

optional
 (drawShapes)

[LLUI_PAINTER_impl.c]
LLUI_PAINTER_IMPL_drawImage();

[ui_drawing.h]
UI_DRAWING_drawImage();

algo implemented?

[ui_drawing_soft.h]
UI_DRAWING_SOFT_drawImage();

[ui_drawing_stub.h]
UI_DRAWING_STUB_drawImage();

[ui_drawing_stub.c]
UI_DRAWING_STUB_drawImage();

[ui_image_drawing.h]
UI_IMAGE_DRAWING_draw();

[ui_image_drawing.c]
UI_IMAGE_DRAWING_draw();

[ui_drawing_gpu.c]
UI_DRAWING_drawImage();

GPU compatible?

standard image?

[ui_image_drawing.c]
table[x] = UI_IMAGE_DRAWING_draw_customX()

implemented?

[ui_image_x.c]
UI_IMAGE_DRAWING_draw_customX()

[GPU driver]

[ui_drawing.c]
weak UI_DRAWING_drawImage();

[ui_image_drawing.c]
weak UI_IMAGE_DRAWING_draw_customX();

yes no

noyes

yes no

yes no

3.6. VEE Porting Guide 976

MicroEJ Documentation,

Take the same example as the Standard Formats Only implementation (draw an image):

UI_DRAWING_DEFAULT_drawImage (available in MicroUI C Module)

// use the compiler's 'weak' attribute
__weak DRAWING_Status␣
→˓UI_DRAWING_DEFAULT_drawImage(MICROUI_GraphicsContext* gc, MICROUI_
→˓Image* img, jint regionX, jint regionY, jint width, jint height, jint x, jint y, jint alpha) {
#if !defined(UI_FEATURE_IMAGE_CUSTOM_FORMATS)

return␣
→˓UI_DRAWING_SOFT_drawImage(gc, img, regionX, regionY, width, height, x, y, alpha);
#else

return UI_IMAGE_DRAWING_draw(gc, img, regionX, regionY, width, height, x, y, alpha);
#endif
}

The define UI_FEATURE_IMAGE_CUSTOM_FORMATS is set so the implemen-
tation of the weak function redirects the image drawing to the image drawer manager (
ui_image_drawing.h).

UI_IMAGE_DRAWING_draw (available in MicroUI C Module)

static const UI_IMAGE_DRAWING_draw_t UI_IMAGE_DRAWING_draw_custom[] = {
&UI_DRAWING_STUB_drawImage,
&UI_DRAWING_SOFT_drawImage,
&UI_IMAGE_DRAWING_draw_custom0,
&UI_IMAGE_DRAWING_draw_custom1,
&UI_IMAGE_DRAWING_draw_custom2,
&UI_IMAGE_DRAWING_draw_custom3,
&UI_IMAGE_DRAWING_draw_custom4,
&UI_IMAGE_DRAWING_draw_custom5,
&UI_IMAGE_DRAWING_draw_custom6,
&UI_IMAGE_DRAWING_draw_custom7,

};

DRAWING_
→˓Status UI_IMAGE_DRAWING_draw(MICROUI_GraphicsContext* gc, MICROUI_
→˓Image* img, jint regionX, jint regionY, jint width, jint height, jint x, jint y, jint alpha){
return (*UI_IMAGE_DRAWING_draw_

→˓custom[_get_table_index(gc, img)])(gc, img, regionX, regionY, width, height, x, y, alpha);
}

The implementation in theMicroUI Cmodule redirects thedrawing to the expecteddrawer. The
drawer is retrieved using its format (function _get_table_index()):

• the format is standard but the destination is not the display format: index 0 is returned,

• the format is standard and the destination is the display format: index 1 is returned,

• the format is custom: an index from 2 to 9 is returned.

UI_IMAGE_DRAWING_draw_custom0 (available in MicroUI C Module)

// Use the compiler's 'weak' attribute
__weak DRAWING_Status␣
→˓UI_IMAGE_DRAWING_draw_custom0(MICROUI_GraphicsContext* gc, MICROUI_

(continues on next page)

3.6. VEE Porting Guide 977

MicroEJ Documentation,

(continued from previous page)

→˓Image* img, jint regionX, jint regionY, jint width, jint height, jint x, jint y, jint alpha){
return␣

→˓UI_DRAWING_STUB_drawImage(gc, img, regionX, regionY, width, height, x, y, alpha);
}

The default implementation of UI_IMAGE_DRAWING_draw_custom0 (same behavior
for 0 to 7) consists in calling the stub implementation.

UI_DRAWING_STUB_drawImage (available in MicroUI C Module)

DRAWING_
→˓Status UI_DRAWING_STUB_drawImage(MICROUI_GraphicsContext* gc, MICROUI_
→˓Image* img, jint regionX, jint regionY, jint width, jint height, jint x, jint y, jint alpha){
// Set the drawing log flag ”not implemented”
LLUI_DISPLAY_reportError(gc, DRAWING_LOG_NOT_IMPLEMENTED);
return DRAWING_DONE;

}

The implementation only consists in setting the Drawing log flag DRAW-
ING_LOG_NOT_IMPLEMENTED to notify the application that the drawing has
not been performed.

Simulation

Principle

The simulation behavior is similar to theMicroUI C Module for the Embedded side.

The Front Panel defines support for the drawers based on the Java service loader.

Standard Formats Only (Default)

The default implementation can draw images with a standard format.

Note: Contrary to theMicroUI CModule, the simulation does not (anddoesn’t need to) provide anoption to disable
the use of custom image.

The following diagram illustrates the drawing of an image:

3.6. VEE Porting Guide 978

MicroEJ Documentation,

[MicroUI]
Painter.drawImage();

[FrontPanel]
LLUIPainter.drawImage();

[Graphics Engine]

[Third-party lib]

-

[FrontPanel]
getUIDrawer().drawImage();

[FrontPanel]
DisplayDrawer.drawImage();

[FrontPanel]
getUIDrawerSoftware()

.drawImage();

[FrontPanel]
getUIImageDrawer()

.drawImage();

standard image?

[VEE Port FP]
DisplayDrawerExtension

.drawImage();

can draw algo?

[FrontPanel]
no op

method overridden?

no

yes

yesno

yes no

3.6. VEE Porting Guide 979

MicroEJ Documentation,

It is possible to override the image drawers for the standard format in the same way as the
custom formats.

Custom Format Support

It is possible to draw images with a custom format by implementing the UIImageDrawing in-
terface. This advanced use case is available only with MicroUI 3.2 or higher.

The UIImageDrawing interface contains onemethod for each image drawing primitive (draw,
copy, region, rotate, scale, flip). Only the necessary methods have to be implemented. Each
non-implementedmethod will result in calling the stub implementation.

The method handledFormat() must be implemented and returns the image format handled
by the drawer.

Once created, the UIImageDrawing implementation must be registered as a service.

The following diagram illustrates the drawing of an image:

3.6. VEE Porting Guide 980

MicroEJ Documentation,

[MicroUI]
Painter.drawImage();

[FrontPanel]
LLUIPainter.drawImage();

[Graphics Engine]

[Third-party lib]

- [custom drawing]

[FrontPanel]
getUIDrawer().drawImage();

@see Simple Flow (chapter Drawings)

optional
(drawShapes)

[FrontPanel]
getUIDrawer().drawImage();

[FrontPanel]
DisplayDrawer.drawImage();

[FrontPanel]
getUIDrawerSoftware()

.drawImage();

[FrontPanel]
getUIImageDrawer()

.drawImage();

standard image?

[VEE Port FP]
DisplayDrawerExtension

.drawImage();

can draw algo?

[FrontPanel]
no op

[VEE Port Fp]
CustomImageDrawing.draw()

method overridden?

no

yes

yesno

yes

available image drawer
and method implemented?

no

no yes

3.6. VEE Porting Guide 981

MicroEJ Documentation,

Let’s implement the image drawer for the CUSTOM_0 format.

public class MyCustomImageDrawer implements UIImageDrawing {

@Override
public MicroUIImageFormat handledFormat() {

return MicroUIImageFormat.MICROUI_IMAGE_FORMAT_CUSTOM_0;
}

@Override
public void draw(MicroUIGraphicsContext␣

→˓gc, MicroUIImage img, int regionX, int regionY, int width, int height,
int x, int y, int alpha) {

MyCustomImage customImage = (MyCustomImage) img.getImage().getRAWImage();
customImage.drawOn(gc, regionX, regionY, width, height, x, y, alpha);

}

}

Now, this drawer needs to be registered as a service. This can be achieved by creating a file
in the resources of the Front Panel project named META-INF/services/ej.microui.display.
UIImageDrawing and containing the fully qualified name of the previously created image
drawer.

com.mycompany.MyCustomImageDrawer

It is alsopossible todeclare it programmatically (seewhereadrawer is registered in thedrawing
custom section):

LLUIDisplay.Instance.registerUIImageDrawer(new MyCustomImageDrawer());

Image Pixel Conversion

Overview

The Graphics Engine is built for a dedicated display pixel format (see Pixel Structure). For this
pixel format, the Graphics Engine must be able to draw images with or without alpha blending
and with or without transformation. In addition, it must be able to read all image formats.

The application may not use all MicroUI image drawing options and may not use all images
formats. It is not possible to detect what the application needs, so no optimization can be per-
formed at application compiletime. However, for a given application, the VEE Port can be built
with a reduced set of pixel support.

All pixel format manipulations (read, write, copy) are using dedicated functions. It is possible
to remove some functions or to use generic functions. The advantage is to reduce thememory
footprint. The inconvenient is that some features are removed (the application should not use
them) or some features are slower (generic functions are slower than the dedicated functions).

3.6. VEE Porting Guide 982

MicroEJ Documentation,

Functions

There are five pixel conversionmodes:

• Draw an image without transformation and without global alpha blending: copy a pixel from a
format to the destination format (display format).

• Draw an imagewithout transformation andwith global alpha blending: copy a pixel with alpha
blending from a format to the destination format (display format).

• Draw an image with transformation and with or without alpha blending: draw an ARGB8888
pixel in destination format (display format).

• Load aResourceImagewith anoutput format: convert an ARGB8888pixel to the output format.

• Read a pixel from an image (Image.readPixel() or to draw an image with transformation or to
convert an image): read any pixel format and convert it to ARGB8888.

Table 73: Pixel Conversion
Nb input formats Nb output formats Number of combinations

Draw image without global alpha 22 1 22
Draw image with global alpha 22 1 22
Draw image with transformation 2 1 2
Load a ResourceImage 1 6 6
Read an image 22 1 22

There are 22x1 + 22x1 + 2x1 + 1x6 + 22x1 = 74 functions. Each function takes between
50 and 200 bytes depending on its complexity and the C compiler.

Linker File

All pixel functions are listed in a VEE Port linker file. It is possible to edit this file to remove some
features or to share some functions (using generic function).

How to get the file:

1. Build VEE Port as usual.

2. Copy VEE Port file [platform]/source/link/display_image_x.lscf in the VEE Port configura-
tion project: [VEE Port configuration project]/dropins/link/ . Where x is a number that
characterizes the display pixel format (see Pixel Structure). See next warning.

3. Perform some changes into the copied file (see after).

4. Rebuild theVEEPort: the file in thedropins folder is copied in theVEEPort insteadof theoriginal
one.

Warning: When the display format in [VEE Port configuration project]/display/display.
properties changes, the linker file suffix changes too. Perform again all the operations in the
new file with the new suffix.

The linker file holds five tables, one for each use case, respectively IMAGE_UTILS_TA-
BLE_COPY , IMAGE_UTILS_TABLE_COPY_WITH_ALPHA , IM-
AGE_UTILS_TABLE_DRAW , IMAGE_UTILS_TABLE_SET and IM-
AGE_UTILS_TABLE_READ . For each table, a comment describes how to remove
an option (when possible) or how to replace an option by a generic function (if available).

3.6. VEE Porting Guide 983

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/ResourceImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Image.html#readPixel-int-int-

MicroEJ Documentation,

Installation

The Image Renderer module is part of the MicroUI module and Displaymodule. Install them to
be able to use some images.

Use

The MicroUI image APIs are available in the class ej.microui.display.Image.

Buffered Image

Overview

MicroUI application can create an image it can draw into: the MicroUI ej.microui.dis-
play.BufferedImage. The format of this kind of image is Display (default), Standard, or Custom
(see following chapters).

Warning: The output format Standard and Custom depends on the VEE Port capabilities.

To create this kind of image, the Image Loader has to create a buffer in the images heapwhose
size depends on the image data size (see Image Creation).

Drawer

A buffered image requires a drawer. A drawer is an engine that has the responsibility to:

• allow the application to create Standard and Custom buffered images,

• draw into these images.

The implementation isnot the samebetween theEmbeddedsideand theSimulation. However,
the concepts are the same and are described in dedicated chapters.

Formats

Display

This is the format used by default when no format is specified when creating a MicroUI
BufferedImage .

The image format is the same as the front buffer format; in other words, its number of
bits-per-pixel and its pixel bits organization are the same (see chapterMicroEJ Format: Display).

• Image creation: the Graphics Engine provides the capacity to create this kind of image; no spe-
cific support is required in the VEE Port.

• Draw into the image: the rules to draw into this kind of buffered image are the same as in the
display back buffer; see:ref:section_drawings.

• Drawthe image: the rules todrawthis kindofbuffered imagearedescribed in thechapter image
renderer standard.

3.6. VEE Porting Guide 984

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Image.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/BufferedImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/BufferedImage.html

MicroEJ Documentation,

Standard

A MicroUI BufferedImage can be created specifying a MicroEJ Format: Standard or MicroEJ
Format: Grayscale format.

Note: When the display format is the same as the standard format used to create the buffered image, the rules to
create the image, to draw into it and to draw it are the same as the Display format. This chapter describes the use
case when the format differs from the display format.

Unlike the display format, the VEE Port must feature a drawer for each standard format.

• Image creation: the drawer allows the creation of this kind of buffered image; if the VEE Port
does not feature a drawer for a specific format, the MicroUI BufferedImage cannot be created,
and an exception is thrown at runtime.

• Draw into the image: thedrawer can implementallMicroUIdrawingsor just a reducedset; when
a drawing is not implemented, a stub implementation (that does nothing) is used.

• Draw the image: the image is standard, so its rendering is standard also; the rules to draw this
kind of buffered image are described in the chapter image renderer standard (no extra support
needed in the VEE Port).

Custom

A MicroUI BufferedImage can be created specifying aMicroEJ Format: Custom formats.

Like standard formats, the VEE Portmust feature a drawer for each custom format. It must also
feature an image allocator.

• Image creation: the allocator and drawer allow to create of this kind of buffered image; if the
VEE Port does not feature an allocator and a drawer for a specific format, theMicroUI Buffered-
Image cannot be created, and an exception is thrown at runtime.

• Draw into the image: thedrawer can implementallMicroUIdrawingsor just a reducedset; when
a drawing is not implemented, a stub implementation (that does nothing) is used.

• Draw the image: the image is custom, so its rendering is custom also; the rules to draw this kind
of buffered image are described in the chapter image renderer custom.

MicroUI C Module

Drawer

As described above, a drawer allows to create and draw into buffered imageswhose format dif-
fers fromthedisplay format. TheMicroUICmodule is designed tomanage thenotionofdrawers:
it does not support the other formats than display format, but it allows to add some additional
drawers.

This support uses several weak functions and tables to redirect the image creation and draw-
ings. When this support is not used (when the VEE Port does not need to support extra images),
this support can be removed to reduce the footprint (by removing the indirection tables) and
increase the performances (by reducing the number of runtime function calls).

3.6. VEE Porting Guide 985

MicroEJ Documentation,

In addition to the Display, Standard, and Custom formats, the MicroUI C module implementa-
tion introduces the notion of Single and Multiple formats, more specifically Single Format Im-
plementation andMultiple Formats Implementation.

Single Format Implementation (Default Implementation)

This MicroUI BufferedImage implementation can only target images with the display format.
In other words, the application cannot create a MicroUI BufferedImage with a format different
than the display format. This is themost frequent use case, the only one availablewithMicroUI
before version 3.2.

Hint: To select this implementation (to disable the multi formats support), the define UI_GC_SUP-
PORTED_FORMATS must be unset or lower than 2 .

This is the default implementation.

Multiple Formats Implementation

This MicroUI BufferedImage implementation allows the creation of a MicroUI BufferedImage
whose format differs from the display format. This advanced use case is available only with
MicroUI 3.2 or higher.

Hint: To select this implementation, the define UI_GC_SUPPORTED_FORMATS must be set to 2 ormore.
Its value defines the available number of extra formats the VEE Port features.

The MicroUI C module uses some tables to redirect the image management to the expected
drawer. There is one table per Abstraction Layer API not to embed all algorithms (a table and
its functions are only embedded in the final binary file if andonly if theMicroUI drawingmethod
is called). The tables size is dimensioned according to the define value.

To manipulate the tables, the C module uses 0-based index whose value is different from the
image format value. For instance, according to the VEE Port capabilities, the support image
format ARGB8888 can have the index 1 for a given VEE Port and 2 for another one. This differ-
entiation reduces the size of the tables: when the VEE Port does not support a format, no extra
size in the tables is used (no empty cell).

Note: The index 0 is reserved for the display format.

A table holds a list of functions for a given algorithm. For instance, the following table allows
redirecting the drawing writePixel to the drawers 0 to 2 :

static const UI_DRAWING_writePixel_t UI_DRAWER_writePixel[] = {
&UI_DRAWING_writePixel_0,
&UI_DRAWING_writePixel_1,

#if (UI_GC_SUPPORTED_FORMATS > 2)
&UI_DRAWING_writePixel_2,

#endif
};

• UI_DRAWING_writePixel_0 is the drawing function calledwhen the image format is the display format,

3.6. VEE Porting Guide 986

MicroEJ Documentation,

• UI_DRAWING_writePixel_1 and UI_DRAWING_writePixel_2 are the drawing functions called for
the images whose format are respectively identified by the index 1 and 2 (see Image Creation below).

By default, the C module only manages up to 3 formats: the display format (index 0) and two
other formats. To add another format, the Cmodule must be customized: look for everywhere
the define UI_GC_SUPPORTED_FORMATS is used and add a new cell in the tables.

Custom Format

AMicroUI BufferedImage can have a custom format once theMultiple Formats Implementation
is selected. However, third-party support is required to render this kind of image.

Hint: In addition to the #define UI_GC_SUPPORTED_FORMATS , the #define UI_FEATURE_IM-
AGE_CUSTOM_FORMATS must be set. This is the same preprocessor macro used to render custom RAW
images: see Custom Format Support.

Image Creation

Overview

Creating an image consists of several steps. The Graphics Engine manages these steps, which
calls four Abstraction Layer APIs. The MicroUI C Module already implements these four LLAPI.

According to the support ofmultiple drawers, theCmodule redirects or not these LLAPI to some
ui_drawing.h functions. The image creation steps are briefly described below; refer to the
following chapters for more details.

1. The application asks for the creation of a buffered image.

2. The Graphics Engine calls the LLAPI LLUI_DISPLAY_IMPL_getDrawerIdentifier() : this
function allows to get a drawer index related to the image format. The index 0 indicates to use
the default drawer: the display drawer. A positive value indicates a drawer index for all other
formats than the display format. A negative index indicates that the VEE Port does not support
the image format (in that case, the image creation is refused, and an exception is thrown in the
application).

3. Dependingon the image format, theGraphicsEnginecalculates theminimal strideof the image.
This stride canbe customized to fit theGPUconstraint (seeGPUFormat Support) by implement-
ing the LLAPI LLUI_DISPLAY_IMPL_getNewImageStrideInBytes() .

4. The Graphics Engine determines the image buffer size according to the image format, size
(width and height), and stride (see previous step). This size and the buffer alignment can be
adjusted thanks to the LLAPI LLUI_DISPLAY_IMPL_adjustNewImageCharacteristics() .
The buffer size should be larger or equal to that calculated by the Graphics Engine. If smaller,
the Graphics Engine will use the initial value. For a custom image, the initial value is 0: the VEE
Port must set a positive value; otherwise, the image creation is refused, and an exception is
thrown in the application.

5. The Graphics Engine allocates the image buffer according to the values adjusted before (size
and alignment).

6. Finally, the Graphics Engine calls the LLAPI LLUI_DISPLAY_IMPL_initializeNewImage()
that allows the VEE Port to initialize the image buffer (often only useful for custom images).

3.6. VEE Porting Guide 987

MicroEJ Documentation,

Single Format Implementation

The MicroUI C module implements the four LLAPI to create only MicroUI BufferedImages with
the display format.

• LLUI_DISPLAY_IMPL_getDrawerIdentifier() : the C module checks if the image format is the display
format. If yes, it returns the index 0 indicating theGraphics Engine to use the default drawer. If not, it returns
a negative index: the image creation is refused.

• It redirects the three last LLAPI to some ui_drawing.h functions. These ui_drawing.h func-
tions are already implemented as weak functions, which allows the VEE Port to implement
only the required functions:

– Implementation of LLUI_DISPLAY_IMPL_getNewImageStrideInBytes() calls
UI_DRAWING_getNewImageStrideInBytes() , the weak function returns the stride
given as parameter.

– Implementation of LLUI_DISPLAY_IMPL_adjustNewImageCharacteristics() calls
UI_DRAWING_adjustNewImageCharacteristics() , the weak function does nothing.

– Implementation of LLUI_DISPLAY_IMPL_initializeNewImage() calls UI_DRAW-
ING_initializeNewImage() , the weak function does nothing.

Multiple Formats Implementation

The MicroUI C module implements the four LLAPI to create a MicroUI BufferedImage with any
format.

• LLUI_DISPLAY_IMPL_getDrawerIdentifier() : the C module checks if the image format is the display
format. If yes, it returns the index 0``indicating the Graphics Engine to use the default drawer. If not,
it calls the function ``UI_DRAWING_is_drawer_1() and then UI_DRAWING_is_drawer_2() . The
VEE Port has the responsibility to implement at least one function. The index 1 or 2 will be assigned to the
image format according to the VEE Port capabilities. The image creation is refused if no drawer is found for
the given format.

• It redirects the three last LLAPI to the associated tables:

– Implementation of LLUI_DISPLAY_IMPL_getNewImageStrideInBytes() calls the func-
tions of the table UI_DRAWER_getNewImageStrideInBytes[] , the weak functions return
the stride given as parameter.

– Implementation of LLUI_DISPLAY_IMPL_adjustNewImageCharacteristics() calls the
functions of the table UI_DRAWER_adjustNewImageCharacteristics[] , theweak functions
do nothing.

– Implementationof LLUI_DISPLAY_IMPL_initializeNewImage() calls the functionsof the
table UI_DRAWER_initializeNewImage[] , the weak functions do nothing.

3.6. VEE Porting Guide 988

MicroEJ Documentation,

Display and Standard Image

For this kind of image, the implementation of the functions getNewImageStrideInBytes , ad-
justNewImageCharacteristics and initializeNewImage is optional: it mainly depend on the
GPU support.

Custom Image

For the custom images, the implementation of the function getNewImageStrideInBytes is
optional but the implementation of the functions adjustNewImageCharacteristics and ini-
tializeNewImage is mandatory:

• adjustNewImageCharacteristics has to set the image buffer size (the default value is 0 , which is an invalid
size); the Graphics Engine will use this value to allocate the image buffer.

• initializeNewImage must initialize the custom image buffer.

Image Closing

The BSP has the responsibility to free the third-party resources associatedwith an image. Most
of the time, the resources are allocated and initialized in the implementation of LLUI_DIS-
PLAY_IMPL_initializeNewImage() (see above). When the Graphics Engine closes an im-
age, it calls the function LLUI_DISPLAY_IMPL_freeImageResources() . Depending on
whether multiple drawers are supported, the C module may redirect this LLAPI to some
ui_drawing.h functions.

Single Format Implementation

The MicroUI C module provides an implementation of the LLAPI. By default, no third-party re-
sources are associated with buffered images. Therefore, LLUI_DISPLAY_IMPL_freeIm-
ageResources() calls the weak function UI_DRAWING_freeImageResources() that does
nothing.

If the function UI_DRAWING_initializeNewImage() has been implemented in the BSP, the
function UI_DRAWING_freeImageResources() should be implemented too.

Multiple Formats Implementation

The MicroUI C module implements the LLAPI to let each image manager close the image re-
sources. The implementation of LLUI_DISPLAY_IMPL_freeImageResources() calls the
functions of the table UI_DRAWER_freeImageResources[] , which have default weak im-
plementations that do nothing.

3.6. VEE Porting Guide 989

MicroEJ Documentation,

Display and Standard Image

For this kind of image, implementing the function freeImageResources is optional: it mainly
depends on the GPU support.

Custom Image

For the custom images, the implementation of the function freeImageResources is optional,
but often required to free the third-party resources.

Draw into the Image: Display Format

Overview

Todraw into a buffered imagewith the display format, the same concepts to draw in the display
backbuffer areused: theMicroUI AbstractionLayerdrawings are redirected to the ui_drawing.
h functions (see Drawings for more details).

The MicroUI C module already implements all ui_drawing.h functions, and the drawings
are redirected to the Graphics Engine Software Algorithms. However the function names are
UI_DRAWING_DEFAULT_drawX() and not UI_DRAWING_drawX() . Thanks to
the define UI_GC_SUPPORTED_FORMATS , the function names are redefined with C
macros. This compile-time redirection allows using the same implementation (UI_DRAW-
ING_DEFAULT_drawX()) when themultiple formats support is disabled or enabled (when
the target is an image with the same format as the display).

The weak implementation of the function UI_DRAWING_DEFAULT_drawX() calls
GraphicsEngineSoftwareAlgorithms . This implementationallowsaGPUora third-partydrawer
to perform the rendering (see Drawings for more details).

Single Format Implementation

The define UI_GC_SUPPORTED_FORMATS is unset or lower than 2 ; the compile-time
redirection is:

#define UI_DRAWING_DEFAULT_writePixel UI_DRAWING_writePixel

Multiple Formats Implementation

For the images whose format is the display format (index 0 , seeMultiple Formats Implementa-
tion), the compile-time redirection is:

#define UI_DRAWING_DEFAULT_writePixel UI_DRAWING_writePixel_0

3.6. VEE Porting Guide 990

MicroEJ Documentation,

Draw into the Image: Non-Display Format

To draw into a buffered image with a format different than the display format, theMultiple For-
mats Implementationmust be selected.

For the images whose format is not the display format (index 1 and 2), the Cmodule provides
weak implementations that do nothing.

The following diagram illustrates the drawing of a shape (not an image, see Draw the Image:
Multiple Formats Implementation):

3.6. VEE Porting Guide 991

MicroEJ Documentation,

[MicroUI]
Painter.drawXXX();

[LLUI_PAINTER_impl.h]
LLUI_PAINTER_IMPL_drawXXX();

[Graphics Engine][GPU]

[custom drawing]

-

[LLUI_PAINTER_impl.c]
LLUI_PAINTER_IMPL_drawXXX();

[ui_drawing.h]
UI_DRAWING_drawXXX();

[ui_drawing.c]
UI_DRAWING_drawXXX();

[ui_drawing_soft.h]
UI_DRAWING_SOFT_drawXXX();

[ui_drawing_stub.h]
UI_DRAWING_STUB_drawXXX();

[ui_drawing_stub.c]
UI_DRAWING_STUB_drawXXX();

GC format?

[ui_drawing.c]
table[0] = UI_DRAWING_drawXXX_0()

function implemented?

[ui_drawing.c]
table[1] = UI_DRAWING_drawXXX_1()

function implemented?

[ui_drawing_gpu.c]
UI_DRAWING_drawXXX_0();

GPU compatible?

[ui_drawing_yyy.c]
UI_DRAWING_drawXXX_1();

[GPU driver]

[ui_drawing.c]
weak UI_DRAWING_drawXXX_0();

[ui_drawing.c]
weak UI_DRAWING_drawXXX_1();

yes no

noyes

display format other format

yes no

3.6. VEE Porting Guide 992

MicroEJ Documentation,

LLUI_PAINTER_IMPL_drawLine (available in MicroUI C Module)

SeeMicroUI C Module.

UI_DRAWING_drawLine (available in MicroUI C Module)

static const UI_DRAWING_drawLine_t UI_DRAWER_drawLine[] = {
&UI_DRAWING_drawLine_0,
&UI_DRAWING_drawLine_1,

#if (UI_GC_SUPPORTED_FORMATS > 2)
&UI_DRAWING_drawLine_2,

#endif
};

DRAWING_Status UI_DRAWING_
→˓drawLine(MICROUI_GraphicsContext* gc, jint startX, jint startY, jint endX, jint endY){
// Table redirection according to the drawer index
return (*UI_DRAWER_drawLine[gc->drawer])(gc, startX, startY, endX, endY);

}

The implementation in the MicroUI C module redirects the drawing to the expected drawer.
The drawer is identified by the index stored in the MICROUI_GraphicsContext (index fixed
during the image creation).

UI_DRAWING_drawLine_0 (available in MicroUI C Module)

#define UI_DRAWING_DEFAULT_drawLine UI_DRAWING_drawLine_0

The index 0 is reserved for drawing into the image whose format is the display format (see
above). The function name is set thanks to a preprocessor macro to reuse the same code be-
tween Single and Multiple Formats Implementations.

The behavior after this function is similar to Custom Implementation.

UI_DRAWING_drawLine_1 (available in MicroUI C Module)

// use the compiler's 'weak' attribute
__weak DRAWING_Status UI_DRAWING_drawLine_
→˓1(MICROUI_GraphicsContext* gc, jint startX, jint startY, jint endX, jint endY){

// Default behavior: call the stub implementation
return UI_DRAWING_STUB_drawLine(gc, startX, startY, endX, endY);

}

The implementation of the weak function only consists in calling the stub implementation.

UI_DRAWING_STUB_drawLine (available in MicroUI C Module)

DRAWING_Status UI_DRAWING_STUB_
→˓drawLine(MICROUI_GraphicsContext* gc, jint startX, jint startY, jint endX, jint endY){
// Set the drawing log flag ”not implemented”
LLUI_DISPLAY_reportError(gc, DRAWING_LOG_NOT_IMPLEMENTED);
return DRAWING_DONE;

}

The implementation only consists in setting the Drawing log DRAWING_LOG_NOT_IM-
PLEMENTED to notify the application that the drawing has not been performed.

UI_DRAWING_drawLine_1 (to write in the BSP)

3.6. VEE Porting Guide 993

MicroEJ Documentation,

// this drawer has the index 1
#define UI_DRAWING_IDENTIFIER_A8_FORMAT 1
#define UI_DRAWING_A8_is_drawer␣
→˓CONCAT(UI_DRAWING_is_drawer_, UI_DRAWING_IDENTIFIER_A8_FORMAT)
#define UI_DRAWING_A8_drawLine␣
→˓CONCAT(UI_DRAWING_drawLine_, UI_DRAWING_IDENTIFIER_A8_FORMAT)

This example illustrates how to implement the drawLine function for an imagewith the format
A8 . The drawer should be written in its file. However, the MicroUI C module advises not to
use directly the name UI_DRAWING_drawLine_1 but to use thismechanism to redirect at
compile-time the call to UI_DRAWING_A8_drawLine .

• The define UI_DRAWING_IDENTIFIER_A8_FORMAT assignes the index to the A8
drawer, here 1 .

• The define UI_DRAWING_A8_is_drawer sets at compile-time the name of the is_drawer
function, here: UI_DRAWING_is_drawer_1 .

• The define UI_DRAWING_A8_drawLine sets at compile-time the name of the drawLine
function, here: UI_DRAWING_drawLine_1 .

UI_DRAWING_A8_is_drawer (to write in the BSP)

bool UI_DRAWING_A8_is_drawer(jbyte image_format) {
return MICROUI_IMAGE_FORMAT_A8 == (MICROUI_ImageFormat)image_format;

}

This function (actually UI_DRAWING_is_drawer_1 thanks to the define, see above) an-
swers true when the application tries to open a MicroUI BufferedImage with the format A8
.

UI_DRAWING_A8_drawLine (to write in the BSP)

DRAWING_Status UI_DRAWING_A8_
→˓drawLine(MICROUI_GraphicsContext* gc, jint startX, jint startY, jint endX, jint endY){

// Retrieve the destination buffer address
uint8_t* destination_address = LLUI_DISPLAY_getBufferAddress(&gc->image);

// Configure the GPU clip
THIRD_PARTY_DRAWER_set_clip(startX, startY, endX, endY);

// Draw the line
THIRD_PARTY_DRAWER_draw_line(destination_address, startX, startY,

→˓ endX, endY, (gc->foreground_color & 0xff) /* Use the blue component as opacity level */),

// Here, consider the drawing as done (not an asynchronous drawing).
return DRAWING_DONE;

}

This function (actually UI_DRAWING_drawLine_1 thanks to the define, see above) per-
forms the drawing. It is very similar to Custom Implementation.

3.6. VEE Porting Guide 994

MicroEJ Documentation,

Draw the Image: Single Format Implementation

By definition, the image is a standard image (only display format is allowed), so its drawing is
redirected to ui_image_drawing.h , see Standard Formats Only (Default).

Draw the Image: Multiple Formats Implementation

Unlike the Single Format Implementation, the destinationmay be another format than the dis-
play format. Consequently, the drawer must check the image format and the destination for-
mat.

The following diagram illustrates the drawing of an image (draw, rotate, or scale) in another
image or display back buffer (to draw a shape, see Draw into the Image: Non-Display Format).
This diagram gathers both draw in a custom image and render a custom image.

3.6. VEE Porting Guide 995

MicroEJ Documentation,

[MicroUI]
Painter.drawImage();

[LLUI_PAINTER_impl.h]
LLUI_PAINTER_IMPL_drawImage();

[Graphics Engine]

[GPU]

[custom drawing]

-

[custom drawing]

[ui_drawing.h]
@see Multiple Output Formats;

optional
(drawShapes)

[LLUI_PAINTER_impl.c]
LLUI_PAINTER_IMPL_drawImage();

[ui_drawing.h]
UI_DRAWING_drawImage();

[ui_drawing.c]
UI_DRAWING_drawImage();

[ui_drawing_soft.h]
UI_DRAWING_SOFT_drawImage();

[ui_drawing_stub.h]
UI_DRAWING_STUB_drawImage();

[ui_drawing_stub.c]
UI_DRAWING_STUB_drawImage();

[ui_image_drawing.h]
UI_IMAGE_DRAWING_draw();

[ui_image_drawing.c]
UI_IMAGE_DRAWING_draw();

GC format?

[ui_drawing.c]
table[0] = UI_DRAWING_drawImage_0()

algo implemented?

[ui_drawing.c]
table[1] = UI_DRAWING_drawImage_1()

implemented?

[ui_drawing_gpu.c]
UI_DRAWING_drawImage_0();

GPU compatible?

[ui_drawing_yyy.c]
UI_DRAWING_drawImage_1();

image compatible?

standard image?

[ui_image_drawing.c]
table[x] = UI_IMAGE_DRAWING_draw_customX()

implemented?

[ui_image_x.c]
UI_IMAGE_DRAWING_draw_customX()

gc compatible?

[GPU driver]

[ui_drawing.c]
weak UI_DRAWING_drawImage_0();

[ui_drawing.c]
weak UI_DRAWING_drawImage_1();

[ui_image_drawing.c]
weak UI_IMAGE_DRAWING_draw_customX();

yes no

noyes

display format other format

yesno

yesno

no

GC format?

yes

display

other

yes no

yes

can draw shapes?

no

noyes

3.6. VEE Porting Guide 996

MicroEJ Documentation,

The following description considers that both previous diagrams (draw in a custom image and
render a custom image) have been read and understood. It only describes the final use-case:
draw a custom image in an unknown destination (unknown destination format):

UI_IMAGE_DRAWING_draw_custom4 (to write in the BSP)

// This image drawer manages the custom format 4
#define UI_IMAGE_IDENTIFIER_CMD_FORMAT 4
#define UI_IMAGE_DRAWING_CMD_draw CONCAT(UI_
→˓IMAGE_DRAWING_draw_custom_, UI_IMAGE_IDENTIFIER_CMD_FORMAT)

// Macro to map a custom struct ”cmd_image_t*” on the MicroUI Image buffer
#define MAP_
→˓CMD_ON_IMAGE(image) ((cmd_image_t*) LLUI_DISPLAY_getBufferAddress(image))

DRAWING_Status␣
→˓UI_IMAGE_DRAWING_CMD_draw(MICROUI_GraphicsContext* gc, MICROUI_
→˓Image* img, jint regionX, jint regionY, jint width, jint height, jint x, jint y, jint alpha){

// Retrieve the commands list
cmd_image_t* cmd = MAP_CMD_ON_IMAGE(img);

for(int i = 0; i < cmd->size; i++) {
switch (cmd->list[i].kind) {

case COMMAND_LINE: {

// Change the graphics context color
gc->foreground_color = cmd->list[i].color;

// Draw a line as usual
UI_DRAWING_drawLine(gc, x + cmd-

→˓>list[i].args[0], y + cmd->list[i].args[1], x + cmd->list[i].args[2], y + cmd->list[i].args[3]);

break;
}

// All others commands
// [...]

}
}

// Restore the original color
gc->foreground_color = original_color;

return DRAWING_DONE;
}

This drawer manages a custom image with a commands buffer (a list of drawings). The image
drawing consists in decoding the commands list and calling the standard shapesdrawings. This
drawer does not need to recognize the destination: the drawing of the shapes will do it.

Thanks to the define UI_IMAGE_IDENTIFIER_CMD_FORMAT , this drawer uses the
custom format 4 .

UI_IMAGE_DRAWING_draw_custom6 (to write in the BSP)

3.6. VEE Porting Guide 997

MicroEJ Documentation,

// This image drawer manages the custom format 6
#define UI_IMAGE_IDENTIFIER_PROPRIETARY_FORMAT 6
#define UI_IMAGE_DRAWING_PROPRIETARY_draw CONCAT(UI_IMAGE_
→˓DRAWING_draw_custom_, UI_IMAGE_IDENTIFIER_PROPRIETARY_FORMAT)

DRAWING_Status UI_IMAGE_
→˓DRAWING_PROPRIETARY_draw(MICROUI_GraphicsContext* gc, MICROUI_
→˓Image* img, jint regionX, jint regionY, jint width, jint height, jint x, jint y, jint alpha){

DRAWING_Status ret;

// Can only draw in an image with the same format as display
if (LLUI_DISPLAY_isDisplayFormat(gc->image.format)) {
// Call a third-party library
THIRD_PARTY_LIB_draw_image([...]);
ret = DRAWING_DONE; // or DRAWING_RUNNING

}
else {
// Cannot draw the image: call stub implementation
ret␣

→˓= UI_DRAWING_STUB_drawImage(gc, img, regionX, regionY, width, height, x, y, alpha);
}

return ret;
}

This drawer manages an image whose format is proprietary. This example considers that the
third-party library can only draw the image in a buffer with the display format. Otherwise, the
drawing is canceled, and the stub implementation is used.

Thanks to the define UI_IMAGE_IDENTIFIER_PROPRIETARY_FORMAT , this
drawer uses the custom format 6 .

Extended C Modules

MicroVG enables a custom format for the Buffered Vector Image. It uses the mechanisms de-
scribed above and can be used as an example. See C Modules.

The drawings in the custom format BVI are implemented into the file ui_drawing_bvi.c .

3.6. VEE Porting Guide 998

MicroEJ Documentation,

Simulation

The simulation behavior is similar to theMicroUI C Module for the Embedded side.

Drawer

It is possible to draw in images with a format different than the display one by implementing
the UIDrawing interface.

This interface contains one method for each drawing primitive. Only the necessary methods
need be implemented. Each non-implemented method will result in calling the stub imple-
mentation.

The method handledFormat() must be implemented and returns the managed format.

Once created, the UIDrawing implementation must be registered as a service.

Creating an image with a standard format (different from the display one) is supported in the
Front Panel as long as a UIDrawing is defined for this format.

Creating an image with a custom format also requires implementing the image creation in the
VEE Port.

Image Creation

Creating imageswithacustomformat ispossibleby implementing the BufferedImageProvider
interface.

This interface extends UIDrawing and UIImageDrawing and contains a method new-
BufferedImage() . This method needs to be implemented to create the custom image. It must
return an object representing the image. This object will be available in the drawing methods
(Drawer).

The method handledFormat() must be implemented and returns the managed format.

Once created, the BufferedImageProvider implementation must be registered as a service.

Draw into the Image: Non-Display Format

The following diagram illustrates the drawing of a shape (not an image, see Draw the Image:
Multiple Formats Implementation):

3.6. VEE Porting Guide 999

MicroEJ Documentation,

[MicroUI]
Painter.drawXXX();

[FrontPanel]
LLUIPainter.drawXXX();

[Graphics Engine]

[Third-party lib]

[custom drawing]-

[FrontPanel]
getUIDrawer().drawXXX();

GC format?

[FrontPanel]
getUIDrawerSoftware()

.drawXXX();

[FrontPanel]
DisplayDrawer.drawXXX();

method overridden?

[VEE Port FP]
DisplayDrawerExtension

.drawXXX();

can draw algo?

[Graphics Engine]
StubDrawer.drawXXX();

[VEE Port FP]
CustomDrawer.drawXXX();

no

yes

yesno

display format

available drawer and
method implemented?

other format

no yes

3.6. VEE Porting Guide 1000

MicroEJ Documentation,

Standard Format

Let’s implement the drawer for the ARGB8888 format (with only the draw line primitive).

public class MyARGB8888ImageDrawer implements UIDrawing {

@Override
public MicroUIImageFormat handledFormat() {

return MicroUIImageFormat.MICROUI_IMAGE_FORMAT_ARGB8888;
}

@Override
public void drawLine(MicroUIGraphicsContext gc, int x1, int y1, int x2, int y2) {
Image image = gc.getImage();
image.drawLine(x1, y1, x2, y2, gc.getMicroUIColor());

}

}

Now, this drawer needs to be registered as a service. This can be achieved by creating a file
in the resources of the Front Panel project named META-INF/services/ej.microui.display.
UIDrawing . And its content containing the fullyqualifiednameof thepreviously created image
drawer.

com.mycompany.MyARGB8888ImageDrawer

It is alsopossible todeclare it programmatically (seewhereadrawer is registered in thedrawing
custom section):

LLUIDisplay.Instance.registerUIDrawer(new MyARGB8888ImageDrawer());

Custom Format

Let’s implement the buffered image provider for the CUSTOM_0 format (with only the draw line
primitive).

public class MyCustom0ImageProvider implements BufferedImageProvider {

@Override
public MicroUIImageFormat handledFormat() {

return MicroUIImageFormat.MICROUI_IMAGE_FORMAT_CUSTOM_0;
}

@Override
public Object newBufferedImage(int width, int height)
// Create the image.
return new CustomImage(width, height);

}

@Override
public void drawLine(MicroUIGraphicsContext gc, int x1, int y1, int x2, int y2) {
// Draw in the image.
CustomImage customImage = (CustomImage) gc.getImage().getRAWImage();
customImage.drawLine(x1, y1, x2, y2, gc.getMicroUIColor());

}
(continues on next page)

3.6. VEE Porting Guide 1001

MicroEJ Documentation,

(continued from previous page)

@Override
public void draw(MicroUIGraphicsContext␣

→˓gc, MicroUIImage img, int regionX, int regionY, int width, int height,
int x, int y, int alpha) {

// Draw the image in another buffer.
MyCustomImage customImage = (MyCustomImage) img.getImage().getRAWImage();
customImage.drawOn(gc, regionX, regionY, width, height, x, y, alpha);

}
}

Now, this buffered image provider needs to be registered as a service. This can be achieved
by creating a file in the resources of the Front Panel project named META-INF/services/ej.
microui.display.BufferedImageProvider . And its content containing the fully qualified name
of the previously created buffered image provider.

com.mycompany.MyCustom0ImageProvider

It is alsopossible todeclare it programmatically (seewhereadrawer is registered in thedrawing
custom section):

LLUIDisplay.Instance.registerBufferedImageProvider(new MyCustom0ImageProvider());

Draw the Image: Multiple Formats Implementation

The following diagram illustrates the drawing of an image (draw, rotate, or scale) in another
image or display back buffer (to draw a shape, see Draw into the Image: Non-Display Format).
This diagram gathers both diagrams draw in a custom image and render a custom image.

3.6. VEE Porting Guide 1002

MicroEJ Documentation,

[MicroUI]
Painter.drawImage();

[FrontPanel]
LLUIPainter.drawImage();

[Graphics Engine]

[Third-party lib] [custom drawing]

-

[custom drawing]

[FrontPanel]
getUIDrawer().drawImage();

@see Multiple Output Formats;

optional
(drawShapes)

[FrontPanel]
getUIDrawer().drawImage();

GC format?

[FrontPanel]
getUIDrawerSoftware()

.drawImage();

[FrontPanel]
no op

[FrontPanel]
getUIImageDrawer()

.drawImage();

standard image?

[FrontPanel]
DisplayDrawer.drawImage()

method overridden?

[VEE Port FP]
DisplayDrawerExtension

.drawImage();

can draw image?

no

yes

yes no

display format

available drawer and
method implemented?

other format

no image compatible?

yes

yesno

GC format?

yes

available image drawer
and method implemented?

no

display

other no

gc compatible?

yes

yes

can draw shapes?

no

no yes

3.6. VEE Porting Guide 1003

MicroEJ Documentation,

Dependencies

• MicroUI module (seeMicroUI),

• Display module (see Display).

Installation

The BufferedImage module is part of the MicroUI module and Display module. Install them to
be able to use some buffered images.

Use

The MicroUI image APIs are available in the class ej.microui.display.BufferedImage.

Fonts

Overview

Principle

The notion of MicroUI Font encompasses two distinct kinds of fonts:

1. The internal font format: a simple and small bitmap format, accessible in the application by
calling Font.getFont(String).

2. The custom (or extended) font format: available inMicroUI extended libraries (suchasMicroVG’s
VectorFont), accessible in the application through subclasses of MicroUI Font.

Functional Description

Using the Font Engine consists in pregenerating the font (if required), loading the font at run-
timeand rendering text. The first twosteps (generationand loading) are specific to the font kind
(internal or custom), whereas the way to render a MicroUI Font (from the MicroUI API to the Mi-
croUI Abstraction Layer API) is shared. This allows the application to use the sameMicroUI APIs
with any kind of font.

3.6. VEE Porting Guide 1004

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/BufferedImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Font.html#getFont-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorFont.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Font.html

MicroEJ Documentation,

Internal Font

Fig. 220: Font Generation

The internal Font Engine is composed of:

• The Font Designermodule, a graphical toolwhich runswithin theMicroEJ IDE used to build and
edit EJF fonts; it stores fonts in a VEE Port-independent format.

• The Font Generator module, for converting fonts from .fnt and VEE Port-independent format (
.ejf) into a VEE Port-dependent format.

• The Font Loadermodule, which reads the VEE Port-dependent fonts files generated by the Font
Generator.

The three modules are complementary:

• For standard FNT fonts, the Font Designer is useless and the fonts are integrated as resources
by the Font Generator and loaded by the Font Loader at runtime.

• For EJF fonts, the fonts must be created and edited with the Font Designer before being inte-
grated as resources by the Font Generator and loaded by the Font Loader at runtime.

Process overview:

1. User uses the Font Designer module to create an EJF font, and imports characters from system
fonts (*.ttf files) and / or user images (*.png , *.jpg , *.bmp , etc.).

2. Font Designer module saves the font as a MicroEJ Font (*.ejf file).

3. The user defines, in a text file, the fonts to load (*.fnt and *.ejf).

4. The Font Generator outputs a raw file for each font to convert (the raw format is display
device-dependent).

5. The raw files are embedded as (hidden) resources within the application. The raw files’ data
are linked into the FLASHmemory.

6. When the application creates aMicroUI Font objectwhich targets apre-generated font, the Font
Engine Core only has to link from the MicroUI Font object to the data in the FLASH memory.
Therefore, the loading is very fast; only the font data from the FLASHmemory is used: no copy
of the font data is sent to RAMmemory first.

3.6. VEE Porting Guide 1005

MicroEJ Documentation,

Custom Font

The font engine for custom fonts is specific to the font itself, see Custom Font.

Dependencies

• MicroUI module (seeMicroUI),

• Display module (see Display).

Internal Font Format

Overview

The internal font format is a binary format generated by the Font Generator. This is a pixelated
format: each character is encoded as a grayscale bitmap image (on 1, 2, 4 or 8 bits per pixel). It
does not need runtimememory allocationwhen loading the font or when drawing a string: the
Graphics Engine’s software algorithms directly read the bitmap image from thememory.

Characteristics

The binary files hold font properties:

• Font height and width, in pixels. A font has a fixed height. This height includes the white pixels
at the top and bottom of each character, simulating line spacing in paragraphs. A monospace
font is a font where all characters have the same width; for example, a ‘!’ representation has
the same width as a ‘w’. In a proportional font, ‘w’ will be wider than a ‘!’. No width is specified
for a proportional font.

Fig. 221: Font Height

• Baseline, in pixels. All characters have the same baseline, which is an imaginary line on top of
which the characters seem to stand. Characters can be partly under the line, for example ‘g’ or
‘}’. The number of pixels specified is the number of pixels above the baseline.

Fig. 222: Font baseline

3.6. VEE Porting Guide 1006

MicroEJ Documentation,

• Space character size, in pixels. For proportional fonts, the Space character (0x20) is a specific
character because it has no filled pixels, and so its width must be specified. For monospace,
the space size is equal to the font width (and hence the same as all other characters).

• Styles: A font holds either a combination of these styles: BOLD, ITALIC, or is said to be PLAIN.

• When the selected font does not have a graphical representation of the required character, the
first character in font is drawn instead.

Pixel Transparency

The Graphics Engine’s software algorithms render the font according to the value stored for
each pixel. If the value is 0, the pixel is not rendered. If the value is the maximum value (for ex-
ample the value 3 for 2 bits-per-pixel), the pixel is rendered using the current foreground color,
completely overwriting the current value of the destination pixel. For other values, the pixel is
rendered by blending the selected foreground color with the current color of the destination.

If n is the number of bits-per-pixel, then the maximum value of a pixel (pmax) is 2^n – 1 . The
value of each color component of the final pixel is equal to:

𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 * 𝑝𝑖𝑥𝑒𝑙𝑉 𝑎𝑙𝑢𝑒/𝑝𝑚𝑎𝑥+ 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 * (𝑝𝑚𝑎𝑥− 𝑝𝑖𝑥𝑒𝑙𝑉 𝑎𝑙𝑢𝑒)/𝑝𝑚𝑎𝑥

Languages

Supported Languages

The Graphics Engine’s software algorithms manage the Unicode basic multilingual alphabet,
whose characters are encoded on 16 bits, i.e. Unicode characters ranging from 0x0000 to
0xFFFF (Surrogates characters are allowed). It allows to render left-to-right or right-to-leftwrit-
ing systems: Latin (English, etc.), Arabic, Chinese, etc. are some supported languages. How-
ever, the rendering is always performed left-to-right, even if the string is written right-to-left.
There is no support for top-to-bottomwriting systems.

Complex Layout

Some languages require diacritics, contextual letters, specific character ordering, etc. and the
Graphics Engine’s software algorithms do not handle these specificities at runtime. Tomanage
the complex layouts, use either of these solutions:

• Use theoffline toolNative LanguageSupport to automatically convert the translationmessages
in a characters array compatible with the Graphics Engine’s software algorithms.

• Implement a complex layouter in the Abstract Layer API (see Font Renderer) to convert the ap-
plication’s strings in a character array which format is compatible with the Graphics Engine’s
software algorithms and call the Graphics Engine’s software algorithms to draw them.

3.6. VEE Porting Guide 1007

https://en.wikipedia.org/wiki/Universal_Character_Set_characters#Surrogates

MicroEJ Documentation,

Font Generator

Principle

The Font Generator module is an off-board tool dedicated to the internal font format. It gener-
ates binary files ready to be displayed without the need for additional runtimememory.

Functional Description

Fig. 223: Font Generator Principle

Process overview:

1. The user defines, in a text file, the fonts to load.

2. The Font Generator outputs a raw file for each font to convert.

3. The raw files are embedded as (hidden) resources within the application. The raw file’s data is
linked into the FLASHmemory.

4. When the application draws text on the display, the font data comes directly from the FLASH
memory (the font data is not copied to the RAMmemory first).

Pixel Transparency

Asmentioned above, each pixel of each character in an .fnt or .ejf file has one of 256 different
gray-scale values. However RAW files can have 1, 2, 4 or 8 bits-per-pixel (respectively 2, 4, 16
or 256 gray-scale values). The required pixel depth is defined in the configuration file (see next
chapter). The Font Generator compresses the input pixels to the required depth.

The following tables illustrate the conversion “grayscale to transparency level” (the blacker the
pixel, the more opaque the encoded opacity):

• The grayscale value 0x00 is black whereas the value 0xff is white.

• The transparency level 0x0 is fully transparent whereas the levels 0x1 (bpp == 1), 0x3 (bpp
== 2) and 0xf (bpp == 4) are fully opaque.

Table 74: Font 1-BPP RAW Conversion
Grayscale Ranges Transparency Levels
0x00 to 0x7f 0x1
0x80 to 0xff 0x0

3.6. VEE Porting Guide 1008

MicroEJ Documentation,

Table 75: Font 2-BPP RAW Conversion
Grayscale Ranges Transparency Levels
0x00 to 0x1f 0x3
0x20 to 0x7f 0x2
0x80 to 0xdf 0x1
0xe0 to 0xff 0x0

Table 76: Font 4-BPP RAW Conversion
Grayscale Ranges Transparency Levels
0x00 to 0x07 0xf
0x08 to 0x18 0xe
0x19 to 0x29 0xd
0x2a to 0x3a 0xc
0x3b to 0x4b 0xb
0x4c to 0x5c 0xa
0x5d to 0x6d 0x9
0x6e to 0x7e 0x8
0x7f to 0x8f 0x7
0x90 to 0xa0 0x6
0xa1 to 0xb1 0x5
0xb2 to 0xc2 0x4
0xc3 to 0xd3 0x3
0xd4 to 0xe4 0x2
0xe5 to 0xf5 0x1
0xf6 to 0xff 0x0

For 8-BPP RAW font, a transparency level is equal to 255 - grayscale value .

Configuration File

The Font Generator uses a configuration file (called the “list file”) for describing fonts thatmust
be processed. The list file is a basic text filewhere each line describes a font to convert. The font
file is described as a resource path, and should be available from the application classpath.

Note: The list filemust be specified in the application launcher (see Standalone Application Options). However, all
files in application classpath with suffix .fonts.list are automatically parsed by the Font Generator tool.

Each line can have optional parameters (separated by a ‘:’) which define some ranges of char-
acters to embed in the final raw file, and the required pixel depth. By default, all characters
available in the input font file are embedded, and the pixel depth is 1 (i.e 1 bit-per-pixel).

Note: See Configuration File to understand the list file grammar.

Selecting only a specific set of characters to embed reduces the memory footprint. There are
two ways to specify a character range: the custom range and the known range. Several ranges
can be specified, separated by “;”.

Below is an example of a list file for the Font Generator:

3.6. VEE Porting Guide 1009

MicroEJ Documentation,

Listing 39: Fonts Configuration File Example

myfont
myfont1:latin
myfont2:latin:8
myfont3::4

External Resources

The Font Generatormanages two configuration files when the External Resources Loader is en-
abled. The first configuration file lists the fontswhichwill be stored as internal resourceswithin
the application. The second file lists the fonts the Font Generatormust convert and store in the
External Resource Loader output directory. It is the BSP’s responsibility to load the converted
fonts into an external memory.

• Refer to the chapter Fonts to have more details how to use this kind of resources.

• Refer to the chapter External Resources to havemore details how the Font Enginemanages this
kind of resources.

Installation

The Font Generator module is an additional tool for MicroUI library. When the MicroUI module
is installed, install this module in order to be able to embed some additional fonts with the
application.

If the module is not installed, the application will not be able to embed a new font. The appli-
cation will be only able to use the system fonts specified during the MicroUI initialization step
(see Static Initialization).

In the VEE Port configuration file, check UI > Font Generator to install the Font Generator
module.

Use

In order to be able to embed ready-to-be-displayed fonts, you must activate the fonts conver-
sion feature and specify the fonts configuration file.

Refer to the chapter Standalone ApplicationOptions (Libraries > MicroUI > Font) formore
information about specifying the fonts configuration file.

Font Loader

Principle

The Font Loader is a module of the MicroUI runtime, dedicated to the internal font format, that
loads font data (precomputed bitmaps of glyphs) ready to be displayed. The font data must
be stored as a resource (in RAW format). Typically, these resources are generated by the Font
Generator and embedded as internal resources or loaded fromexternalmemories (External Re-
sources loader).

3.6. VEE Porting Guide 1010

MicroEJ Documentation,

The loader is automatically used for all fonts retrieved through the MicroUI APIs Font.getAll-
Fonts(), Font.getDefaultFont() and Font.getFont(String).

External Resources

Memory Management

The Font Loader is able to load some fonts located outside the CPU addresses’ space range. It
uses the External Resource Loader.

When a font is located in such memory, the font characters are loaded one by one from the
External Memory.

The Font Loader uses a RAM buffer (External Font Heap) containing only the font character cur-
rently being drawn by the application. It is unloaded from the RAMwhen the Graphics Engine’s
software algorithms no longer need it.

The External Font Heap is stored into a RAM section called .bss.microui.display.
externalFontsHeap . Its size is automatically calculated according to the external fonts
used by the firmware. This size can be checked when enabling the verbose mode when
building the application executable:

Fig. 224: External Font Heap size in verbose mode

However, it is possible to change this value by setting the application property ej.microui.
memory.externalfontsheap.size . This option is very useful when building a kernel: the kernel
may anticipate the section size required by the features.

Warning: When this size is smaller than the size required by an external font, some characters
may be not drawn.

Also, the Font Loader copies a very short part of the resource (the font file) in RAM (into CPU
address space range): the font header. This header remains located in RAM as long as the ap-
plication is using the font. As soon as the application uses another external font, the new font
replaces the old one.

3.6. VEE Porting Guide 1011

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Font.html#getAllFonts--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Font.html#getAllFonts--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Font.html#getDefaultFont--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Font.html#getFont-java.lang.String-

MicroEJ Documentation,

Configuration File

Like internal resources, the Font Generator uses a configuration file (also called the “list file”)
for describing fonts that need to be processed. The list file must be specified in the application
launcher (see Standalone Application Options). However, all the files in the application class-
path with the suffix .fontsext.list are automatically parsed by the Font Generator tool.

Process

This chapter describes the steps to setup the loading of an external resource from the applica-
tion:

1. Add the font to the application project resources (typically in the source folder src/main/
resources and in the package fonts).

2. Create / open the configuration file (e.g. application.fontsext.list).

3. Add the relative path of the font and, at least, its output format (e.g. /fonts/myFont.fnt::4 ,
see Fonts).

4. Build the application: the Font Generator converts the font in RAW format in the external re-
sources folder ([application_output_folder]/externalResources).

5. Deploy the external resources to the external memory (SDCard, flash, etc.) of the device.

6. (optional) Configure the External Resources Loader to load from this source.

7. Build the application and run it on the device.

8. The application loads the external resource using Font.getFont(String).

9. The font loader looks for the font and only reads the font header.

10. (optional) The external resource is closed if the external resource is inside the CPU addresses’
space range.

11. The application can use the font.

12. Theexternal resource is never closed: the font characters are retrievedonebyone fromExternal
Memory on demand (drawString, etc.).

Simulation

The Simulator automatically manages the external resources like internal resources. All fonts
listed in *.fontsext.list files are copied in the external resources folder, and this folder is added
to the Simulator’s classpath.

3.6. VEE Porting Guide 1012

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Font.html#getFont-java.lang.String-

MicroEJ Documentation,

Backward Compatibility

As explained here, the notion of Dynamic styles and the style UNDERLINED are not sup-
ported anymore by MicroUI 3. However, an external font may have been generated with an
older version of the Font Generator; consequently, the generated file can hold the Dynamic
style. The Font Loader can load these old versions of fonts. However, there are some runtime
limitations:

• The Dynamic styles are ignored.

• The font is drawn without any dynamic algorithm.

• The font style (the style returned by Font.isBold() and Font.isItalic()) is the Dynamic style.

• For instance, when a font holds the style bold as dynamic style and the style italic as built-in
style, the font is considered as bold + italic; even if the style bold is not rendered.

Installation

The Font Loader is part of the MicroUI module and Display module. You must install them in
order to be able to use some fonts.

Use

The MicroUI font APIs are available in the class ej.microui.display.Font.

Custom Font

Principle

A custom font is a class that extends the class MicroUI Font. It is associated to a native imple-
mentation that handles, at least, the drawing of strings specified by Painter.drawString().

Warning: Calling theGraphics Engine’s software algorithms todrawa stringwith a custom font
corrupts the MicroUI execution (flickering, memory corruption, unknown behavior, etc.).

Note that a MicroUI Font has a fixed height and a fixed baseline (in pixels). Yet, it can be based
ona font thatmanage several heights. In this case, theMicroUI Font is configuredwith a specific
height.

Requirements

The custom font class and its native implementation are responsible for:

• Providing one or several entry points to load a font (typically MyFont.getFont(path_to_font)).

• Defining the format of the input data (a file, a stream, a byte array, etc.).

• Loading (if required) the font on the native side.

• Managingmemory (the custom font may require to allocate somememory on the native side).

3.6. VEE Porting Guide 1013

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Font.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Font.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Painter.html#drawString-ej.microui.display.GraphicsContext-java.lang.String-ej.microui.display.Font-int-int-

MicroEJ Documentation,

• Closing the font (mainly if some native data is associated to this font).

Note: In case the input data is a file, the file can be listed in the resources.list file.

MicroUI Drawings

MicroUI provides several APIs to draw a string. The native implementation of the custom font
should implement the associated Abstract Layer API. This is not mandatory but strongly rec-
ommended: the main goal is to abstract away the use of custom fonts for the application. The
application shouldbeable tomanipulateany font (internal fontsor customfonts)withoutusing
a different API for each font type.

Renderable String

The custom font class should manage the MicroUI RenderableString. A renderable string is an
immutable string associated with a font. The objective of a renderable string is to be drawn
faster than a standard string. Because the font data for the renderable string never changes,
some information can be cached, avoiding retrieving it at drawing time.

As a consequence, the custom font should keep some data that allows one to quickly retrieve
the data to draw. The data format is custom-font-dependent. In theMicroUI library, the render-
able string data is represented by a byte array (see RenderableString.getSNIContext()). On the
native side, this data should be cast to a structure readable by the font drawer.

Note: If there is no support for the renderable strings in the custom font, the drawings are automatically redi-
rected to the simple drawString algorithms. Consequently, there is no advantage for the application to use the
RenderableString API.

Additional APIs

The class can provide some additional methods:

• To get information on the font: ascent, descent, name, etc.

• To draw a string with additional parameters: opacity, matrix deformation, gradients, etc.

Rendering

Thenative implementationof the renderings (the implementationof theMicroUI Abstract Layer
API to draw a string with the font) is described in the chapter Font Renderer.

3.6. VEE Porting Guide 1014

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/RenderableString.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/RenderableString.html#getSNIContext--

MicroEJ Documentation,

Font Renderer

Principle

The Font Renderer is a module of the MicroUI runtime that reads and draws the strings with
a font. It calls Abstraction Layer APIs to draw and transform the strings, the MicroUI Render-
ableString and single characters (with an optional transformation like a rotation or a scaling).
In addition, the Graphics Engine provides some software algorithms to perform the rendering
of the strings with the internal font format.

Functional Description

AllMicroUI stringdrawingsare redirected toasetofAbstractionLayerAPIs. All AbstractionLayer
APIs are implemented byweak functions, which call software algorithms. The BSP can override
this default behavior:

• To use an advanced complex layout manager.

• To use a custom drawer.

• To handle Custom Fonts.

Font Formats

Internal Font Format

TheGraphics Engine’s software algorithms are by default able to draw an internal font. No extra
support in the VEE Port is required to draw strings with this kind of font.

The string drawing resembles a shape drawing. The drawing is performed by default by the
Graphics Engine Software Algorithms and can be overridden. This allows to enrich the language
support by using a third-party library that provides an advanced complex layout manager.

Custom Font Format

The VEE Port must extend the Font Renderer to support the drawing of strings with a Custom
Font. This extension can consist in:

• Decoding the font at runtime to draw it.

• Using an advanced complex layout manager.

• Using a command interpreter to perform some shape drawings.

• etc.

To draw strings with custom fonts, the Font Renderer introduces the notion of custom font
drawer. This drawer is an engine that has the responsibility to draw the string with the font.
Each custom font format (0 to 7) has its own font drawer.

Each drawing of a string with a custom font is redirected to the associated font drawer.

Hint: A custom font drawer can call the UI Shapes Drawing API to draw its elements in the destination.

3.6. VEE Porting Guide 1015

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/RenderableString.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/RenderableString.html

MicroEJ Documentation,

The implementation isnot the samebetween theEmbeddedsideand theSimulation. However,
the concepts are the same and are described in dedicated chapters.

MicroUI C Module

Principle

As described above, a font drawer allows drawing strings with a font which format is custom.
The MicroUI C module is designed to manage the notion of drawers: it does not support the
custom formats but allows adding some additional drawers.

This support uses several weak functions and tables to redirect the string drawings. When cus-
tomdrawers are not used (when the VEE Port does not need to support custom fonts), this redi-
rection can be removed to reduce the memory footprint (by removing the indirection tables)
and improve the performances (by reducing the number of runtime function calls).

Internal Font Format Only (Default)

The default implementation can only draw strings with internal fonts. In other words, the ap-
plication cannot draw with a custom font. This is the most frequent use case, the only one
available with MicroUI before version 3.6.

Attention: To select this implementation (to disable the custom font support), the define
UI_FEATURE_FONT_CUSTOM_FORMATS must be unset.

The font drawing is similar to UI_DRAWING_GPU_drawLine (see MicroUI C Module), ex-
cept that the drawing consists in decoding the string first (to optionally apply a complex layout
manager), and then calling the Graphics Engine’s software algorithms to draw the string.

Theoretically, the weak drawer should let the font drawer handle the font instead of calling
the software drawer directly. However the MicroUI C Module takes advantage of the define
UI_FEATURE_FONT_CUSTOM_FORMATS : as it is not set, the CModule bypasses the
indirection to the font drawer, and as a consequence the implementation of the weak function
only consists in calling the Graphics Engine’s software algorithm (basic string layouter, see Lan-
guages and software drawings). This tip reduces the footprint and the CPU usage.

An implementation of a third-party complex layouter can optionally take advantage of the
define UI_FEATURE_FONT_CUSTOM_FORMATS . The following diagrams illus-
trate the drawing of a string with or without taking advantage of the define UI_FEA-
TURE_FONT_CUSTOM_FORMATS (respectively default and optimized implementa-
tion).

Default Implementation

Optimized Implementation

3.6. VEE Porting Guide 1016

MicroEJ Documentation,

[MicroUI]
Painter.drawString();

[LLUI_PAINTER_impl.h]
LLUI_PAINTER_IMPL_drawString();

[Graphics Engine]

-

[LLUI_PAINTER_impl.c]
LLUI_PAINTER_IMPL_drawString();

[ui_drawing.h]
UI_DRAWING_drawString();

algo implemented?

[ui_drawing_soft.h]
UI_DRAWING_SOFT_drawString();

[ui_drawing_stub.h]
UI_DRAWING_STUB_drawString();

[ui_drawing_stub.c]
UI_DRAWING_STUB_drawString();

[ui_font_drawing.h]
UI_FONT_DRAWING_drawString();

[ui_font_drawing.c]
UI_FONT_DRAWING_drawString();

internal font?

[complex_layout.c]
UI_DRAWING_drawString();

[ui_drawing.c]
weak UI_DRAWING_drawString();

built-in optim

yes no

yesno

3.6. VEE Porting Guide 1017

MicroEJ Documentation,

[MicroUI]
Painter.drawString();

[LLUI_PAINTER_impl.h]
LLUI_PAINTER_IMPL_drawString();

[Graphics Engine]

[LLUI_PAINTER_impl.c]
LLUI_PAINTER_IMPL_drawString();

[ui_drawing.h]
UI_DRAWING_drawString();

algo implemented?

[ui_drawing_soft.h]
UI_DRAWING_SOFT_drawString();

[complex_layout.c]
UI_DRAWING_drawString();

[ui_drawing.c]
weak UI_DRAWING_drawString();

built-in optim

yes no

3.6. VEE Porting Guide 1018

MicroEJ Documentation,

LLUI_PAINTER_IMPL_drawString (available in MicroUI C Module)

Similar to LLUI_PAINTER_IMPL_drawLine , seeMicroUI C Module.

UI_DRAWING_drawString

// Available in MicroUI C Module
#define UI_DRAWING_DEFAULT_drawString UI_DRAWING_drawString

// To write in the BSP (optional)
#define UI_DRAWING_LAYOUT_drawString UI_DRAWING_drawString

The function names are set with preprocessor macros. These name redirections are helpful
when the VEE Port features more than one destination format (which is not the case here).

UI_DRAWING_LAYOUT_drawString (to write in the BSP)

Similar to UI_DRAWING_GPU_drawLine (seeMicroUI C Module), but lets the font drawer
manage the font instead of calling the software drawer directly (Default Implementation) or
takes advantage of the define UI_FEATURE_FONT_CUSTOM_FORMATS (Optimized
Implementation):

Default Implementation

Optimized Implementation

// Unlike the MicroUI C Module, this function is not ”weak”.
DRAWING_Status UI_DRAWING_LAYOUT_drawString(MICROUI_
→˓GraphicsContext *gc, jchar *chars, jint length, MICROUI_Font *font, jint x, jint y) {

DRAWING_Status status;
jchar *transformed_chars = [...] ;

// Let the font drawer manages the string (available in the C module)
status = UI_FONT_DRAWING_drawString(gc, transformed_chars, length, font, x, y);

return status;
}

// Unlike the MicroUI C Module, this function is not ”weak”.
DRAWING_Status UI_DRAWING_LAYOUT_drawString(MICROUI_
→˓GraphicsContext *gc, jchar *chars, jint length, MICROUI_Font *font, jint x, jint y) {

DRAWING_Status status;
jchar *transformed_chars = [...] ;

#if !defined(UI_FEATURE_FONT_CUSTOM_FORMATS)
status = UI_DRAWING_SOFT_drawString(gc, transformed_chars, length, font, x, y);

#else
// Let the font drawer manages the string (available in the C module)
status = UI_FONT_DRAWING_drawString(gc, transformed_chars, length, font, x, y);

#endif
return status;

}

UI_DRAWING_DEFAULT_drawString (available in MicroUI C Module)

// Use the compiler's 'weak' attribute
__weak DRAWING_Status UI_DRAWING_DEFAULT_drawString(MICROUI_

(continues on next page)

3.6. VEE Porting Guide 1019

MicroEJ Documentation,

(continued from previous page)

→˓GraphicsContext *gc, jchar *chars, jint length, MICROUI_Font *font, jint x, jint y) {
#if !defined(UI_FEATURE_FONT_CUSTOM_FORMATS)

return UI_DRAWING_SOFT_drawString(gc, chars, length, font, x, y);
#else

return UI_FONT_DRAWING_drawString(gc, chars, length, font, x, y);
#endif
}

The define UI_FEATURE_FONT_CUSTOM_FORMATS is not set, so the implementa-
tion of the weak function only consists in calling the Graphics Engine’s software algorithm.

Custom Font Format

Inaddition to the internal font format, this implementationallowsdrawingstringswitha custom
font format. This advanced use case is available only with MicroUI 3.6 or higher.

Attention: To select this implementation, the define UI_FEATURE_FONT_CUS-
TOM_FORMATS must be set (no specific value).

The MicroUI C module uses some tables to redirect the font management to the expected ex-
tension. There is one table per Font Abstraction Layer API (draw, rotate, scale) to embed only
the necessary algorithms (a table and its functions are only embedded in the final binary file if
and only if the MicroUI drawing method is called).

Each table contains ten elements:

static const␣
→˓UI_FONT_DRAWING_drawString_t UI_FONT_DRAWING_drawString_custom[] = {
&UI_DRAWING_STUB_drawString,
&UI_DRAWING_SOFT_drawString,
&UI_FONT_DRAWING_drawString_custom0,
&UI_FONT_DRAWING_drawString_custom1,
&UI_FONT_DRAWING_drawString_custom2,
&UI_FONT_DRAWING_drawString_custom3,
&UI_FONT_DRAWING_drawString_custom4,
&UI_FONT_DRAWING_drawString_custom5,
&UI_FONT_DRAWING_drawString_custom6,
&UI_FONT_DRAWING_drawString_custom7,

};

• UI_DRAWING_STUB_drawString is the drawing function called when the drawing function is not im-
plemented,

• UI_DRAWING_SOFT_drawString is the drawing function that redirects the drawing to the Graphics En-
gine Software Algorithms,

• UI_FONT_DRAWING_drawString_customX (0 to 7) are the drawing functions for each custom for-
mat.

The MicroUI C Module retrieves the table index according to the font format.

The implementation of UI_DRAWING_drawString can have two behaviors:

1. It only manages the characters layouting; the drawing is performed by another C file.

3.6. VEE Porting Guide 1020

MicroEJ Documentation,

2. It manages the layouting and the drawing; in that case, the implementation has to check if it
supports the font.

The following diagram illustrates the drawing of a string:

3.6. VEE Porting Guide 1021

MicroEJ Documentation,

[MicroUI]
Painter.drawString();

[LLUI_PAINTER_impl.h]
LLUI_PAINTER_IMPL_drawString();

[Graphics Engine]

-

[custom drawing]

[ui_drawing.h]
@see Simple Flow (chapter Drawings)

optional
 (drawShapes)

[LLUI_PAINTER_impl.c]
LLUI_PAINTER_IMPL_drawString();

[ui_drawing.h]
UI_DRAWING_drawString();

algo implemented?

[ui_drawing_soft.h]
UI_DRAWING_SOFT_drawString();

[ui_drawing_stub.h]
UI_DRAWING_STUB_drawString();

[ui_drawing_stub.c]
UI_DRAWING_STUB_drawString();

[ui_font_drawing.h]
UI_FONT_DRAWING_drawString();

[ui_font_drawing.c]
UI_FONT_DRAWING_drawString();

[complex_layout.c]
UI_DRAWING_drawString();

[layout_and_draw.c]
UI_DRAWING_drawString();

supported font?

internal font?

[ui_font_drawing.c]
table[x] = UI_FONT_DRAWING_drawString_customX()

implemented?

[ui_font_x.c]
UI_FONT_DRAWING_drawString_customX()

[ui_drawing.c]
weak UI_DRAWING_drawString();

[ui_font_drawing.c]
weak UI_FONT_DRAWING_drawString_customX();

layout onlylayout + draw no

yesno

yes no

yes

no

3.6. VEE Porting Guide 1022

MicroEJ Documentation,

Take the same example as the Internal Font Formats Only implementation (draw a string):

UI_DRAWING_DEFAULT_drawString (available in MicroUI C Module)

// Use the compiler's 'weak' attribute
__weak DRAWING_Status UI_DRAWING_DEFAULT_drawString(MICROUI_
→˓GraphicsContext *gc, jchar *chars, jint length, MICROUI_Font *font, jint x, jint y) {
#if !defined(UI_FEATURE_FONT_CUSTOM_FORMATS)

return UI_DRAWING_SOFT_drawString(gc, chars, length, font, x, y);
#else

return UI_FONT_DRAWING_drawString(gc, chars, length, font, x, y);
#endif
}

Thedefine UI_FEATURE_FONT_CUSTOM_FORMATS is set so the implementation of
theweak function redirects the string drawing to the font drawermanager (ui_font_drawing.
h).

UI_FONT_DRAWING_draw (available in MicroUI C Module)

static const␣
→˓UI_FONT_DRAWING_drawString_t UI_FONT_DRAWING_drawString_custom[] = {
&UI_DRAWING_STUB_drawString,
&UI_DRAWING_SOFT_drawString,
&UI_FONT_DRAWING_drawString_custom0,
&UI_FONT_DRAWING_drawString_custom1,
&UI_FONT_DRAWING_drawString_custom2,
&UI_FONT_DRAWING_drawString_custom3,
&UI_FONT_DRAWING_drawString_custom4,
&UI_FONT_DRAWING_drawString_custom5,
&UI_FONT_DRAWING_drawString_custom6,
&UI_FONT_DRAWING_drawString_custom7,

};

DRAWING_Status UI_FONT_DRAWING_drawString(MICROUI_
→˓GraphicsContext *gc, jchar *chars, jint length, MICROUI_Font *font, jint x, jint y){
return (*UI_FONT_

→˓DRAWING_drawString_custom[_get_table_index(gc, font)])(gc, chars, length, font, x, y);
}

The implementation in theMicroUI Cmodule redirects thedrawing to the expecteddrawer. The
drawer is retrieved using the font format (function _get_table_index()):

• The format is internal but the destination is not the display format: index 0 is returned.

• The format is internal and the destination is the display format: index 1 is returned.

• The format is custom: an index from 2 to 9 is returned.

UI_FONT_DRAWING_drawString_custom0 (available in MicroUI C Module)

// Use the compiler's 'weak' attribute
__weak DRAWING_Status UI_FONT_DRAWING_drawString_custom0(MICROUI_
→˓GraphicsContext *gc, jchar *chars, jint length, MICROUI_Font *font, jint x, jint y){
return UI_DRAWING_STUB_drawString(gc, chars, length, font, x, y);

}

3.6. VEE Porting Guide 1023

MicroEJ Documentation,

The default implementation of UI_FONT_DRAWING_drawString_custom0 (same be-
havior for 0 to 7) consists in calling the stub implementation.

UI_DRAWING_STUB_drawString (available in MicroUI C Module)

DRAWING_Status UI_DRAWING_STUB_drawString(MICROUI_
→˓GraphicsContext *gc, jchar *chars, jint length, MICROUI_Font *font, jint x, jint y){
// Set the drawing log flag ”not implemented”
LLUI_DISPLAY_reportError(gc, DRAWING_LOG_NOT_IMPLEMENTED);
return DRAWING_DONE;

}

The implementation only consists in setting the Drawing log flag DRAW-
ING_LOG_NOT_IMPLEMENTED to notify the application that the drawing has
not been performed.

Simulation

Principle

The simulation behavior is similar to theMicroUI C Module for the Embedded side.

The Front Panel defines support for the drawers based on the Java service loader.

Internal Font Format Only (Default)

The default implementation can only draw strings with internal fonts.

Note: Contrary to theMicroUI CModule, the simulation does not (anddoesn’t need to) provide anoption to disable
the use of custom font.

The following diagram illustrates the drawing of a string:

3.6. VEE Porting Guide 1024

MicroEJ Documentation,

[MicroUI]
Painter.drawString();

[FrontPanel]
LLUIPainter.drawString();

[Graphics Engine] -

[FrontPanel]
getUIDrawer().drawString();

[FrontPanel]
DisplayDrawer.drawString();

[FrontPanel]
getUIDrawerSoftware()

.drawString();

[FrontPanel]
getUIFontDrawer()
.drawString();

internal font?

[VEE Port FP]
ComplexLayout
.drawString();

[FrontPanel]
no op

method overridden?

no

yes

yes no

3.6. VEE Porting Guide 1025

MicroEJ Documentation,

It is possible to override the font drawers for the internal format in the sameway as the custom
formats.

Custom Font Format

It is possible to draw fonts with a custom format by implementing the UIFontDrawing inter-
face. This advanced use case is available only with MicroUI 3.6 or higher.

The UIFontDrawing interface contains one method for each font drawing primitive (draw,
getWidth, RenderableString, rotate, scale). Only the necessary methods have to be imple-
mented. Each non-implementedmethod will result in calling the stub implementation.

The method handledFormat() must be implemented and returns the font format handled by
the drawer.

Once created, the UIFontDrawing implementation must be registered as a service.

The following diagram illustrates the drawing of a string:

3.6. VEE Porting Guide 1026

MicroEJ Documentation,

[MicroUI]
Painter.drawString();

[FrontPanel]
LLUIPainter.drawString();

[Graphics Engine]

- [custom drawing]

[FrontPanel]
getUIDrawer().drawString();

@see Simple Flow (chapter Drawings)

optional
(drawShapes)

[FrontPanel]
getUIDrawer().drawString();

[FrontPanel]
DisplayDrawer.drawString();

[FrontPanel]
getUIDrawerSoftware()

.drawString();

[FrontPanel]
getUIFontDrawer()
.drawString();

internal font?

[VEE Port FP]ComplexLayout
.drawString();

[VEE Port FP]
LayoutAndDraw
.drawString();

supported font?

[FrontPanel]
no op

[VEE Port Fp]
CustomFontDrawing.draw()

method overridden?

no

layout only layout + draw

yes

available font drawer
and method implemented?

no

no yes

yes

no

3.6. VEE Porting Guide 1027

MicroEJ Documentation,

Let’s implement the font drawer for the CUSTOM_0 format.

public class MyCustomFontDrawer implements UIFontDrawing {

@Override
public MicroUIFontFormat handledFormat() {

return MicroUIFontFormat.MICROUI_FONT_FORMAT_CUSTOM_0;
}

@Override
public void draw(MicroUIGraphicsContext␣

→˓gc, char[] chars, int offset, int length, MicroUIFont font, int x, int y) {
byte[] fontData = font.getFontData();
MyCustomFont customFont = MyCustomFont.get(fontData);
customFont.drawOn(gc, chars, offset, length, customFont, x, y);

}

}

Now, this drawer needs to be registered as a service. This can be achieved by creating a file
in the resources of the Front Panel project named META-INF/services/ej.microui.display.
UIFontDrawing and containing the fully qualified name of the previously created font drawer.

com.mycompany.MyCustomFontDrawer

It is alsopossible todeclare it programmatically (seewhereadrawer is registered in thedrawing
custom section):

LLUIDisplay.Instance.registerUIFontDrawer(new MyCustomFontDrawer());

Installation

The Font Renderer is part of the MicroUI module and Display module. Youmust install them in
order to be able to use some fonts.

Use

The MicroUI font APIs are available in the class ej.microui.display.Font.

CModules

Principle

Several C modules implement the UI Pack’s Abstraction Layer APIs. Some are generic, and
some are VEE Port dependent (more precisely: GPU-dependent). The genericmodules provide
header files to be implemented by the specific modules. The generic C modules are available
on the Central Repository and the specific C modules on the Developer Repository.

The picture below illustrates the available C modules, and the following chapters explain the
aim and relations of each Cmodule.

3.6. VEE Porting Guide 1028

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Font.html

MicroEJ Documentation,

Note: It is a simplified view: all sources and header files of each Cmodule are not visible.

Fig. 225: MicroUI C Modules

UI Pack

The UI Pack provides a header file to implement the MicroUI drawings:
LLUI_PAINTER_impl.h . See the UI Pack chapter to have more information.

The UI Pack and its header files are available on the Central Repository: https://repository.
microej.com/modules/com/microej/pack/ui/ui-pack/.

CModule: MicroUI

This Cmodule is divided into several parts, and each part provides an implementation of some
MicroUI Abstraction Layer APIs. This Cmodule ismandatory to use the UI Pack (the C filesmust
be compiled in the BSP), but some C files are optional.

This C module is available on the Central Repository: com.microej.clibrary.llimpl#microui.

Drawings

Overview

This part aims to facilitate the MicroUI Painter classes implementation:

1. It manages the synchronization with the Graphics Engine (see LLUI_DISPLAY_request-
Drawing()).

2. It checks the drawing parameters: clip, opacity, thickness, fade, image status, etc.

3. It logs the drawings (see Debug Traces).

4. It deports the rendering to ui_drawing.h .

The implementation of ui_drawing.h depends on several options:

3.6. VEE Porting Guide 1029

https://repository.microej.com/modules/com/microej/pack/ui/ui-pack/
https://repository.microej.com/modules/com/microej/pack/ui/ui-pack/
https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui/

MicroEJ Documentation,

• Whether the BSP provides a renderer (software and / or hardware as a GPU),

• Whether the BSP is configured to handle several destination formats,

• Whether the BSP is configured to handle custom image formats.

Files

• Implements: LLUI_PAINTER_impl.h and LLDW_PAINTER_impl.h .

• C files: LLUI_PAINTER_impl.c , LLDW_PAINTER_impl.c , ui_drawing_stub.c ,
ui_drawing.c and ui_image_drawing.c .

• Status: mandatory.

Usage

1. Add all C files in the BSP project.

2. Check the port by running the ui validation as described in the VEE Port project template

Images Heap

Overview

This part is optional since the MicroUI Graphics Engine already includes an Images Heap allo-
cator. Like MicroUI Graphics Engine’s images heap allocator, the Cmodule’s images allocator is
a best-fit allocator. This kind of allocator has the following constraints:

• It requires a header at the beginning of the heap section.

• It adds a header and a footer for each allocated block.

• It producesmemory fragmentation: it may not allow the allocation of a block with a size equal
to the free memory size.

Unlike the Graphics Engine’s allocator, the C module’s allocator adds some utility functions to
get information about the heap:

• total size,

• free size,

• number of allocated blocks.

A third-party allocator can replace this allocator and the one in the Graphics Engine.

3.6. VEE Porting Guide 1030

https://github.com/MicroEJ/Tool-Project-Template-VEEPort/

MicroEJ Documentation,

Files

• Implements the functions of LLUI_DISPLAY_impl.h with LLUI_DISPLAY_IMPL_im-
ageHeap prefix.

• C file: LLUI_DISPLAY_HEAP_impl.c .

• Status: optional.

Usage

1. To use the Graphics Engine’s allocator, do not add the file LLUI_DISPLAY_HEAP_impl.c
in the BSP project.

2. To use the C module’s allocator, add the file LLUI_DISPLAY_HEAP_impl.c in the BSP
project.

3. To use a third-party allocator, do not add the file LLUI_DISPLAY_HEAP_impl.c in theBSP
project and implement the LLUI_DISPLAY_IMPL_imageHeapXXX functions.

Events Logger

Overview

This part is only mandatory when the BSP calls LLUI_INPUT_dump() (see Event Buffer). If
not included, the call to LLUI_INPUT_dump() performs nothing. It aims to log the MicroUI
events and provide an events dumper.

The logger adds some metadata to each MicroUI event in a dedicated array. When the BSP is
calling LLUI_INPUT_dump() , the logger is using its data todecode the events. Then, it uses
an implementation of microui_event_decoder.h to describe the events.

Files

• Implements the functions of LLUI_INPUT_impl.h with LLUI_INPUT_IMPL_log_ pre-
fix.

• C files: LLUI_INPUT_LOG_impl.c and microui_event_decoder.c .

• Status: optional.

Usage (to enable the events logger)

1. Add all C files in the BSP project.

2. Configure the options in ui_configuration.h (by default, the logger is disabled).

3.6. VEE Porting Guide 1031

MicroEJ Documentation,

Buffer Refresh Strategy

Overview

This part provides three Buffer Refresh Strategies (BRS): predraw , single and legacy . Refer to
the chapter Buffer Refresh Strategy for more information about these strategies. These strate-
gies are optional. When no strategy is selected, the BSP should provide its own strategy. If no
strategy is specifiedor provided, adefault strategywill beused; this is aminimal, naive strategy,
which should only be used when using the Direct Buffer mode.

Some strategies require an implementation of UI_DISPLAY_BRS_restore() (see
ui_display_brs.h). A weak implementation is available; this implementation uses the func-
tion memcpy() .

Files

• Implements the functions of LLUI_DISPLAY_impl.h related to the Buffer Refresh Strategy:
LLUI_DISPLAY_IMPL_refresh() and LLUI_DISPLAY_IMPL_newDrawingRegion() .

• C files: ui_display_brs_legacy.c , ui_display_brs_predraw.c , ui_display_brs_single.c ,
ui_display_brs.c and ui_rect_util.c .

• Status: optional.

Usage

1. Add all C files in the BSP project (whatever the strategy).

2. Configure the options in ui_configuration.h .

3. Comment the line #error [...]” .

4. (optional) Implement UI_DISPLAY_BRS_restore() (using a GPU, for instance).

CModule: MicroUI Over DMA2D

Overview

This C module is a specific implementation of the C module MicroUI over STM32 DMA2D
(Chrom-ART Graphics Accelerator):

• It implements a set of drawings using the official Chrom-ART Graphics Accelerator API.

• It is compatible with several STM32 MCU: STM32F4XX , STM32F7XX and STM32H7XX .

• It manages several configurations of memory cache.

• It is compatible with the multiple destination formatsmodule (but can only handle one desti-
nation format).

• It is compatible with the Buffer Refresh Strategies (BRS) predraw , single and legacy (switch).

This C module is available on the Developer Repository: com.microej.cli-
brary.llimpl#microui-dma2d.

3.6. VEE Porting Guide 1032

https://forge.microej.com/ui/native/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-dma2d/
https://forge.microej.com/ui/native/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-dma2d/

MicroEJ Documentation,

Files

• Implements some functions of ui_drawing.h (see above).

• C file: ui_drawing_dma2d.c .

• Status: optional.

Usage

1. Install the C Module for MicroUI and follow its implementation rules.

2. Add the C file to the BSP project.

3. Add the BSP global define DRAWING_DMA2D_BPP to specify the destination format: 16,
24, or 32 respectively DMA2D_RGB565 , DMA2D_RGB888 and DMA2D_ARGB8888 .

4. Call UI_DRAWING_DMA2D_initialize() from LLUI_DISPLAY_IMPL_initialize() .

5. Check the port by running the ui validation as described in the VEE Port project template

Drawings

The following table describes the accelerated drawings:

Feature Comment
Fill rectangle
Draw image ARGB8888, RGB888, RGB565, ARGB1555, ARGB4444, A8, A41

Cache

Some STM32 MCUs use a memory cache.

This cache must be cleared before using the DMA2D:

• Before the call to HAL_DMA2D_Start_IT() .

• Before the call to HAL_DMA2D_BlendingStart_IT() .

Usage

1. Check the configuration of the define DRAWING_DMA2D_CACHE_MANAGEMENT in
ui_dma2d_configuration.h .

1 The first and last odd columns are drawn in software due to GPU memory alignment constraints.

3.6. VEE Porting Guide 1033

https://github.com/MicroEJ/Tool-Project-Template-VEEPort/

MicroEJ Documentation,

Buffer Refresh Strategy “Predraw”

This strategy requires the copying of some regions from the front buffer to the back buffer on
demand (function UI_DISPLAY_BRS_restore() , see above). To perform these copies, this
CCO uses the UI_DRAWING_DMA2D_xxx_memcpy() functions.

Usage

1. The function UI_DRAWING_DMA2D_IRQHandler() must be called from the DMA2D IRQ
routine.

2. The function UI_DRAWING_DMA2D_memcpy_callback() should not be implemented
(useless).

Example of Implementation

void LLUI_DISPLAY_IMPL_flush(MICROUI_
→˓GraphicsContext* gc, uint8_t flush_identifier, const ui_rect_t regions[], size_t length) {

// store the flush identifier
g_current_flush_identifier = flush_identifier;

// change the front buffer address
HAL_LTDC_SetAddress(&hLtdcHandler,

→˓ (uint32_t)LLUI_DISPLAY_getBufferAddress(&gc->image), LTDC_ACTIVE_LAYER);

// ask an interrupt for the next LCD tick
lcd_enable_interrupt();

}

void LTDC_IRQHandler(LTDC_HandleTypeDef *hltdc) {
// LTDC register reload
__HAL_LTDC_ENABLE_IT(hltdc, LTDC_IT_RR);

// notify the MicroUI Graphics Engine
uint8_t* buffer = (uint8_t*)(BACK_

→˓BUFFER == LTDC_Layer->CFBAR ? FRAME_BUFFER : BACK_BUFFER);
LLUI_DISPLAY_setBackBuffer(g_current_flush_identifier, buffer, from_isr);

}

void DMA2D_IRQHandler(void) {
// call CCO DMA2D function
UI_DRAWING_DMA2D_IRQHandler();

}

3.6. VEE Porting Guide 1034

MicroEJ Documentation,

Buffer Refresh Strategy “Single”

Usually, this strategy is used when the front buffer cannot be mapped dynamically: the
same buffer is always used as the back buffer. However, the front buffer can be mapped
on a memory buffer that is in the CPU address range. In that case, the UI_DRAW-
ING_DMA2D_xxx_memcpy() functions can be used to copy the content of the back buffer
to the front buffer.

Usage

1. The function UI_DRAWING_DMA2D_configure_memcpy() must be called from the im-
plementation of LLUI_DISPLAY_IMPL_flush() .

2. The function UI_DRAWING_DMA2D_start_memcpy() must be called from the LCD con-
troller IRQ routine.

3. The function UI_DRAWING_DMA2D_IRQHandler() must be called from the DMA2D IRQ
routine.

4. The function UI_DRAWING_DMA2D_memcpy_callback() must be implemented to un-
lock the MicroUI Graphics Engine.

Example of Implementation

void LLUI_DISPLAY_IMPL_flush(MICROUI_
→˓GraphicsContext* gc, uint8_t flush_identifier, const ui_rect_t regions[], size_t length) {

// store the flush identifier
g_current_flush_identifier = flush_identifier;

// configure the copy to launch at the next LCD tick
UI_DRAWING_DMA2D_configure_memcpy(LLUI_

→˓DISPLAY_getBufferAddress(&gc->image), (uint8_t*)LTDC_Layer->CFBAR, regions[0].
→˓x1, regions[0].y1, regions[0].x2, regions[0].y2, RK043FN48H_WIDTH, &dma2d_memcpy);

// ask an interrupt for the next LCD tick
lcd_enable_interrupt();

}

void LTDC_IRQHandler(LTDC_HandleTypeDef *hltdc) {
// clear interrupt flag
LTDC->ICR = LTDC_IER_FLAG;

// launch the copy from the back buffer to the front buffer
UI_DRAWING_DMA2D_start_memcpy(&dma2d_memcpy);

}

void DMA2D_IRQHandler(void) {
// call CCO DMA2D function
UI_DRAWING_DMA2D_IRQHandler();

}

void UI_DRAWING_DMA2D_memcpy_callback(bool from_isr) {
// notify the MicroUI Graphics Engine

(continues on next page)

3.6. VEE Porting Guide 1035

MicroEJ Documentation,

(continued from previous page)

LLUI_DISPLAY_
→˓setBackBuffer(g_current_flush_identifier, (uint8_t*)BACK_BUFFER, from_isr);
}

Buffer Refresh Strategy “Legacy”

This strategy requires copying the previous drawings from the front buffer to the back buffer
before unlocking the MicroUI Graphics Engine. To perform this copy, this CCO uses the
UI_DRAWING_DMA2D_xxx_memcpy() functions. At the end of the copy, the MicroUI
Graphics Engine is unlocked: a new drawing can be performed in the new back buffer.

Usage

1. The function UI_DRAWING_DMA2D_configure_memcpy() must be called from the im-
plementation of LLUI_DISPLAY_IMPL_flush() .

2. The function UI_DRAWING_DMA2D_start_memcpy() must be called from the LCD con-
troller IRQ routine.

3. The function UI_DRAWING_DMA2D_IRQHandler() must be called from the DMA2D IRQ
routine.

4. The function UI_DRAWING_DMA2D_memcpy_callback() must be implemented to un-
lock the MicroUI Graphics Engine.

Example of Implementation

void LLUI_DISPLAY_IMPL_flush(MICROUI_
→˓GraphicsContext* gc, uint8_t flush_identifier, const ui_rect_t regions[], size_t length) {

// store the flush identifier
g_current_flush_identifier = flush_identifier;

// configure the copy to launch at the next LCD tick
UI_DRAWING_DMA2D_configure_memcpy(LLUI_

→˓DISPLAY_getBufferAddress(&gc->image), (uint8_t*)LTDC_Layer->CFBAR, regions[0].
→˓x1, regions[0].y1, regions[0].x2, regions[0].y2, RK043FN48H_WIDTH, &dma2d_memcpy);

// change the front buffer address
HAL_LTDC_SetAddress(&hLtdcHandler,

→˓ (uint32_t)LLUI_DISPLAY_getBufferAddress(&gc->image), LTDC_ACTIVE_LAYER);

// ask an interrupt for the next LCD tick
lcd_enable_interrupt();

}

void HAL_LTDC_ReloadEventCallback(LTDC_HandleTypeDef *hltdc) {
// LTDC register reload
__HAL_LTDC_ENABLE_IT(hltdc, LTDC_IT_RR);

// launch the copy from the new front buffer to the new back buffer
UI_DRAWING_DMA2D_start_memcpy(&dma2d_memcpy);

(continues on next page)

3.6. VEE Porting Guide 1036

MicroEJ Documentation,

(continued from previous page)

}

void DMA2D_IRQHandler(void) {
// call CCO DMA2D function
UI_DRAWING_DMA2D_IRQHandler();

}

void UI_DRAWING_DMA2D_memcpy_callback(bool from_isr) {
// notify the MicroUI Graphics Engine
uint8_t* buffer = (uint8_t*)(BACK_

→˓BUFFER == LTDC_Layer->CFBAR ? FRAME_BUFFER : BACK_BUFFER);
LLUI_DISPLAY_setBackBuffer(g_current_flush_identifier, buffer, from_isr);

}

CModule: MicroUI Over VGLite

Overview

This C module is a specific implementation of the C module MicroUI over the VGLite library
3.0.15_rev7:

• It implements a set of drawings over the official VGLite library 3.0.15_rev7.

• It is compatible with themultiple destination formatsmodule.

This C module also provides a set of header files (and their implementations) to manipu-
late some MicroUI concepts over the VGLite library: image management, path format, etc.:
ui_vglite.h and ui_drawing_vglite_path.h .

This C module is available on the Developer Repository: com.microej.cli-
brary.llimpl#microui-vglite.

Files

• Implements some functions of ui_drawing.h (see above).

• C files: mej_math.c , ui_drawing_vglite_path.c , ui_drawing_vglite_process.c ,
ui_drawing_vglite.c and ui_vglite.c .

• Status: optional.

Usage

1. Install the C Module for MicroUI and follow its implementation rules.

2. Add the C files to the BSP project.

3. Call UI_VGLITE_initialize from LLUI_DISPLAY_IMPL_initialize before calling any
VGLite-related function.

4. Call UI_VGLITE_start from LLUI_DISPLAY_IMPL_initialize after configuring the
VGLite library.

5. Configure the options in ui_vglite_configuration.h .

3.6. VEE Porting Guide 1037

https://forge.microej.com/artifactory/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/
https://forge.microej.com/artifactory/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/

MicroEJ Documentation,

6. Comment the line #error [...]” .

7. Call UI_VGLITE_IRQHandler during the GPU interrupt routine.

8. Set the VGLite library’s preprocessor define VG_DRIVER_SINGLE_THREAD .

9. The VGLite library must be patched to be compatible with this C module:

cd [...]/sdk/middleware/vglite
patch -p1 < [...]/3.0.15_rev7.patch

10. In the file vglite_window.c , add the function VGLITE_CancelSwapBuffers() and its proto-
type in vglite_window.h :

void VGLITE_CancelSwapBuffers(void) {
fb_idx = fb_idx == 0 ? (APP_BUFFER_COUNT - 1) : (fb_idx) - 1;

}

11. Check the port by running the ui validation as described in the VEE Port project template

Options

This C module provides some drawing algorithms that are disabled by default.

• The rendering time of a simple shape with the GPU (time in the VGLite library + GPU setup
time + rendering time) is longer than with software rendering. To enable the hardware ren-
dering for simple shapes, uncomment the definition of VGLITE_USE_GPU_FOR_SIM-
PLE_DRAWINGS in ui_vglite_configuration.h .

• The rendering time of an RGB565 image into an RGB565 buffer without applying an opac-
ity (alpha == 0xff) is longer than with software rendering (as this kind of drawing con-
sists in performing a memory copy). To enable the hardware rendering for RGB565 im-
ages, uncomment the definition of VGLITE_USE_GPU_FOR_RGB565_IMAGES in
ui_vglite_configuration.h .

• ARGB8888, ARGB1555, and ARGB4444 transparent images may not be compatible with
some revisions of the VGLite GPU. Older GPU revisions do not render transparent im-
ages correctly because the pre-multiplication of the pixel opacity is not propagated to the
pixel color components. To force the hardware rendering for non-premultiplied trans-
parent images when the VGLite GPU is not compatible, uncomment the definition of
VGLITE_USE_GPU_FOR_TRANSPARENT_IMAGES in ui_vglite_configuration.
h . Note that this limitation does not concern the VGLite GPU, which is compatible with
non-premultiplied transparent images and the A8/A4 formats.

Drawings

The following table describes the accelerated drawings:

3.6. VEE Porting Guide 1038

https://github.com/MicroEJ/Tool-Project-Template-VEEPort/

MicroEJ Documentation,

Feature Comment
Draw line Disabled by default (see above)
Fill rectangle Disabled by default (see above)
Draw rounded rect-
angle

Disabled by default (see above)

Fill rounded rectan-
gle
Draw circle arc Disabled by default (see above)
Fill circle arc
Draw ellipse arc Disabled by default (see above)
Fill ellipse arc
Draw ellipse arc Disabled by default (see above)
Fill ellipse arc
Draw circle Disabled by default (see above)
Fill circle
Draw image ARGB8888_PRE, ARGB1555_PRE, ARGB4444_PRE, RGB565, A8, A4 ARGB8888,

ARGB1555, ARGB4444 (see above)
Draw thick faded
point

Only with fade <= 1

Draw thick faded
line

Only with fade <= 1

Draw thick faded cir-
cle

Only with fade <= 1

Draw thick faded cir-
cle arc

Only with fade <= 1

Draw thick faded el-
lipse

Only with fade <= 1

Draw thick line
Draw thick circle
Draw thick circle arc
Draw thick ellipse
Draw flipped image See draw image
Draw rotated image See draw image
Draw scaled image See draw image

Compatibility With MCU i.MX RT595

UI Pack 13

The versions of the C Module Over VGLite (before 7.0.0) included an implementation of the
Low-Level API LLUI_DISPLAY_impl.h . This support has been extracted into a dedicated C
Module since the version 7.0.0 . The dedicated C Module is available on the Developer Reposi-
tory: com.microej.clibrary.llimpl#microui-mimxrt595-evk.

Only the C Module com.microej.clibrary.llimpl#microui-vglite is useful to target the Vivante
VGLite GPU to perform the MicroUI and MicroVG drawings. The C Module com.microej.cli-
brary.llimpl#microui-mimxrt595-evk only gives an example of an implementation compatible
with the MCU i.MX RT595 MCU.

Note: For more information, see themigration notes.

3.6. VEE Porting Guide 1039

https://forge.microej.com/artifactory/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-mimxrt595-evk/
https://forge.microej.com/artifactory/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/
https://forge.microej.com/artifactory/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-mimxrt595-evk/
https://forge.microej.com/artifactory/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-mimxrt595-evk/

MicroEJ Documentation,

UI Pack 14

Since UI Pack 14, this C module is not compatible anymore and is not maintained.

CModule: MicroUI Over NemaGFX

Overview

This C module is a specific implementation of the C module MicroUI over the Think Silicon
NemaGFX:

• It implements a set of drawings over the official Think Silicon NemaGFX.

• It is compatible with themultiple destination formatsmodule (but it can only handle one des-
tination format).

This C module is available on the Developer Repository: com.microej.cli-
brary.llimpl#microui-nemagfx.

Files

• Implements some functions of ui_drawing.h (see above).

• C files: ui_nema.c and ui_drawing_nema.c .

• Status: optional.

Usage

1. Install the C Module for MicroUI and follow its implementation rules.

2. Add the C files to the BSP project.

3. Add ui_nemagfx/inc to the include path.

4. Call UI_NEMA_initialize() from LLUI_DISPLAY_IMPL_initialize() .

5. Configure the options in ui_nema_configuration.h .

6. Comment the line #error [...]” .

7. Check the port by running the ui validation as described in the VEE Port project template

Implementation

TheMicroUI Graphics Enginewaits for the endof the asynchronous drawings (performedby the
GPU). The VEE Port must stop this wait with a call to the function UI_NEMA_post_opera-
tion() in the GPU interrupt routine.

Tip: The GPU interrupt routine is often written in the same file as the implementation of nema_sys_init() .

3.6. VEE Porting Guide 1040

https://forge.microej.com/artifactory/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-nemagfx/
https://forge.microej.com/artifactory/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-nemagfx/
https://github.com/MicroEJ/Tool-Project-Template-VEEPort/

MicroEJ Documentation,

Options

This C module provides some drawing algorithms that are disabled by default.

• The rendering time of a simple shape with the GPU (time in the NemaGFX library + GPU
setup time + rendering time) is longer than with software rendering. To enable the hardware
rendering for simple shapes, uncomment the definition of ENABLE_SIMPLE_LINES in
ui_nema_configuration.h .

• The rendering of thick faded lines with the GPU is disabled by default: the quality of the ren-
dering is too random. To enable it, uncomment the definition of ENABLE_FADED_LINES
in ui_nema_configuration.h .

• Some GPUsmight not be able to render the images in specific memories. Comment the define
ENABLE_IMAGE_ROTATION in ui_nema_configuration.h tonot use theGPU to render
the rotated images.

Drawings

The following table describes the accelerated drawings:

Feature Comment
Draw line
Draw horizontal line Disabled by default (see above: ENABLE_SIMPLE_LINES)
Draw vertical line Disabled by default (see above: ENABLE_SIMPLE_LINES)
Draw rectangle Disabled by default (see above: ENABLE_SIMPLE_LINES)
Fill rectangle
Draw rounded rectangle
Fill rounded rectangle
Draw circle
Fill circle
Draw image ARGB8888, RGB565, A8
Draw thick faded line Only with fade <= 1
Draw thick faded circle Only with fade <= 1
Draw thick line Disabled by default (see above: ENABLE_FADED_LINES)
Draw thick circle
Draw rotated image See draw image
Draw scaled image See draw image

Compatibility

The compatibility between the components (Packs, C modules, and Libraries) is described in
the C Modules.

3.6. VEE Porting Guide 1041

MicroEJ Documentation,

Simulation

Principle

The graphical user interface uses the Front Panel mock (see Front Panel Mock) and some exten-
sions (widgets) to simulate the user interactions. It is the equivalent of the three embedded
modules (Display, Input and LED) of the VEE Port (seeMicroUI).

The Front Panel enhances the development environment by allowing User Interface applica-
tions to be designed and tested on the computer rather than on the target device (which may
not yet be built). The mock interacts with the user’s computer in two ways:

• output: LEDs, graphical displays

• input: buttons, joystick, touch, haptic sensors

Note: This chapter completes the notions described in Front Panel Mock chapter.

Module Dependencies

The Front Panel project is a regular MicroEJModule project. By default, the project depends on
the Front Panel Framework which only contains the Front Panel core classes and which does
not provide any Front PanelWidgets (seeModule Dependencies). To add interactive Front Panel
Widgets (typically a simulated display and input devices), add the library that provides compat-
ible Front Panel Widgets with the Graphics Engine:

SDK 6

SDK 5

The Front Panel project is a regular Gradle project. Its dependencies in build.gradle.kts file
should look like this example:

dependencies {
implementation(”ej.tool.frontpanel:widget:[Front Panel Widgets version]”)

}

The Front Panel project is a regular MicroEJ Module project. Its dependencies in module.ivy
file should look like this example:

<dependencies>
<dependency␣

→˓org=”ej.tool.frontpanel” name=”widget” rev=”[Front Panel Widgets version]”/>
</dependencies>

Note: The life cycle of this library is different than the UI pack’s one, see Front Panel API. The latest version of the
Front Panel Widgets is 5.3.1.

To implementUI Pack extensions for the simulator (customwidgets compatiblewith theGraph-
ics Engine, custom drawings, etc.), add the Front Panel extension API from the UI Pack (set the
version used by the VEE Port):

SDK 6

3.6. VEE Porting Guide 1042

MicroEJ Documentation,

SDK 5

The Front Panel project is a regular Gradle project. Its dependencies in build.gradle.kts file
should look like this example:

dependencies {
implementation(”com.microej.pack.ui:ui-pack:[UI Pack version]”) {

artifact {
name = ”frontpanel”
extension = ”jar”

}
}

}

The Front Panel project is a regular MicroEJ Module project. Its dependencies in module.ivy
file should look like this example:

<dependency org=”com.microej.pack.ui” name=”ui-pack” rev=”[UI Pack version]”>
<artifact name=”frontpanel” type=”jar”/>

</dependency>

Warning: This extension is built for each UI Pack version. By consequence, a Front Panel
project is done for a VEE Port built with the same UI Pack. When the UI Pack mismatch, some
errors may occur during the Front Panel project export step, during the VEE Port build, and/or
during the application runtime. The latest version of the UI Pack is 14.4.2.

MicroUI Implementation

As described here, the Front Panel uses an equivalent of embedded side’s header files that im-
plement MicroUI native methods.

This set of classes and interfaces is available in the module com.microej.pack.ui#ui-pack. It
offers the same capacity to override some built-in drawing algorithms (internal Graphics En-
gine drawing algorithms), to add some custom drawing algorithms, to manipulate the MicroUI
concepts (GraphicsContext, Image, etc.) in the Front Panel project, etc.

• The interface ej.microui.display.LLUIDisplay represents the MicroUI Graphics Engine (Mi-
croUI framework). It providesmethods tomapMicroUI byte arrays in MicroUI Graphics Context

3.6. VEE Porting Guide 1043

https://repository.microej.com/modules/com/microej/pack/ui/ui-pack/

MicroEJ Documentation,

objects, manipulate MicroUI colors, clip, etc. An instance of this framework is available via the
field Instance .

• The interface ej.microui.display.LLUIDisplayImpl all methods required by MicroUI imple-
mentation to be compatible with the MicroUI Display class implementation. See Display Wid-
get.

• The class ej.microui.display.LLUIPainter implements all MicroUI drawing natives. It defines
some interfaces and classes tomanipulate theMicroUI concepts (GraphicsContext, Image, etc.)
in theFrontPanel project. Like theembeddedside, this classmanages the synchronizationwith
the Graphics Engine and delegates the drawing to the interface ej.microui.display.UIDrawing
.

• The interface ej.microui.display.UIDrawing defines all the drawing methods available in Mi-
croUI. The default implementation of themethods involving images calls thematchingmethod
in ej.microui.display.UIImageDrawing . The default implementation of the othermethods re-
ports the error that the drawing is not done.

• The interface ej.microui.display.UIImageDrawing defines all the methods that draw an im-
age. The default implementation of themethods reports the error that the drawing is not done.

• The class ej.microui.display.DisplayDrawer implements ej.microui.display.UIDrawing that
draws using the Graphics Engine software algorithms.

• The classes in the package ej.drawing implement the native of the MicroUI extended library:
Drawing

• The classes in the package ej.microui.event manage the input events, see Inputs Extensions.

• The classes in the package ej.microui.led manage the LEDs.

Display Widget

The Display widget implements the interface ej.microui.display.LLUIDisplayImpl to be
compatible with the implementation of the MicroUI class Display.

Features

• Display buffer policy and buffer refresh strategy: simulates the display buffer policy and the buffer refresh
strategy.

• LCD refresh rate: simulates the time between two visible frames on the hardware device.

• LCD flush time: simulates the time to flush the frame content to the hardware device.

• Backlight (enabled by default): backlightFeature=true|false .

• Non-rectangular displays: filter=”xxx.png” . Somedisplays can have another appearance (for
instance: circular).

• Standard pixel formats.

• Driver-specific pixel formats: extensionClass=”xxx” . This class must be added in the Front
Panel project and implement the interface ej.fp.widget.Display.DisplayExtension .

3.6. VEE Porting Guide 1044

https://repository.microej.com/modules/ej/api/drawing/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html

MicroEJ Documentation,

Refresh Rate

Usually a LCD is cadenced around 50-60Hz. Thatmeans the LCD can display a new frame every
16-20ms. By default this widget displays a new frame as soon as possible. It can be configured
to reduce this time to simulate the hardware device.

In the widget declaration, set the attribute refreshRate=”xxx” with a value in Hertz. A zero or
negative value disables the feature.

The application can substitute the VEE Port’s value by setting the property -Dej.fp.widget.
display.refreshRate=xxx in the application launcher.

Flush Time

On a hardware device, the time to flush the frame data from the back buffermemory to the LCD
is not null. According to the hardware device technology, this time varies between 3-4 ms to
10-15ms. In SPImode, this timemay be higher, around 50ms, evenmore. By default this widget
copies the content of back buffer as faster as possible. It can be configured to reduce this time
to simulate the hardware device.

In the widget declaration, set the attribute flushTime=”xxx” with a value in milliseconds. A
zero or negative value disables the feature.

The application can substitute the VEE Port’s value by setting the property -Dej.fp.widget.
display.flushTime=xxx in the application launcher.

Non-rectangular Display

The Front Panel can simulate using a filter (seeWidget). This filter defines the pixels inside and
outside the whole display area. The filter image must have the same size as the rectangular
display area. A display pixel at a given position will not be rendered if the pixel at the same
position in the mask is fully transparent.

Note: Usually the touch panel over the display uses the same filter to reduce the touch panel area.

Example of non-rectangular display and touch:

<ej.fp.widget.Display x=”41” y=”33” width=”392” height=”392” filter=”mask_392.png” />
<ej.fp.widget.
→˓Pointer x=”41” y=”33” width=”392” height=”392” filter=”mask_392.png” touch=”true”/>

Inputs Extensions

The input device widgets (button, joystick, touch, etc.) require a listener to know how to react
on input events (press, release, move, etc.).The aim of this listener is to generate an event com-
patible with MicroUI Event Generator. Thereby, a button press action can become a MicroUI
Buttons press event or a Command event or anything else.

A MicroUI Event Generator is known by its name. This name is fixed during the MicroUI static
initialization (see Static Initialization). To generate an event to a specific event generator, the
widget has to use the event generator name as identifier.

A Front Panel widget can:

3.6. VEE Porting Guide 1045

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/EventGenerator.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Buttons.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Command.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/EventGenerator.html

MicroEJ Documentation,

• Force the behavior of an input action: the associated MicroUI Event Generator type is hard-
coded (Buttons, Pointer, etc.), the event is hardcoded (for instance: widget button press action
may be hardcoded on event generator Buttons and on the event pressed). Only the event gen-
erator name (identifier) should be editable by the Front Panel extension project.

• Propose a default behavior of an input action: contrary to first point, the Front Panel extension
project is able to change the default behavior. For instance a joystick can simulate a MicroUI
Pointer.

• Donothing: thewidget requires the Front Panel extensionproject to give a listener. This listener
will receive allwidgets action (press, release, etc.) andwill have to react on it. Theaction should
be converted on a MicroUI Event Generator event or might be dropped.

This choice of behavior is widget dependant. Please refer to thewidget documentation to have
more information about the chosen behavior.

Heap Simulation

Graphics Engine is using two dedicated heaps: for the images (see Images Heap) and the exter-
nal fonts (see External Resources). Front Panel partly simulates the heaps usage.

• Images heap: Front Panel simulates theheapusagewhen the application is creating aBuffered-
Image, when it loads and decodes an image (PNG, BMP, etc.) which is not a raw resource and
when it converts an image in MicroEJ format in another MicroEJ format. However it does not
simulate the external image copy in heap (see External Resource).

• External fonts heap: Front Panel does not simulate this heap (see External Resources). There is
no rendering limitationwhenapplication is using a fontwhich is locatedoutsideCPUaddresses
ranges.

Image Decoders

Front Panel uses its own internal image decoders when the associated modules have been se-
lected (see internal imagedecoders). Someadditional decoders canbe added like theC-side for
the embedded VEE Port (see external image decoders).Front Panel uses the Java AWT ImageIO
API to load the encoded images.

Generic Image Decoders

The Java AWT ImageIO class holds a limited list of additional decoders. To be compliant with
the embedded side, these decoders are disabled by default. To add an additional decoder,
specify the property hardwareImageDecoders.list in Front Panel configuration properties file
(see Installation) with one or several property values:

Table 77: Front Panel Additional Image Decoders
Type Property value
Graphics Interchange Format (GIF) gif
Joint Photographic Experts Group (JPEG) jpeg or jpg
Portable Network Graphics (PNG) png
Windows bitmap (BMP) bmp

The decoders list is comma (,) separated. Example:

3.6. VEE Porting Guide 1046

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/EventGenerator.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Buttons.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Pointer.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Buttons.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Pointer.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/EventGenerator.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/BufferedImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/BufferedImage.html
https://docs.oracle.com/javase/7/docs/api/javax/imageio/ImageIO.html
https://docs.oracle.com/javase/7/docs/api/javax/imageio/ImageIO.html

MicroEJ Documentation,

hardwareImageDecoders.list=jpg,bmp

Custom Image Decoders

Additionally, the Java AWT ImageIO class offers the possibility to add some custom image de-
coders by using the service javax.imageio.spi.ImageReaderSpi .

Since UI Pack 13.2.0, Front Panel automatically includes new image decoders (new ImageIO
services, see the method LLUIDisplayImpl.decode()), compiled in JAR files that follow this
convention:

1. The JAR contains the service declaration /META-INF/services/javax.imageio.spi.
ImageReaderSpi ,

2. The JAR filename’s prefix is imageio-,

3. The JAR location is the VEE Port configuration project’s dropins/tools/ directory.

Note: The same JAR is used by the Front Panel and by the Image Generator.

Drawings

Front Panel is designed to modify the default behavior for performing drawings.

Image Rendering

Front Panel is designed to add the support of custom images.

Buffered Image

Front Panel is designed to add the support of MicroUI BufferedImage with a format different
from the display format.

Classpath

A standardmock is running on the same JVM than the HIL Engine (seeMock chapter). It shares
the same classpath. When the application is not using the MicroUI library (i.e., it is not an UI
application, whether the VEE Port holds the MicroEJ Graphics Engine or not), the Front Panel
mock runs a standard mock. When the application is using the MicroUI library, the Front Panel
UI mock runs on the same JVM than the MicroEJ Simulator. In this case, the other mocks don’t
share the same classpath than the Front Panel mock. As a consequence, an other mock than
the Front Panel mock can not send input events to MicroUI, the object created in the standard
mocks’s class loader are not available in the Front Panel UI’s class loader (and vice versa), etc.

Since the UI Pack 13.2.0, it is possible to force to run the Front Panel UI mock in the same class-
path than the HIL Engine by adding the property -Dej.fp.hil=true in the application JRE tab.
Note that this option only works when the version of theMicroEJ Architecture used to build the
VEE Port is 7.17.0 or higher.

3.6. VEE Porting Guide 1047

https://docs.oracle.com/javase/7/docs/api/javax/imageio/ImageIO.html

MicroEJ Documentation,

Dependencies

• MicroUI module (seeMicroUI),

• Displaymodule (seeDisplay): Thismodule gives the characteristics of the graphical display that
are useful for configuring the Front Panel.

Installation

Front Panel is an additional module for MicroUI library. When the MicroUI module is installed,
install thismodule in order to be able to simulateUI drawings on the Simulator. See Installation
to install the module.

The properties file can additional properties:

• hardwareImageDecoders.list [optional, default value is “” (empty)]: Defines the available list of additional
image decoders provided by the hardware (see Image Decoders). Use comma (‘,’) to specify several decoders
among this list: bmp, jpg, jpeg, gif, png. If empty or unspecified, no image decoder is added.

SDK 6

SDK 5

In SDK 6, the configuration is done in the properties file vee-port/configuration.properties of
the VEE Port project.

Define the property using the com.microej.pack.frontpanel prefix: com.microej.pack.
frontpanel.hardwareImageDecoders.list=jpg,bmp,png

In SDK 5, set the hardwareImageDecoders.list property in the properties file frontpanel/
frontpanel.properties .

Use

Launch a MicroUI application on the Simulator to run the Front Panel.

Release Notes

MicroEJ Architecture Compatibility Version

The current UI Pack version is 14.4.2. The following tables describe the compatibility ranges
between MicroEJ UI Packs and MicroEJ Architectures.

3.6. VEE Porting Guide 1048

MicroEJ Documentation,

Standard Versions

UI Pack Range Architecture Range Comment
[13.5.0-14.4.2] [7.16.0-9.0.0[Compatibility with Architecture 8
[13.0.0-13.4.1] [7.16.0-8.0.0[SNI 1.3
[12.0.0-12.1.5] [7.11.0-8.0.0[Move Front Panel in MicroEJ Architecture
[11.0.0-11.2.0] [7.0.0-8.0.0[SNI Callback feature
[9.3.1-10.0.2] [6.13.0-7.0.0[

LLEXT link error with Architecture 6.13+ and UI 9+
[9.2.0-9.3.0] [6.12.0-6.13.0[SOAR can exclude some resources
[9.1.0-9.1.2] [6.8.0-6.12.0[Internal scripts
[8.0.0-9.0.2] [6.4.0-6.12.0[Manage external memories like byte addressable memories
[6.0.0-7.4.7] [6.1.0-6.12.0[

Maintenance Versions

UI Pack Version UI Pack Base Version Architecture Range Comment
(maint) 8.0.0 7.4.7 [7.0.0-8.0.0[SNI Callback feature

Foundation Libraries

The following table describes Foundation Libraries API versions implemented in MicroEJ UI
Packs.

Table 78: MicroUI API Implementation
UI Pack Range MicroUI Drawing
[14.1.1-14.4.2] 3.6.0 1.0.4
[14.0.0-14.0.3] 3.5.0 1.0.4
[13.7.0-13.7.2] 3.4.0 1.0.4
[13.6.0-13.6.2] 3.3.0 1.0.4
[13.5.0-13.5.1] 3.2.0 1.0.4
[13.2.0-13.4.1] 3.1.1 1.0.4
13.1.0 3.1.0 1.0.3
[13.0.4-13.0.7] 3.0.3 1.0.2
13.0.3 3.0.2 1.0.1
[13.0.1-13.0.2] 3.0.1 1.0.0
13.0.0 3.0.0 1.0.0
[12.1.0-12.1.5] 2.4.0
[11.1.0-11.2.0] 2.3.0
[9.2.0-11.0.1] 2.2.0
[9.1.1-9.1.2] 2.1.3
9.1.0 2.1.2
[9.0.0-9.0.2] 2.0.6
[6.0.0-8.1.0] 2.0.0

3.6. VEE Porting Guide 1049

https://repository.microej.com/modules/ej/api/microui/3.6.0/
https://repository.microej.com/modules/ej/api/drawing/1.0.4/
https://repository.microej.com/modules/ej/api/microui/3.5.0/
https://repository.microej.com/modules/ej/api/drawing/1.0.4/
https://repository.microej.com/modules/ej/api/microui/3.4.0/
https://repository.microej.com/modules/ej/api/drawing/1.0.4/
https://repository.microej.com/modules/ej/api/microui/3.3.0/
https://repository.microej.com/modules/ej/api/drawing/1.0.4/
https://repository.microej.com/modules/ej/api/microui/3.2.0/
https://repository.microej.com/modules/ej/api/drawing/1.0.4/
https://repository.microej.com/modules/ej/api/microui/3.1.1/
https://repository.microej.com/modules/ej/api/drawing/1.0.4/
https://repository.microej.com/modules/ej/api/microui/3.1.0/
https://repository.microej.com/modules/ej/api/drawing/1.0.3/
https://repository.microej.com/modules/ej/api/microui/3.0.3/
https://repository.microej.com/modules/ej/api/drawing/1.0.2/
https://repository.microej.com/modules/ej/api/microui/3.0.1/
https://repository.microej.com/modules/ej/api/drawing/1.0.0/
https://repository.microej.com/modules/ej/api/microui/3.0.0/
https://repository.microej.com/modules/ej/api/drawing/1.0.0/
https://repository.microej.com/modules/ej/api/microui/2.4.0/
https://repository.microej.com/modules/ej/api/microui/2.3.0/
https://repository.microej.com/modules/ej/api/microui/2.2.0/
https://repository.microej.com/modules/ej/api/microui/2.0.6/

MicroEJ Documentation,

Abstraction Layer Interface

The following sections briefly describe Abstraction Layer interface changes (the functions the
BSP has to implement). For more details, refer to theMigration Guide.

Note: In addition of these functions, some Cmodules must be added to the BSP, see C Modules.

Display

UI Pack Range Changes
[14.0.0-14.4.2] Signature of LLUI_DISPLAY_IMPL_flush()

changed.
[13.0.0-13.7.2] UI3 format: implement LLUI_DISPLAY_impl.h :

• void LLUI_DISPLAY_IMPL_initialize([...
]);

• void LLUI_DISPLAY_IMPL_binarySemaphoreTake([.
..]);

• void LLUI_DISPLAY_IMPL_binarySemaphoreGive([.
..]);

• uint8_t* LLUI_DISPLAY_IMPL_flush([...
]);

[10.0.0-12.1.5] Remove:
• int32_t LLDISPLAY_IMPL_getWorkingBufferStartAddress([.
..]);

• int32_t LLDISPLAY_IMPL_getWorkingBufferEndAddress([.
..]);

[8.0.0-9.4.1] Merge in LLDISPLAY_impl.h :
• LLDISPLAY_SWITCH_impl.h
• LLDISPLAY_COPY_impl.h
• LLDISPLAY_DIRECT_impl.h

[6.0.0-7.4.7] UI2 format: implement one of header file:
• LLDISPLAY_SWITCH_impl.h
• LLDISPLAY_COPY_impl.h
• LLDISPLAY_DIRECT_impl.h

3.6. VEE Porting Guide 1050

MicroEJ Documentation,

Input

UI Pack Range Changes
[13.0.0-14.4.2] UI3 format: implement LLUI_INPUT_impl.h :

• void LLUI_INPUT_IMPL_initialize([...]);
• jint LLUI_INPUT_IMPL_getInitialStateValue([.
..]);

• void LLUI_INPUT_IMPL_enterCriticalSection([.
..]);

• void LLUI_INPUT_IMPL_leaveCriticalSection([.
..]);

[6.0.0-12.1.5] UI2 format: implement LLINPUT_impl.h
• void LLINPUT_IMPL_initialize([...]);
• int32_t LLINPUT_IMPL_getInitialStateValue([.
..]);

• void LLINPUT_IMPL_enterCriticalSection([.
..]);

• void LLINPUT_IMPL_leaveCriticalSection([.
..]);

LED

UI Pack Range Changes
[13.0.0-14.4.2] UI3 format: implement LLUI_LED_impl.h :

• jint LLUI_LED_IMPL_initialize([...]);
• jint LLUI_LED_IMPL_getIntensity([...]);
• void LLUI_LED_IMPL_setIntensity([...]);

[6.0.0-12.1.5] UI2 format: implement LLLEDS_impl.h
• int32_t LLLEDS_IMPL_initialize([...]);
• int32_t LLLEDS_IMPL_getIntensity([...]);
• void LLLEDS_IMPL_setIntensity([...]);

Front Panel API

The Front Panel project must fetch the widgets compatible with the MicroEJ UI Pack fetched in
the VEE Port configuration project:

• Before MicroEJ UI Pack 12.0.0 , the Front Panel project must depend on the classpath variable
FRONTPANEL_WIDGETS_HOME .

• For the UI Packs 12.x.x , the Front Panel project must fetch the module ej.tool.front-
panel.widget-microui.

• Since MicroEJ UI Pack 13.0.0 , the Front Panel project must depend on the module com.mi-
croej.pack.ui.ui-pack(frontpanel) (the module version is the MicroEJ Generic UI Pack version,
that is always aligned with the MicroEJ UI Packs specific for MCUs).

3.6. VEE Porting Guide 1051

https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/ej/tool/frontpanel/widget-microui/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/ej/tool/frontpanel/widget-microui/
https://repository.microej.com/modules/com/microej/pack/ui/ui-pack/
https://repository.microej.com/modules/com/microej/pack/ui/ui-pack/

MicroEJ Documentation,

UI Pack Range Module Version
13.0.0 and above com.microej.pack.ui.ui-pack(frontpanel) Identical to the UI Pack
[12.0.0-12.1.5] ej.tool.frontpanel.widget-microui 1.0.0
[6.0.0-11.2.0] n/a n/a

The widget module ej.tool.frontpanel.widget provides some widgets compatible
with the Graphics Engine. This module fetches by transitivity the module com.mi-
croej.pack.ui.ui-pack(frontpanel). When the Front Panel project does not require/use the
latest Front Panel UI API, it can only fetch the widget module.

Note: This module has beenmoved from the MicroEJ Central Repository to the MicroEJ Developer Repository.

Widget Module Range UI Pack Compatibility Range Repository
5.3.1 [14.4.1-14.4.2] Developer
[5.1.0-5.2.0] [14.3.1-14.3.3] Developer
5.0.0 14.3.0 Developer
[4.0.0-4.0.2] [14.0.0-14.2.0] Developer
3.0.0 [13.5.1-10-13.7.2] Developer
2.2.0 [13.1.0-13.7.2] Developer
[2.1.0-2.1.1] [13.1.0-13.7.2] Central
2.0.0 [13.0.0-13.7.2] Central
1.0.1 [12.0.0-12.1.5] Developer

To use the latest functionalities provided by the UI Pack 13.0.0 and higher, the Front Panel
project must depend on the same version of the UI Pack as the VEE Port configuration project.
However, if theFrontPanel projectdoesnot require/use the latest FrontPanelUI API, it can fetch
a version of the UI Pack older than the version fetched in the VEE Port configuration project.

Image Generator API

Since MicroEJ UI Pack 13.0.0 , the Image Generator extension project must depend onmodule
com.microej.pack.ui.ui-pack(imagegenerator). The module version is the MicroEJ Generic UI
Pack version, that is always aligned with the MicroEJ UI Packs specific for MCUs.

UI Pack Range Module Version
13.0.0 and above com.microej.pack.ui.ui-pack(imagegenerator) Identical to the UI Pack

Note: Before MicroEJ UI Pack 13.0.0 , the Image Generator extension project must depend on classpath variable
IMAGE-GENERATOR-x.x .

3.6. VEE Porting Guide 1052

https://repository.microej.com/modules/com/microej/pack/ui/ui-pack/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/ej/tool/frontpanel/widget-microui/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/ej/tool/frontpanel/widget/
https://repository.microej.com/modules/com/microej/pack/ui/ui-pack/
https://repository.microej.com/modules/com/microej/pack/ui/ui-pack/
https://repository.microej.com/modules/ej/tool/frontpanel/widget/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/ej/tool/frontpanel/widget/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/ej/tool/frontpanel/widget/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/ej/tool/frontpanel/widget/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/ej/tool/frontpanel/widget/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/ej/tool/frontpanel/widget/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/ej/tool/frontpanel/widget/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/ej/tool/frontpanel/widget/
https://repository.microej.com/modules/ej/tool/frontpanel/widget/
https://repository.microej.com/modules/ej/tool/frontpanel/widget/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/ej/tool/frontpanel/widget/
https://repository.microej.com/modules/com/microej/pack/ui/ui-pack/
https://repository.microej.com/modules/com/microej/pack/ui/ui-pack/

MicroEJ Documentation,

C Modules

MicroUI C Module

The MicroUI C module com.microej.clibrary.llimpl(microui) is available on MicroEJ Central
Repository, see C Modules.

Note: Since version 14.1.1 of UI Pack, UI Pack and MicroUI C Module have the same version.

The following table describes the compatibility versions between theMicroEJ UI Packs and the
Cmodules:

UI Pack MicroUI C Module Comment
14.1.1 and above Identical to the UI Pack
[14.0.0-14.0.3] [4.0.0-4.1.0] Buffer refresh strategies
[13.7.0-13.7.2] [3.1.0-3.1.1] Free image resources
[13.5.0-13.6.2] 3.0.0 Multiple Graphics Context output formats
[13.3.0-13.4.1] [2.0.0-2.0.1] Copy and draw image
[13.1.0-13.2.0] [1.1.0-1.1.1] Image heap, events queue, drawing limits
[13.0.0-13.0.7] 1.0.3

Extended C Modules

Some C modules extend the main MicroUI C module. They override the default implementa-
tion to use a GPU to perform some drawings. Contrary to the main MicroUI C module, they are
optional: when they are not available, the default implementation of drawings is used. The
default implementation uses the Graphics Engine software algorithms.

STM32 Chrom-ART

The DMA2D Cmodule targets the STM32 CPU that provides the Chrom-ART accelerator.

Note: Since version 6.0.0, this module has been moved from the MicroEJ DMA2D_Central Repository to the Mi-
croEJ DMA2D_Developer Repository.

The following table describes the version compatibility between the MicroEJ UI Packs and the
Cmodules:

UI Pack Chrom-ART MicroUI C Module Comment
[14.1.1-14.4.2] [7.0.0-7.0.1] Identical to the UI Pack Font extensibility
[14.0.1-14.0.3] [5.0.1-6.0.0] [4.0.1-4.1.0] C modules harmonization
14.0.0 5.0.0 4.0.0 Buffer refresh strategies
[13.7.0-13.7.2] 4.1.0 [3.1.0-3.1.1] Free image resources
[13.5.1-13.6.2] 4.0.0 3.0.0 Multiple Graphics Context output formats
[13.3.0-13.4.1] [3.0.0-3.0.2] [2.0.0-2.0.1] Copy and draw image
[13.1.0-13.2.0] [2.0.0-2.1.0] [1.1.0-1.1.1] Drawing limits
[13.0.0-13.0.7] [1.0.6-1.0.8] 1.0.3

Vivante VGLite

3.6. VEE Porting Guide 1053

https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui/
https://repository.microej.com/modules/com/microej/clibrary/llimpl/display-dma2d/
https://forge.microej.com/ui/native/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-dma2d/

MicroEJ Documentation,

The VGLite Cmodule targets the NXP CPU that provides the Vivante VGLite accelerator.

The following table describes the version compatibility between the MicroEJ UI Packs and the
Cmodules:

UI Pack VGLite MicroUI C Module Comment
[14.1.1-14.4.2] [10.0.0-10.0.1] Identical to the UI Pack Font extensibility
[14.0.1-14.0.3] 9.0.0 4.1.0 VG Pack extensibility
[14.0.1-14.0.3] 8.0.1 4.0.1 C modules harmonization
14.0.0 8.0.0 4.0.0 Buffer refresh strategies
[13.7.0-13.7.2] 7.2.0 [3.1.0-3.1.1] Free image resources
[13.5.1-13.6.2] [6.0.0-7.1.0] 3.0.0 Multiple Graphics Context output formats
[13.3.0-13.4.1] [3.0.0-5.0.1] [2.0.0-2.0.1]

The following table describes the version compatibility between the C module and the VGLite
libraries (officially supported):

C Module Range VGLite Libraries Range
[8.0.0-10.0.0] 3.0.15_rev7
[7.1.0-7.2.0] 3.0.15_rev4 and 3.0.15_rev7
[4.0.0-7.0.0] 3.0.15_rev4
[2.0.0-3.0.0] 3.0.11_rev3
1.0.0 3.0.4_rev2 and 3.0.4_rev4

Think Silicon NemaGFX

The NemaGFX Cmodule targets the CPU that provides the NemaGFX accelerator.

The following table describes the version compatibility between the MicroEJ UI Packs and the
Cmodules:

UI Pack NemaGFX MicroUI C Module Comment
[14.1.1-14.4.2] [4.0.0-4.0.1] Identical to the UI Pack Font extensibility
[14.0.1-14.0.3] 3.0.0 4.1.0 VG Pack extensibility
[14.0.1-14.0.3] 2.0.1 4.0.1 C modules harmonization
14.0.0 2.0.0 4.0.0 Buffer refresh strategies
13.7.2 1.2.0 [3.1.0-3.1.1] Update of configuration file
13.7.0 1.1.0 [3.1.0-3.1.1] Free image resources
[13.5.1-13.6.2] 1.0.0

The following table describes the version compatibility between the C module and the
NemaGFX libraries (officially supported):

C Module Range NemaGFX Libraries Range
[4.0.0-4.0.1] [1.4.8-1.4.11]
[1.0.0-3.0.0] 1.4.8

3.6. VEE Porting Guide 1054

MicroEJ Documentation,

Changelog

[14.4.2] - 2025-05-20

VG Pack

Fixed

• Fix the VEE Port build with the UI Pack 14.4 and the VG Pack 1.7 (since UI Pack 14.4.1).

FrontPanel

Fixed

• Fix the use of the SDK5 option “Resolve in workspace” (since UI Pack 14.4.1).

CModule DMA2D

Fixed

• Fix the implementation of UI_DRAWING_DMA2D_copyImage() to use the right software
algorithm.

CModule VGLite

Fixed

• Fix the implementation of UI_DRAWING_VGLITE_copyImage() to use the right software
algorithm.

• Fix the premultiplication of the format ARGB1555: it is useless.

CModule NemaGFX

Fixed

• Fix the rendering of a RGB565 image with a transparent opacity.

• Fix the implementation of UI_DRAWING_NEMA_copyImage() to use the right software
algorithm.

[14.4.1] - 2025-03-13

Known Issue

• This version is not compatible with the VG Pack (any versions):

– Reason: A VEE Port with this UI Pack and a VG Pack cannot be built:

3.6. VEE Porting Guide 1055

MicroEJ Documentation,

[java] microvg/ui-pack:
[java] C:\[...]-configuration\
→˓target~\scripts\rip\build\autoConfiguration-microvg.xml:43: VG Pack requires␣
→˓the UI Pack 14.1.0 or higher and the platform fetches the UI Pack ${ui.packVersion}.

– Workaround: None, use the UI Pack 14.3.3 instead.

MicroUI

Changed

• Improve the trace events (SystemView description file SYSVIEW_MicroUI.txt is updated).

• Change some log identifiers to be backward compatible with the UI Pack since version 12.1.5.

FrontPanel

Added

• Add a button to start/stop the recording of the drawings in the Flush Visualizer.

• Add the class Log that provides utility methods to log the drawings.

• Add MicroUIImage.getIdentifier() that identifies an image (useful for the logs).

• Add the same logs as embedded side (all drawings, out of clip, drawn regions, etc.).

Changed

• Improve the content of the tree of the drawing operations in the Flush Visualizer.

• Show the time between two frames in the Flush Visualizer.

• Use the core property core.trace.enabled to enable the Flush Visualizer.

• Donot draw if the clip is empty (align behavior between the simulator and the embedded side).

Fixed

• Fix the execution of the Front Panel in the HIL classpath (VEE Port with UI and applicationwith-
out UI; since UI Pack 14.3.0).

• Fix the use of the logs in the mode s3.board.compliant (Use target characteristics).

Removed

• Remove the use of the property ej.fp.display.flushVisualizer (replaced by core.trace.enabled
).

CModule MicroUI

Added

• Add some logs: out of clip, drawn region, etc.

Changed

• Gather all logs identifiers and functions in ui_log.c .

• Log all drawing parameters.

3.6. VEE Porting Guide 1056

MicroEJ Documentation,

Removed

• Remove some logs of the BRSmanagement.

[14.3.3] - 2025-02-18

FrontPanel

Fixed

• Fix the five issues of the UI Pack 14.3.2 (see below).

[14.3.2] - 2025-02-10

FrontPanel

Fixed

• Fix theperformance issueof LLUIDisplay.convertRegion() whenusing theFrontPanel Frame-
work 1.3.0.

Known Issues

Warning: The following issues concern the UI Packs 14.3.0 and 14.3.2.

Front Panel

• On non-rectangular displays (see Display Widget), the Front Panel widget display’s filter some-
times disappears partially, causing some visual glitches around the display.

• The rendering of Front Panel widgets other than the display is truncated: the right and bottom
lines (1 pixel thick) aremissing. This is caused by thewidget rendering clip being too small. As a
workaround, you can increase the size of each widget image with empty lines on the right and
bottom sides.

• With a zoom other than 1:1, some Front Panel widgets other than the display may not be ren-
dered, or may be truncated.

Flush Visualizer

• A native Concurrent Exceptionmay be thrownduring application animations. This is due to the
drawing storage not being synchronized with the Flush Visualizer text file dump.

• On non-rectangular displays (see Display Widget), the Front Panel widget display’s filter some-
times disappears partially, causing some visual glitches around the display in the screenshot.

3.6. VEE Porting Guide 1057

MicroEJ Documentation,

[14.3.0] - 2025-01-24

FrontPanel

Added

• Add the class ej.fp.widget.display.Rectangle (extracted from ej.tool.frontpanel#widget#4.
0.2).

• Add all MicroUI and Drawing algorithms in the Flush Visualizer traces.

• Add a toolbar with various options (zoom, etc.).

• Add a statusbar with various information (current zoom, coordinates, etc.).

• Add the ability to resize and/or scroll the Front Panel.

Changed

• Speed up the drawing of images whose format is identical to the display, without transparency
or transformation.

• Display a tree of regions and drawings in the Flush Visualizer traces.

• Use the Front Panel Framework 1.3.0 to implement LLUIDisplay.convertRegion() .

ImageGenerator

Fixed

• Fix the usage of an incompatible or corrupted cache (drop it).

FontGenerator

Fixed

• Fix the usage of an incompatible or corrupted cache (drop it).

[14.2.0] - 2024-11-18

ImageGenerator

Added

• Add the options grayscale and alpha for the output formats A8 , A4 , A2 , A1 and A8_RLE
.

– grayscale means black pixels are encoded as fully opaque pixels and white pixels as fully transparent
pixels.

– alpha only encodes the opacity element like the MicroUI OutputFormat#A8 .

– No option defaults to grayscale for backward compatibility.

– An invalid option prevents the encoding of the image.

Changed

• Make the cache faster.

3.6. VEE Porting Guide 1058

MicroEJ Documentation,

FontGenerator

Added

• Add the support of .fnt files.

Changed

• Make the cache faster.

Fixed

• Fix the computing of fonts heap usage when using cache.

[13.7.3] - 2024-10-18

FontGenerator

Fixed

• Fix the management of the kernel’s fonts on the simulator (mode Multi-Sandbox).

[14.1.1] - 2024-10-17

MicroUI

• Implement MicroUI API 3.6.0 (new Font management).

Added

• Add some SystemView logs to trace the newMicroUI 3.6 APIs.

Drawing

Fixed

• Fix the invalid StringIndexOutOfBoundsException whendrawing the last characterof a string
using TransformPainter.drawScaledSubstringBilinear() .

FrontPanel

Added

• Add the classes, interfaces, enumeration, registration and utility methods to implement the
drawing of strings and the handling of custom fonts.

• Add LLUIDisplay.getByteOrder() to retrieve the embedded VEE Port’s memory endianness.

• Add the API LLUIDisplay.isImageClosed() to replace the deprecated API LLUIDisplay.
isClosed() .

Changed

• Deprecate the API LLUIDisplay.isClosed() : use LLUIDisplay.isImageClosed() instead.

3.6. VEE Porting Guide 1059

https://repository.microej.com/modules/ej/api/microui/3.6.0/

MicroEJ Documentation,

ImageGenerator

Changed

• Speed-up the generation when the cache is used.

FontGenerator

Changed

• Speed-up the generation when the cache is used.

Fixed

• Fix the management of the kernel’s fonts on the simulator (mode Multi-Sandbox).

LLAPIs

Added

• Add the LLAPI (implemented by the MicroUI C Module):

– LLUI_PAINTER_IMPL_drawString()

– LLUI_PAINTER_IMPL_stringWidth()

– LLUI_PAINTER_IMPL_initializeRenderableStringSNIContext()

– LLUI_PAINTER_IMPL_drawRenderableString()

– LLDW_PAINTER_IMPL_drawScaledStringBilinear()

– LLDW_PAINTER_IMPL_drawScaledRenderableStringBilinear()

– LLDW_PAINTER_IMPL_drawCharWithRotationBilinear()

– LLDW_PAINTER_IMPL_drawCharWithRotationNearestNeighbor()

• Add the software drawing APIs (implemented by the Graphics Engine):

– UI_DRAWING_SOFT_drawString()

– UI_DRAWING_SOFT_drawRenderableString()

– UI_DRAWING_SOFT_stringWidth()

– UI_DRAWING_SOFT_initializeRenderableStringSNIContext()

– UI_DRAWING_SOFT_drawChar()

– DW_DRAWING_SOFT_drawScaledStringBilinear()

– DW_DRAWING_SOFT_drawScaledRenderableStringBilinear()

– DW_DRAWING_SOFT_drawCharWithRotationBilinear()

– DW_DRAWING_SOFT_drawCharWithRotationNearestNeighbor()

• Add the enumeration MICROUI_FontFormat that lists the MicroUI custom font formats.

• Add the structure MICROUI_Font that represents a MicroUI Font (Font.getSNIContext()).

• Add the structure MICROUI_RenderableString that represents a MicroUI RenderableString
(RenderableString.getSNIContext()).

3.6. VEE Porting Guide 1060

MicroEJ Documentation,

• Add the API LLUI_DISPLAY_isImageClosed() to replace the deprecated API LLUI_DIS-
PLAY_isClosed() .

Changed

• Deprecate the API LLUI_DISPLAY_isClosed() : use LLUI_DISPLAY_isImageClosed()
instead.

CModule MicroUI

Added

• Add ui_configuration.h that provides macros to configure some low level APIs.

• Add ui_font_drawing.h that provides functions to handle custom fonts.

• Add the option UI_FEATURE_FONT_CUSTOM_FORMATS to enable the manage-
ment of custom fonts.

• Add the option UI_FEATURE_ALLOCATOR to replace the Graphics Engine’s image heap
allocator by a bestfit allocator.

• Add the implementation of the following LLAPI (plus their redirections, default implementa-
tions and logs):

– LLUI_PAINTER_IMPL_drawString()

– LLUI_PAINTER_IMPL_stringWidth()

– LLUI_PAINTER_IMPL_initializeRenderableStringSNIContext()

– LLUI_PAINTER_IMPL_drawRenderableString()

– LLDW_PAINTER_IMPL_drawScaledStringBilinear()

– LLDW_PAINTER_IMPL_drawScaledRenderableStringBilinear()

– LLDW_PAINTER_IMPL_drawCharWithRotationBilinear()

– LLDW_PAINTER_IMPL_drawCharWithRotationNearestNeighbor()

• Add the handling of custom fonts (ui_font_drawing.c).

Changed

• Gather all C Module configurations in one file: ui_configuration.h .

• Harmonize the naming convention of all existing options: prefix UI_ .

• Replace the UI event decoder options:

– LLUI_DEBUG_TRACE by UI_DEBUG_PRINT

– MICROUIEVENTDECODER_ENABLED by UI_FEATURE_EVENT_DECODER

– MICROUIEVENTDECODER_EVENTGEN_COMMAND by UI_EVENTDE-
CODER_EVENTGEN_COMMAND

– MICROUIEVENTDECODER_EVENTGEN_BUTTONS by UI_EVENTDE-
CODER_EVENTGEN_BUTTONS

– MICROUIEVENTDECODER_EVENTGEN_TOUCH by UI_EVENTDECODER_EVENT-
GEN_TOUCH

• Replace the UI display BRS options:

3.6. VEE Porting Guide 1061

MicroEJ Documentation,

– UI_DISPLAY_BRS by UI_FEATURE_BRS

– UI_DISPLAY_BRS_LEGACY by UI_FEATURE_BRS_LEGACY

– UI_DISPLAY_BRS_SINGLE by UI_FEATURE_BRS_SINGLE

– UI_DISPLAY_BRS_PREDRAW by UI_FEATURE_BRS_PREDRAW

– UI_DISPLAY_BRS_DRAWING_BUFFER_COUNT by UI_FEATURE_BRS_DRAW-
ING_BUFFER_COUNT

– UI_DISPLAY_BRS_FLUSH_SINGLE_RECTANGLE by UI_FEA-
TURE_BRS_FLUSH_SINGLE_RECTANGLE

• Move the option UI_RECT_COLLECTION_MAX_LENGTH to ui_configuration.h .

• Replace the option LLUI_GC_SUPPORTED_FORMATS by UI_GC_SUP-
PORTED_FORMATS .

• Replace the option LLUI_IMAGE_CUSTOM_FORMATS by UI_FEATURE_IM-
AGE_CUSTOM_FORMATS .

Removed

• Remove microui_event_decoder_conf.h : import ui_configuration.h instead.

• Remove ui_display_brs_configuration.h : import ui_configuration.h instead.

CModule DMA2D

Changed

• Make this C Module compatible with the MicroUI C Module 14.1.1.

CModule VGLite

Changed

• Make this C Module compatible with the MicroUI C Module 14.1.1.

CModule NemaGFX

Changed

• Make this C Module compatible with the MicroUI C Module 14.1.1.

[14.0.3] - 2024-10-01

MicroUI

Fixed

• Fix the IllegalArgumentException being caught and not logged in Displayable.
handleEvent() .

• Fix unexpected exception when killing a feature while MicroUI is not yet started.

• Fix the permissions: getName() and getActions() returned null .

3.6. VEE Porting Guide 1062

MicroEJ Documentation,

• Fix the log when calling Image.getImage() .

FrontPanel

Fixed

• A VEE port’s buffered image provider can be ignored (which prevents opening buffered images
in a format other than the display format).

LLAPIs

Changed

• Check the LLUI_DISPLAY_SInitData values set by the BSP (LLUI_DIS-
PLAY_IMPL_initialize()) before initializing the Graphics Engine.

[14.0.2] - 2024-07-26

MicroUI

Fixed

• Fix the rendering of anti-aliased arcs for some compilers (rounding issue).

• Fix a synchronization issue that may cause invalid parameters to be sent in the flush request.

Front Panel

Fixed

• Fix the infinite waiting on a display event when killing a feature.

[14.0.1] - 2024-04-09

MicroUI

• Implement MicroUI API 3.5.0.

Fixed

• Fix the infinite waiting on a display event when killing a feature.

• Fix the dump of the events queue when it is full.

3.6. VEE Porting Guide 1063

https://repository.microej.com/modules/ej/api/microui/3.5.0/

MicroEJ Documentation,

Front Panel

Added

• Add LLUIDisplayImpl.getCurrentBackBuffer() (replace LLUIDisplayImpl.
getCurrentDrawingBuffer()).

Changed

• Homogenize the notions of back and front buffers.

• Set LLUIDisplayImpl.getCurrentDrawingBuffer() as deprecated: implement
LLUIDisplayImpl.getCurrentBackBuffer() instead.

LLAPIs

Changed

• Homogenize the notions of back and front buffers: LLUI_DISPLAY_setBackBuffer() re-
places LLUI_DISPLAY_setDrawingBuffer() .

CModule MicroUI

• New version: C Module MicroUI 4.0.1.

Changed

• Homogenize the notions of back and front buffers.

Fixed

• Disable the clip before calling UI_DISPLAY_BRS_restore() .

CModule DMA2D

• New version: C Module DMA2D 5.0.1.

Changed

• Homogenize the notions of back and front buffers.

CModule VGLite

• New version: C Module VGLite 8.0.1.

Changed

• Homogenize the notions of back and front buffers.

3.6. VEE Porting Guide 1064

https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui/4.0.1/
https://repository.microej.com/modules/com/microej/clibrary/llimpl/display-dma2d/5.0.1/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/8.0.1/

MicroEJ Documentation,

C Module NemaGFX

• New version: C Module NemaGFX 2.0.1.

Changed

• Homogenize the notions of back and front buffers.

[14.0.0] - 2024-02-14

MicroUI

• Implement MicroUI API 3.5.0.

Added

• Add GraphicsContext.notifyDrawingRegion() that allows the notification of a future altered
region.

• Add Format.getSNIContext() and OutputFormat.getSNIContext() to identify the format
in the native world.

Changed

• Change the semanticof thecontentof thebackbufferaftera flush: thepast is not systematically
restored.

• Clarify themessage when a generic event generator specified in the VEE Port is not available in
the application classpath.

Fixed

• Fix the drawing of thick faded circle arcs.

• Fix some linker issues on some Architectures:

– Fix invalid linker issues (when MicroUI is not used or if another allocator is used).

– Fix custom LCD format on VEE Port with ASLRmode (example: X86 with -pie option).

– Remove some absolute symbols.

– Replace sections .text by .rodata .

Front Panel

Added

• Add new APIs to manage several display buffer policies and refresh strategies (BRS):

– Add LLUIDisplay.getSource() .

– Add LLUIDisplayImpl.newDrawingRegion() .

– Add LLUIDisplayImpl.getCurrentDrawingBuffer() .

– Add MicroUIImage.requestReading()

Changed

• Remove force parameter in LLUIDisplay.requestFlush()

• Remove all parameters in LLUIDisplayImpl.flush() and LLUIDisplayImpl.waitFlush()

3.6. VEE Porting Guide 1065

https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-nemagfx/2.0.1/
https://repository.microej.com/modules/ej/api/microui/3.5.0/

MicroEJ Documentation,

• Extract MicroUIImageFormat and MicroUIImage and MicroUIGraphicsContext from
LLUIPainter .

Fixed

• Fix clip and drawn area computing in flush visualizer.

Removed

• Remove MicroUIGraphicsContext.setDrawingLimits() .

LLAPIs

Added

• Add the possibility to log external events in the MicroUI event group.

• Add some functions in LLUI_DISPLAY.h and LLUI_DISPLAY_impl.h to manage the
display buffer refresh strategy (BRS):

– LLUI_DISPLAY_getSourceImage() .

– LLUI_DISPLAY_getImageBPP() and LLUI_DISPLAY_getFormatBPP() .

– LLUI_DISPLAY_IMPL_refresh() .

– LLUI_DISPLAY_IMPL_newDrawingRegion() .

– LLUI_DISPLAY_setDrawingBuffer() : it replaces LLUI_DISPLAY_flushDone() .

Changed

• Change the signature of the function LLUI_DISPLAY_requestFlush() : remove the boolean
force (not backward compatible).

• Change the signature of the function LLUI_DISPLAY_IMPL_flush() : give a list of rectan-
gles and a flush identifier.

Removed

• Remove the function LLUI_DISPLAY_flushDone() : replaced by LLUI_DISPLAY_set-
DrawingBuffer() .

• Remove the function LLUI_DISPLAY_setDrawingLimits() .

• Remove the functions LLUI_DISPLAY_logDrawingStart() and LLUI_DISPLAY_log-
DrawingEnd() : use standard logger instead.

CModule MicroUI

• New version: C Module MicroUI 4.0.0.

Added

• Add the possibility to log external events in the MicroUI event group.

• Add the buffer refresh strategies (BRS) Legacy, Single and Predraw.

• Add some utility functions to manipulate rectangles and collections of rectangles.

3.6. VEE Porting Guide 1066

https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui/4.0.0/

MicroEJ Documentation,

C Module DMA2D

• New version: C Module DMA2D 5.0.0.

Added

• Add the compatibility with UI Pack 14.0.

• Add the function UI_DRAWING_DMA2D_memcpy_callback() to be notified about the
end of the memory copy.

• Add the support of the display Buffer Refresh Strategies (BRS) PREDRAW and SINGLE .

• Add a configuration version in ui_drawing_dma2d_configuration (1).

CModule VGLite

• New version: C Module VGLite 8.0.0.

• Compatible with VGLite library 3.0.15_rev7 .

Added

• Add the compatibility with UI Pack 14.0.

Removed

• Remove the compatibility with the VGLite library 3.0.15_rev4 .

CModule NemaGFX

• New version: C Module NemaGFX 2.0.0.

Added

• Add the compatibility with UI Pack 14.0.

Fixed

• Fix nema_draw_line() y1 argument.

[13.7.2] - 2023-12-21

MicroUI

Fixed

• Fix the drawing of thick faded circle arcs.

3.6. VEE Porting Guide 1067

https://repository.microej.com/modules/com/microej/clibrary/llimpl/display-dma2d/5.0.0/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/8.0.0/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-nemagfx/2.0.0/

MicroEJ Documentation,

FontGenerator

Fixed

• Fix the management of the feature’s fonts on the simulator (mode Multi-Sandbox).

CModule NemaGFX

• New version: C Module NemaGFX 1.2.0.

Changed

• Disable the rendering of thick faded line with the GPU by default (see option EN-
ABLE_FADED_LINES).

• Increase the version of the configuration file (2).

Fixed

• Fix the drawing status when a thick line is out-of-clip (results in an infinite loop).

[13.7.0] - 2023-10-23

MicroUI

• Implement MicroUI API 3.4.0.

Added

• Add the pre-multiplied image formats ARGB8888_PRE , ARGB1555_PRE and
ARGB4444_PRE .

• Add the possibility to free third-party resources associated with images.

• Add some traces when debugging the SNI resources.

Front Panel

Added

• Add the pre-multiplied image formats ARGB8888_PRE , ARGB1555_PRE and
ARGB4444_PRE .

Image Generator

Changed

• Do not enable the cache when generating external resources.

Fixed

• Do not use cached images when there is no .images.list file.

• Do not use cached images when a VEE Port property has changed.

• Fix the handling of backslashes in list files.

• Remove debug log in script.

3.6. VEE Porting Guide 1068

https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-nemagfx/1.2.0/
https://repository.microej.com/modules/ej/api/microui/3.4.0/

MicroEJ Documentation,

Font Generator

Changed

• Do not enable the cache when generating external resources.

Fixed

• Do not use cached fonts when a VEE Port property has changed.

• Fix the handling of backslashes in list files.

CModule MicroUI

• New version: C Module MicroUI 3.1.1.

Added

• Add the compatibility with UI Pack 13.7.

CModule DMA2D

• New version: C Module DMA2D 4.1.0.

Added

• Add the compatibility with UI Pack 13.7.

CModule VGLite

• New version: C Module VGLite 7.2.0.

• Compatible with VGLite libraries 3.0.15_rev4 and 3.0.15_rev7 .

Added

• Add the pre-mulitplied image formats: ARGB8888_PRE , ARGB4444_PRE and
ARGB1555_PRE .

• Add UI_VGLITE_need_to_premultiply() to find out whether a color must be
pre-multiplied according to the GPU’s capabilities.

Fixed

• Fix the use of power quad when not available.

CModule NemaGFX

• New version: C Module NemaGFX 1.1.0.

Added

• Add the compatibility with UI Pack 13.7.

3.6. VEE Porting Guide 1069

https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui/3.1.1/
https://repository.microej.com/modules/com/microej/clibrary/llimpl/display-dma2d/4.1.0/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/7.2.0/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-nemagfx/1.1.0/

MicroEJ Documentation,

[13.6.2] - 2023-09-20

Image Generator

Fixed

• Fix handling zip/jar file entries in the cache.

Font Generator

Fixed

• Fix handling zip/jar file entries in the cache.

CModule VGLite

• New version: C Module VGLite 7.1.0.

• Compatible with VGLite libraries 3.0.15_rev4 and 3.0.15_rev7 .

Added

• Add the compatibility with VGLite 3.0.15_rev7 (add a .patch file).

Fixed

• Fix the use of the define VG_BLIT_WORKAROUND (useless).

• Fix the GPU deactivation when a drawing is not performed for any reason.

• VGLite 3.0.15_rev4 : Fix the bounding box of the vg_lite_blit() given to theMicroEJGraphics
Engine when the define VG_BLIT_WORKAROUND is set (the function vg_lite_blit() is
not used by default).

[13.6.1] - 2023-07-26

MicroUI

Fixed

• Fix creating a BufferedImage when traces are enabled.

[13.6.0] - 2023-07-17

MicroUI

• Implement MicroUI API 3.3.0.

Added

• Add a flag stating that an undefined character was drawn.

Fixed

3.6. VEE Porting Guide 1070

https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/7.1.0/
https://repository.microej.com/modules/ej/api/microui/3.3.0/

MicroEJ Documentation,

• Fix the Java compiler version used to build the MicroUI extension class to be compatible with
the JDK 11.

• Fix the drawing of faded arcs and ellipses.

Front Panel

Added

• Add the drawing log flag DRAWING_LOG_MISSING_CHARACTER , stating that an un-
defined character was drawn.

Image Generator

Changed

• Use a cache to avoid generating images for each launch.

Font Generator

Changed

• Use a cache to avoid generating fonts for each launch.

CModule VGLite

• New version: C Module VGLite 7.0.0.

• Compatible with VGLite library 3.0.15_rev4 .

• Several additions, changes and fixes are available. Refer to theCModule VGLite 7.0.0 changelog
for more information.

• TheCModule has been divided in twoparts to extract theNXP i.MXRT500 specific support from
the generic C Module for VGLite:

– NXP i.MX RT500 Display management: C Module RT500 7.0.0

– Drawing over VGLite: C Module VGLite 7.0.0

CModule NemaGFX

• New CModule: C Module NemaGFX 1.0.0.

• Compatible with UI Pack 13.5.x and 13.6.0.

3.6. VEE Porting Guide 1071

https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/7.0.0/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/7.0.0/
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus/i-mx-rt500-crossover-mcu-with-arm-cortex-m33-dsp-and-gpu-cores:i.MX-RT500
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus/i-mx-rt500-crossover-mcu-with-arm-cortex-m33-dsp-and-gpu-cores:i.MX-RT500
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-mimxrt595-evk/7.0.0
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/7.0.0/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-nemagfx/1.0.0/

MicroEJ Documentation,

[13.5.1] - 2023-06-08

MicroUI

Fixed

• Fix thecompatibilitywithMicroEJArchitecture8 (SOARerrorwith internalMicroUI systemprop-
erties file).

Front Panel

Fixed

• Fix consecutive calls to LLUIDisplay.newMicroUIImage() throwing an exception.

• Allow overriding the display drawer with a service or in a Front Panel widget.

CModule VGLite

• New version: C Module VGLite 6.0.1.

• Compatible with VGLite library 3.0.15_rev4 .

Fixed

• Fix performing drawings when the clip is disabled.

[13.5.0] - 2023-05-03

MicroUI

• Implement MicroUI API 3.2.0.

Added

• Addmulti BufferedImage image formats management.

• Add custom RAM Image image formats management.

• Add drawing logs flags management.

Fixed

• Fix ellipse fading.

Drawing

Fixed

• Fix the position of arc caps.

3.6. VEE Porting Guide 1072

https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/6.0.1/
https://repository.microej.com/modules/ej/api/microui/3.2.0/

MicroEJ Documentation,

Front Panel

Added

• Add a service to decode immutable images with a custom format.

• Add a service to create mutable images with a custom format.

• Add a service to draw into mutable images with a format different than the display format.

• Add somemethods to manage the MicroUI Drawing Log flags.

• Add somemethods to change the MicroUI clip and colors.

Changed

• Merge DWDrawing in UIDrawing .

• Turn UIDrawing as a service to handle drawings for a specific format.

• Change the mechanism to get the software drawer.

• Change the MicroUI image format MICROUI_IMAGE_FORMAT_LCD by MI-
CROUI_IMAGE_FORMAT_DISPLAY .

Removed

• Remove the interfaces UIDrawingDefault and DWDrawingDefault (implement the interface
UIDrawing instead).

Image Generator

Added

• Add compatibility with Architecture 8.

LLAPIs

Added

• Add some functions in LLUI_DISPLAY.h to manage the MicroUI Drawing Log flags.

• Add some functions in LLUI_DISPLAY.h to change the MicroUI clip and colors.

• Add the notion of “drawer” to identify the available drawer for a given MicroUI Image format.

Changed

• Change the MicroUI image format MICROUI_IMAGE_FORMAT_LCD by MI-
CROUI_IMAGE_FORMAT_DISPLAY .

• Change the signature of xx_drawing_soft.h : all functions return a drawing status.

Removed

• Remove ui_drawing.h and dw_drawing.h (move them in MicroUI C Module).

3.6. VEE Porting Guide 1073

MicroEJ Documentation,

C Module MicroUI

• New version: C Module MicroUI 3.0.0.

Added

• Add support for multiple Graphics Context output formats.

• Add support for multiple Image input formats.

• Add stub implementations for all MicroUI and Drawing libraries algorithms.

CModule DMA2D

• New version: C Module DMA2D 4.0.0.

Added

• Add the configuration file drawing_dma2d_configuration.h to enable or not the cacheman-
agement (cache invalidate and clean).

• Add the compatibility with multiple Graphics Context output formats.

Fixed

• Fix the problems with reading memory back after a DMA2D transfer on cache-enabled CPUs.

• Fix an include directive for case-sensitive filesystems.

CModule VGLite

• New version: C Module VGLite 6.0.0.

• Compatible with VGLite library 3.0.15_rev4 .

Added

• Add the compatibility with multiple Graphics Context output formats.

• Add (or move) some utility functions in display_vglite .

• Add incident reporting with drawing log flags.

Fixed

• Set the appropriate format for the destination buffer.

• Fix the drawing of horizontal lines.

Removed

• Remove thenotionof vg_drawer and thedefine VGLITE_USE_MULTIPLE_DRAWERS
(replaced by multiple Graphics Context output formats).

3.6. VEE Porting Guide 1074

https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui/3.0.0/
https://repository.microej.com/modules/com/microej/clibrary/llimpl/display-dma2d/4.0.0/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/6.0.0/

MicroEJ Documentation,

[13.4.1] - 2023-02-06

Drawing

Fixed

• Fix thick lines drawing (when thickness is larger than length).

• Fix circle and ellipse drawing (when the diameter/axis has an even length).

Front Panel

Changed

• Increase the speed of RAW image decoding step.

Image Generator

Fixed

• Fix the VEE Port’s memory alignment constraint.

CModule VGLite

• New version: C Module VGLite 5.0.1.

• Compatible with VGLite library 3.0.15_rev4 .

• Several additions, changes and fixes are available. Refer to the CModule VGLite 5.0.1 changelog
for more information.

[13.4.0] - 2022-12-13

MicroUI

Fixed

• Fix the unexpected resuming of the pump thread when a new event is added to the queue if it
is an other component than the MicroUI queue that has suspended the pump thread.

• Fix the flush bounds of drawCircleArc and drawEllipseArc.

Front Panel

Added

• Add some checks to not perform a drawing when it is unnecessary.

Fixed

• Fix the Front Panel representation of a BufferedImage: it is always opaque.

3.6. VEE Porting Guide 1075

https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/5.0.1/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/5.0.1/

MicroEJ Documentation,

Image Generator

Added

• Add the image format A8_RLE.

Changed

• Rename RLE1 format in ARGB1565_RLE (keep RLE1 for backward compatibility).

Fixed

• Fix the non-generation of external images for the features.

Font Generator

Fixed

• Fix the external fonts output folder for the features.

CModule MicroUI

• New version: C Module MicroUI 2.0.1.

Changed

• Do not draw thick shapes when thickness and fade are equal to zero.

CModule DMA2D

• New version: C Module DMA2D 3.0.2.

Fixed

• Fix the flushboundswhendrawingan image (mustbe setbefore calling LLUI_DISPLAY_no-
tifyAsynchronousDrawingEnd()).

CModule VGLite

• New version: C Module VGLite 4.0.0.

• Compatible with VGLite library 3.0.15_rev4 .

• Several additions, changesand fixes areavailable. Refer to theCModule VGLite 4.0.0 changelog
for more information.

3.6. VEE Porting Guide 1076

https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui/2.0.1/
https://repository.microej.com/modules/com/microej/clibrary/llimpl/display-dma2d/3.0.2/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/4.0.0/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/4.0.0/

MicroEJ Documentation,

[13.3.1] - 2022-09-09

Image Generator

Added

• Add an Application Option to quickly test an Image Generator Extension project.

Changed

• Increase logs when application verbosity is enabled.

• Check the stride defined by the Image Generator Extension project (throw an error if the value
is incompatible with the memory alignment).

Fixed

• Fix the external resource generation: theywere no longer generated (UI pack 13.3.0 regression).

• Fix the duplicate generation (as internal and external resources) of the custom .list file im-
ages (consider only custom .list file images as external resources when the prefix of the list file
extension starts with extern).

• Fix the internal limit error when converting images with BPP lower than 8 bits (for platforms
that define a rule for the image stride through an Image Generator Extension project).

[13.3.0] - 2022-09-02

MicroUI

Fixed

• Fix the Cx (x == 1 | 2 | 4) Graphics Engine’s whenmemory layout is “column”.

• Fix the consistency between Image.getImage() and Font.getFont() about starting MicroUI.

Front Panel

Added

• Add custom image formats and a service to prepare for future MicroUI functionality.

Image Generator

Fixed

• Fix the stride stored in the image when the Graphics Engine’s memory layout is “column”.

3.6. VEE Porting Guide 1077

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Image.html#getImage-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Font.html#getFont-java.lang.String-

MicroEJ Documentation,

LLAPIs

Added

• Add custom image formats to prepare for future MicroUI functionality.

• Add LLAPI to adjust new image characteristics (size and alignment).

• Add API: UI_DRAWING_copyImage and UI_DRAWING_drawRegion .

• Add the LLUI version (== UI Pack version) in header files.

Changed

• Use type jbyte to identify an image format instead of MICROUI_ImageFormat (prevent C
compiler optimization).

Removed

• Remove the MicroUI’s native functions declaration with macros (not backward compatible).

CModule MicroUI

• New version: C Module MicroUI 2.0.0.

Changed

• Improve drawImage : identify faster use cases (copy an image and draw a regionwith overlap).

• Use new UI Pack LLAPI: UI_DRAWING_copyImage and UI_DRAWING_drawRegion .

• Use newMicroUI’s native functions declaration (not backward compatible).

CModule DMA2D for UI Pack 13.2.0 (maintenance)

• New version: C Module DMA2D 2.1.0.

Added

• Add the compatibility with the STM32H7 series.

Changed

• Manage the overlapping (draw an image on the same image).

Fixed

• Fix the limitation of UI Pack 13.x in checking the MicroUI GraphicsContext clip before filling a
rectangle.

3.6. VEE Porting Guide 1078

https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui/2.0.0/
https://repository.microej.com/modules/com/microej/clibrary/llimpl/display-dma2d/2.1.0/

MicroEJ Documentation,

C Module DMA2D for UI Pack 13.3.0

• New version: C Module DMA2D 3.0.0.

Added

• Add the implementation of UI_DRAWING_drawRegion .

Removed

• Remove the software implementation of “image overlap” (already available in UI Pack 13.3.0).

CModule VGLite

• New version: C Module VGLite 3.0.0.

• Compatible with VGLite library 3.0.11_rev3 .

• Several additions, changes and fixes are available. Refer to theCModule VGLite 3.0.0 changelog
for more information.

[13.2.0] - 2022-05-05

Integration

Changed

• Update to the latest SDK license notice.

MicroUI

• Implement MicroUI API 3.1.1.

Changed

• Use .rodata sections instead of .text sections.

Fixed

• Clean KF stale references when killing a feature without display context switch.

• Make sure to wait the end of an asynchronous drawing before killing a KF feature.

• Redirect the events sent to the pump to the pump’s handler instead of to the event generator’s
handler.

• Fix the drawing of antialiased arc: caps are drawn over the arc itself (rendering issue when the
GraphicsContext’s background color is set).

• Fix the drawingof antialiased arc: arc is not fully drawnwhen (int)startAngle == (int)((startAngle
+ arcAngle) % 360)).

• Fix the input queue size when not already set by the application launcher.

• Fix the use of a negative scanLength in GraphicsContext.readPixels() and Image.readPixels().

3.6. VEE Porting Guide 1079

https://repository.microej.com/modules/com/microej/clibrary/llimpl/display-dma2d/3.0.0/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/3.0.0/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/3.0.0/
https://repository.microej.com/modules/ej/api/microui/3.1.1/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html#readPixel-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Image.html#readPixel-int-int-

MicroEJ Documentation,

Drawing

• Compatible with Drawing API 1.0.4.

Front Panel

Added

• Add the property -Dej.fp.hil=true in the application launcher to force to run the Front Panel
with the Graphics Engine as a standard HIL mock (requires MicroEJ Architecture 7.17.0 or
higher).

• Add LLUIDisplayImpl.decode() : the Front Panel project is able to read encoded image like
the embedded side.

• Include automatically the AWT ImageIO services.

• Add MicroUIImage.readPixel() to read an image’s pixel color.

Fixed

• Fix the “display context switch” and the loading of feature’s font.

• Fix OOM (Managed heap space) when opening/closing several hundreds of big RAW Images.

• Fix the synchronization with the Graphics Engine when calling GraphicsContext.setColor() or
GraphicsContext.enableEllipsis().

Image Generator

Added

• Include automatically the AWT ImageIO services.

• Allow to a custom image converter to generate a file other than a binary resource.

• Allow to a custom image converter to specify the supported .list files.

LLAPIs

Added

• Add LLUI_DISPLAY_readPixel to read an image’s pixel color.

CModule DMA2D

• New version: C Module DMA2D 1.0.8 for UI Pack 13.0.x (maintenance).

• New version: C Module DMA2D 2.0.0 for UI Pack 13.1.0 and UI Pack 13.2.0.

Fixed

• Fix the use of returned code when drawing images with the DMA2D.

• Clean cache before each DMA2D transfer (no-op on STM32 CPU without cache).

3.6. VEE Porting Guide 1080

https://repository.microej.com/modules/ej/api/drawing/1.0.4/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html#setColor-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html#enableEllipsis-int-
https://repository.microej.com/modules/com/microej/clibrary/llimpl/display-dma2d/1.0.8/
https://repository.microej.com/modules/com/microej/clibrary/llimpl/display-dma2d/2.0.0/

MicroEJ Documentation,

C Module VGLite

• New CModule: C Module VGLite 2.0.0.

• Compatible with VGLite library 3.0.11_rev3 .

Added

• Provides the VGLite C module 2.0.0 to target the NXP CPU that provides the Vivante VGLite ac-
celerator.

BSP

Fixed

• Fix the IAR Embedded Workbench warnings during debug session.

[13.1.0] - 2021-08-03

MicroUI API

Removed

• Remove MicroUI and Drawing API from UI pack.

MicroUI Implementation

• Implement MicroUI API 3.1.0.

Changed

• Check Immortals heapminimal size required by MicroUI implementation.

• Change the EventGenerator Pointer event format.

• Do no systematically use the GPU to draw intermediate steps of a shape.

Fixed

• EventGenerator’s event has not to be sent to the Display’s handler when EventGenerator’s han-
dler is null.

• Fill rounded rectangle: fix rendering when corner radius is higher than rectangle height.

• An external image is closed twice when the application only checks if the image is available.

• RLE1 image rendering when platform requires image pixels address alignment.

• Manage the system fonts when the Font Generator is not embedded in the platform.

• Have to wait the end of current drawing before closing an image.

3.6. VEE Porting Guide 1081

https://repository.microej.com/modules/ej/api/microui/3.1.0/

MicroEJ Documentation,

Drawing Implementation

• Compatible with Drawing API 1.0.3.

Front Panel

Added

• Add MicroUIImage.getImage(int) : apply a rendering color on Ax images.

• Add LLUIDisplay.convertRegion() : convert a region according image format restrictions.

• Add LLUIDisplayImpl.waitFlush() : can manage an asynchronous flush.

Changed

• Compatible with new EventGenerator Pointer event format.

Fixed

• Fix OutputFormat A8 when loading an image (path or stream) or converting a RAW image.

• Fix OOM (Managed heap space) when opening/closing several hundreds of MicroUI Images.

• Simulates the image data alignment.

LLAPIs

Added

• Add LLUI_DISPLAY_convertDisplayColorToARGBColor() .

• Add LLAPI to manage theMicroUI Image heap.

• Add LLAPI to dump theMicroUI Events queue.

Changed

• Change signature of LLUI_DISPLAY_setDrawingLimits() : remove MICROUI_Graphic-
sContext* to be able to call this function from GPU callback method.

CModule MicroUI

• New version: C Module MicroUI 1.1.0.

Added

• Add a MicroUI events logger (optional).

• Add a MicroUI images heap allocator (optional).

Fixed

• Fix comments in LLUI_PAINTER_impl.c and LLDW_PAINTER_impl.c .

• Ignore a drawing when at least one scaling factor is equal to zero.

3.6. VEE Porting Guide 1082

https://repository.microej.com/modules/ej/api/drawing/1.0.3/
https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui/1.1.0/

MicroEJ Documentation,

[13.0.7] - 2021-07-30

MicroUI Implementation

Fixed

• Allow to open a font in format made with UI Pack 12.x (but cannot manage Dynamic styles).

• Display.flush() method is called once when MicroUI pump thread has a higher priority than the
caller of Display.requestFlush().

• Display.requestFlush() is only executed once from a feature (UI deadlock).

Misc

Fixed

• Fix MMM dependencies: do not fetch the MicroEJ Architecture.

[13.0.6] - 2021-03-29

LLAPIs

Fixed

• Size of the typedef MICROUI_Image : do not depend on the size of the enumeration MI-
CROUI_ImageFormat (LLUI_PAINTER_impl.h).

[13.0.5] - 2021-03-08

MicroUI Implementation

Removed

• Remove ResourceManager dependency.

Fixed

• A feature was not able to call Display.callOnFlushCompleted().

• Stop feature: prevent NullPointerException when a kernel’s EventGenerator is removed from
event generators pool.

• Filter DeadFeatureException in MicroUI pump.

• Drawing of thick arcs which represent an almost full circle.

• Drawing of thick faded arcs which pass by 0° angle.

3.6. VEE Porting Guide 1083

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#flush--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#requestFlush--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#requestFlush--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#callOnFlushCompleted-java.lang.Runnable-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/NullPointerException.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/DeadFeatureException.html

MicroEJ Documentation,

Front Panel

Fixed

• Front Panel memory management: reduce simulation time.

[13.0.4] - 2021-01-15

MicroUI API

Changed

• [Changed] Include MicroUI API 3.0.3.

• [Changed] Include MicroUI Drawing API 1.0.2.

MicroUI Implementation

Fixed

• Fix each circle arc cap being drawn on both sides of an angle.

• Fix drawing of rounded caps of circle arcs when fade is 0.

• Cap thickness and fade in thick drawing algorithms.

• Clip is not checked when filling arcs, circles and ellipsis.

• Image path when loading an external image (LLEXT).

• InternalLimitsError when calling MicroUI.callSerially() from a feature.

Drawing Implementation

Fixed

• Draw deformed image is not rendered.

Image Generator

Changed

• Compatible with com.microej.pack.ui#ui-pack(imageGenerator)#13.0.4.

Fixed

• NullPointerException when trying to convert an unknown image.

• Restore external resources option in MicroEJ launcher.

3.6. VEE Porting Guide 1084

https://repository.microej.com/modules/ej/api/microui/3.0.3/
https://repository.microej.com/modules/ej/api/drawing/1.0.2/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/MicroUI.html#callSerially-java.lang.Runnable-
https://repository.microej.com/modules/com/microej/pack/ui/ui-pack/13.0.4/
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/NullPointerException.html

MicroEJ Documentation,

[13.0.3] - 2020-12-03

MicroUI API

Changed

• [Changed] Include MicroUI API 3.0.2.

• [Changed] Include MicroUI Drawing API 1.0.1.

MicroUI Implementation

Fixed

• Reduce Managed heap usage.

• Fix empty images heap.

• Draw image algorithm does not respect image stride in certain circumstances.

• Fix flush limits of drawThickFadedLine, drawThickEllipse and drawThickFadedEllipse.

CModule MicroUI

• New version: C Module MicroUI 1.0.3.

CModule DMA2D

• New version: C Module DMA2D 1.0.6.

[13.0.2] - 2020-10-02

• Use new naming convention: com.microej.architecture.[toolchain].[architecture]-ui-pack .

Fixed

• [ESP32] - Potential PSRAM access faults by rebuilding using esp-idf v3.3.0 toolchain - simikou2 .

CModule DMA2D

• New version: C Module DMA2D 1.0.5.

Changed

• De-init the DMA2D before re-initializing it, to reset the context at HAL level.

• Manipulate the drawing limits after being sure the DMA2D job is finished.

3.6. VEE Porting Guide 1085

https://repository.microej.com/javadoc/microej_5.x/apis/ej/drawing/ShapePainter.html#drawThickFadedLine-ej.microui.display.GraphicsContext-int-int-int-int-int-int-ej.drawing.ShapePainter.Cap-ej.drawing.ShapePainter.Cap-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/drawing/ShapePainter.html#drawThickEllipse-ej.microui.display.GraphicsContext-int-int-int-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/drawing/ShapePainter.html#drawThickFadedEllipse-ej.microui.display.GraphicsContext-int-int-int-int-int-int-
https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui/1.0.3/
https://repository.microej.com/modules/com/microej/clibrary/llimpl/display-dma2d/1.0.6/

MicroEJ Documentation,

[13.0.1] - 2020-09-22

MicroUI API

Changed

• Include MicroUI API 3.0.1.

MicroUI Implementation

Fixed

• Throw an exception when there is no display.

• Antialiased circle may be cropped.

• FillRoundedRectangle can give invalid arguments to FillRectangle.

• Flush bounds may be invalid.

• Reduce memory footprint (java heap and immortal heap).

• No font is loaded when an external font is not available.

• A8 color is cropped to display limitation too earlier on simulator.

Front Panel

Fixed

• Cannot use an external image decoder on Front Panel.

• Missing an API to check the overlapping between source and destination areas.

Image Generator

Fixed

• Cannot build a platform with Image Generator and without Front Panel.

LLAPIs

Fixed

• Missing a LLAPI to check the overlapping between source and destination areas.

3.6. VEE Porting Guide 1086

https://repository.microej.com/modules/ej/api/microui/3.0.1/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Painter.html#fillRoundedRectangle-ej.microui.display.GraphicsContext-int-int-int-int-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Painter.html#fillRectangle-ej.microui.display.GraphicsContext-int-int-int-int-

MicroEJ Documentation,

C Module MicroUI

• New version: C Module MicroUI 1.0.2.

Changed

• Changemodule organization.

CModule DMA2D

• New version: C Module DMA2D 1.0.3.

Changed

• Remove/replace notion of LLDISPLAY .

• Changemodule organization.

Fixed

• Fix file names.

[13.0.0] - 2020-07-30

• Integrate SDK 3.0-B license.

Architecture

Changed

• Compatible with Architecture 7.16.0 or higher (SNI 1.3).

MicroUI API

Changed

• [Changed] Include MicroUI API 3.0.0.

• [Changed] Include MicroUI Drawing API 1.0.0.

MicroUI Implementation

Added

• Manage image data (pixels) address alignment (not more fixed to 32-bits word alignment).

Changed

• Reduce EDC dependency.

• Merge DisplayPump and InputPump : only one thread is required by MicroUI.

• Use a bss section to load characters from an external font instead of using java heap.

Removed

• Dynamic fonts (dynamic bold, italic, underline and ratios).

3.6. VEE Porting Guide 1087

https://repository.microej.com/modules/ej/api/microui/3.0.0/
https://repository.microej.com/modules/ej/api/drawing/1.0.0/

MicroEJ Documentation,

Fixed

• Lock only current thread when waiting end of flush or end of drawing (and not all threads).

• Draw anti-aliased ellipse issue (vertical line is sometimes drawn).

• Screenshot on platform whose physical size is higher than virtual size.

Known issue

• Render of draw/fill arc/circle/ellipse with an even diameter/edge is one pixel too high (center is
1/2 pixel too high).

Front Panel

Added

• Able to override MicroUI drawings algorithms like embedded platform.

Changed

• Compatible with com.microej.pack.ui#ui-pack(frontpanel)#13.0.0.

• SeeMigration notes that describe the available changes in Front Panel API.

Removed

• ej.tool.frontpanel#widget-microui has been replaced by com.microej.pack.ui#ui-pack(frontpanel) .

Image Generator

Added

• Redirects source image reading to the Image Generator extension project in order to increase
the number of supported image formats in input.

• Redirects destination image generation to the Image Generator extension project in order to be
able to encode an image in a custom RAW format.

• Generates a linker file inorder toalways link the resources in sameorderbetween two launches.

Changed

• Compatible with com.microej.pack.ui#ui-pack(imageGenerator)#13.0.0.

• SeeMigration notes that describe the available changes in Image Generator API.

• Uses a service loader to loads the Image Generator extension classes.

• Manages image data (pixels) address alignment.

Removed

• Classpath variable IMAGE-GENERATOR-x.x : Image generator extensionproject has to use
ivy dependency com.microej.pack.ui#ui-pack(imageGenerator) instead.

3.6. VEE Porting Guide 1088

https://repository.microej.com/modules/com/microej/pack/ui/ui-pack/13.0.0/
https://repository.microej.com/modules/com/microej/pack/ui/ui-pack/13.0.0/

MicroEJ Documentation,

Font Generator

Changed

• Used a dedicated bss section to load characters from an external font instead of using the java
heap.

LLAPIs

Added

• Some new functions are mandatory: see header files list, tagmandatory.

• Some new functions are optional: see header files list, tag optional.

• Some header files list the libraries ej.api.microui and ej.api.drawing natives. Provided by
Abstraction Layer implementation module com.microej.clibrary.llimpl#microui.

• Some header files list the drawing algorithms the platform can implement; all algorithms are
optional.

• Some header files list the internal Graphics Engine software algorithms the platform can call.

Changed

• All old header files and functions have been renamed or shared.

• SeeMigration notes that describe the available changes in LLAPI.

CModules

Added

• Provides the C Module MicroUI 1.0.1 that extends the UI Pack 13.0.0.

• Provides the C Module DMA2D 1.0.2 that targets the STM32 CPU that provides the Chrom-ART
accelerator.

• SeeMicroUI C module.

[12.1.5] - 2020-10-02

• Use new naming convention: com.microej.architecture.[toolchain].[architecture]-ui-pack .

Fixed

• [ESP32] - Potential PSRAM access faults by rebuilding using esp-idf v3.3.0 toolchain - simikou2 .

3.6. VEE Porting Guide 1089

https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui
https://repository.microej.com/modules/com/microej/pack/ui/ui-pack/13.0.0/

MicroEJ Documentation,

[12.1.4] - 2020-03-10

MicroUI Implementation

Fixed

• Obsolete references on Managed heap are used (since MicroEJ UI Pack 12.0.0).

[12.1.3] - 2020-02-24

MicroUI Implementation

Fixed

• Caps are not used when drawing an anti-aliased line.

[12.1.2] - 2019-12-09

MicroUI Implementation

Fixed

• Fix Graphics Engine empty clip (empty clip had got a size of 1 pixel).

• Clip not respected when clip is set “just after or before” graphics context drawable area: first
(or last) line (or column) of graphics context was rendered.

[12.1.1] - 2019-10-29

MicroUI Implementation

Fixed

• Fix Graphics Engine clip (cannot be outside graphics context).

[(maint) 8.0.0] - 2019-10-18

• Based on UI Pack 7.4.7.

Architecture

Changed

• Compatible with Architecture 7.0.0 or higher (Use SNI callback feature).

3.6. VEE Porting Guide 1090

MicroEJ Documentation,

MicroUI Implementation

Fixed

• Pending flush cannot be added after an OutOfEventException .

[12.1.0] - 2019-10-16

MicroUI API

Changed

• Include MicroUI API 2.4.0.

MicroUI Implementation

Changed

• Prepare inlining of get X/Y/W/Hmethods.

• Reduce number of strings embedded by MicroUI library.

Fixed

• Pending flush cannot be added after an OutOfEventException .

• Display.isColor() returns an invalid value.

• Draw/fill circle/ellipse arc is not drawn when angle is negative.

[12.0.2] - 2019-09-23

MicroUI Implementation

Changed

• Change CM4hardfp_IAR83 compiler flags.

• Remove RAW images from cache as soon as possible to reduce java heap usage.

• Do not cache RAW images with their paths to reduce java heap usage.

Fixed

• Remove useless exception in SystemInputPump.

3.6. VEE Porting Guide 1091

https://repository.microej.com/modules/ej/api/microui/2.4.0/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#isColor--

MicroEJ Documentation,

[12.0.1] - 2019-07-25

MicroUI Implementation

Fixed

• Physical size is not taken in consideration.

Front Panel

Fixed

• Increase native implementation execution time.

[12.0.0] - 2019-06-24

Architecture

Changed

• Compatible with Architecture 7.11.0 or higher (Move Front Panel in Architecture).

MicroUI Implementation

Added

• Trace MicroUI events and log them on SystemView.

Changed

• Manage the Graphics Context clip on native side.

• Use java heap to store images metadata instead of using icetea heap (remove option “max off-
screen”).

• Optimize retrieval of all fonts.

• Ensure user buffer size is larger than LCD size.

• Use javaheap to store flying imagesmetadata insteadof using iceteaheap (removeoption “max
flying images”).

• Use java heap to store fill polygon algorithm’s objects instead of using icetea heap (remove op-
tion “max edges”).

• SecurityManager enabled as a boolean constant option (footprint removal by default).

• Remove FlyingImage feature using BON constants (option to enable it).

Fixed

• Wrong rendering of a fill polygon on emb.

• Wrong rendering of image overlaping on C1/2/4 platforms.

• Wrong rendering of a LUT image with more than 127 colors on emb.

• Wrong rendering of an antialiased arc with 360 angle.

3.6. VEE Porting Guide 1092

MicroEJ Documentation,

• Debug option com.is2t.microui.log=true fails when there is a flying image.

• Gray scale between gray and white makes magenta.

• Minimal size of some buffers set by user is never checked.

• The format of a RAW image using “display” format is wrong.

• Dynamic image width for platform C1/2/4 may be wrong.

• Wrong pixel address when reading from a C2/4 display.

• getDisplayColor() can return a color with transparency (spec is 0x00RRGGBB).

• A fully opaque image is tagged as transparent (ARGB8888 platform).

Front Panel

Added

• Simulate flush time (add JRE property -Dfrontpanel.flush.time=8).

Fixed

• A pixel read on an image is always truncated.

Front Panel Plugin

Removed

• Front Panel version 5: Move Front Panel from MicroEJ UI Pack to Architecture (not backward
compatible); Architecture contains now Front Panel version 6.

[11.2.0] - 2019-02-01

MicroUI Implementation

Added

• Manage extended UTF16 characters (> 0xffff).

Fixed

• IOException thrown instead of an OutOfMemory when using external resource loader.

Tools

Removed

• Remove Font Designer from pack (useless).

3.6. VEE Porting Guide 1093

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#getDisplayColor-int-

MicroEJ Documentation,

[11.1.2] - 2018-08-10

MicroUI Implementation

Fixed

• Fix drawing bug in thick circle arcs.

[11.1.1] - 2018-08-02

• Internal release.

[11.1.0] - 2018-07-27

• Merge 10.0.2 and 11.0.1.

MicroUI API

Changed

• Include MicroUI API 2.3.0.

MicroUI Implementation

Added

• LLDisplay : prepare round LCD.

Fixed

• Fillrect throws a hardfault on 8bpp platform.

• Rendering of a LUT image is wrong when using software algorithm.

[11.0.1] - 2018-06-05

• Based on UI Pack 11.0.0.

MicroUI Implementation

Fixed

• Image rendering may be invalid on custom display.

• Render a dynamic image on custom display is too slow.

• LRGB888 image format is always fully opaque.

• Number of colors returned when it is a custom display may be wrong.

3.6. VEE Porting Guide 1094

https://repository.microej.com/modules/ej/api/microui/2.3.0/

MicroEJ Documentation,

[10.0.2] - 2018-02-15

• Based on UI Pack 10.0.1.

MicroUI Implementation

Fixed

• Number of colors returned when it is a custom display may be wrong.

• LRGB888 image format is always fully opaque.

• Render a dynamic image on custom display is too slow.

• Image rendering may be invalid on custom display.

[11.0.0] - 2018-02-02

• Based on UI Pack 10.0.1.

Architecture

Changed

• Compatible with Architecture 7.0.0 or higher (Use SNI callback feature).

MicroUI Implementation

Changed

• SNI Callback feature in the Core Engine to remove the SNI retry pattern (not backward compat-
ible).

[10.0.1] - 2018-01-03

MicroUI Implementation

Fixed

• Hard fault when using custom display stack.

[10.0.0] - 2017-12-22

Architecture

Changed

• Compatible with Architecture 6.13.0 or higher (LLEXT link error with Architecture 6.13+ and
UI Pack 9+).

3.6. VEE Porting Guide 1095

MicroEJ Documentation,

MicroUI Implementation

Changed

• Improve TOP-LEFT anchor checks.

Fixed

• Subsequent renderings may not be correctly flushed.

• Rendering of display on display was not optimized.

Front Panel

Changed

• Check the allocated memory when creating a dynamic image (not backward compatible).

Misc

Added

• Option in platform builder to images heap size.

[9.4.1] - 2017-11-24

Image Generator

Fixed

• Missing some files in Image Generator module.

[9.4.0] - 2017-11-23

• Deprecated: use UI Pack 9.4.1 instead.

MicroUI Implementation

Added

• LUT imagemanagement.

Changed

• Optimize character encoding removing first vertical line when possible.

Fixed

• Memory leak when an OutOfEventException is thrown.

• A null Java object is not checked when using a font.

3.6. VEE Porting Guide 1096

MicroEJ Documentation,

[9.3.1] - 2017-09-28

MicroUI Implementation

Fixed

• Returned X coordinates when drawing a string was considered as an error code.

• Exception when loading a font from an application.

• LLEXT link error with Architecture 6.13+ and UI 9+.

[9.3.0] - 2017-08-24

MicroUI Implementation

Fixed

• Ellipsis must not drawn when text anchor is a “manual” TOP-RIGHT .

Front Panel

Fixed

• Do not create an AWT window for each image.

• Error when trying to play with an unknown led.

[9.2.1] - 2017-08-14

Front Panel

Added

• Provide function to send a Long Button event.

• “flush” debug option.

Fixed

• Mock startup is too long.

[9.2.0] - 2017-07-21

• Merge UI Packs 9.1.2 and 9.0.2.

3.6. VEE Porting Guide 1097

MicroEJ Documentation,

Architecture

Changed

• Compatible with Architecture 6.12.0 or higher (SOAR can exclude some resources).

MicroUI API

Changed

• Include MicroUI API 2.2.0.

MicroUI Implementation

Added

• Provide function to send a Long Button event (emb only).

Changed

• Use font format v5.

• A signature on RAW files.

• Allow to open a raw image with Image.createImage(stream) .

• Improve Image.createImage(stream) when stream is a memory input stream.

Fixed

• Draw region of the display on the display does not support overlap.

• Unspecified exception while loading an image with an empty name.

• Display.flush(): ymax can be higher than display.height.

Image Generator

Fixed

• Generic displays must be able to generate standard images.

Misc

Changed

• SOAR can exclude some resources (update llext output folder).

Fixed

• RI build: reduce Front Panel dependency.

3.6. VEE Porting Guide 1098

https://repository.microej.com/modules/ej/api/microui/2.2.0/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#flush--

MicroEJ Documentation,

[9.0.2] - 2017-04-21

• Based on UI Pack 9.0.1.

MicroUI Implementation

Fixed

• Rendering of a RAW image on grayscale display is wrong.

Image Generator

Fixed

• An Ax imagemay be fully opaque.

[9.1.2] - 2017-03-16

• Based on UI Pack 9.1.1.

MicroUI API

Changed

• Include MicroUI API 2.1.3.

MicroUI Implementation

Added

• Renderable strings.

Changed

• Draw string: improve time to perform it.

• Optimize antialiased circle arc drawing when fade=0.

Fixed

• ImageScale bugs.

• Draw string: some errors are not thrown.

• Font.getWidth() and getHeight() don’t use ratio factor.

• Draw antialiased circle arc render issue.

• Draw antialiased circle arc render bug with 45° angles.

• MicroUI lib expects the dynamic image decoder default format.

• Wrong error code is returned when converting an image.

3.6. VEE Porting Guide 1099

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Font.html#getHeight--

MicroEJ Documentation,

Image Generator

Fixed

• Use the application classpath.

• An Ax imagemay be fully opaque.

[9.0.1] - 2017-03-13

• Based on UI Pack 9.0.0.

MicroUI Implementation

Fixed

• Hardfault when filling a rectangle on an odd image.

• Pixel rendering on non-standard LCD is wrong.

• RZ hardware accelerator: RAW images have to respect an aligned size.

• Use the classpath when invoking the fonts and images generators.

Front Panel

Fixed

• Wrong rendering of A8 images.

Front Panel Plugin

Fixed

• Manage display mask on preview.

• Respect initial background color set by user on preview.

• Preview does not respect the real size of display.

[9.1.1] - 2017-02-14

• Based on UI Pack 9.1.0.

3.6. VEE Porting Guide 1100

MicroEJ Documentation,

Misc

Fixed

• RI build: Several custom event generators in same microui.xml file are not embedded.

[9.1.0] - 2017-02-13

• Based on UI Pack 9.0.0.

Architecture

Changed

• Compatible with Architecture 6.8.0 or higher (Internal scripts).

MicroUI API

Changed

• Include MicroUI API 2.1.2.

MicroUI Implementation

Added

• G2D hardware accelerator.

• Hardware accelerator: add flip feature.

Fixed

• Hardfault when filling a rectangle on an odd image.

• Pixel rendering on non-standard LCD is wrong.

• RZ hardware accelerator: RAW images have to respect an aligned size.

• Use the classpath when invoking the fonts and images generators.

• Exception when flipping an image out of display bounds.

• Flipped image is translated when clip is modified.

Front Panel

Fixed

• Wrong rendering of A8 images.

3.6. VEE Porting Guide 1101

MicroEJ Documentation,

Front Panel Plugin

Fixed

• Manage display mask on preview.

• Respect initial background color set by user on preview.

• Preview does not respect the real size of display.

[9.0.0] - 2017-02-02

MicroUI API

Changed

• Include MicroUI API 2.0.6.

MicroUI Implementation

Changed

• Update MicroUI to use watchdogs in KF implementation.

Fixed

• Display linker file is required even if there is no display on platform.

• MicroUI on KF: NPE when changing app quickly (in several threads).

• MicroUI on KF: NPE when stopping a Feature and there’s no eventHandler in a generator.

• MicroUI on KF: Remaining K->F link when there is no default event handler registered by the
Kernel.

MWT

Removed

• Remove MWT fromMicroEJ UI Pack (not backward compatible).

Front Panel

Added

• Optional mask on display.

Changed

• Display Device UID if available in the window title.

3.6. VEE Porting Guide 1102

https://repository.microej.com/modules/ej/api/microui/2.0.6/

MicroEJ Documentation,

Tools

Changed

• Front Panel plugin: Update icons.

• Font Designer plugin: Update icons.

• Font Designer and Generator: use Unicode 9.0.0 specification.

Misc

Fixed

• Remove obsolete documentations from Front Panel And Font Designer plugins.

[8.1.0] - 2016-12-24

MicroUI Implementation

Changed

• Improve image drawing timings.

• Runtime decoders can force the output RAW image’s fully opacity.

MWT

Fixed

• With two panels, the paint is done but the screen is not refreshed.

• Widget show notify method is called before the panel is set.

• Widget still linked to panel when lostFocus() is called.

Front Panel

Added

• Can add an additional screen on simulator.

[8.0.0] - 2016-11-17

Architecture

Changed

• Compatible with Architecture 6.4.0 or higher (Manage externalmemories like byte addressable
memories).

3.6. VEE Porting Guide 1103

MicroEJ Documentation,

MicroUI Implementation

Added

• RZ UI acceleration.

• External image decoders.

• Manage external memories like internal memories.

• Custom display stacks (hardware acceleration).

Changed

• Merge stacks DIRECT/COPY/SWITCH (not backward compatible).

Fixed

• add KF rule: a thread cannot enter in a feature code while it owns a kernel monitor.

• automatic flush is not waiting the end of previous flush.

• Invalid image rotation rendering.

• Do not embed Images & Fonts.list of kernel API classpath in appmode.

• Invalid icetea heap allocation.

• microui image: invalid “defaultformat” and “format” fields values.

MWT

Fixed

• possible to create an inconsistent hierarchy.

Front Panel

Added

• Can decode additional image formats.

Fixed

• Cannot set initial value of StateEventGenerator.

[7.4.7] - 2016-06-14

MicroUI Implementation

Fixed

• Do not create all fonts derivations of built-in styles.

• A bold font is not flagged as bold font.

• Wrong A4 image rendering.

3.6. VEE Porting Guide 1104

MicroEJ Documentation,

Front Panel

Fixed

• Cannot convert an image.

[7.4.2] - 2016-05-25

MicroUI Implementation

Fixed

• invalid image drawing for column display.

[7.4.1] - 2016-05-10

MicroUI Implementation

Fixed

• Restore stack 1, 2 and 4 BPP.

[7.4.0] - 2016-04-29

MicroUI Implementation

Fixed

• image A1’s width is sometimes invalid.

Front Panel

Added

• Restore stack 1, 2 and 4 BPP.

[7.3.0] - 2016-04-25

MicroUI Implementation

Added

• Stack 8BPP with LUT support.

3.6. VEE Porting Guide 1105

MicroEJ Documentation,

[7.2.1] - 2016-04-18

Misc

Fixed

• Remove java keyword in workbench extension.

[7.2.0] - 2016-04-05

Tools

Added

• Preprocess *.xxx.list files.

[7.1.0] - 2016-03-02

MicroUI Implementation

Added

• Manage several images RAW formats.

[7.0.0] - 2016-01-20

Misc

Changed

• Remove @jpf.property.header@ prefix to Application options (not backward compatible).

[6.0.1] - 2015-12-17

MicroUI Implementation

Fixed

• A negative clip throws an exception on simulator.

3.6. VEE Porting Guide 1106

MicroEJ Documentation,

[6.0.0] - 2015-11-12

• Compatible with Architecture 6.1.0 or higher.

MicroUI Implementation

Changed

• LLDisplay for UIv2 (not backward compatible).

Migration Guide

From 14.3.3 to 14.4.2

MicroUI

• Update the SystemView description file for MicroUI logs as described here.

Front Panel

• Fetch Front Panel Widgets 5.3.1 (seeModule Dependencies).

• To enable all Flush Visualizer functionalities, set the properties core.trace.enabled and core.
trace.autostart to true (see Installation). The property ej.fp.display.flushVisualizer is not
used anymore.

BSPwith DMA2D

• [VEE Port configuration project]

– Set the dependency to the C Module MicroUI over DMA2D to version 7.0.1.

BSPwith VGLite

• [VEE Port configuration project]

– Set the dependency to the C Module MicroUI over VGLite to version 10.0.1.

BSPwith NemaGFX

• [VEE Port configuration project]

– Set the dependency to the C Module MicroUI over NemaGFX to version 4.0.1.

3.6. VEE Porting Guide 1107

https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/ej/tool/frontpanel/widget/5.3.1/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-dma2d/7.0.1/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/10.0.1/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-nemagfx/4.0.1/

MicroEJ Documentation,

From 14.3.3 to 14.4.1

UI Pack 14.4.1 is deprecated, use the UI Pack 14.4.2 instead.

From 14.2.0 to 14.3.3

Front Panel

• Fetch Front Panel Widgets 5.2.0 (seeModule Dependencies).

From 14.1.1 to 14.2.0

All BSP

• [VEE Port configuration project]

– Set the dependency to the C Module MicroUI 14.2.0.

• [BSP project]

– Delete the properties file cco_microui.properties .

– Build the VEE Port.

From 14.0.3 to 14.1.1

BSPwithout GPU

• [VEE Port configuration project]

– Set the dependency to the C Module MicroUI 14.1.1.

• [BSP project]

– Delete the properties file cco_microui.properties .

– Build the VEE Port.

– Configure ui/inc/ui_configuration.h , based on your previous settings in ui/inc/
microui_event_decoder_conf.h and ui/inc/ui_display_brs_configuration.h .

∗ Notice that the name (prefix) of the options changed, see Changelog.

∗ If the BSP uses the MicroUI C Module’s image heap allocator instead of using the Graph-
ics Engine’s image heap allocator, set the preprocessor value UI_FEATURE_ALLOCA-
TOR=UI_FEATURE_ALLOCATOR_BESTFIT .

∗ Comment the line that starts with #error (...) .

– Delete configuration files ui/inc/microui_event_decoder_conf.h and ui/inc/
ui_display_brs_configuration.h .

– Add the source file in ui/src/ui_font_drawing.c to the project.

– Update c and h files and BSP configuration (if any) to use the new preprocessor values:

∗ UI_DEBUG_PRINT replaces LLUI_DEBUG_TRACE

3.6. VEE Porting Guide 1108

https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/ej/tool/frontpanel/widget/5.2.0/
https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui/14.2.0/
https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui/14.1.1/

MicroEJ Documentation,

∗ UI_FEATURE_EVENT_DECODER replaces MICROUIEVENTDECODER_ENABLED

∗ UI_EVENTDECODER_EVENTGEN_COMMAND replaces MICROUIEVENTDE-
CODER_EVENTGEN_COMMAND

∗ UI_EVENTDECODER_EVENTGEN_BUTTONS replaces MICROUIEVENTDE-
CODER_EVENTGEN_BUTTONS

∗ UI_EVENTDECODER_EVENTGEN_TOUCH replaces MICROUIEVENTDE-
CODER_EVENTGEN_TOUCH

∗ UI_FEATURE_BRS replaces UI_DISPLAY_BRS

∗ UI_FEATURE_BRS_LEGACY replaces UI_DISPLAY_BRS_LEGACY

∗ UI_FEATURE_BRS_SINGLE replaces UI_DISPLAY_BRS_SINGLE

∗ UI_FEATURE_BRS_PREDRAW replaces UI_DISPLAY_BRS_PREDRAW

∗ UI_FEATURE_BRS_DRAWING_BUFFER_COUNT replaces UI_DIS-
PLAY_BRS_DRAWING_BUFFER_COUNT

∗ UI_FEATURE_BRS_FLUSH_SINGLE_RECTANGLE replaces UI_DIS-
PLAY_BRS_FLUSH_SINGLE_RECTANGLE

∗ UI_GC_SUPPORTED_FORMATS replaces LLUI_GC_SUPPORTED_FORMATS

∗ UI_FEATURE_IMAGE_CUSTOM_FORMATS replaces LLUI_IMAGE_CUS-
TOM_FORMATS

BSPwith DMA2D

• [VEE Port configuration project]

– Set the dependency to the C Module MicroUI over DMA2D to version 7.0.0.

• [BSP project]

– Delete the properties files cco_microui.properties and cco_display-dma2d.properties .

– Prerequisite: follow the migration steps of BSP without GPU.

BSPwith VGLite

• [VEE Port configuration project]

– Set the dependency to the C Module MicroUI over VGLite to version 10.0.0.

• [BSP project]

– Delete the properties files cco_microui.properties and cco_microui-vglite.properties .

– Prerequisite: follow the migration steps of BSP without GPU.

3.6. VEE Porting Guide 1109

https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-dma2d/7.0.0/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/10.0.0/

MicroEJ Documentation,

BSPwith NemaGFX

• [VEE Port configuration project]

– Set the dependency to the C Module MicroUI over NemaGFX to version 4.0.0.

• [BSP project]

– Delete the properties files cco_microui.properties and cco_microui-nemagfx.properties .

– Prerequisite: follow the migration steps of BSP without GPU.

From 14.0.1 to 14.0.3

BSPwithout GPU

• [VEE Port configuration project]

– Set the dependency to the C Module MicroUI 4.1.0.

– Delete the properties file cco_microui.properties .

– Build the VEE Port.

BSPwith DMA2D

• [VEE Port configuration project]

– Set the dependency to the C Module MicroUI over DMA2D to version 6.0.0.

∗ Notice that the name of the module changed from display-dma2d to microui-dma2d , and
that the module was moved to the Developer Repository.

• [BSP project]

– In the directory ui , delete the following files:

∗ inc/ui_drawing_dma2d.h ,

∗ src/ui_drawing_dma2d.c .

– Delete the properties files cco_microui.properties and cco_display-dma2d.properties .

– Build the VEE Port.

– Configure ui_dma2d/inc/ui_dma2d_configuration.h , based on your previous settings in
ui/inc/ui_drawing_dma2d_configuration.h .

– Delete ui/inc/ui_dma2d_configuration.h .

– Add the source files in ui_dma2d/src to the project.

– Add the path ui_dma2d/inc to the include path.

3.6. VEE Porting Guide 1110

https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-nemagfx/4.0.0/
https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui/4.1.0/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-dma2d/6.0.0/

MicroEJ Documentation,

BSPwith VGLite

• [VEE Port configuration project]

– Set the dependency to the C Module MicroUI over VGLite to version 9.0.0.

• [BSP project]

– In the directory ui , delete the following files:

∗ inc/color.h ,

∗ inc/ui_drawing_vglite.h ,

∗ inc/ui_drawing_vglite_path.h ,

∗ inc/ui_drawing_vglite_process.h ,

∗ inc/ui_vglite.h ,

∗ src/ui_drawing_vglite.c ,

∗ src/ui_drawing_vglite_path.c ,

∗ src/ui_drawing_vglite_process.c .

– In the directory util , delete the following files:

∗ inc/mej_math.h ,

∗ src/mej_math.c ,

– In LLUI_DISPLAY_IMPL_initialize :

∗ Call UI_VGLITE_initialize to initialize the VGLite controller and the VGLite library.

∗ Replace the call to UI_VGLITE_init with UI_VGLITE_start .

– Delete the properties files cco_microui.properties and cco_microui-vglite.properties .

– Build the VEE Port.

– Configure ui_vglite/inc/ui_vglite_configuration.h , based on your previous settings in ui/
inc/ui_vglite_configuration.h .

– Delete ui/inc/ui_vglite_configuration.h .

– Add the source files in ui_vglite/src to the project.

– Add the path ui_vglite/inc to the include path.

BSPwith NemaGFX

• [VEE Port configuration project]

– Set the dependency to the C Module MicroUI over NemaGFX to version 3.0.0.

• [BSP project]

– Delete ui/src/ui_drawing_nema.c .

– Replace the following calls with the new function names:

∗ UI_DRAWING_NEMA_initialize becomes UI_NEMA_initialize ,

∗ UI_DRAWING_NEMA_post_operation becomes UI_NEMA_post_operation ,

∗ UI_DRAWING_NEMA_configure_memcpy becomes UI_NEMA_configure_memcpy ,

3.6. VEE Porting Guide 1111

https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/9.0.0/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-nemagfx/3.0.0/

MicroEJ Documentation,

∗ UI_DRAWING_NEMA_start_memcpy becomes UI_NEMA_start_memcpy .

– Delete the properties files cco_microui.properties and cco_microui-nemagfx.properties .

– Build the VEE Port.

– Configure ui_nemagfx/inc/ui_nema_configuration.h , based on your previous settings in
ui/inc/ui_drawing_nema_configuration.h .

– Add the source files in ui_nemagfx/src to the project.

– Add the path ui_nemagfx/inc to the include path.

– If you were using the task mode, switch to interrupt mode.

∗ Remove your implementation of UI_DRAWING_NEMA_IMPL_operation_submitted .

∗ Remove the task that called UI_DRAWING_NEMA_post_operation .

∗ Look for any use of the macro NEMA_INTERRUPT_MODE , which denotes a differentia-
tion between the taskmode and the interruptmode. Thismacro is no longer used. Adjust your
code so that only the code targeting the interrupt mode remains.

∗ Follow the steps detailed in the section Implementation.

From 13.7.x to 14.0.1

Front Panel

• Fetch Front Panel Widgets 4.0.1 (it fetches by transitivity the UI Pack 14.0.1):

<dependency org=”ej.tool.frontpanel” name=”widget” rev=”4.0.1”/>

• Re-organize imports of all Java classes (classes MicroUIImageFormat , MicroUIImage and
MicroUIGraphicsContext have been extracted from LLUIPainter).

• Remove all calls to MicroUIGraphicsContext.setDrawingLimits . This method has been re-
moved as it is no longer needed.

• The doubleBufferFeature attribute has been removed from the Display widget. The buffer-
PolicyClass replaces it (see Buffer Refresh Strategy on the Simulator).

<ej.fp.widget.Display x=”0” y=”0” width=”480
→˓” height=”272” bufferPolicyClass=”ej.fp.widget.display.buffer.SwapDoubleBufferPolicy”/>

• The FlushVisualizerDisplay widget has been merged with the Display widget. To use this
functionality, use the Display widget instead of the FlushVisualizerDisplay widget in the
Front Panel .fp file and set the option ej.fp.display.flushVisualizer=true in the options of the
application launcher.

3.6. VEE Porting Guide 1112

https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/ej/tool/frontpanel/widget/4.0.1/
https://repository.microej.com/modules/com/microej/pack/ui/ui-pack/14.0.1/

MicroEJ Documentation,

BSPWithout GPU

• [VEE Port configuration project]

– Fetch the C Module MicroUI 4.0.1.

• [BSP project]

– Delete the VEE Port include folder (often /platform/inc).

– Delete the properties file cco_microui.properties .

– In the C project configuration, include the new C files ui_display_brs.c ,
ui_display_brs_legacy.c , ui_display_brs_predraw.c , ui_display_brs_single.c and
ui_rect_util.c .

– Read thedocumentationabout thedisplayBufferRefreshStrategy; thenconfigure theCmodule
by setting the right configuration in ui_display_brs_configuration.h .

– Comment the line #error ”This header must [...]” .

– The next actions depend on the available numbers of buffers allocated in the MCU memories
and if the front buffer is mapped on an MCU’s buffer (if not, that means the LCD device owns a
buffer). The following table redirects the next steps according to the display connection with
the MCU:

Table 79: Transmit and/or Swap actions
Buffers Mapped Next Actions
2 (1+1) no [Display “Transmit”]
2 yes [Display “Swap double buffer”]
3 yes [Display “Swap triple buffer”]
3 (2+1) no [Display “Transmit and Swap”]

• [Display “Transmit”]

– Set the value of the define UI_DISPLAY_BRS : UI_DISPLAY_BRS_SINGLE .

– Set the value of the define UI_DISPLAY_BRS_DRAWING_BUFFER_COUNT : 1 .

– Uncomment the define UI_DISPLAY_BRS_FLUSH_SINGLE_RECTANGLE .

– Change the signature and the implementation of the function flush: void LLUI_DIS-
PLAY_IMPL_flush(MICROUI_GraphicsContext* gc, uint8_t flush_identifier, const
ui_rect_t regions[], size_t length)

∗ Store (in a static field) the rectangle to flush (the array contains only one rectangle).

∗ Store (in a static field) the flush identifier.

∗ Unlock (immediately or wait for the LCD tearing signal interrupt) the flush task (hardware or
software) that will transmit the back buffer data to the front buffer.

∗ Remove the returned value (the back buffer address).

– At the end of the flush (in an interrupt or at the end of the software flush task), replace the call
to LLUI_DISPLAY_flushDone() with LLUI_DISPLAY_setBackBuffer() : it will unlock
the Graphics Engine. Give the back buffer address (same address as at start-up) and the flush
identifier.

• [Display “Swap double buffer”]

– Set the value of the define UI_DISPLAY_BRS : UI_DISPLAY_BRS_PREDRAW .

3.6. VEE Porting Guide 1113

https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui/4.0.1/

MicroEJ Documentation,

– Set the value of the define UI_DISPLAY_BRS_DRAWING_BUFFER_COUNT : 2 .

– Change the signature and the implementation of the function flush: void LLUI_DIS-
PLAY_IMPL_flush(MICROUI_GraphicsContext* gc, uint8_t flush_identifier, const
ui_rect_t regions[], size_t length)

∗ Store (in a static field) the back buffer address (LLUI_DISPLAY_getBufferAddress(&gc->image)).

∗ Store (in a static field) the flush identifier.

∗ Unlock (immediately or wait for the LCD tearing signal interrupt) the swap task (hardware or
software) that will swap the back buffer and the front buffer.

∗ Remove the static fields ymin and ymax (now useless).

∗ Remove the returned value (the back buffer address).

– Case of hardware swap (LCD swap interrupt): change the implementation of the LCD swap in-
terrupt:

∗ Remove all the code concerning the post-flush restoration (remove the flush task or the use of
a DMA). In both cases, the call to LLUI_DISPLAY_flushDone() is removed.

∗ Unlock the Graphics Engine by calling LLUI_DISPLAY_setBackBuffer() , giving the new
back buffer address and the flush identifier.

– Case of software swap (dedicated swap task): change the task actions:

∗ Swap back and front buffers.

∗ Wait for the end of the buffers swap: ensure the LCD driver does not use the old front buffer
anymore.

∗ Remove all the code concerning the post-flush restoration (the call to memcpy or the use of a
DMA). In both cases, the call to LLUI_DISPLAY_flushDone() is removed.

∗ Unlock the Graphics Engine by calling LLUI_DISPLAY_setBackBuffer() , giving the new
back buffer address and the flush identifier.

• [Display “Swap triple buffer”]

– Set the value of the define UI_DISPLAY_BRS : UI_DISPLAY_BRS_PREDRAW .

– Set the value of the define UI_DISPLAY_BRS_DRAWING_BUFFER_COUNT : 3 .

– Change the signature and the implementation of the function flush: void LLUI_DIS-
PLAY_IMPL_flush(MICROUI_GraphicsContext* gc, uint8_t flush_identifier, const
ui_rect_t regions[], size_t length)

∗ Store (in a static field) the back buffer address (LLUI_DISPLAY_getBufferAddress(&gc->image)).

∗ Store (in a static field) the flush identifier.

∗ Unlock (immediately or wait for the LCD tearing signal interrupt) the swap task that will swap
the buffers.

∗ Remove the static fields ymin and ymax (now useless).

∗ Remove the returned value (the back buffer address).

– In the swap task: change the task actions:

∗ Swap buffers.

∗ Remove all the code concerning the post-flush restoration (the call to memcpy or the use of a
DMA). In both cases, the call to LLUI_DISPLAY_flushDone() is removed.

3.6. VEE Porting Guide 1114

MicroEJ Documentation,

∗ Unlock the Graphics Engine by calling LLUI_DISPLAY_setBackBuffer() , giving the new
back buffer address and the flush identifier (the Graphics Engine can be unlocked immediately
because a buffer is freed for sure).

∗ Wait for the end of the buffers swap: ensure the LCD driver does not use the old front buffer
anymore.

• [Display “Transmit and Swap”]

– Set the value of the define UI_DISPLAY_BRS : UI_DISPLAY_BRS_PREDRAW .

– Set the value of the define UI_DISPLAY_BRS_DRAWING_BUFFER_COUNT : 2 .

– Uncomment the define UI_DISPLAY_BRS_FLUSH_SINGLE_RECTANGLE .

– Change the signature and the implementation of the function flush: void LLUI_DIS-
PLAY_IMPL_flush(MICROUI_GraphicsContext* gc, uint8_t flush_identifier, const
ui_rect_t regions[], size_t length)

∗ Store (in a static field) the rectangle to flush (the array contains only one rectangle).

∗ Store (in a static field) the back buffer address (LLUI_DISPLAY_getBufferAddress(&gc->image)).

∗ Store (in a static field) the flush identifier.

∗ Unlock (immediately or wait for the LCD tearing signal interrupt) the transmit & swap task that
will transmit the current backbuffer data to the front buffer, and thatwill swap thebackbuffers.

∗ Remove the returned value (the back buffer address).

– In the transmit & swap task: change the “transmit & swap” actions:

∗ Start the transmission of the current back buffer (called buffer A) data to the front buffer.

∗ Swap back buffer A and back buffer B.

∗ Wait for the end of the back buffers swap: ensure the LCD driver is now using the buffer A as the
transmission buffer.

∗ Remove all the code concerning to the post-flush restoration (the call to memcpy or the use of
a DMA). In both cases, the call to LLUI_DISPLAY_flushDone() is removed.

∗ Unlock the Graphics Engine by calling LLUI_DISPLAY_setBackBuffer() , giving the back
buffer B address and the flush identifier.

∗ Wait for the end of the transmission: ensure the LCD driver has finished to flush the data.

∗ (optional) Unlock again the Graphics Engine by calling LLUI_DISPLAY_setBackBuffer() ,
giving the buffer A address and the flush identifier:

· The call to LLUI_DISPLAY_setBackBuffer() returns false : thatmeans at least onedrawing
has been performed in the buffer B; there is nothing else to do.

· The call to LLUI_DISPLAY_setBackBuffer() returns true : that means no drawing has
started yet in the buffer B. In that case, the Graphics Engine will reuse the buffer A as a back
buffer, and the restoration of the past becomes useless. The back buffers swap is so canceled;
update the LCD driver status in consequence.

3.6. VEE Porting Guide 1115

MicroEJ Documentation,

BSPwith DMA2D

• [VEE Port configuration project]

– Fetch the C Module DMA2D 5.0.1.

• [BSP project]

– Prerequisite: follow the migration steps of BSPWithout GPU.

– Check the content of the configuration file ui_drawing_dma2d_configuration.h (a version-
ing has been added).

– Comment the line #error [...]” .

– According to the display Buffer Refresh Strategy, unlock theMicroUI Graphics Engine in the LCD
interrupt or the DMA2Dmemcpy callback (see C Module: MicroUI Over DMA2D).

BSPwith VGLite

• [VEE Port configuration project]

– Fetch the C Module VGLite 8.0.1.

• [BSP project]

– Prerequisite: follow the migration steps of BSPWithout GPU.

– Migrate VGLite library to the version 3.0.15_rev7.

– Modify the VGLite library 3.0.15_rev7 by applying the patch 3.0.15_rev7.patch (see
README.md near the patch file for more information).

– In the file vglite_window.c , add the function VGLITE_CancelSwapBuffers() and its proto-
type in vglite_window.h :

void VGLITE_CancelSwapBuffers(void) {
fb_idx = fb_idx == 0 ? (APP_BUFFER_COUNT - 1) : (fb_idx) - 1;

}

BSPwith NemaGFX

• [VEE Port configuration project]

– Fetch the C Module NemaGFX 2.0.1.

• [BSP project]

– Prerequisite: follow the migration steps of BSPWithout GPU.

– Check the content of the configuration file ui_drawing_nema_configuration.h (new version
2).

3.6. VEE Porting Guide 1116

https://repository.microej.com/modules/com/microej/clibrary/llimpl/display-dma2d/5.0.1/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/8.0.1/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-nemagfx/2.0.1/

MicroEJ Documentation,

From 13.6.x to 13.7.2

Front Panel

• (optional) Fetch explicitly the UI Pack 13.7.2 to use the new API of the UI Pack:

<dependency org=”com.microej.pack.ui” name=”ui-pack” rev=”13.7.2”>
<artifact name=”frontpanel” type=”jar”/>

</dependency>

BSPwithout GPU

• [VEE Port configuration project]

– Fetch the C Module MicroUI 3.1.1.

• [BSP project]

– Optionally, implement UI_DRAWING_freeImageResources(MICROUI_Image* image)
(single-output buffered image format) or UI_DRAWING_freeImageResources_X(MI-
CROUI_Image* image) (mulitple-output buffered image formats, where X is the image for-
mat identifier) to free the resources associated with a buffered image when it is closed.

BSPwith DMA2D

• [VEE Port configuration project]

– Fetch the C Module DMA2D 4.1.0.

• [BSP project]

– Prerequisite: follow the migration steps of BSP without GPU.

BSPwith VGLite

• [VEE Port configuration project]

– Fetch the C Module VGLite 7.2.0.

• [BSP project]

– Prerequisite: follow the migration steps of BSP without GPU.

BSPwith NemaGFX

• [VEE Port configuration project]

– Fetch the C Module NemaGFX 1.2.0.

• [BSP project]

– Prerequisite: follow the migration steps of BSP without GPU.

– Review all options of ui_drawing_nema_configuration.h (version 2).

3.6. VEE Porting Guide 1117

https://repository.microej.com/modules/com/microej/pack/ui/ui-pack/13.7.2/
https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui/3.1.1/
https://repository.microej.com/modules/com/microej/clibrary/llimpl/display-dma2d/4.1.0/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/7.2.0/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-nemagfx/1.2.0/

MicroEJ Documentation,

From 13.5.x to 13.6.2

Front Panel

• (optional) Fetch Front Panel Widgets 3.0.0 to use the new features of the Front Panel Widget
library:

<dependency org=”ej.tool.frontpanel” name=”widget” rev=”3.0.0”/>

• (optional) Fetch explicitly the UI Pack 13.6.2 to use the new API of the UI Pack:

<dependency org=”com.microej.pack.ui” name=”ui-pack” rev=”13.6.2”>
<artifact name=”frontpanel” type=”jar”/>

</dependency>

BSPwith VGLite

These steps are for a VEE Port that manages its own implementation of
LLUI_DISPLAY_impl.h (that did not use the old implementation which was available
in this C Module):

• [VEE Port configuration project]

– Fetch the C Module VGLite 7.1.0.

– (optional) Fetch C Module RT500 7.0.0

• [BSP project]

– Delete the properties file cco_microui-vglite.properties .

– Delete the following files from the file-system and from the C project configuration:

∗ inc/display_utils.h

∗ inc/display_vglite.h

∗ inc/drawing_vglite.h

∗ inc/vglite_path.h

∗ src/display_stub.c

∗ src/display_utils.c

∗ src/display_vglite.c

∗ src/drawing_vglite.c

∗ src/vglite_path.c

– Add the new files to the C project configuration:

∗ src/ui_drawing_vglite_path.c

∗ src/ui_drawing_vglite_process.c

∗ src/ui_vglite.c

– Review all imports of the removed header files.

– In the implementation of LLUI_DISPLAY_impl.h , call UI_VGLITE_init() during the
initialization step.

3.6. VEE Porting Guide 1118

https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/ej/tool/frontpanel/widget/3.0.0/
https://repository.microej.com/modules/com/microej/pack/ui/ui-pack/13.6.2/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/7.1.0/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-mimxrt595-evk/7.0.0

MicroEJ Documentation,

– In the GPU interrupt rountine, call UI_VGLITE_IRQHandler() .

– Review all options of ui_vglite_configuration.h .

– Implement UI_VGLITE_IMPL_notify_gpu_xxx() instead of DISPLAY_IMPL_no-
tify_gpu_xxx() .

– Implement UI_VGLITE_IMPL_error() instead of DISPLAY_IMPL_error() .

– Change all calls to DISPLAY_VGLITE_xxx() functions to UI_VGLITE_xxx() functions.

– Change all calls to DRAWING_VGLITE_xxx() functions to UI_DRAW-
ING_VGLITE_PROCESS_xxx() functions.

– Change all calls to VGLITE_PATH_xxx() functions to UI_DRAW-
ING_VGLITE_PATH_xxx() functions.

– Change all calls to DISPLAY_UTILS_xxx() functions to UI_VGLITE_xxx() functions.

BSPWith MCU i.MX RT595

These steps are for a VEE Port that uses the implementation of LLUI_DISPLAY_impl.h
which was available in the C Module VGLite:

• [VEE Port configuration project]

– Fetch the C Module VGLite 7.1.0.

– Fetch C Module RT500 7.0.0

• [BSP project]

– Follow the steps of BSP with VGLite (described above) except the calls to UI_VGLITE_init()
and UI_VGLITE_IRQHandler() .

– Implement DISPLAY_DMA_IMPL_notify_dma_xxx() instead of DIS-
PLAY_IMPL_notify_dma_xxx() .

BSPwith NemaGFX

• [VEE Port configuration project]

– Fetch the C Module NemaGFX 1.0.0.

• [BSP project]

– Add all the C files available in src folder.

– Configure the C project to include the inc folder.

– Read the comments in ui_drawing_nema_configuration.h and configure the Cmodule.

3.6. VEE Porting Guide 1119

https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/7.1.0/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-mimxrt595-evk/7.0.0
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-nemagfx/1.0.0/

MicroEJ Documentation,

From 13.4.x to 13.5.1

Front Panel

• (optional) Fetch explicitly the UI Pack 13.5.1 to use the new API of the UI Pack:

<dependency org=”com.microej.pack.ui” name=”ui-pack” rev=”13.5.1”>
<artifact name=”frontpanel” type=”jar”/>

</dependency>

• Replace any calls to LLUIPainter.setDrawer() and LLDWPainter.setDrawer() to
LLUIDisplay.Instance.registerUIDrawer() .

• Replace any calls to LLUIPainter.getDrawer() and LLDWPainter.getDrawer() to
LLUIDisplay.Instance.getUIDrawer() .

• Replace any calls to LLUIDisplay.getDWDrawerSoftware() to LLUIDisplay.Instance.
getUIDrawerSoftware() .

• Implementation of the interface UIDrawingDefault : implement the interface UIDrawing in-
stead.

• Implementation of the interfaces DWDrawing and DWDrawingDefault : implement the in-
terface UIDrawing instead.

• Implementation of the service BufferedImageProvider : implement handledFormat() and
remove the parameter format from newBufferedImage() .

• Replace any occurrences of MICROUI_IMAGE_FORMAT_LCD by MICROUI_IM-
AGE_FORMAT_DISPLAY .

BSPwithout GPU

• [VEE Port configuration project]

– Fetch the C Module MicroUI 3.0.0.

• [BSP project]

– Delete the VEE Port include folder (often /platform/inc).

– Delete the properties file cco_microui.properties .

– In the C project configuration, include the new C files ui_drawing.c , ui_image_drawing.c
and ui_drawing_stub.c .

BSPwith DMA2D

• Prerequisite: follow the migration steps of BSP without GPU.

• [VEE Port configuration project]

– Fetch the C Module DMA2D 4.0.0.

• [BSP project]

– Delete the properties file cco_display-dma2d.properties .

– Read the comments about the cache in drawing_dma2d_configuration.h .

3.6. VEE Porting Guide 1120

https://repository.microej.com/modules/com/microej/pack/ui/ui-pack/13.5.1/
https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui/3.0.0/
https://repository.microej.com/modules/com/microej/clibrary/llimpl/display-dma2d/4.0.0/

MicroEJ Documentation,

– Uncomment the expected define DRAWING_DMA2D_CACHE_MANAGEMENT (en-
able or disable the cache management).

– Delete the C files drawing_dma2d.h and drawing_dma2d.c and remove them from the C
project configuration.

– In the C project configuration, include the new C file ui_drawing_dma2d.c .

– Replace the import drawing_dma2d.h by ui_drawing_dma2d.h .

– Replace the calls to functions DRAWING_DMA2D_xxx() by UI_DRAW-
ING_DMA2D_xxx() .

BSPwith VGLite

Note: The C Module is designed to target the NXP i.MX RT500; however it can be locally customized for other
boards (see [Custom project])

• Prerequisite: follow the migration steps of BSP without GPU.

• [VEE Port configuration project]

– Fetch the C Module VGLite 6.0.1.

• [BSP project]

– Delete the properties file cco_microui-vglite.properties .

– Delete the C files vg_drawer.h and vg_drawer.c and remove them from the C project config-
uration.

– Verify the options in display_configuration.h .

– In the C project configuration, include the new C file ui_drawing_vglite.c .

From 13.3.x to 13.4.1

BSPwithout GPU

• [VEE Port configuration project]

– Fetch the C Module MicroUI 2.0.1.

• [BSP project]

– Delete the properties file cco_microui.properties .

3.6. VEE Porting Guide 1121

https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus/i-mx-rt500-crossover-mcu-with-arm-cortex-m33-dsp-and-gpu-cores:i.MX-RT500
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/6.0.1/
https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui/2.0.1/

MicroEJ Documentation,

BSPwith DMA2D

• Prerequisite: follow the migration steps of BSP without GPU.

• [VEE Port configuration project]

– Fetch the C Module DMA2D 3.0.2.

• [BSP project]

– Delete the properties file cco_display-dma2d.properties .

BSPwith VGLite

Note: The C Module is designed to target the NXP i.MX RT500; however it can be locally customized for other
boards (see [Custom project])

• Prerequisite: follow the migration steps of BSP without GPU.

• [VEE Port configuration project]

– Fetch the C Module VGLite 5.0.1.

• [BSP project]

– Migrate VGLite library to the version 3.0.15_rev4.

– Modify the VGLite library 3.0.15_rev4 by applying the patch 3.0.15_rev4.patch (see
README.md near patch file for more information).

From 13.2.x to 13.3.1

Front Panel

• (optional) Fetch explicitly the UI Pack 13.3.1 to use the new API of the UI Pack:

<dependency org=”com.microej.pack.ui” name=”ui-pack” rev=”13.3.1”>
<artifact name=”frontpanel” type=”jar”/>

</dependency>

BSPwithout GPU

• [VEE Port configuration project]

– Fetch the C Module MicroUI 2.0.0.

• [BSP project]

– Delete the properties file cco_microui.properties .

3.6. VEE Porting Guide 1122

https://repository.microej.com/modules/com/microej/clibrary/llimpl/display-dma2d/3.0.2/
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus/i-mx-rt500-crossover-mcu-with-arm-cortex-m33-dsp-and-gpu-cores:i.MX-RT500
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/5.0.1/
https://repository.microej.com/modules/com/microej/pack/ui/ui-pack/13.3.1/
https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui/2.0.0/

MicroEJ Documentation,

BSPwith DMA2D

• Prerequisite: follow the migration steps of BSP without GPU.

• [VEE Port configuration project]

– Fetch the C Module DMA2D 3.0.0.

• [BSP project]

– Delete the properties file cco_display-dma2d.properties .

BSPwith VGLite

Note: The C Module is designed to target the NXP i.MX RT500; however it can be locally customized for other
boards (see [Custom project]).

• Prerequisite: follow the migration steps of BSP without GPU.

• [VEE Port configuration project]

– Fetch the C Module VGLite 3.0.0.

• [BSP project]

– Read the comments in display_configuration.h and configures the Cmodule.

– Add all C files available in src folder.

– Configure the C project to include the inc folder.

– Modify the VGLite library 3.0.11_rev3 by applying the patch 3.0.11_rev3.patch (see
README.md near patch file for more information).

• [Custom project]

– Modify or remove theC files display_dma.c , display_frambuffer.c , LLUI_DISPLAY_impl.
c , display_dma.c , vglite_support.c and vglite_window.c .

From 13.1.x to 13.2.0

Front Panel

• (optional) Fetch explicitly the UI Pack 13.2.0 to use the new API of the UI Pack:

<dependency org=”com.microej.pack.ui” name=”ui-pack” rev=”13.2.0”>
<artifact name=”frontpanel” type=”jar”/>

</dependency>

3.6. VEE Porting Guide 1123

https://repository.microej.com/modules/com/microej/clibrary/llimpl/display-dma2d/3.0.0/
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus/i-mx-rt500-crossover-mcu-with-arm-cortex-m33-dsp-and-gpu-cores:i.MX-RT500
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/3.0.0/
https://repository.microej.com/modules/com/microej/pack/ui/ui-pack/13.2.0/

MicroEJ Documentation,

From 13.0.x to 13.1.0

Front Panel

• (optional) Fetch Front Panel Widgets 2.1.0 to use the new features of the Front Panel Widget
library (it fetches by transitivity the UI Pack 13.1.0):

<dependency org=”ej.tool.frontpanel” name=”widget” rev=”2.1.0”/>

• (optional) Or fetch explicitly the UI Pack 13.1.0 to use the new API of the UI Pack:

<dependency org=”com.microej.pack.ui” name=”ui-pack” rev=”13.1.0”>
<artifact name=”frontpanel” type=”jar”/>

</dependency>

BSPwithout GPU

• [VEE Port configuration project]

– Fetch the C Module MicroUI 1.1.1.

• [BSP project]

– Delete the properties file cco_microui.properties .

– Add a cast when using MICROUI_Image* object: (MICROUI_ImageFormat)im-
age->format .

– Remove parameter MICROUI_GraphicsContext* when calling LLUI_DISPLAY_set-
DrawingLimits() .

– Ensure to call LLUI_DISPLAY_setDrawingLimits() before calling LLUI_DISPLAY_set-
DrawingStatus() or LLUI_DISPLAY_notifyAsynchronousDrawingEnd() .

– (optional) Addan implementationof LLUI_DISPLAY_IMPL_image_heap_xxx to control
the images heap allocation; by default the internal Graphics Engine’s allocator is used. Another
implementation is also available in theMicroUI C module.

– (optional) Add the UI event logger available in theMicroUI C module.

BSPwith DMA2D

• Prerequisite: follow the migration steps of BSP without GPU.

• [VEE Port configuration project]

– Fetch the C Module DMA2D 2.1.0.

• [BSP project]

– Delete the properties file cco_display-dma2d.properties .

3.6. VEE Porting Guide 1124

https://repository.microej.com/modules/ej/tool/frontpanel/widget/2.1.0/
https://repository.microej.com/modules/com/microej/pack/ui/ui-pack/13.1.0/
https://repository.microej.com/modules/com/microej/pack/ui/ui-pack/13.1.0/
https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui/1.1.1/
https://repository.microej.com/modules/com/microej/clibrary/llimpl/display-dma2d/2.1.0/

MicroEJ Documentation,

From 12.x to 13.0.7

VEE Port Configuration Project

• Update Architecture version: 7.16.0 or higher.

• Add the following module in themodule description file:

<dependency org=”com.microej.clibrary.llimpl” name=”microui” rev=”1.0.3”/>

• If not already set, set the ea:property bsp.project.microej.dir in themodule ivy file to config-
ure the BSP output folder where is extracted the module.

Hint: Update the BSP with the newMicroUI C module files as described here.

Hardware Accelerator

• Open -configuration project > display > display.properties

• Remove optional property hardwareAccelerator . If old value was dma2d , add the following
module in themodule description file:

<dependency org=”com.microej.clibrary.llimpl” name=”display-dma2d” rev=”1.0.8”/>

• For the hardware accelerator DMA2D, please consult STM32F7Discovery board updates. Add
the file lldisplay_dma2d.c , the global defines DRAWING_DMA2D_BPP=16 (or another
value) and STM32F4XX or STM32F7XX

• For the others hardware accelerators, please contact MicroEJ support.

Hint: Update the BSP with the new Cmodules files as described here.

Front Panel

This chapter resumes the changes to perform. The available changes in Front Panel API are
described in next chapter.

• If not already done, follow the Front Panel version 6 migration procedure detailed in chapter
From 11.x to 12.1.5.

• Fetch the new Front Panel Widget library:

<dependency org=”ej.tool.frontpanel” name=”widget” rev=”2.0.0”/>

• ej.fp.event.MicroUIButtons hasbeen renamed in ej.microui.event.EventButton , andall oth-
ers ej.fp.event.MicroUIxxx in ej.microui.event.Eventxxx

• Display abstract class AbstractDisplayExtension (class to extendwidget Displaywhen target-
ing a custom display) has been converted on the interface DisplayExtension . Somemethods
names have changed and now take in parameter the display widget.

3.6. VEE Porting Guide 1125

https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui/1.0.3/
https://repository.microej.com/modules/com/microej/clibrary/llimpl/display-dma2d/1.0.8/
https://repository.microej.com/modules/com/microej/clibrary/llimpl/display-dma2d/1.0.8/

MicroEJ Documentation,

Front Panel API

• ej.drawing.DWDrawing

– [Added]Equivalentof dw_drawing.h and dw_drawing_soft.h** : allows to implement somedrawing
algorithms and/or to use the ones provided by the Graphics Engine. The drawing methods are related
to the library ej.api.drawing .

– [Added] Interface DWDrawingDefault : default implementation of DWDrawing which calls the
Graphics Engine algorithms.

• ej.drawing.LLDWPainter

– [Added] Equivalent ofmodule com.microej.clibrary.llimpl#microui (LLDW_PAINTER_impl.c): im-
plements all ej.api.drawing natives and redirect them to the interface DWDrawing .

– [Added] setDrawer(DWDrawing) : allows to configure the implementation of DWDrawing the LLD-
WPainter has to use. When no drawer is configured, LLDWPainter redirects all drawings to the in-
ternal Graphics Engine software algorithms.

• ej.fp.event.MicroUIButtons

– [Removed] Replaced by EventButton .

• ej.fp.event.MicroUICommand

– [Removed] Replaced by EventCommand .

• ej.fp.event.MicroUIEventGenerator

– [Removed] Replaced by LLUIInput .

• ej.fp.event.MicroUIGeneric

– [Removed] Replaced by EventGeneric .

• ej.fp.event.MicroUIPointer

– [Removed] Replaced by EventPointer .

• ej.fp.event.MicroUIStates

– [Removed] Replaced by EventState .

• ej.fp.event.MicroUITouch

– [Removed] Replaced by EventTouch .

• ej.fp.widget.MicroUIDisplay

– [Removed] Replaced by LLUIDisplayImpl . Abstract widget display class has been replaced by an
interface that a widget (which should simulate a display) has to implement to be compatible with the
Graphics Engine.

– [Removed] AbstractDisplayExtension , all available implementationsand setExtensionClass(String)
: the standard display formats (RGB565, etc.) are internally managed by the Graphics Engine. For
generic formats, some APIs are available in LLUIDisplayImpl .

– [Removed] finalizeConfiguration() , getDisplayHeight() , getDisplayWidth() , getDrawingBuffer() ,
setDisplayWidth(int) , setDisplayHeight(int) , start() : LLUIDisplayImpl is not an abstract widget
anymore, these notions are widget dependent.

– [Removed] flush() .

– [Removed] getNbBitsPerPixel() .

– [Removed] switchBacklight(boolean) .

3.6. VEE Porting Guide 1126

https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui

MicroEJ Documentation,

• ej.fp.widget.MicroUILED

– [Removed] Replaced by LLUILedImpl . Abstract widget LED class has been replaced by an interface
that a widget (which should simulate a LED) has to implement to be compatible with the Graphics En-
gine.

– [Removed] finalizeConfiguration() : LLUILedImpl is not an abstract widget anymore, this notion is
widget dependent.

– [Removed] getID() : MicroUI uses the widget (which implements the interface LLUILedImpl)’s label
to retrieve the LED. The LED labels must be integers from 0 to n-1 .

• ej.microui.display.LLUIDisplay

– [Added] Equivalent of LLUI_DISPLAY.h : several functions to interact with the Graphics Engine.

– [Added] blend(int,int,int) : blends two ARGB colors and opacity level.

– [Added] convertARGBColorToColorToDraw(int) : crops given color to display capacities.

– [Added] getDisplayPixelDepth() : replaces MicroUIDisplay.getNbBitsPerPixel() .

– [Added] getDWDrawerSoftware() : gives the unique instance of Graphics Engine’s internal software
drawer (instance of DWDrawing).

– [Added] getUIDrawerSoftware() : gives the unique instance of Graphics Engine’s internal software
drawer (instance of UIDrawing).

– [Added] mapMicroUIGraphicsContext(byte[]) and newMicroUIGraphicsContext(byte[]) : maps
the graphics context byte array (GraphicsContext.getSNIContext()) on an object which represents the
graphics context in front panel.

– [Added] mapMicroUIImage(byte[]) and newMicroUIImage(byte[]) : maps the image byte array (Im-
age.getSNIContext()) on an object which represents the image in front panel.

– [Added] requestFlush(boolean) : requests a call to LLUIDisplayImpl.flush() .

– [Added] requestRender(void) : requests a call to Displayable.render() .

• ej.microui.display.LLUIDisplayImpl

– [Added] Replaces MicroUIDisplay , equivalent of LLUI_DISPLAY_impl.h .

– [Added] initialize() : asks to initialize the widget and to return a front panel image where the Graphics
Engine will perform the MicroUI drawings.

– [Changed] flush(MicroUIGraphicsContext, Image, int, int, int, int) : asks to flush the graphics con-
text drawn by MicroUI in image returned by initialize() .

• ej.microui.display.LLUIPainter

– [Added] Equivalent of module com.microej.clibrary.llimpl#microui (LLUI_PAINTER_impl.c): im-
plements all ej.api.microui natives and redirect them to the interface UIDrawing .

– [Added] MicroUIGraphicsContext : representation of a MicroUI GraphicsContext in front panel. This
interface (implemented by the Graphics Engine) provides several function to get information on graph-
ics context, clip, etc.

– [Added] MicroUIGraphicsContext#requestDrawing() : allows to take the hand on the back buffer.

– [Added] MicroUIImage : representationof aMicroUI Image in front panel. This interface (implemented
by the Graphics Engine) provides several function to get information on image.

– [Added] setDrawer(UIDrawing) : allows to configure the implementation of UIDrawing the
LLUIPainter has to use. When no drawer is configured, LLUIPainter redirects all drawings to the
internal Graphics Engine software algorithms.

3.6. VEE Porting Guide 1127

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html#getSNIContext--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Image.html#getSNIContext--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Image.html#getSNIContext--
https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Image.html

MicroEJ Documentation,

• ej.microui.display.UIDrawing

– [Added] Equivalent of ui_drawing.h and ui_drawing_soft.h** : allows to implement some drawing
algorithms and/or to use the ones provided by the Graphics Engine. The drawing methods are related
to the library ej.api.microui .

– [Added] Interface UIDrawingDefault : default implementationof UIDrawing which calls theGraphics
Engine algorithms.

• ej.microui.event.EventButton

– [Added] Replaces MicroUIButton .

• ej.microui.event.EventCommand

– [Added] Replaces MicroUICommand .

• ej.microui.event.EventGeneric

– [Added] Replaces MicroUIGeneric .

• ej.microui.event.EventPointer

– [Added] Replaces MicroUIPointer .

• ej.microui.event.EventQueue

– [Added] Dedicated events queue used by MicroUI.

• ej.microui.event.EventState

– [Added] Replaces MicroUIState .

• ej.microui.event.EventTouch

– [Added] Replaces MicroUITouch .

• ej.microui.event.LLUIInput

– [Added] Replaces MicroUIEventGenerator .

• ej.microui.led.LLUILedImpl

– [Added] Replaces MicroUILED .

Image Generator

This chapter resumes the changes to perform. The available changes in Image Generator API
are described in next chapter.

This chapter only concerns VEE Port with a custom display. In this case a dedicated image gen-
erator extension project is available. This project must be updated.

• Reorganize project to use source folders src/main/java and src/main/resources

• Add new module.ivy file:

<ivy-module version=”2.0” xmlns:ea=”http://www.easyant.org” xmlns:m=”http://
→˓www.easyant.org/ivy/maven” xmlns:ej=”https://developer.microej.com” ej:version=”2.0.0”>

<info organisation=
→˓”com.is2t.microui” module=”imageGenerator-xxx” status=”integration” revision=”1.0.0”>

<ea:build␣
→˓organisation=”com.is2t.easyant.buildtypes” module=”build-std-javalib” revision=”2.+”/>

(continues on next page)

3.6. VEE Porting Guide 1128

MicroEJ Documentation,

(continued from previous page)

</info>

<configurations defaultconfmapping=”default->default;provided->provided”>
<conf name=

→˓”default” visibility=”public” description=”Runtime dependencies to other artifacts”/>
<conf name=”provided” visibility=

→˓”public” description=”Compile-time dependencies to APIs provided by the VEE Port”/>
<conf name=”documentation

→˓” visibility=”public” description=”Documentation related to the artifact (javadoc, PDF)”/>
<conf name=”source” visibility=”public” description=”Source code”/>
<conf name=

→˓”dist” visibility=”public” description=”Contains extra files like README.md, licenses”/>
<conf name=”test” visibility=

→˓”private” description=”Dependencies for test execution. It is not required for normal use␣
→˓of the application, and is only available for the test compilation and execution phases.”/>
</configurations>

<publications/>

<dependencies>
<dependency org=”com.microej.pack.ui” name=”ui-pack” rev=”[UI Pack version]”>

<artifact name=”imageGenerator” type=”jar”/>
</dependency>

</dependencies>
</ivy-module>

The artifact name prefix must be imageGenerator- .

• Update project classpath: remove classpath variable IMAGE-GENERATOR-x.x andadd ivy
file dependency

• Instead of implementing GenericDisplayExtension , the extension class must extend
BufferedImageLoader class; check class methods to override.

• Add the file src/main/resources/META-INF/services/com.microej.tool.ui.generator.
MicroUIRawImageGeneratorExtension ; this file has to specify the class which extends the
BufferedImageLoader class, for instance:

com.microej.generator.MyImageGeneratoExtension

• Build the easyant project

• Copy the jar in the VEE Port -configuration project > dropins folder

• Rebuild the VEE Port after any changes

Image Generator API

• com.is2t.microej.microui.image.CustomDisplayExtension

– [Removed] Replaced by ImageConverter and MicroUIRawImageGeneratorExtension .

• com.is2t.microej.microui.image.DisplayExtension

– [Removed]

• com.is2t.microej.microui.image.GenericDisplayExtension

– [Removed] Replaced by ImageConverter and MicroUIRawImageGeneratorExtension .

3.6. VEE Porting Guide 1129

MicroEJ Documentation,

• com.microej.tool.ui.generator.BufferedImageLoader

– [Added] Pixelated image loader (PNG, JPEG etc.).

• com.microej.tool.ui.generator.Image

– [Added] Representation of an image listed in a images.list file.

• com.microej.tool.ui.generator.ImageConverter

– [Added] Generic converter to convert an image in an output stream.

• com.microej.tool.ui.generator.MicroUIRawImageGeneratorExtension

– [Added] Graphics Engine RAW image converter: used when the image (listed in images.list) targets a
RAW format known by the Graphics Engine.

Font

• Open optional font(s) in -configuration project > microui/**/*.ejf

• Removeall Dynamic styles (select None or Built-in forbold, italic andunderline); thenumber
of generated fonts must be 1 (the feature to render Dynamic styles at runtime have been
removed)

• Save the file(s)

BSP

This chapter resumes the changes to perform. The available changes in LLAPI are described in
next chapter.

• Delete all VEE Port header files (folder should be set in -configuration project > bsp >

bsp.properties > property output.dir)

• If not possible to delete this folder, delete all UI headers files:

– intern/LLDISPLAY*

– intern/LLINPUT*

– intern/LLLEDS*

– LLDISPLAY*

– LLINPUT*

– LLLEDS*

• Replace all #include ”LLDISPLAY.h” , #include ”LLDISPLAY_EXTRA.h” and #in-
clude ”LLDISPLAY_UTILS.h” by #include ”LLUI_DISPLAY.h”

• Replaceall #include ”LLDISPLAY_impl.h” , #include ”LLDISPLAY_EXTRA_drawing.
h” and #include ”LLDISPLAY_EXTRA_impl.h” by #include ”LLUI_DISPLAY_impl.
h”

• Replace all LLDISPLAY_EXTRA_IMAGE_xxx by MICROUI_IMAGE_FOR-
MAT_xxx

• All LLDISPLAY_IMPL_xxx functions have been renamed in LLUI_DIS-
PLAY_IMPL_xxx

3.6. VEE Porting Guide 1130

MicroEJ Documentation,

• LLUI_DISPLAY_IMPL_initialize has now the paremeter LLUI_DISPLAY_SInitData*
init_data ; fill it as explained in C doc.

• Implement new functions void LLUI_DISPLAY_IMPL_binarySemaphoreTake(void*
sem) and void LLUI_DISPLAY_IMPL_binarySemaphoreGive(void* sem, bool un-
der_isr)

• Signature of LLUI_DISPLAY_IMPL_flush has changed

• All LLDISPLAY_EXTRA_IMPL_xxx functions have been renamed in LLUI_DIS-
PLAY_IMPL_xxx

• Fix some functions signatures (LLUI_DISPLAY_IMPL_hasBacklight() , etc)

• Remove the functions LLDISPLAY_IMPL_getGraphicsBufferAddress , LLDIS-
PLAY_IMPL_getHeight , LLDISPLAY_IMPL_getWidth , LLDISPLAY_IMPL_syn-
chronize , LLDISPLAY_EXTRA_IMPL_waitPreviousDrawing , LLDISPLAY_EX-
TRA_IMPL_error

• Add the end of asynchronous flush copy, call LLUI_DISPLAY_flushDone

• Add the files LLUI_PAINTER_impl.c and LLDW_PAINTER_impl.c in your C configu-
ration project

• Replace the prefix LLINPUT in all header files, functions and defines by the new prefix
LLUI_INPUT

• Replace the prefix LLLEDS in all header files, functions and defines by the new prefix
LLUI_LED

• Replace the prefix LLDISPLAY in all header files, functions and defines by the new prefix
LLUI_DISPLAY

LLAPI

• dw_drawing_soft.h

– [Added] List of internal Graphics Engine software algorithms to perform some drawings (related to li-
brary ej.api.drawing).

• dw_drawing.h

– [Added] List of ej.api.drawing library’s drawing functions to optionally implement in VEE Port.

• LLDISPLAY.h and intern/LLDISPLAY.h

– [Removed]

• LLDISPLAY_DECODER.h and intern/LLDISPLAY_DECODER.h

– [Removed]

• LLDISPLAY_EXTRA.h and intern/LLDISPLAY_EXTRA.h merged in LLUI_PAINTER_impl.h
and LLDW_PAINTER_impl.h

– [Changed] LLDISPLAY_SImage : replaced by MICROUI_Image .

– [Removed] LLDISPLAY_SRectangle , LLDISPLAY_SDecoderImageData , LLDIS-
PLAY_SDrawImage , LLDISPLAY_SFlipImage , LLDISPLAY_SScaleImage and LLDIS-
PLAY_SRotateImage

• LLDISPLAY_EXTRA_drawing.h

– [Removed]

3.6. VEE Porting Guide 1131

MicroEJ Documentation,

• LLDISPLAY_EXTRA_impl.h and intern/LLDISPLAY_EXTRA_impl.h merged in
LLUI_DISPLAY_impl.h , ui_drawing.h and dw_drawing.h

– [Changed] LLDISPLAY_EXTRA_IMPL_setContrast(int32_t) : replaced by LLUI_DIS-
PLAY_IMPL_setContrast(uint32_t) (_optional_).

– [Changed] LLDISPLAY_EXTRA_IMPL_getContrast(void) : replaced by LLUI_DIS-
PLAY_IMPL_getContrast(void) (_optional_).

– [Changed] LLDISPLAY_EXTRA_IMPL_hasBackLight(void) : replaced by LLUI_DIS-
PLAY_IMPL_hasBacklight(void) (_optional_).

– [Changed] LLDISPLAY_EXTRA_IMPL_setBacklight(int32_t) : replaced by LLUI_DIS-
PLAY_IMPL_setBacklight(uint32_t) (_optional_).

– [Changed] LLDISPLAY_EXTRA_IMPL_getBacklight(void) : replaced by LLUI_DIS-
PLAY_IMPL_getBacklight(void) (_optional_).

– [Changed] LLDISPLAY_EXTRA_IMPL_isColor(void) : replaced by LLUI_DIS-
PLAY_IMPL_isColor(void) (_optional_).

– [Changed] LLDISPLAY_EXTRA_IMPL_getNumberOfColors(void) : replaced by LLUI_DIS-
PLAY_IMPL_getNumberOfColors(void) (_optional_).

– [Changed] LLDISPLAY_EXTRA_IMPL_isDoubleBuffered(void) : replaced by LLUI_DIS-
PLAY_IMPL_isDoubleBuffered(void) (_optional_).

– [Changed] LLDISPLAY_EXTRA_IMPL_getBacklight(void) : replaced by LLUI_DIS-
PLAY_IMPL_getBacklight(void) (_optional_).

– [Changed] LLDISPLAY_EXTRA_IMPL_fillRect(void*,int32_t,void*,int32_t) : replaced by
UI_DRAWING_fillRectangle(MICROUI_GraphicsContext*,jint,jint,jint,jint) (_optional_).

– [Changed] LLDISPLAY_EXTRA_IMPL_drawImage(void*,int32_t,void*,int32_t,void*) : re-
placed by UI_DRAWING_drawImage(MICROUI_GraphicsContext*,MICROUI_Image*,jint,
jint,jint,jint,jint,jint,jint) (_optional_).

– [Changed] LLDISPLAY_EXTRA_IMPL_flipImage(void*,int32_t,void*,int32_t,void*)
: replaced by DW_DRAWING_drawFlippedImage(MICROUI_GraphicsContext*,
MICROUI_Image*,jint,jint,jint,jint,jint,jint,DRAWING_Flip,jint) (_optional_).

– [Changed] LLDISPLAY_EXTRA_IMPL_scaleImage(void*,int32_t,void*,int32_t,void*) :
replaced by DW_DRAWING_drawScaledImageNearestNeighbor(MICROUI_GraphicsContext*,
MICROUI_Image*,jint,jint,jfloat,jfloat,jint) and DW_DRAWING_drawScaledImageBilinear(MICROUI_GraphicsContext*,
MICROUI_Image*,jint,jint,jfloat,jfloat,jint) (_optional_).

– [Changed] LLDISPLAY_EXTRA_IMPL_rotateImage(void*,int32_t,void*,int32_t,void*) : re-
placed by DW_DRAWING_drawRotatedImageNearestNeighbor(MICROUI_GraphicsContext*,
MICROUI_Image*,jint,jint,jint,jint,jfloat,jint) and DW_DRAWING_drawRotatedImageBilinear(MICROUI_GraphicsContext*,
MICROUI_Image*,jint,jint,jint,jint,jfloat,jint) (_optional_).

– [Changed] LLDISPLAY_EXTRA_IMPL_convertARGBColorToDisplayColor(int32_t) and
LLDISPLAY_EXTRA_IMPL_convertDisplayColorToARGBColor(int32_t) : replaced re-
spectively by LLUI_DISPLAY_IMPL_convertARGBColorToDisplayColor(uint32_t) and
LLUI_DISPLAY_IMPL_convertDisplayColorToARGBColor(uint32_t) (_optional_).

– [Changed] LLDISPLAY_EXTRA_IMPL_prepareBlendingOfIndexedColors(void*,void*) : re-
placed by LLUI_DISPLAY_IMPL_prepareBlendingOfIndexedColors(uint32_t*,uint32_t*)
(_optional_).

3.6. VEE Porting Guide 1132

MicroEJ Documentation,

– [Changed] LLDISPLAY_EXTRA_IMPL_decodeImage(int32_t,int32_t,int32_t,void*) : re-
placed by LLUI_DISPLAY_IMPL_decodeImage(uint8_t*,uint32_t,MICROUI_ImageFormat,
MICROUI_Image*,bool*) (_optional_).

– [Removed] LLDISPLAY_EXTRA_IMPL_getGraphicsBufferMemoryWidth(void) and LLDIS-
PLAY_EXTRA_IMPL_getGraphicsBufferMemoryHeight(void) : replaced by elements in struc-
ture LLUI_DISPLAY_SInitData (_optional_).

– [Removed] LLDISPLAY_EXTRA_IMPL_backlightOn(void) and LLDISPLAY_EX-
TRA_IMPL_backlightOff(void) .

– [Removed] LLDISPLAY_EXTRA_IMPL_enterDrawingMode(void) and LLDISPLAY_EX-
TRA_IMPL_exitDrawingMode(void) .

– [Removed] LLDISPLAY_EXTRA_IMPL_error(int32_t) .

– [Removed] LLDISPLAY_EXTRA_IMPL_waitPreviousDrawing(void) : implementation has to
call LLUI_DISPLAY_notifyAsynchronousDrawingEnd(bool) instead.

• LLDISPLAY_impl.h and intern/LLDISPLAY_impl.h merged in LLUI_DISPLAY_impl.h

– [Changed] LLDISPLAY_IMPL_initialize(void) : replaced by LLUI_DISPLAY_IMPL_initial-
ize(LLUI_DISPLAY_SInitData*) (_mandatory_).

– [Changed] LLDISPLAY_IMPL_flush(int32_t,int32_t,int32_t,int32_t,int32_t) : replaced by
LLUI_DISPLAY_IMPL_flush(MICROUI_GraphicsContext*,uint8_t*, uint32_t,uint32_t,
uint32_t,uint32_t) (_mandatory_).

– [Removed] LLDISPLAY_IMPL_getWidth(void) , LLDISPLAY_IMPL_getHeight(void)
and LLDISPLAY_IMPL_getGraphicsBufferAddress(void) : replaced by elements in structure
LLUI_DISPLAY_SInitData .

– [Removed] LLDISPLAY_IMPL_synchronize(void) : implementation has to call LLUI_DIS-
PLAY_flushDone(bool) instead.

• LLDISPLAY_UTILS.h and intern/LLDISPLAY_UTILS.h merged in LLUI_DISPLAY.h

– [Changed] LLDISPLAY_UTILS_getBufferAddress(int32_t) : replaced by LLUI_DISPLAY_get-
BufferAddress(MICROUI_Image*) .

– [Changed] LLDISPLAY_UTILS_setDrawingLimits(int32_t,int32_t,int32_t,int32_t,int32_t) :
replaced by LLUI_DISPLAY_setDrawingLimits(MICROUI_GraphicsContext*,jint,jint,jint,jint)
.

– [Changed] LLDISPLAY_UTILS_blend(int32_t,int32_t,int32_t) : replaced by
LLUI_DISPLAY_blend(uint32_t,uint32_t,uint32_t) .

– [Changed] LLDISPLAY_UTILS_allocateDecoderImage(void*) : replaced by
LLUI_DISPLAY_allocateImageBuffer(MICROUI_Image*,uint8_t) .

– [Changed] LLDISPLAY_UTILS_flushDone(void) : replaced by LLUI_DISPLAY_flush-
Done(bool) .

– [Changed] LLDISPLAY_UTILS_drawingDone(void) : replacedby LLUI_DISPLAY_notifyAsyn-
chronousDrawingEnd(bool) .

– [Removed] LLDISPLAY_UTILS_getWidth(int32_t) , LLDISPLAY_UTILS_getH-
eight(int32_t) and LLDISPLAY_UTILS_getFormat(int32_t) : use MICROUI_Image elements
instead.

– [Removed] LLDISPLAY_UTILS_enterDrawingMode(void) and LLDISPLAY_UTILS_exit-
DrawingMode(void) .

– [Removed] LLDISPLAY_UTILS_setClip(int32_t,int32_t,int32_t,int32_t,int32_t) .

3.6. VEE Porting Guide 1133

MicroEJ Documentation,

– [Removed] LLDISPLAY_UTILS_getClipX1/X2/Y1/Y2(int32_t) : use MICROUI_Graphic-
sContext elements instead.

– [Removed] LLDISPLAY_UTILS_drawPixel(int32_t,int32_t,int32_t) and
LLDISPLAY_UTILS_readPixel(int32_t,int32_t,int32_t) .

• LLDW_PAINTER_impl.h

– [Added] List of ej.api.drawing library’s native functions implemented in module com.microej.cli-
brary.llimpl#microui.

• LLLEDS_impl.h and intern/LLLEDS_impl.h merged in LLUI_LED_impl.h

– [Changed] LLLEDS_MIN_INTENSITY and LLLEDS_MAX_INTENSITY : replaced respec-
tively by LLUI_LED_MIN_INTENSITY and LLUI_LED_MAX_INTENSITY .

– [Changed] LLLEDS_IMPL_initialize(void) : replaced by LLUI_LED_IMPL_initialize(void) .

– [Changed] LLLEDS_IMPL_getIntensity(int32_t) : replaced by LLUI_LED_IMPL_getInten-
sity(jint) .

– [Changed] LLLEDS_IMPL_setIntensity(int32_t,int32_t) : replaced by
LLUI_LED_IMPL_setIntensity(jint,jint) .

• LLINPUT.h and intern/LLINPUT.h merged in LLUI_INPUT.h

– [Changed] LLINPUT_sendEvent(int32_t,int32_t) : replaced by LLUI_INPUT_sendEvent(jint,
jint) .

– [Changed] LLINPUT_sendEvents(int32_t,int32_t*,int32_t) : replaced by
LLUI_INPUT_sendEvents(jint,jint*,jint) .

– [Changed] LLINPUT_sendCommandEvent(int32_t,int32_t) : replaced by
LLUI_INPUT_sendCommandEvent(jint,jint) .

– [Changed] LLINPUT_sendButtonPressedEvent(int32_t,int32_t) : replaced by
LLUI_INPUT_sendButtonPressedEvent(jint,jint) .

– [Changed] LLINPUT_sendButtonReleasedEvent(int32_t,int32_t) : replaced by
LLUI_INPUT_sendButtonReleasedEvent()jint,jint .

– [Changed] LLINPUT_sendButtonRepeatedEvent(int32_t,int32_t) : replaced by
LLUI_INPUT_sendButtonRepeatedEvent(jint,jint) .

– [Changed] LLINPUT_sendButtonLongEvent(int32_t,int32_t) : replaced by
LLUI_INPUT_sendButtonLongEvent(jint,jint) .

– [Changed] LLINPUT_sendPointerPressedEvent(int32_t,int32_t,int32_t,int32_t,int32_t) : re-
placed by LLUI_INPUT_sendPointerPressedEvent(jint,jint,jint,jint,LLUI_INPUT_Pointer) .

– [Changed] LLINPUT_sendPointerReleasedEvent(int32_t,int32_t) : replaced by
LLUI_INPUT_sendPointerReleasedEvent(jint,jint) .

– [Changed] LLINPUT_sendPointerMovedEvent(int32_t,int32_t,int32_t,int32_t) : replaced by
LLUI_INPUT_sendPointerMovedEvent(jint,jint,jint,LLUI_INPUT_Pointer) .

– [Changed] LLINPUT_sendTouchPressedEvent(int32_t,int32_t,int32_t) : replaced by
LLUI_INPUT_sendTouchPressedEvent(jint,jint,jint) .

– [Changed] LLINPUT_sendTouchReleasedEvent(int32_t) : replaced by LLUI_INPUT_send-
TouchReleasedEvent(jint) .

– [Changed] LLINPUT_sendTouchMovedEvent(int32_t,int32_t,int32_t) : replaced by
LLUI_INPUT_sendTouchMovedEvent(jint,jint,jint) .

3.6. VEE Porting Guide 1134

https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui
https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui

MicroEJ Documentation,

– [Changed] LLINPUT_sendStateEvent(int32_t,int32_t,int32_t) : replaced by
LLUI_INPUT_sendStateEvent(jint,jint,jint) .

– [Changed] LLINPUT_getMaxEventsBufferUsage(void) : replaced by LLUI_INPUT_getMax-
EventsBufferUsage(void) .

• LLINPUT_impl.h and intern/LLINPUT_impl.h merged in LLUI_INPUT_impl.h

– [Changed] LLINPUT_IMPL_initialize(void) : replaced by LLUI_INPUT_IMPL_initialize(void)
(_mandatory_).

– [Changed] LLINPUT_IMPL_getInitialStateValue(int32_t,int32_t) : replaced by
LLUI_INPUT_IMPL_getInitialStateValue(jint,jint) (_mandatory_).

– [Changed] LLINPUT_IMPL_enterCriticalSection(void) : replaced by LLUI_INPUT_IMPL_en-
terCriticalSection(void) (_mandatory_).

– [Changed] LLINPUT_IMPL_leaveCriticalSection(void) : replaced by LLUI_IN-
PUT_IMPL_leaveCriticalSection(void) (_mandatory_).

• LLUI_DISPLAY.h

– [Added] Renaming of LLDISPLAY_UTILS.h .

– [Added] Several functions to interactwith theGraphics Engine and to get informationon images, graph-
ics context, clip, etc.

– [Added] LLUI_DISPLAY_requestFlush(bool) : requests a call to LLUI_DISPLAY_IMPL_flush()
.

– [Added] LLUI_DISPLAY_requestRender(void) : requests a call to Displayable.render() .

– [Added] LLUI_DISPLAY_freeImageBuffer(MICROUI_Image*) : frees an image previously allo-
cated by LLUI_DISPLAY_allocateImageBuffer(MICROUI_Image*,uint8_t) .

– [Added] LLUI_DISPLAY_requestDrawing(MICROUI_GraphicsContext*,SNI_callback) : allows
to take the hand on the shared back buffer.

– [Added] LLUI_DISPLAY_setDrawingStatus(DRAWING_Status) : specifies the drawing status to
the Graphics Engine.

• LLUI_DISPLAY_impl.h

– [Added] Merge of LLDISPLAY_EXTRA_impl.h and LLDISPLAY_impl.h .

– [Added] Structure LLUI_DISPLAY_SInitData : implementation has to fill it in LLUI_DIS-
PLAY_IMPL_initialize(LLUI_DISPLAY_SInitData*) .

– [Added] LLUI_DISPLAY_IMPL_binarySemaphoreTake(void*) and
LLUI_DISPLAY_IMPL_binarySemaphoreGive(void*,bool) : implementation has to manage
a binary semaphore (_mandatory_).

– [Added] LLUI_DISPLAY_IMPL_getNewImageStrideInBytes(MICROUI_ImageFormat,
uint32_t,uint32_t,uint32_t) : allows to set an image stride different than image side (_optional_).

• LLUI_PAINTER_impl.h

– [Added] List of ej.api.microui library’s native functions implemented in module com.microej.cli-
brary.llimpl#microui.

– [Added] MICROUI_ImageFormat : MicroUI Image pixel format.

– [Added] MICROUI_Image : MicroUI Image representation.

– [Added] MICROUI_GraphicsContext : MicroUI GraphicsContext representation.

3.6. VEE Porting Guide 1135

https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui
https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Image.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Image.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html

MicroEJ Documentation,

• ui_drawing_soft.h

– [Added] List of internal Graphics Engine software algorithms to perform some drawings (related to li-
brary ej.api.microui).

• ui_drawing.h

– [Added] List of ej.api.microui library’s drawing functions to optionally implement in VEE Port.

CustomNative Drawing Functions

• In custom UI native methods, replace LLDISPLAY_UTILS_getBufferAddress(xxx); by
(uint32_t)LLUI_DISPLAY_getBufferAddress(xxx) (new function returns uint8_t*),
where uint32_t xxx is replaced by MICROUI_Image* xxx or by MICROUI_Graphic-
sContext* xxx .

• Replace LLDISPLAY_UTILS_getFormat(xxx) by xxx->format , where uint32_t xxx is
replaced by MICROUI_Image* xxx or by MICROUI_GraphicsContext* xxx .

• Replace call to LLDISPLAY_allocateDecoderImage by a call to LLUI_DISPLAY_allo-
cateImageBuffer

• Optional: implement drawing functions listed in ui_drawing.h following the available exam-
ples in LLUI_PAINTER_impl.c and LLDW_PAINTER_impl.c files comments.

Application

• See applicationMigration Guide.

From 11.x to 12.1.5

VEE Port Configuration Project

• Update Architecture version: 7.11.0 or higher.

Front Panel

• Create a new Front Panel Project (next sections explain how to update each widget):

1. Verify that FrontPanelDesigner is at least version 6: Help > About > Installations Details

> Plug-ins .

2. Create a new front panel project: File > New > Project… > MicroEJ >

MicroEJ Front Panel Project , choose a name and press Finish .

3. Move files from [old project]/src to [new project]/src/main/java .

4. Move files from [old project]/resources to [new project]/src/main/resources .

5. Move files from [old project]/definitions to [new project]/src/main/resources , except your
xxx.fp file.

6. If existing delete file [new project]/src/main/java/microui.properties .

3.6. VEE Porting Guide 1136

MicroEJ Documentation,

7. Delete file [new project]/src/main/resources/.fp.xsd .

8. Delete file [new project]/src/main/resources/.fp1.0.xsd .

9. Delete file [new project]/src/main/resources/widgets.desc .

10. Open [old project]/definitions/xxx.fp .

11. Copy device attributes (name and skin) from [old project]/definitions/xxx.fp to [new
project]/src/main/resources/xxx.fp .

12. Copy content of body (not body tag itself) from [old project]/definitions/xxx.fp under
device group of [new project]/src/main/resources/xxx.fp .

• Widget “led2states”:

1. Rename led2states by ej.fp.widget.LED .

2. Rename the attribute id by label .

• Widget “pixelatedDisplay”:

1. Rename pixelatedDisplay by ej.fp.widget.Display .

2. Remove the attribute id .

3. (if set) Remove the attribute initialColor if its value is 0

4. (if set) Rename the attribute mask by filter ; this imagemust have the same size in pixels than
display itself (width * height).

5. (if set) Rename the attribute realWidth by displayWidth .

6. (if set) Rename the attribute realHeight by displayHeight .

7. (if set) Rename the attribute transparencyLevel by alpha ; change the value: newValue =
255 - oldValue .

8. (if set) Remove the attribute residualFactor (not supported).

9. (if set) If extensionClass is specified: follow next notes.

• Widget “pixelatedDisplay”: ej.fp.widget.Display Extension Class:

1. Open the class

2. Extends ej.fp.widget.MicroUIDisplay.AbstractDisplayExtension instead of com.is2t.
microej.frontpanel.display.DisplayExtension .

3. Renamemethod convertDisplayColorToRGBColor to convertDisplayColorToARGBColor
.

4. Renamemethod convertRGBColorToDisplayColor to convertARGBColorToDisplayColor
.

• Widget “pointer”:

1. Rename pointer by ej.fp.widget.Pointer .

2. Remove the attribute id .

3. (if set) Rename the attribute realWidth by areaWidth .

4. (if set) Rename the attribute realHeight by areaHeight .

5. Keep or remove the attribute listenerClass according next notes.

• Widget “pointer”: ej.fp.widget.Pointer Listener Class:

3.6. VEE Porting Guide 1137

MicroEJ Documentation,

This extension class is useless if the implementation respects these rules:

– (a) press method is sending a press MicroUI Pointer event.

– (b) release method is sending a release MicroUI Pointer event.

– (c) move method is sending a move MicroUI Pointer event.

– (d) The MicroUI Pointer event generator name is POINTER when ej.fp.widget.Pointer ’s
touch attribute is false (or not set).

– (e) The MicroUI Pointer event generator name is TOUCH when ej.fp.widget.Pointer ’s touch
attribute is true .

If only (d) or (e) is different:

1. Open the listener class.

2. Extends the class ej.fp.widget.Pointer.PointerListenerToPointerEvents instead of imple-
menting the interface com.is2t.microej.frontpanel.input.listener.PointerListener .

3. Implements the method getMicroUIGeneratorTag() .

In all other cases:

1. Open the listener class.

2. Implements the interface ej.fp.widget.Pointer.PointerListener instead of com.is2t.microej.
frontpanel.input.listener.PointerListener .

• Widget “push”:

1. Rename push by ej.fp.widget.Button .

2. Rename the attribute id by label .

3. (if set) Review filter image: this imagemust have the same size in pixels than the button skin .

4. (if set) Remove the attribute hotkey (not supported).

5. Keep or remove the attribute listenerClass according next notes.

• Widget “push”: ej.fp.widget.Button Listener Class:

This extension class is useless if the implementation respects these rules:

– (a) press method is sending a press MicroUI Buttons event with button label (equals to old
button id) as button index.

– (b) release method is sending a release MicroUI Buttons event with button label (equals to
old button id) as button index.

– (c) The MicroUI Buttons event generator name is BUTTONS .

If only (c) is different:

1. Open the listener class.

2. Extends the class ej.fp.widget.Button.ButtonListenerToButtonEvents instead of imple-
menting the interface com.is2t.microej.frontpanel.input.listener.ButtonListener .

3. Overrides the method getMicroUIGeneratorTag() .

In all other cases:

1. Open the listener class.

2. Implements the interface ej.fp.widget.Button.ButtonListener instead of com.is2t.microej.
frontpanel.input.listener.ButtonListener .

3.6. VEE Porting Guide 1138

MicroEJ Documentation,

• Widget “repeatPush”:

1. Rename repeatPush by ej.fp.widget.RepeatButton .

2. (if set) Remove the attribute sendPressRelease (not supported).

3. Same rules than widget push.

• Widget “longPush”:

1. Rename longPush by ej.fp.widget.LongButton .

2. Same rules than widget push.

• Widget “joystick”:

1. Rename joystick by ej.fp.widget.Joystick .

2. Remove the attribute id .

3. (if set) Rename the attribute mask by filter ; this imagemust have the same size in pixels than
joystick skin .

4. (if set) Remove the attribute hotkeys (not supported).

5. Keep or remove the attribute listenerClass according next notes.

• Widget “joystick”: ej.fp.widget.Joystick Listener Class:

This extension class is useless if the implementation respects these rules:

– (a) press methods are sending someMicroUI Commandevents UP , DOWN , LEFT , RIGHT
and SELECT .

– (b) repeat methods are sending same MicroUI Command events UP , DOWN , LEFT ,
RIGHT and SELECT .

– (c) release methods are sending nothing.

– (d) The MicroUI Command event generator name is JOYSTICK .

If only (d) is different:

1. Open the listener class

2. Extends the class ej.fp.widget.Joystick.JoystickListenerToCommandEvents instead of im-
plementing the interface com.is2t.microej.frontpanel.input.listener.JoystickListener .

3. Overrides the method getMicroUIGeneratorTag() .

In all other cases:

1. Open the listener class.

2. Implements the interface ej.fp.widget.Joystick.JoystickListener insteadof com.is2t.microej.
frontpanel.input.listener.JoystickListener .

• Others Widgets:

Thesewidgetsmay have not beenmigrated. Check in ej.tool.frontpanel.widget library if some
widgets are compatible or write your own widgets.

3.6. VEE Porting Guide 1139

MicroEJ Documentation,

Application

• See applicationMigration Guide.

From 10.x to 11.2.0

VEE Port Configuration Project

• Update Architecture version: 7.0.0 or higher.

From 9.x to 10.0.2

VEE Port Configuration Project

• Update Architecture version: 6.13.0 or higher.

• Edit display/display.properties

• Add property imagesHeap.size=xxx ; this value fixes the images heap size when using the VEE
Port in command line (to build a firmware)

• In VEE Port linker file (standalonemode with MicroEJ linker): remove the image heap reserved
section and put the section .bss.microui.display.imagesHeap instead.

BSP

• In BSP linker file: remove the image heap reserved section and put the section .bss.microui.
display.imagesHeap instead

• Edit LLDISPLAY*.c : remove the functions LLDISPLAY_IMPL_getWorkingBufferStar-
tAddress and LLDISPLAY_IMPL_getWorkingBufferEndAddress

Application

• See applicationMigration Guide.

From 8.x to 9.4.1

VEE Port Configuration Project

• Update Architecture version: 6.13.0 or higher.

3.6. VEE Porting Guide 1140

MicroEJ Documentation,

Application

• See applicationMigration Guide.

From 7.x to 8.1.0

VEE Port Configuration Project

• Update Architecture version: 6.4.0 or higher.

• Edit display/display.properties : remove property mode=xxx

BSP

• Edit LLDISPLAY*.c

• For LLDISPLAY SWITCH

– Remove the function LLDISPLAY_SWITCH_IMPL_getDisplayBufferAddress()

– Replace the function void LLDISPLAY_SWITCH_IMPL_getDisplayBufferAddress() by
int32_t LLDISPLAY_IMPL_flush()

– In this function, return the old front buffer address

– Replace the function LLDISPLAY_COPY_IMPL_getBackBufferAddress() by LLDIS-
PLAY_IMPL_getGraphicsBufferAddress()

• For LLDISPLAY COPY

– Replace the function void LLDISPLAY_COPY_IMPL_copyBuffer() by int32_t LLDIS-
PLAY_IMPL_flush()

– In this function, return the back buffer address (given in argument)

– Replace the function LLDISPLAY_COPY_IMPL_getBackBufferAddress() by LLDIS-
PLAY_IMPL_getGraphicsBufferAddress()

• For LLDISPLAY DIRECT

– Add the function void LLDISPLAY_IMPL_synchorize(void) (do nothing)

– Add the function int32_t LLDISPLAY_IMPL_flush()

– In this function, just return the back buffer address (given in argument)

• Replace h file LLDISPLAY_SWITCH_IMPL.h , LLDISPLAY_COPY_IMPL.h or
LLDISPLAY_DIRECT_IMPL.h by LLDISPLAY_IMPL.h

• Replace all functions LLDISPLAY_SWITCH_IMPL_xxx , LLDIS-
PLAY_COPY_IMPL_xxx and LLDISPLAY_DIRECT_IMPL_xxx by LLDIS-
PLAY_IMPL_xxx

• Remove the argument int32_t type from getWidth and getHeight

3.6. VEE Porting Guide 1141

MicroEJ Documentation,

STM32 VEE Ports with DMA2D only

• In VEE Port configuration project, edit display/display.properties

• Add property hardwareAccelerator=dma2d

• In BSP project, edit LLDISPLAY*.c

• simplify following functions (see STM32F7Discovery board implementation)

LLDISPLAY_EXTRA_IMPL_fillRect
LLDISPLAY_EXTRA_IMPL_drawImage
LLDISPLAY_EXTRA_IMPL_waitPreviousDrawing

• Add the following function

void LLDISPLAY_EXTRA_IMPL_error(int32_t errorCode)
{

printf(”lldisplay error: %d\n”, errorCode);
while(1);

}

• Launch an application with images and fillrect

• Compile, link and debug the BSP

• Set some breakpoints on three functions

• Ensure the functions are called

3.6.14 Vector Graphics

Principle

The Vector Graphics Pack features an extension of the User Interface Pack that implements the
MicroVG API.

The diagram below shows a simplified view of the components involved in the provisioning of
Vector Graphics Extension.

Fig. 226: Overview

3.6. VEE Porting Guide 1142

MicroEJ Documentation,

Themodules responsible tomanage the Matrix, the Path, the Gradient, the Image and the Font
are respectively called Matrix module, Path module, Gradient module, Image module and Font
module. These five low-level parts connect theMicroVG library to theuser-supplieddrivers code
(coded in C). The drivers can use hardware accelerators like GPU to perform specific actions
(matrix computations, path rendering, font decoding, etc.).

The MicroEJ Simulator provides all features of the MicroVG library. The five modules are
grouped in a module called Front Panel. The Front Panel is an extension of the UI Pack’s Front
Panel mock.

MicroVG

Principle

MicroVG library is an extension of the MicroUI library and provides vector drawing capabilities.

Architecture

MicroVG library is the entry point to perform some vectorial drawings on display. This library contains only a min-
imal set of basic APIs. As a result, high-level libraries can be used to have more expressive power. In addition to
this restricted set of APIs, the MicroVG implementation has been designed to minimize the EDC, BON, and MicroUI
footprint.

Native Calls

Like MicroUI, the MicroVG implementation for MicroEJ uses native methods to perform some
actions (manipulatematrices, performdrawings, decodeand render fonts, etc.). The library im-
plementationhasbeendesignednot toblocknativemethods (wait until the endof thedrawing,
etc.), which can lock the complete Core Engine execution.

Refer to theMicroUI implementation to have more details about the native calls.

Installation

The MicroVG Packmodule must be installed in your VEE Port:

SDK 6 (build.gradle.kts)

SDK 5 (module.ivy)

microejPack(”com.microej.pack.vg:vg-pack:[VG Pack version]”)

<dependency org=”com.
→˓microej.pack.vg” name=”vg-pack” rev=”[VG Pack version]” conf=”default->default”/>

Note: The latest version of the VG Pack is 1.7.1.

The VG Pack will be automatically available after a VEE Port rebuild.

When installed, the MicroVG Pack module must be configured.

3.6. VEE Porting Guide 1143

https://repository.microej.com/modules/com/microej/pack/vg/vg-pack/
https://repository.microej.com/modules/com/microej/pack/vg/vg-pack/
https://repository.microej.com/modules/com/microej/pack/vg/vg-pack/

MicroEJ Documentation,

SDK 6

SDK 5

In SDK 6, the configuration is done in the properties file configuration.properties of the VEE Port project.
All the properties names listed below must be prefixed by com.microej.pack.microvg. . For
example the implementation properties is defined by the com.microej.pack.microvg.
implementation property.

In SDK 5, the configuration is done in the properties file microvg/microvg.properties .

This configuration allows to configure the Image Generator and the front panel to fit a specific
GPU. This properties file must contain a property named implementation . Two values are
currently available:

• nema : to be compatible with the Think Silicon Nema VG GPU.

• vglite : to be compatible with the Vivante VGLite GPU.

Example:

SDK 6

SDK 5

com.microej.pack.microvg.implementation=nema

implementation=nema

A custom extension can be used to target another GPU. The name of the property implemen-
tation is used to identify the Custom Extension and the Front Panel Extension.

Use

SeeMicroVG chapter in Application Developer Guide.

Abstraction Layer API

Principle

The MicroVG implementation for MicroEJ requires an Abstraction Layer implementation. The
Abstraction Layer implementation consists of a set of header files to implement in C to target
the hardware drivers.

The VG Pack’s embedded Front Panel extension implements all MicroVG features for the simu-
lator.

3.6. VEE Porting Guide 1144

MicroEJ Documentation,

Embedded VEE Port

Fig. 227: MicroVG Embedded Abstraction Layer API

The specification of header files names is:

• Name starts with LLVG_ .

• Second part’s name refers to the VG engine: MATRIX , PATH , GRADIENT , BVI (image),
FONT .

• All file’s name ends with _impl : all functions must be implemented over hardware or in soft-
ware.

Amaster header file initializes the native Vector Graphics engine: see LLVG: VectorGraphics. All
other header files and their aims are described in next VG engines chapters: Matrix, Path, Gra-
dient, Image and Font.

Simulator

Fig. 228: MicroVG Simulator Abstraction Layer API

The Simulator’s five VG engines are grouped in a Front Panel extension.

3.6. VEE Porting Guide 1145

MicroEJ Documentation,

This engine provides the compatibility with Vivante VGLite and Think Silicon Nema VG GPUs
and it can be extended to fit another GPU.

Matrix

Principle

The Matrix module contains the C part of the MicroVG implementation, which manages arith-
meticsmatrices. Thismodule is composed of only one element: an implementation of Abstrac-
tion Layer APIs to create andmanipulate the matrices.

Functional Description

The Matrix module implements the framework of the MicroVG Matrix. It provides Abstraction
Layer APIs that manipulate the matrices: fill an identity matrix, do a translation, a rotation, or
a scaling and concatenate twomatrices.

A matrix is a 3x3 matrix, and its elements are encoded in float (32-bit values):

• matrix_memory[0] = matrix[0][0];

• matrix_memory[1] = matrix[0][1];

• matrix_memory[2] = matrix[0][2];

• matrix_memory[3] = matrix[1][0];

• matrix_memory[4] = matrix[1][1];

• matrix_memory[5] = matrix[1][2];

• matrix_memory[6] = matrix[2][0];

• matrix_memory[7] = matrix[2][1];

• matrix_memory[8] = matrix[2][2];

The buffer where the matrix is encoded is stored in the Managed heap.

Abstraction Layer API

The Abstraction Layer APIs that have to be implemented are listed in the header file
LLVG_MATRIX_impl.h (see LLVG_MATRIX: Matrix):

Fig. 229: Matrix Abstraction Layer API

3.6. VEE Porting Guide 1146

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/Matrix.html

MicroEJ Documentation,

• MicroVG library calls the BSP functions through the header file LLVG_MATRIX_impl.h .

• The C module MicroVG provides a default implementation of this header file:
LLVG_MATRIX_impl.c .

• This file is automatically copied in the BSP project when fetching the C module during the VEE
Port build.

Use

The MicroVG Matrix APIs are available in the class ej.microvg. Matrix.

Path

Principle

The Path module contains the C part of the MicroVG implementation, which manages vector
paths. This module is composed of two elements:

• an implementationof Abstraction Layer APIs to create path elements compatiblewith the hard-
ware,

• an implementation of Abstraction Layer APIs for MicroVG drawings.

Functional Description

The Pathmodule implements the framework of theMicroVGPath. It provides Abstraction Layer
APIs that create andmerge somepaths in a VEEPort-specific format. After thepath creation and
encoding, the path data should not change when the application draws it: the encoded format
should be used by the VEE Port-specific implementation (generally GPU).

A path is a succession of commands. The command encoding is implementation specific; how-
ever, the float format is recommended.

List of commands:

• LLVG_PATH_CMD_CLOSE : MicroVG “CLOSE” command.

• LLVG_PATH_CMD_MOVE : MicroVG “MOVE ABS” command.

• LLVG_PATH_CMD_MOVE_REL : MicroVG “MOVE REL” command.

• LLVG_PATH_CMD_LINE : MicroVG “LINE ABS” command.

• LLVG_PATH_CMD_LINE_REL : MicroVG “LINE REL” command.

• LLVG_PATH_CMD_QUAD : MicroVG “QUAD ABS” command.

• LLVG_PATH_CMD_QUAD_REL : MicroVG “QUAD REL” command.

• LLVG_PATH_CMD_CUBIC : MicroVG “CUBIC ABS” command.

• LLVG_PATH_CMD_CUBIC_REL : MicroVG “CUBIC REL” command.

The buffer where the commands are encoded is stored in the Managed heap. The buffer size
is automatically increased by the MicroVG implementation when no more commands can be
added.

A path is drawn with a color or with a linear gradient.

3.6. VEE Porting Guide 1147

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/Matrix.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/Path.html

MicroEJ Documentation,

Abstraction Layer API

There are two separate Abstraction Layer API header files (see LLVG_PATH: Vector Path):

• LLVG_PATH_impl.h specifies the Abstraction Layer APIs used to create and encode the path.

• LLVG_PAINTER_impl.h lists the Abstraction Layer APIs called by VectorGraphicsPainter to draw the
path.

Fig. 230: Path Abstraction Layer API

• MicroVG library calls the BSP functions through the header files LLVG_PATH_impl.h and
LLVG_PAINTER_impl.h .

• The C module MicroVG provides a default implementation of LLVG_PATH_impl.h : it man-
ages the path buffer creation and filling, then redirect the command encoding to vg_path.h
.

• This C module also provides an implementation of LLVG_PAINTER_impl.c that syn-
chronizes the drawing with the MicroUI Graphics Engine and redirects the drawing itself to a
third-party drawer through vg_drawing.h .

• ACmodule dedicated to aGPUprovides an implementation of this drawer (vg_drawing_gpu.
c) that implements the drawings over the GPU library (it also manages the Gradient).

• This dedicated GPU C module provides an implementation of vg_path.h (vg_path_gpu.c)
that encodes the path commands.

• These files are automatically copied in the BSP project when fetching the Cmodules during the
VEE Port build.

3.6. VEE Porting Guide 1148

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorGraphicsPainter.html

MicroEJ Documentation,

Use

The MicroVG Path APIs are available in the class ej.microvg. Path.

Gradient

Principle

TheGradientmodule contains theCpart of theMicroVG implementation,whichmanages linear
gradients. Thismodule is composedofonlyoneelement: an implementationof theAbstraction
Layer APIs to create gradient elements compatible with the hardware.

Functional Description

The Gradient module implements the framework of the MicroVG LinearGradient. It provides
Abstraction Layer APIs that consist in creating a linear gradient in a VEE Port-specific format.
After the gradient creation and encoding, the gradient data should not change when the appli-
cation draws it: the encoded format should be used by the VEE Port-specific implementation
(generally GPU).

A linear gradient is a succession of colors at different positions. The colors from the MicroVG
library implementation are encoded in the 32-bit format: ARGB8888. The color encoding in the
gradient is a VEE Port-specific implementation.

The buffer where the gradient is encoded is stored in the Managed heap. The MicroVG imple-
mentation on demand automatically increases the buffer size.

Abstraction Layer API

There are two separate Abstraction Layer API header files (see LLVG_GRADIENT: Vector Linear
Gradient):

• LLVG_GRADIENT_impl.h specifies the Abstraction Layer APIs used to create and encode the gradient.

• LLVG_PAINTER_impl.h lists the Abstraction Layer APIs called by VectorGraphicsPainter to draw the
path.

3.6. VEE Porting Guide 1149

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/Path.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/LinearGradient.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorGraphicsPainter.html

MicroEJ Documentation,

Fig. 231: Gradient Abstraction Layer API

• MicroVG library calls the BSP functions through the header files LLVG_GRADIENT_impl.h
and LLVG_PAINTER_impl.h .

• The C module MicroVG provides an implementation of LLVG_PAINTER_impl.c that syn-
chronizes the drawing with the MicroUI Graphics Engine and redirects the drawing itself to a
third-party drawer through vg_drawing.h ..

• ACmodule dedicated to aGPUprovides an implementation of this drawer (vg_drawing_gpu.
c) that implements the drawings over the GPU library.

• This dedicated GPU Cmodule provides an implementation of LLVG_GRADIENT_impl.h (
LLVG_GRADIENT_impl_gpu.c) that encodes the gradient.

• These files are automatically copied in the BSP project when fetching the Cmodules during the
VEE Port build.

Use

The MicroVG Gradient APIs are available in the class ej.microvg. LinearGradient.

Image

Principle

The Image module contains the part of the MicroVG implementation which manages vectorial
images. This module is composed of several elements:

• an offline tool that converts standard vector images in a binary format compatiblewith theRen-
dering Engine,

• an implementation of Abstraction Layer APIs to manipulate image files,

3.6. VEE Porting Guide 1150

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/LinearGradient.html

MicroEJ Documentation,

• an implementation of Abstraction Layer APIs for MicroVG drawings.

Compile-time Image

Overview

The Imagemodule implements theMicroVG VectorImage framework. It provides an offline tool
that consists in opening and decoding an image file and some Abstraction Layer APIs that ma-
nipulate the image at runtime.

A compile-time image file:

• is either an AVD (Android Vector Drawable) or a Scalable Vector Graphics (SVG),

• is identified by the resource name,

• is encoded in a binary format compatible with the image renderer,

• can be stored as an internal resource or an external one (see External Memory),

• is an immutable image: the application cannot draw into it.

Image Generator

The offline tool is an extension of the MicroUI Image Generator. This tool is automatically in-
stalled during the VEE Port build.

The tool converts:

• The Android Vector Drawable (AVD): this kind of image can hold linear gradients, animations on
colors, opacity, path transformations, etc.

• The Scalable Vector Graphics (SVG): this kind of image is partially supported: linear gradients
but no animations. It is advised to convert the SVG files into AVD files before using the Image
Converter tool.

The tool generates a binary (RAW) file compatible with the Rendering Engine. The RAW file con-
sists in a series of vector paths and animations.

To list the images to convert, the tool uses the application list files whose extension is .
vectorimage.list . The generator provides an option to encode the path data (the path’s points):
it can be stored on signed 8, 16, 32-bit words or in float format. Respectively, the options are
VG8 , VG16 , VG32 and VGF .

This is an example of a vectorimage.list file:

Convert an AVD in float format
/avd_image_1.xml:VGF
Convert an AVD in signed 16-bit format
/path/to/avd_image_2.xml:VG16
Convert an SVG in signed 8-bit format
/svg_image.svg:VG8

The image generator must be extended to encode the binary data in a format compatible with
the GPU.

3.6. VEE Porting Guide 1151

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorImage.html

MicroEJ Documentation,

Default Extensions

The image generator provides some implementations that targets different GPUs:

• NemaImageGenerator : generates binary files compatible with the C Module: MicroVG Over NemaVG.

• VgliteImageGenerator : generates binary files compatible with the C Module: MicroVG Over VGLite.

Refer to the chapter Installation for more information about the image generator configuration
or to the next chapter to target another GPU.

Custom Extension

The Image Generator can be extended to target a new GPU. This extension follows the same
rules than theMicroUI Image Generator extension.

1. Create a std-javalib project. Themodule namemust startwith the prefix imageGenerator (for
instance imageGeneratorMyGPU).

2. Add the dependency:

<dependency org=”com.microej.pack.vg” name=”vg-pack” rev=”x.y.z”>
<artifact name=”vg-imageGenerator” type=”jar”/>

</dependency>

Where x.y.z is the VG Pack version used to build the VEE Port (minimum 1.6.0). The module.
ivy should look like:

<ivy-module version=”2.0” xmlns:ea=”http://www.easyant.org” xmlns:m=”http://
→˓www.easyant.org/ivy/maven” xmlns:ej=”https://developer.microej.com” ej:version=”2.0.0”>

<info organisation=”com.
→˓microej.microui” module=”imageGeneratorMyGPU” status=”integration” revision=”1.0.0”>

<ea:build␣
→˓organisation=”com.is2t.easyant.buildtypes” module=”build-std-javalib” revision=”2.+”/>
</info>

<configurations defaultconfmapping=”default->default;provided->provided”>
<conf name=

→˓”default” visibility=”public” description=”Runtime dependencies to other artifacts”/>
<conf name=”provided” visibility=

→˓”public” description=”Compile-time dependencies to APIs provided by the VEE Port”/>
<conf name=”documentation

→˓” visibility=”public” description=”Documentation related to the artifact (javadoc, PDF)”/>
<conf name=”source” visibility=”public” description=”Source code”/>
<conf name=

→˓”dist” visibility=”public” description=”Contains extra files like README.md, licenses”/>
<conf name=”test” visibility=

→˓”private” description=”Dependencies for test execution. It is not required for normal use␣
→˓of the application, and is only available for the test compilation and execution phases.”/>
</configurations>

<publications/>

<dependencies>
<dependency org=”com.microej.pack.vg” name=”vg-pack” rev=”[VG Pack version]”>

<artifact name=”vg-imagegenerator” type=”jar”/>
(continues on next page)

3.6. VEE Porting Guide 1152

MicroEJ Documentation,

(continued from previous page)

</dependency>
</dependencies>

</ivy-module>

3. Implements the interface ej.microvg.image.ImageGenerator ; the name of the class must be
ej.microvg.image.[Prefix]ImageGenerator where [Prefix] is the name that will be set in the
VEE Port configuration file (see Installation).

4. Build the project.

5. Copy the generated jar: target~/artifacts/imageGeneratorMyGPU.jar in the VEE Port con-
figuration project folder: MyVEEPort-configuration/dropins/tools/

6. Rebuild the VEE Port.

MicroVG Library

To load this kindof image, theapplicationhas tocall VectorImage.getImage(). ThisAPI takes the
image relative path: /avd_image_1.xml or /path/to/avd_image_2.xml or /svg_image.
svg .

The implementation uses the Abstraction Layer API to retrieve the image. No data is stored in
the Managed heap (except the VectorImage object’s instance).

Resource Vector Image

The Imagemodule implements the MicroVG ResourceVectorImage framework.

Filtered Image

MicroVG VectorImage.filterImage() API allows to transform an image using a 4x5 color matrix.
The result of the image transformation is stored in the MicroUI Images Heap. MicroVG ports for
dedicated GPU (Low Level implementation) are responsible of the deallocation of this gener-
ated image. Implementations are available forMicroVG Over VGLite andMicroVG Over NemaVG.

External Memory

Principle

MicroVG provides the API ResourceVectorImage.loadImage(). This is an extension of the
compile-time images (the concepts are exactly the same), but it allows a load of a RAW image
stored in an external memory that is not byte-addressable.

An external image loaded from byte-addressable memory is processed the same way than
any compile-time image. For an image loaded from an external memory which is not
byte-addressable, its datamust be copied into byte-addressablememory before the image can
be used for drawings. By default (see C Modules), the image data is copied into MicroUI Images
Heap. The implementation is responsible for the image’s lifecycle: allocation and release (al-
ready implemented in the C Modules).

3.6. VEE Porting Guide 1153

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorImage.html#getImage-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/ResourceVectorImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorImage.html#filterImage-float:A-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/ResourceVectorImage.html#loadImage-java.lang.String-

MicroEJ Documentation,

Configuration File

Like compile-time images, the Image Generator uses a list file whose extension is .
externvectorimages.list . The rules are exactly the sames than the compile-time images.

Process

The process to open a Vector Image froman externalmemory is exactly the same than the load-
ing of an external MicroUI Image.

The following steps describe how to setup the loading of an external resource from the appli-
cation:

1. Add the image to the application project resources (typically in the source folder src/main/
resources and in the package images).

2. Create / open the configuration file (e.g. application.externvectorimages.list).

3. Add the relative path of the image and its output format (e.g. /images/myImage.avd:VGF
see Image Generator).

4. Build the application: the Image Generator converts the image in RAW format in the external
resources folder ([application_output_folder]/externalResources).

5. Deploy the external resources to the external memory (SDCard, flash, etc.) of the device.

6. (optional) Configure the External Resources Loader to load from this source.

7. Build the application and run it on the device.

8. The application loads the external resource using ResourceVectorImage.loadImage().

9. The image loader looks for the image and copies it in the images heap (no copy if the external
memory is byte-addressable).

10. The external resource is immediately closed: the image’s bytes have been copied in the images
heap, or the image’s bytes are always available (byte-addressable memory).

11. The application can use the image.

12. The application closes the image: the image is removed from the image heap.

Simulation

The Simulator automaticallymanages the external resources like internal resources. All images
listed in *.externvectorimages.list files are copied in the external resources folder, and this
folder is added to the Simulator’s classpath.

3.6. VEE Porting Guide 1154

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/ResourceVectorImage.html#loadImage-java.lang.String-

MicroEJ Documentation,

Buffered Vector Image

This image is a ResourceVectorImage that the application can draw into. More specifically, the
drawings are not performed but stored.

The concept consists in storing the compatibleMicroUI drawings1 andallMicroVGdrawings into
a command list. The application can then play this list of commands applying (or not) a global
transformation.

Note: The implementation uses the concept of MicroUI custom format (the custom Format.CUSTOM_7).

The way to register the drawing commands is strongly linked to the targeted GPU:

• The paths and gradients are stored to be used directly by the GPU to render the image (prevent
runtimemodifications before the image rendering).

• Depending on the GPU capabilities (a GPUmay be able to draw a MicroUI anti-aliased line but
not an aliased line), some MicroUI drawing API may be implemented (see Buffered Image).

As a consequence, the implementation is dedicated to the GPU. The C Modules provide some
implementations, and the Front Panel (for the Simulation) features the same limitations as the
embedded side (it is not possible to store a MicroUI drawing in the simulator if the embedded
side is not able to perform it).

Runtime Image

The third-party library VectorImageLoader features an API to load an Android Vector Drawable
(AVD) at runtime. This API creates a ResourceVectorImage

This library uses a simple XML parser (for performance and footprint convenience) that limits
compatibility with the AVD specification. For instance, this loader does notmanage the anima-
tions.

The Vector Image Generator can generate a compatible AVD file in the .vectorimage.list , using
AVD as output format.

Convert an AVD into a compatible AVD format
/avd_image.xml:AVD
Convert an SVG into a compatible AVD format
/svg_image.svg:AVD

Rendering Engine

The Vector Image Rendering Engine has the responsibility of drawing the vector images. The
destination is the display back buffer, a MicroUI BufferedImage or a MicroVG BufferedVectorIm-
age.

Three transformations can be applied when drawing a vector image:

• a global path transformation (3x3 matrix)

• a color transformation (4x5 color matrix)

• an opacity (value between 0 and 255)
1 The compatible MicroUI drawings depend on the GPU Port; see C Modules.

3.6. VEE Porting Guide 1155

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/ResourceVectorImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/ResourceVectorImage.html

MicroEJ Documentation,

The C Modules and the Front Panel already implement this engine.

Abstraction Layer API

There are two separate Abstraction Layer API header files:

• LLVG_BVI_impl.h specifies the Abstraction Layer APIs used to open and manage the BufferedVectorIm-
age cycle-life.

• LLVG_PAINTER_impl.h lists the Abstraction Layer APIs called by VectorGraphicsPainter to draw an im-
age (compile-time, runtime, or buffered vector image).

Fig. 232: Image Abstraction Layer API

• MicroVG library calls the BSP functions through the header files LLVG_BVI_impl.h and
LLVG_PAINTER_impl.h .

• The C module MicroVG an implementation of LLVG_PAINTER_impl.c that synchronizes
the drawing with the MicroUI Graphics Engine and redirects the drawing itself to a third-party
drawer through vg_drawing.h .

• ACmodule dedicated to aGPUprovides an implementation of this drawer (vg_drawing_gpu.
c) that implements the drawings over the GPU library.

• This dedicated GPU C module provides an implementation of LLVG_BVI_impl.h (
LLVG_BVI_impl_gpu.c): the implementation is specific to the target (the GPU): the format
of the RAW paths, gradients, and animations are GPU compliant.

• These files are automatically copied in the BSP project when fetching the Cmodules during the
VEE Port build.

3.6. VEE Porting Guide 1156

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorGraphicsPainter.html

MicroEJ Documentation,

Simulation

The implementation of the MicroVG library is included in the VG Pack. No specific support is
required to retrieve and use the images.

Use

The MicroVG Font APIs are available in the class ej.microvg. VectorImage.

Font

Principle

The Fontmodule contains the C part of the MicroVG implementation, whichmanages vectorial
fonts. This module is composed of two elements:

• an implementation of Abstraction Layer APIs to manipulate font files,

• an implementation of Abstraction Layer APIs for MicroVG drawings.

Functional Description

The Fontmodule implements theMicroVGVectorFont framework. It provides Abstraction Layer
APIs that consist in opening and decoding a font file and getting the font’s characteristics.

A font file:

• is either a TTF or an OTF,

• is identified by the resource name,

• can be stored as internal resource or external (see External Fonts).

No data is stored in the Managed heap. The implementation is responsible for the font’s cycle
life: allocation and release.

A font is used to draw a string with a color or with a linear gradient.

Abstraction Layer API

There are two separate Abstraction Layer API header files (see LLVG_FONT: Vector Font):

• LLVG_FONT_impl.h specifies the Abstraction Layer APIs used to open and retrieve the font’s character-
istics.

• LLVG_PAINTER_impl.h lists the Abstraction Layer APIs called by VectorGraphicsPainter to draw a string
with the font.

3.6. VEE Porting Guide 1157

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorFont.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorGraphicsPainter.html

MicroEJ Documentation,

Fig. 233: Font Abstraction Layer API

• MicroVG library calls the BSP functions through the header files LLVG_FONT_impl.h and
LLVG_PAINTER_impl.h .

• The C module MicroVG provides a default implementation of LLVG_FONT_impl.h over
FreeType. It also redirects the complex layout to a third party C module.

• This C module also provides an implementation of LLVG_PAINTER_impl.c that syn-
chronizes the drawing with the MicroUI Graphics Engine and redirects the drawing itself to a
third-party drawer through vg_drawing.h .

• ACmodule dedicated to aGPUprovides an implementation of this drawer (vg_drawing_gpu.
c) that implements the drawings over the GPU library.

• The Cmodule Harfbuzz provides an implementation of complex layout.

• These files are automatically copied in the BSP project when fetching the Cmodules during the
VEE Port build.

External Memory

Principle

MicroVG does not provide some Low Level API to make the distinction between a font loaded
from different kind of memories (internal or external, byte-addressable or not). The Low Level
implementation (C Modules MicroVG and FreeType) features the font management from an ex-
ternal memory which is not byte-addressable when the VEE Port provides an implementation
of the External Resources Loader.

3.6. VEE Porting Guide 1158

MicroEJ Documentation,

Configuration File

A Vector Font file is a simple resource. To specify this resource as an external resource, the font
file path must be listed in a .externresources.list file in addition with the .resources.list file
(see Application Resources).

Process

The following steps describe how to setup the loading of an external resource from the appli-
cation:

1. Add the font to the application project resources (typically in the source folder src/main/
resources and in the package fonts).

2. Create / open the configuration files (e.g. application.resources.list and application.
externresources.list).

3. In both files, add the relative path of the font (e.g. /fonts/myFont.ttf).

4. Build the application: the processed external resources are copied into the external resources
folder ([application_output_folder]/externalResources).

5. Deploy the external resources to the external memory (SDCard, flash, etc.) of the device.

6. (optional) Configure the External Resources Loader to load from this source.

7. Build the application and run it on the device.

8. The application loads the external resource using ej.microvg.VectorFont.loadFont().

9. FreeType (C Modules) recognizes this resource as external resource; it configures itself to man-
age this resource differently than an internal resource (see Library: FreeType to have more de-
tails).

10. The application can use the font.

Simulation

The Simulator automaticallymanages the external resources like internal resources. All images
listed in *.externresources.list files are copied in the external resources folder, and this folder
is added to the Simulator’s classpath.

Use

The MicroVG Font APIs are available in the class ej.microvg. VectorFont.

3.6. VEE Porting Guide 1159

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorFont.html#loadFont-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorFont.html

MicroEJ Documentation,

C Modules

Principle

Several C modules implement the VG Pack’s Abstraction Layer APIs. Some are generic, and
some are VEE Port dependent (more precisely: GPU dependent). The generic modules provide
header files to be extended by the specific modules. The generic C modules are available on
the Central Repository and the specific C modules on the Developer Repository.

The following picture illustrates the available C modules and their relations for an implemen-
tation that uses:

• FreeType library for the font renderer and the font layouter in simple layout mode.

• HarfBuzz library for the font layouter in complex layout mode.

• GPU library symbolizes the library for the drawing of vector paths over a GPU.

The following chapters explain the aim and relations of each Cmodule.

Note: It is a simplified view: all sources and headers files of each Cmodule are not visible.

Fig. 234: MicroVG C Modules

3.6. VEE Porting Guide 1160

MicroEJ Documentation,

UI Pack &MicroUI C Modules

The UI Pack provides a header file to implement the MicroUI drawings:
LLUI_PAINTER_impl.h . See C Modules chapter to have more information.

VG Pack

The VG Pack provides a set of header files to implement theMicroVG concepts. The header files
are described in the dedicated chapters: Matrix module, Path module, Gradient module, Image
module and Font module.

The VG Pack is an extension of the UI Pack. The VG Pack’s header files require the UI Pack’s
header files to manipulate the MicroUI concepts. Consequently, the VG Pack must be installed
on a VEE Port that fetches a UI Pack.

The VG Pack and its header files are available on the Central Repository: com.mi-
croej.pack.vg#vg-pack.

CModule: MicroVG

Description

This generic C module provides an implementation of MicroVG concepts: matrix, path,
gradient and font; respectively LLVG_MATRIX_impl.c , LLVG_PATH_impl_single.
c / LLVG_PATH_impl_dual.c , LLVG_GRADIENT_impl_stub.c and
LLVG_FONT_impl_freetype.c .

• Matrix (see Matrix module’s Abstraction Layer API): a basic software implementation.

• Path (see Path module’s Abstraction Layer API): a generic implementation that manages the
command buffer’s life cycle and dispatches the command encoding to a 3rd-party header file
vg_path.h .

• Gradient (see Gradientmodule’s Abstraction Layer API): a genericminimal implementation that
only handles a single color (resulting in filling paths with a solid color). To fully handle linear
gradients, the API from LLVG_GRADIENT_impl.h must be implemented.

• Font (see Fontmodule’sAbstraction Layer API): an implementationof vector font over FreeType:
open font file and retrieve font’s characteristics.

• The MicroVG painter native functions are implemented in LLVG_PAINTER_impl.c and the
drawings are redirected to vg_drawing.h .

• Imagemanagement is too specific to the GPU and is not implemented in this C module.

This C module is available on the Central Repository: com.microej.clibrary.llimpl#microvg.

3.6. VEE Porting Guide 1161

https://repository.microej.com/modules/com/microej/pack/vg/vg-pack/
https://repository.microej.com/modules/com/microej/pack/vg/vg-pack/
https://repository.microej.com/modules/com/microej/clibrary/llimpl/microvg/

MicroEJ Documentation,

Dependencies

This generic C module requires some specific modules:

• Path and Gradient require a Cmodule specific to a VEE Port (to a GPU format).

• Font requires the FreeType library and optionally the HarfBuzz library to manage the complex
layout.

Usage

1. Install the C Module for MicroUI and follow its implementation rules.

2. Add all C files in the BSP project.

3. Configure the options in the header file vg_configuration.h .

4. To optionally use the ej.microvg.BufferedVectorImage, the support of custom image format is
required. As described here, set the define UI_GC_SUPPORTED_FORMATS to 2 or
more in ui_configuration.h .

5. To optionally use a MicroVG vector font ej.microvg.VectorFont in the MicroUI drawings (for
instance ej.microui.display.Painter.drawString()), the support of custom font format is re-
quired. As described here, set the define UI_FEATURE_FONT_CUSTOM_FORMATS
in ui_configuration.h .

6. Select one of the GPU implementations (see next chapters).

Library: FreeType

Description

The FreeType library compatible with MicroEJ is packaged in a C module on the Developer
Repository: com.microej.clibrary.thirdparty#freetype.

This C module provides a fork of FreeType 2.13.3.

Memory Heap Configuration

The FreeType library requires a memory Heap for FreeType internal objects allocated when a
font file is loaded (see https://freetype.org/freetype2/docs/design/design-4.html). The size of
this heap depends on the number of fonts loaded in parallel and on the fonts themselves. This
size is defined by VG_FEATURE_FREETYPE_HEAP_SIZE in vg_configuration.h .

All fonts do not require the same heap size. FreeType heap usage can be monitored using the
following configurations:

• MICROVG_MONITOR_HEAP defined in vg_helper.h

• MEJ_LOG_MICROVG and MEJ_LOG_INFO_LEVEL defined in mej_log.h

3.6. VEE Porting Guide 1162

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/BufferedVectorImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorFont.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Painter.html#drawString-ej.microui.display.GraphicsContext-java.lang.String-ej.microui.display.Font-int-int-
https://forge.microej.com/artifactory/microej-developer-repository-release/com/microej/clibrary/thirdparty/freetype/
https://freetype.org/freetype2/docs/design/design-4.html

MicroEJ Documentation,

Principle

1. The Application loads a font with ej.microvg.VectorFont.loadFont().

• If the resource is internal or external from byte-addressable memory, the FreeType library is
configured to read directly from that resource memory section.

• Else, if the resource is external fromnon-byte-addressablememory, the FreeType library is con-
figured to use the external loader to read from that memory.

• At this point, the font resources are allocated and the font generic data (including baseline &
height metrics) is loaded on the FreeType dedicated heap.

2. The Application requests metrics.

• For generic metrics, already loaded data is directly used (and scaled to the font size used).

• For text-dependentmetrics: computed by loadingmetrics of every glyph required by the input
string (the glyphs bitmaps are not actually rendered here).

3. The Application requests drawings.

• For every character to draw:

– the associated glyph is loaded,

– the bitmap is rendered for the given font size and

– the character is drawn in the given graphic context.

4. The Application unloads the font with ej.microvg.VectorFont.close().

• Any resource associated with the font is released.

• At this point, any attempt to use the font will result in an exception.

Library: HarfBuzz

The library HarfBuzz compatible with MicroEJ is packaged in a C module on the Developer
Repository: com.microej.clibrary.thirdparty#harfbuzz.

This C module provides HarfBuzz 10.0.1 with build scripts patched and additional source files.

The HarfBuzz library requires a memory Heap for HarfBuzz internal objects allocated when
a font file is loaded. The size of this heap depends on the number of fonts loaded in
parallel and on the fonts themselves. This size is defined by VG_FEATURE_HARF-
BUZZ_HEAP_SIZE_HEAP in vg_configuration.h .

All fonts do not require the same heap size. The MICROVG_MONITOR_HEAP define
in vg_helper.h and MEJ_LOG_MICROVG and MEJ_LOG_INFO_LEVEL defines in
mej_log.h can be used to monitor the HarfBuzz heap evolution.

FreeType and HarfBuzz libraries are not sharing the same heap, but this could easilly be done
by updating ft_system.c and hb-alloc.c files.

3.6. VEE Porting Guide 1163

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorFont.html#loadFont-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorFont.html#close--
https://forge.microej.com/artifactory/microej-developer-repository-release/com/microej/clibrary/thirdparty/harfbuzz/

MicroEJ Documentation,

C Module: MicroVG Over VGLite

Overview

This C module is a specific implementation of the VG Pack drawings over the official Vivante
VGLite library (that targets some GPU with vector graphics acceleration):

• It implements the MicroVG API LLVG_impl.h in LLVG_impl_vglite.c .

• It implements the MicroVG API LLVG_GRADIENT_impl.h in
LLVG_GRADIENT_impl_vglite.c .

• It implements the MicroVG API vg_drawing.h in vg_drawing_vglite.c .

• It implements the MicroVG API vg_path.h in vg_path_vglite.c .

• It implements theMicroVG Imagemanagement (draw a compile-time image, create a Buffered-
VectorImage, etc.) in vg_drawing_vglite_image.c .

• It provides an implementation of MicroVG drawings to the MicroVG BufferedVectorImage:
vg_drawing_bvi.c .

• It also implements MicroUI drawings to the MicroVG BufferedVectorImage: ui_drawing_bvi.c
.

The implementation requires:

• the concepts of the Cmodule MicroVG,

• the concepts of the Cmodule MicroUI over VGLite,

• the FreeType library,

• the Vivante VGLite library.

This C module is available on the Developer Repository: com.microej.cli-
brary.llimpl#microvg-vglite.

Warning: The library must be patched to be compatible with the C module “MicroUI over
VGLite”. Consult the Cmodule’s ReadMe file for more information.

Usage

1. Install the C Module for MicroUI for VGLite and follow its implementation rules.

2. Install the C Module for MicroVG and follow its implementation rules.

3. Add all C files in the BSP project.

4. Check the port by running the vg validation as described in the VEE Port project template

3.6. VEE Porting Guide 1164

https://forge.microej.com/artifactory/microej-developer-repository-release/com/microej/clibrary/llimpl/microvg-vglite/
https://forge.microej.com/artifactory/microej-developer-repository-release/com/microej/clibrary/llimpl/microvg-vglite/
https://github.com/MicroEJ/Tool-Project-Template-VEEPort/

MicroEJ Documentation,

C Module: MicroVG Over NemaVG

Overview

This C module is a specific implementation of the VG Pack drawings over the official Think Sil-
icon Nema VG library (that targets some GPU with vector graphics acceleration):

• It implements the MicroVG API vg_drawing.h in vg_drawing_nema.c .

• It implements theMicroVG Imagemanagement (draw a compile-time image, create a Buffered-
VectorImage, etc.): vg_drawing_nema_image.c .

• It provides an implementation of MicroVG drawings to the MicroVG BufferedVectorImage:
vg_drawing_bvi.c .

• It also implements MicroUI drawings to the MicroVG BufferedVectorImage: ui_drawing_bvi.c
.

The implementation requires:

• the concepts of the Cmodule MicroVG,

• the concepts of the Cmodule MicroUI over NemaVG,

• the FreeType library,

• the Think Silicon NemaVG library.

This C module is available on the Developer Repository: com.microej.cli-
brary.llimpl#microvg-nema.

Usage

1. Install the C Module for MicroUI for NemaGFX and follow its implementation rules.

2. Install the C Module for MicroVG and follow its implementation rules.

3. Add all C files in the BSP project.

4. Check the port by running the vg validation as described in the VEE Port project template

Compatibility

The compatibility between the components (Packs, C modules, and Libraries) is described in
the Release Notes.

Simulation

Principle

The VG Pack embeds an implementation of the UI Pack’s Front Panel mock that implements
the equivalent of the five embedded modules (Matrix, Path, Gradient, Image and Font). This
implementation has to be extended to simulate the same characteristics and limitations as the
embeddedmodules. The aim of this extension is to:

• decode the images encoded for a specific GPU (see Image Generator)

3.6. VEE Porting Guide 1165

https://forge.microej.com/ui/native/microej-developer-repository-release/com/microej/clibrary/llimpl/microvg-nemavg/
https://forge.microej.com/ui/native/microej-developer-repository-release/com/microej/clibrary/llimpl/microvg-nemavg/
https://github.com/MicroEJ/Tool-Project-Template-VEEPort/

MicroEJ Documentation,

• simulate the limitationsof theMicroVG implementationover aGPU (unsupportedblendmodes,
MicroUI drawings in a BufferedVectorImage , etc.).

Default Extensions

Two extensions are available that simulate the Vivante VGLite (compatible with the C Module:
MicroVG Over VGLite) and Think Silicon NemaVG (compatible with the C Module: MicroVG Over
NemaVG) GPUs. To select one of them, set the right name (respectively vglite and nema) in
the VEE Port configuration file (see Installation).

Custom Extension

Overview

A custom extension can be selected to simulate another GPU. This extension consists of the
implementation of several interfaces and classes. In the VEE Port’s Front Panel project:

1. Add the dependency:

<dependency org=”com.microej.pack.vg” name=”vg-pack” rev=”x.y.z”>
<artifact name=”vg-frontpanel” type=”jar”/>

</dependency>

Where x.y.z is the VG Pack version used to build the VEE Port (minimum 1.6.0).

2. Implement one or several interfaces / classes to simulate the embedded GPU (see next chap-
ters).

3. Rebuild the VEE Port.

Image Decoder

To decode the images generarated by the image generator, implement the interface ej.
microvg.image.ImageDecoder in the VEE Port’s Front Panel project. The name of the class
must be ej.microvg.image.[Prefix]ImageDecoder where [Prefix] is the name that will be set
in the VEE Port configuration file (see Installation).

Note: This implementation is mandatory to allow the use of encoded images.

Display Drawer

This feature allows to simulate the same limitations of the GPU to draw the MicroVG drawings
(path, gradient, blendmodes, etc.) in the display buffer (and in the BufferedImage with same
format than the display buffer).

Note: This implementation is optional; by default, all the MicroVG drawings are implemented.

3.6. VEE Porting Guide 1166

MicroEJ Documentation,

1. Extend the class ej.microvg.display.DisplayDrawer ; thenameof the classmustbe ej.microvg.
display.[Prefix]DisplayDrawer where [Prefix] is the name that will be set in the VEE Port con-
figuration file (see Installation).

2. Override the method drawPath() to simulate some limitations.

Buffered Vector Image

On the embedded side, the MicroUI drawings (line, rectangle, etc.) must be explicitly imple-
mented to be stored in a BufferedVectorImage (a drawing should not be stored if the GPU is
not able to render it). The Front Panel extension allows to simulate the same limitations.

Note: This implementation is optional; by default, all theMicroUI drawings in a BufferedVectorImage are disabled
(whereas all the MicroVG drawings are enabled).

The Front Panel extensionalreadyprovides anengine that implements allMicroUI drawings in a
BufferedVectorImage . Each drawing of this extension can be used independently to simulate
the behavior of the embedded side.

1. Implement the interface ej.microvg.bvi.BufferedVectorImageDrawer ; the name of the class
must be ej.microvg.bvi.[Prefix]BufferedVectorImageDrawer where [Prefix] is the name that
will be set in the VEE Port configuration file (see Installation).

2. Implement one or several MicroUI drawing methods.

3. Call the corresponded engine’s drawing method, for instance: LLVGEngine.Instance.
getBufferedVectorImageDrawer().fillRectangle(xxx) .

Installation

Refer to the chapter Installation for more information about the front panel configuration.

Use

Launch a MicroVG application on the Simulator to run the Front Panel extension.

Release Notes

UI Pack Compatibility Version

The current VG Pack version is 1.7.1. The following table describes the compatibility ranges be-
tween VG and UI Packs.

VG Pack Range UI Pack Range Comment
[1.7.0-1.7.1] [14.1.1-14.4.2] MicroUI Font extensibility
[1.5.0-1.6.0] [14.0.0-15.0.0[UI Pack major version
[1.3.0-1.4.2] [13.5.0-14.0.0[BufferedImage with custom format
[1.1.0-1.2.1] [13.3.0-14.0.0[Internal feature
[1.0.0-1.0.1] [13.2.0-14.0.0[

3.6. VEE Porting Guide 1167

MicroEJ Documentation,

Foundation Libraries

The following table describes Foundation Libraries API versions implemented in MicroEJ VG
Packs.

Table 80: MicroVG API Implementation
VG Pack Range MicroVG
[1.7.0-1.7.1] 1.5.0
[1.4.0-1.6.0] 1.4.0
1.3.0 1.3.0
1.2.1 1.2.0
1.1.0 1.1.0
[1.0.0-1.0.1] 1.0.0

CModules Compatibility Version

The Cmodules are described here.

Several generic Cmodules are available for a given versionof theVGPack. In addition togeneric
C modules, the specific implementations of the VG Pack over Vivante VGLite and Think Silicon
NemaVGextend themainMicroVGCmodule. Theyoverride thedefault implementation tousea
GPU to perform the drawings. Contrary to themainMicroVGCmodule, they are optional: when
they are not available, the default implementation of drawings is used. The default implemen-
tation does nothing (no drawing) and throws the drawing log DRAWING_LOG_NOT_IM-
PLEMENTED .

These C Modules fetches automatically by transitivity the generic MicroUI and MicroVG Cmod-
ules and the Extended C Module for the selected GPU.

The next tables summarizes the VG Packs with:

• the UI Pack (see upper),

• the specific C module that implements MicroVG over the GPU (called VG-xxx in next tables),

• the specific C module that implements MicroUI over the GPU (called UI-xxx in next tables),
see Extended C Modules,

• the VG Pack Cmodule,

• the UI Pack Cmodule: see UI Pack,

• Freetype and HarfBuzz

Warning: Compatible versions are more restrictive than for use of the UI pack (and its C mod-
ules) alone.

Vivante VGLite

The VGLite Cmodule targets the NXP CPU that provides the Vivante VGLite accelerator.

The following table describes the version compatibility between the MicroEJ VG Packs, the UI
Packs, the generic C modules and the VGLite C modules:

3.6. VEE Porting Guide 1168

https://repository.microej.com/modules/ej/api/microvg/1.5.0/
https://repository.microej.com/modules/ej/api/microvg/1.4.0/
https://repository.microej.com/modules/ej/api/microvg/1.3.0/
https://repository.microej.com/modules/ej/api/microvg/1.2.0/
https://repository.microej.com/modules/ej/api/microvg/1.1.0/

MicroEJ Documentation,

VG
Pack

UI Pack VG-VGLite UI-VGLiteMicroVG C
Module

MicroUI C
Module

FreeType Harf-
Buzz

Comment

1.7.1 [14.1.1-14.4.2]9.0.1 10.0.0 7.0.1 [14.1.1-14.4.2] [3.0.0-4.0.0][2.0.0-3.0.0]BVI issues
[1.5.0-1.7.0][14.1.1-14.4.2]9.0.0 10.0.0 7.0.0 [14.1.1-14.4.2] [3.0.0-4.0.0][2.0.0-3.0.0]MicroUI Font ex-

tensibility
1.6.0 [14.0.1-14.0.3]8.0.1 9.0.0 6.0.1 4.1.0 [3.0.0-4.0.0][2.0.0-3.0.0]VG Pack extensi-

bility
1.5.1 [14.0.0-14.0.3]7.0.1 8.0.1 5.0.0 4.0.1 2.0.2 1.0.2 Scissor issue
1.5.0 [14.0.1-14.0.3]7.0.1 8.0.1 5.0.0 4.0.1 2.0.2 1.0.2 C modules har-

monization
1.5.0 14.0.0 7.0.0 8.0.0 5.0.0 4.0.0 2.0.2 1.0.2 UI Pack major

version
1.4.2 [13.7.0-13.7.2]6.1.1 7.2.0 4.0.0 3.1.1 2.0.2 1.0.2 Very long paths
[1.4.0-1.4.1][13.7.0-13.7.2][6.0.0-6.1.0]7.2.0 3.0.1 3.1.0 2.0.2 1.0.2 Free image

resources
[1.4.0-1.4.1][13.5.1-13.6.2]6.1.0 7.1.0 3.0.1 3.0.0 2.0.2 1.0.2 VGLite

3.0.15_rev7
1.4.0 [13.5.1-13.6.2]6.0.0 7.0.0 3.0.1 3.0.0 2.0.2 1.0.2 Blendmodes
1.3.0 [13.5.1-13.6.2]5.0.1 6.0.1 3.0.0 3.0.0 2.0.2 1.0.2 Buffered vector

image
1.2.1 [13.3.0-13.4.1]4.0.3 5.0.1 2.1.0 2.0.1 2.0.2 1.0.2 Image raw

format
1.1.1 [13.3.0-13.4.1]3.0.2 3.0.0 2.0.0 2.0.0 2.0.2 1.0.2

Think Silicon NemaVG

The NemaVG Cmodule targets the CPU that provides the NemaVG accelerator.

The following table describes the version compatibility between the MicroEJ VG Packs and the
Cmodules:

VG
Pack

UI Pack VG-NemaVGUI-NemaMicroVG C
Module

MicroUI C
Module

FreeType Harf-
Buzz

Comment

1.7.1 [14.1.1-14.4.2]2.0.1 4.0.0 7.0.1 [14.1.1-14.4.2] [3.0.0-4.0.0][2.0.0-3.0.0]BVI issues
[1.6.0-1.7.0][14.1.1-14.4.2]2.0.0 4.0.0 7.0.0 [14.1.1-14.4.2] [3.0.0-4.0.0][2.0.0-3.0.0]MicroUI Font ex-

tensibility
1.6.0 [14.0.1-14.0.3]1.0.1 3.0.0 6.0.1 4.1.0 [3.0.0-4.0.0][2.0.0-3.0.0]

The following table describes the version compatibility between theCmodule and theNemaVG
libraries (officially supported):

C Module Range NemaVG Libraries Range
4.0.0 [1.1.6-1.1.7]
3.0.0 1.1.6

FreeType

The FreeType Cmodule provides a fork of FreeType.

The following table describes the version of FreeType included in the Cmodule:

3.6. VEE Porting Guide 1169

MicroEJ Documentation,

C Module Range FreeType
4.0.0 2.13.3
3.0.0 2.11.0

HarfBuzz

The HarfBuzz Cmodule provides HarfBuzz with additional source files.

The following table describes the version of HarfBuzz included in the Cmodule:

C Module Range HarfBuzz
3.0.0 10.0.1
2.0.0 4.2.1

Changelog

[1.7.1] - 2025-04-09

Front Panel

Fixed

• Fix the drawing bounds of the BufferedVectorImage’s elements.

• Fix the drawing of a BufferedVectorImage outside the destination’s clip.

• Fix thedrawingof theBufferedVectorImage’selementswhichareoutside theBufferedVectorIm-
age’s clip.

• Fix the drawing of gradient paths with zero or one color.

• Fix the management of transparent gradients for the NemaVG GPU.

CModule MicroVG

Fixed

• Fix the dependency to Freetype (MicroUI Font drawings with vector fonts).

CModule VGLite

Fixed

• Fix the drawing of a BufferedVectorImage when applying a rotation.

• Fix the drawing bounds of the BufferedVectorImage’s elements.

• Fix the use of clip when drawing a BufferedVectorImage that contains vector images.

• Fix the clip when drawing a vector image in a BufferedVectorImage.

• Fix the drawing of gradient paths with zero or one color.

Removed

• Remove useless and invalid external field declaration.

3.6. VEE Porting Guide 1170

MicroEJ Documentation,

• Remove dependency to a specific version of Freetype: the C module Freetype must be fetched
independently.

CModule NemaVG

Fixed

• Fix the drawing of a BufferedVectorImage when applying a rotation.

• Fix the drawing bounds of the BufferedVectorImage’s elements.

• Fix the use of clip when drawing a BufferedVectorImagee that contains vector images.

• Fix the clip when drawing a vector image in a BufferedVectorImage.

• Fix the drawing of gradient paths with zero or one color.

[1.7.0] - 2024-10-09

UI Pack

Changed

• Compatible with UI Pack 14.1.1 (Font extensibility).

MicroVG Implementation

• Implement MicroVG API 1.5.

CModule FreeType

Changed

• Upgrade FreeType from the version 2.11.0 (2021-07-18) to the version 2.13.3 (2024-08-11).

• Separate the original FreeType files fromMicroEJ’s files.

• Use the original FreeType directory layout.

• Add a patch file to override FreeType’s memory management without modifying the original
file.

CModule HarfBuzz

Changed

• Upgrade HarfBuzz from the version 4.2.1 (2022-04-24) to the version 10.0.1 (2024-09-24).

• Separate the original HarfBuzz files fromMicroEJ’s files.

3.6. VEE Porting Guide 1171

https://repository.microej.com/modules/ej/api/microvg/1.5.0/

MicroEJ Documentation,

[1.6.0] - 2024-07-19

MicroVG Implementation

Added

• Allow the nema value for the MicroVG implementation (see Installation).

Changed

• Compatible with UI Pack 14.0.1.

Front Panel

Added

• Support nema image format and limitations (blend modes SCREEN and MULTIPLY are
not supported).

LLAPIs

Added

• Add the LLAPI LLVG_MATRIX_IMPL_transformPoint .

• Add the new type MICROVG_Image .

Changed

• Change the semantic of the LLAPI LLVG_GRADIENT_IMPL_initializeGradient : the po-
sitions array cannot be NULL .

• Add const modifiers for parameters of the following functions:

– LLVG_GRADIENT_IMPL_initializeGradient ,

– LLVG_MATRIX_IMPL_copy ,

– LLVG_MATRIX_IMPL_multiply ,

– LLVG_MATRIX_IMPL_setConcat ,

– LLVG_MATRIX_IMPL_concatenate ,

– LLVG_MATRIX_IMPL_postConcat .

• Use the new type MICROVG_Image in the signature of the following functions:

– LLVG_BVI_IMPL_map_context ,

– LLVG_PAINTER_IMPL_drawImage .

3.6. VEE Porting Guide 1172

MicroEJ Documentation,

[1.5.1] - 2024-04-11

Front Panel

Fixed

• Fix the drawing of a BufferedVectorImage in a BufferedVectorImage with a clip.

• Fix the drawing of a glyph with path overlap.

CModule VGLite

Fixed

• Fix the drawing of a VG RAW image in a BufferedVectorImage with a clip.

[1.5.0] - 2024-02-15

UI Pack

Changed

• Compatible with UI Pack 14.0.0 (Major version).

MicroVG

Fixed

• Fix the exception when loading a font or an image with an empty path.

• Fix the release of the BufferedVectorImage resources.

Front Panel

Fixed

• Fix the memory leak on images (ResourceVectorImage and BufferedVectorImage).

LLAPIs

Fixed

• Fix comment in header file LLVG_BVI_impl.h .

3.6. VEE Porting Guide 1173

MicroEJ Documentation,

C Module MicroVG

Added

• Add the API freeImageResources that allows to fix the release of the BufferedVectorImage
resources.

Fixed

• Fix traces when debugging the SNI resources with external resource support.

• Remove an unused include.

• Do not define Freetype variables if VG_FEATURE_FONT is not defined.

• Do not call MICROVG_PATH_initialize() if VG_FEATURE_PATH is not defined.

CModule VGLite

Fixed

• Fix the storing of color matrices in the BufferedVectorImage .

[1.4.2] - 2023-11-13

MicroVG

Added

• Add some traces when debugging the SNI resources.

Fixed

• Fix dynamic paths larger than 64 KB.

Front Panel

Fixed

• Fix dynamic paths larger than 64 KB.

CModule MicroVG

Added

• Add some traces when debugging the SNI resources (external VectorFont).

Fixed

• Fix dynamic paths larger than 64 KB.

• Fix some comments.

3.6. VEE Porting Guide 1174

MicroEJ Documentation,

C Module VGLite

Fixed

• Fix some comments.

• Fix the dynamic path drawing on i.MX RT1170 Evaluation Kit (use the same quality of paths as
vector images).

• Fix the path drawing on i.MX RT1170 Evaluation Kit (disable the color pre-multiplication).

• Fix the rendering of some blending modes on i.MX RT1170 Evaluation Kit by disabling the GPU
pre-multiplication when required.

[1.4.1] - 2023-09-21

MicroVG

Fixed

• Fix the path command “move relative”.

CModule VGLite

Added

• Add the compatibility with VGLite 3.0.15_rev7 .

Fixed

• Fix the use of the define VG_BLIT_WORKAROUND (useless).

• Fix the GPU deactivation when a drawing is not performed for any reason.

[1.4.0] - 2023-07-21

Fixed

• Fix the UI Pack minimal compatible version (13.5.0).

MicroVG

Added

• Add SystemView event logs (feature available with C Module MicroVG 3.0.1).

Changed

• Compatible with MicroVG API 1.4.

Fixed

• Fix path bounds computation.

3.6. VEE Porting Guide 1175

https://repository.microej.com/modules/com/microej/clibrary/llimpl/microvg/3.0.1/
https://repository.microej.com/modules/ej/api/microvg/1.4.0/

MicroEJ Documentation,

C Module MicroVG

Fixed

• Fix the SystemView log identifiers.

• Fix the documentation of MICROVG_HELPER_get_utf() .

• Fix FreeType fonts closing twice.

CModule VGLite

Added

• Add support for DST_OUT and PLUS blendmodes (VG Pack 1.4.0).

Fixed

• Fix performing drawings when the clip is disabled.

• Fix the SystemView log identifiers.

• Remove the include of the unknown header file trace_vglite.h (require a re-build of FreeType
library).

[1.3.0] - 2023-05-10

UI Pack

Changed

• Compatible with UI Pack 13.5.0 (BufferedImage with custom format).

MicroVG

Changed

• Compatible with MicroVG API 1.3.

Front Panel

Fixed

• Simplify pixel data conversion after drawing.

3.6. VEE Porting Guide 1176

https://repository.microej.com/modules/ej/api/microvg/1.3.0/

MicroEJ Documentation,

C Module MicroVG

Added

• Add the compatibility with multiple Graphics Context output formats (UI Pack 13.5.0).

• Add stub implementations for all MicroVG library algorithms.

• Add LLVG_PAINTER_impl.c to implement all MicroVG drawings and dispatch them to
vg_drawing.h (like MicroUI and LLUI_PAINTER_impl.c / ui_drawing.h).

• Add theMicroVG BufferedVectorImage definition (the functions to implement to draw into it).

Changed

• C Module MicroVG now depends on C Module MicroUI (to manage the support of multiple
Graphics Context output formats).

Fixed

• Remove an extraneous file.

• Fix issue whenmeasuring string width in complex layout mode.

Removed

• Remove the useless implementation of LLVG_PATH_IMPL_mergePaths (useless since VG Pack
1.2).

• Remove partial Freetype implementation that manipulates the font’s glyphs as bitmaps (not
compatible anymore with VG pack 1.3.0).

CModule VGLite

Added

• Add the implementation of all MicroUI, Drawing and MicroVG drawings in MicroVG Buffered-
VectorImage .

• Add incident reporting with drawing log flags (UI Pack 13.5.0).

Changed

• Merge BufferedVectorImage and RAW formats.

• Simplify the gradient modification according to the caller translation.

Fixed

• Fix the path to render during a path data animation.

Removed

• Remove LLVG_BVI_impl.c : code is merged in LLVG_RAW_impl.c .

• Remove (move) some utility functions to C Module MicroUI-VGLite.

• Remove draw String native functions implementation (implemented in C Module MicroVG).

3.6. VEE Porting Guide 1177

MicroEJ Documentation,

[1.2.1] - 2023-02-06

Front Panel

Fixed

• Fix the cropped images when using GraphicsContext clip and translation.

CModule VGLite

Fixed

• Fix the drawing of RAW images with multiple gradients in BufferedVectorImage .

• Fix a deadlock when drawing an empty BufferedVectorImage .

• Fix the interface between FreeType and MicroVG (remove useless parameter).

• Fix the synchronization with the Graphics Engine when a VG drawing is not performed (draw
path, draw gradient, draw string).

[1.2.0] - 2022-12-30

MicroVG

Changed

• Compatible with MicroVG API 1.2.

• Change the VectorImage internal format: raw format instead of immutables format.

Front Panel

Fixed

• Fix the redirection of fillEllipseArc to the right software algorithm.

Vector Image Converter

Added

• Add “fill alpha” animations to gradient elements.

3.6. VEE Porting Guide 1178

https://repository.microej.com/modules/ej/api/microvg/1.2.0/

MicroEJ Documentation,

C Module MicroVG

Added

• Add LLVG_MATRIX_IMPL_multiply(c,a,b) (C = AxB): faster than setConcat when des-
tination and source target the samematrix.

• Add an entry point to initialize the path engine on startup.

Changed

• Prevent a copy in a tempmatrix when calling postXXX functions.

Fixed

• Fix A.setConcat(B,A) .

CModule VGLite

Added

• Add the compatibility with VGLite 3.0.15_rev4 (not backward compatible).

• Add the VectorImage in binary format management (RAW format).

• Add loading of VectorImage from external resource system.

Changed

• Reduce the gradient footprint in BufferedVectorImage .

• Harmonize the use of vg_drawer.h functions (instead of VG_DRAWER_drawer_t func-
tions) in BufferedVectorImage .

• Use theglobal fieldsVGLitepaths insteadof functions fields (preventdynamic allocationon task
stack).

Fixed

• Fix the drawing of a text in a BufferedVectorImage : do not wake-up the GPU.

• Fix the constants used in get_command_parameter_number() function (no side-effect).

[1.1.1] - 2022-09-05

UI Pack

Changed

• Compatible with UI Pack 13.3.0 (Internal feature).

3.6. VEE Porting Guide 1179

MicroEJ Documentation,

MicroVG

Changed

• Compatible with MicroVG API 1.1.

• Change color animation interpolation (match Android formula).

Fixed

• Fix NullPointerException while sorting TranslateXY VectorDrawableObjectAnimator in
vectorimage-converter.

LLAPIs

Added

• Add LLAPI to close a font: LLVG_FONT_IMPL_dispose() .

Changed

• Manage the font complex layout.

• Returns an error code when drawing something.

CModule MicroVG

Added

• Add microvg_configuration.h versioning.

• Add an option to load a VectorFont from the external resources.

• Add an option to select the text layouter between FreeType and Harfbuzz.

• Add a function to apply an opacity on a color.

• Add the text layout.

Changed

• Configure FreeType from microvg_configuration.h header file.

CModule VGLite

Added

• Add the BufferedVectorImage feature (BVI).

Changed

• Manage the closed fonts.

• Move ftvglite.c and ftvglite.h to C Module FreeType.

• Extract text layout to C Module MicroVG.

• Get fill rule configuration from each glyph FT_Outline->flags instead of defaulting it to
VG_LITE_FILL_EVEN_ODD .

• Use the MicroUI over VGLite’s Vectorial Drawer mechanism.

3.6. VEE Porting Guide 1180

https://repository.microej.com/modules/ej/api/microvg/1.1.1/

MicroEJ Documentation,

• Join character bboxes at baseline for drawStringOnCircle .

[1.0.1] - 2022-05-16

MicroVG

Fixed

• Fix incorrect transformation of animated paths while creating a filtered image.

[1.0.0] - 2022-05-13

• Initial release.

UI Pack

• Compatible with UI Pack 13.2.0 or higher.

MicroVG

• Compatible with MicroVG API 1.0.0.

Migration Guide

From 1.7.0 to 1.7.1

BSPwith VGLite

• [VEE Port configuration project]

– Fetch the VG Pack 1.7.1 and the C Module MicroVG over VGLite 9.0.1.

BSPwith NemaVG

• [VEE Port configuration project]

– Fetch the VG Pack 1.7.1 and the C Module MicroVG over NemaVG 2.0.1.

From 1.6.0 to 1.7.0

VEE Port Configuration project

• Update the UI Pack to version 14.1.1 or higher.

3.6. VEE Porting Guide 1181

https://repository.microej.com/modules/com/microej/pack/vg/vg-pack/1.7.1/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microvg-vglite/9.0.1/
https://repository.microej.com/modules/com/microej/pack/vg/vg-pack/1.7.1/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microvg-nemavg/2.0.1/

MicroEJ Documentation,

BSPwith VGLite

• Follow the migration steps of BSP with VGLite for the new UI Pack.

• [VEE Port configuration project]

– Fetch the VG Pack 1.7.0 and the C Module MicroVG over VGLite 9.0.0.

• Set the define UI_GC_SUPPORTED_FORMATS to 2 or more in ui_configuration.h .

• Set the define UI_FEATURE_FONT_CUSTOM_FORMATS in ui_configuration.h .

BSPwith NemaVG

• Follow the migration steps of BSP with NemaGFX for the new UI Pack.

• [VEE Port configuration project]

– Fetch the VG Pack 1.7.0 and the C Module MicroVG over NemaVG 2.0.0.

• Set the define UI_GC_SUPPORTED_FORMATS to 2 or more in ui_configuration.h .

• Set the define UI_FEATURE_FONT_CUSTOM_FORMATS in ui_configuration.h .

FreeType

Optionally, update the C Module FreeType to use FreeType version 2.13.3:

• Delete the directory thirdparty/freetype .

• Remove thirdparty/freetype/inc and thirdparty/freetype/inc/ftvector from your include
path.

• Add thirdparty/freetype/include , thirdparty/freetype/src and freetype_support/src to
your include path.

• Remove thirdparty/freetype/lib/freetype.a from your build path.

• Build FreeType and add the library and support files following the CModule FreeType’s instruc-
tions.

HarfBuzz

Optionally, update the C Module HarfBuzz to use HafBuzz version 10.0.1:

• Delete the directory thirdparty/harfbuzz .

• Remove thirdparty/harfbuzz/inc from your include path.

• Add thirdparty/harfbuzz/src to your include path.

• Remove thirdparty/harfbuzz/lib/harfbuzz.a and thirdparty/harfbuzz/src/hb-alloc.c from
your build path.

• BuildHarfBuzzandadd the library andsupport files followingCModuleHarfBuzz’s instructions.

3.6. VEE Porting Guide 1182

https://repository.microej.com/modules/com/microej/pack/vg/vg-pack/1.7.0/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microvg-vglite/9.0.0/
https://repository.microej.com/modules/com/microej/pack/vg/vg-pack/1.7.0/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microvg-nemavg/2.0.0/
https://forge.microej.com/artifactory/microej-developer-repository-release/com/microej/clibrary/thirdparty/freetype/4.0.0/README-4.0.0.md
https://forge.microej.com/artifactory/microej-developer-repository-release/com/microej/clibrary/thirdparty/freetype/4.0.0/README-4.0.0.md
https://forge.microej.com/artifactory/microej-developer-repository-release/com/microej/clibrary/thirdparty/harfbuzz/3.0.0/README-3.0.0.md

MicroEJ Documentation,

From 1.5.x to 1.6.0

VEE Port Configuration project

• Update the UI Pack to version 14.0.1 or higher.

• Specify the implementation property, as written in the section Installation.

LLAPIs

• Update your implementation of the following functions to match the signature changes.

– LLVG_GRADIENT_IMPL_initializeGradient ,

– LLVG_MATRIX_IMPL_copy ,

– LLVG_MATRIX_IMPL_multiply ,

– LLVG_MATRIX_IMPL_setConcat ,

– LLVG_MATRIX_IMPL_concatenate ,

– LLVG_MATRIX_IMPL_postConcat ,

– LLVG_BVI_IMPL_map_context ,

– LLVG_PAINTER_IMPL_drawImage .

BSPwith VGLite

• Follow the migration steps of BSP with VGLite for the new UI Pack.

• [VEE Port configuration project]

– Fetch the VG Pack 1.6.0 and the C Module MicroVG over VGLite 8.0.1.

• [BSP project]

– Delete the following file in the ui directory:

∗ src/ui_drawing_bvi.c .

– Delete the following files in the vg directory:

∗ inc/microvg_font_freetype.h ,

∗ inc/microvg_gradient.h ,

∗ inc/microvg_helper.h ,

∗ inc/microvg_path.h ,

∗ inc/microvg_trace.h ,

∗ src/LLVG_BVI_stub.c ,

∗ src/LLVG_FONT_freetype.c ,

∗ src/LLVG_FONT_stub.c ,

∗ src/LLVG_GRADIENT_impl.c ,

∗ src/LLVG_impl.c ,

3.6. VEE Porting Guide 1183

https://repository.microej.com/modules/com/microej/pack/vg/vg-pack/1.6.0/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microvg-vglite/8.0.1/

MicroEJ Documentation,

∗ src/LLVG_PATH_impl.c ,

∗ src/LLVG_PATH_stub.c ,

∗ src/microvg_helper.c ,

∗ inc/vg_bvi_vglite.h ,

∗ inc/vg_drawing_vglite.h ,

∗ inc/vg_vglite_helper.h ,

∗ src/LLVG_GRADIENT_impl_vglite.c ,

∗ src/LLVG_impl_vglite.c ,

∗ src/vg_drawing_bvi.c ,

∗ src/vg_drawing_vglite_image.c ,

∗ src/vg_drawing_vglite.c ,

∗ src/vg_path_vglite.c ,

∗ src/vg_vglite_helper.c .

– Delete the properties files cco_microvg.properties and cco_microvg-vglite.properties .

– Build the VEE Port.

– Configure the C Module MicroVG in vg/inc/vg_configuration.h , based on your previous set-
tings in vg/inc/microvg_configuration.h .

– Delete vg/inc/microvg_configuration.h .

– Add the source files in vg/src and vg_vglite/src to the project.

– Add the path vg_vglite/inc to the include path.

From 1.4.x to 1.5.1

VEE Port Configuration Project

• Update UI Pack version: 14.0.0 or higher.

BSPwith VGLite

• Follow the migration steps of BSP with VGLite for the new UI Pack.

• [VEE Port configuration project]

– Fetch VG Pack 1.5.1, C Modules MicroVG 5.0.0 and MicroVG-VGLite 7.0.1.

• [BSP project]

– Delete the properties files cco_microvg.properties and cco_microvg-vglite.properties .

3.6. VEE Porting Guide 1184

MicroEJ Documentation,

From 1.3.x to 1.4.2

BSPwith VGLite

• Follow the migration steps of BSP with VGLite for the new UI Pack.

• [VEE Port configuration project]

– Fetch VG Pack 1.4.2, C Modules MicroVG 4.0.0 and MicroVG-VGLite 6.1.1.

– Delete the content of dropins/include folder.

• [BSP project]

– Delete the properties files cco_microvg.properties and cco_microvg-vglite.properties .

• Build the VEE Port, the FreeType library (in case of a dedicated project), and the BSP.

From 1.2.x to 1.3.0

VEE Port Configuration Project

• Update UI Pack version: 13.5.0 or higher.

BSPwith VGLite

• Follow the migration steps BSP with VGLite for the new UI Pack.

• [VEE Port configuration project]

– Fetch VG Pack 1.3.0, C Modules MicroVG 3.0.0 and MicroVG-VGLite 5.0.1.

– Delete the content of dropins/include folder.

• [BSP project]

– Delete the properties files cco_microvg.properties and cco_microvg-vglite.properties .

– Delete the C files freetype_bitmap_helper.h , freetype_bitmap_helper.c
, LLVG_BVI_impl.c , LLVG_FONT_PAINTER_freetype_bitmap.c and
LLVG_PATH_PAINTER_vglite.c and remove them from the C project configuration.

– In the C project configuration, include the new C files ui_drawing_bvi.c , LLVG_BVI_stub.
c , LLVG_PAINTER_impl.c , vg_drawing_bvi.c , vg_drawing_stub.c ,
vg_drawing_vglite.c and vg_drawing.c .

– In the C project configuration, set the define LLUI_GC_SUPPORTED_FORMATS=2 to
enable the BufferedVectorImage support.

– Verify the options in microvg_configuration.h .

• Build the VEE Port, the FreeType library (in case of a dedicated project), and the BSP.

3.6. VEE Porting Guide 1185

MicroEJ Documentation,

3.6.15 Networking

Principle

MicroEJ provides some Foundation Libraries to initiate raw TCP/IP protocol-oriented commu-
nications and secure this communicationbyusingSecure Socket Layer (SSL) or Transport Layer
Security (TLS) cryptographic protocols.

The diagram below shows a simplified view of the components involved in the provisioning of
a Java network interface.

Fig. 235: Overview

Net and SSL low level parts connects theNet and SSL libraries to the user-supplied drivers code
(coded in C).

The MicroEJ Simulator provides all features of Net and SSL libraries. This one takes part of the
network settings stored in the operating system on which the Simulator will be launched.

Network Core Engine

Principle

The Net module defines a low-level network framework for embedded devices. This mod-
ule allows you to manage connection (TCP)- or connectionless (UDP)-oriented protocols for
client/server networking applications.

3.6. VEE Porting Guide 1186

MicroEJ Documentation,

Functional Description

The Net library includes two sub-protocols:

• UDP: a connectionless-oriented protocol that allows communication with the server or client
side in a non-reliable way. No handshakemechanisms, no guarantee on delivery, and no order
in packet sending.

• TCP: a connection-oriented protocol that allows communication with the server or client side
in a reliable way. Handshakes mechanism used, bytes ordered, and error checking performed
upon delivery.

Dependencies

• LLNET_CHANNEL_impl.h , LLNET_SOCKETCHANNEL_impl.h ,
LLNET_STREAMSOCKETCHANNEL_impl.h , LLNET_DATAGRAMSOCKETCHANNEL_impl.
h , LLNET_DNS_impl.h , LLNET_NETWORKADDRESS_impl.h ,
LLNET_NETWORKINTERFACE_impl.h (see LLNET: Network).

Installation

NET is an additional module. To enable it, the Net Pack (which bundles several libraries: Net,
SSL & Security) must be installed in your VEE Port:

SDK 6 (build.gradle.kts)

SDK 5 (module.ivy)

microejPack(”com.microej.pack.net:net-pack:11.0.2”)

<dependency org=”com.microej.pack.net” name=”net-pack” rev=”11.0.2”/>

Then, using the VEEPort Editor (seePlatformModule Configuration), enable theNet library (API,
Impl & Mock):

Fig. 236: Net Pack Modules

3.6. VEE Porting Guide 1187

MicroEJ Documentation,

Use

The Net API Module must be added to the Application project build file to use the NET library:

SDK 6 (build.gradle.kts)

SDK 5 (module.ivy)

implementation(”ej.api:net:1.1.4”)

<dependency org=”ej.api” name=”net” rev=”1.1.4”/>

This library provides a set of options. Refer to the chapterStandaloneApplicationOptionswhich
lists all available options.

SSL

Principle

SSL (Secure Sockets Layer) library provides APIs to create and establish an encrypted connec-
tion between a server and a client. It implements the standard SSL/TLS (Transport Layer Se-
curity) protocol that manages client or server authentication and encrypted communication.
Mutual authentication is supported since SSL API 2.1.0 .

Functional Description

The SSL/TLS process includes two sub-protocols :

• Handshakeprotocol: consists that a server presents its digital certificate to the client to authen-
ticate the server’s identity. The authentication process uses public-key encryption to validate
the digital certificate and confirm that a server is in fact the server it claims to be.

• Record protocol: after the server authentication, the client and the server establish cipher set-
tings toencrypt the information theyexchange. Thisprovidesdata confidentiality and integrity.

Dependencies

• Network core module (see Network Core Engine).

• LLNET_SSL_CONTEXT_impl.h and LLNET_SSL_SOCKET_impl.h implementa-
tions (see LLNET_SSL: SSL).

Installation

SSL is an additional module. To enable it, the Net Pack (which bundles several libraries: Net,
SSL & Security) must be installed in your VEE Port:

SDK 6 (build.gradle.kts)

SDK 5 (module.ivy)

microejPack(”com.microej.pack.net:net-pack:11.0.2”)

3.6. VEE Porting Guide 1188

https://repository.microej.com/modules/ej/api/net/

MicroEJ Documentation,

<dependency org=”com.microej.pack.net” name=”net-pack” rev=”11.0.2”/>

Then, using the VEEPort Editor (seePlatformModuleConfiguration), enable theSSL library (API,
Impl & Mock):

Fig. 237: Net Pack Modules

Use

The SSL API module must be added to the Application project build file to use the SSL library:

SDK 6 (build.gradle.kts)

SDK 5 (module.ivy)

implementation(”ej.api:ssl:2.2.3”)

<dependency org=”ej.api” name=”ssl” rev=”2.2.3”/>

3.6. VEE Porting Guide 1189

https://repository.microej.com/modules/ej/api/ssl/

MicroEJ Documentation,

Network Interfaces Management

Overview

The Network Foundation Library provides a way to manage and configure TCP/IP network in-
terfaces.

Dependencies

• Network core module (see Network Core Engine).

• LLECOM_NETWORK_impl.h implementation (see LLECOM_NETWORK: Network Inter-
faces).

Installation

The Network Packmodule must be installed in your VEE Port.

SDK 6 (build.gradle.kts)

SDK 5 (module.ivy)

microejPack(”com.microej.pack.ecom-network:ecom-network-pack:1.0.0”)

<dependency␣
→˓org=”com.microej.pack.ecom-network” name=”ecom-network-pack” rev=”1.0.0” />

Then the VEE Port project must be rebuilt (VEE Port Build).

Use

The Network API Module module must be added to the Application project build file to use the
Network library:

SDK 6 (build.gradle.kts)

SDK 5 (module.ivy)

implementation(”ej.api:ecom-network:2.1.1”)

<dependency org=”ej.api” name=”ecom-network” rev=”2.1.1”/>

Wi-Fi

Overview

The Wi-Fi Foundation Library provides a way to manage and configure Wi-Fi access points.

3.6. VEE Porting Guide 1190

https://repository.microej.com/modules/ej/api/ecom-network/

MicroEJ Documentation,

Dependencies

• Network core module (see Network Core Engine).

• LLECOM_WIFI_impl.h implementation (see LLECOM_WIFI: Wi-Fi Management).

Installation

Wi-Fi is an additionalmodule. To enable it, theWi-Fi Packmodulemust be installed in your VEE
Port:

SDK 6 (build.gradle.kts)

SDK 5 (module.ivy)

microejPack(”com.microej.pack.ecom-wifi:ecom-wifi-pack:1.0.0”)

<dependency org=”com.microej.pack.ecom-wifi” name=”ecom-wifi-pack” rev=”1.0.0” />

Then the VEE Port project must be rebuilt (VEE Port Build).

Use

TheWi-Fi API Modulemust be added to the Application project build file to use the NET library:

SDK 6 (build.gradle.kts)

SDK 5 (module.ivy)

implementation(”ej.api:ecom-wifi:2.2.2”)

<dependency org=”ej.api” name=”ecom-wifi” rev=”2.2.2”/>

3.6.16 Bluetooth

Principle

The Bluetooth Foundation Library defines a low-level Bluetooth framework for embedded de-
vices. It allows you to manage abstract Bluetooth connections without worrying about the na-
tive underlying Bluetooth kind.

Functional Description

The MicroEJ Application manages Bluetooth elements using Adapter/Connection/Ser-
vice/Characteristic/Descriptor/etc abstraction. The Bluetooth implementation made for each
MicroEJ Platform is responsible for surfacing the native Bluetooth specific behavior.

3.6. VEE Porting Guide 1191

https://repository.microej.com/modules/ej/api/ecom-wifi/

MicroEJ Documentation,

Dependencies

• LLBLUETOOTH_impl.h implementation (see LLBLUETOOTH: Bluetooth).

– A sample implementation based on the Bluedroid stack can be found in the Espressif ESP32-S3
VEE Port.

Installation

Bluetooth is an additional module. To enable it, the Bluetooth Pack module must be installed
in your VEE Port:

SDK 6 (build.gradle.kts)

SDK 5 (module.ivy)

microejPack(”com.microej.pack.bluetooth:bluetooth-pack:2.4.1”)

<dependency org=”com.microej.pack.bluetooth” name=”bluetooth-pack” rev=”2.4.1” />

Use

See Bluetooth API chapter in Application Developer Guide.

3.6.17 Audio

Principle

The Audio Foundation Library defines a low-level Audio framework for embedded devices. It
allows to manage abstract audio streams without worrying about the native underlying Audio
device kind.

Functional Description

The MicroEJ Application manages Audio devices using audio streams abstraction. The Audio
implementation made for each VEE Port is responsible for surfacing the native Audio device
specific behavior.

Dependencies

• LLAUDIO_RECORD_impl.h and LLAUDIO_TRACK_impl.h implementations (see LLAUDIO: Audio).

3.6. VEE Porting Guide 1192

https://github.com/MicroEJ/VEEPort-Espressif-ESP32-S3-DevKitC-1/blob/master/ESP32-S3-DevKitC1-Xtensa-FreeRTOS-bsp/projects/microej/bluetooth/src/LLBLUETOOTH_impl.c
https://github.com/MicroEJ/VEEPort-Espressif-ESP32-S3-DevKitC-1/blob/master/ESP32-S3-DevKitC1-Xtensa-FreeRTOS-bsp/projects/microej/bluetooth/src/LLBLUETOOTH_impl.c

MicroEJ Documentation,

Installation

Audio is an additional module. To enable it, the Audio Pack module must be installed in your
VEE Port:

SDK 6 (build.gradle.kts)

SDK 5 (module.ivy)

microejPack(”com.microej.pack.audio:audio-pack:1.0.0”)

<dependency org=”com.microej.pack.audio” name=”audio-pack” rev=”1.0.0”/>

Use

See Audio API chapter in Application Developer Guide.

3.6.18 MicroAI

Principle

TheMicroAI Foundation Library defines a low-levelMachine Learning framework for embedded
devices. It allows to run inferences on trained Machine Learning models.

Functional Description

A typical Application using MicroAI will load a model binary file, read its input/output charac-
teristics, and finally perform an inference.

The MicroAI integration in a VEE port relies on a native AI framework (Tensorflow-lite, ONNX
Runtime, etc…) to implement all of the above functionalities.

Dependencies

• LLML_impl.h implementation (see LLML: MicroAI).

Installation

MicroAI is an additional module. To enable it, the MicroAI Pack must be installed in your VEE
Port:

api(”ej.api:microai:2.0.0”)

3.6. VEE Porting Guide 1193

MicroEJ Documentation,

Use

SeeMicroAI API chapter in Application Developer Guide.

3.6.19 Event Queue

Principle

The Event Queue Foundation Library provides an asynchronous communication interface be-
tween thenativeworld and theManagedworldbasedonevents. Its functional architecture and
usage are documented in the Application Developer Guide.

Dependencies

• LLEVENT_impl.h and LLEVENT.h implementations (see LLEVENT: Event Queue).

Installation

The Event Queue Packmodule must be installed in your VEE Port:

SDK 6 (build.gradle.kts)

SDK 5 (module.ivy)

microejPack(”com.microej.pack.event:event-pack:2.0.1”)

<dependency␣
→˓org=”com.microej.pack.event” name=”event-pack” rev=”2.0.1” transitive=”false”/>

3.6.20 File System

Principle

The FS Foundation Library defines a low-level File System framework for embedded devices. It
allows you to manage abstract files and directories without worrying about the native under-
lying File System kind.

Functional Description

The MicroEJ Application manages File System elements using File/Directory abstraction. The
FS implementation made for each MicroEJ Platform is responsible for surfacing the native File
System specific behavior.

3.6. VEE Porting Guide 1194

MicroEJ Documentation,

Dependencies

• LLFS_impl.h and LLFS_File_impl.h implementations (see LLFS: File System).

Installation

FS is an additionalmodule. To enable it, the FS Packmodulemust be installed in your VEE Port:

SDK 6 (build.gradle.kts)

SDK 5 (module.ivy)

microejPack(”com.microej.pack:fs:6.0.4”)

<dependency org=”com.microej.pack” name=”fs” rev=”6.0.4”/>

Then, using␣
→˓the VEE Port Editor (see :ref:`platform_module_configuration`), enable the `FS` library.

When installed, the FS Pack module must be configured.

The FS module defines two pre-configured File System types: Unix and FatFS . Some char-
acteristics don’t need to be specified for these File System types, but they can be overridden if
needed. For example, specifying a Unix File System type will automatically set the file sepa-
rator to / .

If none of the pre-configured File System types correspond to the File System used in the C
project, the Custom type can be used. When this type is selected, all the File System charac-
teristics must be specified in the properties file.

SDK 6

SDK 5

In SDK 6, the configuration is done in the properties file configuration.properties of the VEE Port project.
All the properties names listed belowmust be prefixed by com.microej.pack.fs. . For example
the fs properties is defined by the com.microej.pack.fs.fs property.

In SDK 5, the configuration is done in the properties file fs/fs.properties . This properties file
specifies the characteristics of the File Systemused in the C project (case sensitivity, root direc-
tory, file separator, etc.).

The list below describes the properties that can be defined in the configuration file:

• fs : Defines the type of File System used in the C project (optional, the default value is Unix). This property
can have one of the following values:

– Unix : select this configuration when using a Unix-like File System
(case-sensitive, file separator is /).

– FatFS : select this configuration when using FatFS File System
(case-insensitive, file separator is /).

– Custom : select this configuration when using another type of File System.

• root.dir : Defines the File System root volume. This property is optional for Unix and FatFS (/ by default
for both).

• user.dir : Defines the File System user directory. This property is optional for FatFS (/usr/ by default).

3.6. VEE Porting Guide 1195

MicroEJ Documentation,

• java.io.tmpdir : Defines the File System temporary directory. This property is optional for Unix and FatFS
(/tmp/ by default for both).

• file.separator : Defines the File System file separator. This property is optional for Unix and FatFS (/ by
default for both).

• path.separator : Defines the File System path separator. This property is optional for Unix and FatFS (:
by default for both).

• case.sensitivity : Defines the case sensitivity of the File System. This property is optional for Unix (cas-
eSensitive by default) and FatFS (caseInsensitive by default). This property can have one of the following
values:

– caseSensitive : the File System is case-sensitive.

– caseInsensitive : the File System is case-insensitive.

Properties File Template

SDK 6

SDK 5

The following snippet can be used as a template for configuration.properties file for the File
System configuration properties:

Defines the type of File System used in the C project.
Possible values are:
- FatFs
- Unix
- Custom
@optional, default value is ”Unix”
#com.microej.pack.fs.fs=

Defines the File System root volume.
@optional for the following File System types:
- FatFs (default value is ”/”)
- Unix (default value is ”/”)
@mandatory for the following File System type:
- Custom
#com.microej.pack.fs.root.dir=

Defines the File System user directory.
@optional for the following File System type:
- FatFs (default value is ”/usr”)
@mandatory for the following File System types:
- Unix
- Custom
#com.microej.pack.fs.user.dir=

Defines the File System temporary directory.
@optional for the following File System types:
- FatFs (default value is ”/tmp”)
- Unix (default value is ”/tmp”)
@mandatory for the following File System type:
- Custom
#com.microej.pack.fs.java.io.tmpdir=

(continues on next page)

3.6. VEE Porting Guide 1196

MicroEJ Documentation,

(continued from previous page)

Defines the File System file separator.
@optional for the following File System types:
- FatFs (default value is ”/”)
- Unix (default value is ”/”)
@mandatory for the following File System type:
- Custom
#com.microej.pack.fs.file.separator=

Defines the File System path separator.
@optional for the following File System types:
- FatFs (default value is ”:”)
- Unix (default value is ”:”)
@mandatory for the following File System type:
- Custom
#com.microej.pack.fs.path.separator=

Defines the case sensitivity of the File System.
Valid values are ”caseInsensitive” and ”caseSensitive”.
@optional for the following File System types:
- FatFs (default value is ”caseInsensitive”)
- Unix (default value is ”caseSensitive”)
@mandatory for the following File System type:
- Custom
#com.microej.pack.fs.case.sensitivity=

The following snippet can be used as a template for fs.properties file:

Defines the type of File System used in the C project.
Possible values are:
- FatFs
- Unix
- Custom
@optional, default value is ”Unix”
#fs=

Defines the File System root volume.
@optional for the following File System types:
- FatFs (default value is ”/”)
- Unix (default value is ”/”)
@mandatory for the following File System type:
- Custom
#root.dir=

Defines the File System user directory.
@optional for the following File System type:
- FatFs (default value is ”/usr”)
@mandatory for the following File System types:
- Unix
- Custom
#user.dir=

Defines the File System temporary directory.
@optional for the following File System types:
- FatFs (default value is ”/tmp”)
- Unix (default value is ”/tmp”)
@mandatory for the following File System type:

(continues on next page)

3.6. VEE Porting Guide 1197

MicroEJ Documentation,

(continued from previous page)

- Custom
#java.io.tmpdir=

Defines the File System file separator.
@optional for the following File System types:
- FatFs (default value is ”/”)
- Unix (default value is ”/”)
@mandatory for the following File System type:
- Custom
#file.separator=

Defines the File System path separator.
@optional for the following File System types:
- FatFs (default value is ”:”)
- Unix (default value is ”:”)
@mandatory for the following File System type:
- Custom
#path.separator=

Defines the case sensitivity of the File System.
Valid values are ”caseInsensitive” and ”caseSensitive”.
@optional for the following File System types:
- FatFs (default value is ”caseInsensitive”)
- Unix (default value is ”caseSensitive”)
@mandatory for the following File System type:
- Custom
#case.sensitivity=

Use

The FS API Module must be added to the project build file to use the FS library:

SDK 6 (build.gradle.kts)

SDK 5 (module.ivy)

implementation(”ej.api:fs:2.1.1”)

<dependency org=”ej.api” name=”fs” rev=”2.1.1”/>

3.6.21 GNSS

Principle

The GNSSmodule defines a low-level GNSS framework for embedded devices. It allows you to
manage the underlying GNSS engine and retrieve data such as the longitude, latitude, velocity
and time.

3.6. VEE Porting Guide 1198

https://repository.microej.com/modules/ej/api/fs/

MicroEJ Documentation,

Functional Description

The MicroEJ Applicationmanages the GNSS engine using GnssManager abstraction. The GNSS
implementation made for each MicroEJ VEE Port is responsible for surfacing the native GNSS
specific behavior.

GNSSMock

GNSSvaluesonsimulator canbecontrolled throughanUI that canbeactivatedanddeactivated
with the property : com.is2t.gnss.embedded.mock.ui .

Dependencies

• LLGNSS_impl.h implementations (see LLGNSS: GNSS).

Installation

GNSS is an additional module. The GNSS Packmodule must be installed in your VEE Port:

microejPack(”com.microej.pack.gnss:gnss-pack:2.0.0”)

Use

See GNSS API chapter in Application Developer Guide.

3.6.22 Hardware Abstraction Layer

Principle

The Hardware Abstraction Layer (HAL) Foundation Library features API that target IO devices,
such asGPIOs, analog to/fromdigital converters (ADC /DAC), etc. TheAPI are very basic in order
to be as similar as possible to the BSP drivers.

Functional Description

The MicroEJ Application configures and uses some physical GPIOs, using one unique identifier
per GPIO. The HAL implementation made for each MicroEJ Platform has the responsibility of
verifying the veracity of the GPIO identifier and the valid GPIO configuration.

Theoretically, a GPIO can be reconfigured at any time. For example a GPIO is configured in
OUTPUT first, and later in ADC entry. However the HAL implementation can forbid the MicroEJ
Application from performing this kind of operation.

3.6. VEE Porting Guide 1199

MicroEJ Documentation,

Identifier

Basic Rule

MicroEJ Application manipulates anonymous identifiers used to identify a specific GPIO (port
and pin). The identifiers are fixed by the HAL implementationmade for each MicroEJ Platform,
and so this implementation is able tomake the link between theMicroEJ Application identifiers
and the physical GPIOs.

• A port is a value between 0 and n - 1 , where n is the available number of ports.

• A pin is a value between 0 and m - 1 , where m is the maximum number of pins per port.

Generic Rules

Most of time the basic implementation makes the link between the port / pin and the physical
GPIO following these rules:

• The port 0 targets all MCU pins. The first pin of the first MCU port has the ID 0 , the second pin
has 1 ; the first pin of the next MCU port has the ID m (where m is the maximum number of
pins per port), etc. Examples:

/* m = 16 (16 pins max per MCU port) */
mcu_pin = application_pin & 0xf;
mcu_port = (application_pin >> 4) + 1;

/* m = 32 (32 pins max per MCU port) */
mcu_pin = application_pin & 0x1f;
mcu_port = (application_pin >> 5) + 1;

• The port from 1 to n (where n is the available number of MCU ports) targets the MCU ports.
The first MCU port has the ID 1 , the second has the ID 2 , and the last port has the ID n .

• The pin from 0 to m - 1 (where m is the maximum number of pins per port) targets the port
pins. The first port pin has the ID 0 , the second has the ID 1 , and the last pin has the ID m - 1 .

The implementation can also normalize virtual and physical board connectors. A physical con-
nector is a connector available on the board, and which groups several GPIOs. The physical
connector is usually called JPn or CNn , where n is the connector ID. A virtual connector rep-
resents one or several physical connectors, and has a name; for example ARDUINO_DIGI-
TAL .

Using a unique ID to target a virtual connector allows you to make an abstraction between the
MicroEJ Application and the HAL implementation. For exmaple, on a board A, the pin D5 of
ARDUINO_DIGITAL port will be connected to the MCU portA , pin12 (GPIO ID = 1 , 12
). And on board B, it will be connected to the MCU port5 , pin0 (GPIO ID = 5 , 0). From the
MicroEJ Application point of view, this GPIO has the ID 30 , 5 .

Standard virtual connector IDs are:

ARDUINO_DIGITAL = 30;
ARDUINO_ANALOG = 31;

Finally, the available physical connectors can have a number from 64 to 64 + i - 1 , where i
is the available number of connectors on the board. This allows the application to easily target
a GPIO that is available on a physical connector, without knowing the corresponding MCU port
and pin.

3.6. VEE Porting Guide 1200

MicroEJ Documentation,

JP3 = 64;
JP6 = 65;
JP11 = 66;

Configuration

A GPIO can be configured in any of five modes:

• Digital input: The MicroEJ Application can read the GPIO state (for example a button state).

• Digital input pull-up: The MicroEJ Application can read the GPIO state (for example a button
state); the default GPIO state is driven by a pull-up resistor.

• Digital output: The MicroEJ Application can set the GPIO state (for example to drive an LED).

• Analog input: TheMicroEJ Application can convert some incoming analog data into digital data
(ADC). The returned values are values between 0 and n - 1 , where n is the ADC precision.

• Analog output: The MicroEJ Application can convert some outgoing digital data into analog
data (DAC). The digital value is a percentage (0 to 100%) of the duty cycle generated on selected
GPIO.

Dependencies

• LLHAL_impl.h implementation (see LLHAL: Hardware Abstraction Layer).

Installation

HAL is an additionalmodule. To enable it, the Audio Packmodulemust be installed in your VEE
Port:

SDK 6 (build.gradle.kts)

SDK 5 (module.ivy)

microejPack(”com.microej.pack:hal:2.0.2”)

<dependency org=”com.microej.pack” name=”hal” rev=”2.0.2”/>

Then, using the VEE Port Editor (see PlatformModule Configuration), enable the HAL library.

Use

The HAL API Module must be added to the project build file to use the HAL library:

SDK 6 (build.gradle.kts)

SDK 5 (module.ivy)

implementation(”ej.api:hal:1.0.4”)

<dependency org=”ej.api” name=”hal” rev=”1.0.4”/>

3.6. VEE Porting Guide 1201

https://forge.microej.com/artifactory/microej-developer-repository-release/ej/api/hal/

MicroEJ Documentation,

3.6.23 Device Information

Principle

The Device Foundation Library provides access to the device information. This includes the
architecture name and a unique identifier of the device for this architecture.

Dependencies

• LLDEVICE_impl.h implementation (see LLDEVICE: Device Information).

Installation

Device is an additional module. To enable it, the Device Information Pack module must be
installed in your VEE Port:

SDK 6 (build.gradle.kts)

SDK 5 (module.ivy)

microejPack(”com.microej.pack.device:device-pack:1.2.0”)

<dependency org=”com.microej.pack.device” name=”device-pack” rev=”1.2.0”/>

Then, using the VEE Port Editor (see PlatformModule Configuration), enable theDevice Informa-
tion library.

When installed, the Device Information Pack module can be configured.

SDK 6

SDK 5

In SDK 6, the configuration is done in the properties file configuration.properties of the VEE Port project.
All the properties names listed below must be prefixed by com.microej.pack.device. . For
example the architecture properties is defined by the com.microej.pack.device.architecture
property.

In SDK 5, the configuration is done in the properties file device/device.properties .

The list below describes the properties that can be defined in the configuration file:

• architecture [optional, default value is “Virtual Device”]: Defines the value returned by the ej.util.De-
vice.getArchitecture() method on the Simulator.

• id.length [optional]: Defines the size of the ID returnedby the ej.util.Device.getId()methodon the Simulator.

3.6. VEE Porting Guide 1202

https://repository.microej.com/javadoc/microej_5.x/apis/ej/util/Device.html#getArchitecture--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/util/Device.html#getArchitecture--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/util/Device.html#getId--

MicroEJ Documentation,

Use

The Device API Module must be added to the project build file to use the Device Information
library:

SDK 6 (build.gradle.kts)

SDK 5 (module.ivy)

implementation(”ej.api:device:1.0.2”)

<dependency org=”ej.api” name=”device” rev=”1.0.2”/>

3.6.24 Security

Principle

The Security Foundation Library provides standard Java API (part of the Java Cryptography
Architecture) for cryptographic operations: cipher, digest, MAC, signature, secure random &
key/certificate management. It relies on a native crypto engine (such as Mbed TLS, OpenSSL
or wolfSSL).

Dependencies

• The LLSEC_*.h implementations (see LLSEC: Security).

Installation

Security is an additional module. To enable it, the Net Pack (which bundles several libraries:
Net, SSL & Security) must be installed in your VEE Port:

SDK 6 (build.gradle.kts)

SDK 5 (module.ivy)

microejPack(”com.microej.pack.net:net-pack:11.0.2”)

<dependency org=”com.microej.pack.net” name=”net-pack” rev=”11.0.2”/>

Then, using the VEE Port Editor (see PlatformModule Configuration), enable the Security library
(API, Impl & Mock):

3.6. VEE Porting Guide 1203

https://repository.microej.com/modules/ej/api/device/

MicroEJ Documentation,

Fig. 238: Net Pack Modules

Use

The Security API modulemust be added to the Application project build file to use the Security
library:

SDK 6 (build.gradle.kts)

SDK 5 (module.ivy)

implementation(”ej.api:security:1.6.0”)

<dependency org=”ej.api” name=”security” rev=”1.6.0”/>

3.6.25 Watchdog Timer

Overview

The WatchdogTimer Foundation Library provides a way to handle hardware watchdog timer.
A watchdog is particularly useful if you want to monitor different items of your software sys-
tem during the runtime. The figure below shows watchdog elements at each level of a MicroEJ
project:

3.6. VEE Porting Guide 1204

https://repository.microej.com/modules/ej/api/security/

MicroEJ Documentation,

Principle

The Watchdog Timer API is in two parts, the first part drives the watchdog timer itself. The
second part of the API implements a checkpoint registration system linked to the watchdog
timer.

The checkpoint registration system allows the user to add checkpoints monitored by the hard-
ware watchdog timer. Each checkpoint registered by the Watchdog Timer API must attest their
activity before thewatchdog timeout, otherwise ahardware reset is performed. The high level
diagrambelow summarizes interactions between theuser application, theWatchdogTimer API
and the Watchdog timer.

3.6. VEE Porting Guide 1205

MicroEJ Documentation,

The particularity of this library is that it can be either used in managed code or in native code
inside the BSP or even both of them. The use of this library in the BSP in C is relevant when the
user needs tomonitor an itemof the software systemwhich is not executed by the Core Engine.
The sequence diagram below shows a standard use of the Watchdog API in Java and in C.

3.6. VEE Porting Guide 1206

MicroEJ Documentation,

Mock Implementation

When you run your Application on the Simulator, the watchdog timermust be emulated. To do
so, a Java Timer Task is used which emulates the watchdog timer.

The Mock implementation does not perform a hardware reset when the false watchdog timer
triggers.

Dependencies

• This library needs to be used with the Watchdog Timer Generic C implementation developed
for this purpose, its module name is watchdog-timer-generic .

• LLWATCHDOG_TIMER_impl.h implemented by the Watchdog Timer C implementation
(see LLWATCHDOG_TIMER: Watchdog Timer).

• watchdog_timer_helper.h implementationneededby theWatchdogTimerC implementation
(see LLWATCHDOG_TIMER: Watchdog Timer).

3.6. VEE Porting Guide 1207

MicroEJ Documentation,

Installation

Watchdog Timer is an API composed of a Pack module and a C component module. You need
both of them in your VEE Port to install the API.

In the Platform configuration project, (-configuration suffix), add the following dependencies
tomodule.ivy file:

<dependency␣
→˓org=”com.microej.pack.watchdog-timer” name=”watchdog-timer-pack” rev=”2.0.1” />
<dependency␣
→˓org=”com.microej.clibrary.llimpl” name=”watchdog-timer-generic” rev=”3.0.1”/>

The Platform project must be rebuilt (VEE Port Build).

The Watchdog Timer Packmodule must be installed in your VEE Port:

SDK 6 (build.gradle.kts)

SDK 5 (module.ivy)

microejPack(”com.microej.pack.watchdog-timer:watchdog-timer-pack:2.0.1”)

<dependency␣
→˓org=”com.microej.pack.watchdog-timer” name=”watchdog-timer-pack” rev=”2.0.1” />

As well as the C Component module:

SDK 6 (build.gradle.kts)

SDK 5 (module.ivy)

Install the Watchdog Timer C Component module in your VEE Port.

<dependency␣
→˓org=”com.microej.clibrary.llimpl” name=”watchdog-timer-generic” rev=”3.0.1”/>

Then the VEE Port project must be rebuilt (VEE Port Build).

Then, you have to implement functions that match the LLWATCH-
DOG_TIMER_IMPL_*_action pattern which is required by the Watchdog C imple-
mentation.

Use in an Application

The WatchdogTimer API Module must be added to the project build file to use the Watchdog
library:

SDK 6 (build.gradle.kts)

SDK 5 (module.ivy)

implementation(”ej.api:watchdog-timer:2.0.0”)

<dependency org=”ej.api” name=”watchdog-timer” rev=”2.0.0”/>

3.6. VEE Porting Guide 1208

https://repository.microej.com/modules/com/microej/clibrary/llimpl/watchdog-timer-generic/3.0.1/
https://repository.microej.com/modules/ej/api/watchdog-timer/

MicroEJ Documentation,

Code example in Java

Here is an example that summarizes all features in a simple use case. The checkpoint is per-
formed in a TimerTask scheduled to run every 5 seconds. To use TimerTask in your Java appli-
cation, add the following BON API dependency:

SDK 6 (build.gradle.kts)

SDK 5 (module.ivy)

implementation(”ej.api:bon:1.4.4”)

<dependency org=”ej.api” name=”bon” rev=”1.4.4” />

Then, you can use this example code:

// Test a simple watchdog timer use case
public static void main(String[] args) {

if (WatchdogTimer.isResetCause()) {
␣

→˓ System.out.println(”Watchdog timer triggered the last board reset!”); //$NON-NLS-1$
} else {

System.
→˓out.println(”Watchdog timer DID NOT triggered the last board reset!”); //$NON-NLS-1$

}

WatchdogTimer.init();
System.out.println(”Watchdog timer initialized␣

→˓to trigger after ” + WatchdogTimer.getWatchdogTimeoutMs() + ” ms.”); //$NON-NLS-1$

TimerTask checkpointTask = new TimerTask() {

private final int checkpointId = WatchdogTimer.registerCheckpoint();

@Override
public void run() {

// We attest our task activity using the checkpoint method.
␣

→˓ // Since this is our only checkpoint registered, the watchdog timer is refreshed.
WatchdogTimer.checkpoint(this.checkpointId);
System.out.println(

→˓”Task performed watchdog checkpoint with the ID ” + this.checkpointId); //$NON-NLS-1$
}

};

// We schedule our task to be executed every 5 seconds.
Timer timer = new Timer();
final int DELAY = 0;
final int PERIOD␣

→˓= 5000; // We assume that the watchdog timeout period is higher than 5000 milliseconds.
timer.schedule(checkpointTask, DELAY, PERIOD);

// Everything is ready, we launch the watchdog
WatchdogTimer.start();
System.out.println(”Watchdog started!”);

// Let the checkpointTask runs for a minute.
(continues on next page)

3.6. VEE Porting Guide 1209

https://repository.microej.com/modules/ej/api/bon/

MicroEJ Documentation,

(continued from previous page)

final int WAIT_A_MINUTE = 60000; // 60 000 milliseconds to wait a minute
try {

Thread.sleep(WAIT_A_MINUTE);
} catch (InterruptedException e) {

// TODO Auto-generated catch block
e.printStackTrace();

}

// Our program is finished. Now we stop the checkpointTask and the watchdog.
timer.cancel();
WatchdogTimer.stop(); // This method also unregisters all checkpoints.
System.out.println(”Monitored task stopped and Watchdog timer stopped.”);

}

Use in C inside the BSP

Once the Platform is configured to use the Watchdog Timer API as explained in Installation
section, you can use functions defined in LLWATCHDOG_TIMER_impl.h .

Note that compared to the Java API, you have to get error codes returned by functions to check
if the function is executed correctly since you have no access to exceptions generated for the
Java.

The Watchdog Timer Low Level API provides a set of functions with the same usage as in Java.
Here is the list of the watchdog Low Level API functions:

LLWATCHDOG_
→˓TIMER_IMPL_init() // refer to ej.hal.WatchdogTimer.init()
LLWATCHDOG_
→˓TIMER_IMPL_start() // refer to ej.hal.WatchdogTimer.start()
LLWATCHDOG_
→˓TIMER_IMPL_stop() // refer to ej.hal.WatchdogTimer.stop()
LLWATCHDOG_TIMER_
→˓IMPL_registerCheckpoint() // refer to ej.hal.WatchdogTimer.registerCheckpoint()
LLWATCHDOG_TIMER_
→˓IMPL_unregisterCheckpoint() // refer to ej.hal.WatchdogTimer.unregisterCheckpoint()
LLWATCHDOG_
→˓TIMER_IMPL_checkpoint() // refer to ej.hal.WatchdogTimer.checkpoint()
LLWATCHDOG_
→˓TIMER_IMPL_isResetCause() // refer to ej.hal.WatchdogTimer.isResetCause()
LLWATCHDOG_TIMER_IMPL_
→˓getWatchdogTimeoutMs() // refer to ej.hal.WatchdogTimer.getWatchdogTimeoutMs()

There is an additional function in LLWATCHDOG_TIMER_impl.h compared to the Java
API. This is LLWATCHDOG_TIMER_IMPL_refresh , because a low level implementation
of this function is required for the library. However, the user does not need and should not use
this function on his own.

3.6. VEE Porting Guide 1210

MicroEJ Documentation,

Code example in C

Here is an example that summarizes main features in a simple use case. The checkpoint is per-
formed in a FreeRTOS task scheduled to attest its activity to the watchdog every 5 seconds.

#include <stdio.h>
#include <stdint.h>

#include ”FreeRTOS.h”
#include ”task.h”
#include ”queue.h”
#include ”semphr.h”

#include ”LLWATCHDOG_TIMER_impl.h”

#define MONITORED_TASK_STACK_SIZE 1024
#define TASK_SLEEP_
→˓TIME_MS 5000 // We sleep for 5 seconds, assuming that the watchdog timeout is higher.

/*--*/

static void my_monitored_task(void *pvParameters){
// We get an ID from watchdog registration system for this new checkpoint
int32_t checkpoint_id = LLWATCHDOG_TIMER_IMPL_registerCheckpoint();

for(;;){
vTaskDelay(TASK_SLEEP_TIME_MS / portTICK_PERIOD_MS);
// Since this is our only checkpoint registered, the watchdog timer is refreshed.
LLWATCHDOG_TIMER_IMPL_checkpoint(checkpoint_id);

␣
→˓ printf(”MonitoredTask with ID = %d did watchdog checkpoint!\n”, checkpoint_id);

}
}

/*--*/

int main(void){
xTaskHandle handle_monitored_task;

/* Check if last reset was done by the Watchdog timer. */
if(LLWATCHDOG_TIMER_IMPL_isResetCause()){

printf(”Watchdog timer triggered the last reset, we stop the program now! \n”);
return -1;

}

/* Setup the Watchdog Timer*/
if(WATCHDOG_TIMER_ERROR == LLWATCHDOG_TIMER_IMPL_init()){

printf(”Failed to init watchdog timer in main. \n”);
} else{

printf(”Watchdog timer initialized␣
→˓to trigger after %d ms \n”, LLWATCHDOG_TIMER_IMPL_getWatchdogTimeoutMs());

}

/* Start the Watchdog Timer*/
if(WATCHDOG_TIMER_ERROR == LLWATCHDOG_TIMER_IMPL_start()){

printf(”Failed to start watchdog timer in main. \n”);
} else{

printf(”Watchdog started!\n”);
(continues on next page)

3.6. VEE Porting Guide 1211

MicroEJ Documentation,

(continued from previous page)

}

/* Create the monitored task. */
xTaskCreate(my_monitored_task, ”MonitoredTask”, MONITORED_

→˓TASK_STACK_SIZE, NULL, tskIDLE_PRIORITY, &handle_monitored_task);

/* Start the scheduler. */
printf(”Starting scheduler...\n”);
vTaskStartScheduler();

return 0;
}

3.6.26 SystemView

Note: In the following explanations, the term task refers to native tasks scheduled by the underlying OS or RTOS,
while thread refers to MicroEJ threads scheduled by the Core Engine.

Principle

SystemView is a real-time recording and visualization tool for embedded systems that reveals
the actual runtime behavior of an application, going far deeper than the system insights pro-
vided by debuggers. This is particularly effective when developing and working with complex
embedded systems comprising multiple threads and interrupts.

A specific SystemView extensionmade byMicroEJ allows to trace the OS tasks and the MicroEJ
threads at the same time. This chapter explains how to add the SystemView feature to a VEE
Port and set it up.

Note: MicroEJ supports integration with SystemView on FreeRTOS 9 and FreeRTOS 10.

Note: SystemViewprovides implementations for several combinations of toolchain and CPU architectures. If your
target does not match a default configuration, please read the section Non default CPU recommendations in order
to know how to implement the required functions.

Here is an example when analyzing the DemoWidget running on the STM32F7508-DK VEE Port.

3.6. VEE Porting Guide 1212

https://github.com/MicroEJ/Demo-Widget
https://github.com/MicroEJ/Platform-STMicroelectronics-STM32F7508-DK

MicroEJ Documentation,

References

• https://www.segger.com/products/development-tools/systemview/

• https://www.segger.com/downloads/jlink/UM08027

Pre-requisites

SEGGER SystemView: http://segger.com/downloads/systemview/.

Note: This SystemView section has been written for SystemView version V2.52a. Later versions may needmodifi-
cation to the following steps.

Note: This download page also contains links to download the “Target Sources” package. The following sections
of this documentation will go through the installation of those. If your BSP project already integrates a specific
version, make sure to download & install the matching version of the SystemView program.

Integrate SystemView in your VEE Port

For detailed instructions on the integration of SystemView Target Sources in your BSP, please
refer to the “Getting started with SystemView on the target” section of the SystemView User
Manual. This documentation focuses on the integration with FreeRTOS. If you are integrating
with a different RTOS, make sure to check the samples in the Target Sources package.

3.6. VEE Porting Guide 1213

https://www.segger.com/products/development-tools/systemview/
https://www.segger.com/downloads/jlink/UM08027
http://segger.com/downloads/systemview/

MicroEJ Documentation,

Apply FreeRTOS patch

In FreeRTOSv9.x& v10.x, SystemView requires a patch to FreeRTOS source files in order to inject
OS event hooks when SystemView profiling is enabled.

Starting from FreeRTOS v11: SystemView integrates with FreeRTOS new built-in mechanism for
profiling OS events (Trace Hook Macros). You can skip this step if you use FreeRTOS v11.

Apply SystemView for FreeRTOS patch as described in the documentation (see section 4.7.5).
The patch is available in the Systemview installation folder: <installation_dir>/Src/
Sample/FreeRTOSVxx .

Note: For FreeRTOS v10.2.0, the official patch may not work. Here is an unofficial patch

Add source files to your BSP for SystemViewwith MicroEJ/FreeRTOS integration

1. Add <installation_dir>/Src/Config/SEGGER_SYSVIEW_Config_FreeRTOS.c in your
BSP.

This file can bemodified to fit your system configuration:

• Update SYSVIEW_APP_NAME , SYSVIEW_DEVICE_NAME , and
SYSVIEW_RAM_BASE defines to fit your system information.

• To add MicroEJ threads management in SystemView tasks initialization:

– Add these includes #include ”task.h” , #include ”LLMJVM_MONITOR_SYSVIEW.
h” , #include ”LLTRACE_SYSVIEW_configuration.h” , #include
”SEGGER_SYSVIEW_configuration.h” and the include that declares the external
variable pvMEJCoreEngineTask . pvMEJCoreEngineTask must be the FreeRTOS task
handle used to create the Core Engine task. Initializes this variable at NULL before the call of
the FreeRTOS scheduler.

– In function _cbSendSystemDesc(void) , add this instruction:
SEGGER_SYSVIEW_SendSysDesc(”N=”SYSVIEW_APP_NAME”,
D=”SYSVIEW_DEVICE_NAME”,O=FreeRTOS”); before
SEGGER_SYSVIEW_SendSysDesc(”I#15=SysTick”); .

– Replace the Global function section with this code:

/***
*
* Global functions
*
**
*/

SEGGER_SYSVIEW_OS_API SYSVIEW_MICROEJ_X_OS_TraceAPI;

static void SYSVIEW_MICROEJ_X_OS_SendTaskList(void){
SYSVIEW_X_OS_TraceAPI.pfSendTaskList();

// The strategy to send tasks info is different in post mortem and live analysis.
#if (1 == SEGGER_SYSVIEW_POST_MORTEM_MODE)

/**
* POST MORTEM analysis

(continues on next page)

3.6. VEE Porting Guide 1214

https://freertos.org/Documentation/02-Kernel/02-Kernel-features/09-RTOS-trace-feature
https://www.segger.com/downloads/jlink/UM08027
https://forum.segger.com/index.php/Thread/6158-SOLVED-SystemView-Kernelpatch-for-FreeRTOS-10-2-0/?s=add3b0f6a33159b9c4b602da0082475afeceb89a

MicroEJ Documentation,

(continued from previous page)

*
* Using the post mortem analysis, FreeRTOS␣

→˓tasks regularly call the SYSVIEW_MICROEJ_X_OS_SendTaskList() function when
* a packet (systemview event)␣

→˓is sent to the SEGGER circular buffer. It is necessary because the information of tasks
* must be␣

→˓regularly uploaded in the circular buffer in order to provide a valid analysis at any moment.
* Consequently, we only allow to call LLMJVM_

→˓MONITOR_SYSTEMVIEW_send_task_list() when the current task is the Core Engine.
*/

/* Obtain the handle of the current task. */
TaskHandle_t xHandle = xTaskGetCurrentTaskHandle();
configASSERT(xHandle); // Check the handle is not NULL.

// Check if the current␣
→˓task handle is the Core Engine task handle. pvMEJCoreEngineTask is an external variable.
if(xHandle == pvMEJCoreEngineTask){

// Launched␣
→˓by the Core Engine, we execute LLMJVM_MONITOR_SYSTEMVIEW_send_task_list()

LLMJVM_MONITOR_SYSTEMVIEW_send_task_list();
}

#else
/**
* LIVE analysis
*
* Using␣

→˓the live analysis, the call of SYSVIEW_MICROEJ_X_OS_SendTaskList() is triggered by
* the SystemView␣

→˓Software through the J-Link probe. Consequently, the Core Engine task will never call
* the function LLMJVM_

→˓MONITOR_SYSTEMVIEW_send_task_list(). However, if the Core Engine task is created,
* the function must be called LLMJVM_MONITOR_SYSTEMVIEW_send_task_list().
*/
// Check␣

→˓if the Core Engine task handle is not NULL. pvMEJCoreEngineTask is an external variable.
if(NULL != pvMEJCoreEngineTask){

// The Core Engine␣
→˓task is running, we execute LLMJVM_MONITOR_SYSTEMVIEW_send_task_list()

LLMJVM_MONITOR_SYSTEMVIEW_send_task_list();
}

#endif
}

void SEGGER_SYSVIEW_Conf(void) {
SYSVIEW_

→˓MICROEJ_X_OS_TraceAPI.pfGetTime = SYSVIEW_X_OS_TraceAPI.pfGetTime;
SYSVIEW_MICROEJ_

→˓X_OS_TraceAPI.pfSendTaskList = SYSVIEW_MICROEJ_X_OS_SendTaskList;

SEGGER_SYSVIEW_Init(SYSVIEW_TIMESTAMP_FREQ, SYSVIEW_
→˓CPU_FREQ, &SYSVIEW_MICROEJ_X_OS_TraceAPI, _cbSendSystemDesc);
SEGGER_SYSVIEW_SetRAMBase(SYSVIEW_RAM_BASE);

}

2. Add in your BSP the MicroEJ C module files for SystemView: com.microej.clibrary.third-
party#systemview. These files correspond to the sources provided in the installation folder of

3.6. VEE Porting Guide 1215

https://repository.microej.com/modules/com/microej/clibrary/thirdparty/systemview/1.3.1/
https://repository.microej.com/modules/com/microej/clibrary/thirdparty/systemview/1.3.1/

MicroEJ Documentation,

Systemview (<installation_dir>/Src/SEGGER) with a patch for MicroEJ (including recom-
mended configuration and prefixes for task names).

3. Add in yourBSP theMicroEJCmodule files for SystemViewFreeRTOSsupport. These files corre-
spond to the sources provided in the installation folder of Systemview (<installation_dir>/
Src/Sample/FreeRTOSVXX and <installation_dir>/Src/Sample/FreeRTOSVXX/
Config) with a patch for MicroEJ.

• FreeRTOS 10: com.microej.clibrary.thirdparty#systemview-freertos10

• For other versions of FreeRTOS, please contact our support team.

Not all OS events are useful to the profiling analysis. It can be useful to filter out events from
systick/queue/…inorder to reduce the loadand improve the stabilityof theanalysis. Todisable
these traces on FreeRTOS, modify SEGGER_SYSVIEW_FreeRTOS.h :

• Comment the defines beginning by traceISR .

• Comment the defines beginning by traceQUEUE .

4. Add in your BSP the Abstraction Layer implementation of the Java Trace API for SystemView by
adding Cmodule files in your BSP: com.microej.clibrary.llimpl#trace-systemview

Configure FreeRTOS for SystemView

Open FreeRTOSConfig.h andmake these changes:

1. add #define INCLUDE_xTaskGetIdleTaskHandle 1

2. add #define INCLUDE_pxTaskGetStackStart 1

3. add #define INCLUDE_uxTaskPriorityGet 1

4. comment the line #define traceTASK_SWITCHED_OUT() if defined

5. comment the line #define traceTASK_SWITCHED_IN() if defined

6. add #include ”SEGGER_SYSVIEW_FreeRTOS.h” at the end of the file

Modify startup code of your BSP

1. Enable SystemView on startup (before creating the first OS task): call
SEGGER_SYSVIEW_Conf(); . The following include directive is required: #include
”SEGGER_SYSVIEW.h” .

2. Print the RTT block address to the serial port on startup: printf(”SEGGER_RTT block ad-
dress: %p\n”, &(_SEGGER_RTT)); . The following include directive is required: #include
”SEGGER_RTT.h” .

Note: This is useful if SystemView does not automatically find the RTT block address. See
section RTT Control Block Not Found for more details. You may also find the RTT block address
in RAM by searching _SEGGER_RTT in the .map file generated with the firmware binary.

3. Add a call to SYSVIEW_setMicroJVMTask(pvCreatedTask); just after creating theOS task.
Thehandler togive is theparameter of typeTaskHandle_tpassed to the xTaskCreate function.
This will register the Core Engine OS task.

3.6. VEE Porting Guide 1216

https://repository.microej.com/modules/com/microej/clibrary/thirdparty/systemview-freertos10/1.1.1/
https://repository.microej.com/modules/com/microej/clibrary/llimpl/trace-systemview/3.1.0/

MicroEJ Documentation,

Add description files to Systemview installation folder

Copy the file SYSVIEW_MicroEJ.txt of the C module com.microej.cli-
brary.llimpl#trace-systemview to the SystemView installation path, such as SEGGER/
SystemView_V252a/Description/ . If your VEE Port integrates MicroUI, also add the trace
descriptions files from Debug Traces.

Non default CPU recommendations

Asmentioned in the SEGGER documentation, SystemView can be used on any CPU. In the case
of a CPU not supported by default, the following macros that redirect to 4 functions must be
implemented:

• SEGGER_SYSVIEW_GET_TIMESTAMP()

• SEGGER_SYSVIEW_GET_INTERRUPT_ID()

• SEGGER_SYSVIEW_LOCK()

• SEGGER_SYSVIEW_UNLOCK()

These 4macros are defined by default in the file SEGGER_SYSVIEW_ConfDefaults.h and
should be re-defined in the file SEGGER_SYSVIEW_configuration.h when it is necessary.

The function macro SEGGER_SYSVIEW_GET_TIMESTAMP() retrieves the system
timestamp for SystemView events. On most devices the system timestamp must be gener-
ated by a timer. With the default configuration, the system timestamp is retrieved from the
user-provided function SEGGER_SYSVIEW_X_GetTimestamp() . The recommended
minimum accuracy for this is on the order of magnitude of microseconds.

The function macro SEGGER_SYSVIEW_GET_INTERRUPT_ID() returns the cur-
rently active interrupt. OnCortex-Mdevices the active vector canbe read from the ICSR register.
On other devices, the active interrupt can either be retrieved from the interrupt controller di-
rectly, canbe saved ina variable in thegeneric interrupthandler, or has tobeassignedmanually
in each interrupt routine.

The functionmacro SEGGER_SYSVIEW_LOCK() recursively locks SystemView transfers
from being interrupted, by disabling the interrupts. Recording a SystemView event must not
be interrupted by recording another event. By default, this function is implemented with the
function macro SEGGER_RTT_LOCK() . However, this definition may be empty for your
system. In this case, implement the function to disable interrupt and context switching.

The function macro SEGGER_SYSVIEW_UNLOCK() recursively unlocks SystemView
transfers from being interrupted, by retoring the previous interrupt state. Follow the same rec-
ommendations as for the function macro SEGGER_SYSVIEW_LOCK() .

Warning: Empty implementations of SEGGER_RTT_LOCK() and SEG-
GER_RTT_LOCK() will not cause an error at link time, so check the implementation
of these two function macros carefully.

Note: If the target is not connected to a J-Link probe, post mortem analysis is still possible.

3.6. VEE Porting Guide 1217

https://repository.microej.com/modules/com/microej/clibrary/llimpl/trace-systemview/3.1.0/
https://repository.microej.com/modules/com/microej/clibrary/llimpl/trace-systemview/3.1.0/

MicroEJ Documentation,

Post Mortem analysis data extraction

First of all, in the file SEGGER_SYSVIEW_configuration.h , be sure that the macro SEG-
GER_SYSVIEW_POST_MORTEM_MODE is set to 1 and increase the size of the SEG-
GER_SYSVIEW_RTT_BUFFER_SIZE . Then, start manually the SystemView recording
by calling SEGGER_SYSVIEW_Start() at runtime.

1. When the system crashed or all tests are done, attachwith a debugger to the system and halt it.

2. Get the SystemView RTT buffer (Usually _SEGGER_RTT.aUp[1].pBuffer).

When using a debugger, the SEGGER_RTT buffer can be located using the Expressions tab by
adding the tracking of the expression _SEGGER_RTT symbol.

3. Save the data from pBuffer + WrOff until the end of the buffer to a file.

4. Append the data from pBuffer until pBuffer + RdOff - 1 to the file.

5. Save the file as *.SVdat or *.bin.

The append step and the step 5 can be done in one cat instruction as shown below:

cat sysview_dump_1_wroff.bin sysview_dump_1_rdoff.bin > concat_dump_1.bin

The file generated can now be read by the SystemView software.

Note: Instructions on how to retrieve the right SEGGER RTT buffer are also available on the SEGGER website.

Usage

Trace application events

To enable events recording, refer to the Event Recording section to configure the required Ap-
plication Options.

Add custom events to the SystemView analysis

MicroEJ Architecture can generate specific events that allowmonitoring of current thread, Java
exceptions, Java allocations, … as well as custom application events. Please refer to the Event
Tracing section.

For custom application events, the first step is to add logs to the Java application using a ded-
icated Tracer . Please read the documentation page Code Instrumentation for Logging. Below
is an example of Tracer usage:

Tracer tracer = new Tracer(”MyGroup”, 10);

if (Constants.getBoolean(Tracer.TRACE_ENABLED_CONSTANT_PROPERTY)) {
// This␣

→˓code is not embedded if TRACE_ENABLED_CONSTANT_PROPERTY is set to false.
tracer.recordEvent(0);

}

// Do some actions HERE...
(continues on next page)

3.6. VEE Porting Guide 1218

https://www.segger.com/products/development-tools/systemview/technology/post-mortem-mode

MicroEJ Documentation,

(continued from previous page)

if (Constants.getBoolean(Tracer.TRACE_ENABLED_CONSTANT_PROPERTY)) {
// This␣

→˓code is not embedded if TRACE_ENABLED_CONSTANT_PROPERTY is set to false.
tracer.recordEventEnd(0);

}

Run this application on the target with traces enabled and record the SystemView analysis.
Then, search for the event in the SystemView logs with the timeline. In this example, the new
event type is function #512 , see the screenshot below:

Now, it is necessary to indicate to SystemView how to decode this new event. To do that, you
caneither edit the file SYSVIEW_MicroEJ.txt or addanew text file in theSystemView install
folder SEGGER/SystemView_VXXX/Description . In the chosen file, add the line as shown
below:

512 Thread1_Print Thread1 compute the time to print to the UART (512)

Finally, reload your analysis with SystemView and this time the new event should be decoded.

3.6. VEE Porting Guide 1219

MicroEJ Documentation,

You can add more information if you use the versions of the Tracer API with more parameters.
Then, if you want these parameters to appear in the SystemView timeline view, use the modi-
fiers below:

• %b - Display parameter as binary.

• %B - Display parameter as hexadecimal string (e.g. 00 AA FF…).

• %d - Display parameter as signed decimal integer.

• %D - Display parameter as time value.

• %I - Display parameter as a resource name if the resource id is known to SystemView.

• %p - Display parameter as 4 byte hexadecimal integer (e.g. 0xAABBCCDD).

• %s - Display parameter as string.

• %t - Display parameter as a task name if the task id is known to SystemView.

• %u - Display parameter as unsigned decimal integer.

• %x - Display parameter as hexadecimal integer.

Check the other text files provided by SEGGER for more examples in the install directory
SEGGER/SystemView_VXXX/Description .

Core Engine OS Task

TheCore Engine task is the nativeOS task that executes the Core Engine internals & the Applica-
tion threads. The provided SystemView configuration replaces (splits) the execution segments
of this OS task with (into) the different components that are actually executed. This simplifies
profiling analysis by exposing the execution segments of the Scheduler, Garbage Collector &
the different Application threads (with their names, see the section below) directly into Sys-
temView’s timeline, along with the other native OS tasks.

3.6. VEE Porting Guide 1220

MicroEJ Documentation,

OS Tasks and Threads Names

To make a distinction between the OS tasks and the MicroEJ threads, a prefix is added to the
OS tasks names ([OS]) and the threads names ([MEJ]).

Fig. 239: OS Tasks and Threads Names

Note: SystemView limits the number of characters to 32. The prefix length is included in these 32 characters;
consequently, the end of the original OS task or thread name can be cropped.

3.6. VEE Porting Guide 1221

MicroEJ Documentation,

OS Tasks and Threads Priorities

SystemView lists the OS tasks and threads according to their priorities. However, the priority
notion does not have the same signification when talking about OS tasks or threads: a thread
priority depends on the Core Engine OS task priority.

As a consequence, a thread with the priority 5 may not appear between an OS task with the
priority 4 and another OS task with priority 6 :

• if the Core Engine OS task priority is 3 , the thread must appear below an OS task with priority
4 .

• if the Core Engine OS task priority is 7 , the thread must appear above an OS task with priority
6 .

To keep a consistent line ordering in SystemView, the priorities sent to the SystemView client
respect the following rules:

• OS task: priority_sent = task_priority * 100 .

• MicroEJ thread: priority_sent = MicroJvm_task_priority * 100 + thread_priority .

Troubleshooting

SystemView doesn’t see any activity in MicroEJ Tasks

You have to enable runtime traces of your Java application.

• In Run > Run configuration , select your Java application launcher.

• Then, go to Configuration tab > Runtime > Trace .

• Finally, check checkboxes Enable execution traces and
Start execution traces automatically as shown in the picture below.

• Rebuild your firmware with the new Java application version, which should fix the issue.

3.6. VEE Porting Guide 1222

MicroEJ Documentation,

Youmay only check the first checkboxwhen you knowwhen youwant to start the trace record-
ing. Formore information, please refer to the Event Recording section to configure the required
Application Options.

OVERFLOW Events in SystemView

Depending on the application, OVERFLOW events can be seen in System View. To mitigate this
problem, the default SEGGER_SYSVIEW_RTT_BUFFER_SIZE can be increased from the default
1kB to a more appropriate size of 4kB. Still, if OVERFLOW events are still visible, the user can
further increase this configuration found in /YourPlatformProject-bsp/projects/microej/
thirdparty/systemview/inc/SEGGER_SYSVIEW_configuration.h .

3.6. VEE Porting Guide 1223

MicroEJ Documentation,

RTT Control Block Not Found

• Get the RTT block address from the standard output by resetting the board (it is printed at the
beginning of the firmware program),

• In SystemView, select Target > Start recording ,

• In RTT Control Block Detection , select Address andput the address retrieved. You can also
try with Search Range option.

RTT block found by SystemView but no traces displayed

• Be sure that your MCU is running. The BSP may use semi-hosting traces that block the MCU
execution if the application is running out of a Debug session.

• You can check the state of the MCU using J-Link tools such as J-Link Commander and Ozone
to start a Debug session.

Bus hardfault when running SystemViewwithout Core Engine

The function LLMJVM_MONITOR_SYSTEMVIEW_send_task_list(); triggers a Bus
Hardfault whennoCore Engine is launched. To solve this issue, comment this function call out
in SEGGER_SYSVIEW_Config_FreeRTOS.c when you run SystemView without launch-
ing the Core Engine.

Partial or wrong analysis with warningmessages in the logs

Itmay happen that logs are not recordedwell, with the followingmessages displayed in the log
window:

Warning: Decoding 32-bit value failed. Bit 5 has continuation set
Warning: Error during file analysis.

The cause of this issue can be a wrong implementation of the locking function macros SEG-
GER_SYSVIEW_LOCK() and SEGGER_SYSVIEW_UNLOCK() . This problem may
occur on a system target that is not supported by default in SystemView sources.

This issue has been discussed in the SEGGER forum topic here: https://forum.segger.com/
index.php/Thread/8336-SOLVED-SystemView-stops-working-with-Error-140-and-141/

3.6. VEE Porting Guide 1224

https://forum.segger.com/index.php/Thread/8336-SOLVED-SystemView-stops-working-with-Error-140-and-141/
https://forum.segger.com/index.php/Thread/8336-SOLVED-SystemView-stops-working-with-Error-140-and-141/

MicroEJ Documentation,

SystemView for STM32 ST-Link Probe

SystemView software requires a J-Link probe. If your target board uses an ST-Link probe, it is
possible to re-flash the ST-LINK on board with a J-Link firmware. See instructions provided
by SEGGER Microcontroller https://www.segger.com/products/debug-probes/j-link/models/
other-j-links/st-link-on-board/ for more details.

If you cannot flash a firmware for an STM32 device after replacing the J-Link firmware with the
ST-Link original one:

• Use ST_Link utility program to update the ST_Link firmware, go to ST-LINK >
Firmware update .

• Then, try to flash again.

3.6. VEE Porting Guide 1225

https://www.segger.com/products/debug-probes/j-link/models/other-j-links/st-link-on-board/
https://www.segger.com/products/debug-probes/j-link/models/other-j-links/st-link-on-board/

MicroEJ Documentation,

3.6.27 Simulation

Principle

TheMicroEJPlatformprovides an accurateMicroEJ Simulator that runs onworkstations. Appli-
cations execute in an almost identical manner on both the workstation and on target devices.
TheMicroEJSimulator features IO simulation, JDWPdebugcoupledwithEclipse, accurateMan-
aged heap dump, and an accurate Java scheduling policy (the same as the embedded one).1

Functional Description

In order to simulate external stimuli that come from thenativeworld (that is, “theCworld”), the
MicroEJ Simulator has a Hardware In the Loop interface, HIL, which performs the simulation of
Java-to-C calls. All Java-to-C calls are rerouted to an HIL engine. Indeed HIL is a replacement
for the [SNI] interface.

Fig. 240: The HIL Connects the MicroEJ Simulator to the Workstation.

The “simulated C world” is made of Mocks that simulate native code (such as drivers and any
other kind of C libraries), so that the MicroEJ Application can behave the same as the device
using the MicroEJ Platform.

The MicroEJ Simulator and the HIL are two processes that run in parallel: the communication
between them is through a socket connection. Mocks run inside the process that runs the HIL
engine.

1 Only the execution speed is not accurate. The Simulator speed can be set to match the average MicroEJ Platform speed
in order to adapt the Simulator speed to the desktop speed.

3.6. VEE Porting Guide 1226

MicroEJ Documentation,

Fig. 241: A MicroEJ Simulator connected to its HIL Engine via a socket.

Dependencies

No dependency.

Installation

The Simulator is a built-in feature of MicroEJ Platform architecture.

Use

To run an application in the Simulator, create a MicroEJ launch configuration by right-clicking
on the main class of the application, and selecting Run As > MicroEJ Application .

This will create a launch configuration configured for the Simulator, and will run it.

Mock

Principle

The HIL engine is a Java standard-based engine that runs Mocks. A Mock is a jar file containing
some Java classes that simulate natives for the Simulator. Mocks allow applications to be run
unchanged in the Virtual Device while still appearing to interact with native code.

Functional Description

Aswith SNI, HIL is responsible for finding themethod to execute as a replacement for the native
Java method that the MicroEJ Simulator tries to run. Following the SNI specification philoso-
phy, the matching algorithm uses a naming convention. When a native method is called in the
MicroEJ Simulator, it requests that theHIL engine execute it. The correspondingMock executes
the method and provides the result back to the MicroEJ Simulator.

Fig. 242: The MicroEJ Simulator Executes a Native Java Method foo() .

3.6. VEE Porting Guide 1227

MicroEJ Documentation,

Example

package example;

import java.io.IOException;

/**
* Abstract class providing a native method to access sensor value.
* This method will be executed out of the Core Engine.
*/
public abstract class Sensor {

public static final int ERROR = -1;

public int getValue() throws IOException {
int sensorID = getSensorID();
int value = getSensorValue(sensorID);
if (value == ERROR) {

throw new IOException(”Unsupported sensor”);
}
return value;

}

protected abstract int getSensorID();

public static native int getSensorValue(int sensorID);
}

class Potentiometer extends Sensor {

protected int getSensorID() {
return Constants.POTENTIOMETER_ID; // POTENTIOMETER_ID is a static final

}
}

To implement the nativemethod getSensorValue(int sensorID) , you need to create aMicroEJ
mock project containing the same Sensor class on the same example package.

To create a newMicroEJ mock project:

SDK 6

SDK 5

Follow the steps described in SDK 6 User Guide - Create a Project depending on your IDE.

• Select File > New > Module Project ,

• Fill the module information (project name, module organization, name and revision),

• Select the microej-mock skeleton,

• Click on Finish .

The following code is the required Sensor class of the created Mock project:

package example;

import java.util.Random;
(continues on next page)

3.6. VEE Porting Guide 1228

MicroEJ Documentation,

(continued from previous page)

/**
* Java standard class included in a Mock jar file.
* It implements the native method using a Java method.
*/
public class Sensor {

/**
* Constants
*/
private static final int SENSOR_ERROR = -1;
private static final int POTENTIOMETER_ID = 3;

private static final Random RANDOM = new Random();

/**
* Implementation of native method ”getSensorValue()”
*
* @param sensorID Sensor ID
* @return Simulated sensor value
*/
public static int getSensorValue(int sensorID) {

if(sensorID == POTENTIOMETER_ID) {
// For the simulation, Mock returns a random value
return RANDOM.nextInt();

}
return SENSOR_ERROR;

}

}

Note: Thevisibility of thenativemethod implemented in themockmustbe public regardlessof the visibility of the
native method in the application. Otherwise the following exception is raised: java.lang.UnsatisfiedLinkError:
No such method in remote class .

Mocks Design Support

Interface

The MicroEJ Simulator interface is defined by static methods on the Java class com.is2t.hil.
NativeInterface .

3.6. VEE Porting Guide 1229

MicroEJ Documentation,

Array Type Arguments

Both [SNI] and HIL allow arguments that are arrays of base types. By default the contents of
an array are NOT sent over to the Mock. An “empty copy” is sent by the HIL engine, and the
contents of the array must be explicitly fetched by the Mock. The array within the Mock can be
modified using a regular assignment. Then to apply these changes in the MicroEJ Simulator,
themodificationsmust be flushed back. There are twomethods provided to support fetch and
flush between the MicroEJ Simulator and the HIL:

• refreshContent : initializes the array argument from the contents of its MicroEJ Simulator counterpart.

• flushContent : propagates (to the MicroEJ Simulator) the contents of the array that is used within the HIL
engine.

Fig. 243: An Array and Its Counterpart in the HIL Engine.

Below is a typical usage.

public static void foo(char[] chars, int offset, int length){
NativeInterface ni = HIL.getInstance();
//inside the Mock
ni.refreshContent(chars, offset, length);
chars[offset] = 'A';
ni.flushContent(chars, offset, 1);

}

Blocking Native Methods

Some native methods block until an event has arrived [SNI]. Such behavior is implemented in
native using the following three functions:

• int32_t SNI_suspendCurrentJavaThread(int64_t timeout)

• int32_t SNI_getCurrentJavaThreadID(void)

• int32_t SNI_resumeJavaThread(int32_t id)

This behavior is implemented in a Mock using the following methods on a lock object:

• Object.wait(long timeout): Causes thecurrent thread towaituntil another thread invokes thenotify()method
or the notifyAll() method for this object.

• Object.notifyAll(): Wakes up all the threads that are waiting on this object’s monitor.

• NativeInterface.notifySuspendStart() : Notifies the Simulator that the current native is suspended so it can
schedule a thread with a lower priority.

• NativeInterface.notifySuspendEnd() : Notifies the Simulator that the current native is nomore suspended.
Lower priority threads in the Simulator will not be scheduled anymore.

3.6. VEE Porting Guide 1230

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Object.html#wait-long-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Object.html#notify--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Object.html#notifyAll--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Object.html#notifyAll--

MicroEJ Documentation,

public static byte[] data = new byte[BUFFER_SIZE];
public static int dataLength = 0;
private static Object lock = new Object();

// Mock native method
public static void waitForData() {

NativeInterface ni = HIL.getInstance();
// inside the Mock
// wait until the data is received
synchronized (lock) {

while (dataLength == 0) {
try {

ni.notifySuspendStart();
lock.wait(); // equivalent to lock.wait(0)

} catch (InterruptedException e) {
// Use the error code specific to your library
throw new NativeException(-1, ”InterruptedException”, e);

} finally {
ni.notifySuspendEnd();

}
}

}
}

// Mock data reader thread
public static void notifyDataReception() {

synchronized (lock) {
dataLength = readFromInputStream(data);
lock.notifyAll();

}
}

Resource Management

In Java, every class can play the role of a small read-only file system root: The stored files are
called “Java resources” and are accessible using a path as a String.

TheMicroEJ Simulator interface allows the retrieval of any resource from the original Managed
world, using the getResourceContent method.

public static void bar(byte[] path, int offset, int length) {
NativeInterface ni = HIL.getInstance();
ni.refreshContent(path, offset, length);
String pathStr = new String(path, offset, length);
byte[] data = ni.getResourceContent(pathStr);
...

}

Note: By default the maximum HIL frame size in bytes is 262144 . If needed, the size can be increased by setting
com.microej.simulator.hil.frame.size application option.

com.is2t.hil.BrokenConnection will be thrown by the HIL Engine if a frame is larger than themaximumHIL frame
size (e.g. dealing with large Java resources).

3.6. VEE Porting Guide 1231

MicroEJ Documentation,

Synchronous Terminations

To terminate the whole simulation (MicroEJ Simulator and HIL), use the stop() method.

public static void windowClosed() {
HIL.getInstance().stop();

}

Define a Mock Option

Starting from Architecture 8.3.0, it is possible to define amock option using the following Appli-
cation Option:

microej.mock.property.mymockoption=mymockvalue

Then the option can be retrieved as a System Property in the mock:

public static void myNativeImplementation() {
String myOption = System.getProperty(”mymockoption”); // returns ”mymockvalue”

}

Dependencies

A Mock project must include the Mock API module dependency for bi-directional communica-
tion with the Simulator via the HIL Engine.

SDK 6

SDK 5

Add a dependency to the Mock API in the build.gradle.kts file:

compileOnly(”com.microej.tool.runtime:mock-api:2.5.0”)

The Mock API is automatically provided by the microej-mock project skeleton.

Other dependencies to standard Java modules can be added, such as the JavaFX Mock.

Installation

In a VEE Port

SDK 6

SDK 5

• Create a Mock project.

• Add the Mock as a dependency of your VEE Port project:

– either as a project dependency if both projects are in the samemulti-project:

microejMock(project(”:myMockProject”))

– or as a module dependency:

3.6. VEE Porting Guide 1232

https://repository.microej.com/modules/com/microej/tool/runtime/mock-api/

MicroEJ Documentation,

microejMock(”com.mycompany:my-mock:1.0.0”)

First create a newmodule project using the microej-mock skeleton.

Once implemented, right-click on the repository project and select Build Module .

Once the module is built, the mock can be installed in a VEE Port in one of the two ways:

• by adding the mock module as a regular VEE Portmodule dependency (if your VEE Port config-
uration project contains a module.ivy file),

• or bymanually copying the JAR file [mock_project]/target~/rip/mocks/[mock_name].jar to
the VEE Port configurationmock dropins folder dropins/mocks/dropins/ .

Make sure the option Resolve Foundation Libraries in Workspace is enabled to use the mock
without having to install it after eachmodification during development.

In an Application

You can also install a Mock from an Application project, for example when a native function
is added directly in the Application project. When a Mock is declared in an Application, it is
automatically added in the VEE Port used to build or run the Application.

SDK 6

SDK 5

Warning: A Mock can be installed from an SDK 6 Application project only if the VEE Port used
in the project is an SDK 6 VEE Port.

• add the Mock as a dependency of your Application project:

– either as a project dependency if both projects are in the samemulti-project:

microejMock(project(”:myMockProject”))

– or as a module dependency:

microejMock(”com.mycompany:my-mock:1.0.0”)

Installing a Mock from an Application project is not supported in SDK 5.

3.6. VEE Porting Guide 1233

MicroEJ Documentation,

Use

Once installed, a Mock is used automatically by the Simulator when the MicroEJ Application
calls a native method which is implemented into the Mock.

JavaFX

JavaFX is an open-source library for creating modern Java user interfaces that is highly portable. It can be used to
quickly create graphical Mocks for your VEE Port.

The installation instructions depend on the SDK version:

SDK 6

SDK 5

• Add JavaFX as a compile-time dependency in your Mock project:

compileOnly(group=
→˓”com.microej.tool”, name=”javafx”, version=”1.2.0”, configuration=”provided”)

• If your VEE Port contains at least oneMock, add JavaFX as a Mock dependency in your VEE Port
project:

microejMock(”com.microej.tool:javafx:1.2.0”)

• If your SDK is running on JDK 8, the Oracle JDK contains JavaFX, so this version allows you to
use it right now in your project.

• If your SDK is running on JDK 11, JavaFX must be added as an additional dependency to your
Mock and VEE Port project. For that, MicroEJ Corp. provides a ready-to-use packaged module
for all supported OS versions.

<dependency org=”com.microej.tool” name=”javafx” rev=”1.2.0” />

The Module serves two purposes, depending on whether it is added to a Mock or a VEE Port
project:

• In a Mock project, JavaFX is added as a compile-time dependency, its content is not included
in the Mock.

• If your VEE Port contains at least one Mock, JavaFX must be added to the VEE Port project in
order to embed its content in the VEE Port.

Warning: There is a known issue with JavaFX and Apple Silicon computers. The task runOn-
Simulator fails with an error

libc++abi: terminating due to uncaught exception of type NSException
Exiting /Users/microej/
→˓Git/J0059_Example-Mock-Framework/custom-widgets-app/build/vee/scripts/hil.xml.
Exception in thread ”thread2” java.lang.UnsatisfiedLinkError: Broken connection with client

at java.lang.Throwable.fillInStackTrace(Throwable.java:82)
at java.lang.Throwable.<init>(Throwable.java:37)
at java.lang.Error.<init>(Error.java:18)
at java.lang.LinkageError.<init>(LinkageError.java:18)
at java.lang.UnsatisfiedLinkError.<init>(UnsatisfiedLinkError.java:10)
at com.microej.example.mockframework.Main$1.run(Main.java:45)
at com.is2t.bon.timer.TimerTaskList.runLaunchedTasks(TimerTaskList.java:237)

3.6. VEE Porting Guide 1234

https://openjfx.io/
https://bugs.openjdk.org/browse/JDK-8296654

MicroEJ Documentation,

at ej.bon.Timer.run(Timer.java:431)
at java.lang.Thread.run(Thread.java:325)
at java.lang.Thread.runWrapper(Thread.java:387)

This issue affects most JDK distributions. As a workaround, we recommend to use one of the
following Eclipse Temurin distributions: 17.0.9 or 21.0.1 to avoid this issue.

You need to make your MICROEJ SDK installation point to one of the decompressed JDK
archives given above.

Note that newer versions of these JDKs (17.0.10 or higher, and 21.0.2 or higher) will have this
issue. Installation from the .pkg distribution might be overwritten by a newer version.

Mock Framework

TheMock Framework is a library based on JavaFX, it aims to ease the development ofmockUIs.

The Mock Framework provides a set of widgets. It allows to automatically generate the native
method implementation of an application and link it with the widgets of the mock UI.

Fig. 244: Mock Framework used to mock Heart Rate sensor on Wearable Demo.

Usage

The following steps should be followed to create a mock using the Mock Framework:

• Create Mock Framework Properties to bind the native methods to the mock UI,

• Create Widgets to manipulate the values of the above Properties,

• Create a Dashboard to hold the Widgets.

3.6. VEE Porting Guide 1235

https://github.com/adoptium/temurin17-binaries/releases/download/jdk-17.0.9%2B9/OpenJDK17U-jdk_aarch64_mac_hotspot_17.0.9_9.tar.gz
https://github.com/adoptium/temurin21-binaries/releases/download/jdk-21.0.1%2B12/OpenJDK21U-jdk_aarch64_mac_hotspot_21.0.1_12.tar.gz

MicroEJ Documentation,

Mock Framework Property

TheMock Framework uses a property system tobindwidgets to the nativemethods. A property
holds a value and can trigger listeners when updated.

A property must extend MockProperty and be annotated with @Property :

@Property
public class MyProperty extends MockProperty {

...
}

Theannotation is usedby the framework to find anyproperty declared in themockproject. The
property can then be retrieved from its class:

MyProperty property = MockupApplication.getProperty(MyProperty.class);

There are ready to use implementations of MockProperty :

• BooleanProperty

• IntegerProperty

• LongProperty

• FloatProperty

• DoubleProperty

• NumberProperty

• StringProperty

• FileProperty

Getter and Setter Attributes

Let’s consider the following application code that defines getter and setter native methods:

package com.microej.example;

public class RandomService {

private RandomService() {
}

/**
* Gets the service state.
*
* @return true if the service is enabled, false otherwise.
*/
public static native boolean getEnable();

/**
* Sets the service state.
*
* @param enable
* enables or disables the service.
*/

(continues on next page)

3.6. VEE Porting Guide 1236

MicroEJ Documentation,

(continued from previous page)

public static native void setEnable(boolean enable);

...

The nativemethod implementation code can be generated using the following attributes in the
Property annotation:

• getter=”<method name>” for the native method that retrieves a value from themock.

• setter=”<method name>” for the native method that sets a value in the mock.

@Property(getter = ”com.microej.example.RandomService.getEnable”)
public class MyProperty extends BooleanProperty {

...
}

or

@Property(getter = ”com.microej.example.
→˓RandomService.getEnable”, setter = ”com.microej.example.RandomService.setEnable”)
public class MyProperty extends BooleanProperty {

...
}

These attributes are optional. When no attribute is specified, the corresponding code will not
be generated.

The <method name> is the fully qualified name of the method, it must contain the package,
the nameof the class inwhich the native is implemented, and the nativemethod name. Itmust
not contain parenthesis and arguments.

Note that the class containing the getter and the setter can be different.

Property values canbechanged fromthemockcodewith getValue() and setValue() methods:

/* Get MyProperty value */
boolean state = MockupApplication.getProperty(MyProperty.class).getValue();

/* Set MyProperty value */
MockupApplication.getProperty(MyProperty.class).setValue(!state);

Mock FrameworkWidgets

The Mock Framework provides some widgets to manipulate properties.

Interactingwith thewidgetmodifies the underlying property, and similarly, updating the prop-
erty value modifies the state of the widget.

• CheckBox : sets the value of a BooleanProperty . The property is set to true when the box is checked, and
false otherwise.

• NumberSlider : sets a valueof a NumberProperty between theboundsdefinedby theproperty. Thebounds
and the position of the slider are automatically updated with the property.

• BoundsSetter : displays the upper and lower bounds defined in the NumberProperty . This class is abstract
and needs to be used as a specialized subclass, such as IntegerBoundsSetter for integer values.

3.6. VEE Porting Guide 1237

MicroEJ Documentation,

• Container : widget that contains other Mock Framework Widgets. By default, it displays contained widgets
vertically.

• Choice : widget container providing a radio button list for each contained widget. Only the selected widget
will be enabled and the other disabled (not clickable).

• FileChooser : displays a button that opens a standard platform file dialog for selecting a file. Once the file is
selected, the property is updated with the corresponding file object.

• TitledWidget : decorator to add a title to a widget.

• ImageSwapWidget : stores two images and shows one of them based on a boolean property.

• JavaFxWidget : abstract class that can be extended to create customwidgets using JavaFX components.

Mock Framework Dashboard

The Mock Framework Dashboard represents the window that is opened at Application startup
on Simulator. It holds the Mock widgets.

Mock widgets can be bound to Mock properties by passing the property class as an argument
of the Mock widget.

A Dashboardmust extend AbstractDashboard and be annotated with @DashBoard annota-
tion.

@DashBoard(title = ”My Mock DashBoard”)
public class MockDashBoard extends AbstractDashboard {

public MockDashBoard() {
addWidget(new CheckBox(”Enable RandomService”, MyProperty.class));

}
}

@DashBoard attributes are optional, find below the list of available ones:

• title : sets the title of the mock window, default title is VD Control Center.

• icon : sets the icon of the mock window, the path is relative to the src/main/resources folder of the mock
project (e.g. icon=”images/myIcon.png”).

• width : sets the width of the mock window. The default value is negative. When not specified, the system
sets the mock window size automatically.

• height : sets the height of the mock window. The default value is negative. When not specified, the system
sets the mock window size automatically.

Examples

• Mock Framework Examples demonstrate the use of the Mock Framework.

3.6. VEE Porting Guide 1238

https://github.com/MicroEJ/Example-Mock-Framework

MicroEJ Documentation,

Installation

SDK 6

SDK 5

• Add the JavaFX dependency to your VEE Port project (see JavaFX for more details):

microejMock(”com.microej.tool:javafx:1.2.0”)

• Add the Mock Framework and JavaFX libraries to your Mock project dependencies:

implementation(”com.microej.library.mock:mock-framework:1.0.1”)
compileOnly(group=
→˓”com.microej.tool”, name=”javafx”, version=”1.2.0”, configuration=”provided”)

• Add the Mock Framework and JavaFX annotation processors libraries to your Mock project de-
pendencies:

annotationProcessor(”com.microej.library.mock:mock-framework:1.0.1”)
annotationProcessor(group=
→˓”com.microej.tool”, name=”javafx”, version=”1.2.0”, configuration=”provided”)

• Add the JavaFX dependency to your VEE Port project if required (see JavaFX for more details):

<dependency org=”com.microej.tool” name=”javafx” rev=”1.2.0” />

• Add the Mock Framework and JavaFX libraries to your Mock project dependencies:

<dependency org=”com.microej.library.mock” name=”mock-framework” rev=”1.0.1” />
<dependency org=”com.microej.tool” name=”javafx” rev=”1.2.0” />

Event Tracing

Starting from Architecture 8.4.0, it is possible to record events from the Mock. The Mock API
provides the same API (ej.trace.Tracer) as the one used for Application Event Tracing:

Tracer tracer = new Tracer(”MyMockGroup”, 10);
tracer.recordEvent(1);
tracer.recordEvent(2);
tracer.recordEvent(3);

Events are recorded only if Event Recording is enabled.

By default, the Simulator traces are printed on the standard console.

[TRACE: MyMockGroup] Event 0x1()
[TRACE: MyMockGroup] Event 0x2()
[TRACE: MyMockGroup] Event 0x3()

However, it is also possible to connect other trace recorders as needed. In particular, you can
export traces in the *.SVdat format for analysis with the Segger SystemView tool. For more
information, please contact our support team.

3.6. VEE Porting Guide 1239

https://repository.microej.com/javadoc/microej_5.x/apis/ej/trace/Tracer.html
https://www.microej.com/contact/#form_2

MicroEJ Documentation,

Shielded Plug Mock

General Architecture

The Shielded Plug Mock simulates a Shielded Plug [SP] on desktop computer. This mock can
be accessed from the MicroEJ Simulator, the hardware platform or a Java SE application.

Fig. 245: Shielded Plug Mock General Architecture

Configuration

Themock socket port can be customized for Java SE clients, even though several Shielded Plug
mockswith the same socket port cannot run at the same time. The default socket port is 10082.

The Shielded Plug mock is a standard MicroEJ Application. It can be configured using Java
properties:

• sp.connection.address

• sp.connection.port

Front Panel Mock

Principle

Amajor strength of the MicroEJ environment is that it allows applications to be developed and
tested in aSimulator rather thanon the target device,whichmight not yet bebuilt. Tomake this
possible for devices that controls operatedby the user, the Simulatormust connect to a “mock”
of the control panel (the “Front Panel”) of the device. The Front Panel generates a graphical
representation of the device, and is displayed in a window on the user’s developmentmachine
when the application is executed in the Simulator.

3.6. VEE Porting Guide 1240

MicroEJ Documentation,

The Front Panel has beendesigned to be an implementation ofMicroUI library (see Simulation).
However it can be use to show a hardware device, blink a LED, interact with user without using
MicroUI library.

Functional Description

1. Creates a new Front Panel project.

2. Creates an image of the required Front Panel. This could be a photograph or a drawing.

3. Defines the contents and layout of the Front Panel by editing an XML file (called an fp file). Full
details about the structure and contents of fp files can be found in chapter Front Panel.

4. Creates images to animate the operation of the controls (for example button down image).

5. Creates Front Panel Widgets that make the link between the application and the user interac-
tions.

6. Previews the Front Panel to check the layout of controls and the events they create, etc.

7. Exports the Front Panel project into a MicroEJ VEE Port project.

The Front Panel Project

Creating a Front Panel Project

SDK 6

SDK 5

A Front Panel project template is available as part of the VEE Port project template. Clone this
template to create a Front Panel project.

A Front Panel project is created using the New Front Panel Project wizard. Select:

New > Project… > MicroEJ > Front Panel Project

The wizard will appear:

3.6. VEE Porting Guide 1241

https://github.com/MicroEJ/Tool-Project-Template-VEEPort/tree/1.3.0

MicroEJ Documentation,

Fig. 246: New Front Panel Project Wizard

Enter the name for the new project.

Project Contents

SDK 6

SDK 5

A Front Panel project has the following structure and contents:

• The src/main/java folder is provided for the definition of Front Panel Widgets . It is initially
empty. The creation of these classes will be explained later.

• The src/main/resources folder holds the file or files that define the contents and layout of the
Front Panel, with a .fp extension (the fp file or files), plus images used to create the Front Panel.
A newly created project will have a single fp file with the same name as the project, as shown
above. The contents of fp files are detailed later in this document.

• The build.gradle.kts file is the project build descriptor.

3.6. VEE Porting Guide 1242

MicroEJ Documentation,

Fig. 247: Project Contents

A Front Panel project has the following structure and contents:

• The src/main/java folder is provided for the definition of Front Panel Widgets . It is initially
empty. The creation of these classes will be explained later.

• The src/main/resources folder holds the file or files that define the contents and layout of the
Front Panel, with a .fp extension (the fp file or files), plus images used to create the Front Panel.
A newly created project will have a single fp file with the same name as the project, as shown
above. The contents of fp files are detailed later in this document.

• The JRE System Library is referenced, because a Front Panel project needs to support the
writing of Java for the Listeners (and DisplayExtensions).

• The Modules Dependencies contains the libraries for the Front Panel simulation, the widgets
it supports and the types needed to implement Listeners (and DisplayExtensions).

• The lib contains a local copy of Modules Dependencies .

Module Dependencies

SDK 6

SDK 5

The Front Panel project is a regular Gradle project. Its build.gradle.kts file should look like this
example:

plugins {
id(”com.microej.gradle.mock-frontpanel”)

}

group = ”com.mycompany”
version = ”0.1.0-RC”

dependencies {
implementation(”ej.tool.frontpanel:framework:1.1.1”)

}

3.6. VEE Porting Guide 1243

MicroEJ Documentation,

The Front Panel project is a regular MicroEJ Module project. Its module.ivy file should look
like this example:

<ivy-module version=”2.0” xmlns:ea=
→˓”http://www.easyant.org” xmlns:ej=”https://developer.microej.com” ej:version=”2.0.0”>
<info organisation=

→˓”com.mycompany” module=”examplePanel” status=”integration” revision=”1.0.0”/>

<configurations defaultconfmapping=”default->default;provided->provided”>
<conf name=

→˓”default” visibility=”public” description=”Runtime dependencies to other artifacts”/>
<conf name=”provided” visibility=

→˓”public” description=”Compile-time dependencies to APIs provided by the platform”/>
</configurations>

<dependencies>
<dependency org=”ej.tool.frontpanel” name=”framework” rev=”1.1.1”/>

</dependencies>
</ivy-module>

The Front Panel Framework contains the Front Panel core classes, mainly the ability to create
your own Front PanelWidget to simulate user interactions.

Note: Some Front Panel Widgets are available to interact with the MicroUI devices (display, input devices, etc.),
see Simulation.

Front Panel File

File Content

The Front Panel engine takes an XML file (the .fp file) as input. It describes the panel using
widgets: they simulate the drivers, sensors and actuators of the real device. The Front Panel
engine generates the graphical representation of the real device, and is displayed in a window
on the user’s development machine when the application is executed in the Simulator.

The following example file describes a simple board with one LED:

<?xml version=”1.0”?>
<frontpanel

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns=”https://developer.microej.com”
xsi:schemaLocation=”https://developer.microej.com .widget.xsd”>

<device name=”MyBoard” skin=”myboard.png”>
<ej.fp.widget.LED x=”131” y=”127” skin=”box_led.png”/>

</device>
</frontpanel>

The device skin must refer to a png file in the src/main/resources folder. This image is used
to render the background of the Front Panel. Thewidgets are drawn on top of this background.

The device contains the elements that define the widgets that make up the Front Panel. The
name of the widget element defines the type of widget. The set of valid types is determined
by the Front Panel Designer. Every widget element defines a label , which must be unique for
widgets of this type (optional or not), and the x and y coordinates of the position of thewidget

3.6. VEE Porting Guide 1244

https://repository.microej.com/modules/ej/tool/frontpanel/framework/

MicroEJ Documentation,

within the Front Panel (0,0 is top left). There may be other attributes depending on the type of
the widget.

The file and tags specifications are available in chapter Front Panel.

Note: The .fp file grammar has changed since the UI Pack version 12.0.0 (Front Panel core has been moved to
MicroEJ Architecture starting from version 7.11.0). A quick migration guide is available: open VEE Port configura-
tion file .Platform , go to Content tab, click onmodule Front Panel . Themigration guide is available in Details
box.

Editing Front Panel Files

The .fp file is a standardXML file, so it canbeeditedwithanyXMLEditor. For example inEclipse,
you can open it using the Eclipse XML editor (right-click on the .fp file, select Open With >

XML Editor). This editor features syntax highlighting and checking, and content-assist based
on the schema (XSD file) referenced in the fp file. This schema is ahidden filewithin theproject’s
definitions folder. An incremental builder checks the contents of the fp file each time it is saved
and highlights problems in the Eclipse Problems view, and with markers on the fp file itself.

A preview of the Front Panel can be obtained by opening the Front Panel Preview. This tool is
available in Eclipse only:

• in SDK 5, it is installed by default.

• in SDK 6, it must be installed by following the instructions on the Development Tools page.

Once installed, open it in Window > Show View > Other… > MicroEJ >
Front Panel Preview .

The preview is updated each time the .fp file is saved.

A typical working layout is shown below.

3.6. VEE Porting Guide 1245

MicroEJ Documentation,

Fig. 248: Working Layout Example

Within the XML editor, content-assist is obtained by pressing CTRL + SPACE keys. The
editorwill list all the elements valid at the cursor position, and insert a template for the selected
element.

Multiple Front Panel Files

A Front Panel project can containmultiple .fp files. All those files are compiledwhen exporting
the Front Panel project to a VEE Port (or during VEE Port build). It may be useful to have two
or more representations of a board (skin, device layout, display size, etc…). When running the
simulator, by default, the .fp file declared by the VEE Port configuration, is used (or a random
one if no default is configured). To pick a specific one, set the ApplicationOption frontpanel.file
to a Front Panel simple file name included in the VEE Port (e.g. myproduct.fp).

Widget

Description

A widget is a subclass of Front Panel Framework class ej.fp.Widget . The library ej.tool.
frontpanel#widget provides a set of widgets which are Graphics Engine compatible (see Sim-
ulation). To create a new widget (or a subclass of an existing widget), have a look on available
widgets in this library.

3.6. VEE Porting Guide 1246

MicroEJ Documentation,

Fig. 249: Front Panel Widgets

Awidget is recognized by the fp file as soon as its class contains a @WidgetDescription anno-
tation. The annotation contains several @WidgetAttribute . An attribute has got a name and
tells if it is an optional attribute of widget (by default an attribute is mandatory).

This is the description of the widget LED :

@WidgetDescription(attributes = { @WidgetAttribute(name = ”x”),
@WidgetAttribute(name = ”y”), @WidgetAttribute(name = ”skin”)})

As soon as awidget is created (with its description) in Front Panel project, the fp file can use it.
Close and reopen fp file after creating a newwidget. In device group, press CTRL + SPACE
keys to visualize the available widgets: the new widget can be added.

<ej.fp.widget.LED x=”170” y=”753” skin=”box_led.png” />

Each attribute requires the set methods in the widget source code. For instance, the widget
LED (or its hierarchy) contains the following methods for sure:

• setX(int) ,

• setY(int) ,

• setskin(Image) .

The set method parameter’s type fixes the expected value in fp file. If the attribute cannot
match the expected type, an error is throw when editing fp file. Widget master class already
provides a set of standard attributes:

• setFilter(Image) : apply a filtering image which allows to crop input area (Input Device Filters).

• setWidth(int) and setHeight(int) : limits the widget size.

• setLabel(String) : specifies an identifier to the widget.

• setOverlay(boolean) : draws widget skin with transparency or not.

• setSkin(Image) : specifies the widget skin.

• setX(int) and setY(int) : specifies widget position.

Notes:

• Widget class does not specify if an attribute is optional or not. It it the responsability to the
subclass.

• The label is often used as identifier. It also allows to retrieve a widget calling Device.
getDevice().getWidget(Class<T>, String) . Some widgets are using this identifier as an in-
teger label. It is the responsability to the widget to fix the signification of the label.

3.6. VEE Porting Guide 1247

MicroEJ Documentation,

• The widget size is often fixed by the its skin (which is an image). See Widget.
finalizeConfiguration() : it sets thewidget size according the skin if the skin has been set; even
if methods setWidth() and setHeight() have been called before.

Runtime

The Front Panel engine parsing the fp file at application runtime. The widget methods are
called in two times. First, engine creates widget by widget:

1. widget’s constructor: Widget should initialize its own fields which not depend on widget at-
tributes (not valorized yet).

2. setXXX() : Widget should check if given attribute value matches the expected behavior (the
type has been already checked by caller). For instance if a width is not negative. On error, im-
plementation can throw an IllegalArgumentException . These checks must not depend on
other attributes because they may have not already valorized.

3. finalizeConfiguration() : Widget should check the coherence between all attributes: they are
now valorized.

During these three calls, all widgets are not created yet. And so, by definition, the main de-
vice (which is a widget) not more. By consequence, the implementation must not try to get
the instance of device by calling Device.getDevice() . Furthermore, a widget cannot try to get
another widget by calling Device.getDevice().getWidget(s) . If a widget depend on another
widget for any reason, the last checks can be performed in start() method. This method is
called when all widgets andmain device are created. Call to Device.getDevice() is allowed.

The method showYourself() is only useful when visualizing the fp file during its editing (use
Eclipse view Front Panel Preview). This method is called when clicking on button Outputs .

Example

The following code is a simple widget LED. MicroEJ Application can interact with it using native
methods on() and off() of class ej.fp.widget.LED :

package ej.fp.widget;

import ej.fp.Device;
import ej.fp.Image;
import ej.fp.Widget;
import ej.fp.Widget.WidgetAttribute;
import ej.fp.Widget.WidgetDescription;

/**
* Widget LED declaration. This class must have the same package than
* <code>LED</code> in MicroEJ application. This is required by the simulator to
* retrieve the implementation of native methods.
*/
@WidgetDescription(attributes␣
→˓= { @WidgetAttribute(name = ”x”), @WidgetAttribute(name = ”y”),

@WidgetAttribute(name = ”skin”) })
public class LED extends Widget {

boolean on; // false init

(continues on next page)

3.6. VEE Porting Guide 1248

MicroEJ Documentation,

(continued from previous page)

/**
* Called by the plugin when clicking on <code>Outputs</code> button from Front
* Panel Preview.
*/
@Override
public void showYourself(boolean appearSwitchedOn) {

update(appearSwitchedOn);
}

/**
* Called by framework to render the LED.
*/
@Override
public Image getCurrentSkin() {

// when LED is off, hide its skin returning null
return on ? getSkin() : null;

}

/**
* MicroEJ application native
*/
public static void on() {

update(true);
}

/**
* MicroEJ application native
*/
public static void off() {

update(false);
}

private static void update(boolean on) {

// retrieve the LED (there is only one LED on device)
LED led = Device.getDevice().getWidget(LED.class);

// update its state
led.on = on;

// ask to repaint it
led.repaint();

}
}

Empty Widget

By definition a widget may not contain an attribute. This kind of widget is useful to perform
something at Front Panel startup, for instance to start a thread to pick up data somewhere.

The widget description is @WidgetDescription(attributes = { }) . In start() method, a
custom behavior can be performed. In fp file, the widget declaration is <com.mycompany.
Init/> (where Init is an example of widget name).

3.6. VEE Porting Guide 1249

MicroEJ Documentation,

Input Device Filters

The widgets which simulate the input devices use images (or “skins”) to show their current
states (pressed and released). The user can change the state of thewidget by clicking anywhere
on the skin: it is the active area. This active area is, by default, rectangular.

These skins can be associated with an additional image called a filter . This image defines the
widget’s active area. It is useful when the widget is not rectangular.

Fig. 250: Active Area

The filter image must have the same size as the skin image. The active area is delimited by the
fully opaque pixels. Every pixel in the filter image which is not fully opaque is considered not
part of the active area.

Extension / Customization

Since UI Pack 14.3.0 it is also possible to extend the Front Panel window.

There are several zones available for extension: the tool bar, the status bar and the sides of the
device. Itmay be convenient for example to concentrate all themocks into onewindow instead
of several ones.

The device widget can be retrieved using FrontPanel.getFrontPanel().getDeviceWidget() .
From this widget, it is possible to retrieve the extensible zones.

Tool Bar

The tool bar can be retrieved with (javax.swing.JToolBar) ((javax.swing.
JComponent) FrontPanel.getFrontPanel().getDeviceWidget()).getParent().getParent().
getComponent(1) . Then it is possible to add one or several actions using JToolBar.add(). A
good practice is to add a separator before adding the actions using JToolBar.addSeparator().

For example:

JToolBar toolBar = (JToolBar) ((JComponent)␣
→˓FrontPanel.getFrontPanel().getDeviceWidget()).getParent().getParent().getComponent(1);
ImageIcon␣
→˓myActionIcon = new ImageIcon(getClass().getClassLoader().getResource(”myIcon.png”));
AbstractAction myAction = new AbstractAction(null, myActionIcon) {

private static final long serialVersionUID = 1L;

@Override
public void actionPerformed(ActionEvent e) {

// Execute my action.
}

};
(continues on next page)

3.6. VEE Porting Guide 1250

https://docs.oracle.com/javase/7/docs/api/javax/swing/JToolBar.html
https://docs.oracle.com/javase/7/docs/api/javax/swing/Action.html
https://docs.oracle.com/javase/7/docs/api/javax/swing/JToolBar.html#add(javax.swing.Action)
https://docs.oracle.com/javase/7/docs/api/javax/swing/JToolBar.html#addSeparator()

MicroEJ Documentation,

(continued from previous page)

toolBar.addSeparator();
toolBar.add(myAction);

Fig. 251: An example of action in the toolbar with the MicroEJ mascot as icon.

Status Bar

The status bar can be retrieved with (javax.swing.JPanel) ((javax.swing.
JComponent) FrontPanel.getFrontPanel().getDeviceWidget()).getParent().getParent().
getComponent(2) .

The status bar contains 3 zones: one on the left, one on the center, one on the right. Each zone
is a component included in the status bar and can be retrieved with its position, respectively 0
, 1 and 2 . In each zone, it is possible to add one or several components. A good practice is to
add a separator before adding the components.

For example:

JPanel statusBar = (JPanel) ((JComponent)␣
→˓FrontPanel.getFrontPanel().getDeviceWidget()).getParent().getParent().getComponent(2);
JPanel statusBarLeft = (JPanel) statusBar.getComponent(0);
JLabel myLabel = new JLabel(”My information”);
JSeparator mySeparator = new JSeparator(SwingConstants.VERTICAL);
Dimension myLabelPreferredSize = mySeparator.getPreferredSize();
myLabelPreferredSize.height = myLabel.getPreferredSize().height;
mySeparator.setPreferredSize(myLabelPreferredSize);
statusBarLeft.add(mySeparator);
statusBarLeft.add(myLabel);

Fig. 252: An example of simple information in the status bar.

3.6. VEE Porting Guide 1251

https://docs.oracle.com/javase/7/docs/api/javax/swing/JComponent.html
https://docs.oracle.com/javase/7/docs/api/javax/swing/JSeparator.html

MicroEJ Documentation,

Around the Device

The panel containing the device can be retrieved with (java.swing.JPanel) ((javax.swing.
JComponent) FrontPanel.getFrontPanel().getDeviceWidget()).getParent()

The panel uses a border layout, the device being in the center. It is possible to add widgets
around the device, on north, west, east or south.

For example:

JPanel panel␣
→˓= (JPanel) ((JComponent) FrontPanel.getFrontPanel().getDeviceWidget()).getParent();
panel.add(new JLabel(”My left label”), BorderLayout.WEST);
panel.add(new JLabel(”My top label”), BorderLayout.NORTH);
panel.add(new JButton(”My bottom button”), BorderLayout.SOUTH);
JPanel myPanel = new JPanel();
myPanel.setLayout(new BoxLayout(myPanel, BoxLayout.Y_AXIS));
panel.add(myPanel, BorderLayout.EAST);
myPanel.add(new JLabel(”My controls”));
myPanel.add(new JButton(”My first control”));

// Update the window to be resized to fit the new widgets.
JFrame frame = (JFrame) panel.getParent().getParent().getParent().getParent();
frame.pack();

Fig. 253: An example of widgets around the device.

3.6. VEE Porting Guide 1252

https://docs.oracle.com/javase/7/docs/api/java/awt/BorderLayout.html
https://docs.oracle.com/javase/7/docs/api/java/awt/BorderLayout#NORTH.html
https://docs.oracle.com/javase/7/docs/api/java/awt/BorderLayout#WEST.html
https://docs.oracle.com/javase/7/docs/api/java/awt/BorderLayout#EAST.html
https://docs.oracle.com/javase/7/docs/api/java/awt/BorderLayout#SOUTH.html

MicroEJ Documentation,

Installation

In the VEE Port configuration file, check Front Panel to install the Front Panel module. When
checked, the properties file frontpanel/frontpanel.properties is required during VEE Port cre-
ation to configure the module. This configuration step is used to identify and configure the
Front Panel.

The properties file must / can contain the following properties:

• project.name [mandatory]: Defines the name of the Front Panel project (same workspace as the VEE Port
configuration project). If the project name does not exist, a new project will be created.

• fpFile.name [optional, default value is “” (empty)]: Defines the Front Panel file (*.fp) the application has to
use by default when several fp files are available in project.

Advanced: Test the Front Panel Project

Note: Starting from SDK 5.7.0 and Architecture 8.0.0, the Front Panel projects are automatically resolved in the
workspace, so this section and the property ej.fp.project are obsolete since. See Resolve Foundation Libraries in
Workspace for more details.

If the Front Panel project has been createdwith a SDK version lower than 5.7.0, a project option
must be updated:

• right-click on the Module Dependencies entry.

• click on Properties .

• go to the Classpath tab.

• check the Resolve dependencies in workspace option.

To quickly test a Front Panel project without rebuilding the VEE Port or manually exporting the
project, add the Application Option ej.fp.project to the absolute path of a Front Panel project
(e.g. c:\mycompany\myfrontpanel-fp). The Simulator will use the Front Panel project spec-
ified instead of the one included in the VEE Port. This feature is useful for locally testing some
changes in the Front Panel project.

-Dej.fp.project=${project_loc:myfrontpanel-fp}

Warning: This feature only works if the VEE Port has been built with the Front Panel module
enabled and the VEE Port does not contain the changes until a new VEE Port is built.

3.6. VEE Porting Guide 1253

MicroEJ Documentation,

Use

Launch an application on the Simulator to run the Front Panel.

Bluetooth Mock

Overview

To run a MicroEJ Application that uses the Bluetooth API Library on MicroEJ Simulator, a Blue-
tooth Controller is required:

The Bluetooth Controller is a dedicated device that communicates with the Simulator to per-
form the Bluetooth operations of the Application. This means that the Simulator delegates the
Bluetooth operations (scanning, advertising, discovering services, connecting, etc.) to a real
Bluetooth device. This allows testing a Bluetooth application on any development environ-
ment.

The Bluetooth Controller firmware is provided for the inexpensive ESP32-S3-DevKitC-1-N8R8
board.

Requirements

• An ESP32-S3-DevKitC-1-N8R8 board.

• A Bluetooth Controller firmware (see section below).

• The Espressif Flash Download Tools.

Controller Firmwares

There are multiple versions of the Controller firmware, each compatible with a specific range
of Bluetooth Pack versions.

The following table indicates the firmware to use depending on the Bluetooth Pack version in-
tegrated in the VEE Port:

3.6. VEE Porting Guide 1254

https://repository.microej.com/modules/ej/api/bluetooth/
https://docs.espressif.com/projects/esp-dev-kits/en/latest/esp32s3/esp32-s3-devkitc-1/user_guide.html
https://docs.espressif.com/projects/esp-dev-kits/en/latest/esp32s3/esp32-s3-devkitc-1/user_guide.html
https://www.espressif.com/en/support/download/other-tools

MicroEJ Documentation,

Bluetooth Pack Versions Controller Firmware
[2.0.0-2.3.0[1.0.0
[2.3.0-2.6.0[1.1.1
[2.6.0-3.0.0[2.0.0

Usage

To simulate a Bluetooth application, follow these three steps:

• Install the controller firmware

• Configure the Wi-Fi network

• Run the application on the Simulator

If you are facing any issues, check the Troubleshooting section.

Controller Firmware Installation

To install the controller firmware on the ESP32-S3 board, follow these steps:

• Plug in the ESP32-S3 board to your computer,

• Find the associated COM port,

• In the flash download tool:

– select the ESP32-S3 chip type

– browse the firmware file (Executable-Bluetooth-Mock-Controller-ESP32-S3-x.y.z.bin)

– set the target address to 0

– set the SPI speed to 80MHz and the SPI mode to DIO

– select the appopriate COM port and set the baudrate to 460800

– start the flash download

With the flash download tool from Espressif, you should end with something similar to this :

3.6. VEE Porting Guide 1255

https://repository.microej.com/packages/ble-mock/Executable-Bluetooth-Mock-Controller-ESP32-S3-1.0.0.bin
https://repository.microej.com/packages/ble-mock/Executable-Bluetooth-Mock-Controller-ESP32-S3-1.1.1.bin
https://repository.microej.com/packages/ble-mock/Executable-Bluetooth-Mock-Controller-ESP32-S3-2.0.0.bin

MicroEJ Documentation,

Fig. 254: Bluetooth Controller Flash Download Tool Configuration

Wi-Fi Setup

To configure the Wi-Fi network used by the controller:

1. Connect your computer to the Wi-Fi network “BLE-Mock-Controller-[hexa device id]” mounted
by the controller.

2. Open a browser and connect to http://192.168.4.1/ to access the Wi-Fi setup interface :

3. Select the desired network and provide the required information if asked. If an error occurs
during the connection, retry this step.

4. In case the ESP32-S3 board is successfully connected to the desired network, the web page
should looks like this:

3.6. VEE Porting Guide 1256

MicroEJ Documentation,

Additionally, the serial output of the ESP32-S3 board shows connection status.

5. Connect your computer back to this network: your computer and the controller must be in the
same network.

6. Reboot the ESP32-S3 board. At this point, the configuration is saved and the board will recon-
nect automatically every time it is powered up. If the board fails to connect, the configuration
will be available again for re-configuration.

Simulation

To configure the Bluetooth Controller for the simulation:

1. Get the IP address of the controller from its logs:

2. Configure the application options:

SDK 6

SDK 5

Set the following application options:

##############################
→˓###
Bluetooth Options
##############################
→˓###

Set the Bluetooth simulation mode.
Supported values: 'stub' (default), 'net' (Bluetooth Controller)
s3.bluetooth.mode=net

When using `net` mode, set the IP address of the Bluetooth Controller.
s3.bluetooth.net.host=192.168.x.y

In theRun configurationpanel, set the simulationmode to “Controller (over net)” and configure
the connection options.

3.6. VEE Porting Guide 1257

MicroEJ Documentation,

Fig. 255: Bluetooth Mock Configuration

3. Run the application on the simulator. Note that when starting a new simulation, the Bluetooth
Controller is reset to its initial state.

Troubleshooting

Network Setup Errors

I can’t find the “BLE-Mock-Controller-[hexa device id]” access point

The signal of this Wi-Fi access point may be weaker than the surrounding access points. Try
to reduce the distance between the controller and your computer; and rescan. If it’s not pos-
sible, try using a smartphone instead (only a browser will be required to set up the network
configuration).

3.6. VEE Porting Guide 1258

MicroEJ Documentation,

I want to override the network configuration

If the Wi-Fi credentials are not valid anymore, the controller restarts the network setup phase.
Yet, in case the credentials are valid but you want to change them, erase the flash and reflash
the firmware.

“Invalid parameter type: 0x47 expected 0x53” error

Reboot the ESP32-S3 board. The controller restarts and connects to the Wi-Fi.

Simulation Errors

Error during the simulation: mock could not connect to controller

This errormeans themock process (Simulator) could not initialize the connectionwith the con-
troller. Please check that the ESP32-S3 board is connected to the network (see logs in the serial
port output) and that your computer is in the same network.

3.6.28 Appendices

Low Level API

This chapter describes succinctly the available Low Level API, module bymodule. The exhaus-
tive documentation of each LLAPI function is available in the LLAPI header files themselves.
The required header files to implement are automatically copied in the folder include of the
VEE Port at build time.

Low Level API Pattern

Principle

Each time the user has to supply the C code that links a VEE Port component to the target hard-
ware, a Low Level API is defined. There is a standard pattern for the definition and implementa-
tion of these APIs. Each interface has a name and is specified by two header files:

• [INTERFACE_NAME].h specifies the functions that make up the public API of the implementation. In
some cases the user code will never act as a client of the API, and so will never use this file.

• [INTERFACE_NAME]_impl.h specifies the functions thatmust be coded by the user in the implementa-
tion.

The user creates implementations of the interfaces, each captured in a separate C source file.
In the simplest form of this pattern, only one implementation is permitted, as shown in the
illustration below.

3.6. VEE Porting Guide 1259

MicroEJ Documentation,

Fig. 256: Low Level API Pattern (single implementation)

The following figure shows a concrete example of an LLAPI. The C world (the board support
package)has to implementa send functionandmustnotify the libraryusinga receive function.

Fig. 257: Low Level API Example

3.6. VEE Porting Guide 1260

MicroEJ Documentation,

Multiple Implementations and Instances

When a Low Level API allows multiple implementations, each implementation must have a
unique name. At run-time there may be one or more instances of each implementation, and
each instance is represented by a data structure that holds information about the instance.
The address of this structure is the handle to the instance, and that address is passed as the
first parameter of every call to the implementation.

The illustration below shows this form of the pattern, but with only a single instance of a single
implementation.

Fig. 258: Low Level API Pattern (multiple implementations/instances)

The #define statement in MYIMPL.c specifies the name given to this implementation.

3.6. VEE Porting Guide 1261

MicroEJ Documentation,

LLMJVM: Core Engine

Naming Convention

The Low Level Core Engine API, the LLMJVM API, relies on functions that need to be
implemented. The naming convention for such functions is that their names match the
LLMJVM_IMPL_* pattern.

Header Files

Three C header files are provided:

• LLMJVM_impl.h

Defines the set of functions that the BSPmust implement to launch and schedule the Core En-
gine

• LLMJVM.h

Defines the set of functions provided by Core Engine that can be called by the BSP

• LLBSP_impl.h

Defines the set of extra functions that the BSPmust implement.

LLKERNEL: Multi-Sandbox

Naming Convention

The Low Level Kernel API, the LLKERNEL API, relies on functions that need to be imple-
mented. The naming convention for such functions is that their names match the LLKER-
NEL_IMPL_* pattern.

Header Files

One C header file is provided:

• LLKERNEL_impl.h

Defines the set of functions that the BSPmust implement tomanagememory allocation of dy-
namically installed Applications.

LLSP: Shielded Plug

Naming Convention

The Low Level Shielded Plug API, the LLSP API, relies on functions that need to be
implemented. The naming convention for such functions is that their names match the
LLSP_IMPL_* pattern.

3.6. VEE Porting Guide 1262

MicroEJ Documentation,

Header Files

The implementation of the Shielded Plug assumes some support from the underlying RTOS. It
is mainly related to provide some synchronization when reading / writing into Shielded Plug
blocks.

• LLSP_IMPL_syncWriteBlockEnter and LLSP_IMPL_syncWriteBlockExit are used as a semaphore
by RTOS tasks. When a task wants to write to a block, it “locks” this block until it has finished to write in it.

• LLSP_IMPL_syncReadBlockEnter and LLSP_IMPL_syncReadBlockExit are used as a semaphore
by RTOS tasks. When a task wants to read a block, it “locks” this block until it is ready to release it.

The [SP] specification provides a mechanism to force a task to wait until new data has been
provided to a block. The implementation relies on functions LLSP_IMPL_wait and
LLSP_IMPL_wakeup to block the current task and to reschedule it.

LLEXT_RES: External Resources Loader

Principle

This LLAPI allows to use the External Resource Loader. When installed, the External Resource
Loader is notified when the Core Engine is not able to find a resource (an image, a file etc.) in
the resources area linked with the Core Engine.

When a resource is not available, the Core Engine invokes the External Resource Loader in order
to load an unknown resource. The External Resource Loader uses the LLAPI EXT_RES to let the
BSP loads or not the expected resource. The implementation has to be able to load several files
in parallel.

Naming Convention

The Low Level API, the LLEXT_RES API, relies on functions that need to be im-
plemented. The naming convention for such functions is that their names match the
LLEXT_RES_IMPL_* pattern.

Header Files

One header file is provided:

• LLEXT_RES_impl.h

Defines the set of functions that the BSPmust implement to load some external resources.

3.6. VEE Porting Guide 1263

MicroEJ Documentation,

LLCOMM: Serial Communications

Naming Convention

The Low Level Comm API (LLCOMM), relies on functions that need to be implemented by en-
gineers in a driver. The names of these functions match the LLCOM_BUFFERED_CON-
NECTION_IMPL_* or the LLCOM_CUSTOM_CONNECTION_IMPL_* pattern.

Header Files

Four C header files are provided:

• LLCOMM_BUFFERED_CONNECTION_impl.h

Defines the set of functions that the driver must implement to provide a Buffered connection

• LLCOMM_BUFFERED_CONNECTION.h

Defines the set of functions provided by ECOM Comm that can be called by the driver (or other
C code) when using a Buffered connection

• LLCOMM_CUSTOM_CONNECTION_impl.h

Defines the set of functions that the driver must implement to provide a Custom connection

• LLCOMM_CUSTOM_CONNECTION.h

Defines the set of functions provided by ECOM Comm that can be called by the driver (or other
C code) when using a Custom connection

LLUI_INPUT: Input

LLUI_INPUT API is composed of the following files:

• the file LLUI_INPUT_impl.h that defines the functions to be implemented

• the file LLUI_INPUT.h that provides the functions for sending events

Implementation

LLUI_INPUT_IMPL_initialize is the first function called by the input engine, and it may be used to initialize
the underlying devices and bind them to event generator IDs.

LLUI_INPUT_IMPL_enterCriticalSection and LLUI_INPUT_IMPL_exitCriticalSection need to provide
the Input Engine with a critical section mechanism for synchronizing devices when sending events to the internal
event queue. The mechanism used to implement the synchronization will depend on the VEE Port configuration
(with or without RTOS), and whether or not events are sent from an interrupt context.

LLUI_INPUT_IMPL_getInitialStateValue allows the input stack to get the current state for devices connected
to the MicroUI States event generator, such as switch selector, coding wheels, etc.

3.6. VEE Porting Guide 1264

MicroEJ Documentation,

Sending Events

The LLUI_INPUT API provides two generic functions for a C driver to send data to its asso-
ciated event generator:

• LLUI_INPUT_sendEvent : Sends a 32-bit event to a specific event generator, specified by its ID. If the
input buffer is full, the event is not added, and the function returns LLUI_INPUT_NOK ; otherwise it
returns LLUI_INPUT_OK .

• LLUI_INPUT_sendEvents : Sends a frame constituted by several 32-bit events to a specific event gener-
ator, specified by its ID. If the input buffer cannot receive the whole data, the frame is not added, and the
function returns LLUI_INPUT_NOK ; otherwise it returns LLUI_INPUT_OK .

Events will be dispatched to the associated event generator that will be responsible for decod-
ing them (see Generic Event Generators).

The UI extension provides an implementation for each of MicroUI’s built-in event generators.
Each one has dedicated functions that allows a driver to send them structured data without
needing to understand the underlying protocol to encode/decode the data. The following table
shows the functions provided to send structured events to the predefined event generators:

3.6. VEE Porting Guide 1265

MicroEJ Documentation,

Table 81: LLUI_INPUT API for predefined event generators
Function name Default event

generator
kindPage 1266, 1

Comments

LLUI_INPUT_sendCommandE-
vent

Command Constants are provided that define all stan-
dard MicroUI commands [MUI].

LLUI_INPUT_sendButton-
PressedEvent
LLUI_INPUT_sendButtonRe-
leasedEvent
LLUI_INPUT_sendButtonRepeat-
edEvent
LLUI_INPUT_sendButton-
LongEvent

Buttons In the case of chronological sequences (for
example, a RELEASE that may occur only
after a PRESSED), it is the responsibility of
the driver to ensure the integrity of such se-
quences.

LLUI_INPUT_sendPointer-
PressedEvent
LLUI_INPUT_sendPointerRe-
leasedEvent
LLUI_INPUT_sendPointer-
MovedEvent

Pointer In the case of chronological sequences (for
example, a RELEASE that may occur only
after a PRESSED), it is the responsibility of
the driver to ensure the integrity of such se-
quences. Depending on whether a button of
the pointer is pressed while moving, a DRAG
and/or a MOVE MicroUI event is generated.

LLUI_INPUT_sendStateEvent
States The initial value of each state machine (of a

States) is retrieved by a call to LLUI_IN-
PUT_IMPL_getInitialStateValue that
must be implemented by the device. Alter-
natively, the initial value can be specified in
the XML static configuration.

LLUI_INPUT_sendTouch-
PressedEvent
LLUI_INPUT_sendTouchRe-
leasedEvent
LLUI_INPUT_sendTouchMovedE-
vent

Pointer In the case of chronological sequences (for
example, a RELEASE that may only occur
after a PRESSED), it is the responsibility of
the driver to ensure the integrity of such se-
quences. These APIswill generate aDRAGMi-
croUI event insteadof aMOVEwhile they rep-
resent a touch pad over a display.

1 The implementation class is a subclass of the MicroUI class of the column.

3.6. VEE Porting Guide 1266

MicroEJ Documentation,

Event Buffer

Functions LLUI_INPUT_IMPL_log_xxx allow logging the use of event buffer.
Implementation of these LLAPIs is already available on the Central Repository (
LLUI_INPUT_LOG_impl.c). This implementation is using an array to add somemetadata
to each event. This metadata is used when the BSP is calling LLUI_INPUT_dump() . When
no implementation is included in the BSP, the call to LLUI_INPUT_dump() has no effect
(no available logger).

LLUI_DISPLAY: Display

Principle & Naming Convention

The Graphics Engine provides some Low Level APIs to connect a display driver. The file
LLUI_DISPLAY_impl.h defines the API headers to be implemented. For the APIs them-
selves, the naming convention is that their names match the *_IMPL_* pattern when the
functions need to be implemented:

• LLUI_DISPLAY_IMPL_initialize

• LLUI_DISPLAY_IMPL_binarySemaphoreTake

• LLUI_DISPLAY_IMPL_binarySemaphoreGive

• LLUI_DISPLAY_IMPL_flush

Some additional Low Level APIs allow you to connect display extra features. These Low Level
APIs are not required. When they are not implemented, a default implementation is used (weak
function). It concerns backlight, contrast, etc.

This describes succinctly some LLUI_DISPLAY_IMPL functions. Please refer to documen-
tation inside header files to have more information.

Initialization

EachGraphicsEnginegets initializedbycalling the function LLUI_DISPLAY_IMPL_initial-
ize : It asks its display driver to initialize itself. The implementation function has to fill the given
structure LLUI_DISPLAY_SInitData . This structure allows to retrieve the size of the virtual
and physical screen, the back buffer address (where MicroUI is drawing). The implementation
has to give two binary semaphores.

Image Heap

The display driver must reserve a runtime memory buffer for creating dynamic images when
using MicroUI ResourceImage and BufferedImage classes methods. The display driver may
choose to reserve an empty buffer. Thus, calling MicroUI methods will result in a MicroUIEx-
ception exception.

The section name is .bss.microui.display.imagesHeap .

Functions LLUI_DISPLAY_IMPL_imageHeapXXX allow to control the image buffers al-
location in the image heap. Implementation of these LLAPIs is already available on the Central

3.6. VEE Porting Guide 1267

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/ResourceImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/BufferedImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/MicroUIException.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/MicroUIException.html

MicroEJ Documentation,

Repository (LLUI_DISPLAY_HEAP_impl.c). This implementation isusingabest fit alloca-
tor. It canbeupdated to log the allocations, the remaining space, etc. Whenno implementation
is included in the BSP, the default Graphics Engine’s allocator (a best fit allocator) is used.

External Font Heap

The display driver must reserve a runtime memory buffer for loading external fonts (fonts lo-
catedoutsideCPUaddresses ranges). Thedisplaydrivermaychoose to reserveanemptybuffer.
Thus, calling MicroUI Font methods will result in empty drawings of some characters.

The section name is .bss.microui.display.externalFontsHeap .

Flush and Synchronization

The back buffer (graphics buffer) address defined in the Initialization function is the address for
thevery first drawing. Thecontentof thisbuffer is flushed to theexternaldisplaymemoryby the
function LLUI_DISPLAY_flush . The parameters define one or several rectangular regions
of the content that have changed during the last drawing action and that must be flushed to
the front buffer (dirty area). This function should be atomic: the implementation has to start
another task or a hardware device (often a DMA) to perform the flush.

As soon as the Application performs a new drawing, the Graphics Engine locks the thread. It
will automatically be unlocked when the BSP calls LLUI_DISPLAY_setBackBuffer at the
end of the flush.

Display Characteristics

Function LLUI_DISPLAY_IMPL_isColor directly implements the method from the Mi-
croUI Display class of the same name. The default implementation always returns true when
the number of bits per pixel is higher than 4.

Function LLUI_DISPLAY_IMPL_getNumberOfColors directly implements the method
from the MicroUI Display class of the same name. The default implementation returns a value
according to the number of bits by pixel, without taking into consideration the alpha bit(s).

Function LLUI_DISPLAY_IMPL_isDoubleBuffered directly implements themethod from
the MicroUI Display class of the same name. The default implementation returns true . When
LLAPI implementation targets a display in direct mode, this function must be implemented
and return false .

Contrast

LLUI_DISPLAY_IMPL_setContrast and LLUI_DISPLAY_IMPL_getContrast are called to set/get the
current display contrast intensity. The default implementations don’t manage the contrast.

3.6. VEE Porting Guide 1268

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Font.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html

MicroEJ Documentation,

BackLight

LLUI_DISPLAY_IMPL_hasBacklight indicates whether the display has backlight capabilities.

LLUI_DISPLAY_IMPL_setBacklight and LLUI_DISPLAY_IMPL_getBacklight are called to set/get the
current display backlight intensity.

Color Conversions

The following functions are only useful (and called) when the display is not a standard display,
see Pixel Structure.

LLUI_DISPLAY_IMPL_convertARGBColorToDisplayColor is called to convert a 32-bit ARGB MicroUI color
in 0xAARRGGBB format into the “driver” display color.

LLUI_DISPLAY_IMPL_convertDisplayColorToARGBColor is called to convert a display color to a 32-bit
ARGB MicroUI color.

CLUT

The function LLUI_DISPLAY_IMPL_prepareBlendingOfIndexedColors is called when
drawing an image with indexed color. See CLUT to have more information about indexed im-
ages.

Image Decoders

The API LLUI_DISPLAY_IMPL_decodeImage allows to add some additional image de-
coders.

LLUI_LED: LEDs

Principle

The LEDs engine provides Low Level APIs for connecting LED drivers. The file
LLUI_LED_impl.h , which comes with the LEDs engine, defines the API headers to be
implemented.

Naming Convention

The Low Level APIs rely on functions that must be implemented. The naming convention for
such functions is that their names match the *_IMPL_* pattern.

3.6. VEE Porting Guide 1269

MicroEJ Documentation,

Initialization

The first function called is LLUI_LED_IMPL_initialize , which allows the driver to initialize
all LED devices. Thismethodmust return the available number of LEDs. Each LED has a unique
identifier. The first LED has the ID 0, and the last has the ID NbLEDs – 1.

This UI extension provides support to efficiently implement the set of methods that interact
with the LEDs provided by a device. Below are the relevant C functions:

• LLUI_LED_IMPL_getIntensity : Get the intensity of a specific LED using its ID.

• LLUI_LED_IMPL_setIntensity : Set the intensity of an LED using its ID.

LLVG: VectorGraphics

Principle

The VG Pack provides a Low Level API for initializing the Vector Graphics engine. The file
LLVG_impl.h , which comes with the VG Pack, defines the API headers to be implemented.

Naming Convention

The Low Level APIs rely on functions that must be implemented. The naming convention for
such functions is that their names match the *_IMPL_* pattern.

Initialization

The function LLVG_IMPL_initialize is the first native function called by the MicroVG im-
plementation. It allows to initialize all C components: GPU initialization, Font engine, heap
management, etc.

LLVG_MATRIX: Matrix

Principle

The Matrix module provides Low Level APIs for manipulating matrices. The file
LLVG_MATRIX_impl.h , which comes with the Matrix module, defines the API head-
ers to be implemented.

Naming Convention

The Low Level APIs rely on functions that must be implemented. The naming convention for
such functions is that their names match the *_IMPL_* pattern.

3.6. VEE Porting Guide 1270

MicroEJ Documentation,

Implementation

Thematrix functions are divided in four groups:

1. identity and copy: fill an identity matrix or copy a matrix to another one.

2. setXXX: erase the content of the matrix by an operation (translate, rotation, scaling, concate-
nate).

3. xxx (no prefix): perform an operation with the matrix as first argument: M' = M * xxx(x, y)
where xxx is the operation (translate, rotation, scaling, concatenate).

4. postXXX: perform an operation with the matrix as second argument: M' = xxx(x, y) * M
where xxx is the operation (translate, rotation, scaling, concatenate).

LLVG_PATH: Vector Path

Principle

The Path module provides Low Level APIs for creating paths in target specific format. The file
LLVG_PATH_impl.h , which comes with the Pathmodule, defines the API headers to be im-
plemented. The file LLVG_PAINTER_impl.h defines the API headers to be implemented
to draw the paths (with a color or a gradient).

Naming Convention

The Low Level APIs rely on functions that must be implemented. The naming convention for
such functions is that their names match the *_IMPL_* pattern.

Creation

The header file LLVG_PATH_impl.h allows to convert a MicroVG library format path in a
buffer that represents the same vectorial path in the target specific format (generally GPU for-
mat).

The first function called is LLVG_PATH_IMPL_initializePath , which allows the implemen-
tation to initialize the path buffer. The buffer is allocated in the Managed heap and its size is
fixedby theMicroVG implementation. When thebuffer is too small for the target specific format,
the implementationhas to return theexpectedbuffer size insteadof thekeyword LLVG_SUC-
CESS .

The next steps consist in appending some commands in the path buffer. The command encod-
ing depends on the target specific format. When the buffer is too small to add the new com-
mand, the implementation has to return a value that indicates the number of bytes the array
must be enlarged with.

List of commands:

• LLVG_PATH_CMD_CLOSE : MicroVG “CLOSE” command.

• LLVG_PATH_CMD_MOVE : MicroVG “MOVE ABS” command.

• LLVG_PATH_CMD_MOVE_REL : MicroVG “MOVE REL” command.

• LLVG_PATH_CMD_LINE : MicroVG “LINE ABS” command.

3.6. VEE Porting Guide 1271

MicroEJ Documentation,

• LLVG_PATH_CMD_LINE_REL : MicroVG “LINE REL” command.

• LLVG_PATH_CMD_QUAD : MicroVG “QUAD ABS” command.

• LLVG_PATH_CMD_QUAD_REL : MicroVG “QUAD REL” command.

• LLVG_PATH_CMD_CUBIC : MicroVG “CUBIC ABS” command.

• LLVG_PATH_CMD_CUBIC_REL : MicroVG “CUBIC REL” command.

List of operations:

• LLVG_PATH_IMPL_appendPathCommand1 : Adds a command with 1 point parameter in the array.

• LLVG_PATH_IMPL_appendPathCommand2 : Adds a command with 2 points parameter in the array.

• LLVG_PATH_IMPL_appendPathCommand3 : Adds a command with 3 points parameter in the array.

A path is automatically closed by the MicroVG implementation (by adding the
command LLVG_PATH_CMD_CLOSE). A path can be reopened (function
LLVG_PATH_IMPL_reopenPath), that consists in removing the last added command (
LLVG_PATH_CMD_CLOSE command) from the buffer.

Drawing

The header file LLVG_PAINTER_impl.h provides the functions called by the Application
via VectorGraphicsPainter to draw a path.

• A path can be drawn with a 32-bit color (ARGB8888): LLVG_PAINTER_IMPL_drawPath .

• A path can be drawn with a linear gradient: LLVG_PAINTER_IMPL_drawGradient .

The drawing destination is symbolized by a MicroUI GraphicsContext: a pointer to a MI-
CROUI_GraphicsContext instance. Like MicroUI Painter natives, the implementation has to
synchronize the drawingswith the MicroUI Graphics Engine.

LLVG_GRADIENT: Vector Linear Gradient

Principle

The Gradientmodule provides Low Level APIs for creating linear gradients in target specific for-
mat. The file LLVG_GRADIENT_impl.h , which comes with the Gradient module, defines
the API headers to be implemented.

Naming Convention

The Low Level APIs rely on functions that must be implemented. The naming convention for
such functions is that their names match the *_IMPL_* pattern.

3.6. VEE Porting Guide 1272

MicroEJ Documentation,

Implementation

Only one function has to be implemented: LLVG_GRADIENT_IMPL_initializeGradient .
It consists in encoding theMicroVGLinearGradient in abuffer that represents the linear gradient
in target specific format (generally GPU format).

This function allows the implementation to initialize the gradient buffer. The buffer is allocated
in theManaged heap and its size is fixed by theMicroVG implementation. When the buffer is too
small for the target specific format, the implementation has to return the expected buffer size
instead of the keyword LLVG_SUCCESS .

LLVG_FONT: Vector Font

Principle

The Fontmoduleprovides LowLevel APIs for decoding fonts (LLVG_FONT_impl.h) and ren-
dering texts (LLVG_PAINTER_impl.h). Both header files, which come with the Font mod-
ule, define the API headers to be implemented.

Naming Convention

The Low Level APIs rely on functions that must be implemented. The naming convention for
such functions is that their names match the *_IMPL_* pattern.

Initialization

The first function called is LLVG_FONT_IMPL_load_font , which allows the driver to open
a font file from its name. This function takes aparameter to configure the text rendering engine:

• Simple layout: uses the glyph advance metrics and the font kerning table.

• Complex layout: uses the font GPOS and GSUB tables.

See VectorFont for more information.

The implementation must manage its own heap to keep the font opened. The font’s data are
disposed by a call to LLVG_FONT_IMPL_dispose .

Font Characteristics

The other functions in LLVG_FONT_impl.h consist in retrieving some font characteristics
according a text and a font size: string width, string height, baseline, etc.

See VectorFont for more information.

3.6. VEE Porting Guide 1273

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorFont.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorFont.html

MicroEJ Documentation,

Drawing

The header file LLVG_PAINTER_impl.h provides the functions called by the Application
via VectorGraphicsPainter to draw a path.

• Astring canbedrawnwitha32-bit color (ARGB8888): LLVG_PAINTER_IMPL_drawString
.

• Astringcanbedrawnwitha lineargradient: LLVG_PAINTER_IMPL_drawStringGradient
.

• A string can be draw on a circle: LLVG_PAINTER_IMPL_drawStringOnCircle and
LLVG_FONT_PAINTER_IMPL_drawStringOnCircleGradient .

The drawing destination is symbolized by a MicroUI GraphicsContext: a pointer to a MI-
CROUI_GraphicsContext instance. Like MicroUI Painter natives, the implementation has to
synchronize the drawingswith the MicroUI Graphics Engine.

LLNET: Network

Naming Convention

TheLowLevel API, the LLNET API, relies on functions that need tobe implemented. Thenam-
ing convention for such functions is that their names match the LLNET_IMPL_* pattern.

Header Files

Several header files are provided:

• LLNET_CHANNEL_impl.h

Defines a set of functions that the BSPmust implement to initialize the Net native component.
It also defines some configuration operations to setup a network connection.

• LLNET_SOCKETCHANNEL_impl.h

Defines a set of functions that the BSP must implement to create, connect and retrieve infor-
mation on a network connection.

• LLNET_STREAMSOCKETCHANNEL_impl.h

Defines a set of functions that the BSP must implement to do some I/O operations on connec-
tionoriented socket (TCP). It alsodefines function toput a server connection in acceptingmode
(waiting for a new client connection).

• LLNET_DATAGRAMSOCKETCHANNEL_impl.h

Defines a set of functions that the BSP must implement to do some I/O operations on connec-
tionless oriented socket (UDP).

• LLNET_DNS_impl.h

Defines a set of functions that the BSPmust implement to request host IP address associated to
ahostnameor to requestDomainNameService (DNS)host IPaddresses setup in theunderlying
system.

• LLNET_NETWORKADDRESS_impl.h

3.6. VEE Porting Guide 1274

MicroEJ Documentation,

Defines a set of functions that the BSPmust implement to convert string IP address or retrieve
specific IP addresses (lookup, localhost or loopback IP address).

• LLNET_NETWORKINTERFACE_impl.h

Defines a set of functions that the BSP must implement to retrieve information on a network
interface (MAC address, interface link status, etc.).

LLNET_SSL: SSL

Naming Convention

TheLowLevel API, the LLNET_SSL API, relieson functions thatneed tobe implemented. The
naming convention for such functions is that their namesmatch the LLNET_SSL_* pattern.

Header Files

Three header files are provided:

• LLNET_SSL_CONTEXT_impl.h

Defines a set of functions that the BSPmust implement to create a SSL Context and to load CA
(Certificate Authority) certificates as trusted certificates.

• LLNET_SSL_SOCKET_impl.h

Defines a set of functions that the BSP must implement to initialize the SSL native com-
ponents, to create an underlying SSL Socket and to initiate a SSL session handshake. It
also defines some I/O operations such as LLNET_SSL_SOCKET_IMPL_write or LL-
NET_SSL_SOCKET_IMPL_read used for encrypted data exchange between the client
and the server.

• LLNET_SSL_X509_CERT_impl.h

Defines a function named LLNET_SSL_X509_CERT_IMPL_parse for certificate parsing.
This function checks if a given certificate is an X.509 digital certificate and returns its encoded
format type : Distinguished Encoding Rules (DER) or Privacy-Enchanced Mail (PEM).

LLECOM_NETWORK: Network Interfaces

Naming Convention

The Low Level Network Interfaces API (LLECOM_NETWORK), relies on functions that need to
be implemented by engineers in a driver. The names of these functions match the LLE-
COM_NETWORK_IMPL_* pattern.

3.6. VEE Porting Guide 1275

MicroEJ Documentation,

Header Files

One header file is provided:

• LLECOM_NETWORK_impl.h

Defines the set of functions that the BSPmust implement tomanage and configure and TCP/IP
network interfaces.

LLECOM_WIFI: Wi-Fi Management

Naming Convention

The Low Level Wi-FI API (LLECOM_WIFI), relies on functions that need to be implemented by
engineers in a driver. The names of these functions match the LLECOM_WIFI_IMPL_*
pattern.

Header Files

One header file is provided:

• LLECOM_WIFI_impl.h

Defines the set of functions that theBSPmust implement tomanage and configureWi-FI access
points.

LLBLUETOOTH: Bluetooth

Naming Convention

The Low Level Bluetooth API (LLBLUETOOTH), relies on functions that need to be implemented
by engineers in adriver. Thenamesof these functionsmatch the LLBLUETOOTH_IMPL_*
pattern.

Header Files

Two header files are provided:

• LLBLUETOOTH_defines.h

Defines constants and types which are used by the functions to implement.

• LLBLUETOOTH_impl.h

Defines the set of functions that the BSP must implement to manage and configure and Blue-
tooth module.

3.6. VEE Porting Guide 1276

MicroEJ Documentation,

LLAUDIO: Audio

Naming Convention

The Low Level Audio API (LLAUDIO), relies on functions that need to be implemented by engi-
neers in a driver. The names of these functions match the LLAUDIO_*_IMPL_* pattern.

Header Files

Three header files is provided:

• LLAUDIO_defines.h

Defines constants and types which are used by the functions to implement.

• LLAUDIO_RECORD_impl.h

Defines the set of functions that the BSPmust implement for audio recording.

• LLAUDIO_TRACK_impl.h

Defines the set of functions that the BSPmust implement for audio playback.

LLML: MicroAI

Naming Convention

TheLowLevelMicroAI API (LLML), relies on functions that need tobe implementedbyengineers
in a driver. The names of these functions match the LLML_IMPL_* pattern.

Header Files

Three header files are provided:

• LLML_impl.h

Defines the set of functions that the BSPmust implement for Machine Learning.

LLEVENT: Event Queue

Naming Convention

The Low Level Event Queue API (LLEVENT), relies on functions that need to be implemented
by engineers in a driver. The names of these functions match the LLEVENT_IMPL_* or
LLEVENT_* pattern.

3.6. VEE Porting Guide 1277

MicroEJ Documentation,

Header Files

Two header files are provided:

• LLEVENT_impl.h

Defines the set of functions that the BSPmust implement tomanage, offer/handle events from
the Event Queue.

• LLEVENT.h

Defines the set of functions that the BSP must implement to use the Event Queue from the
native side.

LLFS: File System

Naming Convention

The Low Level File System API (LLFS), relies on functions that need to be implemented by
engineers in a driver. The names of these functions match the LLFS_IMPL_* and the
LLFS_File_IMPL_* pattern.

Header Files

Two C header files are provided:

• LLFS_impl.h

Defines a set of functions that the BSP must implement to initialize the FS native component.
It also defines some functions to manage files, directories and retrieve information about the
underlying File System (free space, total space, etc.).

• LLFS_File_impl.h

Definesa setof functions that theBSPmust implement todosome I/Ooperationson files (open,
read, write, close, etc.).

LLGNSS: GNSS

Naming Convention

The Low Level GNSS API (LLGNSS), relies on functions that need to be implemented by engi-
neers in a driver. The names of these functions match the LLGNSS_IMPL_* pattern.

3.6. VEE Porting Guide 1278

MicroEJ Documentation,

Header Files

One header file is provided:

• LLGNSS_impl.h

Defines the set of functions that the BSP must implement to manage and configure GNSS en-
gine.

LLHAL: Hardware Abstraction Layer

Naming Convention

TheLowLevel API, the LLHAL API, relies on functions that need tobe implemented. Thenam-
ing convention for such functions is that their names match the LLHAL_IMPL_* pattern.

Header Files

One header file is provided:

• LLHAL_impl.h

Defines the set of functions that the BSP must implement to configure and drive some MCU
GPIO.

LLDEVICE: Device Information

Naming Convention

The Low Level Device API (LLDEVICE), relies on functions that need to be implemented by engi-
neers in a driver. The names of these functions match the LLDEVICE_IMPL_* pattern.

Header Files

One C header file is provided:

• LLDEVICE_impl.h

Defines a setof functions that theBSPmust implement toget theArchitecturenameandunique
device identifier.

LLWATCHDOG_TIMER: Watchdog Timer

Naming Convention

The Low Level Watchdog Timer API (LLWATCHDOG_TIMER), provides functions that allow the
use of this API at the BSP level in C. The names of these functions match the LLWATCH-
DOG_TIMER_IMPL_* pattern.

The Watchdog API is delivered with a Generic C implementation on which the VEE Port must
depend. This implementation relieson functions thatneed tobe implementedbyengineers ina

3.6. VEE Porting Guide 1279

MicroEJ Documentation,

driver. The name of these functions match the LLWATCHDOG_TIMER_IMPL_*_action
pattern.

Header Files

One C header file is provided:

• LLWATCHDOG_TIMER_impl.h

Defines a set of functions that can be used at BSP level if required.

This C header file contains functions to implement:

• watchdog_timer_helper.h

Defines a set of functions that the BSPmust implement to link the VEE Port watchdog timer to
the Watchdog Timer library.

LLSEC: Security

Naming Convention

The Low Level Security API (LLSEC) provides functions that allow the use of this API at the BSP
level in C. The names of these functions match the LLSEC_*_IMPL_* pattern.

Header Files

Several C header files are provided:

• LLSEC_CIPHER_impl.h

Defines a set of functions thatmust be implemented by the BSP in order to decrypt and encrypt
data using cryptographic ciphers.

• LLSEC_CONSTANTS.h

Defines constants for certificates encoding formats.

• LLSEC_DIGEST_impl.h

Defines a set of functions that must be implemented by the BSP in order to support message
digest algorithms such as SHA-1 or SHA-256.

• LLSEC_ERRORS.h

Defines the Security API error return codes.

• LLSEC_KEY_FACTORY_impl.h

Defines a set of functions that must be implemented by the BSP in order to get keys informa-
tions such as algorithm or encoded form.

• LLSEC_KEY_PAIR_GENERATOR_impl.h

Defines a set of functions that must be implemented by the BSP in order to generate pri-
vate/public key pairs.

3.6. VEE Porting Guide 1280

MicroEJ Documentation,

• LLSEC_MAC_impl.h

Defines a set of functions that must be implemented by the BSP in order to support MAC algo-
rithms.

• LLSEC_PRIVATE_KEY_impl.h

Defines a set of functions thatmust be implemented by the BSP in order to encode private keys
in DER format.

• LLSEC_PUBLIC_KEY_impl.h

Defines a set of functions thatmust be implemented by the BSP in order to encode public keys.

• LLSEC_RANDOM_impl.h

Defines a set of functions that must be implemented by the BSP in order to generate random
data.

• LLSEC_SIG_impl.h

Defines a set of functions that must be implemented by the BSP in order to support signatures
functionalities.

• LLSEC_X509_CERT_impl.h

Defines a set of functions that must be implemented by the BSP in order to manage X509 cer-
tificates operations like getting the public key, extracting the issuer, etc.

MicroEJ Foundation Libraries

EDC

Error Messages

When an exception is thrown by the runtime, the error message

Generic:E=<messageId>

is issued, where <messageId> meaning is defined in the next table:

Table 82: Generic Error Messages
Message ID Description
1 Negative offset.
2 Negative length.
3 Offset + length > object length.

When an exception is thrown by the implementation of the EDC API, the error message

EDC-1.2:E=<messageId>

is issued, where <messageId> meaning is defined in the following table:

3.6. VEE Porting Guide 1281

MicroEJ Documentation,

Table 83: EDC Error Messages
Mes-
sage
ID

Description

-4 No native stack found to execute the Java native method.
-3 Maximum stack size for a thread has been reached. Increase the maximum size of the thread stack

parameter.
-2 No stack block could be allocated with the given size. Increase the stack block size.
-1 The stack space is full. Increase the stack size or the number of stack blocks.
1 A closed stream is being written/read.
2 The operation Reader.mark() is not supported.
3

lock is null in Reader(Object lock).
4 String index is out of range.
5 Argument must be a positive number.
6 Invalid radix used. Must be from Character.MIN_RADIX to Character.MAX_RADIX.
7 Operation Reader.reset() is not supported.
8 String is empty.
9 Start index is out of range.
10 End index is out of range.
11 A throwable cannot suppress itself in Throwable.addSuppressed(Throwable exception).
12 Given exception is null in Throwable.addSuppressed(Throwable exception).

Exit Codes

The MicroEJ Application can stop its execution by calling themethod System.exit(). To retrieve
the appplication exit code (or exit status), use theC function SNI_getExitCode() after the end
of SNI_startVM() (see sni.h header file). If the MicroEJ Application ended without calling
System.exit() then SNI_getExitCode() returns 0 .

The error codes returned by SNI_startVM() are defined in the section Error Codes.

SNI

Error Messages

The following error messages are issued at runtime.

Table 84: [SNI] Run Time Error Messages.
Message ID Description
-1 Not enough blocks.
-2 Reserved.
-3 Max stack blocks per thread reached.

3.6. VEE Porting Guide 1282

https://repository.microej.com/javadoc/microej_5.x/apis/java/io/Reader.html#mark-int-
https://repository.microej.com/javadoc/microej_5.x/apis/java/io/Reader.html#Reader-java.lang.Object-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Character.html#MIN_RADIX
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Character.html#MAX_RADIX
https://repository.microej.com/javadoc/microej_5.x/apis/java/io/Reader.html#reset--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Throwable.html#addSuppressed-java.lang.Throwable-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Throwable.html#addSuppressed-java.lang.Throwable-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#exit-int-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#exit-int-

MicroEJ Documentation,

KF

Definitions

Feature Definition Files

A Feature is a group of types, resources and [BON] immutables objects defined using two files
that shall be in Application classpath:

• [featureName].kf , a Java properties file. Keys are described in the “Feature definition file properties” table
below.

• [featureName].cert , an X509 certificate file that uniquely identifies the Feature

Table 85: Feature definition file properties
Key Usage Description
entryPoint Mandatory The fully qualified name of the class that implements ej.kf.FeatureEntry-

Point
immutables Optional Semicolon separated list of paths to [BON] immutable files owned by the

Feature. [BON] immutable file is defined by a / separated path relative
to application classpath

resources Optional Semicolon separated list of resource names owned by the Feature. Re-
source name is defined by Class.getResourceAsStream(String)

requiredTypes Optional Comma separated list of fully qualified names of required types. (Types
that may be dynamically loaded using Class.forName()).

types Optional Comma separated list of fully qualified names of types ownedby the Fea-
ture. Awildcard is allowed as terminal character to embed all types start-
ing with the given qualified name (a.b.C,x.y.*)

version Mandatory String version, that can retrieved using ej.kf.Module.getVersion()

Kernel Definition Files

Kernel definition files are mandatory if one or more Feature definition file is loaded and are
named kernel.kf and kernel.cert . kernel.kf must only define the version key. All types, re-
sources and immutables are automatically ownedby theKernel if not explicitly set to be owned
by a Feature.

3.6. VEE Porting Guide 1283

https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/FeatureEntryPoint.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/FeatureEntryPoint.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#getResourceAsStream-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#forName-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Module.html#getVersion--

MicroEJ Documentation,

Kernel API Files

Kernel API file definition is explained here: Kernel API.

Access Error Codes

When an instruction is executed that will break a Kernel & Features Specification (KF) insulation
semantic rule, a java.lang.IllegalAccessError is thrown, with an error code composed of two
parts: [source][errorKind] .

• source : a single character indicating the kind of Java element on which the access error occurred (Table
“Error codes: source”)

• errorKind : an error number indicating the action on which the access error occurred (Table “Error codes:
kind”)

Table 86: Error codes: source
Character Description
A Error thrown when accessing an array
I Error thrown when calling a method
F Error thrown when accessing an instance field
M Error thrown when entering a synchronized block or method
P Error thrown when passing a parameter to a method call
R Error thrown when returning from amethod call
S Error thrown when accessing a static field

Table 87: Error codes: kind
Id Description
1 An object owned by a Feature is being assigned to an object owned by the Kernel, but the current context

is not owned by the Kernel
2 An object owned by a Feature is being assigned to an object owned by another Feature
3 An object owned by a Feature is being accessed from a context owned by another Feature
4 A synchronize on an object owned by the Kernel is executed in a method owned by a Feature
5 A call to a feature code occurs while owning a Kernel monitor

Feature Installation and Loading Error Codes

When an error occurs during the installation of a Feature via the Kernel.install(InputStream)
method, or during the loading of installed Features at bootstrap, the system may throw an
ej.kf.InvalidFormatException.

This exception carries a specific error code, which can be retrieved by calling the getMessage()
method on the InvalidFormatException instance. The returnedmessage will follow the format:
code=<id> , where id corresponds the specific error encountered.

• Error code 3 indicates that an unexpected exception occurs during Feature installation (e.g.
code=3:<exception_type>).

When the exception type is java.lang.OutOfMemoryError , it may indicate there is not
enough space in the Managed Heap to load the Feature’s metadata section. If sufficient
memory is available or if a different exception type is reported (e.g. code=3:java.lang.
ArrayIndexOutOfBoundsException), this likely points to a corrupted Feature file.

3.6. VEE Porting Guide 1284

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/IllegalAccessError.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#install-java.io.InputStream-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/InvalidFormatException.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Throwable.html#getMessage--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/InvalidFormatException.html

MicroEJ Documentation,

• Error codes ranging from 50 to 100 , thrown during Feature installation, indicate an error re-
turned by the LLKERNEL Abstraction Layer.

Table 88: Feature Installation Error Codes Related to LLKERNEL Imple-
mentation

Id Description
51 The LLKERNEL_impl_copyToROM() function returned an error.
52 Themaximum number of installed Features is reached.
54 The address returned by the last call to LLKERNEL_impl_getFeatureAddressRAM() or LLK-

ERNEL_impl_getFeatureAddressROM() does not match the alignment constraint.
55 The address returned by the last call to LLKERNEL_impl_getFeatureAddressROM() overlaps

with a previously returned address.
56 The address returned by the last call to LLKERNEL_impl_getFeatureAddressRAM() overlaps

with a previously returned address.
58 The .fo file cannot be installed on this Kernel because it contains a code chunk section with a size

greater than this Kernel code chunk size.
59 The LLKERNEL_IMPL_allocateFeature() function returned 0 . The Feature cannot be allo-

cated in memory.

Those thrown at Kernel boot indicate an issue with an already installed Feature, such as mem-
ory corruption or Feature link incompatibility after Kernel update.

Table 89: Installed Feature Loading Error Codes
Id Description
53 The installed Feature content has been corrupted (CRC check error).
57 The address returned by the last call to LLKERNEL_impl_getFeatureAddressRAM() is not the

same than the one returned when the Feature has been installed.
60 The LLKERNEL_IMPL_getFeatureHandle() function returned 0 . The handle for an installed

Feature could not be retrieved as expected.

• Error codes ranging from 150 to 180 , thrown during Feature installation, typically indicate an
invalid or a corrupted Feature file.

Corrupted Feature File

A corrupted Feature is most likely the result of an issue during the streaming transfer of the .fo
file. This is typically causedby an incorrect implementation of the java.io.InputStream instance
passed to the Kernel.install(InputStream) method.

If your InputStream isprovidedbyaFoundationLibrary, ensure that yourVEEPorthasbeensuc-
cessfully qualified. For example, when using a java.io.FileInputStream, verify that the File Sys-
tem port has been fully validated. The Feature loader relies on InputStream.skip(long), which
is not commonly used. Be sure this method is correctly implemented, particularly with regard
to handling the 64-bit long argument.

3.6. VEE Porting Guide 1285

https://repository.microej.com/javadoc/microej_5.x/apis/java/io/InputStream.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#install-java.io.InputStream-
https://repository.microej.com/javadoc/microej_5.x/apis/java/io/FileInputStream.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/io/InputStream.html#skip-long-

MicroEJ Documentation,

ECOM

Warning: This chapter describes the Foundation Library ECOM-1.1 .

ECOM-1.1 is discontinued since Architecture 8.0.0.

Error Messages

When an exception is thrown by the implementation of the ECOM API, the error message

ECOM-1.1:E=<messageId>

is issued, where <messageId> meaning is defined in the next table:

Table 90: ECOM Error Messages
Message ID Description
1 The connection has been closed. Nomore action can be done on this connection.
2 The connection has already been closed.
3 The connection description is invalid. The connection cannot be opened.
4 The connection stream has already been opened. Only one stream per kind of stream (input or

output stream) can be opened at the same time.
5 Toomany connections have been opened at the same time. The platform is not able to open a new

one. Try to close useless connections before trying to open the new connection.

ECOM Comm

Error Messages

When an exception is thrownby the implementation of the ECOM-COMMAPI, the errormessage

ECOM-COMM:E=<messageId>

is issued, where <messageId> meaning is defined in the next table:

Table 91: ECOM-COMM error messages
Message ID Description
1 The connection descriptor must start with ”comm:”
2 Reserved.
3 The Comm port is unknown.
4 The connection descriptor is invalid.
5 The Comm port is already open.
6 The baudrate is unsupported.
7 The number of bits per character is unsupported.
8 The number of stop bits is unsupported.
9 The parity is unsupported.
10 The input stream cannot be opened because native driver is not able to create a RX buffer to

store the incoming data.
11 The output stream cannot be opened because native driver is not able to create a TX buffer to

store the outgoing data.
12 The given connection descriptor option cannot be parsed.

3.6. VEE Porting Guide 1286

MicroEJ Documentation,

MicroUI

Error Messages

See Error Messages.

FS

Error Messages

When an exception is thrown by the implementation of the FS API, the error message

FS:E=<messageId>

is issued, where <messageId> meaning is defined in the next table:

Table 92: File System Error Messages
Message ID Description
-1 End of File (EOF).
-2 An error occurred during a File System operation.
-3 File System not initialized.

GNSS

Error Messages

When an exception is thrown by the implementation of the GNSS API, the error message

GNSS-<APIversion>:E=<messageId>

is issued, where <messageId> meaning is defined in the next table:

Table 93: GNSS Error Messages
Message ID Description
-1 Unknown GNSS native error.
-2 An error occurred during data read.
-3 Read data is invalid.
-4 An operation needing the GNSS engine to be started was attemtped with the engine off.

Net

Error Messages

When an exception is thrown by the implementation of the Net API, the error message

NET-1.1:E=<messageId>

is issued, where <messageId> meaning is defined in the next table:

3.6. VEE Porting Guide 1287

MicroEJ Documentation,

Table 94: Net Error Messages
Message ID Description
-2 Permission denied.
-3 Bad socket file descriptor.
-4 Host is down.
-5 Network is down.
-6 Network is unreachable.
-7 Address already in use.
-8 Connection abort.
-9 Invalid argument.
-10 Socket option not available.
-11 Socket not connected.
-12 Unsupported network address family.
-13 Connection refused.
-14 Socket already connected.
-15 Connection reset by peer.
-16 Message size to be sent is too long.
-17 Broken pipe.
-18 Connection timed out.
-19 Not enough free memory.
-20 No route to host.
-21 Unknown host.
-23 Native method not implemented.
-24 The blocking request queue is full, and a new request cannot be added now.
-25 Network not initialized.
-255 Unknown error.

SSL

Error Messages

When an exception is thrown by the implementation of the SSL API, the error message

SSL-2.0:E=<messageId>

is issued, where <messageId> meaning is defined in the next table:

Table 95: SSL Error Messages
Message ID Description
-2 Connection reset by the peer.
-3 Connection timed out.
-5 Dispatch blocking request queue is full, and a new request cannot be added now.
-6 Certificate parsing error.
-7 The certificate data size bigger than the immortal buffer used to process certificate.
-8 No trusted certificate found.
-9 Basic constraints check failed: Intermediate certificate is not a CA certificate.
-10 Subject/issuer name chaining error.
-21 Wrong block type for RSA function.
-22 RSA buffer error: Output is too small, or input is too large.
-23 Output buffer is too small, or input is too large.

continues on next page

3.6. VEE Porting Guide 1288

MicroEJ Documentation,

Table 95 – continued from previous page
Message ID Description
-24 Certificate AlogID setting error.
-25 Certificate public-key setting error.
-26 Certificate date validity setting error.
-27 Certificate subject name setting error.
-28 Certificate issuer name setting error.
-29 CA basic constraint setting error.
-30 Extensions setting error.
-31 Invalid ASN version number.
-32 ASN get int error: invalid data.
-33 ASN key init error: invalid input.
-34 Invalid ASN object id.
-35 Not null ASN tag.
-36 ASN parsing error: zero expected.
-37 ASN bit string error: wrong id.
-38 ASN OID error: unknown sum id.
-39 ASN date error: bad size.
-40 ASN date error: current date before.
-41 ASN date error: current date after.
-42 ASN signature error: mismatched OID.
-43 ASN time error: unknown time type.
-44 ASN input error: not enough data.
-45 ASN signature error: confirm failure.
-46 ASN signature error: unsupported hash type.
-47 ASN signature error: unsupported key type.
-48 ASN key init error: invalid input.
-49 ASN NTRU key decode error: invalid input.
-50 X.509 critical extension ignored.
-51 ASN no signer to confirm failure (no CA found).
-52 ASN CRL signature-confirm failure.
-53 ASN CRL: no signer to confirm failure.
-54 ASN OCSP signature-confirm failure.
-60 ECC input argument is wrong type.
-61 ECC ASN1 bad key data: invalid input.
-62 ECC curve sum OID unsupported: invalid input.
-63 Bad function argument provided.
-64 Feature not compiled in.
-65 Unicode password too big.
-66 No password provided by user.
-67 AltNames extensions too big.
-70 AES-GCM Authentication check fail.
-71 AES-CCM Authentication check fail.
-80 Cavium Init type error.
-81 Bad alignment error, no alloc help.
-82 Bad ECC encrypt state operation.
-83 Bad padding: message wrong length.
-84 Certificate request attributes setting error.
-85 PKCS#7 error: mismatched OID value.
-86 PKCS#7 error: no matching recipient found.
-87 FIPS mode not allowed error.

continues on next page

3.6. VEE Porting Guide 1289

MicroEJ Documentation,

Table 95 – continued from previous page
Message ID Description
-88 Name constraint error.
-89 Random Number Generator failed.
-90 FIPS Mode HMACminimum key length error.
-91 RSA Padding error.
-92 Export public ECC key in ANSI format error: Output length only set.
-93 In Core Integrity check FIPS error.
-94 AES Known Answer Test check FIPS error.
-95 DES3 Known Answer Test check FIPS error.
-96 HMAC Known Answer Test check FIPS error.
-97 RSA Known Answer Test check FIPS error.
-98 DRBG Known Answer Test check FIPS error.
-99 DRBG Continuous Test FIPS error.
-100 AESGCM Known Answer Test check FIPS error.
-101 Process input state error.
-102 Bad index to key rounds.
-103 Out of memory.
-104 Verify problem found on completion.
-105 Verify mac problem.
-106 Parse error on header.
-107 Weird handshake type.
-108 Error state on socket.
-109 Expected data, not there.
-110 Not enough data to complete task.
-111 Unknown type in record header.
-112 Error during decryption.
-113 Received alert: fatal error.
-114 Error during encryption.
-116 Need peer’s key.
-117 Need the private key.
-118 Error during RSA private operation.
-119 Server missing DH parameters.
-120 Build message failure.
-121 Client hello not formed correctly.
-122 The peer subject namemismatch.
-123 Non-blocking socket wants data to be read.
-124 Handshake layer not ready yet; complete first.
-125 Premaster secret version mismatch error.
-126 Record layer version error.
-127 Non-blocking socket write buffer full.
-128 Malformed buffer input error.
-129 Verify problem on certificate and check date/time on your device.
-130 Verify problem based on signature.
-131 PSK client identity error.
-132 PSK server hint error.
-133 PSK key callback error.
-134 Record layer length error.
-135 Can’t decode peer key.
-136 The peer sent close notify alert.
-137 Wrong client/server type.

continues on next page

3.6. VEE Porting Guide 1290

MicroEJ Documentation,

Table 95 – continued from previous page
Message ID Description
-138 The peer didn’t send the certificate.
-140 NTRU key error.
-141 NTRU DRBG error.
-142 NTRU encrypt error.
-143 NTRU decrypt error.
-150 Bad ECC Curve Type or unsupported.
-151 Bad ECC Curve or unsupported.
-152 Bad ECC Peer Key.
-153 ECC Make Key failure.
-154 ECC Export Key failure.
-155 ECC DHE shared failure.
-157 Not a CA by basic constraint.
-159 Bad Certificate Manager error.
-160 OCSP Certificate revoked.
-161 CRL Certificate revoked.
-162 CRLmissing, not loaded.
-165 OCSP needs a URL for lookup.
-166 OCSP Certificate unknown.
-167 OCSP responder lookup fail.
-168 Maximum chain depth exceeded.
-171 Suites pointer error.
-172 No PEM header found.
-173 Out of order message: fatal.
-174 Bad KEY type found.
-175 Sanity check on ciphertext failed.
-176 Receive callback returnedmore than requested.
-178 Need peer certificate for verification.
-181 Unrecognized host name error.
-182 Unrecognized max fragment length.
-183 Key Use digitalSignature not set.
-185 Key Use keyEncipherment not set.
-186 Ext Key Use server/client authentication not set.
-187 Send callback out-of-bounds read error.
-188 Invalid renegotiation.
-189 Peer sent different certificate during SCR.
-190 Finishedmessage received from peer before receiving the Change Cipher message.
-191 Sanity check onmessage order.
-192 Duplicate handshake message.
-193 Unsupported cipher suite.
-194 Can’t match cipher suite.
-195 Bad certificate type.
-196 Bad file type.
-197 Opening random device error.
-198 Reading random device error.
-199 Windows cryptographic init error.
-200 Windows cryptographic generation error.
-201 No data is waiting to be received from the random device.
-202 Unknown error.

3.6. VEE Porting Guide 1291

MicroEJ Documentation,

Tools Options and Error Codes

Immutable Files Related Error Messages

The following error messages are issued at SOAR time (link phase) and not at runtime.

Table 96: Errors when parsing immutable files at link time.
Message
ID

Description

0 Duplicated ID in immutable files. Each immutable object should have a unique ID in the SOAR
image.

1 An immutable file refers to an unknown field of an object.
2 Tried to assign the same object field twice.
3 All immutable object fields should be defined in the immutable file description.
4 The assigned value does not match the expected Java type.
5 An immutable object refers to an unknown ID.
6 The length of the immutable object does not match the length of the assigned object.
7 The type defined in the file doesn’t match the Java expected type.
8 Generic error while parsing an immutable file.
9 Cycle detected in an alias definition.
10 An immutable object is an instance of an abstract class or an interface.
11 Unknown XML attribute in an immutable file.
12 A mandatory XML attribute is missing.
13 The value is not a valid Java literal.
14 Alias already exists.

SNI

The following error messages are issued at SOAR time and not at runtime.

Table 97: [SNI] Link Time Error Messages.
Message ID Description
363 Argument cannot be a reference.
364 Argument can only be from a base type array.
365 Return type must be a base type.
366 Methodmust be a static method.

3.6. VEE Porting Guide 1292

MicroEJ Documentation,

SP Compiler

Options

Table 98: Shielded Plug Compiler Options.
Option name Description

-verbose[e...e]
Extra messages are printed out to the console according to the number of ‘e’.

-descriptionFile
file

XML Shielded Plug description file. Multiple files allowed.

-waitingTaskLimit
value

Maximum number of task/threads that can wait on a block: a number between 0 and 7.
-1 is for no limit; 8 is for unspecified.

-immutable
When specified, only immutable Shielded Plugs can be compiled.

-output dir
Output directory. Default is the current directory.

-outputName
name

Output name for the Shielded Plug layout description. Default is “shielded_plug”.

-endianness name
Either “little” or “big”. Default is “little”.

-outputArchitec-
ture value

Output ELF architecture. Only “ELF” architecture is available.

-rwBlockHeader-
Size value

Read/Write header file value.

-genIdsC
When specified, generate a C header file with block ID constants.

-cOutputDir dir
Output directory of C header files. Default is the current directory.

-cConstantsPrefix
prefix

C constants name prefix for block IDs.

-genIdsJava
When specified, generate Java interfaces file with block ID constants.

-jOutputDir dir
Output directory of Java interfaces files. Default is the current directory.

-jPackage name
The name of the package for Java interfaces.

Error Messages

Table 99: Shielded Plug Compiler Error Messages.
Message ID Description
0 Internal limits reached.
1 Invalid endianness.
2 Invalid output architecture.
3 Error while reading / writing files.
4 Missing a mandatory option.

3.6. VEE Porting Guide 1293

MicroEJ Documentation,

NLS Immutables Creator

Table 100: NLS Immutables Creator Errors Messages
ID Type Description
1 Error Error reading the nls list file: invalid path, input/output error, etc.
2 Error Error reading the nls list file: The file contents are invalid.
3 Error Specified class is not an interface.
4 Error Invalid message ID. Must be greater than or equal to 1.
5 Error Duplicate ID. Both messages use the samemessage ID.
6 Error Specified interface does not exist.
7 Error Specified message constant is not visible (must be public).
8 Error Specified message constant is not an integer.
9 Error No locale file is defined for the specified header.
10 Error IO error: Cannot create the output file.
11 Warning Missing message value.
12 Warning There is a gap (or gaps) in messages constants.
13 Warning Specified property does not denote a message.
14 Warning Invalid properties header file. File is ignored.
15 Warning Nomessage is defined for the specified header.
16 Warning Invalid property.

MicroUI Static Initializer

Inputs

The XML file used as input by the MicroUI Static Initialization Tool may contain tags related to
the Input component as described below.

Listing 40: Event Generators Description

<eventgenerators>
<!-- Generic Event Generators -->

<eventgenerator name=”GENERIC” class=”foo.bar.Zork”>
<property name=”PROP1” value=”3”/>
<property name=”PROP2” value=”aaa”/>

</eventgenerator>

<!-- Predefined Event Generators -->
<command name=”COMMANDS”/>
<buttons name=”BUTTONS” extended=”3”/>
<buttons name=”JOYSTICK” extended=”5”/>
<pointer name=”POINTER” width=”1200” height=”1200”/>
<touch name=”TOUCH” display=”DISPLAY”/>
<states name=”STATES” numbers=”NUMBERS” values=”VALUES”/>

</eventgenerators>

<array name=”NUMBERS”>
<elem value=”3”/>
<elem value=”2”/>
<elem value=”5”/>

</array>
(continues on next page)

3.6. VEE Porting Guide 1294

MicroEJ Documentation,

(continued from previous page)

<array name=”VALUES”>
<elem value=”2”/>
<elem value=”0”/>
<elem value=”1”/>

</array>

Table 101: Event Generators Static Definition
Tag Attributes Description

eventgenerators The list of event generators.
priority Optional. An integer value. Defines the internal display thread priority. De-

fault value is 5.

eventgenerator Describes a generic event generator. See also Generic Event Generators.
name The logical name.
class The event generator class (must extend the ej.microui.event.generator.

GenericEventGenerator class). This class must be available in the MicroEJ
Application classpath.

listener Optional. Default listener’s logical name. Only a display is a valid listener. If
no listener is specified the listener is the default display.

property A generic event generator property. The generic event generator will receive
this property at startup, via the method setProperty .

name The property key.
value The property value.

command
The default event generator Command .

name The logical name.
listener Optional. Default listener’s logical name. Only a display is a valid listener. If

no listener is specified, then the listener is the default display.

buttons
The default event generator Buttons .

name The logical name.
extended Optional. An integer value. Defines the number of buttonswhich support the

MicroUI extended features (elapsed time, click and double-click).
listener Optional. Default listener’s logical name. Only a display is a valid listener. If

no listener is specified, then the listener is the default display.

pointer The default event generator Pointer .
name The logical name.
width An integer value. Defines the pointer area width.
height An integer value. Defines the pointer area heigth.
extended Optional. An integer value. Defines the number of pointer buttons (right

click, left click, etc.) which support the MicroUI extended features (elapsed
time, click and double-click).

listener Optional. Default listener’s logical name. Only a display is a valid listener. If
no listener is specified, then the listener is the default display.

touch
The default event generator Touch .

name The logical name.
display Logical name of the Display with which the touch is associated.
listener Optional. Default listener’s logical name. Only a display is a valid listener. If

no listener is specified, then the listener is the default display.

states An event generator that manages a group of state machines. The state of a
machine is changed by sending an event using LLUI_INPUT_sendSta-
teEvent .

name The logical name.
continues on next page

3.6. VEE Porting Guide 1295

MicroEJ Documentation,

Table 101 – continued from previous page
Tag Attributes Description

numbers The logical name of the array which defines the number of state machines
for this States generator, and their range of state values. The IDs of the state
machines start at 0. The number of state machines managed by the States
generator is equal to the size of the numbers array, and the value of each
entry in the array is the number of different values supported for that state
machine. State machine values for state machine i can be in the range 0 to
numbers[i] -1.

values Optional. The logical name of the array which defines the initial state values
of the state machines for this States generator. The values array must be
the same size as the numbers array. If initial state values are specified us-
ing a values array, then the LLUI_INPUT_IMPL_getInitialStateValue
function is not called; otherwise that function is used to establish the initial
values1

listener Optional. Default listener’s logical name. Only a display is a valid listener. If
no listener is specified, then the listener is the default display.

array An array of values.
name The logical name.

elem
A value.

value An integer value.

Display

The display component augments the static initialization file with:

• The configuration of each display.

• Fonts that are implicitly embedded within the application (also called system fonts). Applica-
tions can also embed their own fonts.

<display name=”DISPLAY”/>

<fonts>

<range name=”LATIN” sections=”0-2”/>
<customrange start=”0x21” end=”0x3f”/>

</fonts>

1 Exception: When using MicroEJ Platform, where there is no equivalent to the LLUI_INPUT_IMPL_getInitialStateValue
function. If no values array is provided, and the MicroEJ Platform is being used, all state machines take 0 as their initial
state value.

3.6. VEE Porting Guide 1296

MicroEJ Documentation,

Table 102: Display Static Initialization XML Tags Definition
Tag Attributes Description

display
The display element describes one display.

name
The logical name of the display.

priority
Deprecated. This value is not taken in consideration. UseMicroEj application
launcher option instead.

default
Deprecated. This value is not taken in consideration.

fonts
The list of system fonts. The system fonts are available for all displays.

font
A system font.

file
The font file path. The path may be absolute or relative to the XML file.

range A font generic range.

name
The generic range name (LATIN , HAN , etc.)

sections
Optional. Defines one or several sub parts of the generic range.
“1”: add only part 1 of the range
“1-5”: add parts 1 to 5
“1,5”: add parts 1 and 5
These combinations are allowed:
“1,5,6-8” add parts 1, 5, and 6 through 8
By default, all range parts are embedded.

customrange A font-specific range.

start
UTF16 value of the very first character to embed.

end
UTF16 value of the very last character to embed.

Front Panel

FP File

XML Schema

<?xml version=”1.0”?>
<frontpanel

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns=”https://developer.microej.com”
xsi:schemaLocation=”https://developer.microej.com .widget.xsd”>

<device name=”example” skin=”example-device.png”>
<ej.fp.widget.[type] x=”22” y=”51” [widget-attributes]/>
<ej.fp.widget.[type] x=”30” y=”125” [widget-attributes]/>
<!-- ... -->

</device>
</frontpanel>

3.6. VEE Porting Guide 1297

MicroEJ Documentation,

File Specification

Table 103: FP File Specification
Tag Attributes Description

frontpanel
The root element.

xmlns:xsi
Invariant tag1

xmlns
Invariant tag2

xsi:schemaLocation
Invariant tag3

device
The device’s root element.

name
The device’s logical name.

skin
Refers to a PNG file which defines the device background.

ej.fp.widget.xxx
Defines the widget to use. Refer to the widget documentation.

label
All widget should provide this identifier. Sometimes it is used
as string, sometimes as integer

x
The widget x-coordinate.

y
The widget y-coordinate.

HIL Engine

Below are the HIL Engine options:

Table 104: HIL Engine Options
Option name Description

-verbose[e....e]
Extra messages are printed out to the console (add extra e to get more messages).

-ip <address>
MicroEJ Simulator connection IP address (A.B.C.D). By default, set to localhost.

-port <port> MicroEJ Simulator connection port. By default, set to 8001.

-connectTimeout
<timeout>

timeout in s for MicroEJ Simulator connections. By default, set to 10 seconds.

-excludes
<name[sep]name>

Types that will be excluded from the HIL Engine class resolution provided mocks. By
default, no types are excluded.

-mocks
<name[sep]name>

Mocks are either .jar file or .class files.

1 Must be http://www.w3.org/2001/XMLSchema-instance
2 Must be https://developer.microej.com
3 Must be https://developer.microej.com .widget.xsd

3.6. VEE Porting Guide 1298

MicroEJ Documentation,

Heap Dumping

XML Schema

Below is the XML schema for heap dumps.

Table 105: XML Schema for Heap Dumps

<?xml version='1.0' encoding='UTF-8'?>
<!--

Schema

Copyright 2012 IS2T. All rights reserved.

IS2T PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
-->

<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”>
<!-- root element: heap -->
<xs:element name=”heap”>

<xs:complexType>
<xs:choice minOccurs=”0” maxOccurs=”unbounded”>

<xs:element ref=”class”/>
<xs:element ref=”object”/>
<xs:element ref=”array”/>
<xs:element ref=”stringLiteral”/>

</xs:choice>
</xs:complexType>

</xs:element>

<!-- class element -->
<xs:element name=”class”>

<xs:complexType>
<xs:choice minOccurs=”0” maxOccurs=”unbounded”>

<xs:element ref=”field”/>
</xs:choice>
<xs:attribute name=”name” type=”xs:string” use = ”required”/>
<xs:attribute name=”id” type=”xs:string” use = ”required”/>
<xs:attribute name=”superclass” type=”xs:string”/>

</xs:complexType>
</xs:element>

continues on next page

3.6. VEE Porting Guide 1299

MicroEJ Documentation,

Table 105 – continued from previous page

<!-- object element-->
<xs:element name=”object”>

<xs:complexType>
<xs:choice minOccurs=”0” maxOccurs=”unbounded”>

<xs:element ref=”field”/>
</xs:choice>
<xs:attribute name=”id” type=”xs:string” use = ”required”/>
<xs:attribute name=”class” type=”xs:string” use = ”required”/>
<xs:attribute name=”createdAt” type=”xs:string” use = ”optional”/>
<xs:attribute name=”createdInThread” type=”xs:string” use = ”optional”/>
<xs:attribute name=”createdInMethod” type=”xs:string”/>
<xs:attribute name=”tag” type=”xs:string” use = ”required”/>

</xs:complexType>
</xs:element>

<!-- array element-->
<xs:element name=”array” type = ”arrayTypeWithAttribute”/>
<!-- stringLiteral element-->
<xs:element name=”stringLiteral”>

<xs:complexType>
<xs:sequence>

<xs:element minOccurs =”4” maxOccurs=”4” ref=”field ”/>
</xs:sequence>
<xs:attribute name=”id” type=”xs:string” use = ”required”/>
<xs:attribute name=”class” type=”xs:string” use = ”required”/>

</xs:complexType>
</xs:element>

continues on next page

3.6. VEE Porting Guide 1300

MicroEJ Documentation,

Table 105 – continued from previous page

<!-- field element: child of class, object and stringLiteral-->
<xs:element name=”field”>

<xs:complexType>
<xs:attribute name=”name” type=”xs:string” use = ”required”/>
<xs:attribute name=”id” type=”xs:string” use = ”optional”/>
<xs:attribute name=”value” type=”xs:string” use = ”optional”/>
<xs:attribute name=”type” type=”xs:string” use = ”optional”/>

</xs:complexType>
</xs:element>

<xs:simpleType name = ”arrayType”>
<xs:list itemType=”xs:integer”/>

</xs:simpleType>

<!-- complex type ”arrayTypeWithAttribute”. type of array element-->
<xs:complexType name = ”arrayTypeWithAttribute”>

<xs:simpleContent>
<xs:extension base=”arrayType”>

<xs:attribute name=”id” type=”xs:string” use = ”required”/>
<xs:attribute name=”class” type=”xs:string” use = ”required”/>
<xs:attribute name=”createdAt” type=”xs:string” use = ”optional”/>
<xs:attribute name=”createdInThread” type=”xs:string” use = ”optional”/>
<xs:attribute name=”createdInMethod” type=”xs:string” use = ”optional”/>
<xs:attribute name=”length” type=”xs:string” use = ”required”/>
<xs:attribute name=”elementsType” type=”xs:string” use = ”optional”/>
<xs:attribute name=”type” type=”xs:string” use = ”optional”/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>

</xs:schema>

File Specification

Types referenced in heap dumps are represented in the internal classfile format (Internal class-
file Format for Types). Fully qualified names are names separated by the / separator (For exam-
ple, a/b/C).

3.6. VEE Porting Guide 1301

MicroEJ Documentation,

Listing 41: Internal classfile Format for Types

Type = <BaseType> | <ClassType> | <ArrayType>
BaseType: B(byte), C(char), D(double), F(float), I(int), J(long), S(short), Z(boolean),
ClassType: L<ClassName>;
ArrayType: [<Type>

Tags used in the heap dumps are described in the table below.

Table 106: Tag Descriptions
Tags Attributes Description

heap
The root element.

class
Element that references a Java class.

name Class type (<ClassType>)

id
Unique identifier of the class.

superclass
Identifier of the superclass of this class.

object
Element that references a Java object.

id
Unique identifier of this object.

class
Fully qualified name of the class of this object.

array Element that references a Java array.

id
Unique identifier of this array.

class
Fully qualified name of the class of this array.

elementsType
Type of the elements of this array.

length
Array length.

stringLiteral
Element that references a java.lang.String literal.

id
Unique identifier of this object.

class
Id of java.lang.String class.

field
Element that references the field of an object or a class.

name Name of this field.

id
Object or Array identifier, if it holds a reference.

type Type of this field, if it holds a base type.

value
Value of this field, if it holds a base type.

Architectures MCU / Compiler

Principle

The MicroEJ C libraries have been built for a specific processor (a specific MCU architecture)
with a specific C compiler. The third-party linker must make sure to link C libraries compatible
with the MicroEJ C libraries. This chapter details the compiler version, flags and options used
to build MicroEJ C libraries for each processor.

Some processors include an optional floating point unit (FPU). This FPU is single precision (32

3.6. VEE Porting Guide 1302

MicroEJ Documentation,

bits) and is compliantwith IEEE 754 standard. It can be disabledwhen not in use, thus reducing
power consumption. There are two steps to use the FPU in an application. The first step is to
tell the compiler and the linker that the microcontroller has an FPU available so that they will
produce compatible binary code. The second step is to enable the FPUduring execution. This is
done by writing to CPAR in the SystemInit() function. Even if there is an FPU in the processor,
the linker may still need to use runtime library functions to deal with advanced operations. A
programmay also define calculation functions with floating numbers, either as parameters or

return values. There are several Application Binary Interfaces (ABI) to handle floating point calculations. Hence,
most compilers provide options to select one of these ABIs. This will affect how parameters are passed between
caller functions and callee functions, and whether the FPU is used or not. There are three ABIs:

• Soft ABI without FPU hardware. Values are passed via integer registers.

• Soft ABI with FPU hardware. The FPU is accessed directly for simple operations, but when a
function is called, the integer registers are used.

• HardABI. TheFPU is accesseddirectly for simpleoperations, andFPU-specific registers areused
when a function is called, for both parameters and the return value.

It is important to note that code compiled with a particular ABI might not be compatible with
code compiledwith another ABI. MicroEJmodules, including theCore Engine, use the hard ABI.

Supported Core Engine Capabilities by Architecture Matrix

The following table lists the supported Core Engine capabilities by MicroEJ Architectures.

Table 107: Supported Core Engine Capabilities byMicroEJ Architecture
Matrix

Core Engine Architectures Capabilities
MCU Compiler Mono- Sandbox Tiny- Sandbox Multi- Sandbox
ARM Cortex-M0 GCC YES YES NO
ARM Cortex-M33 IAR Embedded Workbench

for ARM
YES YES YES

ARM Cortex-M33 GCC YES NO YES
ARM Cortex-M4 IAR Embedded Workbench

for ARM
YES YES YES

ARM Cortex-M4 GCC YES NO YES
ARM Cortex-M4 Keil uVision YES NO YES
ARM Cortex-M7 IAR Embedded Workbench

for ARM
YES NO YES

ARM Cortex-M7 GCC YES NO YES
ARM Cortex-M7 Keil uVision YES NO YES
ARMv7A GCC YES YES YES
ARMv7VE GCC YES YES YES
ESP32 ESP-IDF YES NO YES

3.6. VEE Porting Guide 1303

MicroEJ Documentation,

ARM Cortex-M0

Table 108: ARM Cortex-M0 Compilers
Compiler Version Flags and Options Module
GCC 4.8

-mabi=aapcs -mcpu=cortex-m0 -mlittle-endian -mthumb
flopi0G22

ARM Cortex-M33

MicroEJ supports Cortex-M33 core with DSP extension using Cortex-M4 architectures.

ARM Cortex-M4

Table 109: ARM Cortex-M4 Compilers
Com-
piler

Build
Ver-
sion

Known Compatible Ver-
sions

Flags and Options Mod-
ule

Keil
uVi-
sion

5.18.0.0 5.x
--cpu Cortex-M4.fp --apcs=/hardfp --fp-
mode=ieee_no_fenv

flopi4A20

GCC 4.8 4.x, 5.x, 6.x, 7.x, 8.x, 9.x
-mabi=aapcs -mcpu=cortex-m4 -mlittle-en-
dian -mfpu=fpv4-sp-d16 -mfloat-abi=hard
-mthumb

flopi4G25

IAR
Em-
bed-
ded
Work-
bench
for
ARM

8.32.1.186318.x, 9.x
--cpu Cortex-M4F --fpu VFPv4_sp

flopi4I35

Note:

• Cortex-M4 architectures are compiled using hardfp convention call.

3.6. VEE Porting Guide 1304

https://repository.microej.com/modules/com/microej/architecture/CM0/CM0_GCC48/flopi0G22/
https://repository.microej.com/modules/com/microej/architecture/CM4/CM4hardfp_ARMCC5/flopi4A20/
https://repository.microej.com/modules/com/microej/architecture/CM4/CM4hardfp_GCC48/flopi4G25/
https://repository.microej.com/modules/com/microej/architecture/CM4/CM4hardfp_IAR83/flopi4I35/

MicroEJ Documentation,

ARM Cortex-M7

Table 110: ARM Cortex-M7 Compilers
Com-
piler

Build
Ver-
sion

Known Compatible Ver-
sions

Flags and Options Mod-
ule

Keil
uVi-
sion

5.18.0.0 5.x
--cpu Cortex-M7.fp.sp --apcs=/hardfp --fp-
mode=ieee_no_fenv

flopi7A21

GCC 4.8 4.x, 5.x, 6.x, 7.x, 8.x, 9.x
-mabi=aapcs -mcpu=cortex-m7 -mlittle-en-
dian -mfpu=fpv5-sp-d16 -mfloat-abi=hard
-mthumbb

flopi7G26

IAR
Em-
bed-
ded
Work-
bench
for
ARM

8.32.1.186318.x, 9.x
--cpu Cortex-M7 --fpu VFPv5_sp

flopi7I36

ARMv7A (ARMv7-A without integer division extension: Cortex-A5/Cortex-A8/Cortex-A9)

Table 111: ARMv7A Compilers
Com-
piler

Build
Ver-
sion

Known Compatible Ver-
sions

Flags and Options Mod-
ule

GCC 10.3 4.x, 5.x, 6.x, 7.x, 8.x, 9.x, 10.x
-mabi=aapcs-linux -march=armv7-a -mlit-
tle-endian -mfpu=vfp -mfloat-abi=hard
-mthumb

oliveARMv7A_2

ARMv7VE (ARMv7-A with integer division extension: Cortex-A7/Cortex-A15)

Table 112: ARMv7VE Compilers
Com-
piler

Build
Ver-
sion

Known Compatible Ver-
sions

Flags and Options Mod-
ule

GCC 10.3 4.x, 5.x, 6.x, 7.x, 8.x, 9.x, 10.x
-mabi=aapcs-linux -march=armv7ve -mlit-
tle-endian -mfpu=vfp -mfloat-abi=hard
-mthumb

oliveARMv7VE_1

3.6. VEE Porting Guide 1305

https://repository.microej.com/modules/com/microej/architecture/CM7/CM7hardfp_ARMCC5/flopi7A21/
https://repository.microej.com/modules/com/microej/architecture/CM7/CM7hardfp_GCC48/flopi7G26/
https://repository.microej.com/modules/com/microej/architecture/CM7/CM7hardfp_IAR83/flopi7I36/

MicroEJ Documentation,

ESP32

Table 113: Espressif ESP32 Compilers
Com-
piler

Version Flags and Options Module
Name

Module Version

GCC
(ESP-IDF)

5.2.0
(crosstool-ng-1.22.0-80-g6c4433a)-mlongcalls

simikou1 Any

GCC
(ESP-IDF)

5.2.0
(crosstool-ng-1.22.0-80-g6c4433a)-mlongcalls -mfix-esp32-psram-cache-issue

simikou2 Up to 7.13.0 (in-
cluded)

GCC
(ESP-IDF)

5.2.0
(crosstool-ng-1.22.0-96-g2852398)-mlongcalls -mfix-esp32-psram-cache-issue

simikou2
7.12.2 or higher

GCC
(ESP-IDF)

8.2.0
(crosstool-NG
esp-2019r2)

-mlongcalls
simikou3

7.16.0 or higher

GCC
(ESP-IDF)

5.2.0
(crosstool-ng-1.22.0-97-gc752ad5)-mlongcalls -mfix-esp32-psram-cache-issue simikou4 7.12.2 or higher

GCC
(ESP-IDF)

8.4.0
(crosstool-NG
esp-2021r1)

-mlongcalls simikou5 7.16.1 or higher

GCC
(ESP-IDF)

8.4.0
(crosstool-NG
esp-2021r1)

-mlongcalls -mfix-esp32-psram-cache-issue
-mfix-esp32-psram-cache-strategy=memw

simikou6
7.16.1 or higher

GCC
(ESP-IDF)

11.2.0
(crosstool-NG
esp-2022r1)

-mlongcalls
simikou7

7.20.1 or higher

IAR Linker Specific Options

This section lists options that must be passed to IAR linker for correctly linking the MicroEJ ob-
ject file (microejapp.o) generated by the SOAR.

--no_range_reservations

MicroEJ SOAR generates ELF absolute symbols to define some Link-Time Option (0 based val-
ues). By default, IAR linker allocates a 1 byte section on the fly, whichmay cause silent sections
placement side effects or a section overlap errorwhenmultiple symbols are generatedwith the
same absolute value:

Error[Lp023]: absolute placement (in [0x00000000-0x000000db]) overlaps with absolute symbol […]

The option --no_range_reservations tells IAR linker to manage an absolute symbol as de-
scribed by the ELF specification.

3.6. VEE Porting Guide 1306

https://repository.microej.com/modules/com/microej/architecture/ESP32/GNUv52_xtensa-esp32/simikou1/
https://repository.microej.com/modules/com/microej/architecture/ESP32/GNUv52_xtensa-esp32-psram/simikou2/
https://repository.microej.com/modules/com/microej/architecture/ESP32/GNUv52b96_xtensa-esp32-psram/simikou2/
https://repository.microej.com/modules/com/microej/architecture/ESP32/GNUv82_xtensa-esp32s2/simikou3/
https://repository.microej.com/architectures/com/microej/architecture/ESP32/GNUv84_xtensa-esp32-psram/simikou6/
https://repository.microej.com/architectures/com/microej/architecture/ESP32/GNUv112_xtensa-esp32s3/simikou7/

MicroEJ Documentation,

--diag_suppress=Lp029

MicroEJ SOAR generates internal veneers that may be interpreted as illegal code by IAR linker,
causing the following error:

Error[Lp029]: instruction validation failure in section ”C:\xxx\microejapp.o[.text.
__icetea__virtual___1xxx#1126]”: nested IT blocks. Code in wrong mode?

The option --diag_suppress=Lp029 tells IAR linker to ignore instructions validation errors.

GNU LD Specific Options

--start-group --end-group

Bydefault theGNU linkerdoesnot searchunresolved symbols inpreviously loaded files andcan
cause undefined reference errors. To solve this issue, either change the load order of libraries
(put microejapp.o first) or guard the libraries with the options --start-group and --end-group
.

ARM Linker Specific Options

ARM linker (armlink) is the linker included in ARM Compiler and Keil MDK-ARM development
tools.

Fix Unexpected Undefined Symbol

The ARM linker requires to resolve all symbols before detecting some that are not transitively
required for linking the Executable. This typically happen when linking ELF object files con-
taining dead code or debug functions that are compiled but not intended to be linked. If such
functions refer to unresolved symbols, youmay need to define a fake symbol tomake the linker
happy. You can declare it in your BSP project or directly in your VEE Port as following:

• Create a file MICROJVM/link/armlink-weak.lscf in the dropins directory of your VEE Port
configuration project.

• Edit the file and declare as many symbols as required. See also the MicroEJ Linker chapter for
more details on the MicroEJ linker file syntax.

<lscFragment>
<defSymbol name=”[symbolName]” value=”0” rootSymbol=”true” weak=”true”/>

</lscFragment>

The weak symbol(s) will be directly defined in the application object file (microejapp.o).

3.6. VEE Porting Guide 1307

MicroEJ Documentation,

Link the SOAR Debug Section

When building an Application, the SOAR generates a dedicated ELF debug section named .
debug.soar in the application object file (microejapp.o). This section is used by debug tools
suchas theStackTraceReader or theHeapDumper. It is alsousedby theSOAR itself forbuilding
Features on a Kernel.

Unfortunately, the ARM linker does not link this section in the output ELF executable, evenwith
debug mode enabled. If you try to load the raw executable produced by the ARM linker, the
tools will fail with a no debug section error. Here is an example with the Stack Trace Reader:

=============== [MicroEJ Core Engine Trace] ===============
[INFO] Paste the MicroEJ core engine stack trace here.
1 : PROXY ERROR
[M8] - The file XXX is not␣

→˓a valid image file or has no debug informations (can't read file: XXX (no debug section)).

To be able to use debug tools, the debug section must be manually linked and injected in the
Executable. This is done using the SOAR debug infos post-linker tool.

Fig. 259: SOAR debug infos post-linker tool Selection

This tool takes two file options:

• soar.object.file : the internal object file producedby the SOARwhenbuilding the Application. It can be found
in the Launch Output Folder at soar/[application_main_class].o .

• output.executable.file : the Executable file produced by the ARM linker that includes the linked Application.

Fig. 260: SOAR debug infos post-linker tool Configuration

3.6. VEE Porting Guide 1308

MicroEJ Documentation,

Once executed, it produces a new Executable file beside the original one with the .microej ex-
tension suffix

=============== [SOARDebugInfosPostLinker] ===============
Successfully generated c:\myExecutable.axf.microej.

SUCCESS

This file now contains the linked .debug.soar section so that it can be used by the debug tools.

Former PlatformMigration

This chapter describes the steps to migrate a former MicroEJ Platform in its latest form de-
scribed in Create a VEE Port chapter.

As a reminder, this new form brings twomain features:

• Both Platform build and dependencies declaration are managed by MicroEJ Module Manager.
This allows a fully automated build and continuous integration.

• The configuration of the target Board Support Package (BSP) has been revisited to support any
BSP Connection cases.

Former MicroEJ Platforms were usually distributed by MicroEJ Corp. in an all-in-one ZIP file
also called fullPackaging.

In this document, the MicroEJ Platform for STMicroelectronics STM32F746G-DISCO board will
be used as an example.

The following figure shows the fullPackaging structure once extracted.

Fig. 261: STM32F746G-DISCO Platform Full Packaging Structure

Themigration steps are:

1. Create aModule Repository to store theMicroEJ Architecture andMicroEJPacksusedby the Plat-
form.

3.6. VEE Porting Guide 1309

https://repository.microej.com/packages/referenceimplementations/846SI/3.4.2/STM32F746GDISCO-846SI-fullPackaging-eval-3.4.2.zip

MicroEJ Documentation,

2. Import the Platform Configuration Additions into the Platform Configuration project.

3. Update the Front Panel project configuration.

4. Configure the BSP Connection.

5. Add the Build Script and Run Script.

Note: Themigration of a Platform requires at least the version 5.4.0 of the SDK.

Create an Architecture Repository

The first step is to create an Architecture Repository containing the Architecture and Packs pro-
vided in the platformArchitecture directory of the fullPackaging package.

Note: If the Architecture and Packs used by the Platform are already stored in the module repositories provided
byMicroEJ Corp (Central Repository,Developer Repository), or in your organization’s repositories, thenmove to the
next step.

Bydefault,weprovide thesteps toextend thedefaultMicroEJSDKsettings file configurationwith
local Architecture and Packs modules. The following steps can be adapted to custom settings
file.

• Create a new empty project named architecture-repository

• Create a new file named ivysettings.xml with the following content and update the included
settings file according to your MicroEJ SDK version (see SDK Version)

<?xml version=”1.0” encoding=”UTF-8”?>
<ivysettings>
<property name=”local.repo.url” value=”${ivy.settings.dir}” override=”false”/>

<!--
Include default settings file for MicroEJ SDK version:
- MICROEJ SDK 5.4.0 or higher: ${user.home}/.microej/microej-ivysettings-5.4.xml
- MICROEJ SDK 5.0.0 to 5.3.1: ${user.home}/.microej/microej-ivysettings-5.xml
- MICROEJ SDK 4.1.x: ${user.home}/.ivy2/microej-ivysettings-4.1.xml

-->
<include file=”${user.home}/.microej/microej-ivysettings-5.xml”/>

<settings defaultResolver=”ArchitectureResolver”/>

<resolvers>
<chain name=”ArchitectureResolver”>
<filesystem m2compatible=”true”>
<artifact pattern=”${local.repo.url}/${microej.artifact.pattern}” />
<ivy pattern=”${local.repo.url}/${microej.ivy.pattern}” />

</filesystem>
<resolver ref=”${microej.default.resolver}”/>

</chain>
</resolvers>

</ivysettings>

• Copy the Architecture file (.xpf) into the correct directory following its naming convention).

– Open or extract the Architecture file (.xpf)

3.6. VEE Porting Guide 1310

https://github.com/MicroEJ/VEEPortQualificationTools/blob/master/framework/platform/

MicroEJ Documentation,

– Open the release.properties file to retrieve the naming convention mapping:

∗ architecture is the ISA (e.g. CM7)

∗ toolchain is the TOOLCHAIN (e.g. CM7hardfp_ARMCC5)

∗ name is the UID (e.g. flopi7A21)

∗ version is the VERSION (e.g. 7.11.0)

For example, in the STM32F746G-DISCO Platform, the Architecture file flopi7A21-eval.xpf
shall be copied and renamed to architecture-repository/com/microej/architecture/CM7/
CM7hardfp_ARMCC5/flopi7A21/7.11.0/flopi7A21-7.11.0-eval.xpf .

• Copy the Architecture Specific Packs files (.xpfp) into the correct directory following MicroEJ
Naming Convention (see Pack Import) with the exception of the Standalone pack that should
not be imported (e.g. named flopi7A21Standalone.xpfp).

– Open or extract the Architecture Specific Pack (.xpfp).

Note: The Architecture Specific Packs have the UID of the Architecture in their name (e.g.
flopi7A21UI.xpfp) and their release_pack.properties file contains the information of the Ar-
chitecture.

– Open the release_pack.properties file to retrieve the naming convention mapping:

∗ architecture is the ISA (e.g. CM7)

∗ toolchain is the TOOLCHAIN (e.g. CM7hardfp_ARMCC5)

∗ name is the UID (e.g. flopi7A21)

∗ packName is the NAME (e.g. ui)

∗ packVersion is the VERSION (e.g. 12.0.1)

For example, in the STM32F746G-DISCO Platform, the Architecture Specific Pack
UI flopi7A21UI.xpfp shall be copied and renamed to architecture-repository/
com/microej/architecture/CM7/CM7hardfp_ARMCC5/flopi7A21-ui-pack/12.0.1/
flopi7A21-ui-pack-12.0.1.xpfp .

• Copy theLegacyGenericPacks (.xpfp files) into the correct directory followingMicroEJNaming
Convention (see Pack Import).

– Open or extract the Generic Pack (.xpfp).

Note: The release_pack.properties of Legacy Generic Packs does not contain information
about Architecture.

– Open the release_pack.properties file:

∗ packName is the NAME (e.g. fs)

∗ packVersion is the VERSION (e.g. 4.0.2)

For example, in the STM32F746G-DISCO Platform, the Legacy Generic Pack FS fs.xpfp shall be
copied and renamed to architecture-repository/com/microej/pack/fs/4.0.2/fs-4.0.2.xpfp .

• Configure MicroEJ Module Manager to use the Architecture Repository:

– Go to Window > Preferences > MicroEJ > Module Manager

3.6. VEE Porting Guide 1311

MicroEJ Documentation,

– In Module Repository set Settings File: to ${workspace_loc:architecture-repository/
ivysettings.xml} .

– Apply and Close

Here is the layout of the Architecture Repository for the STM32F746G-DISCO Platform.

Fig. 262: Architecture Repository for STM32F746G-DISCO fullPackaging

Import the Former Platform Sources

• Go to File > Import… > General > Existing Projects into Workspace .

• Browse to the archive file that contains the platform sources, like in the example below.

3.6. VEE Porting Guide 1312

MicroEJ Documentation,

• Select the -configuration , -fp and -bsp projects prefixed with the Platform name (e.g.,
STM32F746GDISCO-Full-CM7_ARMCC-FreeRTOS).

• Click Finish .

Install the Platform Configuration Additions

• Rename the file bsp.properties located in the Platform Configuration Project to bsp2.
properties (save it for later).

• Install Platform Configuration Additions, by following instructions described at https://github.
com/MicroEJ/VEEPortQualificationTools/blob/master/framework/platform/README.rst.
Files within the content folder have to be copied to the -configuration project (e.g.
STM32F746GDISCO-Full-CM7_ARMCC-FreeRTOS-configuration).

• Edit the module.properties file and set com.microej.platformbuilder.platform.filename to
the name of the platform configuration file (e.g. STM32F746GDISCO.platform).

• Update the default name of the Platform module in the module.ivy . Replace with
<info organisation=”com.microej.platform.st.stm32f746g-disco” module=”Platform” sta-
tus=”integration” revision=”1.0.0”> .

• Update the module.ivy with the Architecture and Packs dependencies.

Here is the module dependencies declared for the STM32F746G-DISCO Platform.

Listing42: STM32F746GDISCO-Full-CM7_ARMCC-FreeRTOS-configuration/module.ivy

<dependencies>
<!-- MicroEJ Architecture -->
<dependency org=

→˓”com.microej.architecture.CM7.CM7hardfp_ARMCC5” name=”flopi7A21” rev=”7.11.0”>
<artifact name=

→˓”flopi7A21” m:classifier=”${com.microej.platformbuilder.architecture.usage}” ext=”xpf”/>
</dependency>

<!-- MicroEJ Architecture Specific Packs -->
<dependency org=”com.

→˓microej.architecture.CM7.CM7hardfp_ARMCC5” name=”flopi7A21-ui-pack” rev=”12.0.1”>
<artifact name=”flopi7A21-ui-pack” ext=”xpfp”/>

</dependency>
(continues on next page)

3.6. VEE Porting Guide 1313

https://github.com/MicroEJ/VEEPortQualificationTools/blob/master/framework/platform/
https://github.com/MicroEJ/VEEPortQualificationTools/blob/master/framework/platform/README.rst
https://github.com/MicroEJ/VEEPortQualificationTools/blob/master/framework/platform/README.rst

MicroEJ Documentation,

(continued from previous page)

<dependency org=”com.
→˓microej.architecture.CM7.CM7hardfp_ARMCC5” name=”flopi7A21-net-pack” rev=”6.1.5”>

<artifact name=”flopi7A21-net-pack” ext=”xpfp”/>
</dependency>

<!-- Legacy MicroEJ Generic Packs -->
<dependency org=”com.microej.pack” name=”fs” rev=”4.0.2”>
<artifact name=”fs” ext=”xpfp”/>

</dependency>
<dependency org=”com.microej.pack” name=”hal” rev=”2.0.1”>
<artifact name=”hal” ext=”xpfp”/>

</dependency>

</dependencies>

Update the Front Panel Configuration

• In -configuration/frontpanel/frontpanel.properties set the project.
name to the folder name that contains the front-panel (e.g. project.
name=STM32F746GDISCO-Full-CM7_ARMCC-FreeRTOS-fp).

At this state, the Platform is not connected to the BSP yet, but you can check that everything is
properly configured so far by building it:

• Right-click on the -configuration project and select Build Module

• Import the Platform built into the workspace by following the instructions available at the end
of the build logs (see logs example below).

module-platform:report:
␣
→˓␣
→˓␣
→˓␣
→˓[echo]␣
→˓␣
→˓␣
→˓ ␣
→˓==

[echo] Platform has␣
→˓been built in this directory 'C:\STM32F746GDISCO-Platform-CM7hardfp_ARMCC5-0.1.0'.

[echo] To import this project in your MicroEJ SDK workspace (if not already available):
[echo]␣

→˓ - Select 'File' > 'Import...' > 'General' > 'Existing Projects into Workspace' > 'Next'
[echo] - Check 'Select root directory

→˓' and browse 'C:\STM32F746GDISCO-Platform-CM7hardfp_ARMCC5-0.1.0' > 'Finish'
␣
→˓␣
→˓␣
→˓␣
→˓[echo]␣
→˓␣
→˓␣
→˓ ␣
→˓==

3.6. VEE Porting Guide 1314

MicroEJ Documentation,

At this stage thePlatform isbuilt and imported in theworkspace, soyoucancreateaStandalone
Application and run it on the Simulator (see Create a MicroEJ Standalone Application).

Note: If the build failed, it might be because the Architecture and Packs can not be retrieved from the Architec-
ture Repository. Ensure that the Architecture Repository is correctly configured and that it contains the required
artifacts (as described in the first step).

Configure the BSP Connection

This section explains how to configure a full BSP Connection on the STM32F746G-DISCO Plat-
form. See BSP Connection for more information.

• Open -configuration/bsp/bsp.properties .

• Comment out and set the following variables:

– root.dir

– microejapp.relative.dir

– microejlib.relative.dir

– microejinc.relative.dir

– microejscript.relative.dir

For example:

Specify the MicroEJ Application file ('microejapp.o') parent directory.
This is a '/' separated directory relative to 'bsp.root.dir'.
microejapp.relative.dir=Projects/STM32746G-Discovery/Applications/MicroEJ/platform/lib

Specify the MicroEJ Platform runtime file ('microejruntime.a') parent directory.
This is a '/' separated directory relative to 'bsp.root.dir'.
microejlib.relative.dir=Projects/STM32746G-Discovery/Applications/MicroEJ/platform/lib

Specify MicroEJ Platform header files ('*.h') parent directory.
This is a '/' separated directory relative to 'bsp.root.dir'.
microejinc.relative.dir=Projects/STM32746G-Discovery/Applications/MicroEJ/platform/inc

Specify BSP external scripts files ('build.bat' and 'run.bat') parent directory.
This is a '/' separated directory relative to 'bsp.root.dir'.
microejscript.relative.dir=Projects/STM32746G-Discovery/Applications/MicroEJ/scripts

Specify the BSP root directory.
→˓ Can use ${project.parent.dir} which target the parent of platform configuration project
For example, '${project.parent.
→˓dir}/PROJECT-NAME-bsp' specifies a BSP project beside the '-configuration' project
root.dir=${project.parent.dir}/STM32F746GDISCO-Full-CM7_ARMCC-FreeRTOS-bsp/

The paths to microejXXX.relative.dir can be inferred by looking at the output.
dir value in bsp2.properties saved earlier. For example on the STM32F746G-DISCO
project, its value is ${workspace}/${project.prefix}-bsp/Projects/STM32746G-Discovery/
Applications/MicroEJ/platform .

• The BSP project path ${workspace}/${project.prefix}-bsp becomes ${project.parent.dir}/
STM32F746GDISCO-Full-CM7_ARMCC-FreeRTOS-bsp/ .

3.6. VEE Porting Guide 1315

MicroEJ Documentation,

• Projects/STM32746G-Discovery/Applications/MicroEJ/platform is the path to the Appli-
cation file, Platform header and runtime files. MicroEJ convention is to put the Application file
and Platform runtime files to platform/lib/ and the Platform header files to platform/inc/ .

• Build Script File and Run Script File are PCA-specific and did not exist before. By convention we
put them in a scripts/ directory.

The paths to microejXXX.relative.dir can be also be checked by looking at the C TOOLCHAIN
configuration of the BSP. For example on the STM32F746G-DISCO project, the BSP config-
uration is located at STM32F746GDISCO-Full-CM7_ARMCC-FreeRTOS-bsp/Projects/
STM32746G-Discovery/Applications/MicroEJ/MDK-ARM/Project.uvprojx .

• In Project > Options for Target ‘standalone’… > C/C++ > Include Paths contains .
./platform/inc . This corresponds to the microejinc.relative.dir relative the TOOLCHAIN
project’s file.

• In the Project pane, there is a folder MicroEJ/Libs that contains microejruntime.lib and
microejapp.o .

– Right-click on microejruntime.lib > Options for File ‘XXX’… . The Path is ../platform/lib/
microejruntime.lib . This corresponds to the microejlib.relative.dir .

– Right-click on microejapp.o > Options for File ‘XXX’… . The Path is ../platform/lib/
microejapp.o . This corresponds to the microejapp.relative.dir .

• Rebuild the platform (Right-click on the -configuration project and select Build Module)

At this stage the Platform is connected to the BSP so you can build and program a Firmware
(see Run on the Device).

Add the Build and Run Scripts

The final stage consists of adding the Build Script, to automate the build of a Firmware, and the
Run Script, to automate the programming of a MicroEJ Firmware onto the device.

The PlatformQualification Tools provides examples of Build Script and Run Script for various C
TOOLCHAIN here. This training also describes the steps to create and use these scripts.

On the STM32F746G-DISCO, the C TOOLCHAIN used is Keil uVision.

• Create the directory pointed by microejscript.relative.dir (e.g.
STM32F746GDISCO-Full-CM7_ARMCC-FreeRTOS-bsp\Projects\
STM32746G-Discovery\Applications\MicroEJ\scripts).

• Copy the example scripts from the PlatformQualification Tools for the C TOOLCHAIN of the BSP
(e.g. PlatformQualificationTools/framework/platform/scripts/KEILuV5/)

• Configure the scripts. Refer to the documentation in the scripts comments for this step.

• Enable the execution of the build script:

– Go to Run > Run Configurations…

– Select the launch configuration

– Go to Configuration > Device > Deploy

– Ensure Execute the MicroEJ build script (build.bat) at a location known by the 3rd-party BSP project.
is checked.

3.6. VEE Porting Guide 1316

https://github.com/MicroEJ/VEEPortQualificationTools
https://github.com/MicroEJ/VEEPortQualificationTools/tree/master/framework/platform/scripts
https://github.com/MicroEJ/VEEPortQualificationTools

MicroEJ Documentation,

Use the Platform in Module Projects

Module projects may require the Platform, for example to build an Application or to run a Test
Suite. Oneway of selecting the Platform in amodule project is to declare it as amodule depen-
dency (see Select a VEE Port).

In case a former Platform is loaded this way in your existing module projects, the dependency
has to be updated. In this example, the Platformwould now be selected like this:

<dependency org=”com.microej.platform.st.stm32f746g-
→˓disco” name=”Platform” rev=”1.0.0” conf=”platform->default” transitive=”false”/>

This also requires that your module projects use a compatible version of the associated build
type (the build type relates to the Module Natures). As stated before, loading a Platform in its
latest form requires at least the version 5.4.0 of the SDK. Therefore, make sure to use versions
of the build types that come with the SDK 5.4.0 and above. Here is a brief summary of the
minimum version for the most commonmodule natures:

• Add-On Library: build type com.is2t.easyant.buildtypes#build-microej-javalib version 5.0.0 and above.

• Standalone Application: build type com.is2t.easyant.buildtypes#build-firmware-singleapp version 1.4.0
and above.

• Sandboxed Application: build type com.is2t.easyant.buildtypes#build-application version 8.0.0 and
above.

Going further

Now that the Platform is connected to the BSP it can leverage the Java Test Suites provided by
the PlatformQualification Tools. See Configure and Run the Test Suite documentation for a step
by step explanation on how to do so.

Architecture 8.0.0 Migration

This chapter describes the steps to migrate a VEE Port from Architecture 8.0.0 to Architecture
8.1.0 .

As a reminder, refer to the Architecture 8.1.0 Changelog section for the complete list of changes
and updates.

Migrate Core Engine Capability Configuration

The selection of the Core Engine capability is now done via the property com.microej.runtime.
capability . Refer to one of the sections below depending on your desired capability.

If you use the property com.microej.platformbuilder.module.multi.enabled , update your
Platform Configuration Additions to the version 2.1.0 or higher. It is also recommended to
delete the property com.microej.platformbuilder.module.multi.enabled and to use the prop-
erty com.microej.runtime.capability instead.

3.6. VEE Porting Guide 1317

https://github.com/MicroEJ/VEEPortQualificationTools
https://github.com/MicroEJ/VEEPortQualificationTools/blob/master/framework/platform/

MicroEJ Documentation,

Mono-Sandbox

Mono-Sandbox remains the default capability and no changes are required to your VEE Port
configuration.

Multi-Sandbox

In the Platform Editor, the Multi Applications (kf) module now appears in gray:

Unselect the kf module and follow the instructions from theMulti-Sandbox installation section.

Tiny-Sandbox

The property mjvm.standalone.configuration used to select the Tiny-Sandbox capability
is now deprecated. It is recommended to remove the definition of this property from the
configuration.xml file and follow the instructions from the Tiny-Sandbox installation section.

Migrate Your LLKERNEL Implementation

This section only applies if your LLKERNELwas based on legacy In-Place Installationmode. The
Kernel Working Buffer no longer exists. The functions LLKERNEL_IMPL_allocateWork-
ingBuffer() and LLKERNEL_IMPL_freeWorkingBuffer() are no more called and can be
simply removed from your implementation.

Memory allocation for the Features will now use the function LLKERNEL_IMPL_allocate-
Feature() . The following code is a LLKERNEL_impl.c template for migrating your current
implementation using this API. The code logic based on a malloc/free implementation does
not need to be changed.

#include <stdlib.h>
#include <string.h>

#include ”LLKERNEL_impl.h”

// Your implementation of malloc()
#define KERNEL_MALLOC(size) malloc((size_t)(size))

// Your implementation of free()
#define KERNEL_FREE(addr) free((void*)(addr))

// Your implementation of 'ASSERT(0)'
#define KERNEL_ASSERT_FAIL() while(1)

(continues on next page)

3.6. VEE Porting Guide 1318

MicroEJ Documentation,

(continued from previous page)

// Utility macros for allocating RAM and ROM areas with required alignment constraints
#define KERNEL_AREA_GET_MAX_SIZE(size, alignment) ((size)+((alignment)-1))
#define KERNEL_AREA_GET_START_
→˓ADDRESS(addr, alignment) ((void*)((((int32_t)(addr))+(alignment)-1)&~((alignment)-1)))

typedef struct installed_feature{
void* ROM_area;
void* RAM_area;

} installed_feature_t;

int32_t LLKERNEL_IMPL_allocateFeature(int32_t size_ROM, int32_t size_RAM) {
int32_t ret = 0;
int total_size = sizeof(installed_feature_t);
total_size += KERNEL_

→˓AREA_GET_MAX_SIZE(size_ROM, LLKERNEL_ROM_AREA_ALIGNMENT);
total_size += KERNEL_

→˓AREA_GET_MAX_SIZE(size_RAM, LLKERNEL_RAM_AREA_ALIGNMENT);

void* total_area = KERNEL_MALLOC(total_size);
if(NULL != total_area){

installed_feature_t* f = (installed_feature_t*)total_area;
f->ROM_area = KERNEL_AREA_GET_START_ADDRESS((void*)(((int32_

→˓t)f)+((int32_t)sizeof(installed_feature_t))), LLKERNEL_ROM_AREA_ALIGNMENT);
f->RAM_area = KERNEL_AREA_GET_START_ADDRESS((void*)(((int32_

→˓t)f->ROM_area)+size_ROM), LLKERNEL_RAM_AREA_ALIGNMENT);
ret = (int32_t)f;

} // else out of memory

return ret;
}

void LLKERNEL_IMPL_freeFeature(int32_t handle) {
KERNEL_FREE(handle);

}

int32_t LLKERNEL_IMPL_getAllocatedFeaturesCount(void) {
// No persistency support
return 0;

}

int32_t LLKERNEL_IMPL_getFeatureHandle(int32_t allocation_index) {
// No persistency support
KERNEL_ASSERT_FAIL();

}

void* LLKERNEL_IMPL_getFeatureAddressRAM(int32_t handle) {
return ((installed_feature_t*)handle)->RAM_area;

}

void* LLKERNEL_IMPL_getFeatureAddressROM(int32_t handle) {
return ((installed_feature_t*)handle)->ROM_area;

}

int32_t LLKERNEL_
→˓IMPL_copyToROM(void* dest_address_ROM, void* src_address, int32_t size) {
memcpy(dest_address_ROM, src_address, size);

(continues on next page)

3.6. VEE Porting Guide 1319

MicroEJ Documentation,

(continued from previous page)

return LLKERNEL_OK;
}

int32_t LLKERNEL_IMPL_flushCopyToROM(void) {
return LLKERNEL_OK;

}

int32_
→˓t LLKERNEL_IMPL_onFeatureInitializationError(int32_t handle, int32_t error_code) {
// No persistency support
KERNEL_ASSERT_FAIL();
return 0;

}

Architecture 7.x Migration

This chapter describes the steps to migrate a VEE Port from Architecture 7.x to Architecture
8.0.0 .

As a reminder, refer to the Architecture 8.0.0 Changelog section for the complete list of changes
and updates.

Update Platform Configuration Additions

Architecture 8.0.0 nowdirectly integrates theBSPConnectionmechanism. Consequently, Plat-
form Configuration Additions files have been separated in two directories:

• content-sdk-5 : files required for building the VEE Port using SDK 5.x (MMM)

• content-architecture-7 : files required for building the Executable using Architecture 7.x.

See https://github.com/MicroEJ/VEEPortQualificationTools/blob/master/framework/
platform/README.rst for more details.

Your VEE Port must be updated to remove files that are now included in Architecture 8:

• Delete [name]-configuration/build/module/module-dropins directory.

• Delete [name]-configuration/build/module/module-dropins.ant file.

• Delete [name]-configuration/build/platform/platform-deploy.ant file.

• Delete [name]-configuration/build/platform/platform-kf.ant file.

• Download the latest content-sdk-5 directory. Your local files must be overridden.

• Edit your module.ivy and put back your module name, version, organisation and <dependen-
cies> content.

• Edit yourmodule.propertiesandputbackyouroptions (if theyhavechanged fromdefault ones).

• Delete the following files from your [name]-configuration/dropins directory:

– scripts/init-bsp/*

– scripts/init-license-checker/*

– scripts/checkOS.xml

– scripts/deployInBSP.xml

3.6. VEE Porting Guide 1320

https://github.com/MicroEJ/VEEPortQualificationTools/blob/master/framework/platform/README.rst
https://github.com/MicroEJ/VEEPortQualificationTools/blob/master/framework/platform/README.rst

MicroEJ Documentation,

– scripts/deployInBSPCommon.xml

– scripts/deployToolBSPRun*

– scripts/fullLink*

– tools/license-checker.jar

– workbenchExtension-launchScriptFramework.jar

• Rebuild your VEE Port.

• Rebuild your Executable.

Update BSPwith new Sections Names

TheCore Engine sections have been renamed to respect the standard ELF convention. SeeCore
Engine Link section for further details.

All references to section names in your BSP must be updated. This is usually only used in your
linker script file, but section names are sometimes also hardcoded in the C Code. Here is an
example of a GNU LD script highlighting the typical changes that must be made:

Fig. 263: Example of LD Script File Migration

3.6. VEE Porting Guide 1321

MicroEJ Documentation,

Remove LLBSP_IMPL_isInReadOnlyMemory

The LLBSP_IMPL_isInReadOnlyMemory function has been removed since it is no more
called by the Core Engine. You can simply remove your implementation function.

Migrate Built-in Modules

The following built-in legacy modules have been removed from the Architecture:

• Device

• ECOM-COMM

In the Platform Editor, these modules now appear in gray with Architecture 8.x :

To remove thesemodules, open the .platform file using a text editor and remove the following
XML elements:

<group name=”device”/>
<group name=”ecom”/>

3.6. VEE Porting Guide 1322

MicroEJ Documentation,

Migrate Device Module

The latest Device Pack available on the Central Repository is backward compatible with the
built-in Architecture module.

The following dependency must be added to the module.ivy of the VEE Port configuration
project:

<dependency org=”com.microej.pack.device” name=”device-pack” rev=”1.1.1” />

Migrate ECOM-COMMModule

The Foundation Library ECOM-COMM-1.1 has been removed from Architecture 8.0.0. It is
now replaced by ECOM-COMM-2.0 which is distributed in its own Pack.

There are twomigration options:

• either migrate to the latest ECOM-COMM-2.0 Pack,

• or integrate the legacy ECOM-COMM-1.1 Pack files as-is into your VEE Port dropins direc-
tory.

Contact our support team to get the best migration strategy and detailed instructions.

Migrate Your LLKERNEL Implementation

The following code is a LLKERNEL_impl.c template for migrating your current implemen-
tation of Feature installation in RAM. This is now called In-Place Installation. Your code logic for
managing allocated blocks does not need to be changed. As there is no installation in ROM,
most of the new functions do not need to be implemented.

#include ”LLKERNEL_impl.h”

void* LLKERNEL_IMPL_allocateWorkingBuffer(int32_t size) {
// Paste here the code of your former 'LLKERNEL_IMPL_allocate' function

}

void LLKERNEL_IMPL_freeWorkingBuffer(void* chunk_address) {
// Paste here the code of your former 'LLKERNEL_IMPL_free' function

}

int32_t LLKERNEL_IMPL_allocateFeature(int32_t size_ROM, int32_t size_RAM) {
return 0;

}

int32_t LLKERNEL_IMPL_getAllocatedFeaturesCount(void) {
return 0;

}

void LLKERNEL_IMPL_freeFeature(int32_t handle) {
// Paste here your implementation of 'ASSERT(0)'

}

int32_t LLKERNEL_IMPL_getFeatureHandle(int32_t allocation_index) {
// Paste here your implementation of 'ASSERT(0)'

(continues on next page)

3.6. VEE Porting Guide 1323

https://repository.microej.com/modules/com/microej/pack/device/device-pack/
https://www.microej.com/contact/#form_2

MicroEJ Documentation,

(continued from previous page)

return 0;
}

void* LLKERNEL_IMPL_getFeatureAddressRAM(int32_t handle) {
// Paste here your implementation of 'ASSERT(0)'
return 0;

}

void* LLKERNEL_IMPL_getFeatureAddressROM(int32_t handle) {
// Paste here your implementation of 'ASSERT(0)'
return 0;

}

int32_t LLKERNEL_
→˓IMPL_copyToROM(void* dest_address_ROM, void* src_address, int32_t size) {
// Paste here your implementation of 'ASSERT(0)'
return 0;

}

int32_t LLKERNEL_IMPL_flushCopyToROM(void) {
// Paste here your implementation of 'ASSERT(0)'
return 0;

}

int32_
→˓t LLKERNEL_IMPL_onFeatureInitializationError(int32_t handle, int32_t error_code) {
// Paste here your implementation of 'ASSERT(0)'
return 0;

}

Migrate Trace C Library Usage

In Architecture 8.0.0 , the Trace C library’s version has been updated from 1.0.0 to 2.0.0 . This
new version introduces the following backward incompatible changes:

• C header file trace.h has been renamed into LLTRACE.h .

• The functions declared in this header have been renamed from TRACE_xxx to LL-
TRACE_xxx .

If you have included trace.h in a C file, the compilation will fail with an error message similar
to one of the following messages:

• fatal error: trace.h: No such file or directory

• Fatal Error[Pe1696]: cannot open source file ”trace.h”

To fix this issue, you can either migrate to version 2.0.0 of the Trace library or provide a back-
ward compatibility layer.

To migrate to version 2.0.0 , you need to make the following changes:

• Replace the directives #include ”trace.h” with #include ”LLTRACE.h” .

• Replace any references to the TRACE_xxx functions (e.g., TRACE_record_event_void
) with references to the corresponding LLTRACE_xxx function (e.g., LL-
TRACE_record_event_void).

3.6. VEE Porting Guide 1324

MicroEJ Documentation,

If you decide not to modify existing code, you can create and add to your project a trace.h file
with the following content:

#ifndef TRACE_H
#define TRACE_H

/**
* Trace library API backward compatibility layer.
* Allows to use Trace API 1.0.0 (Architecture 7.x) in a VEE Port
* that includes Trace API 2.0.0 (Architecture 8.x).
*/

#include ”LLTRACE.h”

#ifdef __cplusplus
extern ”C” {

#endif

#define TRACE_start LLTRACE_start
#define TRACE_start LLTRACE_start
#define TRACE_stop LLTRACE_stop
#define TRACE_is_started LLTRACE_is_started
#define TRACE_declare_event_group LLTRACE_declare_event_group
#define TRACE_record_event_void LLTRACE_record_event_void
#define TRACE_record_event_u32 LLTRACE_record_event_u32
#define TRACE_record_event_u32x2 LLTRACE_record_event_u32x2
#define TRACE_record_event_u32x3 LLTRACE_record_event_u32x3
#define TRACE_record_event_u32x4 LLTRACE_record_event_u32x4
#define TRACE_record_event_u32x5 LLTRACE_record_event_u32x5
#define TRACE_record_event_u32x6 LLTRACE_record_event_u32x6
#define TRACE_record_event_u32x7 LLTRACE_record_event_u32x7
#define TRACE_record_event_u32x8 LLTRACE_record_event_u32x8
#define TRACE_record_event_u32x9 LLTRACE_record_event_u32x9
#define TRACE_record_event_u32x10 LLTRACE_record_event_u32x10
#define TRACE_record_event_end LLTRACE_record_event_end
#define TRACE_record_event_end_u32 LLTRACE_record_event_end_u32

#ifdef __cplusplus
}

#endif

#endif //TRACE_H

Migrate Legacy System Properties Files

Legacy System Properties files (*.system.properties) are no more supported by Architecture
8.0.0 . These files must be renamed to *.properties.list files (see System Properties for more
details).

To facilitate themigration, legacy System Properties files are detected by SOAR and the follow-
ing error is thrown:

1 : SOAR-L ERROR :
[M78] - System properties file [properties/xxx.
→˓system.properties] in classpath entry [...] must be renamed to [properties/xxx.properties.list].

The following modules declare legacy System Properties files in older versions. Make sure to

3.6. VEE Porting Guide 1325

MicroEJ Documentation,

update the module to the specified version or a newer release in your projects.

• Pack NET version 9.4.2 .

• Add-On library eclasspath-logging version 1.2.1 .

• Testsuite FS version 3.0.7 .

CModules Installation

This section describes how to install a Cmodule on your VEE Port, depending on your SDK ver-
sion the first steps may vary.

Fetching themodule source files

SDK 5

SDK 6

Under the SDK 5, follow these steps:

• Go to the location of your C module, for example the C module for microUI 14.2.0 is located
here.

• Get the dependency declaration, for the previous example this would be: <dependency
org=”com.microej.clibrary.llimpl” name=”microui” rev=”14.2.0” /> .

• Add it inside the block <dependencies> from the file module.ivy of your VEE Port *-config-
uration project.

• If you update a Cmodule: Remove the .properties file in the folder *-bsp/projects/microej
corresponding to the desired Cmodule. For example withmicroui Cmodule, its .properties file
is named cco_microui.properties .

• Rebuild the VEE Port: in the SDK 5 Project Explorer, right click on the VEE Port module *-con-
figuration > build module .

Under the SDK 6, follow these steps:

• Go to the location of your C module, for example the C module for microUI 14.2.0 is located
here.

• Download the archive file with the .cco extension.

• Unzip the content of this file.

• The source files are located in the folder bsp/ .

• Copy the content of the bsp/ folder into your VEE Port at the path bsp/vee/port/ .

3.6. VEE Porting Guide 1326

https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui/14.2.0/
https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui/14.2.0/

MicroEJ Documentation,

Cmodule configuration and firmware build

• Update the toolchain build of your BSP (IAR, CMake, etc…) to include any new files if this is the
case.

• Configure the C module if required (typically, the configuration is located in files suffixed with
*_configuration.h).

• Now you should be able to build your BSP firmware.

3.7 Kernel Developer Guide

3.7.1 Overview

Introduction

The Kernel Developer’s Guide describes how to create a Kernel Application. A Kernel Applica-
tion is a Standalone Application that can be extended (statically or dynamically) to install, run,
and control the execution of new applications called Sandboxed Applications.

The intended audience of this document are Java developers and system architects who plan
to design and build their own Kernel.

Here is a non-exhaustive list of the activities to be done by Kernel Developers:

• Integrating the Kernel Application with a VEE Port to produce a Multi-Sandbox Executable and
Virtual Device

• Defining the set of APIs that will be exposed to Applications, optionally bymaintaining a custom
Runtime Environment

• Managing lifecycles of applications (deciding when to install, start, stop and uninstall them)

• Defining and applying permissions on system resources (rules & policies)

• Managing connectivity

• Controlling andmonitoring resources

This document takes as prerequisite that a VEE Port is available for the target device (see VEE
Porting Guide). This document also assumes that the reader is familiar with the development
and deployment of Applications (see Application Developer Guide) and specifics of developing
Sandboxed Applications (see Sandboxed Application).

Terms and Definitions

A Multi-Sandbox VEE Port is a VEE Port with the Multi-Sandbox capability of the Core Engine
enabled (see the chapterMulti-Sandbox of the VEE Porting Guide). A Multi-Sandbox Executable
can only be built with a Multi-Sandbox VEE Port.

A Virtual Device is the Multi-Sandbox Executable counterpart for developing a Sandboxed Ap-
plication. It provides the Kernel functional simulation part. Usually it also provides a mean to
directly deploy a Sandboxed Application on the target device running the Multi-Sandbox Exe-
cutable (this is called Local Deployment).

3.7. Kernel Developer Guide 1327

MicroEJ Documentation,

Overall Architecture

Fig. 264: Kernel Boundary Overview

Input and Output Artifacts

Fig. 265: Kernel Input and Output Artifacts

Kernel Build Flow

The following describes the Kernel build flow.

3.7. Kernel Developer Guide 1328

MicroEJ Documentation,

Fig. 266: Kernel Build Flow

The Virtual Device builder performs the following steps:

• Remove the embedded part of the VEE Port (including MEJ32).

• Append Add-On Libraries and pre-installed Applications into the runtime classpath. See Kernel
Module Configuration section for specifying the dependencies.

• Add a custom license allowing Virtual Device redistribution.

• Generate the Runtime Environment from the Kernel APIs.

Kernel Implementation Libraries

Kernel implementations must cover the following topics:

• The kernel entry point implementation, that deals with configuring the different policies, reg-
istering kernel services and converters, and starting applications.

• The storage infrastructure implementation: mapping the Storage service on an actual data
storage implementation. There are multiple implementations of the data storage, provided in
different artifacts that will be detailed in dedicated sections.

• The applications management infrastructure: how application code is stored in memory and
how the lifecycle of the code is implemented. Again, this hasmultiple alternative implementa-
tions, and the right module must be selected at build time to cover the specific Kernel needs.

• The simulation support: how the Virtual Device implementation reflects the Executable imple-
mentation, with the help of specific artifacts.

• The Kernel API definition: not all the classes andmethods used to implement the Kernel Appli-
cation are actually exposed to the Sandboxed Applications. There are some artifacts available
that expose some of the libraries to the applications, these ones can be pickedwhen the Kernel
is assembled.

3.7. Kernel Developer Guide 1329

MicroEJ Documentation,

• The Kernel types conversion and other KF-related utilities: Kernel types instances owned by
one application can be transferred to another application through a Shared Interface. For that
to be possible, a conversion proxy must be registered for this kernel type.

• Tools libraries: tools that plug into the SDK, extending them with features that are specific to
the Kernel, like deployment of an application, a management console, …

Getting started

Get familiar with Kernel development by following the training Get Started with Kernel.

3.7.2 Kernel Creation

Create a new Project

To create a new Kernel project:

SDK 6

SDK 5

Create a new Application following the steps described in SDK 6 User Guide - Create a Project
depending on your IDE.

• First create a new Kernel Application.

• A new project is generated into the workspace:

3.7. Kernel Developer Guide 1330

MicroEJ Documentation,

Configure a VEE Port

Before building the Kernel, you need to have a VEE Port with Multi-Sandbox capability. To en-
able the Multi-Sandbox capability in your VEE Port configuration, follow the instructions from
theMulti-Sandbox section.

Once the VEE Port is available, configure the target VEE Port in your Kernel project:

• To configure a VEE Port with SDK 6, see Select a VEE Port.

• To configure a VEE Port with SDK 5, see Select a VEE Port.

Build the Executable and Virtual Device

TheMulti-Sandbox Executable and the Virtual Device of the Kernel Applicationmust be built to
allow the development and execution of Sandboxed Applications.

SDK 6

SDK 5

• The Executable can be built by executing the Gradle buildExecutable task:

./gradlew buildExecutable

The Executable is generated in the build/application/executable folder of the project. For
more information about the build of the Executable depending on your IDE, refer to the Build
an Executable page.

• The Virtual Device can be built by executing the Gradle buildVirtualDevice task:

./gradlew buildVirtualDevice

The Virtual Device is generated in the build/virtualDevice folder of the project. For more
information about the build of the Virtual Device depending on your IDE, refer to the Build a
Virtual Device page.

In the Package Explorer, right-click on the project and select Build Module . The build of the
Executable and Virtual Device may take several minutes. Once the build has succeeded, the
folder myfirmware > target~ > artifacts contains the firmware output artifacts (see Input
and Output Artifacts) :

• mymodule.out : The Executable to be programmed on device.

• mymodule.kpk : The Kernel package to be imported in a MicroEJ Forge instance.

• mymodule.vde : The Virtual Device to be imported in the SDK.

• mymodule-workingEnv.zip : This file contains all files produced by the build phase (intermediate, debug
and report files).

3.7. Kernel Developer Guide 1331

MicroEJ Documentation,

3.7. Kernel Developer Guide 1332

MicroEJ Documentation,

Build the Executable in the Workspace

Note: The build of the Executable in the Workspace is available for SDK 5 only. Refer to the Build an Executable
page to build the Executable with SDK 6.

It is possible to build the Executable using a MicroEJ Launch rather than the regular module
build. This speeds-up the build time thanks to MicroEJ Module Manager workspace resolution
and Eclipse incremental compilation.

• Import the Kernel project and all Sandboxed Application projects in the same workspace,

• Prepare a MicroEJ Application launch for the Kernel as a regular Standalone Application,

• Prepare aMicroEJ Application launch for eachSandboxedApplication usingBuildDynamic Fea-
ture settings.

The following figure shows the overall build flow:

Fig. 267: Kernel Build Flow using MicroEJ Launches

Expose APIs

A Kernel must define the set of classes, methods and static fields all applications are allowed
to use.

Note: According to the Kernel & Features Specification (KF), no API is open by default to Sandboxed Applications.

This can be done either by declaring Kernel APIs or by defining a Runtime Environment.

3.7. Kernel Developer Guide 1333

MicroEJ Documentation,

Themain difference is from the Application development point of view. In the first case, the Ap-
plication project still declares standard module dependencies. This is the good starting point
for quickly building a Kernel with Applications based on the MicroEJ modules as-is. In the sec-
ond case, the Application project declares the runtime environment dependency. This is the
preferred way in case you intend to build andmaintain a dedicated Applications ecosystem.

A Kernel API or a Runtime Environment module must be added as dependency of the project:

SDK 6

SDK 5

• A Kernel API module is added as a dependency with the configuration implementation .

dependencies {
implementation(”com.microej.kernelapi:edc:1.2.0”)
implementation(”ej.api:edc:1.3.4”)

}

Warning: Unlike SDK 5 (MMM), Kernel API dependencies are not transitively fetched with SDK
6. They must therefore be explicitly added.

• ARuntimeEnvironmentmodule is added as a dependencywith the configuration microejRun-
timeEnvironment .

dependencies {
microejRuntimeEnvironment(”com.mycompany:myruntime-environment:1.0.0”)

}

• A Kernel API or a Runtime Environment module is added as a dependency with the configura-
tion kernelapi->default .

<dependency␣
→˓org=”com.microej.kernelapi” name=”edc” rev=”1.2.0” conf=”kernelapi->default”/>

Implement a Security Policy

A complete section about how to setup a security policy is available in the Application security
policy page.

Add Pre-installed Applications

Onadevice, when aKernel starts, it will load all the installed applications frompersistentmem-
ory (ROM)1.

To mimic this behavior on a Virtual Device, add an Application as dependency of the Kernel
project:

SDK 6

SDK 5

with the configuration microejApplication
1 Assuming your VEE Port implements the Feature Persistency functionality.

3.7. Kernel Developer Guide 1334

MicroEJ Documentation,

dependencies {
microejApplication(”com.mycompany:myapp:0.1.0”)

}

with the configuration systemapp-vd->application

<dependency␣
→˓org=”com.mycompany” name=”myapp” rev=”0.1.0” conf=”systemapp-vd->application”/>

The provided Application is installed in the Virtual Device only, refer to the Application Linking
page to install Applications on the target device.

Kernel Application Configuration with SDK 5

Note: This section concerns SDK 5only. Formore information about the configuration of a Kernel Applicationwith
SDK 6, refer to the Application section.

Module Configuration

The build-firmware-multiapp build type defines additional configurations, used to specify the
different kind of firmware inputs (see Input and Output Artifacts) as dependencies.

The following table lists the different configurationmapping usage where a dependency line is
declared:

<dependency org=”...” name=”...” rev=”...” conf=”[Configuration Mapping]”/>

Table 114: ConfigurationsMapping for build-firmware-multiapp Build
Type

Configuration Mapping Dependency Kind Usage

vdruntime->default
Add-On Library (
JAR)

Embedded in the Virtual Device only, not in the Exe-
cutable

default->default; vdrun-
time->default

Add-On Library (
JAR)

Embedded in both the Executable and the Virtual De-
vice

platform->default
VEE Port VEE Port dependency used to build the Executable and

the Virtual Device. There are other ways to select the
VEE Port (see Select a VEE Port)

kernelapi->default
Runtime Environ-
ment (JAR)

See Runtime Environment

systemapp-vd->application
Application (WPK) Included to the Virtual Device as pre-installed Applica-

tion.

Example of minimal firmware dependencies.

The following example defines a Kernel that exposes all APIs of EDC library.

<dependencies>
<dependency org=”ej.api” name=”edc” rev=”1.2.0” conf=”provided” />
<!-- Runtime API (set of Kernel API files) -->

(continues on next page)

3.7. Kernel Developer Guide 1335

MicroEJ Documentation,

(continued from previous page)

<dependency␣
→˓org=”com.microej.kernelapi” name=”edc” rev=”1.0.0” conf=”kernelapi->default”/>
</dependencies>

Build Options

The Kernel Application module nature section describes all the options available for building a
Kernel module.

Build only a Virtual Device with a pre-existing Kernel

Copy/Paste the .kpk file into the folder dropins

3.7.3 Kernel APIs

Kernel API files (kernel.api) specify among all types owned by the Kernel which onesmust be
used by Features, and for those types which members (method, and static fields) are allowed
to be accessed by Features. When a type is not declared in a Kernel API, the Kernel and each
Feature can have their own version of that type, but if a type is declared in a Kernel API file only
the Kernel version will be used by the Kernel and all the Features.

For mode details refer to the Class Spaces chapter of the Kernel & Features Specification (KF).

Kernel API Definition

A Kernel API file is an XML file named kernel.api declared at the root of one or more path com-
posing the Application classpath.

3.7. Kernel Developer Guide 1336

MicroEJ Documentation,

Listing 43: Kernel API Example for exposing System.out.println API

<require>
<type name=”java.io.PrintStream”/>
<type name=”java.lang.String”/>
<type name=”java.lang.System”/>
<field name=”java.lang.System.out”/>
<method name=”java.io.PrintStream.println(java.lang.String)void”/>

</require>

The table below describes the format of the XML elements. The full XML schema is available in
the Kernel & Features Specification (KF).

Table 115: XML elements specification
Tag Attributes Description
re-
quire

The root element

field Static fielddeclaration. Declaringa fieldasaKernelAPIautomatically sets thedeclaring
type as a Kernel API

name Fully qualified name on the form [type].[fieldName]
method Methodor constructor declaration. Declaring amethodor a constructor as a Kernel API

automatically sets the declaring type as a Kernel API
name Fully qualified name on the form [type].[methodName]([typeArg1,...,typeArgN)

typeReturned . Types are fully qualified names or one of a base type as described by
the Java language (boolean , byte , char , short , int , long , float , double) When
declaring a constructor, methodName is the single type name. When declaring a void
method or a constructor, typeReturned is void

type Type declaration, allowed to be loaded from a Feature using Class.forName()
name Fully qualified name on the form [package].[package].[typeName]

Writing Kernel APIs

This section lists different ways to help to write kernel.api files.

Default Kernel APIs Derivation

MicroEJ Corp. provides predefined kernel API files for the most common libraries provided by
a Kernel. These files are packaged as MicroEJ modules in the Developer Repository under the
com/microej/kernelapi organisation.

The packaged file kernel.api can be extracted from the JAR file and edited in order to keep only
desired types, methods and fields.

3.7. Kernel Developer Guide 1337

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#out
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#forName-java.lang.String-
https://forge.microej.com/artifactory/microej-developer-repository-release/com/microej/kernelapi/

MicroEJ Documentation,

Kernel API Generator

MicroEJ Kernel API Generator is a tool that help to generate a kernel.api file based on a Java
classpath.

In the SDK, create a new MicroEJ Tool launch, Run > Run Configurations > MicroEJ Tool

, choose your Platform, select Kernel API Generator for the Settings options, and don’t
forget to set the output folder.

Define the classpath to use in the Configuration tab, and Press Run . A kernel.api file is
generated in the output folder and it contains all classes, methods and fields found in the given
classpath.

3.7. Kernel Developer Guide 1338

MicroEJ Documentation,

Category: Kernel API Generator

Group: Classpath

Option(list):

Option Name: kernel.api.generator.classpath

Default value: (empty)

Group: Types Filters

Option(text): Includes Patterns

Option Name: kernel.api.generator.includes.patterns

Default value: **/*.class

Description: Comma separated list of ANT Patterns for types to include.

3.7. Kernel Developer Guide 1339

MicroEJ Documentation,

Option(text): Excludes Patterns

Option Name: kernel.api.generator.excludes.patterns

Default value: (empty)

Description: Comma separated list of ANT Patterns for types to exclude.

3.7.4 Runtime Environment

Principle

A Runtime Environment is a module nature for defining the set of APIs available to an Applica-
tion developer on a Kernel. It is built by aggregating a set of Kernel APIs.

Depending on the SDK that you are using, refer to the SDK 6 module nature page or to the SDK
5module nature page for more information about Runtime Environment module nature.

Building a Runtime Environment is one of the 2 solutions to define the APIs of a Kernel, as de-
scribed in the section Expose APIs. Having the set of APIs named and versioned in a Runtime
Environment allows tomaintain, share and document it outside of a specific Kernel implemen-
tation.

Once built, a Runtime Environment module contains the following elements:

• A JAR file with the whole library of APIs (.class files and .java), used by Application projects to
compile Application code;

• A JAR file with the kernel.api file defined in the module (if any), used by Kernel projects to
fetch all the kernel.api files (by transitivity) to expose APIs when building the Firmware and
the Virtual Device;

• A JAR file with the Javadoc of the APIs for documentation.

The following figure shows the overall build flow:

3.7. Kernel Developer Guide 1340

MicroEJ Documentation,

Create a new Runtime Environment Module

SDK 6

SDK 5

A Runtime Environment Gradle project is created with the com.microej.gradle.
runtime-environment plugin.

plugins {
id(”com.microej.gradle.runtime-environment”) version ”1.3.0”

}

A Runtime Environmentmodule project is created with the runtime-api skeleton.

<info organisation=
→˓”com.mycompany” module=”myruntimeapi” status=”integration” revision=”1.0.0”>
<ea:build␣

→˓organisation=”com.is2t.easyant.buildtypes” module=”build-runtime-api” revision=”4.0.+”>
(continues on next page)

3.7. Kernel Developer Guide 1341

MicroEJ Documentation,

(continued from previous page)

</ea:build>
</info>

Kernel APIs as Dependencies

The Kernel APIs can be declared as dependencies of the module. For example, the following
dependencies declare a Runtime Environment that aggregates all classes, methods and fields
defined by EDC , KF , BON , MicroUI and BasicTool Kernel APIs modules.

SDK 6

SDK 5

dependencies {
implementation(”com.microej.kernelapi:edc:1.2.0”)
api(”ej.api:edc:1.3.4”)
implementation(”com.microej.kernelapi:kf:2.1.0”)
api(”ej.api:kf:1.5.1”)
implementation(”com.microej.kernelapi:bon:1.4.0”)
api(”ej.api:bon:1.4.0”)
implementation(”com.microej.kernelapi:microui:3.6.0”)
api(”ej.api:microui:3.6.0”)
implementation(”com.microej.kernelapi:basictool:1.4.0”)
api(”ej.library.runtime:basictool:1.7.0”)

}

Warning:

• Unlike SDK 5 (MMM), Kernel API dependencies are not transitively fetched with SDK 6. There-
fore, they must be explicitly added.

• The Libraries dependencies must be declared with api (as shown in the example above) to be
consumable by the Kernel.

<dependencies>
<dependency org=”com.microej.kernelapi” name=”edc” rev=”1.0.6”/>
<dependency org=”com.microej.kernelapi” name=”kf” rev=”2.0.3”/>
<dependency org=”com.microej.kernelapi” name=”bon” rev=”1.1.1”/>
<dependency org=”com.microej.kernelapi” name=”microui” rev=”3.1.0”/>
<dependency org=”com.microej.kernelapi” name=”basictool” rev=”1.7.0”/>

</dependencies>

The librariesmodules are fetched transitively from theKernel APIs dependencies. For example,
the dependency com.microej.kernelapi#edc;1.0.6 fetches the library ej.api#edc;1.2.3.

It is also possible to force the version of the libraries to use by declaring them as direct depen-
dencies. This is typically used to get a latest version of the library with improvements such as
Javadoc fixes or Null Analysis annotations. In this example:

<dependencies>
<dependency org=”com.microej.kernelapi” name=”edc” rev=”1.0.6”/>

<dependency org=”ej.api” name=”edc” rev=”1.3.4”/>
</dependencies>

3.7. Kernel Developer Guide 1342

https://repository.microej.com/modules/ej/api/edc/1.2.3/

MicroEJ Documentation,

The Runtime Environment uses the version 1.3.4 of the EDC library instead of the version 1.2.3
fetched transitively by the dependency com.microej.kernelapi#edc;1.0.6 .

Kernel APIs as Project File

The Kernel APIs can also be defined in a file in the Runtime Environment directly. The file must
be named kernel.api and stored in the src/main/resources folder.

Add Add-On Processors

Note: This feature is available for SDK 5 only.

When the Runtime Environment includes an Add-On Library which uses an Add-On Processor,
this Add-On Processor must be declared as a direct dependency in the Runtime Environment.

The Add-On Processor dependency line can be retrieved as follows:

• In your targetmodule repository, go to the Add-On Library folder,

• Open the ivy-[version].xml file,

• Search for the dependency line with conf=”addon-processor->addon-processor”

<ivy-module xmlns:ea=”http://www.easyant.org” xmlns:ej=”https://developer.microej.
→˓com” xmlns:m=”http://ant.apache.org/ivy/maven” version=”2.0” ej:version=”2.0.0”>
<info organisation=”com.mycompany

→˓” module=”mylibrary” revision=”M.m.p” status=”release” publication=”20220523165033”>
...

</info>
<configurations>

...
<conf name=

→˓”addon-processor” visibility=”public” description=”Addon processors dependencies.”/>
</configurations>
<publications>

...
</publications>
<dependencies>

<dependency␣
→˓org=”ej.api” name=”edc” rev=”1.3.3” conf=”default->default;provided->provided”/>

...
<dependency org=”com.mycompany.addon

→˓” name=”mylibrary-processor” rev=”x.y.z” conf=”addon-processor->addon-processor”/>
...

</dependencies>
</ivy-module>

• In the Runtime Environmentmodule description file, declare the addon-processor configura-
tion in the list of configurations

<conf name=
→˓”addon-processor” visibility=”public” description=”Add-On Processors dependencies.”/>

• Paste the Add-On Processor dependency line

3.7. Kernel Developer Guide 1343

MicroEJ Documentation,

Warning: If the Add-On library version is changed, the Add-On Processor version must be up-
dated.

Here is a list of known libraries using an Add-On Processor:

• NLS:

<dependency org=”com.microej.tool.addon.runtime” name=
→˓”binary-nls-processor” rev=”<version>” conf=”addon-processor->addon-processor”/>

• Wadapps:

<dependency org=”ej.tool.addon.wadapps”␣
→˓name=”wadapps-processor” rev=”<version>” conf=”addon-processor->addon-processor”/>

• JavaScript:

<dependency org=”com.microej.tool.addon.runtime
→˓” name=”js-processor” rev=”<version>” conf=”addon-processor->addon-processor”/>

Use a Runtime Environment in an Application

The Runtime Environment dependency must be declared in the Application project as follow-
ing:

SDK 6

SDK 5

For an Application:

microejRuntimeEnvironment(”com.mycompany:myruntime-environment:1.0.0”)

For a Kernel Application:

implementation(”com.mycompany:myruntime-environment:1.0.0”)

<dependency org=”com.
→˓mycompany” name=”myruntime-environment” rev=”1.0.0” conf=”provided->runtimeapi”/>

Note: If youwant to add an other library dependency,make sure it is has been built on this Runtime Environment.
Otherwise this could lead to inconsistent situations, for example by using an API not available at runtime. An other
approach is to add it to the Runtime Environment.

3.7. Kernel Developer Guide 1344

https://repository.microej.com/modules/com/microej/library/runtime/binary-nls/
https://forge.microej.com/artifactory/microej-developer-repository-release/ej/library/wadapps/wadapps/
https://forge.microej.com/artifactory/microej-developer-repository-release/com/microej/library/runtime/js/

MicroEJ Documentation,

Extend a Runtime Environment

Note: This feature is available for SDK 5 only.

In a Kernel, Foundation and Add-On libraries can be extended by adding newmethods to their
existing classes. For example, it allows to add newmethods to the class java.lang.String of the
module ej.api#edc. This is done thanks to the Class Extender tool. This tool works at binary
level and is able to inject methods from one class to another. Extensions can thus be indepen-
dently compiled and be retrieved by the Kernel and applied during aMulti-Sandbox Executable
build.

To make the extensions available to Application developers, the Runtime Environment has to
be extended too.

The following diagram illustrates the process of extending the default java.lang.String class
from [EDC] from a Kernel developer point of view:

The extension must be applied in 2 locations:

1. In the Runtime Environment. This ensures that Applications developers can see and use the
newmethods. The custom Runtime Environment must contain the following element:

• the API to extend, as a dependency. Here this is the EDC Foundation Library API, which contains
the java.lang.String class we want to extend. We can add it transitively through its kernelapi:

3.7. Kernel Developer Guide 1345

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/String.html
https://repository.microej.com/modules/ej/api/edc/
https://repository.microej.com/modules/com/microej/tool/class-extender/
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/String.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/String.html

MicroEJ Documentation,

<dependency org=”com.microej.kernelapi” name=”edc” rev=”1.0.6”/>

• a Kernel API file definition in the src/main/resources folder which includes the newmethods.
For example:

<?xml version=”1.0” encoding=”UTF-8”?>
<require>

<method name=”java.lang.String.myNewMethod(int)java.lang.String”/>
<method name=”java.lang.String.myOtherNewMethod()void”/>

</require>

• the new version of the Java source of the API to extend. This class overrides the original class
fetched from the dependency. Therefore it must include all the methods, the ones existing in
the original class as well as the newmethods, with their Javadoc specification. In our example,
we must add a new String.java source file in the src/main/java/java/lang folder, and add
the newmethods:

public String myNewMethod(int number) {
return ”My number is ” + number;

}

public void myOtherNewMethod() {
System.out.println(”Hello!”);

}

This class overrides the java.lang.String class fetched from the EDC dependency.

Once built, the customRuntimeEnvironment contains the newmethods and canbeused in the
Applications projects.

2. In the Kernel. The EDC implementation is extended during the Kernel build thanks to the Class
Extender tool. Refer to the Class Extender tool README and especially to the chapter Include
Class Extender During Firmware Project Build to learn how to integrate it in a Kernel build.

MicroEJ Corp. provides some ready-to-use extension modules:

• com.microej.library.runtime#string-regex: String methods based on Regular Expressions (e.g. String.
split() , String.replaceAll())

• com.microej.library.runtime#string-format: String formatting utility methods (e.g. String.format())

3.7.5 Kernel UID

The Kernel UID is a sequence of bytes that uniquely identifies the Kernel. This UID is generated
by SOAR from Java code content, Platform characteristics and a timestamp. Two Kernels built
from the same Kernel Application code will not share the same UID.

The Kernel UID is used by Core Engine to check if an Application can be installed on a Kernel.
During the Application build, the resulting .fo file embeds the Kernel UID on which it has been
built.

During Kernel.install(), the UID embedded in the .fo is compared with the Kernel UID. By de-
fault, if both UIDs are equal the Application installation continues. Otherwise it is stopped. See
also Feature Portability Control for .fo installation on different Kernels.

The Kernel UID can be retrieved at runtime using Kernel.getInstance() .getUID().

3.7. Kernel Developer Guide 1346

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/String.html
https://repository.microej.com/modules/com/microej/tool/class-extender/1.0.4/README-1.0.4.md
https://repository.microej.com/modules/com/microej/library/runtime/string-regex/
https://repository.microej.com/modules/com/microej/library/runtime/string-format/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#install-java.io.InputStream-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#getInstance--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Module.html#getUID--

MicroEJ Documentation,

3.7.6 Sandboxed Application Lifecycle

The lifecycle of an Sandboxed Application is managed by the Kernel.

Fig. 268: Sandboxed Application Lifecycle

An Application is in one of the following states:

• INSTALLED: theApplicationhasbeensuccessfully linked to theKernel and isnot running. There
are no references from the Kernel to objects owned by this Application.

• STARTED: the Application has been started and is running.

• STOPPED: the Application has been stopped and all its owned threads and execution contexts
are terminated. The memory and resources are not yet reclaimed.

• UNINSTALLED: the Application has been unlinked from the Kernel.

3.7.7 Define a Security Policy

A security policy allows theKernel to prevent anApplication fromaccessing resources or calling
specific APIs. Whereas APIs exposed by the Kernel allows to control at build-time, the security
policy here controls the APIs called at runtime.

Defining a security policy is done by implementing the standard SecurityManager class. Ba-
sically, all sensitive APIs exposed by the Kernel have already been protected by a Permis-
sion Check. Each time an Application calls such API, the Security Manager SecurityMan-
ager.checkPermission(Permission) implementation verifies that the requested permission has
been granted to the Application.

3.7. Kernel Developer Guide 1347

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/SecurityManager.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/SecurityManager.html#checkPermission-java.security.Permission-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/SecurityManager.html#checkPermission-java.security.Permission-

MicroEJ Documentation,

Register a Security Manager

The first step for the Kernel is to register a SecurityManager implementation. Usually this is
done in the Kernel boot sequence, before starting to run Applications. However, the Security
Manager can be updated at any-time, and a Kernel can also register different implementations
during its execution.

For the purpose of ROM footprint optimization, permission checks calls are disabled by default
toavoidextracodeprocessing if the systemownerdoesnotwant touse theSecurityManager. In
order to activate this feature, set the Option(checkbox): Enable SecurityManager checks option.

Once the SecurityManager checks are enabled, you can then implement your own security pol-
icy.

To apply a security policy, instantiate a SecurityManager and register it with System.setSecuri-
tyManager(SecurityManager) method.

// create an instance of SecurityManager
SecurityManager sm = new SecurityManager() {

@Override
public void checkPermission(java.security.Permission perm) {

// implement here the Application Security Policy
};

};
// set the Security Manager
System.setSecurityManager(sm);

The next section will guide you to implement the desired security policy.

Implement a Security Manager

The implementation of the SecurityManager.checkPermission(Permission) method first re-
trieves the owner of the requested Permission, then checks if it is a Feature (not the Kernel),
and finally, checks the permission according to the given Feature.

The following code snippet shows the typical implementation:

public class MyKernelSecurityManager extends SecurityManager {

@Override
public void checkPermission(Permission perm) {
Module caller = Kernel.getContextOwner();
if(caller == Kernel.getInstance()) {
// Kernel has all the rights: no checks

}
else{
Feature callerApp = (Feature)caller;
Kernel.enter();
if(!isAllowed(callerApp, perm)) {
throw new SecurityException();

}
}

}

private boolean isAllowed(Feature callerApp, Permission perm) {
// implement here the Application Security Policy

}
(continues on next page)

3.7. Kernel Developer Guide 1348

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/SecurityManager.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/SecurityManager.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#setSecurityManager-java.lang.SecurityManager-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#setSecurityManager-java.lang.SecurityManager-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/SecurityManager.html#checkPermission-java.security.Permission-

MicroEJ Documentation,

(continued from previous page)

}

You are now ready to implement your policy to decide whether the given permission is granted
to the given Application.

The KF-Utilmodule provides ready-to-use implementations, described in the next sections. Ex-
amples of integration are also available in the Kernel-GREEN project on GitHub.

Security Manager with Application Declared Permissions

This SecurityManager provides a ready-to-use implementation based on permissions declared
by theApplication itself. It assumes theapplicationand its permissions file havebeenapproved
beforehand by amoderator.

Principle

Basically, Applications embed apolicy resource file that describes the permissions they need at
runtime. This file is then loadedwhen theApplication is installed. Finally, this SecurityManager
checks if the permission has been granted to the calling Application. If a permission check is
triggered but has not been declared, the Security Manager throws a SecurityException.

Here is a sequence diagram to describe the entire flow from Feature installation to uninstalla-
tion:

3.7. Kernel Developer Guide 1349

https://repository.microej.com/modules/com/microej/library/util/kf-util/
https://github.com/MicroEJ/Kernel-GREEN
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/SecurityException.html

MicroEJ Documentation,

Policy File Format

An Application must define its Application policy file as a resource. By default, the resource
namemust be /feature.policy.json .

The policy file format is described in JSON, which is the default syntax supported by this Secu-
rity Manager.

Before going further we strongly advise to take a look to the java.security.Permission specifica-
tion and its class hierarchy to fully understand the way permissions work (name, action).

The Application policy file declares the list of required java.security.Permission classes, names
and actions as following:

{
”permissions”: {
”<permissionClassName1>”:{
”<permissionName1>”:[”<permissionAction1>”,”<permissionAction2>”],
”<permissionName2>”:[”<permissionAction1>”]

},
”<permissionClassName2>”:{
”<permissionName3>”:[”<permissionAction3>”]

}
}

}

The permission name and action attributes are specific to the permission implementation.
Therefore each permission has its own definition of what a name is.

The following keywords allowmore flexibility over the content of the file:

• the * (wildcard) symbol means “any”. It can be used for permission class name, permission
name and permission actions.

• the null keyword represents a Java null value. It can be used for permission name and per-
mission actions.

Policy File Example

Here is now an example of what a real JSON Application policy file can look like:

{
”permissions”: {
”ej.microui.display.DisplayPermission”:{
”*”:[]

},
”ej.microui.event.EventPermission”:{
”null”:[”null”]

},
”ej.microui.display.FontPermission”:{},
”ej.microui.display.ImagePermission”:{
”null”:[”*”]

},”ej.microui.MicroUIPermission”:{
”*”:[”start”]

},”java.net.SocketPermission”:{
”www.microej.com”:[”connect”,”resolve”]

},”java.util.PropertyPermission”:{
(continues on next page)

3.7. Kernel Developer Guide 1350

https://repository.microej.com/javadoc/microej_5.x/apis/java/security/Permission.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/security/Permission.html

MicroEJ Documentation,

(continued from previous page)

”property”:[”write”,”read”]
},”java.lang.RuntimePermission”:{
”exit”:[]

}
}

}

To simplify the file structure you can also choose to have an empty object value for permission
class name or/and permission actions such as shown in the example above:

{
”permissions”: {
”ej.microui.display.DisplayPermission”:{
”*”:[]

},
”ej.microui.display.FontPermission”:{},
”java.lang.RuntimePermission”:{
”exit”:[]
}

}
}

This example:

• allows the usage of any permission name and any actions for the ej.microui.display.
DisplayPermission permission.

• allows the usage of any permission name and any actions for the ej.microui.display.
FontPermission permission.

• allows the exit permission name and any actions for the java.lang.RuntimePermission per-
mission.

Using an empty value or the * wildcard is left to the developer preference and should be pro-
cessed in the exact same way by the security policy resource loader.

Kernel Implementation

Here are the steps to integrate this Security Manager in your Kernel:

1. Add the dependency to the KF-Util library in the Kernel build file

Gradle (build.gradle.kts)

MMM (module.ivy)

implementation(”com.microej.library.util:kf-util:2.8.0”)

<dependency org=”com.microej.library.util” name=”kf-util” rev=”2.8.0”/>

1. Make sure to embed java.security.Permission class names

If the Kernel does not embed all class names (see Stripping Class Names from an Application),
the specified Permission class namesmust be embedded by declaring them as Required Types.
Any permission check done on a permission class without embedded name will result in a Se-
curityException.

3.7. Kernel Developer Guide 1351

https://repository.microej.com/modules/com/microej/library/util/kf-util/
https://repository.microej.com/javadoc/microej_5.x/apis/java/security/Permission.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/SecurityException.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/SecurityException.html

MicroEJ Documentation,

2. Create the policy resource loader. By default, the library comes with a policy resource loader
for the JSON format.

SecurityPolicyResourceLoader loader = new JsonSecurityPolicyLoader();

You can also define your own format for the policy resource file by implementing the _Security-
PolicyResourceLoader‘ interface. Optionally, you can change the Application file policy name,
by setting the System Property feature.policy.name (defaults to /feature.policy.json).

3. Create the KernelSecurityPolicyManager instance with the policy resource loader

SecurityManager sm = new KernelSecurityPolicyManager(loader);

4. Register this instance as the current Security Manager

System.setSecurityManager(sm);

Note: To log every authorized access, change the logger level to FINE in the Kernel system properties such as
.level=FINE .

Security Manager with Permission Dispatch

This Security Manager provides a template for dispatching the permission check per kind of
java.security.Permission class. The Kernel implementation must provide instances of Fea-
turePermissionCheckDelegate to specify the behavior of the SecurityManager.checkPermis-
sion(Permission) for each permission class. If a permission check is done and no delegate for
its permission is found, a SecurityException is thrown. The policy grants all applications the
permission for a list of permission classes and logs all protected accesses by Applications.

Here are the steps to integrate this Security Manager in your Kernel:

1. Add the dependency to the KF-Util library in the Kernel build file

Gradle (build.gradle.kts)

MMM (module.ivy)

implementation(”com.microej.library.util:kf-util:2.8.0”)

<dependency org=”com.microej.library.util” name=”kf-util” rev=”2.8.0”/>

1. Create the KernelSecurityManager instance

KernelSecurityManager sm = new KernelSecurityManager(loader);

2. Create a new class that implements the FeaturePermissionCheckDelegate interface like
MySocketPermissionCheckDelegate below.

public class CustomPermissionCheckDelegate implements FeaturePermissionCheckDelegate {

@Override
public void checkPermission(Permission permission, Feature feature) {

SocketPermission sPerm = (SocketPermission)permission;

(continues on next page)

3.7. Kernel Developer Guide 1352

https://repository.microej.com/javadoc/microej_5.x/apis/com/microej/kf/util/security/KernelSecurityPolicyManager.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/security/Permission.html
https://repository.microej.com/javadoc/microej_5.x/apis/com/microej/kf/util/security/FeaturePermissionCheckDelegate.html
https://repository.microej.com/javadoc/microej_5.x/apis/com/microej/kf/util/security/FeaturePermissionCheckDelegate.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/SecurityManager.html#checkPermission-java.security.Permission-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/SecurityManager.html#checkPermission-java.security.Permission-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/SecurityException.html
https://repository.microej.com/modules/com/microej/library/util/kf-util/
https://repository.microej.com/javadoc/microej_5.x/apis/com/microej/kf/util/security/KernelSecurityManager.html
https://repository.microej.com/javadoc/microej_5.x/apis/com/microej/kf/util/security/FeaturePermissionCheckDelegate.html

MicroEJ Documentation,

(continued from previous page)

// implement here the SocketPermission check for this Application

}

}

3. Associate an instance of this FeaturePermissionCheckDelegate subclass with the java.secu-
rity.Permission to be checked (like SocketPermission in the example below) by means of the
Security Manager.

sm.setFeaturePermissionDelegate(SocketPermission.
→˓class, new MySocketPermissionCheckDelegate());

This code will apply the logic inside of the MySocketPermissionCheckDelegate#checkPer-
mission(Permission permission, Feature feature) method to all mapped permissions (such
as SocketPermission.class for this specific example).

4. Repeat the two previous steps for each supported java.security.Permission class.

5. Register this instance as the current Security Manager

System.setSecurityManager(sm);

Note: The Kernel-GREEN uses this Security Manager template to log all the Permission checks on the standard
output.

3.7.8 Kernel and Features Communication

Kernel and Features can communicate with each other by sharing interface implementation
instances at runtime.

In this section you will learn:

• How two (or more) Feature(s) can communicate with each other.

• How the Kernel can communicate with a Feature.

Below are defined several terms that will be used throughout this page:

• Shared Interface is a mechanism specific to MicroEJ Multi-Sandbox that allows exchanging object instances
between Features.

• Service represents an object instance (i.e an interface implementation)

• Shared Services is a MicroEJ helpermodule that eases sharing services within a Multi-Sandbox
context; it provides generic APIs that can be re-implemented as needed.

• Registry or Service Registry represents the actual implementation of Shared Services APIs. Mi-
croEJ provides such registries for KF but custom registries can be implemented as needed.

3.7. Kernel Developer Guide 1353

https://repository.microej.com/javadoc/microej_5.x/apis/com/microej/kf/util/security/FeaturePermissionCheckDelegate.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/security/Permission.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/security/Permission.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/security/Permission.html
https://github.com/MicroEJ/Kernel-GREEN
https://repository.microej.com/javadoc/microej_5.x/apis/ej/service/package-summary.html

MicroEJ Documentation,

Shared Services

Services can be shared by means of the ej.Service library.

The Shared Services mechanism relies on a registry system that mostly consists in a Java map
of class types to object instances (Map<Class<?>, Object>).

EachFeatureownsa local registry inwhich it can registerandget serviceswithin itsowncontext;
services registered in a local context cannot be retrieved by the Kernel nor any other Feature.

The Kernel also has a local registry in which it can register services that can be used within its
own context but not from the context of Features.

Finally there exists a unique shared service registry contains all the registered shared services;
this registry is available to all Features and to the Kernel as well.

Security policies can be implemented to restrict the usage of certain services by certain Fea-
tures.

Note: The following sections relate to the existing KF implementation of the ej.Service library available in the
KF-Util module ; you can however do your own custom implementation depending as needed.

Communication between Features

The KF specification does not allow Features to access object instances from other Features
directly: access can only be done bymeans of a proxy of the target object instance.

This ismade possible through the Shared Interfacesmechanism. More information about prox-
ies can be found in the Shared Interfaces section.

In a nutshell Shared Interfaces and Shared Services are two complementary notions: the
Shared Interfacesmechanism is responsible for setting up the capability of sharing an instance
betweenFeatureswhereasSharedServices offer away toget, store and retrieve these instances
once correctly set up.

Register a Service

The following line of code allows you to easily register a Service instance.

ServiceFactory.register(MyInterface.class,myInterface)

When registering a service from a Feature there are two possible options:

• The registered service is not a Shared Interface; in this case the service instance will be regis-
tered in a local service registry and only available from the Feature itself.

• The registered service is a Shared Interface; in this case the service instance will be registered
in the Shared Service Registry and therefore available to any other Features that has a proxy for
this instance.

For Features to use the Shared Interfaces mechanism, a Kernel must provide:

• an API for a first Feature to register its Shared Interface, and for a second Feature to get a proxy
on it (by means of the ej.Service library)

• a set of registered Kernel types converters (see below)

3.7. Kernel Developer Guide 1354

https://repository.microej.com/javadoc/microej_5.x/apis/ej/service/package-summary.html
https://repository.microej.com/javadoc/microej_5.x/apis/com/microej/kf/util/service/ServiceRegistryKF.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/service/package-summary.html
https://repository.microej.com/javadoc/microej_5.x/apis/com/microej/kf/util/package-summary.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/service/package-summary.html

MicroEJ Documentation,

Get a Service

The following line of code allows you to easily get a Service instance.

MyInterface myInterface = ServiceFactory.getService(MyInterface.class)

When getting a service instance froma Feature, the service instance is searched in the following
order:

1. In the Local Registry, check for an instance registered by the Feature.

2. In the Shared Registry, check for an instance registered by the Feature itself.

3. In the Shared Registry, check for an instance registered (publicly) by the Kernel.

4. In the Shared Registry, check for an instance registered as a Shared Interface by an other Fea-
ture.

Communication between Kernel and Feature

The Kernel can also communicate with Features using Shared Services, by exposing object in-
stances to Features in the shared registry.

Register a Service

From the Kernel side two distinct APIsmay be used to register a Service, depending onwhether
the service must be registered locally or not.

You can use the generic ej.Service API thatwill automatically register the service instance in the
local Kernel service registry.

ServiceFactory.
→˓register(MyInterface.class,myInterface) //accessible within the Kernel context only

Or you can specify in which registry the Kernel should register the service by using the Ser-
viceRegistryKF API from the KF-Util module as depicted below.

By doing so the service instance is exposed in the Shared Registry.

Note: To allow the usage of Kernel APIs by Features, you must make sure that the Kernel registers the neces-
sary Kernel APIs. Learn more about Kernel API. Use of extra APIs from ServiceRegistryKF to specify the registry is
reserved for the Kernel and will throw an exception if used from a Feature context.

Get a Service

The following line of code allows you to easily get a Service instance.

MyInterface myInterface = ServiceFactory.getService(MyInterface.class)

Whengettingaservice instance fromtheKernel, the service instance is searched in the following
order:

1. In the Local Registry, check for an instance registered by the Kernel.

3.7. Kernel Developer Guide 1355

https://repository.microej.com/javadoc/microej_5.x/apis/ej/service/package-summary.html
https://repository.microej.com/javadoc/microej_5.x/apis/com/microej/kf/util/service/ServiceRegistryKF.html
https://repository.microej.com/javadoc/microej_5.x/apis/com/microej/kf/util/service/ServiceRegistryKF.html
https://repository.microej.com/javadoc/microej_5.x/apis/com/microej/kf/util/package-summary.html
https://docs.microej.com/en/latest/KernelDeveloperGuide/kernelAPI.html

MicroEJ Documentation,

2. In the Shared Registry, check for an instance registered by the Kernel.

3. In the Shared Registry, check for an instance registered as Shared Interface by an other Feature.

If no instancewas found, an attempt ismade to create a new instance of the provided type from
System Properties.

This property binds the service type (the property key) to the actual service implementation
type (the property value) that will be used for instantiation.

For example, in order to allow an instance of the ej.bon.Timer service to be created automat-
ically if not present, the following property must be set:

ej.bon.Timer=ej.bon.Timer

Note: Since the service typeand the implementation typearedynamically boundusing class reflection, both types
must be declared as Required Types.

Implement a Registry

In case the existing KF implementation of Shared Services does not fit your needs, you can im-
plement your own registry system classes using the Kernel.bind() KF API.

This API allows a consumer Feature for remote use of an instance which type is owned by an-
other Feature or theKernel. In case the type is ownedby another Feature, the returned instance
is a Proxy of the shared instance. In case the type is owned by the Kernel, the returned instance
is the conversion result of the shared instance to the Kernel type; for this to happen a suitable
Converter must be registered.

As an example the steps below describe how to implement a generic Shared Interface service
that relies on the Kernel.bind() API.

1. Declare the following class in your Kernel

package com.microej.example;

import ej.kf.Feature;
import ej.kf.Feature.State;
import ej.kf.FeatureStateListener;
import ej.kf.Kernel;
import ej.kf.Module;

/**
* Example of Kernel APIs for registering a generic Shared Interface service.
*/
public class GlobalService {

private static Object GLOBAL_SERVICE;
static {

// automatically unregister the global service when the Feature is stopped.
Kernel.addFeatureStateListener(new FeatureStateListener() {

@Override
public void stateChanged(Feature feature, State previousState) {

synchronized (GlobalService.class) {
␣

(continues on next page)

3.7. Kernel Developer Guide 1356

https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#bind-T-java.lang.Class-ej.kf.Feature-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Proxy.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#bind-T-java.lang.Class-ej.kf.Feature-

MicroEJ Documentation,

(continued from previous page)

→˓ if (GLOBAL_SERVICE != null && Kernel.getOwner(GLOBAL_SERVICE) == feature
&& previousState == State.STARTED) {

GLOBAL_SERVICE = null;
}

}
}

});
}

/**
* Basic API to register a Feature service.

* The service is automatically unregistered when the Feature is stopped.
*
* @param service
* the service being registered. It must implement a shared interface.
*/
public synchronized static void registerService(Object service) {

Kernel.enter();
GLOBAL_SERVICE = service;

}

/**
* Basic API to retrieve a Feature service.

*
* @param <T>
* the interface type
*
* @param serviceClass
* the interface of the service being retrieved. It must implement a shared interface.
* @return the binded service or <code>null</code> if no registered service
*/
@SuppressWarnings(”unchecked”)
public synchronized static <T> T getService(Class<T> serviceClass) {

Module contextOwner = Kernel.getContextOwner();
Kernel.enter();
if (GLOBAL_SERVICE == null) {

return null;
}
return Kernel.bind((T) GLOBAL_SERVICE, serviceClass, (Feature) contextOwner);

}
}

1. Declare the following exposed APIs in your kernel.api file (refer to Kernel API Definition for
details)

<method name=”com.microej.example.GlobalService.registerService(java.lang.Object)void” />
<method␣
→˓name=”com.microej.example.GlobalService.getService(java.lang.Class)java.lang.Object” />

1. Your App1 is ready to register a Shared Interface as a service

MySharedInterface service = new MySharedInterface();
GlobalService.registerService(service);

1. Your App2 is ready to retrieve a Shared Interface as a service

3.7. Kernel Developer Guide 1357

https://docs.microej.com/en/latest/KernelDeveloperGuide/kernelAPI.html#kernel-api-definition

MicroEJ Documentation,

MySharedInterface service = GlobalService.getService(MySharedInterface.class))
service.use();

Kernel Types Converter

TheShared Interfacemechanismallows to transfer an object instance of a Kernel type fromone
Feature to an other (see Transferable Types section).

To do that, the Kernel must register a new Kernel type converter. See the Converter class and
Kernel.addConverter() method for more details.

The table below shows some converters defined in the com.microej.library.util#kf-util library.

Table 116: Example of Available Kernel Types Converters
Type Converter Class Conversion Rule
java.lang.Boolean BooleanConverter Clone by copy
java.lang.Byte ByteConverter Clone by copy
java.lang.Character CharacterConverter Clone by copy
java.lang.Short ShortConverter Clone by copy
java.lang.Integer IntegerConverter Clone by copy
java.lang.Float FloatConverter Clone by copy
java.lang.Long LongConverter Clone by copy
java.lang.Double DoubleConverter Clone by copy
java.lang.String StringConverter Clone by copy
java.io.InputStream InputStreamConverter Create a Proxy reference
java.util.Date DateConverter Clone by copy
java.util.List<T> ListConverter Clone by copy with recursive element conversion
java.util.Map<K,V> MapConverter Clone by copy with recursive keys and values conversion

3.7.9 Multi-Sandbox Enabled Libraries

A Multi-Sandbox enabled library is a Foundation Library or an Add-On Library that can be em-
bedded by a Kernel with its APIs exposed to Features.

A library requires specific code for enabling Multi-Sandbox in the following cases:

• it implements an internal global state: lazy initialization of a singleton, registry of callbacks,
internal cache, …,

• it provides access to native resources that must be controlled using a Security Manager.

Otherwise, the library is called a stateless library. A stateless library is Multi-Sandbox enabled
by default: it can be embedded by the Kernel, and its APIs are directly exposed to Features
without codemodification.

Note: This chapter generally applies to any Kernel code, not just libraries.

3.7. Kernel Developer Guide 1358

https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Converter.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#addConverter-ej.kf.Converter-
https://repository.microej.com/modules/com/microej/library/util/kf-util/
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Boolean.html
https://repository.microej.com/javadoc/microej_5.x/apis/com/microej/kf/util/BooleanConverter.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Byte.html
https://repository.microej.com/javadoc/microej_5.x/apis/com/microej/kf/util/ByteConverter.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Character.html
https://repository.microej.com/javadoc/microej_5.x/apis/com/microej/kf/util/CharacterConverter.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Short.html
https://repository.microej.com/javadoc/microej_5.x/apis/com/microej/kf/util/ShortConverter.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Integer.html
https://repository.microej.com/javadoc/microej_5.x/apis/com/microej/kf/util/IntegerConverter.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Float.html
https://repository.microej.com/javadoc/microej_5.x/apis/com/microej/kf/util/FloatConverter.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Long.html
https://repository.microej.com/javadoc/microej_5.x/apis/com/microej/kf/util/LongConverter.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Double.html
https://repository.microej.com/javadoc/microej_5.x/apis/com/microej/kf/util/DoubleConverter.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/String.html
https://repository.microej.com/javadoc/microej_5.x/apis/com/microej/kf/util/StringConverter.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/io/InputStream.html
https://repository.microej.com/javadoc/microej_5.x/apis/com/microej/kf/util/InputStreamConverter.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/Date.html
https://repository.microej.com/javadoc/microej_5.x/apis/com/microej/kf/util/DateConverter.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/List.html
https://repository.microej.com/javadoc/microej_5.x/apis/com/microej/kf/util/ListConverter.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/Map.html
https://repository.microej.com/javadoc/microej_5.x/apis/com/microej/kf/util/MapConverter.html

MicroEJ Documentation,

Manage Internal Global State

A library may define code that performsmodifications of its internal state, for example:

• lazy initialization of a singleton,

• registering/un-registering a callback,

• maintaining an internal global cache, …

By default, calling one of these APIs from a Feature context will throw one of the following er-
rors:

java.lang.IllegalAccessError: KF:E=S1
at <Kernel Method>
...
at <Feature Method>

java.lang.IllegalAccessError: KF:E=F1
at <Kernel Method>
...
at <Feature Method>

The reason is that the Core Engine rejects assigning a Feature object in a static field or an in-
stance field owned by the Kernel. See the KF library access error codes for more details. This
prevents unwanted object links from the Kernel to the Feature, which would lead to stale refer-
ences when stopping the Feature.

The library code must be adapted to implement the desired behavior when the code is called
from a Feature context. The following sections describe the most common strategies applied
on a concrete example:

• declaring a static field local to the Feature,

• allowing a field assignment in Kernel mode,

• using existing Multi-Sandbox enabled data structures.

Declare a Static Field Local to the Feature

The Kernel & Features Specification (KF) defines Context Local Storage for static fields. This im-
plies that the Core Engine allocates a dedicated memory slot to store the static field for each
execution context (the Kernel and each Feature).

Context Local Storage for static fields is typically used when the library defines a lazy initial-
ized singleton. A lazy initialized singleton is a singleton that is only allocated the first time it is
required. This is how is implemented the well-known Math.random() method:

public class Math{
private static Random RandomGenerator;

public static double random() {
if(RandomGenerator == null) {

RandomGenerator = new Random();
}
return RandomGenerator.nextDouble();

}
}

3.7. Kernel Developer Guide 1359

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Math.html#random--

MicroEJ Documentation,

To enable this code for Multi-Sandbox, you can simply declare the static field local to the con-
text. For that, create a kernel.intern file at the root of the library or Kernel classpath (e.g., in
the src/main/resources directory) with the following content:

<kernel>
<contextLocalStorage name=”java.lang.Math.RandomGenerator”/>

</kernel>

When the method is called in a new context, the static field is read to null , and then a new
object will be allocated and assigned to the local static field. Thus, each context will create its
own instance of the Random singleton on demand.

Note: By default, reading a static field for the first time in a new context returns null . However, it is possible to
write dedicated code to initialize the static field before its first read access. See section §4.3.3 Context Local Static
Field References of the Kernel & Features Specification (KF) for more details.

Allow a Field Assignment in Kernel Mode

It is possible to assign a Feature object in a static field or an instance field owned by the Ker-
nel only if the Kernel owns the current context. Such an assignment must be removed before
stopping theFeature. Thecommonway is to register a FeatureStateListener atKernel boot. This
gives ahook to removeKernel links to Feature objectswhenaFeaturemoves to the STOPPED
state.

Kernel.addFeatureStateListener(new FeatureStateListener() {

@Override
public synchronized void stateChanged(Feature feature, State previousState) {

if (feature.getState() == State.STOPPED) {
// Here, remove Kernel->Feature references

}
}

};

Without this, the Feature will remain in the STOPPED state. Therefore, it will not be pos-
sible to uninstall it or start it again until the link is removed. The remaining Feature objects
referenced by the Kernel are called Kernel stale references.

Note: To help debug your Kernel, Kernel stale references are displayed by the Core Engine dump.

Use Existing Multi-Sandbox Enabled Data Structures

MicroEJ Corp. provides ready-to-use classes on the shelf that are Multi-Sandbox enabled.
Among them, we can cite the following:

• KernelObservable : Implementation of Observable that can handle observers from any Module.

• KFList : Implementation of a Collection with multi-context support.

• SharedPropertyRegistry : Map of key/value properties.

• SharedServiceRegistry : Map of API/implementation services.

3.7. Kernel Developer Guide 1360

https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/FeatureStateListener.html

MicroEJ Documentation,

Please contact our support team for more details on usage.

Implement a Security Manager Permission Check

A Multi-Sandbox enabled Foundation Library should protect Feature from accessing native re-
sources. This is done by requesting a check to the current SecurityManager defined by the Ker-
nel.

The following code is the typical code that must be written at the beginning of API methods.

void myAPIThatOpensAccessToANativeResource(){

if (Constants.getBoolean(”com.microej.library.edc.securitymanager.enabled”)) {
// Here, the Security Manager support is enabled.

SecurityManager securityManager = System.getSecurityManager();
if (securityManager != null) {

// Here, the Kernel has registered a Security Manager

// Create␣
→˓a Permission with relevant parameters for the Security Manager to render the permission

MyResourcePermission p = new MyResourcePermission();

// Request the permission check.
// If the Kernel rejects the permission, it will throw a SecurityException
securityManager.checkPermission(p);

}
}

// Implementation code
// ...

}

Note: The code is wrapped by a static check of the Option(checkbox): Enable SecurityManager checks. By de-
fault, this option is disabled, so the SOAR automatically removes the code. This allows you to use your library in
a Mono-Sandbox environment where ROM footprint matters. Your Kernel shall enable this option to trigger the
Security Manager checks. See Implement a Security Policy for more details.

Known Foundation Libraries Behavior

This sectiondetails theMulti-Sandbox semantic that has been added to Foundation Libraries in
order tobeMulti-Sandboxenabled. Most of the FoundationLibrariesprovidedbyMicroEJCorp.
are Multi-Sandbox enabled unless the library documentation (e.g., README.md) mentions
specific limitations.

3.7. Kernel Developer Guide 1361

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/SecurityManager.html

MicroEJ Documentation,

MicroUI

Note: This chapter describes the current MicroUI version 3 , provided by UI Pack version 13.0.0 or higher. If you
are using the former MicroUI version 2 (provided by MicroEJ UI Pack version up to 12.1.x), please refer to this
MicroEJ Documentation Archive.

Physical Display Ownership

The physical display is owned by only one context at a time (the Kernel or one Feature). The
following cases may trigger a physical display owner switch:

• during a call to Display.requestShow(Displayable), Display.requestHide(Displayable), Dis-
play.requestRender() or Display.requestFlush(): after the successful permission check, it is as-
signed to the context owner.

• during a call to MicroUI.callSerially(Runnable): after the successful permission check it is as-
signed to owner of the Runnable instance.

The physical display switch performs the following actions:

• If a Displayable instance is currently shown on the Display , the method Displayable.onHid-
den() is called,

• All pending events (input events, display flushes, call serially runnable instances) are removed
from the display event serializer,

• System Event Generators handlers are reset to their default EventHandler instance,

• Thependingevent createdbycallingDisplay.callOnFlushCompleted(Runnable) is removedand
will be never added to the display event serializer.

Warning: The display switch is performed immediatelywhen the current thread is theMicroUI
thread itself (during aMicroUI event suchas aMicroUI.callSerially(Runnable)). The caller looses
the display and its next requests during same MicroUI event will throw a new display switch.
Caller should call future display owner’s code (which will ask a display switch) in a dedicated
MicroUI.callSerially(Runnable) event.

The call to Display.callOnFlushCompleted(Runnable) has no effect when the display is not as-
signed to the context owner.

Automatically Reclaimed Resources

Instances of ResourceImage and Font are automatically reclaimed when a Feature is stopped.

3.7. Kernel Developer Guide 1362

https://docs.microej.com/_/downloads/en/20201009/pdf/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#requestShow-ej.microui.display.Displayable-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#requestHide-ej.microui.display.Displayable-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#requestRender--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#requestRender--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#requestFlush--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/MicroUI.html#callSerially-java.lang.Runnable-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Displayable.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Displayable.html#onHidden--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Displayable.html#onHidden--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/EventHandler.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#callOnFlushCompleted-java.lang.Runnable-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/MicroUI.html#callSerially-java.lang.Runnable-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/MicroUI.html#callSerially-java.lang.Runnable-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#callOnFlushCompleted-java.lang.Runnable-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/ResourceImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Font.html

MicroEJ Documentation,

BON

Kernel Timer

A Kernel Timer instance can handle TimerTask instances owned by the Kernel or any Features.

It should not be created in clinit code, otherwise youmayhave tomanually declare explicit clinit
dependencies.

Automatically Reclaimed Resources

TimerTask instances are automatically canceled when a Feature is stopped.

ECOM

The ej.ecom.DeviceManager registry allows to share devices across Features. Instances of
ej.ecom.Device that are registered with a Shared Interface type are made accessible through
a Proxy to all other Features that embed the same Shared Interface (or an upper one of the
hierarchy).

ECOM-COMM

Instances of ej.ecom.io.CommConnection are automatically reclaimed when a Feature is
stopped.

FS

Instances of java.io.FileInputStream, java.io.FileOutputStream are automatically reclaimed
when a Feature is stopped.

NET

Instances of java.net.Socket, java.net.ServerSocket, java.net.DatagramSocket are automati-
cally reclaimed when a Feature is stopped.

SSL

Instances of javax.net.ssl.SSLSocket are automatically reclaimed when a Feature is stopped.

3.7. Kernel Developer Guide 1363

https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Timer.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/TimerTask.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/TimerTask.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/ecom/DeviceManager.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/ecom/Device.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/ecom/io/CommConnection.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/io/FileInputStream.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/io/FileOutputStream.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/net/Socket.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/net/ServerSocket.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/net/DatagramSocket.html
https://repository.microej.com/javadoc/microej_5.x/apis/javax/net/ssl/SSLSocket.html

MicroEJ Documentation,

3.7.10 Setup a KF Test Suite

A KF test suite can be executed when building a Foundation Library or an Add-On library, and
usually extends the tests written for the default library test suite to verify the behavior of this
library when its APIs are exposed by a Kernel.

A KF test suite is composed of a set of KF tests, each KF test itself is a minimal Multi-Sandbox
Executable composed of a Kernel and zero or more Features.

Enable the Test Suite

In an existing library project:

SDK 6

SDK 5

• Create the src/test/resources/projects directory.

• Follow the instructions to setup a testsuite on the Simulator.

• In the build script file, replace the line:

microej.useMicroejTestEngine(this)

by:

microej.useMicroejTestEngine(this, TestTarget.EMB, TestMode.PROJECT)

• Add the import statements at the beginning of the file:

import com.microej.gradle.plugins.TestMode
import com.microej.gradle.plugins.TestTarget

• Add the required properties as follows:

val test by getting(JvmTestSuite::class) {
microej.useMicroejTestEngine(this, TestTarget.EMB, TestMode.PROJECT)

targets {
all {

testTask.configure {
doFirst {

systemProperties = mapOf(
”microej.testsuite.properties.microejtool.deploy.name” to ”deployToolBSPRun”,

// Configure␣
→˓the TCP/IP address and port if the VEE Port Run script does not redirect execution traces

”microej.testsuite.properties.testsuite.trace.ip” to ”localhost”,
”microej.testsuite.properties.testsuite.trace.port” to ”5555”,

␣
→˓ // Tell the testsuite engine that the VEE Port Run script redirects execution traces.

␣
→˓ // Uncomment this line and comment the 2 lines above if the VEE Port supports it.

//”microej.testsuite.properties.launch.test.trace.file” to ”true”
)

}
}

(continues on next page)

3.7. Kernel Developer Guide 1364

MicroEJ Documentation,

(continued from previous page)

}
}

}

• Create the src/test/projects directory,

• Edit the module.ivy and insert the following line within the <ea:build> XML element:

<ea:plugin␣
→˓organisation=”com.is2t.easyant.plugins” module=”microej-kf-testsuite” revision=”+” />

• Configure the option artifacts.resolver to the name of the resolver used to import KF test de-
pendencies. Thenamemust beoneof the resolver namesdefined in your settings file. If you are
using the default settings file, set the option to MicroEJChainResolver . This option is usually
set as a globalMMM option.

Add a KF Test

A KF test is a structured directory placed in the src/test/resources/projects directory in SDK
6, or in the src/test/projects directory in SDK 5. The creation of a KF is done as follows:

SDK 6

SDK 5

• In the src/test/resources/projects directory, create a new directory newTest for the KF test.

• In the src/test/java folder, create a new Interface with the following content:

import org.junit.Test;

public interface MyTest {

@Test
void newTest();

}

Note: The name of a KF test is free. For each KF test, a method with the same name and annotated with @Test
must be defined in the Java Interface.

• Within the newTest directory, create the sub-projects:

– Create a new kernel directory and create a Kernel. The Kernel must depend on your Library
project:

implementation(”org.example:myLibrary”)

Note: The Library project is used as an included build when running one of its KF tests. There-
fore, it is not mandatory to specify the dependency version here.

– Create a new app directory and create an Application.

– Create a settings.gradle.kts file and add the following content:

3.7. Kernel Developer Guide 1365

MicroEJ Documentation,

include(”kernel”, ”app”)

Each KF test must contain a Kernel project named kernel . If the KF Test also contains one or
more Feature projects, their names must be prefixed by app .

The KF Test Suite structure shall be similar to the following figure:

3.7. Kernel Developer Guide 1366

MicroEJ Documentation,

Fig. 269: KF Test Suite Overall Structure

• Create a new directory for the KF test

• Within this directory, create the sub-projects:

– Create a newdirectory for theKernel project and initialize it using the microej-javalib skeleton,

– Create a new directory for the Feature project and initialize it using the application skeleton,

3.7. Kernel Developer Guide 1367

MicroEJ Documentation,

– Create a new directory for the Firmware project and initialize it using the firmware-multiapp
skeleton.

The names of the project directories are free, however MicroEJ suggests the following naming
convention, assuming the KF test directory is [TestName] :

• [TestName]-kernel for the Kernel project,

• [TestName]-app[1..N] for Feature projects,

• [TestName]-firmware for the Firmware project.

The KF Test Suite structure shall be similar to the following figure:

3.7. Kernel Developer Guide 1368

MicroEJ Documentation,

Fig. 270: KF Test Suite Overall Structure

All the projects will be built automatically in the right order based on their dependencies.

3.7. Kernel Developer Guide 1369

MicroEJ Documentation,

KF Test Suite Options (SDK 5 only)

It is possible to configure the same options defined by Test Suite Options for the KF test suite,
by using the prefix microej.kf.testsuite.properties instead of microej.testsuite.properties .

3.7.11 Kernel Linking

This chapter describes how a Kernel Application is linked.

Basically, a Kernel Application is linked as a Standalone Application. Themain difference is that
a Kernel ApplicationdefinesKernel APIs, and requires to embedadditional information thatwill
be used later to build a Sandboxed Application against this Kernel (by linking with the Kernel
APIs). Such additional information is called the Kernel Metadata.

Link Flow

The following figure shows the general process of linking an Executable, applied to a Kernel
Application.

Fig. 271: Kernel Link Flow

The Platformmust be configured withMulti-Sandbox capability.

By default, the Kernel Metadata is included in the .debug.soar section which also serves for
debug purpose (Stack Trace Reader, Heap Dumper). Particularly, it contains resolved absolute
addresses of Kernel APIs.

3.7. Kernel Developer Guide 1370

MicroEJ Documentation,

Kernel Metadata Generation

To build a Sandboxed Application on Device, the Kernel Metadata must be exported after the
Firmware link from the .debug.soar section of the executable. This step is not necessary to
build a Sandboxed Application Off Board.

The Kernel Metadata can be exported from an existing Firmware executable file by using the
KernelMetadataGenerator tool. It produces a .kdat file thatwill be used to link the Sandboxed
Applications on device.

Fig. 272: Kernel Metadata Generator

The .kdat file is optimized for size. When linking a Sandboxed Application .fso file, only the
required metadata will be loaded in Managed heap. It will be loaded from a standard Input-
Stream, so that it canbe stored toamemory that is not accessible fromtheCPU’s address space.

Note: The Kernel Metadata .kdat file can also be integrated in a Firmware executable file using post-link tools
such as binutils objcopy, provided a dedicated section has been reserved by the third-party linker.

Feature Portability Control

AKernel can install .fo files that havebeenbuilt onotherKernels, provided thisKernel complies
withotherKernels according toasetof rulesdeclaredhereafter. This is calledFeaturePortability
Control, as the verification is performed during the new Kernel build, with no impact on the
Feature dynamic installation.

3.7. Kernel Developer Guide 1371

https://repository.microej.com/javadoc/microej_5.x/apis/java/io/InputStream.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/io/InputStream.html

MicroEJ Documentation,

Principle

During a Kernel build, SOAR can verify this Kernel preserves the portability of any .fo files built
on a previous Kernel using the Kernelmetadata file. If the portability is preserved, theUIDof the
previous Kernel is embedded in the new Kernel, allowing .fo files built on the previous Kernel
to be installed as well. Otherwise, SOAR fails with an error indicating the broken rule(s).

Fig. 273: Feature Portability Control Principle

Enable

Note: This is a new functionality that requires Architecture 8.0.0 or higher.

Add the following Application Options to your Kernel project:

• com.microej.soar.kernel.featureportabilitycontrol.enabled : true to enable Feature Portability Control.
Any other value disables Feature Portability Control (the following option is ignored).

• com.microej.soar.kernel.featureportabilitycontrol.metadata.path : Path to the Kernel Metadata file (.kdat
file).

3.7. Kernel Developer Guide 1372

MicroEJ Documentation,

Portability Rules

A Kernel Application can install a .fo file that has been built against another Kernel Application
if the Kernel Application code has not changed or if the modifications respect the portability
rules. Here is the list of the modifications that can be done while preserving the portability:

• Modify method code, except ifMethod Devirtualization orMethod Inlining has changed.

• Add a new type (including declared as Kernel API),

• Add a new static method (including declared as Kernel API),

• Add a new instance method in a type not declared as Kernel API,

• Add a new instance method with private visibility in a type declared as Kernel API,

• Add a new static field (including declared as Kernel API),

• Add a new instance field in a type not declared as Kernel API,

• Rename an instance field with private visibility in a type declared as Kernel API,

• Modify a Java type, method, or static field not declared as Kernel API (code, signature, hierar-
chy)

• Remove a Java type, method, or static field not declared as Kernel API

Both Kernel Applicationsmust be built fromPlatforms based on the same Architecture version.

Any other modifications will break the Feature portability. For example, the following modifi-
cations will not preserve the portability:

• Remove a Java type, method or static field declared as Kernel API,

• Add or remove an instance method in a type declared as Kernel API, even if the method is not
declared as Kernel API,

• Add or remove an instance field in a type declared as Kernel API,

• Modify method or field signature declared as Kernel API (name, declaring type, static vs in-
stance member, …),

• Modify hierarchy of a type declared as Kernel API.

3.7.12 Application Linking

This chapter describes how a Sandboxed Application is built so that it can be (dynamically)
installed on aKernel. The build output file of a Sandboxed Application against a Kernel is called
a Feature, hence the f letter used in the extension name of the related files (.fso and .fo files).

SOAR Build Phases

Whenbuilding a SandboxedApplication to a Feature, SOARprocessing is divided in twophases:

1. SOAR Resolver: loads the set of application .class files and resources. Among the various
steps, mention may bemade of:

• Computing the transitive closure from the application entry points of all required elements
(types, methods, fields, strings, immutables, resources, system properties),

• Computing the clinit order.

3.7. Kernel Developer Guide 1373

MicroEJ Documentation,

The result is an object file that ends with .fso extension. The .fso file is a portable file that can
be linked on any compatible Kernel (see FSO Compatibility).

2. SOAR Optimizer: links a .fso file against a specific Kernel. Among the various steps, mention
may bemade of:

• Linking to theexpectedKernel APIs (types,methods, fields) according to theJVMspecification1,

• Generating the MEJ32 instructions,

• Building the virtualization tables.

The result is an object file that ends with the .fo extension. By default, the .fo file is specific
to a Kernel: it can only be installed on the Kernel it has been linked to. Rebuilding a Kernel
implies to run this phase again, unless the application has been built for the previous Kernel
(see Feature Portability).

Fig. 274: Sandboxed Application Build Flow

The Feature .fo file can be deployed to the Device using Kernel.install() method.
1 Tim Lindholm & Frank Yellin, The Java Virtual Machine Specification, Second Edition, 1999

3.7. Kernel Developer Guide 1374

https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#install-java.io.InputStream-

MicroEJ Documentation,

Feature Build Off Board

A Sandboxed Application can be built to a Feature (.fo file) as follows:

SDK 6

SDK 5

• Refer to the Build a Feature file page to build the Feature.

Use aMicroEJ Application Launch configured as follows:

• Set the Settings field in the Execution tab to Build Dynamic Feature .

• Set the Kernel field in the Configuration tab to a Multi-Sandboxed Firmware (.out ELF
executable file).

Fig. 275: Feature Build Flow using MicroEJ Launch

3.7. Kernel Developer Guide 1375

MicroEJ Documentation,

Feature Build On Device

The SOAR Optimizer is packaged to a Foundation Library named SOAR , thus this phase can
be executed directly on Device.

General Workflow

Here are the typical steps to achieve:

• Build the Sandboxed Application on any compatible Kernel to get the .fso file,

• Transfer the .fso file on Device by any mean,

• Generate the Kernel Metadata for the Kernel on which the .fso file is being linked,

• Transfer the .kdat file on Device by any mean,

• Write a MicroEJ Standalone Application for building the .fso file:

– implement a com.microej.soar.KernelMetadataProvider to provide an InputStream to load
the .kdat file,

– provide an InputStream to load the .fso file,

– provide an OutputStream to store the .fo file,

– call FeatureOptimizer.build() method.

Then the .fo file can be dynamically installed using Kernel.install().

Fig. 276: Sandboxed Application Build on Device

3.7. Kernel Developer Guide 1376

https://repository.microej.com/javadoc/microej_5.x/apis/java/io/InputStream.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/io/InputStream.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/io/OutputStream.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#install-java.io.InputStream-

MicroEJ Documentation,

Note: Although this is common, it is not required to run the SOAR Optimizer phase on the Kernel that will dynam-
ically install the .fo . There is no relationship between SOAR and KF Foundation Libraries.

Implement the Kernel

SOAR Optimizer can be integrated on any Standalone Application providing the following de-
pendencies:

SDK 6

SDK 5

implementation(”ej.api:edc:1.3.3”)
implementation(”com.microej.api:soar:1.0.0”)
implementation(”ej.library.eclasspath:collections:1.4.0”)

<dependency org=”ej.api” name=”edc” rev=”1.3.3” />
<dependency org=”com.microej.api” name=”soar” rev=”1.0.0” />
<dependency org=”ej.library.eclasspath” name=”collections” rev=”1.4.0” />

The following code template illustrates the usage of the SOAR Foundation Library:

package com.microej.example;

import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;

import com.microej.soar.FeatureOptimizer;
import com.microej.soar.FeatureOptimizerException;
import com.microej.soar.KernelMetadataProvider;

/**
* This is a template code that shows the typical steps to follow for building a
* .fo file from a .fso file on Device.
*/
public class TemplateFSOBuild {

/**
* Your Platform specific {@link KernelMetadataProvider} implementation.
*/
private static final class MyKernelMetadataProvider implements KernelMetadataProvider {

@Override
public InputStream openInputStream(int offset) throws IOException {

// Return␣
→˓an InputStream to the Kernel Metadata resource (.kdat file) at the given offset in bytes.

return null; // TODO
}

@Override
public String toString() {

// Here,
→˓ return a printable representation of this Kernel Metadata Provider (for debug purpose only)

(continues on next page)

3.7. Kernel Developer Guide 1377

MicroEJ Documentation,

(continued from previous page)

return ”Kernel Metadata loaded from ...”; // TODO
}

}

/**
* A method that builds a .fso file to a .fo file.
*/
public static void build() {

// Create the KernelMetadataProvider instance
KernelMetadataProvider kernelMetadataProvider = new MyKernelMetadataProvider();

// Load the .fso InputStream
InputStream fsoInputStream = null; // TODO

// Prepare the target OutputStream where to store the .fo
OutputStream foOutputStream = null; // TODO

// Create the FeatureOptimizer instance
FeatureOptimizer featureOptimizer;
try {

featureOptimizer = new FeatureOptimizer(kernelMetadataProvider);
} catch (FeatureOptimizerException e) {

// Handle Kernel Metadata cannot be loaded
e.printStackTrace(); // TODO
return;

}

// Build
try {

featureOptimizer.build(fsoInputStream, foOutputStream);
} catch (FeatureOptimizerException e) {

// Handle .fso cannot be built to .fo
e.printStackTrace(); // TODO

}
}

}

FSO Compatibility

A .fso file can be linked on any Kernel providing all the following conditions:

• its Architecture has the same endianness than the Architecture on which the .fso file has been
produced,

• its Architecture version is compatible2 with the Architecture version on which the .fso file has
been produced,

• it provides the required APIs according to the JVM specificationPage 1374, 1.

A current limitation is that if the Sandboxed Application declares an immutable object, SOAR
Optimizer will resolve fields within the same class rather than considering the entire class hier-
archy.

2 New version is greater than or equals to the old one within the same major version.

3.7. Kernel Developer Guide 1378

MicroEJ Documentation,

Feature Portability

By default, a .fo file can only be installed on the Kernel on which it has been linked.

Starting from Architecture 8.0.0, the same Feature file can be installed on different Kernels. This
is called Feature Portability. Thus it is not required to rebuild the .fo file in the following cases:

• Relinking the executable (memory layout changes),

• Recompiling the C code,

• Rebuilding the Kernel Application, if Feature Portability Control has been enabled.

Fig. 277: Feature Portability Overview

3.8 VEEWear User Guide

VEE Wear is a comprehensive wearable software solution. It aggregates multiple libraries, ap-
plications and tools dedicated to the development of wearable software.

VEEWear Framework

The VEE Wear Framework provides a turnkey, customizable wearable firmware.

This framework contains the following components:

• a Multi-Sandboxed wearable Kernel

• common wearable apps (Settings, Facer, Health, Stopwatch, etc.)

• a wearable API to develop customwearable apps

Low Power Facer Engine

VEEWear supports the Facer Engine, expanding Facer’s extensivewatch face catalog of 500,000
faces across all smartwatches, including low-power RTOS watches, enriching the user expe-
rience for all users. For further information about the MicroEJ and Facer partnership, please
contact your MicroEJ sales representative.

3.8. VEEWear User Guide 1379

https://www.facer.io/
https://www.microej.com/contact/#form_1

MicroEJ Documentation,

Android Compatibility Kit

The Android Compatibility Kit comprises two technologies:

1. Support for Android development tools, including Android Studio and Gradle, is provided by
MICROEJ SDK 6.

2. Support for MicroEJ applications on the Android OS (Android Runtime).

The support provided by Android development tools and Android runtime is especially bene-
ficial when running the same application on both an Android processor and an MCU. This sce-
nariooccurs, for example,when implementingAndroidoff-loadingwithabig-littlearchitecture.

Moreover, the Android runtime enables the execution of the same application on an Android
smartphone. For instance, in scenarios such as building a watch face or app picker within a
companion smartphone app, the MicroEJ application code can be directly utilized to display
the app or watch face. This eliminates the necessity to develop a similar version specifically for
Android.

iOS Compatibility Kit

The iOS Compatibility Kit feature provides support for MicroEJ applications on iOS (iOS Run-
time). This runtime enables the execution of the same application on an iOS smartphone. For
example, when creating a watch face or app picker within a companion smartphone app, the
MicroEJ application code can be directly used to display the app or watch face. This eliminates
the necessity to develop a separate version for iOS.

MicroEJ’s offloading framework

VEE Wear incorporates an offloading framework designed to optimize power consumption in
a big-little architecture, where an application processor runs Android, and a companion MCU
operatesMICROEJ VEE. By alternating the execution of applications between low-consumption
MCUs and powerful MPUs, this setup guarantees maximum power efficiency, thereby conserv-
ing battery life. The offloading framework encompasses an inter-processor communication
framework and efficient low-power profile management.

3.8. VEEWear User Guide 1380

MicroEJ Documentation,

3.8.1 VEEWear Framework

The VEEWear Framework allowsdevelopers to build a VEEWear Kernel executable anddevelop
VEE Wear Apps.

The Framework contains the following components:

• the source code of the VEE Wear Kernel

• the source code of common VEE Wear Apps (health, settings, etc.)

• the VEE Wear Services library

Note: The source code is available on demand. You can contactMicroEJ Support to evaluate VEE Wear.

VEEWear Kernel

The VEE Wear Kernel is the core Application running on the wearable device. It manages the
lifecycle of VEE Wear Apps.

The Kernel is board agnostic and can be fully customized to any hardware. Itmust be built from
its source code (available on demand) with the VEE Port corresponding to the target hardware.
The build generates an executable file and a Virtual Device which must be provided to app de-
velopers so that they can build their Apps.

The VEE Wear Kernel Application requires the following amount of memory:

• RAM: around 400KB (mainly for Managed heap and buffered images)

• ROM: from 250KB to 1MB for each App (mainly for its images)

The Kernel provides the following APIs to the Apps:

Library Version
EDC 1.3
BON 1.4
Trace 1.1
FS 2.1
MicroUI 3.1
Drawing 1.0
MicroVG 1.2
Audio 1.0
Bluetooth 2.2
VEE Wear Services 1.1

3.8. VEEWear User Guide 1381

https://repository.microej.com/javadoc/microej_5.x/libraries/edc-1.3-api/
https://repository.microej.com/javadoc/microej_5.x/libraries/bon-1.4-api/
https://repository.microej.com/javadoc/microej_5.x/libraries/trace-1.1-api/
https://repository.microej.com/javadoc/microej_5.x/libraries/fs-2.1-api/
https://repository.microej.com/javadoc/microej_5.x/libraries/microui-3.1-api/
https://repository.microej.com/javadoc/microej_5.x/libraries/drawing-1.0-api/
https://repository.microej.com/javadoc/microej_5.x/libraries/microvg-1.2-api/
https://repository.microej.com/javadoc/microej_5.x/libraries/audio-1.0-api/
https://repository.microej.com/javadoc/microej_5.x/libraries/bluetooth-2.2-api/
https://repository.microej.com/javadoc/wear-services/1.1.0/

MicroEJ Documentation,

VEEWear Services Library

The VEE Wear Services library allows VEE Wear Apps to communicate with the Kernel and with
other Apps.

The library provides interfaces to services that are implemented by the Kernel:

Service Provided Features
ComponentService register App components
DeviceService get device information
ExternalResourceService create and delete external resources
FontService get fonts
HealthService get health information
NavigationService navigate across the UI
TimeService get time information

The KernelServiceProvider class provides static methods to get an instance of every service.
It also provides a shared instance of Timer, which can be used by any App to schedule tasks
without creating an additional thread.

The library also provides interfaces to components that are implemented by the Apps:

Component Provided Features
Activity shows a UI allowing to interact with a specific feature of the device
Watchface shows the current time and brief data with unique visuals
Renderable renders the UI of an Activity or Watchface
ComplicationDataSource provides data that can be displayed on watchface complications

Using ComponentService, Apps can register their own components into the Kernel. Once a
component is registered, its lifecycle ismanagedby the Kernel: the Kernelwill call themethods
of the component when the user navigates in the relevant menus of the watch.

To use the VEE Wear Services, add the following line to the project build file:

implementation(”com.microej.library.wear:wear-services:1.1.0”)

3.8. VEEWear User Guide 1382

https://repository.microej.com/javadoc/wear-services/1.1.0/com/microej/wear/services/ComponentService.html
https://repository.microej.com/javadoc/wear-services/1.1.0/com/microej/wear/services/DeviceService.html
https://repository.microej.com/javadoc/wear-services/1.1.0/com/microej/wear/services/ExternalResourceService.html
https://repository.microej.com/javadoc/wear-services/1.1.0/com/microej/wear/services/FontService.html
https://repository.microej.com/javadoc/wear-services/1.1.0/com/microej/wear/services/HealthService.html
https://repository.microej.com/javadoc/wear-services/1.1.0/com/microej/wear/services/NavigationService.html
https://repository.microej.com/javadoc/wear-services/1.1.0/com/microej/wear/services/TimeService.html
https://repository.microej.com/javadoc/wear-services/1.1.0/com/microej/wear/KernelServiceProvider.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Timer.html
https://repository.microej.com/javadoc/wear-services/1.1.0/com/microej/wear/components/Activity.html
https://repository.microej.com/javadoc/wear-services/1.1.0/com/microej/wear/components/Watchface.html
https://repository.microej.com/javadoc/wear-services/1.1.0/com/microej/wear/components/Renderable.html
https://repository.microej.com/javadoc/wear-services/1.1.0/com/microej/wear/components/ComplicationDataSource.html
https://repository.microej.com/javadoc/wear-services/1.1.0/com/microej/wear/services/ComponentService.html

MicroEJ Documentation,

VEEWear Apps

Apps are the cornerstone of VEE Wear: they provide exciting and unique features that make a
smartwatch unforgettable. With VEE Wear, Apps can be deployed over USB or Bluetooth and
installed dynamically on the device. Partial software update allows manufacturers to provide
new features and bug fixes without having to validate and deploy an entire firmware.

Creating an App

To create an App project, follow these steps:

• Create an SDK 6 Application project.

• Open the build.gradle.kts file.

• Add a dependency to the VEE Wear Services library: add implementation(”com.microej.
library.wear:wear-services:1.1.0”) in the dependencies block.

Implementing the Entry Point

The entry point of an App contains the code that will be called by the Kernel when the App is
installed and uninstalled. The name of the entry point class must be declared in the build.
gradle.kts file. The class should implement the FeatureEntryPoint interface.

The entry point can perform any operation, such as registering components, adding Bluetooth
services or running timer tasks. However, the entry point is not the place to show a UI: this
should be done by the Activities or Watchfaces registered by the App.

Note: Apps canuse any library, as long as it doesn’t require a Foundation Library that is not providedby theKernel.

Implementing an Activity

Activities show a UI that allows the user to interact with a specific feature of the device. They
are listed in the Activity Launcher:

To implement an Activity, create a class that implements the Activity interface and itsmethods:

3.8. VEEWear User Guide 1383

https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/FeatureEntryPoint.html
https://repository.microej.com/javadoc/wear-services/1.1.0/com/microej/wear/components/Activity.html

MicroEJ Documentation,

• getName() should return the name of the Activity. This is the name that is visible in the Activity Launcher.

• renderIcon() should render the icon of the Activity in the given region. This is the icon that is visible in the
Activity Launcher.

• createRenderable() should create the Renderable that renders the Activity (see Implementing a Renderable).

Once the Activity is implemented, make sure it is registered in the Kernel by calling Compo-
nentService.registerActivity(). This method is usually called in the entry point of the App.

Implementing a Watchface

Watchfaces show the current time and brief data with unique visuals. They are listed in the
Watchface Picker.

To implementaWatchface, createa class that implements theWatchface interfaceand itsmeth-
ods:

• renderPreview() should render a preview of the UI in the given region. This is the preview that is visible in the
Watchface Picker.

• createRenderable() should create the Renderable that renders the Watchface (see Implementing a Render-
able). The renderable can use the ComponentService.getComplicationDataSources() API to render compli-
cations that show data from third-party Apps.

Once the Wathface is implemented, make sure it is registered in the Kernel by calling Compo-
nentService.registerWatchface(). This method is usually called in the entry point of the App.

Implementing a Renderable

ARenderable is a user interfacewhich canbe rendered on a graphics context during a transition
and which can be shown in fullscreen on the display.

To implement a Renderable, create a class that implements the Renderable interface and its
methods:

• onAttached() should load the resources necessary for rendering the UI.

• onDetached() should dispose the resources loaded in onAttached() .

• render() should render the UI on the given graphics context.

3.8. VEEWear User Guide 1384

https://repository.microej.com/javadoc/wear-services/1.1.0/com/microej/wear/components/Activity.html#getName()
https://repository.microej.com/javadoc/wear-services/1.1.0/com/microej/wear/components/Activity.html#renderIcon(ej.microui.display.GraphicsContext,int,int,int)
https://repository.microej.com/javadoc/wear-services/1.1.0/com/microej/wear/components/Activity.html#createRenderable()
https://repository.microej.com/javadoc/wear-services/1.1.0/com/microej/wear/services/ComponentService.html#registerActivity(com.microej.wear.components.Activity)
https://repository.microej.com/javadoc/wear-services/1.1.0/com/microej/wear/services/ComponentService.html#registerActivity(com.microej.wear.components.Activity)
https://repository.microej.com/javadoc/wear-services/1.1.0/com/microej/wear/components/Watchface.html
https://repository.microej.com/javadoc/wear-services/1.1.0/com/microej/wear/components/Watchface.html#renderPreview(ej.microui.display.GraphicsContext,int,int,int)
https://repository.microej.com/javadoc/wear-services/1.1.0/com/microej/wear/components/Watchface.html#createRenderable()
https://repository.microej.com/javadoc/wear-services/1.1.0/com/microej/wear/services/ComponentService.html#getComplicationDataSources()
https://repository.microej.com/javadoc/wear-services/1.1.0/com/microej/wear/services/ComponentService.html#registerWatchface(com.microej.wear.components.Watchface)
https://repository.microej.com/javadoc/wear-services/1.1.0/com/microej/wear/services/ComponentService.html#registerWatchface(com.microej.wear.components.Watchface)
https://repository.microej.com/javadoc/wear-services/1.1.0/com/microej/wear/components/Renderable.html
https://repository.microej.com/javadoc/wear-services/1.1.0/com/microej/wear/components/Renderable.html#onAttached()
https://repository.microej.com/javadoc/wear-services/1.1.0/com/microej/wear/components/Renderable.html#onDetached()
https://repository.microej.com/javadoc/wear-services/1.1.0/com/microej/wear/components/Renderable.html#render(ej.microui.display.GraphicsContext)

MicroEJ Documentation,

• showOnDisplay() should show on the display a Displayable that will render the UI in fullscreen and handle
events.

The wear-util library provides 2 generic implementations of Renderable:

• RenderableDesktop : Renderable based on a Desktop. Most often used for Activities that display rich UIs
with widgets and scrolls.

• RenderableDisplayable : Renderable based on a Displayable. Can be used in most cases, for simple UIs or
for performance/memory efficiency.

Implementing a Complication Data Source

AComplicationDataSourceprovidesdatawhich canbedisplayedonawatchface complication.
Complication Data Sources can provide a text, an icon and a progress value. Watchfaces can
render complications the way they want using the data provided by the source.

To implement a Complication Data Source, create a class that implements the Complication-
DataSource interface and its methods:

• hasText(), hasIcon() and hasProgress() should return whether the source provides the associated informa-
tion.

• getText() and getProgress() should return the associated information.

• renderIcon() should render the icon in the given region.

3.8. VEEWear User Guide 1385

https://repository.microej.com/javadoc/wear-services/1.1.0/com/microej/wear/components/Renderable.html#showOnDisplay()
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Displayable.html
https://forge.microej.com/ui/native/microej-developer-repository-release/com/microej/library/wear/wear-util/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Desktop.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Displayable.html
https://repository.microej.com/javadoc/wear-services/1.1.0/com/microej/wear/components/ComplicationDataSource.html
https://repository.microej.com/javadoc/wear-services/1.1.0/com/microej/wear/components/ComplicationDataSource.html
https://repository.microej.com/javadoc/wear-services/1.1.0/com/microej/wear/components/ComplicationDataSource.html#hasText()
https://repository.microej.com/javadoc/wear-services/1.1.0/com/microej/wear/components/ComplicationDataSource.html#hasIcon()
https://repository.microej.com/javadoc/wear-services/1.1.0/com/microej/wear/components/ComplicationDataSource.html#hasProgress()
https://repository.microej.com/javadoc/wear-services/1.1.0/com/microej/wear/components/ComplicationDataSource.html#getText()
https://repository.microej.com/javadoc/wear-services/1.1.0/com/microej/wear/components/ComplicationDataSource.html#getProgress()
https://repository.microej.com/javadoc/wear-services/1.1.0/com/microej/wear/components/ComplicationDataSource.html#renderIcon(ej.microui.display.GraphicsContext,int,int,int,int)

MicroEJ Documentation,

Once the Complication Data Source is implemented, make sure it is registered in the Kernel by
calling ComponentService.registerComplicationDataSource(). This method is usually called in
the entry point of the App.

Building an App

Selecting the Kernel

To be able to build your App, you must add a dependency to the VEE Wear Kernel by following
these steps:

• Open the build.gradle.kts file.

• Define the path to the VEE Wear Framework on your machine: add val veeWearFramework =
”/path/to/VEE-Wear-Framework”

• Add a dependency to the VEE Wear Kernel: add microejVee(files(”$veeWearFramework/
Virtual-Device”, ”$veeWearFramework/kernel.out”)) in the dependencies block.

Building the App

Once the project is configured, the App can be built like any MicroEJ Application:

• To test an App on simulator, launch the runOnSimulator Gradle task.

• TobuildanApp, launch the buildFeature Gradle task. Youcan then install theAppbydeploying
the build/feature/application/application.fo Feature file to thewatch over USBor Bluetooth.

3.8.2 Android Compatibility Kit

MicroEJ provides a set of tools and libraries to run applications powered byMicroEJ on Android
and Wear OS. This allows for the same application to be developed, simulated, tested, and ex-
ecuted on MicroEJ VEE and Android alike.

Having the same code ready for both Android and MicroEJ VEE opens up a wide range of use
cases, including but not limited to:

• Develop derivative products based on small MCUs or low-cost MPUs with limited resources
where Android cannot be used as it is inherently resource-intensive.

• Reduce energy consumption by enabling two processors to coexist to distribute tasks between
averypowerful processorpoweredbyAndroidanda low-powerprocessorpoweredbyMicroEJ.

Below are some examples from the wearable segment that illustrate these use cases:

• Watch faces can be developed once and deployed on both a smartwatch (MicroEJ VEE) and
its companion smartphone app (Android), enabling consistent functionality and appearance
across both devices. This provides a good user experience for the user while minimizing code
duplication andmaintenance for the developer.

• Power efficiency is a significant concern with wearable as sophisticated features often come at
a high cost in terms of power consumption. An offloading framework can reduce power usage
by executing the same application alternately on a low-consumptionMCUand a powerfulMPU.
Operating in standby mode as much as possible on the MCU is one of the strategies to achieve
energy efficiency.

3.8. VEEWear User Guide 1386

https://repository.microej.com/javadoc/wear-services/1.1.0/com/microej/wear/services/ComponentService.html#registerComplicationDataSource(com.microej.wear.components.ComplicationDataSource)

MicroEJ Documentation,

Overview

The Android Compatibility Kit is composed of twomain components:

• A runtime: applications developed on MicroEJ can run on the Android platform thanks to the
Android-based implementation of the MicroEJ Foundation libraries and dedicated support li-
braries.

• A developer kit: the MICROEJ SDK 6 and a Gradle plugin provide the necessary support for de-
veloping applications in Android Studio using Gradle.

Workflow

Below is a general overview of the workflow when developing a product that targets both Mi-
croEJ and Android-powered devices.

Fig. 278: Workflow Diagram

3.8. VEEWear User Guide 1387

MicroEJ Documentation,

Software Architecture

Applications designed to run in MicroEJ VEE can also run on Android, thanks to a specific im-
plementation of MicroEJ Foundation libraries based on Android libraries.

Fig. 279: Software Architecture

Available APIs and Features

• Foundation Libraries

– EDC

– BON

– SNI

– MICROUI

– MICROVG

– TRACE

• All compatible Add-on Libraries

• Supported Resources

– Images

– Fonts (FNT, EJF, TTF, OTF)

– Android Vector Drawables (AVD)

– SVG

– NLS (including Android XML and PO formats)

3.8. VEEWear User Guide 1388

MicroEJ Documentation,

– Constants

– Properties

• Custom native APIs can be implemented over Android libraries to make them executable on
Android devices.

Installation

To develop applications compatible with both Android and MicroEJ VEE, it is required to use
MICROEJ SDK 6. The MICROEJ SDK provides Gradle plugins that allow for seamless integration
in Android Studio.

For comprehensive installation instructions, read the SDK 6 Installation Guide. Follow the steps
related to Android Studio when relevant.

In addition to installing MICROEJ SDK 6, make sure to comply with the requirements listed be-
low.

JDK Version

The Android Compatibility Kit, like MICROEJ SDK 6, is compatible with a JDK 11 or higher LTS
version. The JDK version to use will depend on the Android Gradle Plugin (AGP) being used by
your Android project. Starting from version 8, AGP requires a minimum JDK 17. If you intend
to use JDK 11, you will need to specify a compatible version of AGP (e.g., 7.4.2). Refer to the
Android Gradle plugin release notes for more information.

Configure Repositories

The SDK 6 repositories configuration references the MicroEJ module repositories which are re-
quired for resolving the SDK Gradle plugins and modules. Working with Android plugins and
modules involves extending this configuration to include additional repositories that are es-
sential for Android development.

• download and copy this file in $USER_HOME/.gradle/init.d/ .

Project Setup

This chapter will guide you through the process of creating a project for having an application
compatible with both Android and MicroEJ VEE.

The recommended project structure to get started is to have a basic multi-project build that
contains a root project and two subprojects: one subproject for the Android/Wear OS applica-
tion and one subproject for theMicroEJ Application. TheMicroEJ Application defines code that
will run onbothMicroEJ VEE andAndroid, while the Android application includeswrapper code
and logic specific to Android.

What follows is the directory and file structure of a typical project:

��� android-app/
� ��� src
� ��� microej.properties # MicroEJ Application Options for Android/Wear OS
� ��� build.gradle.kts
��� microej-app/

(continues on next page)

3.8. VEEWear User Guide 1389

https://developer.android.com/build/releases/gradle-plugin

MicroEJ Documentation,

(continued from previous page)

� ��� src
� ��� configuration/
� | ��� common.properties # MicroEJ Application Options for MicroEJ VEE
� ��� build.gradle.kts
��� build.gradle.kts
��� settings.gradle.kts

Create or Import an Android project

The Android documentation covers the process of creating apps for diverse form factors, in-
cluding smartphones and wearable devices. Read Create a Project and follow the guidelines
before proceeding. If you are creating a project from scratch, we recommend using the Empty
Activity template.

Note: The project template in Android Studio defines a default repositories configuration in the settings.gradle.
kts file of the project like below:

pluginManagement {
repositories {

google()
mavenCentral()
gradlePluginPortal()

}
}
dependencyResolutionManagement {

repositoriesMode.set(RepositoriesMode.FAIL_ON_PROJECT_REPOS)
repositories {

google()
mavenCentral()

}
}

Please note that thiswill override the repositories configurationdefinedduring the installation
process, based on Gradle initialization scripts. Set the configuration according to your prefer-
ence, but we suggest removing these lines at first from the settings file to get started.

Assuming that a Gradle project with an Android application is now opened in Android Studio,
do the following:

• Open the build.gradle.kts file at the root of the project.

• Add these lines to the plugins block:

id(”com.microej.gradle.application”) version ”0.17.0” apply false
id(”com.microej.android.gradle.plugins.android”) version ”0.3.6” apply false

3.8. VEEWear User Guide 1390

https://developer.android.com/studio/projects/create-project

MicroEJ Documentation,

Create or Import a MicroEJ Application

The next step is adding themodule that contains theMicroEJ Application to the Gradle project.

Create a MicroEJ Application

Import an existing MicroEJ Application

• Click on File > New > NewModule… .

• Select Java or Kotlin Library .

• Set the name of the module in the Library Name field.

• Set the package name of the module in the Package name field.

• Enter a name for the main Java class of the application in the Class name field.

• Select the language Java in the Language field.

• Select Kotlin DSL in the Build configuration language field.

• Click on Finish .

Themodule created by Android Studio is a standard Javamodule (Gradle java-library plugin).
The build.gradle.kts file has to be updated to make it a MicroEJ Application module:

• Open the build.gradle.kts file.

• Erase its whole content.

• Add the com.microej.gradle.application plugin in the build.gradle.kts file:

plugins {
id(”com.microej.gradle.application”)

}

• Add the following microej block in the build.gradle.kts file:

microej {
applicationEntryPoint = ”com.mycompany.Main”

}

where the property applicationEntryPoint is set to the Full Qualified Name of the main class
of the application. This class must define a main() method and is the entry point of the appli-
cation.

• Declare thedependencies requiredby your application in the dependencies blockof the build.
gradle.kts file. The EDC library is always required in the build path of an Application project,
as it defines the minimal runtime environment for embedded devices:

dependencies {
implementation(”ej.api:edc:1.3.5”)

}

If you have already developed a MicroEJ Application, you can import it in the project.

3.8. VEEWear User Guide 1391

MicroEJ Documentation,

Note: If the MicroEJ Application has been created with the SDK 5 or lower, it is required to first migrate it to SDK 6.
Read the comprehensiveMigration Guide before proceeding.

• Click on File > New > Import Module… .

• Browse to the source directory of the Gradle project.

• Set the module name.

• Click on Finish .

Note: Android Studio may use the Groovy DSL to include the imported module. The result
is the creation of a setting.gradle file that shadows the configuration in the settings.gradle.
kts file. If that occurs, merge the relevant content of the setting.gradle file into the existing
settings.gradle.kts and remove the setting.gradle .

• Set the microejConflictResolutionRulesEnabled property to false in the build.gradle.kts
file:

microej {
microejConflictResolutionRulesEnabled = false
...

}

Note: The MicroEJ Gradle plugin comes with additional conflict resolution rules compared
to Gradle’s default behavior. This can make the build fail when working with Android depen-
dencies, so it is recommended to use Gradle’s default conflict management in this case. These
extra rules can be disabled by setting the microejConflictResolutionRulesEnabled property
to false in the microej configuration block. ReadManageResolution Conflicts formore details.

• Ensure that the Gradle settings file includes the Android and MicroEJ modules, like in this ex-
ample:

include(”:android-app”)
include(”:microej-app”)

• To synchronize your project files, select Sync Now from thenotificationbar that appears after
making changes.

When the Gradle project has been reloaded, it should compile successfully, without any error.

Configure the Android Application

Thenext steps showhowtoconfigure theAndroidorWearOSapplication todeclare theMicroEJ
Application.

• Open the build.gradle.kts file of the Android application.

• Add the com.microej.android.gradle.plugins.android plugin:

3.8. VEEWear User Guide 1392

MicroEJ Documentation,

plugins {
id(”com.android.application”)
id(”com.microej.android.gradle.plugins.android”)
...

}

• Addadependency to theMicroEJ support librarydependingon the target (AndroidorWearOS).

Android

Wear OS

dependencies {
implementation(”com.microej.android.support:microej-application:2.0.1”)
...

}

The support library microej-application allows running a MicroEJ Application in an Android
Activity using the MicroEJ support engine.

dependencies {
implementation(”com.microej.android.support:microej-wearos:2.0.1”)
implementation(”androidx.wear.watchface:watchface:1.1.1”)
implementation(”androidx.wear.watchface:watchface-guava:1.1.1”)
...

}

The support library microej-wearos allows running a MicroEJ Application in aWear OSWatch-
FaceService using the MicroEJ support engine.

• Add a dependency to the MicroEJ Application using the microejApp configuration, for exam-
ple:

dependencies {
microejApp(project(”:microej-app”))
...

}

where microej-app is the name of the subproject that contains the MicroEJ Application.

• Add a dependency to a VEE Port, for example:

dependencies {
microejVee(”com.mycompany:veeport:1.0.0”)
...

}

There are multiple options for providing a VEE Port in your project. Read Select a VEE Port to
explore the available options.

Note: It is required to select a VEE Port that’s configured to build MicroEJ Applications for
Android. Read the VEE Port section to learn how to configure a VEE Port for this purpose.

• Add a file named microej.properties at the root of the Android application. This file sets the
MicroEJApplicationOptionswhen runningonAndroid. It is similar inprinciple todefiningAppli-
cationOptions for theembeddeddevice. Dependingon the targetdevice (Androidor embedded
device), the content may differ.

3.8. VEEWear User Guide 1393

MicroEJ Documentation,

• Select Sync Now from the notification bar to synchronize your project files.

Start the MicroEJ Application

The final step involves calling theentrypointof theMicroEJApplication fromwithin theAndroid
or Wear OS application.

Android

Wear OS

Assuming that the Android application declares an activity in the AndroidManifest.xml :

• Open the corresponding activity Java/Kotlin file.

• Make MicroEJActivity the superclass of this class.

• Override the method getApplicationMainClass() andmake it return the Full Qualified Name
of the main class of the MicroEJ Application.

This is an example of a simple activity:

Kotlin

Java

class MainActivity : MicroEJActivity() {
override fun getApplicationMainClass(): String {

return ”com.mycompany.Main”;
}

}

public class MainActivity extends MicroEJActivity {
@Override
protected String getApplicationMainClass() {

return ”com.mycompany.Main”;
}

}

When the activity is created, it instantiates the main class of the MicroEJ Application and in-
vokes its main() method.

Assuming that the Wear OS application declares a watch face service in the AndroidManifest.
xml :

• Open the corresponding watch face service Java/Kotlin file.

• Make MicroEJWatchFaceService the superclass of this class.

• Override the method getApplicationMainClass() andmake it return the Full Qualified Name
of the main class of the MicroEJ Application.

This is an example of a simple activity:

Kotlin

Java

class MyWatchFaceService : MicroEJWatchFaceService() {
override fun getApplicationMainClass(): String {

return ”com.mycompany.Main”;
(continues on next page)

3.8. VEEWear User Guide 1394

MicroEJ Documentation,

(continued from previous page)

}
}

public class MyWatchFaceService extends MicroEJWatchFaceService {
@Override
protected String getApplicationMainClass() {

return ”com.mycompany.Main”;
}

}

When thewatch face service is created, it instantiates themain class of theMicroEJ Application
and invokes its main() method.

Select Sync Now from the notification bar to synchronize your project files.

Run on MicroEJ VEE and Android

The application can now be deployed to both MicroEJ VEE and Android environments.

The deployment of an application designed to use the Android Compatibility Kit has nothing
specific compared to other MicroEJ or Android applications. This means that you can refer to
the dedicated documentation for this matter:

• for MicroEJ VEE: refer to sections Run On Simulator, Build Executable and Run On Device.

• for Android: refer to the official Android documentation.

• for Wear OS: refer to the official Wear OS documentation.

VEE Port

This section explains how to configure a VEE Port so that it provides the capability to build a
MicroEJ Application for Android.

Once it is configured, the VEE Port can thus be used to build a MicroEJ Application for Android,
in addition to standard features such as building aMicroEJApplication for anEmbeddedDevice
and running it on the Simulator.

VEE Port Configuration

The configuration steps ensure that the VEE Port provides build scripts and implementations of
Foundation Libraries which are specific to Android.

These files are gathered in Android Packs. Each Android Pack provides support for one or mul-
tiple Foundation Libraries. The Core Android Pack is absolutely necessary to be able to build
any MicroEJ Application for Android. Additional Android Packs should be included depending
on the Foundation Libraries provided by the VEE Port.

To declare an Android Pack dependency, edit the module.ivy file of the VEE Port and add the
following line within the <dependencies> element:

<dependency␣
→˓org=”com.microej.android.pack” name=”[NAME]-android-pack” rev=”[VERSION]”/>

3.8. VEEWear User Guide 1395

https://developer.android.com/studio/run
https://developer.android.com/training/wearables/get-started/creating#run-emulator

MicroEJ Documentation,

MicroEJ Android Packs

MicroEJ provides Android Packs for some Foundation Libraries:

Name Module Implemented Libraries
Core Android Pack com.microej.android.pack#core-android-pack EDC, BON, SNI, Trace
UI Android Pack com.microej.android.pack#ui-android-pack MicroUI, Drawing
VG Android Pack com.microej.android.pack#vg-android-pack MicroVG

Note: Some Foundation Libraries such as FS and NET do not require an Android Pack as their APIs are already
implemented by the Android SDK.

For more information on the usage and limitations of each Android Pack, refer to its README.

Custom Android Packs

A MicroEJ Application may call native methods, which require a different implementation on
each execution target (embedded device, Simulator or Android). Therefore if an Application is
executed on Android, the VEE Port should provide an implementation of these native methods
for Android. This dedicated implementation is called an Android mock, and it is usually pack-
aged in anAndroidPack. This section explains how todevelop a customAndroidPack including
an Android mock.

Note: Currently, VEE Ports and their components can not be developed in SDK 6. This means that Android Packs
must be developed with SDK 5 and MMM, and cannot be developed with Android Studio and Gradle.

Setting Android SDK Environment Variable

Since the Android mock will be compiled using Android SDK, you should have Android Stu-
dio and Android SDK installed. If it is not set already on your system, you should set the AN-
DROID_HOME environment variable.

You can follow these steps to find the Android SDK location on your system:

• In Android Studio, select File > Settings… .

• In the settings dialog, find Android SDK and copy the path set as Android SDK Location .

On Windows, this path is typically C:\Users\[USER]\AppData\Local\Android\Sdk .

Make sure to restart MicroEJ SDK after setting the environment variable.

3.8. VEEWear User Guide 1396

https://repository.microej.com/modules/com/microej/android/pack/core-android-pack/
https://repository.microej.com/javadoc/microej_5.x/libraries/edc-1.3-api/
https://repository.microej.com/javadoc/microej_5.x/libraries/bon-1.4-api/
https://repository.microej.com/javadoc/microej_5.x/libraries/sni-1.4-api/
https://repository.microej.com/javadoc/microej_5.x/libraries/trace-1.1-api/
https://repository.microej.com/modules/com/microej/android/pack/ui-android-pack/
https://repository.microej.com/javadoc/microej_5.x/libraries/microui-3.3-api/
https://repository.microej.com/javadoc/microej_5.x/libraries/drawing-1.0-api/
https://repository.microej.com/modules/com/microej/android/pack/vg-android-pack/
https://repository.microej.com/javadoc/microej_5.x/libraries/microvg-1.4-api/
https://developer.android.com/studio/install
https://developer.android.com/studio/install
https://developer.android.com/tools/variables#android_home
https://developer.android.com/tools/variables#android_home

MicroEJ Documentation,

Creating the Android Pack Module

The first step is to create the custom-android-pack project:

• In MicroEJ SDK, select File > New > Project… .

• In the wizard dialog, select MicroEJ > Module Project and click on Next > .

• In the new module dialog, type custom-android-pack as Project Name and as Module ,

choose the Organization and Revision of your choice, select product-java as Skeleton

and click on Finish .

By default, the library built by the module is not packaged as an Android mock. To make sure
that the library is added to the list of Android mocks, edit the module.ivy file of the project
and add the following lines within the <ea:build> element:

<ea:property name=”target.main.artifact.rip.relativedir” value=”android/mocks/dropins”/>

Compiling against Android SDK

By default, the library is compiled against the JRE. Both the Eclipse project and the MMM build
must be configured to compile against Android SDK rather than the JRE.

First, the JREmust be replaced by Android SDK in the build path of the Eclipse project:

• Right-click on the project, select Build Path > Configure Build Path… .

• In the properties dialog, open the Libraries tab, select JRE System Library , click on

Remove and click on Add Variable… .

• In the classpath entry dialog, click on Configure Variables… .

• In the variables dialog, click on New… .

• In the new variable dialog, type ANDROID_HOME as Name , type the Android SDK loca-
tion as Path and click on OK .

• Back to the variables dialog, click on Apply and Close .

• Back to the classpath entry dialog, select the ANDROID_HOME variable and click on
Extend… .

• In the variable extension dialog, browse the platforms/android-[VERSION]/android.jar file
and click on OK .

• Back to the properties dialog, click on Apply and Close .

Finally, the JREmust be replaced by Android SDK in the build path of the MMMmodule:

• Edit the module.ivy file and add the following lines within the <ea:build> element:

<ea:property name=”include.java.runtime” value=”false”/>
<ea:property name=”no.obfuscation” value=”true”/>

• Create a file named module.ant at the root of the project with the following content:

3.8. VEEWear User Guide 1397

MicroEJ Documentation,

<project name=”custom-android-pack” xmlns:ea=”antlib:org.apache.easyant”>
<target name=

→˓”-custom-android-pack:augment-classpath” extensionOf=”abstract-compile:compile-ready”>
<property environment=”env”/>
<ea:path pathid=”compile.main.classpath” overwrite=”prepend”>
␣

→˓ <fileset file=”${env.ANDROID_HOME}/platforms/android-[VERSION]/android.jar”/>
</ea:path>

</target>
</project>

• In this module.ant , replace [VERSION] in the <fileset> element by the minimum Android
SDK version required by your Android mock.

Implementing the Androidmock

You can add the Java source code of your Android mock into the src/main/java folder of the
project. At runtime, the Android mock will be added to the classpath before the code of the
Application and before its dependencies. This allows you to replace the implementation of any
Java class in an Androidmock. The recommended practice is to replace only the classes which
include native methods.

Using the Android Pack in the VEE Port

To build the Android Pack, right-click on the project and select Build Module .

The Android Pack can be included in a VEE Port by declaring a dependency in the module.ivy
of the VEE Port as explained in the first subsection:

<dependency org=”[ORGANIZATION]” name=”custom-android-pack” rev=”[VERSION]”/>

3.8.3 iOS Compatibility Kit

MicroEJprovides a set of tools and libraries to runapplicationspoweredbyMicroEJon iOS. This
allows for the same application to be developed, simulated, tested, and executed on MicroEJ
VEE and iOS alike.

Thanks to the iOSCompatibility Kit, watch faces canbedevelopedonceanddeployedonbotha
smartwatch (MicroEJ VEE) and its companion smartphone app (iOS), enabling consistent func-
tionality andappearance across bothdevices. This provides a gooduser experience for theuser
while minimizing code duplication andmaintenance for the developer.

3.8. VEEWear User Guide 1398

MicroEJ Documentation,

Software Architecture

The iOS Compatibility Kit provides a JDK which can be used to compile and run Java code on
iOS. The codeof theMicroEJ Application andof the libraries it depends on is executed on a Java
SE VM started by the iOS app.

The JDK runtime includes JavaFX to be able to display Applications which use MicroUI or Mi-
croVG.

Fig. 280: Software Architecture

Workflow

The iOS app can be developed and built on Xcode as a regular iOS application. To run aMicroEJ
Application, the Xcode project is configured to embed:

• the runtime libraries of the JDK (JARs and native libraries),

• the implementation of the MicroEJ Foundation Libraries compiled against Java SE and JavaFX
APIs,

• the code and resources of the MicroEJ Application and of the Add-On Libraries that it depends
on.

3.8. VEEWear User Guide 1399

MicroEJ Documentation,

Evaluation

The iOS Compatibility Kit is available on demand. You can contactMicroEJ Support to evaluate
this solution.

3.8.4 Offloading

Many high-end smartwatches rely on amicroprocessor running Android. The power consump-
tion of these devices is fairly high and show an average battery life of one or two days. Inte-
grating an extra low-power microcontroller into the watch’s hardware enables the delegation
of specific tasks from the main microprocessor, resulting in an increased battery life. Keeping
a powerful microprocessor on the hardware ensures the ability to display high-performance
animations and access the Android ecosystem.

Solution

VEE Wear offers a comprehensive solution for software development on this dual architecture:

• MicroEJ VEE enables the execution of applications written in high-level code through virtual-
ization on the microcontroller.

• the Android Compatibility Kit allows the execution of the same application on themicroproces-
sor without the need for re-implementation.

• the Offloading Framework provides the ability to switch the application context between the
two processors depending on their capabilities and on the application flow.

One Code, Two Targets

MicroEJ Application development shares the same programming language as Android Applica-
tion development. Thanks to this similarity, any MicroEJ Application code is compatible with
theAndroid runtimeenvironment. TheAndroidCompatibilityKit provides the toolsand libraries
to execute a MicroEJ Application on Android.

Using this solution, the application code can be programmed once and executed both on the
low-power microcontroller and the high-power microprocessor.

Offloading Framework

The offloading strategy is a set of rules defined by the design of the watch.

Here is a non-exhaustive list of common offloading rules:

• switching to the low-power microcontroller after a few seconds of user inactivity (often called
ambient mode)

• switching to the high-power microprocessor when starting a high-performance animation

• switching to the high-powermicroprocessorwhen navigating to amenuwhich is only available
on Android

Switching from a processor to the other may require to synchronize the state of the software
and to provide the necessary data for the other processor to take over. The time to wake-up
the processor and to synchronize the data has to be taken into account when designing the
software architecture.

3.8. VEEWear User Guide 1400

MicroEJ Documentation,

Once these rules have been decided, the Offloading Framework APIs can be used to wake up
the other processor, to synchronize data, to be notified when the other processor is ready, to
hand over the control of the display, to put the processor to sleep, etc.

Evaluation

The Android Compatibility Kit can be evaluated by following its documentation.

Andemonstrationwith a sampleoffloading framework is available ondemand. You can contact
MicroEJ Support to test this demonstration.

3.8.5 VEE Script

Introduction

VEE Script is a scripting language supported on MICROEJ VEE.

Its syntax is a subset of JavaScript. This subset includes most expressions but excludes state-
ments and blocks.

The strengths of VEE Script are its low footprint, its optimized performance, its customizable
semantics and its ability to evaluate expressions depending on the runtime context.

To have the best runtime performance, expressions are preprocessed offboard. During this
phase, expressions are parsed, converted into ASTs and serialized into a binary file. At runtime,
the ASTs are deserialized from the binary file and the expressions can be evaluated efficiently.

Fig. 281: Preprocessing and Interpretation Flow

VEE Script can be used for various use cases, including the design and rendering of dynamic
GUIs and real-time information displays. For instance, VEE Script is currently used in the VEE
Wear Kernel to design and render watchfaces.

Tags and Functions

VEE Script introduces tags and functions, which can be evaluated to different values depending
on the runtimecontext. For example, a “current time” tagora “generate randomvalue” function
would return a different value every time they are interpreted.

Moreover, tags and functions semantics are defined by the product. This allows every product
to define its own DSL, specific to the type of device and to its unique features. For example, a
smartwatch could introduce a tag for battery level while a washing machine could introduce a
tag for remaining cycle time.

3.8. VEEWear User Guide 1401

https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://en.wikipedia.org/wiki/Domain-specific_language

MicroEJ Documentation,

Examples

For example, the following script could be used to display the heart rate:

product.evaluateTag('heart_rate') + ' BPM'

And the following script could be used to animate the position of a widget:

100 * product.applyFunction('sin', product.evaluateTag('current_time') / 1000 * 3.14)

Expression Types

VEE Script supports the following expression types:

• literal

• unary operation (+, -)

• binary operation (*, /, %, +, -, <, >, <=, >=, ==, !=, &&, ||)

• conditional (?:)

• tag evaluation

• function application

Value Types

Once an expression is evaluated, its value has one of the following types:

• boolean

• number

• string

Language Syntax

The scripting language is a subset of JavaScript. Its syntax and semantics are specified by EC-
MAScript 5.1.

The following table summarizes the grammar rules of the language:

Grammar Rule Example Expression Type
<boolean> true Boolean literal
<number> 3.5 Number literal
‘<string>’ ‘hello world’ String literal
<operator> <expression> -10 Unary operation
<expression> <operator> <expression> 1 + 2 Binary operation
<expression> ? <expression> : <expression> 2 > 1 ? 5 : 10 Conditional
product.evaluateTag(‘<tag>’) product.evaluateTag(‘battery’) Tag evaluation
product.applyFunction(‘<function>’, [expressions]) product.applyFunction(‘sqrt’, 9) Function application
product.constants.<constant> product.constants.pi Literal

3.8. VEEWear User Guide 1402

https://262.ecma-international.org/5.1/
https://262.ecma-international.org/5.1/

MicroEJ Documentation,

Language Configuration

Since the semantics of the language depend on the product, the expression parser and inter-
preter must be configured.

The following information must be supplied to the parser:

• the name and value of every constant

• the name of every tag

• the name of every function

The following information must be supplied to the interpreter:

• the semantics of every tag

• the semantics of every function

Evaluation

TheVEEScriptparserand interpreterareavailableondemand. YoucancontactMicroEJSupport
to evaluate this solution.

3.9 VEE Energy User Guide

VEEEnergy is apurpose-built application frameworkdesigned for thenext generationof energy
devices, including smart meters, gateways, and connected grid infrastructure. Optimized for
low-powerMCUsandMPUs, VEEEnergydelivershighperformancewhilemaintainingaminimal
memory footprint, making it ideal for cost-effective energy solutions. VEE Energy includes all
critical features from the MicroEJ runtime, ensuring:

• Comprehensive Framework integrating security, file system, networking and IoT

• Safe and secure Apps deployment

• Extensive data handling capabilities with Edge AI and signal processing

• Support for industry-standard protocols like DLMS/COSEM

MicroEJ Multi-Sandboxing

MicroEJ Multi-Sandboxing enables secure execution of multiple isolated applications on a sin-
gle device, allowing dynamic app deployment and updates without compromising system sta-
bility. By leveraging lightweight virtualization, it optimizes resourceusageon constrainedhard-
ware while ensuring robust security and scalability.

• Resource Security Manager: Enhances system reliability by ensuring that a faulty app does not
compromise the entire system’s performance.

• AppManagementandAnalytics: Allows for localmanagementandanalysisof applications, pro-
viding valuable insights and control.

Energy Framework

VEE Energy Framework supports essential metrology functions, data storage, and power
switching for comprehensive meter management. Energy analytics VEE Energy facilitates lo-
cal analytics with Digital Signal Processing (DSP) and Edge Artificial Intelligence (AI), enabling
advanced data analysis and decision-making on the device.

3.9. VEE Energy User Guide 1403

MicroEJ Documentation,

IoT and Energy protocols

VEE Energy integrates support for extensive connectivity and communication protocols, facili-
tating the design of AMI2.0 energy meters:

• Standard IoT and connectivity stacks part of the VEE networking add-on libraries.

• Energy specific stacks like DLMS, DNP3, OCCP, Modbus, IEC61850 with partners like Kalkitech.

• Support for Smart Home protocols like Matter to bridge energy with smart home and HVAC.

For more information about VEE Energy, please contact your MicroEJ sales representative.

3.10 Training Courses

Welcome to the MicroEJ training courses!

This documentation offers online courses to help you learn the essentials of Firmware devel-
opment using MICROEJ SDK.

Whether you’re abeginner ormore advanced, youwill gain a solid understandingof Application
development using MICROEJ SDK and MICROEJ VEE integration on custom devices. Addition-
ally, youwill discover the feature-rich ecosystemprovided to developers to ease developments
on a daily basis.

Each training will specify its prerequisites. For courses involving hands-on activities, you may
need to use one of the following development kits:

• NXP i.MX RT1170 Evaluation Kit.

• STM32F7508-DK Evaluation Kit.

Alternatively, the hands-on activities can be fully completed using MICROEJ SDK Simulator.

3.10.1 For Beginners

MICROEJ SDK Basics

Description

This training session introduces you to theMicroEJ ecosystem, guiding you through theprocess
of creating your first application project. You will run your project on both a simulator and an
actual device using MICROEJ SDK.

What you will learn:

• Understand the VEE Port concepts

• Create and run your first application project with MICROEJ SDK

• Learn how to configure your Application Project

• Use a Front Panel project

• Get an overview of MICROEJ SDK Development Tools

• Call a C function fromManaged Code

• Blink an LED fromManaged Code

3.10. Training Courses 1404

https://www.microej.com/contact/#form_1
https://www.nxp.com/design/design-center/development-boards-and-designs/i-mx-evaluation-and-development-boards/i-mx-rt1170-evaluation-kit:MIMXRT1170-EVKB
https://www.st.com/en/evaluation-tools/stm32f7508-dk.html

MicroEJ Documentation,

Intended Audience

This training is designed for developers looking to gain a first understanding of the MicroEJ
development flow.

Prerequisites

To get the most out of this training, participants should have:

• A good understanding of the Overview section.

• A basic knowledge of theMicroEJ Glossary.

• Access to the NXP i.MX RT1170 Evaluation Kit.

Training Resources

This training is provided as a PDF, along with a downloadable .zip package of resources:

MICROEJ SDK 6

MICROEJ SDK 5

•

• Resources

•

• Resources

Mastering MICROEJ SDK Development Tools

Description

This training describes the available tools providedbyMICROEJ SDK to accelerate your product
development.

Intended Audience

This training is designed for developers who want to learn about the tools available for devel-
oping and debugging embedded applications.

Prerequisites

To get the most out of this training, participants should have:

• A good understanding of the Overview section.

• A basic knowledge of theMicroEJ Glossary.

• Access to the NXP i.MX RT1170 Evaluation Kit.

3.10. Training Courses 1405

https://www.nxp.com/design/design-center/development-boards-and-designs/i-mx-evaluation-and-development-boards/i-mx-rt1170-evaluation-kit:MIMXRT1170-EVKB
https://www.nxp.com/design/design-center/development-boards-and-designs/i-mx-evaluation-and-development-boards/i-mx-rt1170-evaluation-kit:MIMXRT1170-EVKB

MicroEJ Documentation,

Training Resources

Unit 1: Master logging within your Application

• Read the following documentation: Code Instrumentation for Logging.

Unit 2: MicroEJ Development Tools Overview

This training is provided as a PDF, along with a downloadable .zip package of resources:

• (for MICROEJ SDK 6)

• Resources

C / Managed Code Communication

Description

In this training, youwill get an in depth view of the different ways to perform C / Managed Code
communication using Native Interface Mechanisms.

What you will learn:

• SNI Overview

• Exposing a C API in Java

• Immortal Arrays

• Error Management

• Blocking Functions and Asynchronous Code

• Referencing C resources fromManaged Code

• Overview of C / Managed Code Communication libraries: Event Queue, UI Pump, Shielded Plug

Intended Audience

This training is designed for developers who want to learn about communication mechanisms
between C and Managed Code.

Prerequisites

To get the most out of this training, participants should have:

• A good understanding of the Overview section.

• A basic knowledge of theMicroEJ Glossary.

• A basic knowledge of C programming language.

• A basic knowledge of Java programming language.

3.10. Training Courses 1406

MicroEJ Documentation,

Training Resources

Unit 1: C / Managed Code Communication with MICROEJ VEE

This training provides a comprehensive overview of the variousmethods for C / Managed Code
communication.

This training is provided as a PDF, along with a downloadable .zip package of resources:

•

• Resources

Note: The SNI and Blocking Functions section requires to use the NXP i.MX RT1170 Evaluation Kit to run the
hand’s on.

The rest of the training is board agnostic.

Unit 2: Implementing a Blocking Java Native Methodwith SNI

This training describes a use case showing how to properly implement a blocking native
method:

• Implement a Blocking Java Native Method with SNI

Implement a Blocking Java Native Method with SNI

This training describes the good practices to follow when implementing a blocking native
method in C. A native method is a method declared in Java with the native keyword and im-
plemented in C using the Simple Native Interface (SNI).

Intended Audience

The audience for this document is Platform developers who want to implement Abstraction
Layer interfaces.

Prerequisites

The following document assumes the reader already has a setup ready to run a MicroEJ Stan-
dalone Application on a target device.

The following document also assumes the reader is familiar with the Simple Native Interface
(SNI)mechanism. If not, the CallingCFromJava GitHub example shows the minimum steps re-
quired to create a Java program that makes a call to a C function via SNI.

3.10. Training Courses 1407

https://www.nxp.com/design/design-center/development-boards-and-designs/i-mx-evaluation-and-development-boards/i-mx-rt1170-evaluation-kit:MIMXRT1170-EVKB
https://github.com/MicroEJ/Example-Standalone-Java-C-Interface/tree/master/CallingCFromJava/

MicroEJ Documentation,

Overview

The Core Engine implements a green thread architecture with all the threads executed within
one single RTOS/OS task. Thus, it embeds its own scheduler that controls the execution of the
threads. With such an architecture, the Core Engine cannot preempt a thread that executes a
nativemethod. Therefore ablockingnativemethodwill prevent the executionof other threads.
To mitigate the contention, a native method must explicitly yield its current use of the proces-
sor.

This training will explain how to use SNI to implement a blocking Java native method without
blocking the execution of other threads.

Requirements

A MicroEJ Platform with (at least):

• EDC-1.3.

• SNI-1.4.

Example Code

Let’s start with a MicroEJ Standalone Application that calls a blocking Java method imple-
mented in C.

The following example waits for a button event and prints the index of the pressed button.

The MicroEJ Application code:

package example;

public class NativeCCallExample {

public static void main(String[] args) {

while (true) {
System.out.println(”Waiting for a button event...”);
int buttonIndex = waitButton();
System.out.println(”Button pressed: ” + buttonIndex);

}
}

public static native int waitButton();
}

The C implementation of the waitButton() native has been written in pseudo-code. It should
be adapted according to the BSP of the target board.

#include ”semaphore.h”
#include ”sni.h”

static int pressed_button_index;
static Semaphore button_semaphore;

void button_init(){
(continues on next page)

3.10. Training Courses 1408

https://repository.microej.com/modules/ej/api/edc/
https://repository.microej.com/modules/ej/api/sni/

MicroEJ Documentation,

(continued from previous page)

button_semaphore = SemaphoreCreateBinary();
}

jint Java_example_NativeCCallExample_waitButton(){
// Wait for a button event
semaphoreTake(button_semaphore);
return pressed_button_index;

}

/** Interrupt request handler called when a button is pressed. */
int buttonIRQ(int button_index){

pressed_button_index = button_index;
semaphoreGiveFromISR(button_semaphore);

}

Application Behavior

In this example, the execution of the waitButton() native method will block until a button is
pressed. In other words, while Java_example_NativeCCallExample_waitButton() has not
returned, no other thread can be scheduled.

This is because the native function is called in the same RTOS/OS task as the Java application.

This schematic explains what is going on:

3.10. Training Courses 1409

MicroEJ Documentation,

Implement a Non-Blocking Method

This section will explain how to update the example code to make a non-blocking method.

Here is a summary of what will be done in C:

• Signal the Core Engine to suspend the current thread when the native function returns.

• Remove the blocking operations from the native function so that it returns immediately.

• Implement a callback function that returns the index of the pressed button.

• Register this callback function in the Core Engine to call it when the thread is resumed.

• Resume the thread when a button is pressed.

This schematic summarizes the steps described above:

Update the C Native Function Implementation

Step 1: Update the C Native Function

The Java_example_NativeCCallExample_waitButton() functionwill nowsuspend the cur-
rent thread. It will also store the information required to resume it and return the index of the
pressed button.

The SNI functions used in this example are defined in sni.h . See this header file for a more
detailed description of the API.

• Store the ID of the thread that called the function. This ID should be stored in a global variable.
It is used to resume the thread when a button is pressed.

3.10. Training Courses 1410

MicroEJ Documentation,

java_thread_id = SNI_getCurrentJavaThreadID();

• Signal the Core Engine to suspend the current thread and specify the callback function to be
called when the thread is resumed. Let’s call the callback function waitButton_callback() .

SNI_suspendCurrentJavaThreadWithCallback(0, (SNI_callback)waitButton_callback, NULL);

The function SNI_suspendCurrentJavaThreadWithCallback() returns immediately. The
current thread is actually suspended when the native function returns.

Thevalue returnedby the Java_example_NativeCCallExample_waitButton() doesn’tmat-
ter anymore. The callback function will be in charge of returning the value.

The updated Java_example_NativeCCallExample_waitButton() function should look like
this:

static int32_t java_thread_id;

jint Java_example_NativeCCallExample_waitButton(){

java_thread_id = SNI_getCurrentJavaThreadID();

SNI_
→˓suspendCurrentJavaThreadWithCallback(0, (SNI_callback)waitButton_callback, NULL);

return SNI_IGNORED_RETURNED_VALUE; // Returned value not used
}

Step 2: Update the Button Interrupt Function

The role of the button interrupt is now to resume the thread when a button event occurs. Up-
date it this way:

int buttonIRQ(int button_index){
SNI_resumeJavaThreadWithArg(java_thread_id, (void*)button_index);

}

The button’s index is passed to the function SNI_resumeJavaThreadWithArg() so that the
callback retrieves it when the thread is resumed.

Step 3: Implement the Callback Function

The callback function must have the same signature as the SNI native (same parameters and
return type): jint waitButton_callback() .

The callback function is automatically called by the thread when it is resumed. Use the
SNI_getCallbackArgs() function to retrieve the arguments that was previously given to the
SNI_suspendCurrentJavaThreadWithCallback() or SNI_resumeJavaThreadWithArg()
functions.

jint waitButton_callback()
{

int button_index;
SNI_getCallbackArgs(NULL, (void*)&button_index);

(continues on next page)

3.10. Training Courses 1411

MicroEJ Documentation,

(continued from previous page)

return (jint)button_index; // Actual value returned to Java
}

Application Behavior

In this configuration, calling the nativemethod waitButton() will still return only when a but-
ton is pressed, but it will not prevent other threads from being scheduled.

Simulate Hardware Behavior using Mocks

Description

In this training, you will learn how to use mocks in order to enhance application development
on Simulator.

Intended Audience

This training is designed for developerswhowant to gain a first understanding of extending the
Simulator with mocks.

Prerequisites

To get the most out of this training, participants should have:

• A good understanding of the Overview section.

• A basic knowledge of theMicroEJ Glossary.

Training Resources

Unit 1: Read the Mock Developer Guide

Read theMock Developer Guide to get familiar with Mock development.

Unit 2: Run Mock Framework Examples

Those examples are showing how to implement mocks using the Mock Framework.

Run the samples on Simulator to get familiar with the Mock Framework:

• Mock Framework Examples (for MICROEJ SDK 6)

3.10. Training Courses 1412

https://github.com/MicroEJ/Example-Mock-Framework

MicroEJ Documentation,

3.10.2 For Application Developers

Get Started with Sandboxed Applications

Description

This training will show you how to run Sandboxed Applications on top of a pre-built
Multi-Sandbox Executable for the NXP i.MXRT1170 Evaluation Kit.

During this training, you will learn how to run Sandboxed Applications in Simulation using the
Virtual Device and on NXP i.MXRT1170 Evaluation Kit:

1. Run the Demo-Sandboxed-Applications.

2. Create Sandboxed Application and run it.

In case you are not familiar with MicroEJ, please visit Discover MicroEJ to understand the prin-
ciples of our technology.

The below schematic summarizes theMulti-Sandbox features that will be demonstrated in this
training:

3.10. Training Courses 1413

https://developer.microej.com/discover-microej/

MicroEJ Documentation,

Intended Audience

This training is designed for application developers looking to gain a first understanding of the
Multi-Sandbox development flow.

Prerequisites

Note: This Getting Started has been tested in the following conditions:

• Windows 10/11.

• Multi-Sandbox Executable: NXP-MIMXRT1170-3.0.0_GCC_GREEN-2.1.1.elf.

• Demo-Sandboxed-Applications 2.0.0 .

To get the most out of this training, participants should have:

• A good understanding of the Overview section.

• A basic knowledge of theMicroEJ Glossary.

Hardware setup

To follow this training, you need:

• A NXP i.MX RT1170 Evaluation Kit EVKB.

• A RK055HDMIPI4MA0 display panel.

• A FAT32-formatted microSD card.

• An Ethernet cable

Environment Setup

To follow this training, you need:

• An RS232 Terminal (e.g. Termite).

Also, follow the steps described in the sections below to complete your environment setup.

Install MICROEJ SDK 6

FollowMICROEJ SDK 6 installationGuide. IntelliJ IDEA is used in this training, but feel free to use
your favorite IDE.

3.10. Training Courses 1414

https://repository.microej.com/packages/green/2.1.1/firmware/NXP-MIMXRT1170_GCC/NXP-MIMXRT1170-3_0_0_GCC_GREEN-2.1.1.elf
https://github.com/MicroEJ/Demo-Sandboxed-Applications
https://www.nxp.com/design/design-center/development-boards-and-designs/i-mx-evaluation-and-development-boards/i-mx-rt1170-evaluation-kit:MIMXRT1170-EVKB
https://www.nxp.com/part/RK055HDMIPI4MA0
https://www.compuphase.com/software_termite.htm

MicroEJ Documentation,

Accept the MICROEJ SDK EULA

Youmay have to accept the SDK EULA if you haven’t already done it, please have a look at SDK
EULA Acceptation.

Hardware Setup for NXP i.MXRT1170 EVKB

Refer to the NXP i.MXRT1170 EVKB Hardware Setup guide.

Additionally, make sure to:

• Insert a micro-SD card (FAT32-formatted) in the board connector.

• Connect the 1GB Ethernet connector to the internet.

Flash the Multi-Sandbox Executable on your NXP i.MXRT1170 Evaluation Kit

Download the Multi-Sandbox Executable: NXP-MIMXRT1170-3.0.0_GCC_GREEN-2.1.1.elf.

Note: The Multi-Sandbox Executable used in this documentation is built from the Kernel GREEN sources. Refer to
the Get Started with Kernel training to build your own Multi-Sandbox Executable.

If you want more information about this Multi-Sandbox Executable, the Javadoc and the Re-
lease notes are available in this directory.

Flash the Multi-Sandbox Executable using LinkServer :

• Download and install LinkServer for Microcontroller (minimum version 1.6.133).

• Once installed, the LinkServer installation folder must be set on your Path. To do so:

– Open the Edit the system environment variables application on Windows.

– Click on the Environment Variables… button.

– Select Path variable under the User variables section and edit it.

– Click on New and point to the LinkServer installation folder located where you installed
LinkServer (e.g. nxp/LinkServer_1.6.133/).

• Run the command LinkServer flash MIMXRT1176xxxxx:MIMXRT1170-EVKB load
NXP-MIMXRT1170-3_0_0_GCC_GREEN-2.1.1.elf .

Set up the logs output:

• Get the COM port where your board is connected (if you are using Windows, you can open your
Device Manager from the Windowsmenu).

• Set up a serial terminal (e.g. Termite) to see output logs from the board. Refer to the NXP
i.MXRT1170 EVKB Hardware Setup to setup the serial terminal.

• Press the board’s reset button.

• Get your board’s IP address. You will find it in the logs output:

3.10. Training Courses 1415

https://repository.microej.com/packages/green/2.1.1/firmware/NXP-MIMXRT1170_GCC/NXP-MIMXRT1170-3_0_0_GCC_GREEN-2.1.1.elf
https://github.com/MicroEJ/Kernel-GREEN
https://repository.microej.com/packages/green/2.1.1/
https://www.nxp.com/design/design-center/software/development-software/mcuxpresso-software-and-tools-/linkserver-for-microcontrollers:LINKERSERVER

MicroEJ Documentation,

Congratulations! The Multi-Sandbox Executable is running on the NXP i.MXRT1170 Evaluation
Kit and is ready to be used.

Training Course

Run the Demo-Sandboxed-Applications

TheDemo-Sandboxed-Applications showcases the communication betweenSandboxedAppli-
cations using the Shared Interfaces.

The following projects are provided:

• app-power-provider : application responsible for providing random power values in the system.

• app-gui : application responsible for visualizing the power values provided by app-power-provider .

• app-mqtt-publisher : application responsible for publishing the power values provided by

app-power-provider to an MQTT topic.

• sharedinterface : shared library between apps that defines the shared interface for inter-app communica-
tion.

Warning: If you are using your own Multi-Sandbox Executable to run this demo, make sure to
configure the Images Heap size of your Kernel project to the size of your screen. The formula to
compute the required size is SCREEN_WIDTH x SCREEN_HEIGHT x BPP / 2 .

3.10. Training Courses 1416

https://github.com/MicroEJ/Demo-Sandboxed-Applications

MicroEJ Documentation,

Example with a 1280x720 screen in RGB565 format (16BPP). Images Heap size should be:

• 1280x720x16/2 = 1843200 bytes

Import the Project

Import the project into your IDE:

Note: If you are using an IDE other than IntelliJ, please have a look at Import a Project section.

• If you are on the Welcome Screen, click on the Open button. Otherwise click either on File

> Open… .

• Select the Demo-Sandboxed-Applications directory located where you downloaded it and

click on the OK button.

The Gradle project should now be imported in IntelliJ, your workspace contains the following
project in the Projects view:

3.10. Training Courses 1417

MicroEJ Documentation,

Run the Demo-Sandboxed-Applications on the Virtual Device

In order to execute the applications on the Virtual Device, use the Gradle runOnSimulator
task:

• Double-click on the runOnSimulator task of one the applications (app-gui ,

app-power-provider , app-mqtt-publisher):

Note: Each application is bound to each other. Running one of the applications on the Simulator will run all the
applications.

The Virtual Device starts and executes the Demo-Sandboxed-Applications:

3.10. Training Courses 1418

MicroEJ Documentation,

Run the Demo on the NXP i.MXRT1170 Evaluation Kit

The Demo-Sandboxed-Applications applications can be deployed on the NXP i.MXRT1170
Evaluation Kit using the localDeploy tool. Each application needs to be deployed individu-
ally.

Configure the localDeploy tool in the project:

• Open the gradle.properties file located at the root of the Demo-Sandboxed-Applications
project.

• Get your board’s IP address and add it to the ipAddress field.

Open the Gradle tasks view to deploy the applications on your NXP i.MXRT1170 Evaluation Kit.
Deploy them in the following order:

1. Deploy app-power-provider : double-clickon the app-power-provider > Tasks > microej > localDeploy
task.

2. Deploy app-gui : double-click on the app-gui > Tasks > microej > localDeploy task.

3. Deploy app-mqtt-publisher : double-clickon the app-mqtt-publisher > Tasks > microej > localDeploy
task.

The applications are running on the NXP i.MXRT1170 Evaluation Kit:

Subscribe to the MQTT Topic to Get the Power Values

By default, the app-mqtt-publisher publishes the power values to a public MQTT Broker:
test.mosquitto.org .

TheMQTT topic is randomly generated at each application startup. It canbe seen in the console
logs:

Use an MQTT client to subscribe to the topic, for example, using Docker:

docker run -it --rm eclipse-mosquitto mosquitto_sub␣
→˓-h test.mosquitto.org -p 1883 -q 1 -t microej/demo/sandbox/power_[YOUR_TOPIC_ID]

Every time a power value is published, it can be seen in the MQTT client console:

3.10. Training Courses 1419

MicroEJ Documentation,

Managing Applications Lifecycle

The Multi-Sandbox Executable provides a web server to interact with the applications. Either
through a Web UI or an HTTP API. This server listens on port 4001 by default.

The Server URL can be seen in the console logs:

Open the URL in a web browser, the installed applications can be seen. They can be Started /
Stopped / Uninstalled :

3.10. Training Courses 1420

MicroEJ Documentation,

3.10. Training Courses 1421

MicroEJ Documentation,

Well Done!

Now you know how to run Sandboxed Applications on a Multi-Sandbox Executable!

The next step is about creating a Sandboxed Application project from scratch and running it on
the Virtual Device and on the NXP i.MXRT1170 board.

Create and Run a Sandboxed Application

Create the Sandboxed Application Project

Note: If you are using an IDE other than IntelliJ IDEA, please have a look at Create a Project section.

Create a new Sandboxed Application project as follows in IntelliJ IDEA:

• Click on File > New > Project… .

• Select MicroEJ .

• Fill in the name of the project in the Name field.

• Select the location of the project in the Location field.

• Select the Application project type.

• Fill the version of the artifact to publish in the Version field.

• Fill the group of the artifact to publish in the Group field.

• Fill the name of the artifact to publish in the Artifact field.

• Keep the default JDK in the JDK field.

3.10. Training Courses 1422

MicroEJ Documentation,

• Click on the Create button. The new project is created and opened:

Run the Sandboxed Application on the Virtual Device

MicroEJ provides ready to use kernels on the Developer Repository.

The MyApplication project needs to be configured to use a kernel:

• Open the build.gradle.kts file of the MyApplication project.

• Add the dependency to the NXP i.MXRT1170 kernel: microejVee(”com.microej.
kernel:NXP-MIMXRT1170-3_0_0_GCC_GREEN:2.1.1”)

Note: To use your own Kernel, refer to the procedure described in Run a Sandboxed Application on your
Multi-Sandbox Executable and Virtual Device.

In order to execute the MyApplication project on the Virtual Device, the SDK provides the

Gradle runOnSimulator task.

Note: If you are using an IDE other than IntelliJ IDEA, please have a look at Run on Simulator section.

• Double-click on the runOnSimulator task in the Gradle tasks view. It may take a few seconds
to start:

3.10. Training Courses 1423

https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/kernel

MicroEJ Documentation,

TheVirtual Device starts andexecutes the MyApplication project. The Hello World! message
can be seen in the console:

3.10. Training Courses 1424

MicroEJ Documentation,

Run the Sandboxed Application on the NXP i.MXRT1170 Evaluation Kit

TheMulti-SandboxExecutable embeds a server that listens for SandboxedApplicationsdeploy-
ment commands.

The MyApplication project can be deployed on the NXP i.MXRT1170 Evaluation Kit using the
localDeploy tool. This tool will deploy the application on the NXP i.MXRT1170 Evaluation Kit
through your local network.

Configure the localDeploy tool in MyApplication project:

• Open the build.gradle.kts file of the MyApplication project.

• Paste the following code at the beginning of the file:

import com.microej.gradle.tasks.BuildFeatureTask
import okhttp3.MediaType.Companion.toMediaType
import okhttp3.MultipartBody
import okhttp3.OkHttpClient
import okhttp3.Request
import okhttp3.RequestBody.Companion.asRequestBody
import java.util.*

• Paste the following code at the end of the file:

val buildFeatureTask = tasks.withType(BuildFeatureTask::class).named(”buildFeature”)
tasks.register(”localDeploy”) {
dependsOn(”buildFeature”)
group = ”microej”

// Adjust the following variables to your needs
val boardIP = ”<Board IP Address>” // board ip address
val boardPort = 4001 // AppConnect port
val force = true // overwrote existing app with same name
val start = true // start app after install
// Note:␣
→˓if your metadata (feature.kf) is part of '/src/main/resources', modify this path accordingly
val featureKFFilePath = ”generated/microej-app-wrapper/feature-resources/feature.kf”

doLast {
val applicationFOFile = buildFeatureTask.get().featureFile.get().asFile
val properties = Properties()
project.

→˓layout.buildDirectory.file(featureKFFilePath).get().asFile.inputStream().use(properties::load)
val appName␣

→˓= properties.getProperty(”name”) ?: error(”App name not found in $featureKFFilePath”)
val appVersion =␣

→˓properties.getProperty(”version”) ?: error(”App version not found in $featureKFFilePath”)

println(”Deploying app $appName $appVersion to board at $boardIP:$boardPort”)
val url = ”http:/

→˓/$boardIP:$boardPort/api/app/install?force=$force&start=$start&name=$appName”
val client = OkHttpClient()
val multipartBody = MultipartBody.Builder().setType(MultipartBody.FORM) //

.addFormDataPart(
”binary”,
applicationFOFile.name,
applicationFOFile.asRequestBody(”application/octet-stream”.toMediaType())

(continues on next page)

3.10. Training Courses 1425

MicroEJ Documentation,

(continued from previous page)

)//
.build()

val request = Request.Builder().url(url).post(multipartBody).build()
client.newCall(request).execute().use { response ->

if (response.isSuccessful) {
println(”Deployment Successful! Response Code: ${response.code}”)
println(”App info: ${response.body?.string()}”)
} else {
System.err.println(”Deployment Failed. Response Code: ${response.code}”)
System.err.println(”Cause: ${response.body?.string()}”)
}

}
}
}

buildscript {
repositories {

maven {
name = ”mavenCentral”
url = uri(”https://repo.maven.apache.org/maven2/”)

}
}
dependencies {

classpath(”com.squareup.okhttp3:okhttp:4.12.0”)
}
}

• Update the boardIP variable with your board IP address.

• Reload the Gradle project:

• A localDeploy task is now visible in the microej tasks list.

• Double-click on the localDeploy task to deploy MyApplication on the board.

• MyApplication is successfully deployed and the Hello World! is displayed in the serial ter-
minal:

3.10. Training Courses 1426

MicroEJ Documentation,

Note: If you update your application, just run the localDeploy task again to test the updated application on your
board!

3.10. Training Courses 1427

MicroEJ Documentation,

Well Done!

Now you know how to create a Sandboxed Application project from scratch and run it on your
device!

Going Further

Youhavenowsuccessfully executedSandboxedApplicationsonanembeddeddevice, sowhat’s
next?

If you are a Kernel Developer, you can follow the For Kernel Developers courses to get familiar
with Kernel development.

If you are an application developer, you can continue to explore MicroEJ’s APIs and functional-
ities by running and studying our samples at GitHub:

Foundation Libraries Eclasspath IoT
This project gathers all the ba-
sic examples of the foundation li-
braries.

This project gathers all the exam-
ples of eclasspath.

This project gathers simple appli-
cations using net libraries.

https://github.com/MicroEJ/
Example-Foundation-Libraries

https://github.com/MicroEJ/
Example-Eclasspath

https://github.com/MicroEJ/
Example-IOT

You can also learn how to build bigger and better applications by reading our Application Devel-
oper Guide.

If you are an embedded engineer, you could look at our VEE port examples at GitHub. And to
learn how create custom VEE ports, you can read our VEE Porting Guide.

You can also follow the Kernel Developer Guide for more information on our multi-application
framework or read about our powerful wearable solution called VEE Wear.

Last but not least, you can choose to learn about specific topics by following one of our many
Training Courses ranging from how to easily debug applications to setting up a Continuous In-
tegration process and a lot of things in between.

MicroEJ Java Programming Practices

Description

This training describes some rules and tools aimed at improving the quality of a Java code to
simplify itsmaintenance. Itmakesupaminimumconsistent set of ruleswhich canbeapplied in
any situation, especially on embedded systemswhere performance and lowmemory footprint
matter. Also be aware of MicroEJ runtime specificities by reading the Language page.

3.10. Training Courses 1428

https://github.com/MicroEJ/Example-Foundation-Libraries
https://github.com/MicroEJ/Example-Foundation-Libraries
https://github.com/MicroEJ/Example-Eclasspath
https://github.com/MicroEJ/Example-Eclasspath
https://github.com/MicroEJ/Example-IOT
https://github.com/MicroEJ/Example-IOT
https://github.com/microej?q=vee&type=all&language=&sort=

MicroEJ Documentation,

Intended Audience

This training is designed for Application developers who want to enhance the quality of their
Java code.

Prerequisites

To get the most out of this training, participants should have a good knowledge of Java pro-
gramming language.

Readable Code

This section describes rules to get a readable code, in order to facilitate:

• the maintenance of an existing code with multiple developers contributions (e.g., merge con-
flicts, reviews).

• the landing to a new code base when the same rules are applied across different modules and
components.

Naming Convention

Naming of Java elements (package, class, method, field and local) follows the Camel Case con-
vention.

• Package names are written fully in lower case (no underscore).

• Package names are singular (e.g. ej.animal instead of ej.animals).

• Class names are written in upper camel case.

• Interfaces are named in the same way as classes (see below).

• Method and instance field names are written in lower camel case.

• Static field names are written in lower camel case.

• Constant names are written in fully upper case with underscore as word separator.

• Enum constant names are written in fully upper case with underscores as word separators.

• Local (and parameter) names are written in lower camel case.

• Whenanamecontains an acronym, capitalize only the first letter of the acronym (e.g. for a local
with the HTTP acronym, use myHttpContext instead of myHTTPContext).

It is also recommended to use full words instead of abbreviations (e.g. MyProxyReference
instead of MyProxyRef).

3.10. Training Courses 1429

https://en.wikipedia.org/wiki/Camel_case

MicroEJ Documentation,

Interfaces and Subclasses Naming Convention

An Interface is named after the feature it exposes. It does not have a I prefix because it hurts
readability andmay cause naming issueswhenpotentially converted to/froman abstract class.

The classes implementing an interface are named after the interface and how they implement
it. Using Impl suffix is not recommended because it does not express the implementation
specificity. If there is no specificity, maybe there is no need to have an interface.

Example: an interface Storage (that allows to load/store data) may have several implementa-
tions, such as StorageFs (on a file system), StorageDb (on a database), StorageRam (volatile
storage in RAM).

Visibility

Here is a list of the usage of each Java element visibility:

• public : API.

• protected : API for subclasses.

• package : component intern API (collaboration inside a package).

• private : internal structure, cache, lazy, etc.

By default, all instance fields must be private.

Package visibility can be used by writing the comment /* package */ in place of themodifier.

Javadoc

Javadoc comments convention is based on the official documentation.

Note: Javadoc iswritten inHTML format and doesn’t accept XHTML format: tagsmust not be closed. For example,
use only a <p> between two paragraphs.

Here is a list of the rules to follow when writing Javadoc:

• All APIs (see Visibility) must have a full Javadoc (classes, methods, and fields).

• Add a dot at the end of all phrases.

• Add @since tag when introducing a new API.

• Do not hesitate to use links to help the user to navigate in the API (@see , @link).

• Use the @code tag in the following cases:

– For keywords (e.g. {@code null} or {@code true}).

– For names and types (e.g. {@code x} or {@code Integer}).

– For code example (e.g. {@code new Integer(Integer.parseInt(s))}).

Here is a list of additional rules for methods:

• The first sentence starts with the third person (as if there is This method before).

• All parameters and returned values must be described.

3.10. Training Courses 1430

https://www.oracle.com/technetwork/java/javase/documentation/index-137868.html

MicroEJ Documentation,

• Put as much as possible information in the description, keep @param and @return minimal.

• Start @param with a lower case and usually with the or a.

• Start @return with a lower case as if the sentence starts with Returns.

• Avoid naming parameters anywhere other than in @param . If the parameter is renamed after-
ward, the comment is not changed automatically. Prefer using the given xxx.

Code Convention

Official documentation: https://www.oracle.com/java/technologies/javase/
codeconventions-introduction.html

Class Declaration

The parts of a class or interface declaration must appear in the order suggested by the Code
Convention for the Java Programming Language:

• Constants.

• Class (static) fields.

• Instance fields.

• Constructors

• Methods

Fields Order

For a better readability, the fields (class and instance) must be ordered by scope:

1. public

2. protected

3. package

4. private

Methods Order

It is recommended to group related methods together. It helps for maintenance:

• when searching for a bug on a specific feature,

• when refactoring a class into several ones.

3.10. Training Courses 1431

https://www.oracle.com/java/technologies/javase/codeconventions-introduction.html
https://www.oracle.com/java/technologies/javase/codeconventions-introduction.html

MicroEJ Documentation,

Modifiers Order

Class and member modifiers, when present, appear in the order recommended by the Java
Language Specification:

public protected private abstract default static final transient volatile synchronized native strictfp

Code Style and Formatting

MicroEJ defines a formatting profile for .java files, which is automatically set upwhen creating
a newModule Project Skeleton.

Note: MicroEJ SDK automatically applies formatting when a .java file is saved. It is also possible to manually
apply formatting on specific files:

• In Package Explorer , select the desired files, folders or projects,

• then go to Source > Format . The processed files must not have any warning or error.

Here is the list of formatting rules included in this profile:

• Indentation is done with 1 tab.

• Braces are mandatory with if , else , for , do , and while statements, even when the body is
empty or contains only a single statement.

• Braces follow the Kernighan and Ritchie style (Egyptian brackets) described below:

– No line break before the opening brace.

– Line break after the opening brace.

– Line break before the closing brace.

– Line break after the closing brace, only if that brace terminates a statement or terminates the
body of a method, constructor, or named class. For example, there is no line break after the
brace if it is followed by else or a comma.

• One statement per line.

• Let the formatter automatically wraps your code when a statement needs to be wrapped.

Here is a list of additional formatting rules that are not automatically applied:

• Avoid committing commented code (other than to explain an optimization).

• All methods of an interface are public. There is no need to specify the visibility (easier to read).

Note: Most of these rules are checked by Code Analysis with SonarQube™ .

3.10. Training Courses 1432

MicroEJ Documentation,

Best Practices

This section describes rules made of best practices, well-known restrictions of the Java Pro-
gramming Language, and more generally Object Oriented paradigm. Due to the resource con-
straints related to CPU, RAM, or FLASH usage, some Java best practices can be counterproduc-
tive when used in an embedded software development context. This section also exists to dis-
cuss such limitations. Be also aware that there is no absolute truth when talking about these
limitations, you should keep in mind that depending on your hardware somemay apply some
may not.

Common Pitfalls

• Object.equals(Object) and Object.hashCode() methods must be overridden in pairs. See Equals and Hash-
code.

• Do not assign fields in field declaration but in the constructor.

• Do not use non-final method inside the constructor.

• Do not overburden the constructor with logic.

• Do not directly store an array given by parameter.

• Save object reference from a field to a local before using it (see Local Extraction).

Simplify Maintenance

• Extract constants instead of using magic numbers.

• Use parenthesis for complex operation series; it simplifies the understanding of operator prior-
ities.

• Write short lines. This can be achieved by extracting locals (see Local Extraction).

• Use a limited number of parameters in methods (or perhaps a new type is needed).

• Create small methods with little complexity. When a method gets too complex, it should be
split.

• Use + operator only for single-line string concatenation. Use an explicit StringBuilder other-
wise.

• Use component-oriented architecture to separate concerns. If a class is intended to be instan-
tiated using Class.newInstance(), add a default constructor (without parameters).

Basic Optimizations

• Avoid explicitly initializing fields to 0 or null , because they are zero-initialized by the runtime.
A //VM_DONE comment can be written to understand the optimization.

• Avoid using built-in thread safe types (Vector, Hashtable, StringBuffer, etc.). Usually synchro-
nization has to be done at a higher level.

• Avoid serializing/deserializing data from byte arrays using manual bitwise operations, use
ByteArray utility methods instead.

3.10. Training Courses 1433

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Object.html#equals-java.lang.Object-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Object.html#hashCode--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/StringBuilder.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#newInstance--
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/Vector.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/Hashtable.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/StringBuffer.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/ByteArray.html

MicroEJ Documentation,

Local Extraction

Local extraction consists of storing the result of an expression before using it, for example:

Object myLocale = this.myField;
if (myLocale != null) {
myLocale.myMethod();

}

It improves the Java code in many ways:

• self documentation: gives a name to a computed result.

• performance andmemory footprint: avoids repeatedaccess to sameelements andextract loop
invariants.

• thread safety: helps to avoid synchronization issues or falling into unwanted race conditions.

• code pattern detection: helps automated tools such as Null Analysis.

Equals and Hashcode

The purpose of these methods is to uniquely and consistently identify objects. The most com-
monuseof thesemethods is to compare instances in collections (list or set elements,mapkeys,
etc.).

The Object.equals(Object) method implements an equivalence relation (defined in the
Javadoc) with the following properties:

• It is reflexive: for any reference value x, x.equals(x) must return true .

• It is symmetric: for any reference values x and y, x.equals(y) must return true if and only if
y.equals(x) returns true .

• It is transitive: for any reference values x, y, and z, if x.equals(y) returns true and y.equals(z)
returns true , then x.equals(z) must return true .

• It is consistent: for any reference values x and y, multiple invocations of x.equals(y) consis-
tently return true or consistently return false , provided no information used in equals com-
parisons on the object is modified.

• For any non-null reference value x, x.equals(null) must return false .

Avoid overriding the equals(Object) method in a subclass of a class that already overrides it; it
could break the contract above. See Effective Java book by Joshua Bloch for more information.

If the equals(Object) method is implemented, the hashCode() method must also be imple-
mented. The hashCode() method follows these rules (defined in the Javadoc):

• It must consistently return the same integer when invoked several times.

• If two objects are equal according to the equals(Object) method, then calling the hashCode()
method on each of the two objects must produce the same integer result.

• In the same way, it should return distinct integers for distinct objects.

The equals(Object) method is written that way:

• Compare the argument with this using the == operator. If both are equals, return true . This
test is for performance purposes, so it is optional and may be removed if the object has a few
fields.

3.10. Training Courses 1434

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Object.html#equals-java.lang.Object-

MicroEJ Documentation,

• Use an instanceof to check if the argument has the correct type. If not, return false . This check
also validates that the argument is not null.

• Cast the argument to the correct type.

• For each field, check if that field is equal to the same field in the casted argument. Return true
if all fields are equal, false otherwise.

@Override
public boolean equals(Object o) {
if (o == this) {
return true;

}
if (!(o instanceof MyClass)) {
return false;

}
MyClass other = (MyClass)o;
return field1 == other.field1 &&
(field2 == null ? other.field2 == null : field2.equals(other.field2));

}

The goal of the Object.hashCode() is to produce different values for unequal objects. A good
hashcode is uniformly distributed amonghashbuckets (for instance inHashMap, HashSet, etc.)

The hashCode() method is written that way:

• Choose any prime number such as 31 (that is large enough so that the number of buckets is
unlikely to be divisible by it) or a bigger one.

• Create a result local intialized with the hashcode of the most significant field.

• For each remaining field, multiply the previous result with the prime plus the hash code of the
field and store it as the result.

• Return the result.

• Only the fields used in equals() must be used.

• Derivative fields, that are computed from fields already included in computing of hashCode()
can be ignored.

• Precomputing the hashcode may be convenient for performance purpose (especially when
fields are final).

• The hashcode can also be lazy initialized the first time it is requested.

Depending on its type, the hash code of a field is:

• Boolean: (f ? 1231 : 1237) .

• Byte, char, short, int: (int) f .

• Long: (int)(f ^ (f >>> 32)) .

• Float: Float.floatToIntBits(f) .

• Double: Double.doubleToLongBits(f) and the same as for a long.

• Object: (f == null ? 0 : f.hashCode()) .

• Array: add the hash codes of all its elements (depending on their type).

• The hashcode of a null field is 0.

3.10. Training Courses 1435

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Object.html#hashCode--

MicroEJ Documentation,

private static final int PRIME = 31;

@Override
public int hashCode() {
int result = field0;
result = PRIME * result + (field1 ? -1 : 1);
result = PRIME * result + (field2 == null ? 0 : field2.hashCode());
return result;

}

• Prefer using “foo”.equals(string) to avoid potential null accesses.

String s = null;
// Null safe
”foo”.equals(s);
// NullPointerException
s.equals(”foo”);

Autoboxing and Numbers

• Avoid using boxed primitives (such as Integer, Byte, Float classes) if not needed. Most of the
time using boxed primitives leads to autoboxing (the process of converting primitives to boxed
primitives and the other way around), which can be CPU intensive due to casting.

// Boxed primitive type example
Integer boxedInteger = Integer.valueOf(5);
// Primitive basetype
int unboxedInteger = boxedInteger.intValue();
// Autoboxing example
List<Integer> integerList = new ArrayList<>();
// Here you ”autobox” the basetype into its corresponding primitive type
list.add(5);

• Prefer 32-bit floats for embedded performance. Double operations are more CPU intensive.

Generic Types

• Donotuseparameterized types as raw types suchasusing theCollectionwithout specifying the
type parameter, prefer using a parameterized type as designed (it ensures type safety, avoid
explicit type casting, and improve code readability). Generic and parameterized types are a
compile time feature, it won’t impact runtime performances andmemory footprint.

// Prefer
ArrayList<Foo> paramList = new ArrayList<>();
paramList.add(new Foo(”I'm foo!”));

// Compiler will trigger an error if you try to add a wrong type here
paramList.add(new Bar(”I'm bar!”));

// Over
ArrayList list = new ArrayList();
list.add(new Foo(”I'm another foo!”));

3.10. Training Courses 1436

MicroEJ Documentation,

Memory Use of Objects

• TheJavabytecode specificationdefines a 32-bit operand stackmodel. Declaring local variables
with types that require fewer bits (byte, short, char) results in additional conversion and casting
instructions during execution. However this is not applicable thedeclaring Java instance fields,
which are optimized for size in the internal Java object structure. The organization of fields in
memory is left to the runtime implementation.

• Operations on local variables in Java are happening using the thread’s own stack (by loading
and storing values onto the stack). Local variables are tied to their scope/context usually their
associated method. Objects are stored in Managed Heap.

• Memory Considerations and Limitations are also documentation pages that describe the mem-
ory use of Objects and the limitations of the MicroEJ runtime.

• You rarely need to trigger a Garbage Collection (GC) manually through System.gc(). A use case
example that would require a manual GC trigger is when you need an accurate memory usage
of the Managed Heap (before a call to Runtime.getRuntime().freeMemory()).

• Prefer using an array for fixed memory usage against dynamic data structure. If you do not
need the convenience of dynamically allocated types, it is most of the timemore efficient (CPU
wise) to use arrays. Dynamical allocated types such as collection types tend to check for size
and havemechanisms to enlarge on-the-fly the data structure. Using an array prevent that but
obviously you keep the runtime checks.

// Prefer
int[] array = new int[size];

// Over (when applicable)
ArrayList<Integer> arrayList = new ArrayList<>();

• Try calibrating data structure by giving it a size at initialization (avoid automatically enlarging
themwhen needed).

// Try initializing the ArrayList with a known size
Collection<String> colors = new ArrayList<String>(500);

• To use the cloning mechanism provided by Java, here are the rules to respect:

– Always implement Cloneable .

– bar.clone() != bar is True .

– bar.clone().getClass() == bar.getClass() is True .

– bar.clone().equals(bar) is True .

– Usedeepcopies for your implementationof .clone() over shallowcopies. Shallowcopiesmean
clones are tied to their original instance.

// Prefer
@Override
protected Object clone() throws CloneNotSupportedException {

Bar newClone = (Bar) super.clone();
newClone.setField(newClone.getField().clone());
return newClone;

}

// Over
(continues on next page)

3.10. Training Courses 1437

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#gc--
https://repository.microej.com/javadoc/microej_5.x/apis/index.html?java/lang/System.html

MicroEJ Documentation,

(continued from previous page)

@Override
protected Object clone() throws CloneNotSupportedException {

return super.clone();
}

• For specific memory size optimizations, see Optimize the Memory Footprint of an Application.

Reflection

• MicroEJ does not embed the fully qualified name of all classes in the final binary. As such you
need to explicitly specify which type names to embed using *.types.list files (see Types).

• Java reflection forces to embed the fully qualified name of Java elements. As such it can
be costly in persistent memory. MicroEJ has made the choice to only allow Class.forName(),
Class.getName(), Class.getSimpleName(), and Class.newInstance() methods from the reflec-
tion framework.

BON Constants

• Consider using BON constants, they allow for sections of code to not be embedded in the final
binary depending on the constant value. Constants are resolved at binary level without hav-
ing to recompile the sources. More information can be found at this Constants section of the
documentation.

• BON constants are preferred to System properties for the following reasons:

– BON constants are compile time checked whereas System properties are often used with run-
time checks.

– System properties allow only String values (meaning String comparisonmost of the time).

– Systemproperties checks do not allow to completely remove the code from the binary (so they
are more costly in codememory space).

Enums

• Avoid Enum types in your code, use int constants when possible. Enum types are costly at run-
time.

Concurrency

• Do not implement applications that expect a behavior of the underlying task scheduler. Make
your synchronization between threads explicit.

• Best pratices for synchronization:

– Small exclusion zones, large exclusion zones usually means thread wait longer.

– Use Executors.

– For the use of explicit synchronization and use of monitors, you can consult this article.

3.10. Training Courses 1438

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#forName-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#getName--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#getSimpleName--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#newInstance--
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/concurrent/Executor.html
https://www.baeldung.com/java-wait-notify

MicroEJ Documentation,

• There is no explicit way to kill a Java thread. A well designed thread that is long running checks
for interrupts at regular intervals and acts on interrupt signals. More information can be found
here.

Serialization

• The “native” serialization of the standard JVM is not implemented byMicroEJ. Thismechanism
has historically introduced numerous compatibility issues and has since been officially dep-
recated. Synchronization and serialization should be handled at the application level, using
structured data formats such as Google Protobuf, FlatBuffers, JSON, CBOR, XML, etc.

– the ByteArray type (see the Javadoc)

– the JSON libraries:

∗ ej.json

∗ org.json.me

– the CBOR library

– the protobuf library

Annotations

• MicroEJ supports only compile-time annotations. The usual annotations we encourage to use
are @Override , the Null Analysis annotations, and @Deprecated .

• Another typical use case of annotations is for declaring JUnit tests. See Test a Project for more
information.

• You can also define your custom annotations in conjonction with add-on processors.

Polymorphism, Inheritance, and Interfaces

• Prefer interfaces to abstract classes for the following reasons:

– it easily integrates with existing classes, add the implements to existing classes, it is harder to
do with abstract classes,

– interfaces allow the easy notion of mixin,

– interfaces allow for the creation nonhierarchical types.

• The SOAR tries to make method calls direct as much as it can, see Method Devirtualization for
more information.

3.10. Training Courses 1439

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Thread.html#interrupt--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/ByteArray.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/json/package-summary.html
https://repository.microej.com/javadoc/microej_5.x/apis/org/json/me/package-summary.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/cbor/package-summary.html
https://repository.microej.com/javadoc/microej_5.x/apis/com/google/protobuf/package-summary.html
https://en.wikipedia.org/wiki/Mixin

MicroEJ Documentation,

Exceptions

Here are in no particular order best pratices aroundmanaging exceptions in Java:

• Use existing exceptions for your API, e.g., there is no need to create a
MyModelOptionException when IllegalArgumentException exists.

• Use checked exceptions for recoverable errors, use unchecked exceptions for programming er-
rors or code violations.

– Checked exceptions allows to complete your API with its exceptional conditions.

– Unchecked exceptions are throwables such as errors and runtime exceptions, they usually indi-
cate a violationof some fundamental rules of Java (such as ArrayIndexOutOfBoundsException).

– It is a good pratice to have your custom unchecked exceptions to extend RuntimeException.

– Do not use unchecked exceptions to not be bothered using throws in your methods.

• If you want an “undying” thread, you should catch all Throwable.

• Avoid exception masking (e.g., doing nothing in a catch clause).

// Do not do this
try{
// Some code causing an Exception

} catch (Exception e){
// You should do something here

}

//Prefer
try{
// Some code causing an Exception

} catch (Exception e){
// You could do log it
logger.log(Level.SEVERE, ”Severe error message”);
// or you could rethrow it, by tweaking the exceptional type
throw new MyException(e);

}

• It is a good practice to set your custom Thread.UncaughtExceptionHandler to improve the ro-
bustness of your application. It could set per thread or at application level.

public class MyHandler implements Thread.UncaughtExceptionHandler {

public void uncaughtException(Thread thread, Throwable e) {
// Process what to do
logger.log(Level.SEVERE, ”Uncaught exception: ” + e.getMessage());
e.printStackTrace();

}

}

• Automatically close resources using try-with-resources.

• For more information on Exception as well as a hierarchy of common exceptions please read
this article.

3.10. Training Courses 1440

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/IllegalArgumentException.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/ArrayIndexOutOfBoundsException.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/RuntimeException.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Throwable.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Thread.UncaughtExceptionHandler.html
https://rollbar.com/blog/java-exceptions-hierarchy-explained/

MicroEJ Documentation,

Data Encapsulation and Fields

• Keep your fields private by default.

• Provide field getters and setters when needed. - Do not directly return an internal array or an
internal non-immutableObject. Once returned the caller couldmodify “your” instancewithout
warning or synchronization.

• Use final for public basetype fields because:

– By default it forces fields to be read-only.

– It ensures thread safety.

– It forces you to consider if the field should have right access and communicate intent to other
developers.

Native Interfaces

• Several mechanisms exist to communicate between managed and native worlds. Find more
information at Native Interface Mechanisms.

Usage of Inner Classes

• Prefer static inner classes when needed because there is a performance impact on accessing
the outer class instance.

• Non static inner classes keep a reference to an instance of the outer class.

public class OuterClass {

// Avoid non-static inner class (an instance of this class is stored in the outer class)
private class InnerClass1 {

public void message() {
System.out.println(”This is a non-static inner class.”);

}
}

// Prefer static inner class (the instances are shared among all instances of OuterClass)
public static class InnerClass2 {

public void message() {
System.out.println(”This is a static inner class.”);

}
}

}

• Prefer short inner classes for readability (if your inner class gets too complex it surely deserves
its own file).

3.10. Training Courses 1441

MicroEJ Documentation,

Usage of Clinits

• The clinit order is done statically by the SOAR before the execution, as such clinits shall be lim-
ited to class internal constant initialization, with as less as possible dependency. Class Initial-
ization Code describes howMicroEJ deals with class initialization.

About Limitations

• For a deeper look atwhat is allowed interms of numbers fields ormethods in a class, maximum
number of threads andmore: please consult Limitations.

Inlining

• For better CPU performance at runtime, the SOAR implements some inlining techniques more
information atMethod Inlining.

Binary creation from classpath

• Not all files found in the classpath are embedded in a MicroEJ Application, to manage embed-
ded resources consult Application Resources.

• In the samephilosophy the SOARdoes not embed every unused types from the classpath in the
final binary. More information atMicroEJ Classpath.

• The SOAR also strips the unusedmethods from the code.

Immutables and Immortals

• MICROEJ VEE defines two additional categories of objects: Immutables (objects that cannot
change) and Immortals (objects that cannot be garbage-collected). More information below.

– Persistent Immutable Objects

– Immortal Objects

Loop Invariants

• Avoid unnecessary operations in loop (e.g., accessing a Collection size if not changing, access-
ing fields, etc.), consider using primitive types for loop variables, andminimize object creation.

// Prefer␣
→˓”caching” class fields in a local variable when it does not depend on the loop operations
int localNumberToUse = this.numberToUse;
for (int i = 0; i < 10000; i++) {

result = thingsToMultiply * localNumberToUse
}

// Prefer accessing Collection size outside of a loop
Collection<String> colors = new ArrayList<>();
colors.add(”Red”);
colors.add(”Green”);

(continues on next page)

3.10. Training Courses 1442

MicroEJ Documentation,

(continued from previous page)

colors.add(”Blue”);

// Retrieve the size only once
int size = colors.size();
for (String color : colors) {

// Cheaper access for each loop
System.out.println(color + ” is a color in an ArrayList of ” + size + ” colors.”);

}

• A foreach loop is a shorter way to write a loop over collections or arrays. It eliminates the need
for explicit indexing and provides better readability.

int[] scores = {90, 85, 95, 88};

for (int score : scores) {
System.out.println(”Score: ” + score);

}

Use of I/O Classes

• Be mindful of the use of IO classes and their buffered version. While buffered types such as
BufferedInputStream are classes that improve the performance of input/output operations by
reducing the number of I/O calls, these types do it by consuming more memory.

Logging

• Use BON constants to enable and disable logging traces in your code to conserve ROM space,
see Constants.

• Use Logger over System.out.println.

Array Copy

• When doing memory transfers on arrays use System.arraycopy() when possible as it is opti-
mized to run nearly as fast as a native memmove .

Switch Statements

• Try to optimize your switch statement with contiguous case values resulting in a faster imple-
mentation.

• The switch/case statements are generated by the Java compiler in two ways depending on the
cases density. Prefer declaring consecutive cases (table_switch) for performance (O(1)) and
slightly smaller codememory footprint instead of lookup_switch (O(log N)).

3.10. Training Courses 1443

https://repository.microej.com/javadoc/microej_5.x/apis/java/io/BufferedInputStream.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#arraycopy-java.lang.Object-int-java.lang.Object-int-int-

MicroEJ Documentation,

Related Tools

This section points to tools aimed at helping to improve code quality.

Unit Testing

Here is a list of rules when writing tests (see Application Testing):

• Prefer black-box tests (with a maximum coverage).

• Here is the test packages naming convention:

– Suffix package with .test for black-box tests.

– Use the same package for white-box tests (allow to use classes with package visibility).

Code Analysis with SonarQube™

SonarQube is an open source platform for continuous inspection of code quality. SonarQube
offers reportsonduplicatedcode, coding standards, unit tests, codecoverage, codecomplexity,
potential bugs, comments, and architecture.

To set it upon yourMicroEJ applicationproject, please refer to this documentation. It describes
the following steps:

• How to run a SonarQube server locally.

• How to run an analysis using a dedicated script.

• How to run an analysis during a module build.

Code Instrumentation

Wehave tools allow the profiling and logging of Java code behavior, please refer to Code Instru-
mentation for Logging.

Sandboxed Application Development

Description

In this training, you will get an introduction to Application development in a Multi-Sandbox
context.

What you will learn:

• Sandboxed Applications Concepts: from creation to deployment.

• Inter Application Communication: focus on Shared interface.

3.10. Training Courses 1444

https://github.com/MicroEJ/ExampleTool-Sonar

MicroEJ Documentation,

Intended Audience

This training is designed for developers who want to gain a first understanding of Application
development in a Multi-Sandbox context.

Prerequisites

To get the most out of this training, participants should have access to:

• The STM32F7508-DK Evaluation Kit.

• Amini USB cable.

• Amicro SD card.

• An ethernet cable.

Training Resources

Unit 1: Sandboxed Application Training

This training is provided as a PDF:

MICROEJ SDK 5

MICROEJ SDK 6

•

Coming soon!

Unit 2: Run Demo Sandboxed Application

Run the Demo Sandboxed Application on an Evaluation Kit. This demo showcases the commu-
nication between Sandboxed Applications using the Shared Interfaces API:

MICROEJ SDK 5

MICROEJ SDK 6

• Demo Sandboxed Application

Coming soon!

Optimize the Memory Footprint of an Application

Description

This training explains how to analyze thememory footprint of an application andprovides a set
of common rules aimed at optimizing both ROM and RAM footprint.

3.10. Training Courses 1445

https://www.st.com/en/evaluation-tools/stm32f7508-dk.html
https://github.com/MicroEJ/Demo-Sandboxed-Applications/tree/1.0.0

MicroEJ Documentation,

Intended Audience

This training is designed for Java engineers and Firmware integrators who want to execute a
MicroEJ Application on amemory-constrained device.

Prerequisites

To get the most out of this training, participants should have a good knowledge of Java pro-
gramming language.

Introduction

Usually, the application development is already started when the developer starts thinking
about its memory footprint. Before jumping into code optimizations, it is recommended to list
every area of improvement and estimate for each area how much memory can be saved and
howmuch effort it requires.

Without performing the memory analysis first, the developer might start working on a minor
optimization that takes a lot of effort for little improvements. In contrast, he could work on
a major optimization, allowing faster and bigger improvements. Moreover, each optimization
described hereafter may allow significant memory savings for an application while it may not
be relevant for another application.

How to Analyze the Footprint of an Application

This section explains the process of analyzing the footprint of a MicroEJ Application and the
tools used during the analysis.

Suggested footprint analysis process:

1. Build the MicroEJ Application

2. Analyze SOAR.map with theMemory Map Analyzer

3. Analyze soar/*.xml with an XML editor

4. Link the MicroEJ Application with the BSP

5. Analyze the map file generated by the third-party linker with a text editor

Footprint analysis tools:

• The Memory Map Analyzer allows to analyze the memory consumption of different features in
the RAM and ROM.

• The Heap Dumper & Heap Analyzer allow to understand the contents of the Managed heap and
find problems such as memory leaks.

• The API DependencyDiscoverer allows to analyze a piece of code to detect all its dependencies.

3.10. Training Courses 1446

https://github.com/MicroEJ/Tool-DependencyDiscoverer

MicroEJ Documentation,

How to Analyze the Files Generated by the MicroEJ Linker

The MicroEJ Application linker generates files useful for footprint analysis, such as the SOAR
map file and the SOAR information file. To understand how to read these files, please refer to
the SOAR Output Files documentation.

How to Analyze a Map File Generated by a Third-Party Linker

A <firmware>.map file is generated by the C toolchain after linking the MicroEJ Application
with the BSP. This section explains how a map file generated by GCC is structured and how to
browse it. The structure is not the same on every compiler, but it is often similar.

File Structure

This file is composed of 5 parts:

• Archive member included to satisfy reference by file . Each entry contains two lines. The first line contains
the referenced archive file location and the compilation unit. The second line contains the compilation unit
referencing the archive and the symbol called.

• Allocating common symbols . Eachentry contains thenameofaglobal variable, its size, and thecompilation
unit where it is defined.

• Discarded input sections . Each entry contains the name and the size of a section that has not been embed-
ded in the firmware.

• Memory Configuration . Each entry contains the name of a memory, its address, its size, and its attributes.

• Linker script and memory map . Each entry contains a linewith the name and compilation unit of a section
and one line per symbol defined in this section. Each of these lines contains the name, the address, and the
size of the symbol.

Finding the Size of a Section or Symbol

For example, to know the thread stacks’ size, search for the .bss.vm.stacks.java section in the
Linker script and memory map part. The size associated with the compilation unit is the size
used by the thread stacks.

The following snippet shows that the .bss.vm.stacks.java section takes 0x800 bytes.

.bss.vm.stacks.java
0x20014070␣

→˓ 0x800 ..\..\..\..\..\..\..\.microej\CM4hardfp_GCC48\application\microejapp.o
0x20014070 __icetea___6bss_6vm_6stacks_6java$$Base
0x20014870 __icetea___6bss_6vm_6stacks_6java$$Limit

See Core Engine Link documentation for more information on Core Engine sections.

3.10. Training Courses 1447

MicroEJ Documentation,

How to Reduce the Image Size of an Application

Generic coding rules can be found in the following training: MicroEJ Java Programming Prac-
tices.

This sectionprovides additional coding rules andgoodpractices to reduce the image size (ROM)
of an application.

Application Resources

Resources such as images and fonts take a lot of memory. For every .list file, make sure that it
does not embed any unused resource.

Only resources declared in a .list file will be embedded. Other resources available in the appli-
cation classpathwill not be embedded andwill not have an impact on the application footprint.

Fonts

Default Font

By default, in aMicroEJ Platform configurationproject, a so-called system font is declared in the
microui.xml file.

When generating the MicroEJ Platform, this file is copied from the configuration project to the
actual MicroEJ Platformproject. It will later be converted to binary format and linkedwith your
MicroEJ Application, even if you use fonts different from the system font.

Therefore, you can comment the system font from the microui.xml file to reduce the ROM
footprint of your MicroEJ Application if this one does not rely on the system font. Note that you
will need to rebuild theMicroEJ Platform and then the application to benefit from the footprint
reduction.

See the Display Element section of the Static Initialization documentation formore information
on system fonts.

Character Ranges

When creating a font, you can reduce the list of characters embedded in the font at several
development stages:

• On font creation: see theRemovingUnusedCharacters sectionof FontDesigner documentation.

• On application build: see the Fonts section ofMicroEJ Classpath documentation.

3.10. Training Courses 1448

MicroEJ Documentation,

Pixel Transparency

You can also make sure that the BPP encoding used to achieve transparency for your fonts do
not exceed the following values:

• The pixel depth of your display device.

• The required alpha level for a good rendering of your font in the application.

See the Fonts section of MicroEJ Classpath documentation for more information on how to
achieve that.

External Storage

To save storage on internal flash, you can access fonts from an external storage device.

See the External Resources section of the Font Generator documentation for more information
on how to achieve that.

Internationalization Data

Implementation

MicroEJ provides the Native Language Support (NLS) library to handle internationalization.

See https://github.com/MicroEJ/Example-NLS for an example of the use of the NLS library.

External Storage

The default NLS implementation fetches text resources from internal flash, but you can replace
it with your own implementation to fetch them from another location.

See External Resources Loader documentation for additional information on external resources
management.

Images

Encoding

If you are tight on ROM but have enough RAM and CPU power to decode PNG images on the fly,
consider storing your images as PNG resources. If you are in the opposite configuration (lots of
ROM, but little RAM and CPU power), consider storing your images in raw format.

See Image Generator documentation for more information on how to achieve that.

3.10. Training Courses 1449

https://github.com/MicroEJ/Example-NLS

MicroEJ Documentation,

Color Depth (BPP)

Make sure to use images with a color depth not exceeding the one of your display to avoid the
following issues:

• Waste of memory.

• Differences between the rendering on the target device and the original image resource.

External Storage

Tosave storageon internal flash, theapplication canaccess the images fromanexternal storage
device.

See External Resources Loader documentation for more information on how to achieve that.

Application Code

The following application code guidelines are recommended in order to minimize the size of
the application:

• Check libraries versions and changelogs regularly. Latest versions may bemore optimized.

• Avoid manipulating String objects:

– For example, prefer using integers to represent IDs.

– Avoid overridingObject.toString() for debugging purposes. Thismethodwill always be embed-
ded even if it is not called explicitly.

– Avoid using the logging library or System.out.println() , use the trace library or themessage
library instead. The logging library uses strings, while the trace and message libraries use
integer-based error codes.

– Avoid using the string concatenation operator (+), use an explicit StringBuilder instead. The
code generated by the + operator is not optimal and is bigger than when using manual
StringBuilder operations.

• Avoid manipulating wrappers such as Integer and Long objects, use primitive types instead.
Such objects have to be allocated in Managed heap memory and require additional code for
boxing and unboxing.

• AvoiddeclaringJavaEnumerations (enum), declare compile-timeconstantsofprimitives types
instead (e.g. static final int I = 0;). The Java compiler creates an Enumobject in theManaged
heap for each enumeration item, as well as complex class initialization code.

• Avoid using the service library, use singletons or Constants.getClass() instead. The service li-
brary requires embedding class reflection methods and the type names of both interfaces and
implementations.

• Avoid using the Java Collections Framework. This OpenJDK standard library has not been de-
signed for memory constrained devices.

– Use raw arrays instead of List objects. The ArrayTools class provides utility methods for com-
mon array operations.

– Use PackedMap objects instead of Map objects. It provides similar APIs and features with lower
Managed heap usage.

3.10. Training Courses 1450

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/String.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Object.html#toString--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/StringBuilder.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Integer.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Long.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Enum.html
https://repository.microej.com/modules/ej/library/runtime/service/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Constants.html#getClass-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/List.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/basictool/ArrayTools.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/basictool/map/PackedMap.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/Map.html

MicroEJ Documentation,

• Use ej.bon.Timer instead of deprecated java.util.Timer . When both class are used, almost all
the code is embedded twice.

• Use BON constants in the following cases if possible:

– whenwritingdebugcodeoroptional code, use the if (Constants.getBoolean()) { ... } pattern.
That way, the optional code will not be embedded in the production firmware if the constant is
set to false .

– replace the use of System Properties by BON constants when both keys and values are known
at compile-time. System Properties should be reserved for runtime lookup. Each property re-
quires embedding its key and its value as intern strings.

• Check for useless or duplicate synchronization operations in call stacks, in order reduce the
usage of synchronized statements. Each statement generates additional code to acquire and
release the monitor.

• Avoid declaring exit statements (break , continue , throw or return) that jump out of a
synchronized block. At each exit point, additional code is generated to release the monitor
properly.

• Avoid declaring exit statements (break , continue , throw or return) that jump out of a try/
finally block. At each exit point, the code of the finally block is generated (duplicated). This
also applies on every try-with-resources block since a finally block is generated to close the
resource properly.

• Avoid overriding Object.equals(Object) and Object.hashCode(), use == operator instead if it
is sufficient. The correct implementation of these methods requires significant code.

• Avoid calling equals() and hashCode() methods directly on Object references. Otherwise,
the method of every embedded class which overrides the method will be embedded.

• Avoid creating inlinedanonymousobjects (suchas new Runnable() { ... } objects), implement
the interface in a existing class instead. Indeed, a new class is created for each inlined object.
Moreover, each enclosed final variable is added as a field of this anonymous class.

• Avoid accessing a private field of a nested class. The Java compiler will generate a dedicated
method instead of a direct field access. This method is called synthetic, and is identified by its
name prefix: access$.

• Replace constant arrays and objects initialization in static final fields by immutables objects.
Indeed, initializing objects dynamically generates code which takes significant ROM and re-
quires execution time.

• Check if some features available in software libraries are not already provided by the device
hardware. For example, avoid using java.util.Calendar (full Gregorian calendar implementa-
tion) if the application only requires basic datemanipulation provided by the internal real-time
clock (RTC).

MicroEJ Platform Configuration

The following configuration guidelines are recommended in order to minimize the size of the
application:

• Check MicroEJ Architecture and Packs versions and changelogs regularly. Latest versions may
bemore optimized.

• Configure the Platform to use the tiny capability of the Core Engine. It reduces application code
size by ~20%, provided that the application code size is lower than 256KB (resources excluded).

3.10. Training Courses 1451

https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Timer.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Object.html#equals-java.lang.Object-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Object.html#hashCode--
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/Calendar.html

MicroEJ Documentation,

• Disable unnecessary modules in the .platform file. For example, disable the Image PNG
Decoder module if the application does not load PNG images at runtime.

• Don’t embed unnecessary pixel conversion algorithms. This can save up to ~8KB of code size
but it requires knowing the format of the resources used in the application.

• Select your embedded C compilation toolchain with care, prefer one which will allow low ROM
footprint with optimal performance. Check the compiler options:

– Check documentation for available optimization options (-Os onGCC). These options can also
be overridden per source file.

– Separate each function and data resource in a dedicated section (-ffunction-sections
-fdata-sections on GCC).

• Check the linker optimization options. The linker command line can be found in the project
settings, and it may be printed during link.

– Only embed necessary sections (--gc-sections option on GCC/LD).

– Some functions, such as the printf function, can be configured to only implement a subset of
the public API (for example, remove -u _printf_float option on GCC/LD to disable printing
floating point values).

• In themap file generated by the third-party linker, check that every embedded function is nec-
essary. For example, hardware timers or HAL componentsmay be initialized in the BSP but not
used in the application. Also, debug functions such as SystemViewmay be disconnected when
building the production firmware.

Application Configuration

The following application configuration guidelines are recommended in order to minimize the
size of the application:

• Disable class names generation by setting the soar.generate.classnames option to false . Class
names are only required when using Java reflection. In such case, the name of a specific class
will be embedded only if is explicitly required. See Stripping Class Names from an Application
section for more information.

• Remove UTF-8 encoding support by setting the cldc.encoding.utf8.included option to false .
The default encoding (ISO-8859-1) is enough for most applications.

• Remove SecurityManager checks by setting the com.microej.library.edc.securitymanager.
enabled option to false . This feature is only useful for Multi-Sandbox firmwares.

For more information on how to set an option, please refer to the Defining an Option with SDK
5 or lower section.

Stripping Class Names from an Application

By default, when a Java class is used, its name is embedded too. A class is usedwhen one of its
methods is called, for example. Embedding thenameof every class is convenientwhen starting
anewMicroEJApplication, but it is rarelynecessaryand takesa lotofROM.This sectionexplains
how to embed only the required class names of an application.

3.10. Training Courses 1452

MicroEJ Documentation,

Removing All Class Names

First, the default behavior is inverted by defining the Application option soar.generate.
classnames to false .

For more information on how to set an option, please refer to the Defining an Option with SDK
5 or lower section.

Listing Required Class Names

Someclass namesmaybe requiredbyanapplication toworkproperly. These class namesmust
be explicitly specified in a *.types.list file.

The code of the application must be checked for all uses of the Class.forName(), Class.get-
Name() and Class.getSimpleName()methods. For each of thesemethod calls, if the class name
if absolutely required and can not be known at compile-time, add it to a *.types.list file. Oth-
erwise, remove the use of the class name.

The following sections illustrates this on concrete use cases.

Case of Service Library

The ej.service.ServiceLoader class of the service library is a dependency injection facility. It can
be used to dynamically retrieve the implementation of a service.

The assignment between a service API and its implementation is done in *.properties.list files.
Both the serviceclassnameand the implementationclassnamemustbeembedded (i.e., added
in a *.types.list file).

For example:

example.properties.list
com.example.MyService=com.example.MyServiceImpl

example.types.list
com.example.MyService
com.example.MyServiceImpl

Case of Properties Loading

Some properties may be loaded by using the name of a class to determine the full name of the
property. For example:

Integer.getInteger(MyClass.class.getName() + ”.myproperty”);

In this case, it can be replaced with the actual string. For example:

Integer.getInteger(”com.example.MyClass.myproperty”);

3.10. Training Courses 1453

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#forName-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#getName--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#getName--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#getSimpleName--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/service/ServiceLoader.html
https://repository.microej.com/modules/ej/library/runtime/service/

MicroEJ Documentation,

Case of Logger and Other Debugging Facilities

Logging mechanisms usually display the name of the classes in traces. It is not necessary to
embed these class names. The Stack Trace Reader can decipher the output.

How to Reduce the Runtime Size of an Application

Youcan findgeneric coding rules in the following training: MicroEJJavaProgrammingPractices.

This section provides additional coding rules and good practices in order to reduce the runtime
size (RAM) of an application.

Application Code

The following application code guidelines are recommended in order to minimize the size of
the application:

• Avoid using the default constructor of collection objects, use constructors that allow to set the
initial capacity. For example, use the ArrayList(int initialCapacity) constructor instead of the
default one which will allocate space for ten elements.

• Adjust the type of int fields (32 bits) according to the expected range of values being stored
(byte for 8 bits signed integers, short for 16 bits signed integers, char for 16 bits unsigned
integers).

• When designing a generic and reusable component, allow the user to configure the size of any
buffer allocated internally (either at runtime using a constructor parameter, or globally using a
BON constant). That way, the user can select the optimal buffer size depending on his use-case
and avoid wasting memory.

• Avoid allocating immortal arrays to call native methods, use regular arrays instead. Immortal
arrays are never reclaimed and they are not necessary anymore when calling a native method.

• Reduce the maximum number of parallel threads. Each thread requires a dedicated internal
structure and one or more stack blocks.

– Avoid creating threads on the fly for asynchronous execution, use shared thread instances in-
stead (ej.bon.Timer, Executor, MicroUI.callSerially(Runnable), …).

• When designing Graphical User Interface:

– Avoid creating mutable images (BufferedImage instances) to draw in them and render them
later, render graphics directly on the display instead. Mutable images require allocating a lot of
memory from the images heap.

– Make sure that your Widget hierarchy is as flat as possible (avoid any unnecessary Container).
Deep widget hierarchies take more memory and can reduce performance.

3.10. Training Courses 1454

https://repository.microej.com/javadoc/microej_5.x/apis/java/util/ArrayList.html#ArrayList-int-
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/ArrayList.html#ArrayList--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Timer.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/concurrent/Executor.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/MicroUI.html#callSerially-java.lang.Runnable-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/BufferedImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Container.html

MicroEJ Documentation,

MicroEJ Platform Configuration

The following configuration guidelines are recommended in order tominimize the runtime size
of the application:

• Check the size of the stack of each RTOS task. For example, 1.0KB may be enough for the Core
Engine task but it can be increased to allow deep native calls. See Debugging Stack Overflows
section for more information.

• Check the size of the heap allocated by the RTOS (for example, configTOTAL_HEAP_SIZE
for FreeRTOS).

• Check that the size of the back buffer matches the size of the display. Use a partial buffer if the
back buffer does not fit in the RAM.

Debugging Stack Overflows

If the size youallocate for a givenRTOS task is too small, a stackoverflowwill occur. Tobeaware
of stack overflows, proceed with the following steps when using FreeRTOS:

1. Enable the stack overflow check in FreeRTOS.h :

#define configCHECK_FOR_STACK_OVERFLOW 1

2. Define the hook function in any file of your project (main.c for example):

void vApplicationStackOverflowHook(TaskHandle_t xTask, signed char *pcTaskName) { }

3. Add a new breakpoint inside this function

4. When a stack overflow occurs, the execution will stop at this breakpoint

For further information, please refer to the FreeRTOS documentation.

Application Configuration

The following application configuration guidelines are recommended in order to minimize the
size of the application.

For more information on how to set an option, please refer to the Defining an Option with SDK
5 or lower documentation.

Managed heap and Immortals Heap

• Configure the immortals heapoption to be as small as possible. You can get theminimumvalue
by calling Immortals.freeMemory() after the creation of all the immortal objects.

• Configure the Managed heap option to fit the needs of the application. You can get it by using
the Heap Usage Monitoring Tool.

3.10. Training Courses 1455

https://www.freertos.org/Stacks-and-stack-overflow-checking.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Immortals.html

MicroEJ Documentation,

Thread Stacks

• Configure the maximum number of threads option. This number can be known accurately by
counting in the code how many Thread and Timer objects may run concurrently. You can
call Thread.getAllStackTraces() or Thread.activeCount() to know what threads are running at a
given moment.

• Configure the number of allocated thread stack blocks option. This can be done empirically
by starting with a low number of blocks and increasing this number as long as the application
throws a StackOverflowError .

• Configure themaximum number of blocks per thread option. The best choice is to set it to the
number of blocks required by the most greedy thread. Another acceptable option is to set it to
the same value as the total number of allocated blocks.

• Configure themaximum number of monitors per thread option. This number can be known ac-
curately by counting the number of concurrent synchronized blocks. This can also be done
empirically by startingwith a lownumber ofmonitors and increasing this number as long as no
exception occurs. Either way, it is recommended to set a slightly higher value than calculated.

Core Engine Dump

The LLMJVM_dump() function declared in LLMJVM.h may be called to print information
on alive threads such as their current and maximum stack block usage. This function may be
called from the application by exposing it in a native function. See Dump the State of the Core
Engine section for usage.

More specifically, the Peak java threads count value printed in the dump can be used to
configure the maximum number of threads. The max_java_stack and current_java_stack
values printed for each thread can be used to configure the number of stack blocks.

MicroUI Images Heap

• Configure the images heap to be as small as possible. You can compute the optimal size empir-
ically. It can also be calculated accurately by adding the size of every image that may be stored
in the images heap at a given moment. One way of doing this is to inspect every occurrence of
BufferedImage() allocations and ResourceImage usage of loadImage() methods.

Application Testing

Description

In this training, you will learn the basics to develop and run unit tests on an application using
the JUnit framework.

What you will learn:

• Basics of JUnit.

• How to create and run JUnit tests for an Add-on Library.

3.10. Training Courses 1456

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Thread.html#getAllStackTraces--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Thread.html#activeCount--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/BufferedImage.html#BufferedImage-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/ResourceImage.html

MicroEJ Documentation,

Intended Audience

This training is designed for Application developers who want to automate their tests.

Prerequisites

To get the most out of this training, participants should have:

• A basic knowledge of Java programming language.

• Access to the NXP i.MX RT1170 Evaluation Kit.

Training Resources

This training is provided as a PDF:

• (for MICROEJ SDK 6)

3.10.3 For VEE Developers

VEE Port Creation for a Custom Device

Description

In this training, you will follow the typical steps followed by a Firmware developer integrating
MICROEJ VEE on a target device.

What you will do:

• Get a running “HelloWorld” in C.

• Install a MicroEJ Architecture that matches the target device/RTOS/toolchain.

• Create a VEE Port project.

• Integrate MICROEJ VEE in the BSP / RTOS.

• Create and Run a HelloWorld Application.

• Create Build and Run Scripts.

No Evaluation kit is required to follow this training. Everything is emulated on the developer’s
PC.

Intended Audience

This training is designed for developers whowant to gain a first understanding of MICROEJ VEE
Port flow.

3.10. Training Courses 1457

https://www.nxp.com/design/design-center/development-boards-and-designs/i-mx-evaluation-and-development-boards/i-mx-rt1170-evaluation-kit:MIMXRT1170-EVKB

MicroEJ Documentation,

Prerequisites

To get the most out of this training, participants should have:

• A basic knowledge of C programming language.

• An experience in embedded software development.

Training Resources

Create a MicroEJ Firmware From Scratch

This training explains how to create aMicroEJ Firmware from scratch. It goes trough the typical
steps followed by a Firmware developer integrating MicroEJ with a C Board Support Package
(BSP) for a target device.

In this training, the target device is a a LuminaryMicro Stellaris. Though this device is no longer
available on the market, it has two advantages:

• The QEMU PC System emulator can emulate the device.

• FreeRTOS provides an official Demo BSP.

Consequently, no board is required to follow this training. Everything is emulated on the de-
veloper’s PC.

The training should take 1 hour to complete (excluding the installation time ofMicroEJ SDK and
Windows Subsystem Linux (WSL)).

Intended Audience

The audience for this document is Firmware engineers who want to understand how MicroEJ
is integrated to a C Board Support Package.

Inaddition, this trainingshouldbeof interest toall developerswishing to familiarize themselves
with the low level components of a MicroEJ Firmware such as: MicroEJ Architecture, MicroEJ
Platform, Low Level API and BSP connection.

Introduction

The following steps are usually followed when starting a new project:

1. Pick a target device (that meets the requirements of the project).

2. Setup a RTOS and a toolchain that support the target device.

3. Adapt the RTOS port if needed.

4. Install aMicroEJ Architecture that matches the target device/RTOS/toolchain.

5. Setup a newMicroEJ Platform connected to the Board Support Package (BSP).

6. Implement Low Level API.

7. Validate the resulting MicroEJ Platform with the Platform Qualification Tools (PQT).

8. Develop theMicroEJ Application.

3.10. Training Courses 1458

https://github.com/microej/VEEPortQualificationTools

MicroEJ Documentation,

This training describes step by step how to go from the FreeRTOS BSP to a MicroEJ Application
that runs on the MicroEJ Platform and prints the classic ”Hello, World!” .

In this training:

• The target device is a Luminary Micro Stellaris which is emulated by QEMU (QEMU Stellaris
boards).

• The RTOS is FreeRTOS and the toolchain is GNU CC fo ARM.

All modifications to FreeRTOS BSP made for this training are available at https://github.com/
MicroEJ/FreeRTOS/tree/tuto-microej-firmware-from-scratch.

Note: The implementation of the Low Level API and their validation with the Platform Qualification Tools (PQT)
will be the topic of another training.

Prerequisites

• MicroEJ SDK 5 from version 5.3.0 to latest (distribution 20.10). Can be downloaded from https:
//repository.microej.com/packages/SDK (tested on MicroEJ SDK distribution 20.10)

• Windows 10 or higher with Windows Subsystem for Linux (WSL). See the installation guide.

• A Linux distribution installed on WSL (Tested on Ubuntu 19.10 eoan and Ubuntu 20.04 focal).

Note: In WSL, use the command lsb_release -a to print the current Ubuntu version.

A code editor such as Visual Studio Code is also recommended to edit BSP files.

Overview

The next sections describe step by step how to build aMicroEJ Firmware that runs aHelloWorld
MicroEJ Application on the emulated device.

The steps to follow are:

1. Setup the development environment (assuming the prerequisites are satisfied).

2. Get a running BSP

3. Build the MicroEJ Platform

4. Create the HelloWorld MicroEJ Application

5. Implement the minimum Low Level API to run the application

This training goes through trials and errors every Firmware developers may encounter. It pro-
vides a solution after each error rather than providing the full solution in one go.

3.10. Training Courses 1459

https://www.qemu.org/docs/master/system/arm/stellaris.html
https://www.qemu.org/docs/master/system/arm/stellaris.html
https://github.com/MicroEJ/FreeRTOS/tree/tuto-microej-firmware-from-scratch
https://github.com/MicroEJ/FreeRTOS/tree/tuto-microej-firmware-from-scratch
https://github.com/microej/VEEPortQualificationTools
https://repository.microej.com/packages/SDK
https://repository.microej.com/packages/SDK
https://repository.microej.com/packages/SDK/20.10/MicroEJ-SDK-Installer-Win64-20.10.exe
https://learn.microsoft.com/en-us/windows/wsl/install

MicroEJ Documentation,

Setup the Development Environment

This section assumes the prerequisites have been properly installed.

In WSL:

1. Update apt’s cache: sudo apt-get update

2. Install qemu-system-arm and GNU CC toolchain for ARM: sudo apt-get install -y
qemu-system-arm gcc-arm-none-eabi build-essential subversion

3. The rest of this trainingwill use the folder src/tuto-from-scratch/ in theWindowshome folder.

4. Create the folder: mkdir -p /mnt/c/Users/${USER}/src/tuto-from-scratch (the -p option
ensures all the directories are created).

5. Go into the folder: cd /mnt/c/Users/${USER}/src/tuto-from-scratch/

6. Clone FreeRTOS and its submodules: git clone -b V10.3.1 --recursive https://github.com/
FreeRTOS/FreeRTOS.git (this may takes some time)

Note: Use the right-click to paste from the Windows clipboard into WSL console. The right-click is also used to
copy from the WSL console into the Windows clipboard.

Get Running BSP

This section presents how to get running BSP based on FreeRTOS that boots on the target de-
vice.

1. Go into the target device sub-project: cd FreeRTOS/FreeRTOS/Demo/
CORTEX_LM3S811_GCC

2. Build the project: make

Ignoring the warnings, the following error appears during the link:

CC hw_include/osram96x16.c
LD gcc/RTOSDemo.axf
arm-none-eabi-ld: section .text.startup LMA [0000000000002b24,
→˓0000000000002c8f] overlaps section .data LMA [0000000000002b24,0000000000002b27]
make: *** [makedefs:191: gcc/RTOSDemo.axf] Error 1

Insert the following fixes in the linker script file named standalone.ld (thanks to http://
roboticravings.blogspot.com/2018/07/freertos-on-cortex-m3-with-qemu.html).

Note: WSLcan start the editor Visual StudioCode. type code . inWSL. . represents the current
directory in Unix.

Listing 44: https://github.com/MicroEJ/FreeRTOS/commit/
48248eae13baebf7df9638cd8da6fbfe1a735a9c

diff --git a/FreeRTOS/Demo/CORTEX_LM3S811_
→˓GCC/standalone.ld b/FreeRTOS/Demo/CORTEX_LM3S811_GCC/standalone.ld
-- a/FreeRTOS/Demo/CORTEX_LM3S811_GCC/standalone.ld
+++ b/FreeRTOS/Demo/CORTEX_LM3S811_GCC/standalone.ld

(continues on next page)

3.10. Training Courses 1460

http://roboticravings.blogspot.com/2018/07/freertos-on-cortex-m3-with-qemu.html
http://roboticravings.blogspot.com/2018/07/freertos-on-cortex-m3-with-qemu.html
https://github.com/MicroEJ/FreeRTOS/commit/48248eae13baebf7df9638cd8da6fbfe1a735a9c
https://github.com/MicroEJ/FreeRTOS/commit/48248eae13baebf7df9638cd8da6fbfe1a735a9c

MicroEJ Documentation,

(continued from previous page)

@@ -42,7 +42,15 @@ SECTIONS
_etext = .;

} > FLASH

- .data : AT (ADDR(.text) + SIZEOF(.text))
+ .ARM.exidx :
+ {
+ *(.ARM.exidx*)
+ *(.gnu.linkonce.armexidx.*)
+ } > FLASH
+
+ _begin_data = .;
+
+ .data : AT (_begin_data)

{
_data = .;
*(vtable)

This is the output of the git diff command. Lines starting with a - should be removed. Lines
starting with a + should be added.

Note: The patch(1) can be used to apply the patch. Assuming WSL shell is in FreeRTOS/
Demo/CORTEX_LM3S811_GCC directory:

1. Install dos2unix utility: sudo apt install dos2unix

2. Convert all files to unix line-ending: find -type f -exec dos2unix {} \;

3. Copy the content of the code block in a file named linker.patch (every lines of the code block
must be copied in the file).

4. Apply the patch: patch -l -p4 < linker.patch .

It is also possible to paste the diff directly into the console:

1. In WSL, invoke patch -l -p4 . The command starts, waiting for input on stdin (the standard
input).

2. Copy the diff and paste it in WSL

3. Press enter

4. Press Ctrl-d Ctrl-d (press the Control key + the letter d twice).

3. Run the build again: make

4. Run the emulator with the generated kernel: qemu-system-arm -M lm3s811evb -nographic
-kernel gcc/RTOSDemo.bin

The following error appears and then nothing:

ssd0303: error: Unknown command: 0x80
ssd0303: error: Unexpected byte 0xe3
ssd0303: error: Unknown command: 0x80
ssd0303: error: Unexpected byte 0xe3
ssd0303: error: Unknown command: 0x80
ssd0303: error: Unexpected byte 0xe3
ssd0303: error: Unknown command: 0x80
ssd0303: error: Unexpected byte 0xe3

(continues on next page)

3.10. Training Courses 1461

MicroEJ Documentation,

(continued from previous page)

ssd0303: error: Unknown command: 0x80
ssd0303: error: Unexpected byte 0xe3
ssd0303: error: Unknown command: 0x80
ssd0303: error: Unexpected byte 0xe3
ssd0303: error: Unknown command: 0x80
ssd0303: error: Unexpected byte 0xe3
ssd0303: error: Unknown command: 0x80
ssd0303: error: Unexpected byte 0xe3
ssd0303: error: Unknown command: 0x80
ssd0303: error: Unexpected byte 0xe3

5. Press Ctrl-a x (press Control + the letter a , release, press x) to the end the QEMU session.
The session ends with QEMU: Terminated .

Note: The errors can be safely ignored. They occur because the OLED controller emulated
receive incorrect commands.

At this point, the target device is successfully booted with the FreeRTOS kernel.

FreeRTOS Hello World

This section describes how to configure the BSP to print text on the QEMU console.

The datasheet of the target device (LM3S811 datasheet) describes how to use the UART device
and an example implementation for QEMU is available here).

Here is the patch that implements putchar(3) and puts(3) and prints Hello World .

Listing 45: https://github.com/MicroEJ/FreeRTOS/commit/
d09ec0f5cbdf69ca97a5ac15f8b905538aa4c61e

diff --git a/FreeRTOS/Demo/
→˓CORTEX_LM3S811_GCC/main.c b/FreeRTOS/Demo/CORTEX_LM3S811_GCC/main.c
-- a/FreeRTOS/Demo/CORTEX_LM3S811_GCC/main.c
+++ b/FreeRTOS/Demo/CORTEX_LM3S811_GCC/main.c
@@ -134,9 +134,25 @@ SemaphoreHandle_t xButtonSemaphore;
QueueHandle_t xPrintQueue;

/*--*/
+#define UART0BASE ((volatile int*) 0x4000C000)
+
+int putchar (int c){
+ (*UART0BASE) = c;
+ return c;
+}
+
+int puts(const char *s) {
+ while (*s) {
+ putchar(*s);
+ s++;
+ }
+ return putchar('\n');
+}

(continues on next page)

3.10. Training Courses 1462

https://www.ti.com/lit/ds/symlink/lm3s811.pdf
https://github.com/dwelch67/qemu_arm_samples/blob/master/cortex-m/uart01/notmain.c
https://github.com/MicroEJ/FreeRTOS/commit/d09ec0f5cbdf69ca97a5ac15f8b905538aa4c61e
https://github.com/MicroEJ/FreeRTOS/commit/d09ec0f5cbdf69ca97a5ac15f8b905538aa4c61e

MicroEJ Documentation,

(continued from previous page)

int main(void)
{
+ puts(”Hello, World! puts function is working.”);
+

/* Configure the clocks, UART and GPIO. */
prvSetupHardware();

Rebuild and run the newly generated kernel: make && qemu-system-arm -M lm3s811evb
-nographic -kernel gcc/RTOSDemo.bin (press Ctrl-a x to interrupt the emulator).

make: Nothing to be done for 'all'.
Hello, World! puts function is working.
ssd0303: error: Unknown command: 0x80
ssd0303: error: Unexpected byte 0xe3
ssd0303: error: Unknown command: 0x80
ssd0303: error: Unexpected byte 0xe3
ssd0303: error: Unknown command: 0x80
ssd0303: error: Unexpected byte 0xe3
ssd0303: error: Unknown command: 0x80
ssd0303: error: Unexpected byte 0xe3
ssd0303: error: Unknown command: 0x80
ssd0303: error: Unexpected byte 0xe3
ssd0303: error: Unknown command: 0x80
ssd0303: error: Unexpected byte 0xe3
ssd0303: error: Unknown command: 0x80
ssd0303: error: Unexpected byte 0xe3
ssd0303: error: Unknown command: 0x80
ssd0303: error: Unexpected byte 0xe3
ssd0303: error: Unknown command: 0x80
ssd0303: error: Unexpected byte 0xe3
QEMU: Terminated

With this two functions implemented, printf(3) is also available.

Listing 46: https://github.com/MicroEJ/FreeRTOS/commit/
1f7e7ee014754a4dcb4f6c5a470205e02f6ac3c8

diff --git a/FreeRTOS/Demo/
→˓CORTEX_LM3S811_GCC/main.c b/FreeRTOS/Demo/CORTEX_LM3S811_GCC/main.c
-- a/FreeRTOS/Demo/CORTEX_LM3S811_GCC/main.c
+++ b/FreeRTOS/Demo/CORTEX_LM3S811_GCC/main.c
@@ -149,9 +149,11 @@ int puts(const char *s) {

return putchar('\n');
}

+#include <stdio.h>
+
int main(void)
{
- puts(”Hello, World! puts function is working.”);
+ printf(”Hello, World! printf function is working.\n”);

/* Configure the clocks, UART and GPIO. */
prvSetupHardware();

At this point, the character output on the UART is implemented in the FreeRTOS BSP. The next
step is to create the MicroEJ Platform and MicroEJ Application.

3.10. Training Courses 1463

https://github.com/MicroEJ/FreeRTOS/commit/1f7e7ee014754a4dcb4f6c5a470205e02f6ac3c8
https://github.com/MicroEJ/FreeRTOS/commit/1f7e7ee014754a4dcb4f6c5a470205e02f6ac3c8

MicroEJ Documentation,

Create a MicroEJ Platform

This section describes how to create and configure a MicroEJ Platform compatible with the
FreeRTOS BSP and GCC toolchain.

• AMicroEJArchitecture is a softwarepackage that includes theMicroEJRuntimeport toa specific
target Instruction Set Architecture (ISA) and C compiler. It contains a set of libraries, tools and
C header files. The MicroEJ Architectures are provided by MicroEJ SDK.

• A MicroEJ Platform is a port of a MicroEJ Architecture for a custom device. It contains the Mi-
croEJ configuration and the BSP (C source files).

When selecting a MicroEJ Architecture, special care must be taken to ensure the compatibility
between the toolchainused in theBSPand the toolchainused tobuild theCoreEngine included
in the MicroEJ Architecture.

The list of MicroEJ Architectures supported is listed here. MicroEJ Evaluation Architectures pro-
vided by MicroEJ Corp. can be downloaded fromMicroEJ Architectures Repository.

There is no CM3 in MicroEJ Architectures Repository and the Arm® Cortex®-M3 MCU is not
mentioned in the capabilities matrix. This means that the MicroEJ Architectures for Arm® Cor-
tex®-M3 MCUs are no longer distributed for evaluation. Download the latest MicroEJ Architec-
ture for Arm® Cortex®-M0 instead (the Arm® architectures are binary upward compatible from
Arm®v6-M (Cortex®-M0) to Arm®v7-M (Cortex®-M3)).

Import the MicroEJ Architecture

This step describes how to import aMicroEJ Architecture.

1. Start MicroEJ SDK on an empty workspace. For example, create an empty folder workspace
next to the FreeRTOS git folder and select it.

2. Keep the default MicroEJ Repository

3. Download the latest MicroEJ Architecture for Arm® Cortex®-M0 instead: https://repository.
microej.com/modules/com/microej/architecture/CM0/CM0_GCC48/flopi0G22/maintenance/
7.20.3/flopi0G22-7.20.3-eval.xpf

4. Import the MicroEJ Architecture in MicroEJ SDK

1. File > Import > MicroEJ > Architectures

2. select the MicroEJ Architecture file downloaded

3. Accept the license and click on Finish

3.10. Training Courses 1464

https://repository.microej.com/modules/com/microej/architecture/
https://repository.microej.com/modules/com/microej/architecture/CM0/CM0_GCC48/flopi0G22/maintenance/7.20.3/flopi0G22-7.20.3-eval.xpf
https://repository.microej.com/modules/com/microej/architecture/CM0/CM0_GCC48/flopi0G22/maintenance/7.20.3/flopi0G22-7.20.3-eval.xpf
https://repository.microej.com/modules/com/microej/architecture/CM0/CM0_GCC48/flopi0G22/maintenance/7.20.3/flopi0G22-7.20.3-eval.xpf

MicroEJ Documentation,

Install an Evaluation License

This step describes how to create and activate an Evaluation License for the MicroEJ Architec-
ture previously imported.

1. Select the Window > Preferences > MicroEJ > Architectures menu .

2. Click on the architectures and press Get UID .

3. Copy the UID. It will be needed when requesting a license.

4. Go to https://license.microej.com.

5. Click on Create a new account link.

6. Create an account with a valid email address. A confirmation email will be sent a few minutes
after. Click on the confirmation link in the email and login with the account.

7. Click on Activate a License .

8. Set Product P/N: to 9PEVNLDBU6IJ .

9. Set UID: to the UID generated before.

10. Click on Activate .

• The license is being activated. An activation mail should be received in less than 5 minutes. If
not, please contact contact our support team.

• Once received by email, save the attached zip file that contains the activation key.

11. Go back to Microej SDK.

3.10. Training Courses 1465

https://license.microej.com

MicroEJ Documentation,

12. Select the Window > Preferences > MicroEJ menu.

13. Press Add… .

14. Browse the previously downloaded activation key archive file.

15. Press OK . A new license is successfully installed.

16. Go to Architectures sub-menu and check that all architectures are now activated (green
check).

17. Microej SDK is successfully activated.

Create the MicroEJ Platform

This step describes how to create a newMicroEJ Platform using the MicroEJ Architecture previ-
ously imported.

1. Select File > New > Platform Project .

2. Ensure the Architecture selected is the MicroEJ Architecture previously imported.

3. Ensure the Create from a platform reference implementation box is unchecked.

4. Click on Next button.

3.10. Training Courses 1466

MicroEJ Documentation,

5. Fill the fields:

• Set Device: to lm3s811evb

• Set Name: to Tuto

Setup the MicroEJ Platform

This step describes how to configure the MicroEJ Platform previously created. For more infor-
mation on this topic, please refer to VEE Port Project Creation.

The Platform Configuration Additions provide a flexible way to configure the BSP connection
between the MicroEJ Platform and MicroEJ Application to the BSP. In this training, the Partial
BSP connection is used. That is, the MicroEJ SDK will output all MicroEJ files (C headers, Mi-
croEJ Application microejapp.o , MicroEJ Runtime microejruntime.a , …) in a location known
by the BSP. The BSP is configured to compile and link with those files.

For this training, thatmeans that the final binary is producedby invoking make in theFreeRTOS
BSP.

1. Install the Platform Configuration Additions by copying all the files within the content folder
in the MicroEJ Platform folder.

3.10. Training Courses 1467

https://github.com/MicroEJ/VEEPortQualificationTools/tree/2.6.0/framework/platform
https://github.com/MicroEJ/VEEPortQualificationTools/tree/2.6.0/framework/platform/content

MicroEJ Documentation,

Note: The content directory contains files that must be installed in a MicroEJ Platform con-
figuration directory (the directory that contains the .platform file). It can be automatically
downloaded using the following command line:

svn export --force https://github.com/MicroEJ/VEEPortQualificationTools/
→˓tags/2.6.0/framework/platform/content [path_to_platform_configuration_directory]

2. Edit the file bsp/bsp.properties as follow:

Specify the MicroEJ Application file ('microejapp.o') parent directory.
This is a '/' separated directory relative to 'bsp.root.dir'.
microejapp.relative.dir=microej/lib

Specify the MicroEJ Platform runtime file ('microejruntime.a') parent directory.
This is a '/' separated directory relative to 'bsp.root.dir'.
microejlib.relative.dir=microej/lib

Specify MicroEJ Platform header files ('*.h') parent directory.
This is a '/' separated directory relative to 'bsp.root.dir'.
microejinc.relative.dir=microej/inc

3. Edit the file module.ivy and add the MicroEJ Architecture as a dependency:

<dependencies>
<dependency org=”com.microej.

→˓architecture.CM0.CM0_GCC48” branch=”maintenance” name=”flopi0G22” rev=”7.20.3”>
<artifact name=

→˓”flopi0G22” m:classifier=”${com.microej.platformbuilder.architecture.usage}” ext=”xpf”/>
</dependency>

</dependencies>

4. Edit the file module.properties and set the MicroEJ platform filename:

Platform configuration file (relative to this project).
com.microej.platformbuilder.platform.filename=Tuto.platform

5. Right-click on the platform project and click on Build Module .

6. The following message appears in the console:

module-platform:report:
␣
→˓␣
→˓␣
→˓␣
→˓␣
→˓␣
→˓␣
→˓ [echo] ␣
→˓==

[echo] Platform has been built in this directory␣
→˓'C:\Users\user\src\tuto-from-scratch\workspace/lm3s811evb-Platform-CM0_GCC48-0.0.1'.

␣
(continues on next page)

3.10. Training Courses 1468

MicroEJ Documentation,

(continued from previous page)

→˓ [echo] To import this project in your MicroEJ SDK workspace (if not already available):
[echo]␣

→˓ - Select 'File' > 'Import...' > 'General' > 'Existing Projects into Workspace' > 'Next'
[echo] - Check 'Select root directory' and browse 'C:\Users\

→˓user\src\tuto-from-scratch\workspace/lm3s811evb-Platform-CM0_GCC48-0.0.1' > 'Finish'
␣
→˓␣
→˓␣
→˓␣
→˓␣
→˓␣
→˓␣
→˓ [echo] ␣
→˓==

BUILD SUCCESSFUL

7. Follow the instructions to import the generated platform in the workspace:

At this point, the MicroEJ Platform is ready to be used to build MicroEJ Applications.

Create MicroEJ Application HelloWorld

1. Select File > New > Standalone Application Project .

2. Set the name to HelloWorld and click on Finish

3.10. Training Courses 1469

MicroEJ Documentation,

3. Run the application in Simulator to ensure it is working properly. Right-click on HelloWorld
project > Run As > MicroEJ Application

3.10. Training Courses 1470

MicroEJ Documentation,

The following message appears in the console:

3.10. Training Courses 1471

MicroEJ Documentation,

=============== [Initialization Stage] ===============
=============== [Launching on Simulator] ===============
Hello World!
=============== [Completed Successfully] ===============

SUCCESS

Configure BSP Connection in MicroEJ Application

This stepdescribes how to configure theBSPconnection for theHelloWorldMicroEJApplication
and how to build the MicroEJ Application that will run on the target device.

For a MicroEJ Application, the BSP connection is configured in the PROJECT-NAME/build/
emb.properties file.

1. Create a file HelloWorld/build/emb.properties with the following content:

core.memory.immortal.size=0
core.memory.javaheap.size=1024
core.memory.threads.pool.size=4
core.memory.threads.size=1
core.memory.thread.max.size=4
deploy.bsp.microejapp=true
deploy.bsp.microejlib=true
deploy.bsp.microejinc=true
deploy.bsp.
→˓root.dir=[absolute_path] to FreeRTOS\\FreeRTOS\\Demo\\CORTEX_LM3S811_GCC

Note: Assuming the WSL current directory is FreeRTOS/FreeRTOS/Demo/
CORTEX_LM3S811_GCC , use the following command to find the deploy.bsp.root.dir
path with proper escaping:

pwd | sed -e 's|/mnt/c/|C:\\\\|' -e 's|/|\\\\|g'

2. Open Run > Run configurations…

3. Select the HelloWorld launcher configuration

3.10. Training Courses 1472

MicroEJ Documentation,

4. Select Execution tab.

5. Change the execution mode from Execute on Simulator to Execute on Device .

6. Add the file build/emb.properties to the options files

3.10. Training Courses 1473

MicroEJ Documentation,

7. Click on Run

=============== [Initialization Stage] ===============
Platform connected to BSP location 'C:\Users\user\src\tuto-from-scratch\FreeRTOS\
→˓FreeRTOS\Demo\CORTEX_LM3S811_GCC' using application option 'deploy.bsp.root.dir'.
=============== [Launching SOAR] ===============
=============== [Launching Link] ===============
=============== [Deployment] ===============
MicroEJ files for the 3rd-party BSP project are generated to 'C:\
→˓Users\user\src\tuto-from-scratch\workspace\HelloWorld\com.mycompany.Main\platform'.
The MicroEJ application (microejapp.o) has been deployed to: 'C:\Users\user\src\
→˓tuto-from-scratch\FreeRTOS\FreeRTOS\Demo\CORTEX_LM3S811_GCC\microej\lib'.
The MicroEJ platform library (microejruntime.a) has been deployed to: 'C:\Users\user\src\
→˓tuto-from-scratch\FreeRTOS\FreeRTOS\Demo\CORTEX_LM3S811_GCC\microej\lib'.
The MicroEJ platform header files (*.h) have been deployed to: 'C:\Users\user\src\
→˓tuto-from-scratch\FreeRTOS\FreeRTOS\Demo\CORTEX_LM3S811_GCC\microej\inc'.
=============== [Completed Successfully] ===============

SUCCESS

At this point, the HelloWorld MicroEJ Application is built and deployed in the FreeRTOS BSP.

MicroEJ and FreeRTOS Integration

This section describes how to finalize the integration between MicroEJ and FreeRTOS to get a
working firmware that runs the HelloWorld MicroEJ Application built previously.

In the previous section, when the MicroEJ Application was built, several files were added to a
new folder named microej/ .

$ pwd
/mnt/c/
→˓Users/user/src/tuto-from-scratch/FreeRTOS/FreeRTOS/Demo/CORTEX_LM3S811_GCC
$ tree microej/
microej/
��� inc
� ��� BESTFIT_ALLOCATOR.h
� ��� BESTFIT_ALLOCATOR_impl.h
� ��� LLBSP_impl.h
� ��� LLMJVM.h
� ��� LLMJVM_MONITOR_impl.h
� ��� LLMJVM_impl.h
� ��� LLTRACE_impl.h
� ��� MJVM_MONITOR.h
� ��� MJVM_MONITOR_types.h
� ��� intern
� � ��� BESTFIT_ALLOCATOR.h
� � ��� BESTFIT_ALLOCATOR_impl.h
� � ��� LLBSP_impl.h
� � ��� LLMJVM.h
� � ��� LLMJVM_impl.h
� � ��� trace_intern.h
� ��� sni.h
� ��� trace.h
��� lib

��� microejapp.o
��� microejruntime.a

(continues on next page)

3.10. Training Courses 1474

MicroEJ Documentation,

(continued from previous page)

3 directories, 19 files

• The microej/lib folder contains the HelloWorld MicroEJ Application object file (microejapp.o
) and the MicroEJ Runtime. The final binary must be linked with these two files.

• The microej/inc folder contains several C header files used to expose MicroEJ Low Level APIs.
The functions defined in files ending with the _impl.h suffix should be implemented by the
BSP.

To summarize, the following steps remain to complete the integration between MicroEJ and
the FreeRTOS BSP:

• Implement minimal Low Level APIs

• Invoke the Core Engine

• Build and link the firmware with the MicroEJ Runtime and MicroEJ Application

Minimal Low Level APIs

The purpose of this training is to demonstrate how to develop aminimal MicroEJ Architecture,
it is not to develop a complete MicroEJ Architecture. Therefore this training implements only
the required functions and provides stub implementation for unused features. For example,
the following implementation does not support scheduling.

The two headers that must be implemented are LLBSP_impl.h and LLMJVM_impl.h .

1. In the BSP, create a folder named microej/src (next to the microej/lib and microej/inc fold-
ers).

2. Implement LLBSP_impl.h in LLBSP.c :

Listing 47: microej/src/LLBSP.c

#include ”LLBSP_impl.h”

extern void _etext(void);
uint8_t LLBSP_IMPL_isInReadOnlyMemory(void* ptr)
{
return ptr < &_etext;

}

/**
* Writes the character <code>c</code>, cast to an unsigned char, to stdout stream.
*␣
→˓This function is used by the default implementation of the Java <code>System.out</code>.
*/
void LLBSP_IMPL_putchar(int32_t c)
{
putchar(c);

}

• The implementation of LLBSP_IMPL_putchar reuses the putchar implemented previ-
ously.

• The rodata section is defined in the linker script standalone.ld . The flash memory starts at 0
and the end of the section is stored in the _etex symbol.

3.10. Training Courses 1475

MicroEJ Documentation,

3. Implement LLMJVM_impl.h in LLMJVM_stub.c (all functions are stubbedwith a dummy
implementation):

Listing 48: microej/src/LLMJVM_stub.c

#include ”LLMJVM_impl.h”

int32_t LLMJVM_IMPL_initialize()
{

return LLMJVM_OK;
}

int32_t LLMJVM_IMPL_vmTaskStarted()
{

return LLMJVM_OK;
}

int32_t LLMJVM_IMPL_scheduleRequest(int64_t absoluteTime)
{

return LLMJVM_OK;
}

int32_t LLMJVM_IMPL_idleVM()
{

return LLMJVM_OK;
}

int32_t LLMJVM_IMPL_wakeupVM()
{

return LLMJVM_OK;
}

int32_t LLMJVM_IMPL_ackWakeup()
{

return LLMJVM_OK;
}

int32_t LLMJVM_IMPL_getCurrentTaskID()
{

return (int32_t) 123456;
}

void LLMJVM_IMPL_setApplicationTime(int64_t t)
{

}

int64_t LLMJVM_IMPL_getCurrentTime(uint8_t system)
{

return 0;
}

int64_t LLMJVM_IMPL_getTimeNanos()
{

return 0;
}

(continues on next page)

3.10. Training Courses 1476

MicroEJ Documentation,

(continued from previous page)

int32_t LLMJVM_IMPL_shutdown(void)
{

return LLMJVM_OK;
}

The microej folder in the BSP has the following structure:

$ pwd
/mnt/c/
→˓Users/user/src/tuto-from-scratch/FreeRTOS/FreeRTOS/Demo/CORTEX_LM3S811_GCC
$ tree microej/
microej/
��� inc
� ��� BESTFIT_ALLOCATOR.h
� ��� BESTFIT_ALLOCATOR_impl.h
� ��� LLBSP_impl.h
� ��� LLMJVM.h
� ��� LLMJVM_MONITOR_impl.h
� ��� LLMJVM_impl.h
� ��� LLTRACE_impl.h
� ��� MJVM_MONITOR.h
� ��� MJVM_MONITOR_types.h
� ��� intern
� � ��� BESTFIT_ALLOCATOR.h
� � ��� BESTFIT_ALLOCATOR_impl.h
� � ��� LLBSP_impl.h
� � ��� LLMJVM.h
� � ��� LLMJVM_impl.h
� � ��� trace_intern.h
� ��� sni.h
� ��� trace.h
��� lib
� ��� microejapp.o
� ��� microejruntime.a
��� src

��� LLBSP.c
��� LLMJVM_stub.c

4 directories, 21 files

Invoke the Core Engine

TheCore Engine is createdand initializedwith theC function SNI_createVM . Then it is started
and executed in the current RTOS task by calling SNI_startVM . The function SNI_startVM
returns when the MicroEJ Application exits. Both functions are declared in the C header sni.h .

Listing 49: https://github.com/MicroEJ/FreeRTOS/commit/
7ae8e79f9c811621569ccb90c46b1dcda91da35d

diff --git a/FreeRTOS/Demo/
→˓CORTEX_LM3S811_GCC/main.c b/FreeRTOS/Demo/CORTEX_LM3S811_GCC/main.c
-- a/FreeRTOS/Demo/CORTEX_LM3S811_GCC/main.c
+++ b/FreeRTOS/Demo/CORTEX_LM3S811_GCC/main.c
@@ -150,11 +150,14 @@ int puts(const char *s) {

(continues on next page)

3.10. Training Courses 1477

https://github.com/MicroEJ/FreeRTOS/commit/7ae8e79f9c811621569ccb90c46b1dcda91da35d
https://github.com/MicroEJ/FreeRTOS/commit/7ae8e79f9c811621569ccb90c46b1dcda91da35d

MicroEJ Documentation,

(continued from previous page)

}

#include <stdio.h>
+#include ”sni.h”

int main(void)
{

printf(”Hello, World! printf function is working.\n”);

+ SNI_startVM(SNI_createVM(), 0, NULL);
+

/* Configure the clocks, UART and GPIO. */
prvSetupHardware();

Build and Link the Firmware with the MicroEJ Runtime and MicroEJ Application

To build and link the firmwarewith theMicroEJ Runtime andMicroEJ Application, the BSP port
must be modified to:

1. Use the MicroEJ header files in folder microej/inc

2. Use the source files folder microej/src that contains the Low Level API implementation
LLBSP.c and LLMJVM_stub.c

3. Compile and link LLBSP.o and LLMJVM_stub.o

4. Link with MicroEJ Application (microej/lib/microejapp.o) and MicroEJ Runtime (microej/
lib/microejruntime.a)

The following patch updates the BSP port Makefile to do it:

Listing 50: https://github.com/MicroEJ/FreeRTOS/commit/
257d9e1d123be0342029e2930c0073dd5a4a2b2d

-- a/FreeRTOS/Demo/CORTEX_LM3S811_GCC/Makefile
+++ b/FreeRTOS/Demo/CORTEX_LM3S811_GCC/Makefile
@@ -29,8 +29,10 @@ RTOS_SOURCE_DIR=../../Source
DEMO_SOURCE_DIR=../Common/Minimal

CFLAGS+=-I hw_
→˓include -I . -I ${RTOS_SOURCE_DIR}/include -I ${RTOS_SOURCE_DIR}/portable/
→˓GCC/ARM_CM3 -I ../Common/include -D GCC_ARMCM3_LM3S102 -D inline=
+CFLAGS+= -I microej/inc

VPATH=
→˓${RTOS_SOURCE_DIR}:${RTOS_SOURCE_DIR}/portable/MemMang:${RTOS_
→˓SOURCE_DIR}/portable/GCC/ARM_CM3:${DEMO_SOURCE_DIR}:init:hw_include
+VPATH+= microej/src

OBJS=${COMPILER}/main.o \
${COMPILER}/list.o \

@@ -44,9 +46,12 @@ OBJS=${COMPILER}/main.o \
${COMPILER}/semtest.o \
${COMPILER}/osram96x16.o

+OBJS+= ${COMPILER}/LLBSP.o ${COMPILER}/LLMJVM_stub.o
(continues on next page)

3.10. Training Courses 1478

https://github.com/MicroEJ/FreeRTOS/commit/257d9e1d123be0342029e2930c0073dd5a4a2b2d
https://github.com/MicroEJ/FreeRTOS/commit/257d9e1d123be0342029e2930c0073dd5a4a2b2d

MicroEJ Documentation,

(continued from previous page)

+
INIT_OBJS= ${COMPILER}/startup.o

LIBS= hw_include/libdriver.a
+LIBS+= microej/lib/microejruntime.a microej/lib/microejapp.o

Then build the firmware with make . The following error occurs at link time.

CC microej/src/LLMJVM_stub.c
LD gcc/RTOSDemo.axf ␣

→˓ ␣
→˓ arm-none-eabi-ld: error: microej/lib/microejruntime.a(sni_
→˓vm_startup_greenthread.o) uses VFP register arguments, gcc/RTOSDemo.axf does not
arm-none-eabi-ld: failed to merge␣
→˓target specific data of file microej/lib/microejruntime.a(sni_vm_startup_greenthread.o)
arm-none-eabi-ld: gcc/RTOSDemo.axf section `ICETEA_HEAP' will not fit in region `SRAM'
arm-none-eabi-ld: region `SRAM' overflowed by 4016 bytes
microej/lib/microejapp.o: In function `_java_internStrings_end':

The RAM requirements of the BSP (with printf), FreeRTOS, theMicroEJ Application andMicroEJ
Runtime do not fit in the 8k of SRAM. It is possible to link within 8k of RAM by customizing a
MicroEJ Tiny-Sandbox on a baremetal device (without a RTOS) but this is not the purpose of
this training.

Instead, this training will switch to another device, the Luminary Micro Stellaris LM3S6965EVB.
This device is almost identical as the LM3S811EVB but it has 256k of flash memory and 64k of
SRAM. Updating the values in the linker script standalone.ld is sufficient to create a valid BSP
port for this device.

Instead of continuing to work with the LM3S811 port, create a copy, named COR-
TEX_LM3S6965_GCC:

$ cd ..
$ pwd
/mnt/c/Users/user/src/tuto-from-scratch/FreeRTOS/FreeRTOS/Demo
$ cp -r CORTEX_LM3S811_GCC/ CORTEX_LM3S6965_GCC
$ cd CORTEX_LM3S6965_GCC

The BSP path defined by the property deploy.bsp.root.dir in the MicroEJ Application must be
updated as well.

The rest of the training assumes that everything is done in the CORTEX_LM3S6965_GCC
folder.

Then update the linker script standlone.ld :

Listing 51: https://github.com/MicroEJ/FreeRTOS/commit/
0e2e31d8a510d37178c340051bab636902471eea

diff --git a/FreeRTOS/Demo/CORTEX_LM3S6965_
→˓GCC/standalone.ld b/FreeRTOS/Demo/CORTEX_LM3S6965_GCC/standalone.ld
-- a/FreeRTOS/Demo/CORTEX_LM3S6965_GCC/standalone.ld
+++ b/FreeRTOS/Demo/CORTEX_LM3S6965_GCC/standalone.ld
@@ -28,8 +28,8 @@

MEMORY
{

(continues on next page)

3.10. Training Courses 1479

https://github.com/MicroEJ/FreeRTOS/commit/0e2e31d8a510d37178c340051bab636902471eea
https://github.com/MicroEJ/FreeRTOS/commit/0e2e31d8a510d37178c340051bab636902471eea

MicroEJ Documentation,

(continued from previous page)

- FLASH (rx) : ORIGIN = 0x00000000, LENGTH = 64K
- SRAM (rwx) : ORIGIN = 0x20000000, LENGTH = 8K
+ FLASH (rx) : ORIGIN = 0x00000000, LENGTH = 256K
+ SRAM (rwx) : ORIGIN = 0x20000000, LENGTH = 64K
}

SECTIONS

The new command to run the firmware with QEMU is: qemu-system-arm -M lm3s6965evb
-nographic -kernel gcc/RTOSDemo.bin .

Rebuild the firmware with make . The following error occurs:

CC microej/src/LLMJVM_stub.c
LD gcc/RTOSDemo.axf ␣

→˓ ␣
→˓ microej/lib/microejapp.o: In function `_java_internStrings_end':
C:\Users\user\src\tuto-from-scratch\workspace\HelloWorld\com.
→˓mycompany.Main\SOAR.o:(.text.soar+0x1b3e): undefined reference to `ist_mowana_vm_
→˓GenericNativesPool___com_1is2t_1vm_1support_1lang_1SupportNumber_1parseLong'
C:\Users\user\src\tuto-from-scratch\workspace\HelloWorld\
→˓com.mycompany.Main\SOAR.o:(.text.soar+0x1cea): undefined reference to `ist_mowana_
→˓vm_GenericNativesPool___com_1is2t_1vm_1support_1lang_1SupportNumber_
→˓1toStringLongNative' C:\Users\user\src\tuto-from-scratch\workspace\HelloWorld\
→˓com.mycompany.Main\SOAR.o:(.text.soar+0x1e3e): undefined reference to `ist_mowana_
→˓vm_GenericNativesPool___com_1is2t_1vm_1support_1lang_1Systools_1appendInteger'
C:\Users\user\src\tuto-from-scratch\workspace\
→˓HelloWorld\com.mycompany.Main\SOAR.o:(.text.soar+0x1f2a): undefined reference␣
→˓to `ist_mowana_vm_GenericNativesPool___java_1lang_1System_1getMethodClass'
C:\Users\user\src\tuto-from-scratch\workspace\
→˓HelloWorld\com.mycompany.Main\SOAR.o:(.text.soar+0x1e3e): undefined reference to `ist_
→˓mowana_vm_GenericNativesPool___com_1is2t_1vm_1support_1lang_1Systools_1appen
... skip ...
C:\Users\user\src\tuto-from-scratch\workspace\
→˓HelloWorld\com.mycompany.Main\SOAR.o:(.text.soar+0x31d6): undefined reference␣
→˓to `ist_mowana_vm_GenericNativesPool___java_1lang_1System_1initializeProperties'
C:\Users\user\src\tuto-from-scratch\workspace\
→˓HelloWorld\com.mycompany.Main\SOAR.o:(.text.soar+0x37b6): undefined reference␣
→˓to `ist_mowana_vm_GenericNativesPool___java_1lang_1Thread_1storeException'
C:\Users\user\src\tuto-
→˓from-scratch\workspace\HelloWorld\com.mycompany.Main\SOAR.o:(.text.soar+0x37c8):␣
→˓undefined reference to `ist_microjvm_NativesPool___java_1lang_1Thread_1execClinit'
microej/lib/microejapp.
→˓o: In function `__icetea__getSingleton__com_is2t_microjvm_mowana_VMTask':
C:\Users\user\src\tuto-from-scratch\workspace\HelloWorld\com.mycompany.Main\
→˓SOAR.o:(.text.__icetea__getSingleton__com_is2t_microjvm_mowana_VMTask+0xc):␣
→˓undefined reference to `com_is2t_microjvm_mowana_VMTask___getSingleton'
microej/lib/microejapp.
→˓o: In function `__icetea__getSingleton__com_is2t_microjvm_IGreenThreadMicroJvm':
... skip ...
microej/lib/microejapp.o: In function `TRACE_record_event_u32x3_ptr':
C:\Users\
→˓user\src\tuto-from-scratch\workspace\HelloWorld\com.mycompany.Main\SOAR.o:(.rodata.
→˓TRACE_record_event_u32x3_ptr+0x0): undefined reference to `TRACE_default_stub'
microej/lib/microejapp.o: In function `TRACE_record_event_u32x4_ptr':
C:\Users\
→˓user\src\tuto-from-scratch\workspace\HelloWorld\com.mycompany.Main\SOAR.o:(.rodata.

(continues on next page)

3.10. Training Courses 1480

MicroEJ Documentation,

(continued from previous page)

→˓TRACE_record_event_u32x4_ptr+0x0): undefined reference to `TRACE_default_stub'
microej/lib/microejapp.o:C:\Users\user\src\tuto-from-
→˓scratch\workspace\HelloWorld\com.mycompany.Main\SOAR.o:(.rodata.TRACE_record_
→˓event_u32x5_ptr+0x0): more undefined references to `TRACE_default_stub' follow
make: *** [makedefs:196: gcc/RTOSDemo.axf] Error 1

This error occurs because microejruntime.a refers to symbols in microejapp.o but is declared
after in the linker command line. By default, the GNU LD linker does not search unresolved
symbols into archive files loaded previously (see man ld for a description of the start-group
option). To solve this issue, either invert the declaration of LIBS (put microejapp.o first) or
guard the libraries declarationwith --start-group and --end-group in makedefs . This training
uses the later.

Listing 52: https://github.com/MicroEJ/FreeRTOS/commit/
4b23ea2e77112f053368718d299ff8db826ddde1

diff --git a/FreeRTOS/Demo/CORTEX_
→˓LM3S6965_GCC/makedefs b/FreeRTOS/Demo/CORTEX_LM3S6965_GCC/makedefs
-- a/FreeRTOS/Demo/CORTEX_LM3S6965_GCC/makedefs
+++ b/FreeRTOS/Demo/CORTEX_LM3S6965_GCC/makedefs
@@ -196,13 +196,13 @@ ifeq (${COMPILER}, gcc)

echo ${LD} -T ${SCATTER_${notdir ${@:.axf=}}} \
--entry ${ENTRY_${notdir ${@:.axf=}}} \
${LDFLAGSgcc_${notdir ${@:.axf=}}} \

- ${LDFLAGS} -o ${@} ${^} \
- '${LIBC}' '${LIBGCC}'; \
+ ${LDFLAGS} -o ${@} --start-group ${^} \
+ '${LIBC}' '${LIBGCC}' --end-group; \

fi
@${LD} -T ${SCATTER_${notdir ${@:.axf=}}} \

--entry ${ENTRY_${notdir ${@:.axf=}}} \
${LDFLAGSgcc_${notdir ${@:.axf=}}} \

- ${LDFLAGS} -o ${@} ${^} \
- '${LIBC}' '${LIBGCC}'
+ ${LDFLAGS} -o ${@} --start-group ${^} \
+ '${LIBC}' '${LIBGCC}' --end-group

@${OBJCOPY} -O binary ${@} ${@:.axf=.bin}
endif

Rebuild with make . The following error occurs:

LD gcc/RTOSDemo.axf
microej/lib/microejruntime.
→˓a(VMCOREMicroJvm__131.o): In function `VMCOREMicroJvm__1131____1_11046':
_131.
→˓c:(.text.VMCOREMicroJvm__1131____1_11046+0x20): undefined reference to `fmodf'
microej/lib/microejruntime.
→˓a(VMCOREMicroJvm__131.o): In function `VMCOREMicroJvm__1131____1_11045':
_131.c:(.text.VMCOREMicroJvm__1131____1_11045+0x2c): undefined reference to `fmod'
microej/lib/microejruntime.a(iceTea_lang_Math.o): In function `iceTea_lang_Math___cos':
Math.c:(.text.iceTea_lang_Math___cos+0x2a): undefined reference to `cos'
microej/lib/microejruntime.a(iceTea_lang_Math.o): In function `iceTea_lang_Math___sin':
Math.c:(.text.iceTea_lang_Math___sin+0x2a): undefined reference to `sin'
microej/lib/microejruntime.a(iceTea_lang_Math.o): In function `iceTea_lang_Math___tan':
Math.c:(.text.iceTea_lang_Math___tan+0x2a): undefined reference to `tan'
microej/

(continues on next page)

3.10. Training Courses 1481

https://github.com/MicroEJ/FreeRTOS/commit/4b23ea2e77112f053368718d299ff8db826ddde1
https://github.com/MicroEJ/FreeRTOS/commit/4b23ea2e77112f053368718d299ff8db826ddde1

MicroEJ Documentation,

(continued from previous page)

→˓lib/microejruntime.a(iceTea_lang_Math.o): In function `iceTea_lang_Math___acos__D':
Math.c:(.text.iceTea_lang_Math___acos__D+0x18): undefined reference to `acos'
microej/
→˓lib/microejruntime.a(iceTea_lang_Math.o): In function `iceTea_lang_Math___acos(void)':
Math.c:(.text.iceTea_lang_Math___acos__F+0x12): undefined reference to `acosf'
microej/lib/microejruntime.a(iceTea_lang_Math.o): In function `iceTea_lang_Math___asin':
Math.c:(.text.iceTea_lang_Math___asin+0x18): undefined reference to `asin'
microej/
→˓lib/microejruntime.a(iceTea_lang_Math.o): In function `iceTea_lang_Math___atan':
Math.c:(.text.iceTea_lang_Math___atan+0x2): undefined reference to `atan'
microej/
→˓lib/microejruntime.a(iceTea_lang_Math.o): In function `iceTea_lang_Math___atan2':
Math.c:(.text.iceTea_lang_Math___atan2+0x2): undefined reference to `atan2'
microej/lib/microejruntime.a(iceTea_lang_Math.o): In function `iceTea_lang_Math___log':
Math.c:(.text.iceTea_lang_Math___log+0x2): undefined reference to `log'
microej/lib/microejruntime.
→˓a(iceTea_lang_Math.o): In function `iceTea_lang_Math_(...)(long long, *)':
Math.c:(.text.iceTea_lang_Math___exp+0x2): undefined reference to `exp'
microej/lib/microejruntime.
→˓a(iceTea_lang_Math.o): In function `iceTea_lang_Math_(char,...)(int, long)':
Math.c:(.text.iceTea_lang_Math___ceil+0x2): undefined reference to `ceil'
microej/
→˓lib/microejruntime.a(iceTea_lang_Math.o): In function `iceTea_lang_Math___floor':
... skip ...

This erroroccursbecause theMath library ismissing. The rule for linking the firmware is defined
in the file makedefs . Replicating how the libc ismanaged, the following patch finds the libm.a
library and add it at link time:

Listing 53: https://github.com/MicroEJ/FreeRTOS/commit/
a202f43948c41b848ebfbc8c53610028c454b66f

diff --git a/FreeRTOS/Demo/CORTEX_
→˓LM3S6965_GCC/makedefs b/FreeRTOS/Demo/CORTEX_LM3S6965_GCC/makedefs
-- a/FreeRTOS/Demo/CORTEX_LM3S6965_GCC/makedefs
+++ b/FreeRTOS/Demo/CORTEX_LM3S6965_GCC/makedefs
@@ -102,
→˓6 +102,11 @@ LIBGCC=${shell ${CC} -mthumb -march=armv6t2 -print-libgcc-file-name}
#
LIBC=${shell ${CC} -mthumb -march=armv6t2 -print-file-name=libc.a}

+#
+# Get the location of libm.a from the GCC front-end.
+#
+LIBM=${shell ${CC} -mthumb -march=armv6t2 -print-file-name=libm.a}
+
#
The command for extracting images from the linked executables.
#
@@ -197,12 +202,12 @@ ifeq (${COMPILER}, gcc)

--entry ${ENTRY_${notdir ${@:.axf=}}} \
${LDFLAGSgcc_${notdir ${@:.axf=}}} \
${LDFLAGS} -o ${@} --start-group ${^} \

- '${LIBC}' '${LIBGCC}' --end-group; \
+ '${LIBM}' '${LIBC}' '${LIBGCC}' --end-group; \

fi
(continues on next page)

3.10. Training Courses 1482

https://github.com/MicroEJ/FreeRTOS/commit/a202f43948c41b848ebfbc8c53610028c454b66f
https://github.com/MicroEJ/FreeRTOS/commit/a202f43948c41b848ebfbc8c53610028c454b66f

MicroEJ Documentation,

(continued from previous page)

@${LD} -T ${SCATTER_${notdir ${@:.axf=}}} \
--entry ${ENTRY_${notdir ${@:.axf=}}} \
${LDFLAGSgcc_${notdir ${@:.axf=}}} \
${LDFLAGS} -o ${@} --start-group ${^} \

- '${LIBC}' '${LIBGCC}' --end-group
+ '${LIBM}' '${LIBC}' '${LIBGCC}' --end-group;

@${OBJCOPY} -O binary ${@} ${@:.axf=.bin}
endif

Rebuild with make . The following error occurs:

CC microej/src/LLMJVM_stub.c
LD gcc/RTOSDemo.axf

/usr/lib/gcc/arm-none-
→˓eabi/6.3.1/../../../arm-none-eabi/lib/thumb/libc.a(lib_a-sbrkr.o): In function `_sbrk_r':
/build/newlib-jo3xW1/newlib-2.4.0.20160527/build/arm-none-eabi/thumb/
→˓newlib/libc/reent/../../../../../../newlib/libc/reent/sbrkr.c:58: undefined reference to `_sbrk'
make: *** [makedefs:196: gcc/RTOSDemo.axf] Error 1

Instead of implementing a stub _sbrk function, this training uses the libnosys.a which pro-
vides stub implementation for various functions.

Listing 54: https://github.com/MicroEJ/FreeRTOS/commit/
eb208d846f52c0695c06456b540e412ba96e640a

diff --git a/FreeRTOS/Demo/CORTEX_
→˓LM3S6965_GCC/makedefs b/FreeRTOS/Demo/CORTEX_LM3S6965_GCC/makedefs
-- a/FreeRTOS/Demo/CORTEX_LM3S6965_GCC/makedefs
+++ b/FreeRTOS/Demo/CORTEX_LM3S6965_GCC/makedefs
@@␣
→˓-107,6 +107,11 @@ LIBC=${shell ${CC} -mthumb -march=armv6t2 -print-file-name=libc.a}
#
LIBM=${shell ${CC} -mthumb -march=armv6t2 -print-file-name=libm.a}

+#
+# Get the location of libnosys.a from the GCC front-end.
+#
+LIBNOSYS=${shell ${CC} -mthumb -march=armv6t2 -print-file-name=libnosys.a}
+
#
The command for extracting images from the linked executables.
#
@@ -202,12 +207,12 @@ ifeq (${COMPILER}, gcc)

--entry ${ENTRY_${notdir ${@:.axf=}}} \
${LDFLAGSgcc_${notdir ${@:.axf=}}} \
${LDFLAGS} -o ${@} --start-group ${^} \

- '${LIBM}' '${LIBC}' '${LIBGCC}' --end-group; \
+ '${LIBNOSYS}' '${LIBM}' '${LIBC}' '${LIBGCC}' --end-group; \

fi
@${LD} -T ${SCATTER_${notdir ${@:.axf=}}} \

--entry ${ENTRY_${notdir ${@:.axf=}}} \
${LDFLAGSgcc_${notdir ${@:.axf=}}} \
${LDFLAGS} -o ${@} --start-group ${^} \

- '${LIBM}' '${LIBC}' '${LIBGCC}' --end-group;
+ '${LIBNOSYS}' '${LIBM}' '${LIBC}' '${LIBGCC}' --end-group;

@${OBJCOPY} -O binary ${@} ${@:.axf=.bin}
endif

3.10. Training Courses 1483

https://github.com/MicroEJ/FreeRTOS/commit/eb208d846f52c0695c06456b540e412ba96e640a
https://github.com/MicroEJ/FreeRTOS/commit/eb208d846f52c0695c06456b540e412ba96e640a

MicroEJ Documentation,

Rebuild with make . The following error occurs:

CC microej/src/LLMJVM_stub.c
LD gcc/RTOSDemo.axf

/usr/lib/gcc/arm-
→˓none-eabi/6.3.1/../../../arm-none-eabi/lib/thumb/libnosys.a(sbrk.o): In function `_sbrk':
/build/newlib-jo3xW1/newlib-2.4.0.20160527/build/arm-none-eabi/
→˓thumb/libgloss/libnosys/../../../../../libgloss/libnosys/sbrk.c:21: undefined reference to `end'
make: *** [makedefs:201: gcc/RTOSDemo.axf] Error 1

The _sbrk implementation needs the end symbol to be defined. Looking at the implementa-
tion, the end symbol corresponds to the beginning of the C heap. This training uses the end of
the .bss segment as the beginning of the C heap.

Listing 55: https://github.com/MicroEJ/FreeRTOS/commit/
898f2e6cd492616b4ccaabc136cafa76ef038690

diff --git a/FreeRTOS/Demo/CORTEX_LM3S6965_
→˓GCC/standalone.ld b/FreeRTOS/Demo/CORTEX_LM3S6965_GCC/standalone.ld
-- a/FreeRTOS/Demo/CORTEX_LM3S6965_GCC/standalone.ld
+++ b/FreeRTOS/Demo/CORTEX_LM3S6965_GCC/standalone.ld
@@ -64,5 +64,6 @@ SECTIONS

*(.bss)
*(COMMON)
_ebss = .;

+ end = .;
} > SRAM

}

Then rebuild with make . There should be no error. Finally, run the firmware in QEMUwith the
following command:

qemu-system-arm -M lm3s6965evb -nographic -kernel gcc/RTOSDemo.bin

Hello, World! printf function is working.
Hello World!
QEMU: Terminated // press Ctrl-a x to end the QEMU session

The first Hello, World! is from the main.c and the second one from the MicroEJ Application.

To make this more obvious:

1. Update the MicroEJ Application to print Hello World! This is my first MicroEJ Application

3.10. Training Courses 1484

https://chromium.googlesource.com/native_client/nacl-newlib/+/99fc6c167467b41466ec90e8260e9c49cbe3d13c/libgloss/libnosys/sbrk.c
https://chromium.googlesource.com/native_client/nacl-newlib/+/99fc6c167467b41466ec90e8260e9c49cbe3d13c/libgloss/libnosys/sbrk.c
https://github.com/MicroEJ/FreeRTOS/commit/898f2e6cd492616b4ccaabc136cafa76ef038690
https://github.com/MicroEJ/FreeRTOS/commit/898f2e6cd492616b4ccaabc136cafa76ef038690

MicroEJ Documentation,

2. Rebuild the MicroEJ Application

On success, the following message appears in the console:

=============== [Initialization Stage] ===============
Platform␣
→˓connected to BSP location 'C:\Users\user\src\tuto-from-scratch\FreeRTOS\FreeRTOS\
→˓Demo\CORTEX_LM3S6965_GCC' using application option 'deploy.bsp.root.dir'.
=============== [Launching SOAR] ===============
=============== [Launching Link] ===============
=============== [Deployment] ===============
MicroEJ files for the 3rd-party BSP project are generated to 'C:\
→˓Users\user\src\tuto-from-scratch\workspace\HelloWorld\com.mycompany.Main\platform'.
The MicroEJ application (microejapp.o) has been deployed to: 'C:\Users\user\src\
→˓tuto-from-scratch\FreeRTOS\FreeRTOS\Demo\CORTEX_LM3S6965_GCC\microej\lib'.
The MicroEJ platform library (microejruntime.a) has been deployed to: 'C:\Users\user\src\
→˓tuto-from-scratch\FreeRTOS\FreeRTOS\Demo\CORTEX_LM3S6965_GCC\microej\lib'.
The MicroEJ platform header files (*.h) have been deployed to: 'C:\Users\user\src\
→˓tuto-from-scratch\FreeRTOS\FreeRTOS\Demo\CORTEX_LM3S6965_GCC\microej\inc'.
=============== [Completed Successfully] ===============

SUCCESS

3. Then rebuild and run the firmware:

$ make && qemu-system-arm -M lm3s6965evb -nographic -kernel gcc/RTOSDemo.bin

LD gcc/RTOSDemo.axf
Hello, World! printf function is working.

(continues on next page)

3.10. Training Courses 1485

MicroEJ Documentation,

(continued from previous page)

Hello World! This is my first MicroEJ Application
QEMU: Terminated

Congratulations!

At this point of the training:

• The MicroEJ Platform is connected to the BSP (BSP partial connection).

• The MicroEJ Application is deployed within a known location of the BSP (in microej/ folder).

• The FreeRTOS LM3S6965 port:

– provides the minimal Low Level API to run the MicroEJ Application

– compiles and links FreeRTOS with the MicroEJ Application and MicroEJ Runtime

– runs on QEMU

The next steps recommended are:

• Complete the implementation of the Low Level APIs (implement all functions in
LLMJVM_impl.h).

• Validate the implementation with the PQT Core.

• Follow the Create MicroEJ Platform Build and Run Scripts training to get this MicroEJ Platform
fully automated for build and execution.

Create MicroEJ Platform Build and Run Scripts

This training describes all the steps to createMicroEJ Platform build and run scripts and shows
how to use them.

Intended Audience

The audience for this document is Platform engineers who want to

• validate their MicroEJ Platform using automatedMicroEJ test suites.

• prepare their MicroEJ Platform for automated builds and continuous integration usingMicroEJ
Module Manager.

• ease MicroEJ Standalone Application development by simplifying the Firmware build for Java
developers.

• configure their MicroEJ Platform with full BSP connection.

3.10. Training Courses 1486

https://github.com/MicroEJ/VEEPortQualificationTools/tree/master/tests/core

MicroEJ Documentation,

Prerequisites

This training is a direct continuation of Create a MicroEJ Firmware From Scratch training. It
should have been completed before starting this one.

Introduction

Build and Run scripts are normalized entry points to

• build a MicroEJ Firmware linked to the Board Support Package,

• deploy and run the Firmware on a device.

External tools only need to run these scripts without additional knowledge about the toolchain
or deployment tools.

SeeBuild Script File andRunScript File sections formore information about these scripts. Script
examples are provided in Platform Qualification Tools repository.

Overview

In the previous Create aMicroEJ Firmware FromScratch training, the final binary is produced by
invoking make in the FreeRTOSBSP. The command to type is dependant of the toolchain used.
The Firmware is then executed in QEMU but could have been instead flashed to a device with
another specific command. This training explain how to write build and run scripts for these
two tasks.

The next sections will

• describe step-by-step how to create the build and run scripts both for unix-like systems (Bash
scripts) and Windows systems (batch files). These scripts automate Firmware build and execu-
tion in QEMU as presented in Create a MicroEJ Firmware From Scratch training.

• show a practical usage of these scripts in a MicroEJ development flow. This will allow to con-
figure a MicroEJ Standalone Application to build the Firmware in MicroEJ SDK.

Finally, this trainingdescribeshowtoconvert theMicroEJPlatform frompartial BSPconnection
to full BSP connection.

Create Build and Run Scripts

This section describes how to write build and run scripts.

There are two scripts:

1. build.[sh|bat] which calls the C toolchain to build and link the Firmware file. It also ensures that the output
file is called application.out and is located in the directory fromwhere the script was called.

2. run.[sh|bat] which deploys and runs application.out on the device. In this training, it will only run the
Firmware with QEMU instead of flashing it on real hardware.

Each of these scripts come in two flavors: .sh for unix-like systems, and .bat for Windows
systems.

First, create a microej/scripts directory in BSP project:

3.10. Training Courses 1487

https://github.com/MicroEJ/VEEPortQualificationTools/tree/master/framework/platform/scripts

MicroEJ Documentation,

$ pwd
/mnt/c/
→˓Users/user/src/tuto-from-scratch/FreeRTOS/FreeRTOS/Demo/CORTEX_LM3S6965_GCC
$ mkdir microej/scripts

Note: The scripts created in the next sections will be put in this directory.

Create build.sh and run.sh Scripts

Warning: Make sure the build and run scripts have the execution permission.

1. Create a file called build.sh in the microej/scripts directory with the following content:

#!/bin/bash

Save application current directory and jump one level above scripts
CURRENT_DIRECTORY=$(pwd)

Move to the directory where the Makefile is
cd $(dirname ”$0”)/../..

Build the firmware
make

Copy output the the current directory while renaming it
cp gcc/RTOSDemo.bin $CURRENT_DIRECTORY/application.out

Restore application directory
cd $CURRENT_DIRECTORY/

2. Verify that the script successfully built your Firmware and put it in the current directory with
the name application.out .

$ pwd
/mnt/c/
→˓Users/user/src/tuto-from-scratch/FreeRTOS/FreeRTOS/Demo/CORTEX_LM3S6965_GCC
$ make clean
$ microej/scripts/build.sh
CC init/startup.c
CC main.c
CC ../../Source/list.c
CC ../../Source/queue.c
CC ../../Source/tasks.c

[..]
130 | __attribute_

→˓_((always_inline)) static inline uint8_t ucPortCountLeadingZeros(uint32_t ulBitmap)
| ^~~~~~~~~~~~~~~~~~~~~~~

LD gcc/RTOSDemo.axf
$ ls *.out
application.out

3. Check that application.out successfully runs with QEMU:

3.10. Training Courses 1488

MicroEJ Documentation,

$ qemu-system-arm -M lm3s6965evb -nographic -kernel application.out
Hello, World! printf function is working.
Hello World!
QEMU: Terminated // press Ctrl-a x to end the QEMU session

4. Create a file called run.sh in the microej/scripts directory with the following content:

#!/bin/bash

Add some text to the console before launch
echo -e ”\033[0;32m## Start application in QEMU.”
echo -e ”## Use 'Ctrl-a x' to quit.\e[0m”

Launch application with QEMU
qemu-system-arm -M lm3s6965evb -nographic -kernel application.out

5. We can now run the Firmware we just built with the run.sh script:

$ pwd
/mnt/c/
→˓Users/user/src/tuto-from-scratch/FreeRTOS/FreeRTOS/Demo/CORTEX_LM3S6965_GCC
$ microej/scripts/run.sh
Start application in QEMU.
Use 'Ctrl-a x' to quit.
Hello, World! printf function is working.
Hello World!

Note: This script is very simple because our Firmware is just run with QEMU instead of real hardware. To deploy
the Firmware on a device, the script would have to setup and call a flash tool. See for instance the build and run
scripts for Espressif-ESP-WROVER-KIT-V4.1.

Create build.bat and run.bat Scripts

As our toolchain has only be configured for Linux in WSL, we create wrappers that call shell
scripts through WSL. We could also decide to directly invoke QEMU for Windows instead. This
is just a implementation choice for this Platform.

1. Create a file called build.bat in the microej/scripts directory with the following content:

@echo off
SETLOCAL ENABLEEXTENSIONS

REM Reset ERRORLEVEL between multiple run in the same shell
SET ERRORLEVEL=0

REM Save application current directory and jump to scripts directory
SET CURRENT_DIRECTORY=%CD%
CD ”%~dp0”

REM Get the script directory in a Unix path format
FOR /F %%i in ('WSL pwd') DO SET SCRIPT_DIRECTORY=%%i

REM Restore application directory
(continues on next page)

3.10. Training Courses 1489

https://github.com/MicroEJ/Platform-Espressif-ESP-WROVER-KIT-V4.1/blob/1.7.0/ESP32-WROVER-Xtensa-FreeRTOS-bsp/Projects/microej/scripts/build.sh

MicroEJ Documentation,

(continued from previous page)

CD %CURRENT_DIRECTORY%

REM Run the bash build script with WSL
WSL %SCRIPT_DIRECTORY%/build.sh

IF %ERRORLEVEL% NEQ 0 (
EXIT /B %ERRORLEVEL%

)

2. Calling this script in PowerShell should produce the following result:

PS C:\Users\user\src\tuto-from-scratch\
→˓FreeRTOS\FreeRTOS\Demo\CORTEX_LM3S6965_GCC> microej\scripts\build.bat
CC init/startup.c
CC main.c
CC ../../Source/list.c
CC ../../Source/queue.c
CC ../../Source/tasks.c
[...]
CC microej/src/LLMJVM_stub.c
LD gcc/RTOSDemo.axf

Current DIR /mnt/c/Users/user/src/
→˓tuto-from-scratch/FreeRTOS/FreeRTOS/Demo/CORTEX_LM3S6965_GCC/microej/scripts

1 file(s) moved.

Note: This prints the full build output if it is the first build (or after a make clean) otherwise it prints make:
Nothing to be done for 'all' .

3. Create a file called run.bat in the microej/scripts directory with the following content:

@echo off
SETLOCAL ENABLEEXTENSIONS

REM Reset ERRORLEVEL between multiple run in the same shell
SET ERRORLEVEL=0

REM Save application current directory and jump to scripts directory
SET CURRENT_DIRECTORY=%CD%
CD ”%~dp0”

REM Get the script directory in a Unix path format
FOR /F %%i in ('WSL pwd') DO SET SCRIPT_DIRECTORY=%%i

REM Restore application directory
CD %CURRENT_DIRECTORY%

REM Run the bash run script with WSL
WSL %SCRIPT_DIRECTORY%/run.sh

IF %ERRORLEVEL% NEQ 0 (
EXIT /B %ERRORLEVEL%

)

4. Calling this script in PowerShell should produce the following result:

3.10. Training Courses 1490

MicroEJ Documentation,

C:\Users\user\src\tuto-
→˓from-scratch\FreeRTOS\FreeRTOS\Demo\CORTEX_LM3S6965_GCC\application.out
1 file(s) copied.
Start application in QEMU.
Use 'Ctrl-a x' to quit.
Hello, World! printf function is working.
Hello World!

Use Build Script in MicroEJ SDK

In this section, we illustrate how build script is used in practice to ease the Firmware build for
Java developers in MicroEJ SDK.

We will configure a MicroEJ Standalone Application to enable full Firmware build (application
+ BSP + link) when building the HelloWorld application.

We will then configure a full BSP connection. This will remove the need to configure the path
of the BSP root directory as a MicroEJ Standalone Application option. Please refer to BSP con-
nection cases section and BSP connection options for more details.

Note: Build and run scripts do not require to configure a full BSP connection. This last part has only be added to
allow a MicroEJ Standalone Application project to be built independently from the BSP.

Build Firmware fromMicroEJ SDK

1. Right click on the HelloWorld application project

2. In the menu, select Run As > Run Configurations…

3. Select the Configuration tab

4. Select Device > Deploy entry in the configurations menu

5. Check Execute the MicroEJ script (build.bat) at the location known by the 3rd-party BSP project
checkbox

3.10. Training Courses 1491

MicroEJ Documentation,

6. Click on the Run button. It should print the following:

=============== [Initialization Stage] ===============
Platform␣
→˓connected to BSP location 'C:\Users\user\src\tuto-from-scratch\FreeRTOS\FreeRTOS\
→˓Demo\CORTEX_LM3S6965_GCC' using application option 'deploy.bsp.root.dir'.
[INFO] Launching in Evaluation mode. Your UID is 0120202834374C4A.
=============== [Launching SOAR] ===============
=============== [Launching Link] ===============
=============== [Deployment] ===============
MicroEJ files for the 3rd-party BSP project are generated to 'C:\
→˓Users\user\src\tuto-from-scratch\workspace\HelloWorld\com.mycompany.Main\platform'.

FAIL
The following error occurred while executing this line:
C:\Users\user\src\tuto-from-scratch\workspace\lm3s811evb-Platform-CM0_GCC48-
→˓0.0.1\source\scripts\deploy.xml:30: The following error occurred while executing this line:
C:\Users\user\src\tuto-from-scratch\workspace\lm3s811evb-Platform-CM0_GCC48-0.0.
→˓1\source\scripts\deployInBSP.xml:97: The following error occurred while executing this line:
C:\Users\user\src\tuto-from-scratch\workspace\lm3s811evb-Platform-CM0_GCC48-0.0.
→˓1\source\scripts\deployInBSP.xml:260: Option 'deploy.bsp.microejscript' is enabled but this␣
→˓Platform does no define a well-known location. Either update the Platform configuration␣
→˓(option 'deploy.bsp.microejscript.relative.dir' in 'bsp/bsp.properties') or disable this option.

7. Edit the file bsp/bsp.properties as follow:

Specify BSP external scripts files ('build.bat' and 'run.bat') parent directory.
This is a '/' separated directory relative to 'bsp.root.dir'.
microejscript.relative.dir=microej/scripts

8. Rebuild your Platform (right-click on the platform configuration project and click on
Build Module)

3.10. Training Courses 1492

MicroEJ Documentation,

9. Run the HelloWorld launcher once again. This should print the following result:

=============== [Initialization Stage] ===============
Platform connected to BSP location 'C:\Users\user\src\tuto-from-scratch\FreeRTOS\
→˓FreeRTOS\Demo\CORTEX_LM3S6965_GCC' using platform option 'deploy.bsp.root.dir'.
[INFO] Launching in Evaluation mode. Your UID is 0120202834374C4A.
→˓=============== [Launching SOAR] ===============
=============== [Launching Link] ===============
=============== [Deployment] ===============
MicroEJ files for the 3rd-party BSP project are generated␣
→˓to 'C:\Users\user\Workspaces_test_fw_tuto\HelloWorld\com.mycompany.Main\platform'.
The MicroEJ application (microejapp.o) has been deployed to: 'C:\Users\user\src\
→˓tuto-from-scratch\FreeRTOS\FreeRTOS\Demo\CORTEX_LM3S6965_GCC\microej\lib'.
The MicroEJ platform library (microejruntime.a) has been deployed to: 'C:\Users\user\src\
→˓tuto-from-scratch\FreeRTOS\FreeRTOS\Demo\CORTEX_LM3S6965_GCC\microej\lib'.
The MicroEJ platform header files (*.h) have been deployed to: 'C:\Users\user\src\
→˓tuto-from-scratch\FreeRTOS\FreeRTOS\Demo\CORTEX_LM3S6965_GCC\microej\inc'.
Execution of script 'C:\Users\user\src\tuto-from-scratch\FreeRTOS\
→˓FreeRTOS\Demo\CORTEX_LM3S6965_GCC\microej\scripts\build.bat' started...
LD gcc/RTOSDemo.axf
Current␣
→˓DIR /mnt/c/Users/user/Workspaces/_test_fw_tuto/HelloWorld/com.mycompany.Main
Execution of script 'C:\Users\user\src\tuto-from-scratch\
→˓FreeRTOS\FreeRTOS\Demo\CORTEX_LM3S6965_GCC\microej\scripts\build.bat' done.
=============== [Completed Successfully] ===============

SUCCESS

Reading the traces, we see that theHelloWorld application (microejapp.o) and theMicroEJ Plat-
form library (microejruntime.a) have been deployed to the suitable BSP location. Then the
build.bat script has been executed to rebuild the BSP and link the Firmware. The output is
the application.out binary that can be flashed on the device (or run on QEMU).

Convert from partial BSP connection to full BSP connection (optional)

In this section, we configure the BSP root directory in the Platform. Such configuration is called
full BSP connection: the MicroEJ Platform includes the BSP, and any MicroEJ Standalone Appli-
cation can be built against this MicroEJ Platform without extra configuration.

When launching the HelloWorld application from MicroEJ SDK, the launcher knows how to
find the BSP because we have configured its path in HelloWorld/build/emb.properties file
which is imported in the launcher (this file has been configured in Create a MicroEJ Firmware
From Scratch training).

1. Cut deploy.bsp.root.dir property value from HelloWorld/build/emb.properties file

2. Paste the value in bsp/bsp.properties as follow:

Specify the BSP root directory.
→˓ Can use ${project.parent.dir} which target the parent of platform configuration project
For example, '$
→˓{workspace}/${project.prefix}-bsp' specifies a BSP project beside the '-configuration' project
root.dir=[absolute_path] to FreeRTOS\\FreeRTOS\\Demo\\CORTEX_LM3S811_GCC

3. Rebuild your MicroEJ Platform (right-click on the platform configuration project and click on
Build Module)

The MicroEJ Platform is now fully connected to the BSP.

3.10. Training Courses 1493

MicroEJ Documentation,

4. Launch HelloWorld project from Eclipse launcher, it should print the following result:

=============== [Initialization Stage] ===============
Platform␣
→˓connected to BSP location 'C:\Users\user\src\tuto-from-scratch\FreeRTOS\FreeRTOS\
→˓Demo\CORTEX_LM3S6965_GCC' using platform option 'root.dir' in 'bsp/bsp.properties'.
[INFO] Launching in Evaluation mode. Your UID is 0120202834374C4A.
=============== [Launching SOAR] ===============
=============== [Launching Link] ===============
=============== [Deployment] ===============
MicroEJ files for the 3rd-party BSP project are generated to 'C:\
→˓Users\user\src\tuto-from-scratch\workspace\HelloWorld\com.mycompany.Main\platform'.
The MicroEJ application (microejapp.o) has been deployed to: 'C:\Users\user\src\
→˓tuto-from-scratch\FreeRTOS\FreeRTOS\Demo\CORTEX_LM3S6965_GCC\microej\lib'.
The MicroEJ platform library (microejruntime.a) has been deployed to: 'C:\Users\user\src\
→˓tuto-from-scratch\FreeRTOS\FreeRTOS\Demo\CORTEX_LM3S6965_GCC\microej\lib'.
The MicroEJ platform header files (*.h) have been deployed to: 'C:\Users\user\src\
→˓tuto-from-scratch\FreeRTOS\FreeRTOS\Demo\CORTEX_LM3S6965_GCC\microej\inc'.
Execution of script 'C:\Users\user\src\tuto-from-scratch\FreeRTOS\
→˓FreeRTOS\Demo\CORTEX_LM3S6965_GCC\microej\scripts\build.bat' started...
LD gcc/RTOSDemo.axf

Current DIR /mnt/c/Users/user/src/
→˓tuto-from-scratch/FreeRTOS/FreeRTOS/Demo/CORTEX_LM3S6965_GCC/microej/scripts
Execution of script 'C:\Users\user\src\tuto-from-scratch\
→˓FreeRTOS\FreeRTOS\Demo\CORTEX_LM3S6965_GC C\microej\scripts\build.bat' done.
=============== [Completed Successfully] ===============

SUCCESS

Note: You can notice the difference in the second line of the trace that now says that the con-
nection is using platform option root.dir' in 'bsp/bsp.properties' instead of using platform
option 'deploy.bsp.root.dir' in the previous launch.

The application launcher does not know anymore where the BSP is located. Nevertheless it
still builds a Firmware ready to be flashed. The link to the BSP is now configured in theMicroEJ
Platform. Any MicroEJ Standalone Application can be built against this MicroEJ Platform with
no BSP specific option.

Going Further

• More about build and run scripts in Build Script File and Run Script File sections

• Some build scripts examples from Platform Qualification Tools

• Follow the Configure and Run the Test Suite documentation to learn how to run an automated
testsuite

• Perform the Setup an Automated Build using Jenkins and Artifactory training to learn how to
automate the build of a MicroEJ Platformmodule

3.10. Training Courses 1494

https://github.com/MicroEJ/VEEPortQualificationTools/tree/master/framework/platform/scripts

MicroEJ Documentation,

Unit 1: Create a MicroEJ Firmware From Scratch

Step by step hands-on that explains how to create a VEE Port for a custom device:

MICROEJ SDK 5

MICROEJ SDK 6

• Create a MicroEJ Firmware From Scratch

• Coming soon!

Unit 2: Create VEE Port Build and Run Scripts

Continuation of Unit 1, create VEE Port Build and Run scripts to ease Application development
and VEE Port validation:

MICROEJ SDK 5

MICROEJ SDK 6

• Create MicroEJ Platform Build and Run Scripts

• Coming soon!

Qualify & Test your VEE Port

Description

This training describes how to validate the integration of MICROEJ VEE on a device using PQT
(Port Qualification Tools).

VEEPortQualification is theprocess of validating the conformanceof theAbstraction Layer that
implements the Low Level APIs of a Foundation Library.

What you will learn:

• Reminder of Foundation Libraries architecture.

• Test Suite role in Abstraction Layer validation.

• Running a Test Suite on a Device

Intended Audience

This training is designed for VEE Port developers who want to validate an Abstraction Layer
implementation or understand how to automatically run a Test Suite on their device.

3.10. Training Courses 1495

MicroEJ Documentation,

Prerequisites

To get the most out of this training, participants should have:

• A good understanding of the Overview section.

• A basic knowledge of theMicroEJ Glossary.

• Access to the ESP-WROVER-KIT V4.1 Evaluation Kit.

Training Resources

Unit 1: Introduction to Port Qualification Tool

Read the Introduction section of the VEE Port Qualification documentation.

Unit 2: Run a Test Suite on a Device

Step-by-step hands-on to run a VEE Port Test Suite on a device using the Port Qualification
Tools:

MICROEJ SDK 5

MICROEJ SDK 6

• Run the FS Test Suite on ESP32-WROVER VEE Port

• Coming soon!

Debug a HardFault

Description

In this training, you will get insights on how to debug a hardfault.

Intended Audience

This training is designed for VEE Port developers who want to debug a hardfault.

Prerequisites

To get the most out of this training, participants should have:

• A good knowledge of embedded software development on Microcontrollers.

• A good understanding of Simple Native Interface Specification (SNI) concepts.

3.10. Training Courses 1496

https://docs.espressif.com/projects/esp-dev-kits/en/latest/esp32/esp-wrover-kit/user_guide.html

MicroEJ Documentation,

Introduction

When the application crashes, it can result from a HardFault triggered by the MCU.

The following sections explain:

1. What are exceptions, HardFaults, and the exception handler.

2. What to do in case of Memory Corruptions.

3. What to do when a HardFault occurs.

Useful Resources

• IAR System: Debugging a HardFault on Cortex-M https://mypages.iar.com/s/article/
Debugging-a-HardFault-on-Cortex-M

• ESP-IDF Programming Guide: Fatal Errors https://docs.espressif.com/projects/esp-idf/en/
latest/esp32/api-guides/fatal-errors.html

• Using Cortex-M3/M4/M7 Fault Exceptions MDK Tutorial http://www.keil.com/appnotes/files/
apnt209.pdf

Exceptions, HardFaults And Exception Handler

From ARM Architecture Reference Manual

An exception causes the processor to suspend program execution to handle an event, such as
an externally generated interrupt or an attempt to execute an undefined instruction. Excep-
tions can be generated by internal and external sources. Normally, when an exception is taken,
the processor state is preserved immediately, before handling the exception. This means that,
when the event has been handled, the original state can be restored and program execution
resumed from the point where the exception was taken.

For example, an IRQ request is an exception that can be recovered by handling the hardware
request properly. On theotherhand, anUndefined Instructionexception suggests amore severe
system failure that might not be recoverable.

The exceptions that cannot be recovered are namedHardFaults.

From ARM Architecture Reference Manual

When an exception is taken, processor execution is forced to an address that corresponds to
the type of exception. This address is called the exception vector for that exception.

The code pointed by the exception vector is named exception handler. Therefore, a dedicated
exception handler can be configured for all exceptions, including HardFaults.

Possible exceptions can be:

• Data Abort exception (access to unknown address)

• Undefined Instruction exception (execute code that is not valid)

• …

Check the hardware documentation for the complete list of exceptions.

3.10. Training Courses 1497

https://mypages.iar.com/s/article/Debugging-a-HardFault-on-Cortex-M
https://mypages.iar.com/s/article/Debugging-a-HardFault-on-Cortex-M
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/fatal-errors.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/fatal-errors.html
http://www.keil.com/appnotes/files/apnt209.pdf
http://www.keil.com/appnotes/files/apnt209.pdf

MicroEJ Documentation,

What To Do In Exception Handlers?

For all HardFault handlers, the following data are available andmust be printed:

• Name and value of all registers available

• Name of the handler

• Address of the failing instruction

Optionally:

• Content of the stack

• Call function LLMJVM_dump (from LLMJVM.h) todisplay theCoreEngine state (seeDump
the State of the Core Engine)

Refer to the architecture documentation for how to configure the exception interrupt vector.

Memory Protection Unit (MPU)

A Memory Protection Unit (MPU) is a hardware unit that provides memory protection. An MPU
allows privileged software to definememory regions and their policy. The policy describeswho
can access the memory.

Forexample, configure theheapandstackof a task tobeaccessible fromthe task itself only. The
MPU generates an exception if another task or a device driver attempts to access the memory
region.

If applicable, configure the MPU should to protect the application.

• Check the RTOS documentation if it supports MPU.

For example, FreeRTOS includes FreeRTOS-MPU https://www.freertos.org/Security/
04-FreeRTOS-MPU-memory-protection-unit.

• Configure theMPUtoconfigure theaccess to theJVMheapandstack topreventanyothernative
threads from altering this area. Refer to this section for the list of section names defined by the
Core Engine.

Memory Corruption

Memory corruption can result in the following symptoms:

• The address of the failing instruction is in a data section.

• The trace is incomplete or incorrect.

• The address of the failing instruction is located in the Garbage Collector (GC).

The cause(s) of a memory corruption can be:

• A native (C) function has a bug and writes to an incorrect memory location

• A native stack overflow

• A native heap overflow

• A device incorrectly initialized or misconfigured.

• …

3.10. Training Courses 1498

https://www.freertos.org/Security/04-FreeRTOS-MPU-memory-protection-unit
https://www.freertos.org/Security/04-FreeRTOS-MPU-memory-protection-unit

MicroEJ Documentation,

When the HardFault occurs in the Core Engine task, one of its internal structures may be cor-
rupted (such as the Managed heap or Threads stacks). Add LLMJVM_checkIntegrity call in
checkpoints of the BSP code to identify the timeslot of the memory corruption. Typically, you
can check a native with:

void Java_com_mycompany_MyClass_myNativeFunction(void) {
int32_t crcBefore = LLMJVM_checkIntegrity();
myNativeFunctionDo();
int32_t crcAfter = LLMJVM_checkIntegrity();
if(crcBefore != crcAfter){

// Corrupted memory in Core Engine internal structures
while(1);

}
}

Investigation

Determine which memory regions are affected and determine which components are respon-
sible for the corruption.

• List all the memories available and their specifics:

– Access mode (addressable, DMA,…)

– Cachemechanism? L1, L2

• Is low-power enabled for CPU and peripherals? Is the memory disabled/changed to save
power?

• Get the memory layout of the project:

– What are the code sections for the BSP and the Application?

– Where are the BSP stack and heap? What about the Application stack and heap?

– Where is the Java immortals heap?

– Where are the Java strings?

– Where is the MicroEJ UI buffer?

– Besides the Java immortals, what are theother intersectionpoint between the Javaapplication
and the BSP? (e.g., a temporary RAM buffer for JPEG decoder).

– Please refer to the Core Engine Link section to locate the Application sections, and to the Stan-
dalone Application Options for their sizes.

• ImplementaCRCof thehot sectionswhenentering/leavingall natives. HotSectionsarememory
sections used by both Java code and native code (e.g., C or ASM).

• Move the C stack at the beginning of the memory to trigger a crash when it overflows (instead
of corrupting the memory).

3.10. Training Courses 1499

MicroEJ Documentation,

When a HardFault Occurs

Extract Information and Coredump

Attach an embedded debugger and get the following information:

• stack traces and registers information for each stack frame

• memory information

– the whole memory, if possible

– otherwise, get the hot sections

∗ BSP and Managed heap and stack

∗ UI buffer

∗ immortals heap

∗ sections where the Java application and BSP are working together

• Trigger Core Engine Dump From Debugger

• Check which function is located at the address inside the PC register.

– It can be done either in Debugmode or by searching inside the generated .map file.

Memory Dump Analysis

• Run the Heap Dumper to check the application heap has not been corrupted.

• Make sure the native stack is not full (usually, there shall have the remaining initialization pat-
terns in memory on top of the stack, such as 0xDEADBEEF)

Trigger a Core Engine Dump

LLMJVM_dump function is provided by LLMJVM.h . This function prints a snapshot of the Core Engine’s
current state. The output includes the list of threads and their stack traces.

See this section to learn more about LLMJVM_dump .

Delegate Blocking Operations using Async Worker

Description

In this training, you will get an introduction to the Async Worker C Component that helps to
delegate blocking operations from VEE RTOS context to another RTOS task context.

3.10. Training Courses 1500

MicroEJ Documentation,

Intended Audience

This training is designed for VEE Port developers who want to explore blocking native method
implementation in depth.

Prerequisites

To get the most out of this training, participants should have:

• A good knowledge of C programming language.

• A good understanding of Unit 1: C / Managed Code Communication with MICROEJ VEE training
(especially the Blocking Functions and Asynchronous Code section).

Training Resources

Unit 1: Async Worker Overview

•

Unit 2: Implementation Guide

The Async Worker C Component is implemented in several VEE Port Examples.

Refer to the following guide to implement asynchronously SNI functions using Async Worker:

• Async Worker Implementation Guide

3.10.4 For Kernel Developers

Get Started with Kernel

This Getting Started is a step-by-step guide explaining how tobuild aMulti-Sandbox Executable
for the NXP i.MXRT1170 Evaluation Kit.

This Executable will be built from the Kernel GREEN sources.

The Multi-Sandbox Executable built in this Getting Started can then be used to complete the
Get Started with Sandboxed Applications Getting Started.

During this Getting Started, you will learn how to:

• Get the Kernel GREEN,

• Configure it,

• Build the project and get the modules: Virtual Device, Executable, Javadoc, …

• Run a Sandboxed Application project on this Multi-Sandbox Executable.

In case you are not familiar with MicroEJ, please visit Discover MicroEJ to understand the prin-
ciples of our technology.

3.10. Training Courses 1501

https://repository.microej.com/modules/com/microej/clibrary/platform/bsp-microej-async-worker/
https://github.com/MicroEJ/VEEPort-Espressif-ESP32-S3-DevKitC-1/blob/2.5.0/ESP32-S3-DevKitC1-Xtensa-FreeRTOS-bsp/projects/microej/util/inc/microej_async_worker.h
https://github.com/MicroEJ/Kernel-GREEN
https://developer.microej.com/discover-microej/

MicroEJ Documentation,

Prerequisites

Note: This Getting Started has been tested in the following conditions:

• Windows 10/11.

• Kernel GREEN 2.1.1 .

• NXP i.MXRT1170 VEE Port 3.0.0 .

To get the most out of this training, participants should have:

• A good understanding of the Overview section.

• A basic knowledge of theMicroEJ Glossary.

Hardware setup

To follow this training, you need:

• A NXP i.MX RT1170 Evaluation Kit EVKB.

• A RK055HDMIPI4MA0 display panel.

• A FAT32-formatted microSD card.

• An Ethernet cable

Environment Setup

To follow this Getting Started, you need to:

Install MICROEJ SDK 6

FollowMICROEJ SDK 6 installation Guide, IntelliJ is used on this Getting Started but feel free to
use your favorite IDE,

Accept the MICROEJ SDK EULA

Youmay have to accept the SDK EULA if you haven’t already done it, please have a look at SDK
EULA Acceptation.

3.10. Training Courses 1502

https://github.com/MicroEJ/Kernel-GREEN
https://github.com/MicroEJ/nxp-vee-imxrt1170-evk
https://www.nxp.com/design/design-center/development-boards-and-designs/i-mx-evaluation-and-development-boards/i-mx-rt1170-evaluation-kit:MIMXRT1170-EVKB
https://www.nxp.com/part/RK055HDMIPI4MA0

MicroEJ Documentation,

Setup the NXP i.MXRT1170 EVKB

Follow this Environment Setup guide to get a development environment upand running forNXP
i.MXRT1170 EVKB.

Additionally, make sure to:

• Insert a micro-SD card (FAT32-formatted) in the board connector,

• Connect the 1GB Ethernet connector to the internet.

Congratulations! You have finished the setup of your environment. You are now ready to dis-
cover how to build and flash the Kernel-GREEN .

Set up the Kernel GREEN on your IDE

Import the Project

Clone or download the Kernel GREEN sources,

The first step is to import the Kernel-GREEN into your IDE:

Note: If you are using an IDE other than IntelliJ, please have a look at Import a Project section.

• If you are in the Welcome Screen, click on the Open button. Otherwise click either on File

> Open… ,

• Select the Kernel-GREEN directory located where you downloaded it and click on the OK
button.

The Gradle project should now be imported in IntelliJ, your workspace contains the following
project in the Projects view:

3.10. Training Courses 1503

https://github.com/MicroEJ/Kernel-GREEN

MicroEJ Documentation,

Configure the Project

Select a VEE Port

As Applications need to depend on a VEE Port in order to be built, so does a Kernel project.
Refer to the Prerequisites section of the Kernel GREEN README to learn more about the VEE
Port requirements.

By default, the Kernel-GREEN project already uses the NXP i.MXRT1170 VEE Port 3.0.0 .

3.10. Training Courses 1504

https://github.com/MicroEJ/Kernel-GREEN
https://github.com/MicroEJ/nxp-vee-imxrt1170-evk

MicroEJ Documentation,

Kernel Configuration

The configuration/common.properties file provides a default configuration for the Kernel
(runtime heap size, maximum number of threads, images heap size, etc.).

This configuration will also impact Sandboxed Applications running on top of the Kernel (e.g.
max number of threads per application).

Check the Kernel GREEN README for more information about the Kernel configuration.

Run the Kernel GREEN on NXP i.MXRT1170 Evaluation Kit

Make sure to have completed all the Environment Setup steps before going further.

Build the Executable for the NXP i.MXRT1170 Evaluation Kit

In order tobuild theExecutableof the Kernel-GREEN , theSDKprovides the buildExecutable
Gradle task.

Note: If you are using an IDE other than IntelliJ, please have a look at Build an Executable section. Come back on
this page if you need to activate an Evaluation License.

• Double-click on the buildExecutable task in the Gradle tasks view.

• The build stops with a failure.

• Go to the top project in the console view and scroll up to get the following error message:

• Copy the UID. It will be required to activate your Evaluation license.

Request your Evaluation License:

• Request your Evaluation license by following the Request your Activation Key instructions. You
will be asked to fill the machine UID field with the UID you copied before.

• When you have received your activation key by email, drop it in the license directory by fol-
lowing the Install the License Key instructions (drop the license key zip file to the ~/.microej/
licenses/ directory).

Now your Evaluation license is installed, you can relaunch your Kernel build by double-clicking
on the buildExecutable task in the Gradle tasks view. It may take some time.

The gradle task deploys the Kernel in the BSP and then builds the BSP using Make.

3.10. Training Courses 1505

https://github.com/MicroEJ/Kernel-GREEN

MicroEJ Documentation,

The Kernel-GREEN is built and ready to be flashed on a NXP i.MXRT1170 Evaluation Kit once
the hardware setup is completed.

Flash the Kernel GREEN on the NXP i.MXRT1170 Evaluation Kit

In order to flash the Kernel-GREEN on the NXP i.MXRT1170 Evaluation Kit, the application
provides the Gradle runOnDevice task.

Note: If you are using an IDE other than IntelliJ, please have a look at Run on Device section.

• Double-click on the runOnDevice task in the Gradle tasks view. It may take some time:

Once the Executable is flashed, you should see the Kernel-GREEN traces in your console:

3.10. Training Courses 1506

MicroEJ Documentation,

Well Done!

Now you know how to build and run a Multi-Sandbox Executable!

If you want to learn how to run a Sandboxed Application on your Multi-Sandbox Executable,
you can continue this Getting Started.

3.10. Training Courses 1507

MicroEJ Documentation,

Run a Sandboxed Application on your Multi-Sandbox Executable and Virtual Device

Follow the Create and Run a Sandboxed Application Getting Started to create and run a Sand-
boxed Application project on your Multi-Sandbox Executable and Virtual Device.

Note: When it comes to selecting the Multi-Sandbox Executable and Virtual Device (section Run the Sandboxed
Application on the Virtual Device), follow this procedure:

• Open the settings.gradle.kts files located at the root of your MyApplication project,

• Include the Kernel-GREEN project as a dependency of the MyApplication project,

rootProject.name = ”MyApplication”
includeBuild(”C:\\YOUR_PATH\\Kernel-GREEN”)

• Reload the Gradle project:

• The Kernel-GREEN project should now appear in the Gradle tasks view:

• Open the build.gradle.kts file of the MyApplication project,

• Add the dependency to the Kernel-GREEN project: microejVee(”com.microej.
kernel:GREEN:2.1.1”)

3.10. Training Courses 1508

MicroEJ Documentation,

Note: Make sure that the version corresponds to the version defined in your Kernel GREEN
build.gradle.kts file.

• Come back to the Run the Sandboxed Application on the Virtual Device Getting Started.

Going Further

Youhavenowsuccessfully executedaSandboxedApplicationonanembeddeddevice sowhat’s
next?

If you are an application developer you can continue to explore MicroEJ’s APIs and functional-
ities by running and studying our samples at GitHub:

Foundation Libraries Eclasspath IoT
This project gathers all the ba-
sic examples of the foundation li-
braries.

This project gather all the exam-
ples of eclasspath.

This project gathers simple appli-
cations using net libraries.

https://github.com/MicroEJ/
Example-Foundation-Libraries

https://github.com/MicroEJ/
Example-Eclasspath

https://github.com/MicroEJ/
Example-IOT

You can also learn how to build bigger and better applications by reading our Application Devel-
oper Guide.

If you are an embedded engineer you could look at our VEE port examples at GitHub. And to
learn how create custom VEE ports you can read our VEE Porting Guide.

You can also follow the Kernel Developer Guide for more information on our multi-application
framework or read about our powerful wearable solution called VEE Wear.

Last but not least you can choose to learn about specific topics by following one of our many
Training Courses ranging from how to easily debug application to setting up a Continuous Inte-
gration process and a lot of things in between.

Kernel Development

Description

In this training, youwill get an introduction to Kernel development in a Multi-Sandbox context.

What you will learn:

• Introduction to Kernel & Features concepts

• Running a Sandboxed Application on a Kernel

• Sandboxing notions

• Kernel services

• Building Kernel modules

• Introduction to Kernel-GREEN

3.10. Training Courses 1509

https://github.com/MicroEJ/Kernel-GREEN
https://github.com/MicroEJ/Example-Foundation-Libraries
https://github.com/MicroEJ/Example-Foundation-Libraries
https://github.com/MicroEJ/Example-Eclasspath
https://github.com/MicroEJ/Example-Eclasspath
https://github.com/MicroEJ/Example-IOT
https://github.com/MicroEJ/Example-IOT
https://github.com/microej?q=vee&type=all&language=&sort=

MicroEJ Documentation,

Intended Audience

This training is designed for developers whowant to gain a first understanding of Kernel devel-
opment.

Prerequisites

To get the most out of this training, participants should have access to:

• Access to the NXP i.MX RT1170 Evaluation Kit.

• Amini USB cable.

• Amicro SD card.

Training Resources

Unit 1: Kernel Development with MICROEJ SDK

Training for MICROEJ SDK 6 is coming soon!

Unit 2: Kernel-GREEN

Kernel “GREEN”, aMicroEJ Kernel Application project is a Kernel code example that offers basic
services for developing a Sandboxed Application and deploying it easily on your Device. Addi-
tionally, this project serves as a starting point for Kernel developers to learn and demonstrate
most of the Multi-Sandboxing capabilities of the MicroEJ technology.

To complete this unit, follow the steps of the Kernel GREEN REAMDE on GitHub.

3.10.5 Graphical User Interface

Develop GUI with MicroEJ

Description

In this training, you will learn how to develop GUIs using the MicroEJ Graphical Framework.
This training is raster-oriented.

What you will learn:

• Composing a GUI using widgets

• Tuning the look of widgets using style, images and fonts

• Changing the rendering of widgets

• Interacting with the GUI (e.g., touch or button)

• Animating a GUI

• Qualifying a GUI:

– Benchmarking

3.10. Training Courses 1510

https://www.nxp.com/design/design-center/development-boards-and-designs/i-mx-evaluation-and-development-boards/i-mx-rt1170-evaluation-kit:MIMXRT1170-EVKB
https://github.com/MicroEJ/Kernel-GREEN

MicroEJ Documentation,

– Debugging

– Testing

Using an evaluation kit is optional to complete this training, as it can be fully done on the MI-
CROEJ SDK Simulator.

Intended Audience

This training is designed for developers who want to develop GUI Applications with MicroEJ.

Prerequisites

To get the most out of this training, participants should have:

• A good knowledge of the Java programming language.

• A basic understanding of common GUI software design patterns.

Training Resources

How to Validate GUIs

Description

This document explains how to validate Graphical User Interfaces. It describes commonpitfalls
that can affect GUI performances, provides tools that allow to detect performance issues and
how to solve them, and finally offers ways to test GUIs automatically.

Intended Audience

This training is for developers wishing to develop GUI Applications in MICROEJ VEE.

Prerequisites

To get the most out of this training, participants should have a good knowledge of Java pro-
gramming language.

Implementing GUIs Efficiently

Before using more advanced UI debugging techniques, the global application code quality
should be reviewed. An overall good code quality will help to get good UI performances. It
will help to get more efficient code and allow easier debugging andmaintenance.

3.10. Training Courses 1511

MicroEJ Documentation,

Documents and Tools to Improve Application Code Quality

Here is a list of documents or tools that help to improve the quality of application code:

• The Improve theQuality of JavaCode training explains how to improve theQuality of JavaCode.

• The Tutorial-UI training provides guidelines to start developing an efficient GUI.

• The SonarQube™ source code quality analyzer allows to analyze an Application or Library code
quality.

Using Recent Versions of UI Libraries

Using the latest UI libraries (MicroUI, MWT,Widget, etc.) availablemay solve someperformance
issues. Themost recentUI libraries fix somebugs thatmayaffect performanceand theyprovide
tools and libraries that allow to implement more performant UIs.

Memory Management

The Java management of memory may affect UI performances:

• Toomuchmemory allocation/deallocation for UI resources (Images, Fonts).

• Too much object instantiation will lead to a big Managed heap size. In some use cases, the
garbage collection may lead to the UI slowing down.

To avoid those pitfalls:

• Calibrate the memories (Managed heap, Images heap, etc.).

• Uses memory debugging tools:

– Optimize Memory Footprint training.

– Memory inspection tools.

– Heap Analyzer.

Format of UI Resources

Onecrucial aspect of optimizing anapplication is choosing the right image formats. Images can
have a significant impact on an app’s performance andmemory usage. Therefore, selecting the
best image format is essential. It helps reduce memory usage, speed up the app, and improve
its overall performance.

MicroUI manages two kind of images, mutable and immutable images.

Mutable images are graphical resources that can be created and modified at runtime. The ap-
plication can draw into such images. More information about mutable images can be found
here.

As their name suggests, immutable images can not be modified. They are the most commonly
used kind of images, this section will focus on them.

3.10. Training Courses 1512

https://github.com/MicroEJ/ExampleTool-Sonar

MicroEJ Documentation,

Decoding Immutable Images

Immutable images can be converted for display either during the build-time process, using the
Image Generator, or at run-time, utilizing the appropriate decoder library.

The decision between these two approaches depends on the project’s specific requirements.
Decoding at run-time is a good choice when storage space is limited and offers greater flexi-
bility. However, it may require more processing power and result in slower performance. Con-
versely, decoding at build time reduces the computational workload during run-time and is
well-suited for devices with stringent performance demands, though it usually require more
storage and it may sacrifice some flexibility in the process.

Format of Immutable Images

There are multiple output formats that can be used to convert the images, you can find them
here: Output Formats.

Choosing the right output format is important to get the best performance:

• For opaque images, choose a format that has no transparency, RGB565 is usually sufficient.

• For a pictogram to colorize A4 is usually sufficient. The image can be colorized at runtime.

• The image format can be compressed, see Compressed Output Formats

The expected result of each format can be seen here: Formats expected result

Images Heap

Mutable images and immutable images decoded at runtime require somememory to be used.
Please go to the Images Heap section for more information.

Benchmarking GUIs

The process of rendering a frame of the UI consists of several parts:

• Drawing of the UI:

– MWT processing (layout of widgets and widget rendering process).

– Drawing of the UI (MicroUI drawing method execution).

• Display flush, see Buffer Policy.

• Buffer Refresh Strategy (BRS), see Buffer Refresh Strategy.

Some tools are available to identify which part of this process affect the most the GUI perfor-
mance.

3.10. Training Courses 1513

MicroEJ Documentation,

SystemView

TheSystemView tool canbeused to trace theUI actions (drawings, flush, etc.) anddetectwhich
ones are the most time-consuming. The documentation of SystemView is available here. The
MicroUI traces should be configured in SystemView in order to see the UI actions performed, it
can be done by following this documentation. Custom traces can be added and logged from the
Java application to record specific actions.

MicroUI Flush Visualizer

A perfect application has 100% of its display area drawn. This is the total area covered by the
sum of the area drawn by the drawing operations. A value of 200% indicates the area drawn
is equivalent to twice the surface of the entire display. A total area drawn between 100% to
200% is the norm in practice becausewidgets often overlap. However, if the total area drawn is
bigger than 200%, that means that the total surface of the display was drawnmore than twice,
meaning that a lot of time could be spent drawing things that are never shown.

TheMicroUI Flush Visualizer tool can be used to investigate potential performance bottlenecks
in UI applications running on the Simulator by showing the pixel surface drawn between two
MicroUI flushes.

The documentation of MicroUI Flush Visualizer is available here.

Debugging GUIs

High-level Debugging and Optimizations

This section provides insights into common issues affecting performances on the high-level
side. The following advices will help reduce the MWT processing and drawing time.

Widget Hierarchy and Layout

Keeping the widget hierarchy as simple as possible will help to reduce the “MWT processing”
part time. Improving the widget hierarchy design may help reduce the number of widgets or
the number of them that are rendered when a certain part of the UI is updated.

Here are tools that allow to detect issues with the widget hierarchy:

• Widget debug utilities provides tools to visualize the widget tree, count the numbers of widgets or see their
bounds.

• MWT bounds highlighting allows to visualize the bounds of the widgets, it is useful to detect overlapping
widgets.

3.10. Training Courses 1514

MicroEJ Documentation,

Bad Use of requestRender and requestLayout

The requestRender method requests a render of the widget on the display.

The requestLayout method requests a layout of all thewidgets in the sub-hierarchyof thiswid-
get. It will compute the size and position of the widgets as setting their styles. requestLayout
will trigger a render request after the layout.

A common mistake is to call requestRender just after a requestLayout . This will trigger two
renders and thus affect the UI performances.

Another common issue is to request a layout where a render request would have been
enough. If the size, position or style of the widgets didn’t change requestRender is enough,
requestLayout would have a longer processing time. This is especially true for animation
where we want each frame to be processed as fast as possible.

Documentation about rendering and layout is available here.

Animations Implementation

There are a few implementations possible for animations with MicroEJ. The way widgets are
animated should be chosen according to the use case and the limitation of the hardware.

Animator

The MWT’s Animator allows to execute animations as fast as possible, it waits for the low-level
screen flush to be done and directly triggers a new render. Thus the Animator will give the best
framerate possible but will also consume a lot of CPU processing time.

TimerTask

A TimerTask can be used to execute an animation at a fixed framerate. This technique is very
useful to set a fixed period for the animation butwill cause issues if the time to render a frame is
longer than that period, this will lead tomissed frames. Some frames can take longer to render
if their content is more complex or if the CPU is already used by another non-UI thread.

The framerate set when using a TimerTask for animation should be defined wisely, the time to
render frames and the CPU utilization should be taken into consideration.

Animator and TimerTaskmix

A mix of the Animator and TimeTask approaches could be implemented in order to set a fixed
framerate but also to rely on the screen flush.

3.10. Training Courses 1515

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/animation/Animator.html

MicroEJ Documentation,

Hardware and Low-level Debugging and Optimizations

This sectionprovides insights into themain spots to check regarding the low-level and thehard-
ware.

Please see the VEE Porting Guide Graphical User Interface documentation formore information
about the UI port.

At Project Level

Compiling Optimization Options

The project should be configured to bring the best performances with compiling optimization
options correctly set up.

RTOS Tasks Environment

The priority of the UI task should be set high enough to avoid too many preemptions that may
induce bad UI performances.

Another point that should be taken into consideration is the amount of other tasks that are run-
ning at the same time as theUI task. The total workloadmay be too high for the CPU, therefore,
the UI task cannot get access to the required amount of computing power.

At Hardware Level

Hardware Capabilities

MCUs and SoCsmay have access to various hardware IPs to speed up the UI. The UI port should
exploit all of them to get the best performance. First of all, the GPU should be used if it is avail-
able on the system. Then, driving a display implies intensive memory usage, a DMA should be
used whenever it’s possible.

For more information about the flush policy, please read our documentation about Display.

Hardware Configuration

Each of the hardware components such as SPI, DMA or LCD controller must be configured to
bring the best performances achievable. This implies to read carefully the datasheet of the
MCU and the display and determine for example the best frequency and communicationmode
possible.

Another example of configuration with DMAs, a DMA has often a burst mode to transfer data,
the UI port should use this mode to maximize performance.

3.10. Training Courses 1516

MicroEJ Documentation,

Buffers Location in Memory

An important step during the development of the UI integration is the memory location of the
buffers that will use the GUI to draw to the display. In an MCU, there may be different types of
RAM available that have different properties in terms of quantity and speed. The fastest RAM
should be chosen for the buffers if its size allows it.

Flush Policy

As described in the Display page, there are several flush policies that can be implemented. The
best flush policy should be selected according to the hardware capabilities. Generally, the best
flush policy is the switch mode.

Testing GUIs

Before applying UI debugging or optimization techniques, the application behaviour should be
tested. There are different ways of doing this.

Test a GUI Application with a Software Robot

It is possible to test the GUI of an application via robotic process automation (RPA). Robot tests
mimic the human user behavior in the GUI and can help detect various errors by automating
behavior which otherwise would cost too much effort and/or time to execute manually.

Here are the steps required to use a robot in the MicroEJ environment:

• Record the robot input events

– For this, you need a simple EventHandler which intercepts incoming events, for example from
a Pointer, then passes them on to the real event handler.

• Start the usage of the new ‘Watcher’ logic after the UI has started

– With this, the watching of the Pointer envents is initiated for the whole application.

• Create a Robot

– The robot is a simple class which uses its own Pointer to move and press at the coordinates it
has been instructed.

– The robot should have a method which starts a series of instructions to move the Pointer.

• Execute the Robot method containing the instructions

– The intercepting Event Handling will record and for example log the input.

This simpleway of automating GUI actions can be used to carry out real use cases and evaluate
the results.

The How to test a GUI application with a (software) robot training provides detailed insight into
this topic.

3.10. Training Courses 1517

MicroEJ Documentation,

Test a GUI Application with the Test Automation Tool

To execute regression tests automatically andmonitorminor changes in a GUI, you can use the
Test Automation Tool. The Test Automation Tool allows to automatically test UIs.

The tool comparison functionality can be integrated with JUnit tests.

For detailed information about the tool usage, please check the README in the repository.

Unit 1: Coding Challenges

This project contains coding challenges to learn thebasics ofUI developmentwithMicroEJ. The
training is divided into multiple steps, each helping the user create the views of a smartwatch.

• Slides: Tutorial-UI Training Manual (for MICROEJ SDK 6)

• Resources

Warning: Training slides are provided on GitHub. Download the document to visualize it en-
tirely.

Unit 2: GUI Validation

This guide provides an overview of the technics to properly implement, debug and automati-
cally test a GUI application.

• How to Validate GUIs

Grayscale Display Considerations

Description

In this training, you will get an overview of the considerations to take into account when devel-
oping a GUI application using a grayscale display.

Intended Audience

This training is designed for embedded system developers, hardware engineers, and product
designers who are responsible for choosing a display format for their product.

3.10. Training Courses 1518

https://github.com/MicroEJ/Tool-UITestAutomation
https://github.com/MicroEJ/Tool-UITestAutomation/blob/master/TestAutomationTool/README.md
https://github.com/MicroEJ/Tutorial-UI/blob/step/1/doc/UI-training-manual.pdf
https://github.com/MicroEJ/Tutorial-UI

MicroEJ Documentation,

Prerequisites

To get the most out of this training, participants should have:

• A basic understanding of display technologies, color representation and depth,

• A basic understanding of MicroEJ Graphics Engine.

Training

First and foremost, grayscaledisplays can representa rangeof shadesbetweenblackandwhite.

The Graphics Engine supports the following grayscale formats by default:

• C4 : the pixel uses 4 bits-per-pixel (4BPP),

• C2 : the pixel uses 2 bits-per-pixel (2BPP),

• C1 : the pixel uses 1 bit-per-pixel (1BPP, a.k.a monochrome).

See Pixel Structure documentation for more information.

The below sections present the key considerations when choosing a grayscale display, using
the widely adopted RGB565 colored format as a reference point.

Application Considerations

Testing a “Colored” Application on a Grayscale Display

It is possible to test a “colored” application on a grayscale display.

The straightforward way is to update the display format of the VEE Port to simulate the applica-
tion using a grayscale format.

It is recommended that the C4 format be tested first to obtain a grayscale rendering. Then, the
application resources should be adapted to render properly in C1 or C2 .

Example when switching from RGB565 to C4 format:

Fig. 282: RGB565 vs C4 Display Format

Note: Conversion functions are used at runtime to convert the application colors to the proper display format (see
Pixel Structure)

3.10. Training Courses 1519

MicroEJ Documentation,

For example: if a red rectangle is drawn, the color will be converted using the color conversion
algorithm corresponding to the display format.

Anti-Aliasing

The anti-aliasing is managed like on colored displays.

It is recommended that the fonts and images be converted to the display format. It allows you
to anticipate a wrong blending if your resource has too many bit-per-pixels compared to the
display. (e.g. if the display format is C2 , embed your Fonts in 1BPP or 2BPP format instead
of 4BPP).

Detect Display Format at Runtime

If needed, the APIs of the Display class can be used to detect the display format on the applica-
tion side (isColor , getPixelDepth).

Raster Fonts Considerations

Anti-aliased raster fonts (*.fnt , *.ejf) may have a bad rendering when it comes to displaying
them in C1 format (1BPP):

• 4BPP font format:

• 1BPP font format:

It is recommended that the font files be re-generated to have a good rendering in C1 format.

Refer to Fonts documentation to learn more about Fonts configuration.

Footprint Considerations

The document below compares the footprint of RGB565 (16BPP) and C1 format (1BPP ,
monochrome).

Warning: For the C1 format, memory alignment constraints can potentially increase the re-
sults presented below.

ROM Footprint

RAM Footprint

Application Resources

The application resources are the main item to consider in terms of footprint reduction.

For images, make sure to set the image format according to your display format.

Example with 3 images:

• Image A with size 32x32 , respecting the display format (fully opaque, e.g. RGB585 format)

• Image B with size 32x32 fully transparent (e.g. A8 format)

3.10. Training Courses 1520

https://repository.microej.com/javadoc/microej_5.x/apis/index.html?ej/microui/display/Display.html

MicroEJ Documentation,

• Image C with size 32x32 with a mix of colors and transparency (e.g. ARGB4444 format)

Images footprint on a RGB565 display format (16BPP):

• Image A footprint embedded in RGB565 format (32x32x(16/8)) + header ~ 2kB

• Image B footprint embedded in A8 format (32x32x(8/8)) + header ~ 1 kB

• Image C footprint embedded in ARGB4444 format (32x32x(8/8)) + header ~ 2kB

Images footprint on a C1 display format (1BPP):

• Image A footprint embedded in C1 format (32x32x(1/8)) + header ~ 0.12 kB

• Image B footprint embedded in A1 format (32x32x(1/8)) + header ~ 0.12 kB

• Image C footprint embedded in AC11 format (32x32x(2/8)) + header ~ 0.25kB

For Fonts, make sure to set the font format according to your display format.

Example with the SourceSansPro_15px-600.ejf font:

• Font footprint on a RGB565 display format (16BPP):

– 4 bit-per-pixel format ~ 9.4kB (obtained by building an application and checking the SOARMap
File)

• Font footprint on a C1 display format (1BPP):

– 1 bit-per-pixel format ~ 3.5kB (obtained by building an application and checking the SOAR Map
File)

UI Libraries

There is no ROM footprint difference depending on the display format, the libraries are already
optimized.

Only the algorithms used in the application are embedded in the final executable.

Graphics Engine

SomeGraphics Engine algorithms (e.g., color conversion algorithms) can be removed if the ap-
plication does not use them. Check the ImagePixel Conversion linker file configuration formore
information.

Example with C1 display format:

• If the application does not contain images embedded in ARGB8888 format, the color conver-
sion algorithm from ARGB8888 to C1 can be removed.

Note: Note that the Graphics Engine is already footprint-optimized. Removing those algorithms will not signifi-
cantly reduce its ROM footprint.

Display Buffer Size

The Display Buffer Size can be significantly reduced when changing the display format.

Example:

• Let’s assume a 320 x 240 SPI display is used (only 1 display buffer in RAM),

• RGB565 display format (16BPP):

– Display buffer footprint: 320x240x(16/8) = 150kB

• C1 display format (1BPP):

3.10. Training Courses 1521

https://github.com/MicroEJ/Example-Java-Widget/blob/7.6.0/com.microej.demo.widget/src/main/resources/fonts/SourceSansPro_15px-600.ejf

MicroEJ Documentation,

– Display buffer footprint: 320x240x(1/8) ~ 9.3kB

Images Heap

If the application uses the Images Heap, its size can be reduced as it now stores images in a
lighter format.

Example of Images Heap sized to store a 100x100 image:

• RGB565 display format: 100x100x(16/8) ~ 19.5Kb

• C1 display format: 100x100x(1/8) ~ 1.2Kb

Debug a GUI Application Freeze

Description

In this training, you will get insights on how to instrument a frozen GUI application.

Intended Audience

This training is designed for Application developers who want to debug a GUI freeze in their
application.

Prerequisites

To get the most out of this training, participants should have a basic knowledge of Java pro-
gramming language and GUI development within MicroEJ environment.

Introduction

When an application User Interface freezes and becomes unresponsive, in most cases, one of
the following conditions applies:

• An unrecoverable system failure occurred, like a HardFault, and the RTOS tasks are not sched-
uled anymore.

• The RTOS task that runs the Core Engine is never given CPU time (suspended or blocked).

• The RTOS task that runs the Core Engine is executing never-ending native code (infinite loop in
native implementation for example).

• A Java method executes a long-running operation in the MicroUI thread (also called Display
Pump thread).

• The application code is unable to receive or process user input events.

The following sectionsexplainhowto instrument thecode to locate the issuewhen theUI freeze
occurs. The steps followed are:

1. Check if the RTOS properly schedules the Core Engine task.

2. Check if the Core Engine properly schedules all threads.

3. Check if the Core Engine properly schedules the MicroUI thread.

4. Check if Input Events are properly processed.

3.10. Training Courses 1522

MicroEJ Documentation,

Note:

• The checks of the schedulers are possible with SystemView andMicroUI Debug Traces.

• The Input Events check is possible with the LLUI_INPUT_dump API.

Check RTOS Tasks Scheduling

Let’s start at low level by figuring out if the RTOS is scheduling tasks correctly. If possible, use
a debugger or SystemView; if not, use the heartbeat task described below.

The following flow chart summarizes the investigation steps with a heartbeat task:

(1) Make one of the RTOS tasks acts like a heartbeat: create a dedicated task and make it re-
port in someway at a regular pace (print a message on standard output, blink an LED, use Sys-
temView, etc.). Set the heartbeat task priority to the same priority as the Core Engine task.

(2) In this configuration, if the heartbeat is still running when the UI freeze occurs, we can go
a step further and check whether the Core Engine is still scheduling threads or not. See next
section Check Threads Scheduling.

(3) If the heartbeat doesn’t run when the UI freeze occurs, set the heartbeat task priority to the
maximum priority.

Warning: SomeRTOSuse a task to schedule the RTOS timers. The heartbeat task prioritymust
be lower than the RTOS timers priority.

(4) In this configuration, if the heartbeat is still runningwhen theUI freeze occurs, then anRTOS
taskwith a priority higher than the Core Engine task keeps using the CPU. Use the RTOS specific
tools to identify what is the faulty task.

(5) If the heartbeat doesn’t run when the UI freeze occurs, then the RTOS scheduler is not
scheduling anything. This can be caused by an RTOS timer task or an interrupt handler that
never returns, or a crash of the RTOS scheduler.

3.10. Training Courses 1523

MicroEJ Documentation,

Check Threads Scheduling

As a reminder, the threading model implemented by Core Engine is called green thread: it de-
fines amulti-threadedenvironmentwithout relyingonanynativeRTOScapabilities. Therefore,
all threads run in a single RTOS task. For more details, please refer to the Core Engine section.
A quick way to check if the threads are scheduled correctly is, here again, to make one of the
threads print a heartbeatmessage. Copy/paste the following snippet in the main() method of
the application:

TimerTask task = new TimerTask() {

@Override
public void run() {

System.out.println(”Alive”);
}

};
Timer timer = new Timer();
timer.schedule(task, 10_000, 10_000);

This code creates a new thread that will print themessage Alive on the standard output every
10 seconds.

Assuming no one canceled the Timer , if the Alive printouts stop when the UI freeze occurs,
then it can mean that:

• The Core Engine stopped scheduling the threads.

• Or that oneormore threadswith a higher priority prevent the threadswith a lower priority from
running.

Here are a few suggestions:

• Ensureno threadswithahighpriority prevent the schedulingof theother threads. For example,
convert the above example with a dedicated thread with the highest priority:

Thread thread = new Thread(new Runnable() {

@Override
public void run() {

while (true) {
try {

Thread.sleep(10_000);
System.out.println(”Alive”);

} catch (InterruptedException e) {
e.printStackTrace();

}
}

}
});
thread.setPriority(Thread.MAX_PRIORITY);
thread.start();

• The RTOS task that runs the Core Engine might be suspended or blocked. Check if some API
call is suspending the task or if a shared resource could be blocking it.

• When a Java native method is called, it calls its C counterpart function in the RTOS task that
runs the Core Engine. While the C function is running, no other Java methods can run because
the Core Engine waits for the C function to finish. Consequently, no thread can ever run again

3.10. Training Courses 1524

MicroEJ Documentation,

if the C function never returns. Therefore, spot any suspect native functions and trace every
entry/exit to detect faulty code.

Please refer to Implementation Details if you encounter issues when implementing the heart-
beat.

Check UI Thread Liveness

Now, what if the Alive heartbeat runs while the UI is frozen? Threads are getting scheduled,
but the UI thread (also called Display Pump thread) does not process display events.

Let’s make the heartbeat snippet above execute in the UI thread. Simply wraps the System.
out.println(”Alive”) with a callSerially():

TimerTask task = new TimerTask() {

@Override
public void run() {

System.out.println(”TimerTask Alive”);
MicroUI.callSerially(new Runnable() {

@Override
public void run() {

System.out.println(”UI Alive”);
}

});
}

@Override
public void uncaughtException(Timer timer, Throwable e) {

// Default implementation of this method would cancel the task.
// Let's just ignore uncaught exceptions for debug purposes.
e.printStackTrace();

}
};
Timer timer = new Timer();
timer.schedule(task, 10_000, 10_000);

In case this snippet prints TimerTask Alive but not UI alive when the freeze occurs, then
there are a few options:

• The application might be processing a long operation in the UI thread, for example:

– infinite/indeterminate loops

– network/database access

– heavy computations

– Thread.sleep()/Object.wait()

– SNI_suspendCurrentJavaThread() in native call

When doing so, any other UI-related operation will not be processed until completion, leading
the display to be unresponsive. Any code that runs in the UI threadmight be responsible. Look
for code executed as a result of calls to:

– repaint() : code in renderContent()

– revalidate() / revalidateSubTree() : code in validateContent() and setBoundsContent()

3.10. Training Courses 1525

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/MicroUI.html#callSerially-java.lang.Runnable-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Thread.html#sleep-long-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Object.html#wait--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#renderContent-ej.microui.display.GraphicsContext-int-int-

MicroEJ Documentation,

– handleEvent()

– callSerially(): code wrapped in such calls will be executed in the UI thread

• The UI thread has terminated.

As a general rule, avoid runningextendedoperations in theUI thread, follow thegeneral pattern
and use a dedicated thread/executor instead:

ExecutorService executorService = ServiceLoaderFactory.
→˓getServiceLoader().getService(ExecutorService.class, SingleThreadExecutor.class);
executorService.execute(new Runnable() {

@Override
public void run() {

// (... long non-UI operation ...)

// optional: update the UI upon completion
Display.getDefaultDisplay().callSerially(new Runnable() {

@Override
public void run() {

// update display code (will be executed in UI thread)
}

});
}

});

Check Input Events Processing

Another case worth looking at is whether the application is processing user input events as it
should. The UI may look “frozen” only because it doesn’t react to input events. Replace the
desktop instance with the one below to log all user inputs.

Desktop desktop = new Desktop() {

@Override
public EventHandler getController() {

EventHandler controller = super.getController();
return new EventHandler() {
@Override

public boolean handleEvent(int event) {
System.

→˓out.println(”Desktop.handleEvent() received event of type ” + Event.getType(event));
return controller.handleEvent(event);
}

};
}

};

It is also possible to display the content of MicroUI Event Buffer with the
LLUI_INPUT_IMPL_log_XXX API. Please refer to the Event Buffer documentation
for more information.

3.10. Training Courses 1526

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#handleEvent-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/MicroUI.html#callSerially-java.lang.Runnable-

MicroEJ Documentation,

Implementation Details

Threads Creation

The number of threads in the MicroEJ Application must be sufficient to support the creation
of additional threads when using Timer and Thread. The number of available threads can be
updated in the launch configuration of the application (see Option(text): Number of threads).

If it is not possible to increase the number of available threads (for example, because themem-
ory is full), try to reuse another thread but not the UI thread.

UART Not Available

If the UART output is not available, use another method to signal that the heartbeat task is
running (e.g., blink an LED, use SystemView).

3.10.6 Connectivity

Networking Basics

Description

This training aggregates samples that showcase network connectivity with MicroEJ.

Evaluation kit is optional to complete this training, it can be fully done on MICROEJ SDK Simu-
lator.

Intended Audience

This training is designed for developers who want to create Applications with network connec-
tivity.

Prerequisites

To get the most out of this training, participants should have:

• A basic knowledge of Java programming language.

• A basic knowledge of networking concepts.

Training Resources

Run the samples provided in the Networking documentation to get familiar with networking
features.

3.10. Training Courses 1527

https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Timer.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Thread.html

MicroEJ Documentation,

3.10.7 For DevOps

Setup an Automated Build using Jenkins and Artifactory

Description

Such environment setup facilitates continuous integration (CI) and continuous delivery (CD),
which improves productivity across your development ecosystem, by automatically:

• building modules when source code changes

• saving build results

• reproducing builds

• archiving binary modules

This guide should take 1 hour to complete.

Intended Audience

The audience for this document is engineers who are in charge of integrating MICROEJ SDK 6
to their continuous integration environment.

In addition, this document should be of interest to all developers wishing to understand how
MicroEJ works with headless module builds.

Prerequisites

• An internet connection.

• Docker and Docker Compose V2 on Linux, Windows or Mac

• Git 2.x installed, with Git executable in path. We recommend installing Git Bash if your oper-
ating system is Windows (https://gitforwindows.org/).

This training was tested with Jenkins 2.462.3 , Artifactory 7.71.5 and Gitea 1.23.4 .

Note: For SDK 5, please refer to this MicroEJ Documentation Archive, section 9.6 Setup an Automated Build
using Jenkins and Artifactory .

Introduction

The overall build and deployment flow of a module can be summarized as follows:

1. Some event triggers the build process (i.e module source changed, user action, scheduled rou-
tine, etc.)

2. The module source code is retrieved from the Source Control System

3. The module dependencies are imported from the Repository Manager

4. The Automation Server then proceeds to building the module

5. If the build is successful, the module binary is deployed to the Repository Manager

3.10. Training Courses 1528

https://docs.microej.com/en/latest/SDK6UserGuide/index.html
https://docs.docker.com/
https://gitforwindows.org/
https://docs.microej.com/en/latest/SDKUserGuide/index.html
https://docs.microej.com/_/downloads/en/20240215/pdf/

MicroEJ Documentation,

Overview

The next sections describe step by step how to setup the build environment and build your first
MicroEJ module.

The steps to follow are:

1. Run and setup Jenkins, Artifactory and Gitea

2. Create a simple MicroEJ module (Hello World)

3. Create a new Jenkins job for the Hello World module

4. Build the module

In order to simplify the steps, this training will be performed locally on a single machine.

Artifactory will host MicroEJ modules in 3 repositories:

• microej-module-repository : repository initialized with pre-built MicroEJ modules, a mirror of the Central
Repository

• custom-modules-snapshot : repository where custom snapshot modules will be published

• custom-modules-release : repository where custom release modules will be published

Prepare your Docker environment

This section assumes the prerequisites have been properly installed.

1. Create anewdirectory, inside create a file named docker-compose.yaml andcopy this content:

version: '3'
services:
artifactory:
image: releases-docker.jfrog.io/jfrog/artifactory-oss:7.71.5
container_name: artifactory
environment:
- JF_ROUTER_ENTRYPOINTS_EXTERNALPORT=8082

ports:
(continues on next page)

3.10. Training Courses 1529

MicroEJ Documentation,

(continued from previous page)

- 8082:8082 # for router communication
- 8081:8081 # for artifactory communication
- 8085:8085 # for artifactory federation communication

volumes:
- artifactory:/var/opt/jfrog/artifactory
- /etc/localtime:/etc/localtime:ro

restart: always
logging:
driver: json-file
options:
max-size: ”50m”
max-file: ”10”

ulimits:
nproc: 65535
nofile:
soft: 32000
hard: 40000

gitea:
image: gitea/gitea:1.23.4
container_name: gitea
environment:
- USER_UID=1000
- USER_GID=1000

restart: always
volumes:
- gitea:/data
- /etc/timezone:/etc/timezone:ro
- /etc/localtime:/etc/localtime:ro

ports:
- ”3000:3000”
- ”222:22”

jenkins:
image: jenkins_master
container_name: jenkins
build:
dockerfile: Dockerfile

restart: always
ports:
- 50000:50000
- 8080:8080

volumes:
- jenkins:/var/jenkins_home
- /var/run/docker.sock:/var/run/docker.sock

links:
- gitea
- artifactory

volumes:
gitea:
artifactory:
jenkins:

2. Create another file named Dockerfile and copy this content:

3.10. Training Courses 1530

MicroEJ Documentation,

FROM jenkins/jenkins:2.462.3
USER root
RUN apt-get update -qq \

&& apt-
→˓get install -qqy apt-transport-https ca-certificates curl gnupg2 software-properties-common
RUN curl -fsSL https://download.docker.com/linux/debian/gpg | apt-key add -
RUN add-apt-repository \

”deb [arch=amd64] https://download.docker.com/linux/debian \
$(lsb_release -cs) \
stable”

RUN apt-get update -qq \
&& apt-get -y install docker-ce

RUN usermod -aG docker jenkins

3. In this directory, launch the command docker compose up -d . After a fewmoments you should
have three running containers (named jenkins, gitea and artifactory).

Using docker compose ps will show if containers started properly. Logs can be viewed with
docker compose logs .

Get a Module Repository

A Module Repository is a portable ZIP file that bundles a set of modules for extending the Mi-
croEJ development environment. Please consult theModule Repository section formore infor-
mation.

This training uses the MicroEJ Central Repository, which is the Module Repository used by MI-
CROEJ SDK to fetch dependencies when starting an empty workspace. It bundles Foundation
Library APIs and numerous Add-On Libraries.

Next step is to download a local copy of this repository:

1. Visit the Central Repository on the MicroEJ Developer website.

2. Navigate to the Production Setup section.

3. Click on the offline repository link. This will download the Central Repository as a ZIP file.

Setup Artifactory

Configure Artifactory

For demonstration purposes we will allow anonymous users to deploy modules in the reposi-
tories:

1. Once Artifactory container is started, go to http://localhost:8082/ .

2. Login to Artifactory for the first time using the default admin account (Username: admin ,
Password: password).

3. Skip the installation wizard if it appears.

4. Go to Administration > User Management > Settings .

5. In the User Security Configuration section, check Allow Anonymous Access .

3.10. Training Courses 1531

https://developer.microej.com/central-repository/

MicroEJ Documentation,

6. Click on Save .

7. Go to Administration > User Management > Permissions .

8. Click on Anything entry (do not check the line), then go to Users tab

9. Click on anonymous and check Deploy/Cache permission in the

Selected Users Repositories category.

10. Click on Save .

Next steps will involve uploading large files, so we have to increase the file upload maximum
size accordingly:

1. Go to Administration > Artifactory > General > Settings .

2. In the General Settings section, change the valueof File Upload In UI Max Size (MB) to 1024
then click on Save .

Create Repositories

We will now create and configure the repositories. Let’s start with the repository for the future
built snapshot modules:

1. Go to Administration > Repositories > Repositories in the leftmenu.

2. Click on Add Repositories > Local Repository

3. Select Maven .

4. Set Repository Key field to custom-modules-snapshot and click on

Create Local Repository .

Repeat the same steps for the other repositories with the Repository Key field set to
custom-modules-release and microej-module-repository .

Import MicroEJ Repositories

In this section, we will import MicroEJ repositories into Artifactory repositories to make them
available to the build server.

1. Go to Administration > Artifactory > Import & Export > Repositories .

2. Scroll to the Import Repository from Zip section.

3. As Target Local Repository , select microej-module-repository in the list.

4. Click on Select file and select the MicroEJ module repository zip file (
central-repository-[version].zip) that you downloaded earlier (please refer to section
Get a Module Repository).

5. Click Upload . At the end of upload, click on Import . Upload and import may take some
time.

3.10. Training Courses 1532

MicroEJ Documentation,

Artifactory is now hosting all required MicroEJ modules. Go to Application > Artifactory >

Artifacts and check that the repository microej-module-repository does containmodules as
shown in the figure below.

Setup Gitea

Install Gitea

1. Once the Gitea container is started, go to http://localhost:3000/ .

2. Don’t change anything on the Initial Configuration , click on Install Gitea

3. Click on Register account and create one. The first created user become the administrator.

Configure Gitea

1. At the top right click on the arrow then New Repository

2. As Repository Name set helloworld , leave the other options as default.

3. Click Create Repository .

3.10. Training Courses 1533

MicroEJ Documentation,

Setup Jenkins

Install Jenkins

1. Once Jenkins container is started, go to http://localhost:8080/ .

2. To unlock Jenkins, copy/paste the generated password that has been written in the container
log. Click on Continue .

3. Select option Install suggested plugins and wait for plugins installation.

4. Fill in the Create First Admin User form. Click Save and continue .

5. Click on Save and finish , then on Start using Jenkins .

Configure Jenkins

1. Go to Manage Jenkins > Plugins .

2. Add Docker Pipeline plugin:

1. Go to Available plugins section.

2. Search Docker Pipeline.

3. Install it and restart Jenkins

Build a newModule using Jenkins

Since your environment is now setup, it is time to build your first module from Jenkins and
check it has been published to Artifactory. Let’s build an “Hello World” Sandboxed Application
project.

Create a newMicroEJ Module

Now we will create an Application project that we’ll push to a Git repository. In this example,
we will use a plublic template but you can create an application project from scratch with the
SDK 6 User Guide.

Note: For demonstration purposes, we’ll create a new project and share it on a local Git bare repository. You can
adapt the following sections to use an existing MicroEJ project and your own Git repository.

1. Clone https://github.com/MicroEJ/Tool-Project-Template-Application repository.

2. Go to the repository directory and type the following commands (replace <admin_user> by
Gitea user)

git remote rename origin old-origin
git remote add origin http://localhost:3000/<admin_user>/helloworld.git
git push --set-upstream origin --all

3.10. Training Courses 1534

https://github.com/MicroEJ/Tool-Project-Template-Application

MicroEJ Documentation,

Note: We need the IP address of the Docker Bridge Network, here we consider that it’s 172.17.0.1 but you can
check with the command ip addr show docker0 on the Docker host.

1. On the project directory, create a file named Jenkinsfile and copy this content inside:

pipeline {
agent {

docker {
image 'eclipse-temurin:11-jdk'
args '-e ACCEPT_MICROEJ_SDK_EULA_V3_1C=YES'

}
}
stages {

stage('Build and publish') {
steps {
␣

→˓ sh './gradlew build publish -Penable.ivy.descriptor.default=false --init-script init.gradle.kts'
}

}
}

}

2. Update build.gradle.kts file and set line 20 with this text. Building or running an Application
with the SDK requires a VEE Port, so we use RT1170 Vee Port for this example:

microejVee(”com.nxp.vee.mimxrt1170:evk_platform:2.2.0”)

3. Create a file named init.gradle.kts and copy this content inside:

settingsEvaluated {

val artifactorRepositoryUrl = ”http://172.17.0.1:8082/artifactory”

allprojects {
repositories {

/* MicroEJ Central repository for Maven/Gradle modules */
maven {

name = ”microEJForgeCentral”
url = uri(”${artifactorRepositoryUrl}/microej-module-repository”)
isAllowInsecureProtocol = true

}
/* MicroEJ Developer repository for Maven/Gradle modules */
maven {

name = ”microEJForgeDeveloper”
␣

→˓ url = uri(”https://forge.microej.com/artifactory/microej-developer-repository-release”)
}
/* MicroEJ SDK 6 repository for Maven/Gradle modules */
maven {

name = ”microEJForgeSDK6”
url = uri(”https://forge.microej.com/artifactory/microej-sdk6-repository-release/”)

}
/* MicroEJ Central repository for Ivy modules */
ivy {

name = ”microEJForgeCentralIvy”
url = uri(”${artifactorRepositoryUrl}/microej-module-repository”)

(continues on next page)

3.10. Training Courses 1535

MicroEJ Documentation,

(continued from previous page)

patternLayout {
artifact(”[organisation]/[module]/[revision]/[artifact]-[revision](-[classifier])(.[ext])”)
ivy(”[organisation]/[module]/[revision]/ivy-[revision].xml”)

setM2compatible(true)
}
isAllowInsecureProtocol = true

}
/* MicroEJ Developer repository for Ivy modules */
ivy {

name = ”microEJForgeDeveloperIvy”
␣

→˓ url = uri(”https://forge.microej.com/artifactory/microej-developer-repository-release”)
patternLayout {

artifact(”[organisation]/[module]/[revision]/[artifact]-[revision](-[classifier])(.[ext])”)
ivy(”[organisation]/[module]/[revision]/ivy-[revision].xml”)
setM2compatible(true)

}
}
/* MicroEJ SDK 6 repository for Ivy modules */
ivy {

name = ”microEJForgeSDK6Ivy”
url = uri(”https://forge.microej.com/artifactory/microej-sdk6-repository-release/”)
patternLayout {

artifact(”[organisation]/[module]/[revision]/[artifact]-[revision](-[classifier])(.[ext])”)
ivy(”[organisation]/[module]/[revision]/ivy-[revision].xml”)
setM2compatible(true)

}
}

}

/**
* Publish repositories
*/
pluginManager.withPlugin(”maven-publish”) {

configure<PublishingExtension> {
repositories {

maven {
name = ”artifactoryRepository”
url = uri(”${artifactorRepositoryUrl}/custom-modules-snapshot”)
isAllowInsecureProtocol = true

}
}

}
}

}

/**
* Plugins repositories
*/
pluginManagement {

repositories {
/* MicroEJ Central repository for Maven/Gradle modules */
maven {

name = ”microEJForgeCentral”
url = uri(”${artifactorRepositoryUrl}/microej-module-repository”)

(continues on next page)

3.10. Training Courses 1536

MicroEJ Documentation,

(continued from previous page)

isAllowInsecureProtocol = true
}
/* MicroEJ Developer repository for Maven/Gradle modules */
maven {

name = ”microEJForgeDeveloper”
␣

→˓ url = uri(”https://forge.microej.com/artifactory/microej-developer-repository-release”)
}
/* MicroEJ SDK 6 repository for Maven/Gradle modules */
maven {

name = ”microEJForgeSDK6”
url = uri(”https://forge.microej.com/artifactory/microej-sdk6-repository-release/”)

}
/* MicroEJ Central repository for Ivy modules */
ivy {

name = ”microEJForgeCentralIvy”
url = uri(”${artifactorRepositoryUrl}/microej-module-repository”)
patternLayout {

artifact(”[organisation]/[module]/[revision]/[artifact]-[revision](-[classifier])(.[ext])”)
ivy(”[organisation]/[module]/[revision]/ivy-[revision].xml”)
setM2compatible(true)

}
isAllowInsecureProtocol = true

}
/* MicroEJ Developer repository for Ivy modules */
ivy {

name = ”microEJForgeDeveloperIvy”
␣

→˓ url = uri(”https://forge.microej.com/artifactory/microej-developer-repository-release”)
patternLayout {

artifact(”[organisation]/[module]/[revision]/[artifact]-[revision](-[classifier])(.[ext])”)
ivy(”[organisation]/[module]/[revision]/ivy-[revision].xml”)
setM2compatible(true)
}

}
/* MicroEJ SDK 6 repository for Ivy modules */
ivy {

name = ”microEJForgeSDK6Ivy”
url = uri(”https://forge.microej.com/artifactory/microej-sdk6-repository-release/”)
patternLayout {

artifact(”[organisation]/[module]/[revision]/[artifact]-[revision](-[classifier])(.[ext])”)
ivy(”[organisation]/[module]/[revision]/ivy-[revision].xml”)
setM2compatible(true)

}
}

}
}

}

This file configures the MicroEJ Module Manager to import and publish modules from the Arti-
factory repositories described in this training. Please refer to the Settings File section for more
details.

Note: At this point, the content of the directory Tool-Project-Template-Application should
look like the following:

3.10. Training Courses 1537

MicroEJ Documentation,

��� build.gradle.kts
��� CHANGELOG.md
��� configuration
� ��� common.properties
��� gradle
� ��� wrapper
� ��� gradle-wrapper.jar
� ��� gradle-wrapper.properties
��� gradlew
��� gradlew.bat
��� init.gradle.kts
��� Jenkinsfile
��� LICENSE.txt
��� README.md
��� settings.gradle.kts
��� src

��� main
� ��� java
� � ��� com
� � ��� mycompany
� � ��� myapplication
� � ��� Main.java
� ��� resources
��� test

��� java
��� resources

1. Push these modifications to Gitea repository

Create a New Jenkins Job

Start by creating a new job for building our application.

1. Go to Jenkins dashboard.

2. Click on New Item .

3. Set item name to Hello World .

4. Select Multibranch Pipeline .

5. Validate with Ok button.

6. In General tab set Display Name to Hello World

7. In Branch Sources , click on Add Source > Git .

8. Add Project Repository http://172.17.0.1:3000/<admin_user>/helloworld.git

3.10. Training Courses 1538

http://172.17.0.1:3000

MicroEJ Documentation,

9. Click on Save .

Build the “Hello World” Application

Let’s run the job!

In Jenkins Hello World dashboard, click on master branch, then click on Build Now .

Note: You can check the build progress by clicking on the build progress bar and showing the Console Output .

At the end of the build, the module is published to http://localhost:8082/artifactory/list/
custom-modules-snapshot/com/mycompany/my-application/ .

Congratulations!

At this point of the training:

• Artifactory is hosting your module builds and MicroEJ modules.

• Jenkins automates the build process using SDK6.

The next recommended step is to adapt Gradle/Jenkins/Artifactory configuration to your
ecosystem and development flow.

Appendix

This section discusses some of the customization options.

Customize Jenkins

Jenkins jobs are highly configurable, following options and values are recommended by Mi-
croEJ, but they can be customized at your convenience.

In General tab:

1. Check Discard old builds and set Max # of builds to keep value to 15 .

2. Click on Advanced button, and check Block build when upstream project is building .

In Build triggers tab:

3.10. Training Courses 1539

MicroEJ Documentation,

1. Check Poll SCM , and set aCRON-like value (for example H/30 * * * * to poll SCM for changes
every 30 minutes).

In Post-build actions tab:

1. Add post-build action Publish JUnit test result report :

2. Set Test report XMLs to **/target~/test/xml/**/test-report.xml, **/target~/test/xml/
**/*Test.xml .

Note: The error message ‘**/target~/test/xml/**/test-report.xml’ doesn’t match anything: ‘**’ exists but
not ‘**/target~/test/xml/**/test-report.xml’ will be displayed since no build has been executed yet. These
folders will be generated during the build.

3. Check Retain long standard output/error .

4. Check Do not fail the build on empty test results

3.11 SDK 5 User Guide

MICROEJ SDK is an integrated environment to create software applications for MicroEJ-ready
devices. The SDK provides tools to write applications and run them on a virtual (simulated)
or real device. The capability to execute an application in a simulated environment allows to
quickly test changes done in the application code and hence provides a short development
feedback loop.

Since the purpose of the SDK is to develop for targeted MCU/MPU computers (IoT, wearable,
etc.), it is a cross-development tool. But unlike standard low-level cross-development tools,
the SDK offers unique services like hardware simulation and local deployment to the target
hardware.

Fig. 283: MicroEJ Application Development Overview

The integrated environment is composed of the following main elements:

3.11. SDK 5 User Guide 1540

MicroEJ Documentation,

• SDK Version 5.x, an Integrated Development Environment (IDE) for writing and building Appli-
cations. It is based on Eclipse Java edition and relies on the integrated Java compiler (JDT).

It is also packaged with Eclipse to produce a SDK Distribution.

• MicroEJ Module Manager, the module and build manager used to compile and package any
kind of modules natures. It provides a Command Line Interface to build modules, especially
used in a Continuous Integration environment. See MicroEJ Module Manager section for more
details.

• Architecture, the software package that includes theMEJ32 port to a target instruction set and
a C compiler, SOAR, core libraries and Simulator. SeeMicroEJ Architecture section for more de-
tails.

The SDK allows to connect repositories hosting software modules in source and binary form.
By default, it is configured with the repositories provided MicroEJ Corp.:

• Central and Developer Repository, the modules repositories containing all the libraries re-
quired to develop an Application. SeeModule Repositories section for more details.

• Github Repositories, source repositories with examples and demos. See GitHub Repositories
section for more details.

The SDK is licensed under the SDK End User License Agreement (EULA). The following figure
shows a detailed view of the elements.

Fig. 284: SDK Detailed View

3.11. SDK 5 User Guide 1541

MicroEJ Documentation,

3.11.1 Installation

This chapter will guide you through the installation process of the SDK Distribution on your
workstation.

If you want to evaluate MicroEJ, we recommend that you refer to the Getting Started chapter,
whichwill guide you to install anSDKDistribution compatiblewith theGettingStarted tutorials.

Otherwise, follow the instructions of the Install Latest SDK Distribution page to install the latest
SDK Distribution compatible with your needs.

Fig. 285: SDK Splash Screen

Install Latest SDK Distribution

This sectionwill guide you through the installation process of the latest SDK Distribution 24.01
using the step-by-step executable installer.

The SDKDistribution 24.01 requires a JDK 11 and thus can only workwith an Architecture 7.17.0
or higher. In all other cases, please jump to Install SDK Distribution 21.11 section. See also the
System Requirements page for more information on the list of supported environments.

Note: Launching the SDK Distribution installer requires administrator privileges and a JDK 11 installed by default
on your workstation. If you don’t have one of them or if you do not want to modify your default settings, please
jump to Install Portable SDK Distribution section.

3.11. SDK 5 User Guide 1542

MicroEJ Documentation,

Download SDK Distribution

Download the SDK Distribution 24.01 installer for your operating system:

• Windows (.exe)

• Linux (.zip)

• macOS x86_64 - Intel chip (.zip)

• macOS aarch64 - M1 chip (.zip) (requires Architecture 7.18.0 or higher)

Check JDK Version

From the version 22.06 , the SDK Distribution installer requires a JDK 11 installed by default on
your workstation. If you don’t have any JDK installed, see the Get JDK section.

Check the default Java version by running the following command in a new terminal:

> java -version

openjdk version ”11.0.15” 2022-04-19
OpenJDK Runtime Environment Temurin-11.0.15+10 (build 11.0.15+10)
OpenJDK 64-Bit Server VM Temurin-11.0.15+10 (build 11.0.15+10, mixed mode)

Now you can proceed with the installation steps.

Install SDK Distribution

• Launch the installer executable

– OnWindows, start MicroEJ-SDK-Installer-Win64-24.01.exe .

– On Linux, unzip MicroEJ-SDK-Installer-Linux64-24.01.zip and start
MicroEJ-SDK-Installer-Linux64-1.3.0.sh .

– On macOS, unzip MicroEJ-SDK-Installer-MacOS-24.01.zip and start
MicroEJ-SDK-Installer-MacOS-1.3.0.app .

– Or unzip MicroEJ-SDK-Installer-MacOS-A64-24.01.zip and start
MicroEJ-SDK-Installer-MacOS-A64-1.3.0.app . In case of error, check your app has
not been put in quarantine (seemacOS troubleshooting section)

3.11. SDK 5 User Guide 1543

https://repository.microej.com/packages/SDK/24.01/MicroEJ-SDK-Installer-Win64-24.01.exe
https://repository.microej.com/packages/SDK/24.01/MicroEJ-SDK-Installer-Linux64-24.01.zip
https://repository.microej.com/packages/SDK/24.01/MicroEJ-SDK-Installer-MacOS-24.01.zip
https://repository.microej.com/packages/SDK/24.01/MicroEJ-SDK-Installer-MacOS-A64-24.01.zip

MicroEJ Documentation,

Fig. 286: Welcome to the installer

• Click on the Next button.

• Select I accept the terms of this license agreement. . Then click on the Next button.

Fig. 287: Accept the terms of this license agreement

• Select the installation path of your SDK. By default it is C:\Program Files\MicroEJ\
MicroEJ-SDK-24.01 for Windows. Then click on the Next button.

3.11. SDK 5 User Guide 1544

MicroEJ Documentation,

Fig. 288: Choose the installation path

• Click on the OK button to confirm the installation path.

Fig. 289: Confirm your installation path

• Wait until the installation is done. Then click on the Next button.

3.11. SDK 5 User Guide 1545

MicroEJ Documentation,

Fig. 290: Installation in progress

• Select options depending on your own preferences. Then click on the Next button.

Fig. 291: Select the options

• The installation has completed successfully. Click on the Done button.

3.11. SDK 5 User Guide 1546

MicroEJ Documentation,

Fig. 292: Your installation has completed successfully

TheSDKDistribution is now installedonyour computer. You can launch it fromyour application
launcher or by executing the MicroEJ executable in the installation path.

Once the SDK is started, it is recommended to check if updates are available (see Update SDK
Version section). If your are running SDK on Windows OS, it is also strongly recommended to
configureWindows defender exclusion rules.

Update SDK Version

Once you have an SDK Distribution installed, you can update the included SDK Version to a
newer version.

Note: If you want to know which SDK version is currently installed in your SDK Distribution, see the SDK Version
chapter.

To update your SDK Distribution to a newer SDK version, follow the next steps:

• Select Help > Check for updates .

3.11. SDK 5 User Guide 1547

MicroEJ Documentation,

Fig. 293: Check for updates

• If your SDK is up-to-date, you will see the following screen:

Fig. 294: No update available

• If an update is available, you will see the following screen:

3.11. SDK 5 User Guide 1548

MicroEJ Documentation,

Fig. 295: Update available

• Check the version you want to install. Then click on the Next button.

• Review and confirm the updates. Then click on the Next button.

Fig. 296: Review the updates

• Select I accept the terms of the license agreements. . Then click on the Finish button.

3.11. SDK 5 User Guide 1549

MicroEJ Documentation,

Fig. 297: Accept the terms of the license agreement

• Wait until the Software Update pop-up appears. Then click on the Restart Now button.

Fig. 298: Restart your SDK.

The update of your SDK is done.

Install Other SDK Distributions

Install Portable SDK Distribution

The portable package allows you to install the SDK Distribution when the use of the SDK Distri-
bution installer is not possible or not desired, for example:

• you do not have administrator privileges on your workstation;

• you want to install SDK Distribution 23.07 but JDK 11 is not your default JDK version;

• you want to install SDK Distribution up to 21.11 but JDK 8 is not your default JDK version.

Perform the following steps:

• Download the Portable SDK Distribution for your operating system:

3.11. SDK 5 User Guide 1550

MicroEJ Documentation,

SDK
Dis-
tri-
bu-
tion

JDK
Ver-
sion

Windows Linux macOS x86_64 (Intel
chip)

macOS aarch64 (M1
chip)1

24.
01

11
Portable (.zip) Portable (.zip) Portable (.zip) Portable (.zip)

23.
07

11
Portable (.zip) Portable (.zip) Portable (.zip) Portable (.zip)

21.
11

8
Portable (.zip) Portable (.zip) Portable (.zip) N/A

• Once downloaded, extract the zip file in a local directory of your choice

• Edit the MicroEJ-SDK.ini file

• Configure the path to the JDK version indicated above by adding the option -vm at the begin-
ning of the file. If you don’t have any JDK installed, see the Get JDK section.

-vm
[path_to_jdk]/bin
-startup
plugins/org.eclipse.equinox.launcher_1.6.400.v20210924-0641.jar
...

• Start the SDK by executing MicroEJ-SDK.exe on Windows or MicroEJ-SDK on Linux or
macOS.

Once the SDK is started, it is recommended to check if updates are available (see Update SDK
Version section). If your are running SDK on Windows OS, it is also strongly recommended to
configureWindows defender exclusion rules.

Install SDK Distribution 21.11

This sectionwill guide you through the installation process of the SDKDistribution 21.11 using
the step-by-step executable installer.

The SDK Distribution 21.11 requires a JRE or a JDK 8 and is not available for macOS with M1
chips. See the System Requirements page for more information on the list of supported envi-
ronments.

Note: Launching the SDK Distribution installer requires administrator privileges and a JDK 8 installed by default
on your workstation. If you don’t have one of them or if you do not want to modify your default settings, please
jump to Install Portable SDK Distribution section.

1 SDK Distribution for macOS aarch64 (M1 chip) requires Architecture 7.18.0 or higher.

3.11. SDK 5 User Guide 1551

https://repository.microej.com/packages/SDK/24.01/zip
https://repository.microej.com/packages/SDK/24.01/zip
https://repository.microej.com/packages/SDK/24.01/zip
https://repository.microej.com/packages/SDK/24.01/zip
https://repository.microej.com/packages/SDK/23.07/zip
https://repository.microej.com/packages/SDK/23.07/zip
https://repository.microej.com/packages/SDK/23.07/zip
https://repository.microej.com/packages/SDK/23.07/zip
https://repository.microej.com/packages/SDK/21.11/zip
https://repository.microej.com/packages/SDK/21.11/zip
https://repository.microej.com/packages/SDK/21.11/zip

MicroEJ Documentation,

Download SDK Distribution

Download the SDK Distribution 21.11 installer for your operating system:

• Windows (.exe)

• Linux (.zip)

• macOS x86_64 - Intel chip (.zip)

Check JDK Version

The SDK Distribution 21.11 installer requires a JDK 8 installed by default on your workstation.
If you don’t have any JDK installed, see the Get JDK section.

Check the default Java version by running the following command in a new terminal:

> java -version

java version ”1.8.0_281”
Java(TM) SE Runtime Environment (build 1.8.0_281-b09)
Java HotSpot(TM) 64-Bit Server VM (build 25.281-b09, mixed mode)

Now you can proceed with the installation steps.

Install SDK Distribution

• Launch the installer executable

– OnWindows, start MicroEJ-SDK-Installer-Win64-21.11.exe .

– On Linux, unzip MicroEJ-SDK-Installer-Linux64-21.11.zip and start
MicroEJ-SDK-Installer-Linux64-21.11.sh .

– On macOS, unzip MicroEJ-SDK-Installer-Linux64-21.11.zip and start
MicroEJ-SDK-Installer-MacOS-21.11.app . In case of error, check your app has not
been put in quarantine (seemacOS troubleshooting section).

3.11. SDK 5 User Guide 1552

https://repository.microej.com/packages/SDK/21.11/MicroEJ-SDK-Installer-Win64-21.11.exe
https://repository.microej.com/packages/SDK/21.11/MicroEJ-SDK-Installer-Linux64-21.11.zip
https://repository.microej.com/packages/SDK/21.11/MicroEJ-SDK-Installer-MacOS-21.11.zip

MicroEJ Documentation,

Fig. 299: Welcome to the installer

• Click on the Next button.

• Select I accept the terms of this license agreement. . Then click on the Next button.

Fig. 300: Accept the terms of this license agreement

• Select the installation path of your SDK. By default it is C:\Program Files\MicroEJ\
MicroEJ-SDK-21.11 for Windows. Then click on the Next button.

3.11. SDK 5 User Guide 1553

MicroEJ Documentation,

Fig. 301: Choose the installation path

• Click on the OK button to confirm the installation path.

Fig. 302: Confirm your installation path

• Wait until the installation is done. Then click on the Next button.

3.11. SDK 5 User Guide 1554

MicroEJ Documentation,

Fig. 303: Installation in progress

• Select options depending on your own preferences. Then click on the Next button.

Fig. 304: Select the options

• The installation has completed successfully. Click on the Done button.

3.11. SDK 5 User Guide 1555

MicroEJ Documentation,

Fig. 305: Your installation has completed successfully

TheSDKDistribution is now installedonyour computer. You can launch it fromyour application
launcher or by executing the MicroEJ executable in the installation path.

Once the SDK is started, it is recommended to check if updates are available (see Update SDK
Version section). If your are running SDK on Windows OS, it is also strongly recommended to
configureWindows defender exclusion rules.

This section applieswhen the installation of the latest SDKDistribution via the installer does not
fit your case:

• youwant to install the latest SDKDistribution compatiblewith JDK8, see Install SDKDistribution
21.11 section.

• you want to install an SDK Distribution with no native installer, see Install Portable SDK Distri-
bution section.

• you want to install an old SDK Distribution. The following table gives you access to all the SDK
5.x Distributions download links.

3.11. SDK 5 User Guide 1556

MicroEJ Documentation,

SDK
Dis-
tri-
bu-
tion

JDK
Ver-
sion

Windows Linux macOS
x86_64 (Intel
chip)

macOS
aarch64 (M1
chip)1

SDK Ver-
sion

Eclipse
Version

24.01 11 • Installer
(.exe)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

5.8.2 2022-03

23.07 11 • Installer
(.exe)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

5.8.0 2022-03

23.02 11 • Installer
(.exe)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

5.7.0 2022-12

22.06 11 • Installer
(.exe)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

5.6.0 2022-03

21.11 8 • Installer
(.exe)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

N/A
5.5.0 2020-06

21.03 8 • Installer
(.exe)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

N/A
5.4.0 2020-06

20.12 8 • Installer
(.exe)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

N/A
5.3.1 2020-06

20.10 8 • Installer
(.exe)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

N/A
5.3.0 2020-06

20.07 8 • Installer
(.exe)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

N/A
5.2.0 4.7.2

19.05 8 • Installer
(.exe)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

N/A
5.1.0 4.7.2

19.02 8 • Installer
(.exe)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

N/A
5.0.1 4.7.2

3.11. SDK 5 User Guide 1557

https://repository.microej.com/packages/SDK/24.01/MicroEJ-SDK-Installer-Win64-24.01.exe
https://repository.microej.com/packages/SDK/24.01/MicroEJ-SDK-Installer-Win64-24.01.exe
https://repository.microej.com/packages/SDK/24.01/zip
https://repository.microej.com/packages/SDK/24.01/zip
https://repository.microej.com/packages/SDK/24.01/MicroEJ-SDK-Installer-Linux64-24.01.zip
https://repository.microej.com/packages/SDK/24.01/MicroEJ-SDK-Installer-Linux64-24.01.zip
https://repository.microej.com/packages/SDK/24.01/zip
https://repository.microej.com/packages/SDK/24.01/zip
https://repository.microej.com/packages/SDK/24.01/MicroEJ-SDK-Installer-MacOS-24.01.zip
https://repository.microej.com/packages/SDK/24.01/MicroEJ-SDK-Installer-MacOS-24.01.zip
https://repository.microej.com/packages/SDK/24.01/zip
https://repository.microej.com/packages/SDK/24.01/zip
https://repository.microej.com/packages/SDK/24.01/MicroEJ-SDK-Installer-MacOS-A64-24.01.zip
https://repository.microej.com/packages/SDK/24.01/MicroEJ-SDK-Installer-MacOS-A64-24.01.zip
https://repository.microej.com/packages/SDK/24.01/zip
https://repository.microej.com/packages/SDK/24.01/zip
https://repository.microej.com/packages/SDK/23.07/MicroEJ-SDK-Installer-Win64-23.07.exe
https://repository.microej.com/packages/SDK/23.07/MicroEJ-SDK-Installer-Win64-23.07.exe
https://repository.microej.com/packages/SDK/23.07/zip
https://repository.microej.com/packages/SDK/23.07/zip
https://repository.microej.com/packages/SDK/23.07/MicroEJ-SDK-Installer-Linux64-23.07.zip
https://repository.microej.com/packages/SDK/23.07/MicroEJ-SDK-Installer-Linux64-23.07.zip
https://repository.microej.com/packages/SDK/23.07/zip
https://repository.microej.com/packages/SDK/23.07/zip
https://repository.microej.com/packages/SDK/23.07/MicroEJ-SDK-Installer-MacOS-23.07.zip
https://repository.microej.com/packages/SDK/23.07/MicroEJ-SDK-Installer-MacOS-23.07.zip
https://repository.microej.com/packages/SDK/23.07/zip
https://repository.microej.com/packages/SDK/23.07/zip
https://repository.microej.com/packages/SDK/23.07/MicroEJ-SDK-Installer-MacOS-A64-23.07.zip
https://repository.microej.com/packages/SDK/23.07/MicroEJ-SDK-Installer-MacOS-A64-23.07.zip
https://repository.microej.com/packages/SDK/23.07/zip
https://repository.microej.com/packages/SDK/23.07/zip
https://repository.microej.com/packages/SDK/23.02/MicroEJ-SDK-Installer-Win64-23.02.exe
https://repository.microej.com/packages/SDK/23.02/MicroEJ-SDK-Installer-Win64-23.02.exe
https://repository.microej.com/packages/SDK/23.02/zip
https://repository.microej.com/packages/SDK/23.02/zip
https://repository.microej.com/packages/SDK/23.02/MicroEJ-SDK-Installer-Linux64-23.02.zip
https://repository.microej.com/packages/SDK/23.02/MicroEJ-SDK-Installer-Linux64-23.02.zip
https://repository.microej.com/packages/SDK/23.02/zip
https://repository.microej.com/packages/SDK/23.02/zip
https://repository.microej.com/packages/SDK/23.02/MicroEJ-SDK-Installer-MacOS-23.02.zip
https://repository.microej.com/packages/SDK/23.02/MicroEJ-SDK-Installer-MacOS-23.02.zip
https://repository.microej.com/packages/SDK/23.02/zip
https://repository.microej.com/packages/SDK/23.02/zip
https://repository.microej.com/packages/SDK/23.02/MicroEJ-SDK-Installer-MacOS-A64-23.02.zip
https://repository.microej.com/packages/SDK/23.02/MicroEJ-SDK-Installer-MacOS-A64-23.02.zip
https://repository.microej.com/packages/SDK/23.02/zip
https://repository.microej.com/packages/SDK/23.02/zip
https://repository.microej.com/packages/SDK/22.06/MicroEJ-SDK-Installer-Win64-22.06.exe
https://repository.microej.com/packages/SDK/22.06/MicroEJ-SDK-Installer-Win64-22.06.exe
https://repository.microej.com/packages/SDK/22.06/zip
https://repository.microej.com/packages/SDK/22.06/zip
https://repository.microej.com/packages/SDK/22.06/MicroEJ-SDK-Installer-Linux64-22.06.zip
https://repository.microej.com/packages/SDK/22.06/MicroEJ-SDK-Installer-Linux64-22.06.zip
https://repository.microej.com/packages/SDK/22.06/zip
https://repository.microej.com/packages/SDK/22.06/zip
https://repository.microej.com/packages/SDK/22.06/MicroEJ-SDK-Installer-MacOS-22.06.zip
https://repository.microej.com/packages/SDK/22.06/MicroEJ-SDK-Installer-MacOS-22.06.zip
https://repository.microej.com/packages/SDK/22.06/zip
https://repository.microej.com/packages/SDK/22.06/zip
https://repository.microej.com/packages/SDK/22.06/MicroEJ-SDK-Installer-MacOS-A64-22.06.zip
https://repository.microej.com/packages/SDK/22.06/MicroEJ-SDK-Installer-MacOS-A64-22.06.zip
https://repository.microej.com/packages/SDK/22.06/zip
https://repository.microej.com/packages/SDK/22.06/zip
https://repository.microej.com/packages/SDK/21.11/MicroEJ-SDK-Installer-Win64-21.11.exe
https://repository.microej.com/packages/SDK/21.11/MicroEJ-SDK-Installer-Win64-21.11.exe
https://repository.microej.com/packages/SDK/21.11/zip
https://repository.microej.com/packages/SDK/21.11/zip
https://repository.microej.com/packages/SDK/21.11/MicroEJ-SDK-Installer-Linux64-21.11.zip
https://repository.microej.com/packages/SDK/21.11/MicroEJ-SDK-Installer-Linux64-21.11.zip
https://repository.microej.com/packages/SDK/21.11/zip
https://repository.microej.com/packages/SDK/21.11/zip
https://repository.microej.com/packages/SDK/21.11/MicroEJ-SDK-Installer-MacOS-21.11.zip
https://repository.microej.com/packages/SDK/21.11/MicroEJ-SDK-Installer-MacOS-21.11.zip
https://repository.microej.com/packages/SDK/21.11/zip
https://repository.microej.com/packages/SDK/21.11/zip
https://repository.microej.com/packages/SDK/21.03/MicroEJ-SDK-Installer-Win64-21.03.exe
https://repository.microej.com/packages/SDK/21.03/MicroEJ-SDK-Installer-Win64-21.03.exe
https://repository.microej.com/packages/SDK/21.03/zip
https://repository.microej.com/packages/SDK/21.03/zip
https://repository.microej.com/packages/SDK/21.03/MicroEJ-SDK-Installer-Linux64-21.03.zip
https://repository.microej.com/packages/SDK/21.03/MicroEJ-SDK-Installer-Linux64-21.03.zip
https://repository.microej.com/packages/SDK/21.03/zip
https://repository.microej.com/packages/SDK/21.03/zip
https://repository.microej.com/packages/SDK/21.03/MicroEJ-SDK-Installer-MacOS-21.03.zip
https://repository.microej.com/packages/SDK/21.03/MicroEJ-SDK-Installer-MacOS-21.03.zip
https://repository.microej.com/packages/SDK/21.03/zip
https://repository.microej.com/packages/SDK/21.03/zip
https://repository.microej.com/packages/SDK/20.12/MicroEJ-SDK-Installer-Win64-20.12.exe
https://repository.microej.com/packages/SDK/20.12/MicroEJ-SDK-Installer-Win64-20.12.exe
https://repository.microej.com/packages/SDK/20.12/zip
https://repository.microej.com/packages/SDK/20.12/zip
https://repository.microej.com/packages/SDK/20.12/MicroEJ-SDK-Installer-Linux64-20.12.zip
https://repository.microej.com/packages/SDK/20.12/MicroEJ-SDK-Installer-Linux64-20.12.zip
https://repository.microej.com/packages/SDK/20.12/zip
https://repository.microej.com/packages/SDK/20.12/zip
https://repository.microej.com/packages/SDK/20.12/MicroEJ-SDK-Installer-MacOS-20.12.zip
https://repository.microej.com/packages/SDK/20.12/MicroEJ-SDK-Installer-MacOS-20.12.zip
https://repository.microej.com/packages/SDK/20.12/zip
https://repository.microej.com/packages/SDK/20.12/zip
https://repository.microej.com/packages/SDK/20.10/MicroEJ-SDK-Installer-Win64-20.10.exe
https://repository.microej.com/packages/SDK/20.10/MicroEJ-SDK-Installer-Win64-20.10.exe
https://repository.microej.com/packages/SDK/20.10/zip
https://repository.microej.com/packages/SDK/20.10/zip
https://repository.microej.com/packages/SDK/20.10/MicroEJ-SDK-Installer-Linux64-20.10.zip
https://repository.microej.com/packages/SDK/20.10/MicroEJ-SDK-Installer-Linux64-20.10.zip
https://repository.microej.com/packages/SDK/20.10/zip
https://repository.microej.com/packages/SDK/20.10/zip
https://repository.microej.com/packages/SDK/20.10/MicroEJ-SDK-Installer-MacOS-20.10.zip
https://repository.microej.com/packages/SDK/20.10/MicroEJ-SDK-Installer-MacOS-20.10.zip
https://repository.microej.com/packages/SDK/20.10/zip
https://repository.microej.com/packages/SDK/20.10/zip
https://repository.microej.com/packages/SDK/20.07/MicroEJ-SDK-Installer-Win64-20.07.exe
https://repository.microej.com/packages/SDK/20.07/MicroEJ-SDK-Installer-Win64-20.07.exe
https://repository.microej.com/packages/SDK/20.07/zip
https://repository.microej.com/packages/SDK/20.07/zip
https://repository.microej.com/packages/SDK/20.07/MicroEJ-SDK-Installer-Linux64-20.07.zip
https://repository.microej.com/packages/SDK/20.07/MicroEJ-SDK-Installer-Linux64-20.07.zip
https://repository.microej.com/packages/SDK/20.07/zip
https://repository.microej.com/packages/SDK/20.07/zip
https://repository.microej.com/packages/SDK/20.07/MicroEJ-SDK-Installer-MacOS-20.07.zip
https://repository.microej.com/packages/SDK/20.07/MicroEJ-SDK-Installer-MacOS-20.07.zip
https://repository.microej.com/packages/SDK/20.07/zip
https://repository.microej.com/packages/SDK/20.07/zip
https://repository.microej.com/packages/SDK/19.05/MicroEJ-SDK-Installer-Win64-19.05.exe
https://repository.microej.com/packages/SDK/19.05/MicroEJ-SDK-Installer-Win64-19.05.exe
https://repository.microej.com/packages/SDK/19.05/zip
https://repository.microej.com/packages/SDK/19.05/zip
https://repository.microej.com/packages/SDK/19.05/MicroEJ-SDK-Installer-Linux64-19.05.zip
https://repository.microej.com/packages/SDK/19.05/MicroEJ-SDK-Installer-Linux64-19.05.zip
https://repository.microej.com/packages/SDK/19.05/zip
https://repository.microej.com/packages/SDK/19.05/zip
https://repository.microej.com/packages/SDK/19.05/MicroEJ-SDK-Installer-MacOS-19.05.zip
https://repository.microej.com/packages/SDK/19.05/MicroEJ-SDK-Installer-MacOS-19.05.zip
https://repository.microej.com/packages/SDK/19.05/zip
https://repository.microej.com/packages/SDK/19.05/zip
https://repository.microej.com/packages/SDK/19.02/MicroEJ-SDK-Installer-Win64-19.02.exe
https://repository.microej.com/packages/SDK/19.02/MicroEJ-SDK-Installer-Win64-19.02.exe
https://repository.microej.com/packages/SDK/19.02/zip
https://repository.microej.com/packages/SDK/19.02/zip
https://repository.microej.com/packages/SDK/19.02/MicroEJ-SDK-Installer-Linux64-19.02.zip
https://repository.microej.com/packages/SDK/19.02/MicroEJ-SDK-Installer-Linux64-19.02.zip
https://repository.microej.com/packages/SDK/19.02/zip
https://repository.microej.com/packages/SDK/19.02/zip
https://repository.microej.com/packages/SDK/19.02/MicroEJ-SDK-Installer-MacOS-19.02.zip
https://repository.microej.com/packages/SDK/19.02/MicroEJ-SDK-Installer-MacOS-19.02.zip
https://repository.microej.com/packages/SDK/19.02/zip
https://repository.microej.com/packages/SDK/19.02/zip

MicroEJ Documentation,

Finally, if you need an older SDK Distribution, browse the SDK Downloads Page.

System Requirements

• Hardware :

– Intel x64 (Dual-core i5 minimum) or macOS AArch64 (M1) processor

– 4GB RAM (minimum)

– 2GB Disk (minimum)

• Operating Systems :

– Windows 11, Windows 10, Windows 8.1 or Windows 8

– Linux distributions (tested on Ubuntu 18.04, 20.04 and 22.04)

∗ As of SDK Distribution 20.10 (based on Eclipse 2020-06), Ubuntu 16.04 is not supported.

∗ For headless installations, the libwebkit2gtk-4.0-37 package is required additionally.

∗ The OpenJDK distribution from Ubuntu is not supported. The Eclipse Temurin distribution is
recommended.

– macOS x86_64 with Intel chip (tested on version 10.13 High Sierra, 10.14 Mojave)

– macOS aarch64 with M1 chip (tested on version 12.0.1 Monterey), from SDK Distribution 22.06
(requires Architecture 7.18.0 or higher)

• Java Runtime Environment :

The compatible JRE/JDK version depends on the Distribution, the SDK and the Architecture
version. This table lists the supported combinations:

Distribution SDK Architecture JRE/JDK
>= 22.06 >= 5.6.0 >= 7.17.0 JDK 11
<= 21.11 >= 5.6.0 >= 7.17.0 JRE or JDK 8 or 11
<= 21.11 < 5.6.0 * JRE or JDK 8
<= 21.11 * < 7.17.0 JRE or JDK 8

The combinations not listed here are not supported. For the supported combinations, tests
have been done with both the Oracle and the Eclipse Adoptium JDK builds.

Warning: It is important to note that the SDK Distributions 22.06 and higher require a JDK 11
(not a JRE) and can be used only with an Architecture 7.17.0 or more.

1 SDK Distribution for macOS aarch64 (M1 chip) requires Architecture 7.18.0 or higher.

3.11. SDK 5 User Guide 1558

https://repository.microej.com/packages/SDK/

MicroEJ Documentation,

Get JDK

You can download and install a JDK from Adoptium or Oracle.

Warning: Up to version 23.02 of the SDK Distribution, when installing the Eclipse
Temurin/AdoptOpenJDK build onWindows, the option JavaSoft (Oracle) registry keys must
be enabled:

Without this option, the SDK installer cannot find the JDK and the message The application
requires a Java Runtime Environment 8 is displayed.

3.11. SDK 5 User Guide 1559

https://adoptium.net/temurin/releases/
https://www.oracle.com/fr/java/technologies/downloads/

MicroEJ Documentation,

Troubleshooting

Incompatible Default Java Version

When launching the installer, you may get the following error:
The application you are trying to install requires a JDK11 .

Orwhen launching theSDK, youmayget the followingerror: Version: 11 or greater is required
.

The default Java version installed on your system is not compatible. You have two options:

• either install a JDK 11 as your default JVM. If you are on Windows OS and your SDK Distribution
version is 23.02 or lower, ensure you enabled JavaSoft (Oracle) registry keys during the JDK
installation (see Get JDK),

• or install the portable SDK Distribution if you don’t want to modify your default JVM version.

This latter case is recommended if youare installingSDKDist. 22.06 orhigherwhile youalready
have active projects based on SDK Dist. 21.11 .

Windows Specifics

If you are using Windows Defender as your default antivirus software, the SDK may be slowed
down as it manipulates lots of JAR files (which are ZIP files) that are regularly analyzed.

To improve the SDK experience, please find below a list of folders that should be excluded from
Windows Defender monitoring:

• %USERPROFILE%\.eclipse

• %USERPROFILE%\.ivy2

• %USERPROFILE%\.microej

• %USERPROFILE%\.p2

• %USERPROFILE%\AppData\Local\Temp\microej

3.11. SDK 5 User Guide 1560

MicroEJ Documentation,

• C:\Program Files\MicroEJ or the custom directory where the SDK has been installed

• your workspace(s) folder(s)

The exclusion page is available in the Settings application (Windows Security >

Virus & threat protection > Manage settings > Exclusions > Add or remove exclusions).

Linux Specifics

Starting the SDK on a linux distribution may produce troubles such as missing content pages.
This is related to incomplete Eclipse SWT configuration (see Eclipse GTK wiki page).

One solution is to configure Eclipse as follows:

• Add the next lines to MicroEJ-SDK.ini , before -vmargs argument:

--launcher.GTK_Version 2

• Ensure GTK is correctly installed (libwebkitgtk packet)

• Configure the following environment variables

MOZILLA_FIVE_HOME=/usr/lib/mozilla
LD_LIBRARY_PATH=${MOZILLA_FIVE_HOME}:${LD_LIBRARY_PATH}

• Restart the SDK

• Check there is not more SWT/MOZILLA related errors (Window > Show View > Other… >
General > Error Log)

MacOS Specifics

When launching the SDK using the .app file, youmay encounter the following message:

”MicroEJ-SDK-xx.xx” is damaged and can't be opened. You should move it to the Trash.

or this one:

”MicroEJ-SDK-xx.xx” cannot be opened because the developer cannot be verified.

This is due tomacOSputting applications in quarantinewhen downloadedwith a browser. Use
this command to remove the SDK application from quarantine:

sudo xattr -rd com.apple.quarantine sdk.app

where sdk.app is the SDK file name.

3.11. SDK 5 User Guide 1561

https://wiki.eclipse.org/SWT/Devel/Gtk/GtkVersion

MicroEJ Documentation,

3.11.2 Licenses

SDK EULA

MICROEJ SDK is licensed under the SDK End User License Agreement (EULA), which covers the
following elements:

• SDK Tools & Plugins packaged in the SDK 5.x Version,

• Architectures,

• Modules published to the Central Repository with the SDK EULA license, such as GUI or Net-
working Pack (see Central Repository Licensing for more details).

Fig. 306: SDK EULA Coverage

License Manager Overview

Architectures are distributed in two different versions:

• Evaluation Architectures, associated with a software license key. They can be downloaded at
https://repository.microej.com/modules/com/microej/architecture/.

• Production Architectures, associatedwith a hardware license key stored on aUSBdongle. They
can be requested to our support team.

The license manager is provided with Architectures and then integrated into VEE Ports, conse-
quently:

• Evaluation licenses will be shown only if at least one Evaluation Architecture or VEE Port built
from an Evaluation Architecture has been imported in the SDK.

• Production licenses will be shown only if at least one Production Architecture or VEE Port built
from a Production Architecture has been imported in the SDK.

The list of installed licenses is available in the SDK preferences dialog page in Window >
Preferences > MicroEJ :

3.11. SDK 5 User Guide 1562

https://repository.microej.com/licenses/sdk/LAW-0011-LCS-MicroEJ_SDK-EULA-v3.1C.txt
https://repository.microej.com/modules/com/microej/architecture/

MicroEJ Documentation,

Fig. 307: License Manager View

License Check

The table below summarizes where the license is checked.

Application Run on
Simulator
(Virtual
Device)

Build on De-
vice

Documentation Link

Standalone Application or Kernel Application NO YES Run on the Device
Sandboxed Application NO NO Application Linking

Evaluation Licenses

This section should be considered when using Evaluation Architectures, which use software
license keys. A machine UID needs to be provided to activate an Evaluation license on the Mi-
croEJ Licenses Server. The machine UID is a 16 hexadecimal digits number.

Get your Machine UID

Retrieving the machine UID depends on the kind of VEE Port being evaluated.

If your VEEPort is already imported in Package Explorer andbuilt withMicroEJModuleManager,
the Architecture has been automatically imported. The machine UID will be displayed when
building a Standalone Application on device.

[INFO] Launching in Evaluation mode. Your UID is XXXXXXXXXXXXXXXX.
[ERROR] Invalid license check (No license found).

Otherwise, anArchitecture or VEEPort should havebeenmanually imported from theSDKpref-
erences page. The machine UID can be retrieved as follows:

• Go to Window > Preferences > MicroEJ ,

3.11. SDK 5 User Guide 1563

MicroEJ Documentation,

• Select either Architectures , Platforms in workspace or Platforms ,

• Click on one of the available items,

• Press the Get UID button to get the machine UID.

Note: To access this Get UID option, at least one Evaluation Architecture or VEE Port must have been imported
before (see License Manager Overview).

Copy the UID. It will be needed when requesting a license.

Fig. 308: Machine UID for Evaluation License

Request your Activation Key

• Go to MicroEJ Licenses Server https://license.microej.com.

• Click on Create a new account link.

• Create your account with a valid email address. You will receive a confirmation email a few
minutes after. Click on the confirmation link in the email and log in with your new account.

• Click on Activate a License .

• Set Product P/N: to 9PEVNLDBU6IJ .

• Set UID: to the machine UID you copied before.

• Click on Activate .

• The license is being activated. You should receive your activation by email in less than 5 min-
utes. If not, please contact our support team.

• Once received by email, save the attached zip file that contains your activation key.

3.11. SDK 5 User Guide 1564

https://license.microej.com

MicroEJ Documentation,

Install the License Key

If your VEEPort is already imported in Package Explorer andbuilt withMicroEJModuleManager,
the license key zip file must be simply dropped to the ~/.microej/licenses/ directory (create
it if it doesn’t exist).

Fig. 309: MicroEJ Shared Licenses Directory

Note: TheSDKPreferences pagewill be automatically refreshedwhenbuilding a StandaloneApplicationondevice.

Otherwise, the license key must be installed as follows:

• Go back to the SDK.

• Select the Window > Preferences > MicroEJ menu.

• Press Add… .

• Browse the previously downloaded activation key archive file.

• Press OK. A new license is successfully installed.

• Go to Architectures sub-menu and check that all Architectures are nowactivated (green check).

• Your SDK is successfully activated.

If an error message appears, the license key could not be installed. (see section Troubleshoot-
ing). A license key can be removed from the key-store by selecting it and by clicking on
Remove button.

Troubleshooting

Unable to add an Evaluation license key in the SDK

Consider this section when an error message appears while adding the Evaluation license key.
Before contacting our support team, please check the following conditions:

• Key is corrupted (wrong copy/paste, missing characters, or extra characters)

• Key has not been generated for the installed environment

• Key has not been generated with the machine UID

• Machine UID has changed since submitting license request and no longer matches license key

• Key has not been generated for one of the installed Architectures (no license manager able to
load this license)

3.11. SDK 5 User Guide 1565

MicroEJ Documentation,

Fig. 310: Invalid License Key Error Message

Machine UID has changed

This can occur when the hardware configuration of the machine is changed (especially when
the network interfaces have changed).

In this case, you can either request a new activation key for this new UID or go back to the pre-
vious hardware configuration.

Production Licenses

This section should be considered when using Production Architectures, which use hardware
license keys stored on a USB dongle.

Fig. 311: MicroEJ USB Dongle

Note: If your USB dongle has been provided to you by your sales representative and you don’t have received an
activation certificate by email, itmay be a pre-activated dongle. Then you can skip the activation steps and directly
jump to the Check Activation section.

3.11. SDK 5 User Guide 1566

MicroEJ Documentation,

Request your Activation Key

• Go to license.microej.com.

• Click on Create a new account link.

• Create your account with a valid email address. You will receive a confirmation email a few
minutes after. Click on the confirmation link in the email and login with your new account.

• Click on Activate a License .

• Set Product P/N: to The P/N on the activation certificate.

• Enter your UID: serial number printed on the USB dongle label (8 alphanumeric char.).

• Click on Activate and check the confirmation message.

• Click on Confirm your registration .

• Enter the Registration Code provided on the activation certificate.

• Click on Submit .

• Your Activation Key will be sent to you by email as soon as it is available (12 business hours
max.).

Note: You can check the My Products page to verify your product registration status, the Activation Key avail-
ability, and download the Activation Key when available.

Once the Activation Key is available, download and save the Activation Key ZIP file to a local
directory.

Activate your USB Dongle

This section contains instructions that will allow you to flash your USB dongle with the proper
activation key.

You shall ensure that the following prerequisites are met :

• Your operating system is Windows

• The USB dongle is plugged and recognized by your operating system (see Troubleshooting sec-
tion)

• Nomore than one USB dongle is plugged into the computer while running the update tool

• The update tool is not launched from a network drive or a USB key

• The activation key you downloaded is the one for the dongle UID on the sticker attached to the
dongle (each activation key is tied to the unique hardware ID of the dongle).

You can then proceed to the USB dongle update:

• Unzip the Activation Key file to a local directory

• Enter the directory just created by your ZIP extraction tool.

• Launch the executable program.

3.11. SDK 5 User Guide 1567

https://license.microej.com/

MicroEJ Documentation,

• Accept running the unsigned software if requested (Windows 10/11)

• Click on the Update button (no password needed)

Fig. 312: Dongle Update Tool

• On success, an Update successfully message shall appear. On failure, an Error key or no
proper rockey message may appear.

3.11. SDK 5 User Guide 1568

MicroEJ Documentation,

Fig. 313: Successful Dongle Update

Check Activation

This section contains instructions that will allow you to verify that your USB dongle has been
properly activated.

Check Activation in the SDK

Note: Production licenseswill be shownonly if at least oneProductionArchitecture or VEEPort has been imported
before (see License Manager Overview).

In the SDK,

• Go to Window > Preferences > MicroEJ ,

• Go to Architectures , Platforms in workspace or Platforms sub-menu and check that all
items are now activated (green check).

Fig. 314: License Status OK

3.11. SDK 5 User Guide 1569

MicroEJ Documentation,

If the license is still not recognized (red cross), check with the following command line tool to
get more information.

Check Activation with the Command Line Tool

To get more details on connected USB dongle(s), run the debug tool as following:

1. Open a terminal.

2. Change directory to a Production VEE Port.

3. Execute the command:

Architecture v8.1.0 or higher

Architecture v8.0.0 or lower

java -Djava.
→˓library.path=resources/os/[OS_NAME] -jar licenseManager/licenseManagerProduct.jar

java -Djava.
→˓library.path=resources/os/[OS_NAME] -jar licenseManager/licenseManagerUsbDongle.jar

with OS_NAME set to Windows64 for Windows OS, Linux64 for Linux OS, Mac formacOS
x86_64 (Intel chip) or MacA64 for macOS aarch64 (Apple Silicon chip).

If your USB dongle has been properly activated, you should get the following output:

[DEBUG] ===== MicroEJ Dongle Debug Tool =====
[DEBUG] => Detected dongle UID: XXXXXXXX.
[DEBUG] => Dongle UID has valid MicroEJ data: XXXXXXXX (only the first one is listed).
[DEBUG] =>␣
→˓Detected MicroEJ License XXXXX-XXXXX-XXXXX-XXXXX - valid until YYYY-MM-DD.
[DEBUG] ===== SUCCESS =====

USB Dongle on GNU/Linux

For GNU/Linux Users (Ubuntu at least), by default, the dongle access has not been granted to
the user, you have to modify udev rules. Please create a /etc/udev/rules.d/91-usbdongle.
rules file with the following contents:

ACTION!=”add”, GOTO=”usbdongle_end”
SUBSYSTEM==”usb”, GOTO=”usbdongle_start”
SUBSYSTEMS==”usb”, GOTO=”usbdongle_start”
GOTO=”usbdongle_end”

LABEL=”usbdongle_start”

ATTRS{idVendor}==”096e” , ATTRS{idProduct}==”0006” , MODE=”0666”

LABEL=”usbdongle_end”

Then, restart udev: sudo /etc/init.d/udev restart

You can check that the device is recognized by running the lsusb command. The output of the
command should contain a line similar to the one below for each dongle: Bus 002 Device 003:
ID 096e:0006 Feitian Technologies, Inc.

3.11. SDK 5 User Guide 1570

MicroEJ Documentation,

USB Dongle with Docker on Linux

If you use the SDK Docker image on a Linux host to build an Executable, the dongle must be
mapped to the Docker container. First, it requires to add a symlink on the dongle by follow-
ing the instructions of the USB Dongle on GNU/Linux section but with this /etc/udev/rules.d/
91-usbdongle.rules file:

ACTION!=”add”, GOTO=”usbdongle_end”
SUBSYSTEM==”usb”, GOTO=”usbdongle_start”
SUBSYSTEMS==”usb”, GOTO=”usbdongle_start”
GOTO=”usbdongle_end”

LABEL=”usbdongle_start”

ATTRS{idVendor}==
→˓”096e” , ATTRS{idProduct}==”0006” , MODE=”0666” , SYMLINK+=”microej_dongle”

LABEL=”usbdongle_end”

Then the symlink has to be mapped in the Docker container by adding the following option in
the Docker container creation command line:

--device /dev/microej_dongle:/dev/bus/usb/999/microej_dongle

The /dev/microej_dongle symlink can bemapped to any device path as long as it is in /dev/
bus/usb .

USB Dongle with WSL

Note: The following steps have been tested on WSL2 with Ubuntu 22.04.2 LTS.

To use a USB dongle with WSL, you first need to install usbipd following the steps described in
Microsoft WSL documentation:

First, check thatWSL2 is installedonyour system. If not, install it orupdate it followingMicrosoft
Documentation

Then, you need install usbipd-win v4.0.0 or higher onWindows from usbipd-win Github repos-
itory.

And then, install usbipd and update hardware database inside you WSL installation:

sudo apt install linux-tools-generic hwdata
sudo update-
→˓alternatives --install /usr/local/bin/usbip usbip /usr/lib/linux-tools/*-generic/usbip 20

Add the udev rule described in USB Dongle on GNU/Linux, and restart udev:

sudo /etc/init.d/udev restart

Ensure your USB dongle is plugged, then start a PowerShell terminal in administrator mode.

List the connected devices with the following command:

3.11. SDK 5 User Guide 1571

https://hub.docker.com/r/microej/sdk
https://learn.microsoft.com/en-us/windows/wsl/connect-usb#install-the-usbipd-win-project
https://learn.microsoft.com/en-us/windows/wsl/install
https://learn.microsoft.com/en-us/windows/wsl/install
https://github.com/dorssel/usbipd-win/releases
https://github.com/dorssel/usbipd-win/releases

MicroEJ Documentation,

usbipd.exe list

You should see your USB dongle connected with VID:PID==096e:0006 :

PS C:\Users\user> usbipd list
Connected:
BUSID VID:PID DEVICE STATE
2-

→˓6 0c45:674c Integrated Webcam, Integrated IR Webcam, USB DFU Not shared
2-8 0a5c:5843 Dell ControlVault w/ Fingerprint Touch Sensor, Microsoft ... Not shared
2-10 8087:0033 Intel(R) Wireless Bluetooth(R) Not shared
3-1 0bda:8153 Realtek USB GbE Family Controller Not shared
4-6 413c:c010 Dell DA310 Not shared
6-4 096e:0006 USB Input Device Not shared
6-6 046d:0819 USB Video Device, USB Audio Device Not shared
7-1 045e:0084 USB Input Device Not shared
7-2 04d9:1400 USB Input Device Not shared
7-3 10d5:55a2 USB Input Device Not shared

Here the BUSID is 6-4 .

Bind and attach the dongle to WSL:

usbipd.exe bind --busid <BUSID>
usbipd.exe attach --wsl --busid <BUSID>

Open a bash terminal in your WSL instance, and check the USB dongle is successfully mounted
with the following command:

lsusb

You should see your USB dongle connected with ID 096e:0006 :

Bus 002 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub
Bus 001 Device 002: ID␣

→˓096e:0006 Feitian Technologies, Inc. HID Dongle (for OEMs - manufacturer string is ”OEM”)
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Note: You’ll need to follow these steps each time you system is rebooted or the dongle is plugged/unplugged.

3.11. SDK 5 User Guide 1572

MicroEJ Documentation,

Troubleshooting

This section contains instructions to check that youroperating systemcorrectly recognizes your
USB dongle.

Windows Troubleshooting

• If the dongle activation failedwith No rockey message, check there is one and only one dongle
recognized with the following hardware ID :

HID\VID_096E&PID_0006&REV_0201

Go to the Device Manager > Human Interface Devices and check among the

USB Input Device entries that the Details > Hardware Ids property match the ID
mentioned before.

• If the dongle activationwas successful with Update successfully message but the license does
not appear in the SDK or is not updated, try to activate again by starting the executable with
administrator privileges:

• If the followingerrormessage is thrownwhenbuildinganExecutable, either thedongleplugged
is a verbatim dongle or it has not been successfully activated:

Invalid license check (Dongle found is not compatible).

VirtualBox Troubleshooting

In a VirtualBox virtual machine, USB drives must be enabled to be recognized correctly. Make
sure to enable the USB dongle by clicking on it in the VirtualBox menu Devices > USB .

To make this setting persistent, go to Devices > USB > USB Settings… and add the USB

dongle in the USB Devices Filters list.

3.11. SDK 5 User Guide 1573

MicroEJ Documentation,

WSL Troubleshooting

Check that your dongle is attached to WSL from PowerShell:

usbipd.exe list

You should have a line saying Attached - Ubuntu :

PS C:\Users\sdkuser> usbipd.exe list
BUSID VID:PID DEVICE STATE
2-1 096e:0006 USB Input Device Attached - Ubuntu
2-6 0c45:6a10 Integrated Webcam Not attached
2-10 8087:0026 Intel(R) Wireless Bluetooth(R) Not attached
3-1 045e:0823 USB Input Device Not attached
3-4 046d:c31c USB Input Device Not attached

In you WSL console, the dongle must also be recognized. Ckeck by using lsusb :

skduser@host:~/workspaces/docs$ lsusb
Bus 002 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub
Bus 001 Device 003: ID␣
→˓096e:0006 Feitian Technologies, Inc. HID Dongle (for OEMs - manufacturer string is ”OEM”)
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

This might not be sufficient. If you’re still facing license issues, restart udev, abd attach your
dongle to WSL once again.

Note: Hibernation may have unattached your dongle. Reload udev, unplug/plug your dongle and attach it from
PowerShell.

Dongle not detected in the licenses screen

If theUSBdongle ispluggedandactivatedbutnotvisible in themenu Window > Preferences
> MicroEJ , please check that you have an active VEE Port in Window > Preferences >
MicroEJ > Platforms in workspace .

Then, ensure that the VEE Port has been built in prod configuration, this can be checked with
the architecture dependency inside the file module.ivy . If no VEE Ports are visible in your
current workspace, please build a VEE Port configured to the prod mode and this should fix
the issue.

Remote USB Dongle Connection

When the dongle cannot be physically plugged to the machine running the SDK (cloud builds,
virtualization, missing permissions, …), it can be configured using USB redirection over IP net-
work.

There are many hardware and software solutions available on the market. Among others, this
has been tested with https://www.net-usb.com/ and https://www.virtualhere.com/. Please
contact our support team for more details.

3.11. SDK 5 User Guide 1574

https://www.net-usb.com/
https://www.virtualhere.com/

MicroEJ Documentation,

3.11.3 Standalone Application

Platform Import

A Platform is required to run a Standalone Application on the Simulator or build the Firmware
binary for the target device.

The VEE Porting Guide describes how to create a Platform from scratch for any kind of device.
In addition, MicroEJ Corp. provides Platforms for various development boards (see https://
repository.microej.com/index.php?resource=JPF).

Platforms are distributed in two packages:

• Source Platform. The source files are imported into the workspace. This is the default case.

• Binary Platform. A .jpf file is imported into the MicroEJ repository. As of MicroEJ SDK 5.3.0 ,
this package is deprecated.

Source Platform Import

Import from Folder

This section applies when the Platform files are already available on a local folder. This is likely
the casewhen the files are checkedout fromaVersionControl System, such as a local git repos-
itory clone.

Note: If you are going to import a Platform from MicroEJ Github, you can follow the specific GitHub Repositories
section instead (the projects will be automatically imported).

• Select File > Import… > General > Existing Projects into Workspace >

Select root directory > Browse… .

• Select the root directory. The wizard will automatically discover projects to import.

• Click on the Finish button.

Import from Zip File

This section applies when the Platform files are packaged in a .zip file.

• Select File > Import… > General > Existing Projects into Workspace >

Select archive file > Browse… .

• Select the zip of the project (e.g., x.zip). The wizard will automatically discover projects to
import.

• Click on the Finish button.

3.11. SDK 5 User Guide 1575

https://repository.microej.com/index.php?resource=JPF
https://repository.microej.com/index.php?resource=JPF

MicroEJ Documentation,

Platform Build

Platforms are usually shared with only the Platform configuration files. Once the projects are
imported, follow the platform-specific documentation to build the Platform.

Once imported or built, a Platform project should be available as follows:

Fig. 315: Platform Project

The source folder contains the Platform content which can be set to the target.platform.dir
option.

Binary Platform Import

After downloading the Platform .jpf file, launch MicroEJ SDK and follow these steps to import
the Platform:

• Open the Platform view in MicroEJ SDK, select Window > Preferences > MicroEJ >
Platforms . The view should be empty on a fresh install of the tool.

Fig. 316: Platform Import

• Press Import… button.

3.11. SDK 5 User Guide 1576

MicroEJ Documentation,

• Choose Select File… anduse the Browse option to navigate to the .jpf file containing your
Platform, then read and accept the license agreement to proceed.

Fig. 317: Platform Selection

• The Platform should now appear in the Platforms view, with a green valid mark.

3.11. SDK 5 User Guide 1577

MicroEJ Documentation,

Fig. 318: Platform List

Build and Run an Application

Create a MicroEJ Standalone Application

Note: This section is releated to the version 5 and lower of the SDK. If you use the SDK 6, please refer to the page
Create a Project.

• Create a project in your workspace. Select File > New > Standalone Application Project .

Fig. 319: New MicroEJ Standalone Application Project

3.11. SDK 5 User Guide 1578

MicroEJ Documentation,

• Fill in the Application template fields, the project name field will automatically duplicate in
the following fields. For this tutorial, the project name is hello . Click on Finish . A tem-
plate project is automatically created and ready to use, this project already contains all folders
wherein developers need to put content:

– src/main/java : Folder for future sources

– src/main/resources : Folder for future resources (raw resources, images, fonts, nls)

– module.ivy : Module description file, dependencies description for the current project

• A Main class already exists in the package com.mycompany and prints “Hello World!” :

Fig. 320: MicroEJ Application Content

Themain Application is now ready to be executed. See next sections.

Run on the Simulator

Note: This section is releated to the version 5 and lower of the SDK. If you use the SDK 6, please refer to the page
Run on Simulator.

Note: A Platform must have been imported to run the Application. If several Platforms have been imported, the
target Platform can be selected in the Launcher’s Execution tab.

To run the sample project on Simulator, select it in the left panel then right-click and select
Run > Run as > MicroEJ Application .

3.11. SDK 5 User Guide 1579

MicroEJ Documentation,

Fig. 321: MicroEJ Launcher Shortcut

MicroEJ SDK console will display Launch steps messages.

=============== [Initialization Stage] ===============
=============== [Launching on Simulator] ===============
Hello World!
=============== [Completed Successfully] ===============

SUCCESS

Run on the Device

Build the Application

• Open the run dialog (Run > Run Configurations…).

• Select the MicroEJ Application > Hello Main that is created by the previous chapter.

• Open Execution tab and select Execute on Device .

• Set Settings checkbox to Build & Deploy .

3.11. SDK 5 User Guide 1580

MicroEJ Documentation,

Fig. 322: Execution on Device

• Click Run : The Application is compiled and the Application, the runtime library and the
header files are automatically deployed to the locations defined in your Platform BSP connec-
tion settings.

=============== [Deployment] ===============
MicroEJ files for the 3rd-party BSP project␣
→˓are generated to '<application-project>/<fully-qualified-name-of-main-class>/platform'.
The␣
→˓MicroEJ application (microejapp.o) has been deployed to: '<path-to-deployment-location>'.
The MicroEJ␣
→˓platform library (microejruntime.a) has been deployed to: '<path-to-deployment-location>'.
The␣
→˓MicroEJ platform header files (*.h) have been deployed to: '<path-to-deployment-location>'.
=============== [Completed Successfully] ===============

SUCCESS

3.11. SDK 5 User Guide 1581

MicroEJ Documentation,

Build the Executable File

If your Platform has configured a build script file, the final Application linking can be triggered
from the launcher:

• Open Configuration tab and select Device > Deploy . The options to deploy the Applica-
tion, runtime library and header files have already been set in the previous step.

• Check Execute the MicroEJ build script (build.bat) at a location known by the 3rd-party BSP project
.

Fig. 323: BSP Connection Application Options

Note: The table MicroEJ Application Options for BSP Connection specifies the Application options that can be set
depending on the BSP connection configured by the Platform.

• Click Apply and Run : the final executable application.out file is generated in the direc-
tory from where the script has been executed and can now be deployed on your Device using
the appropriate flash tool.

3.11. SDK 5 User Guide 1582

MicroEJ Documentation,

MicroEJ Launch

TheMicroEJ launch configuration sets up theApplications environment (main class, target, and
Application options), and then launches a script for execution.

Execution is done either on the Simulator or on the Device. In this latter case, it may depend on
external tools such as target memory programming.

Main Tab

The Main tab allows you to set in order:

1. The main project of the application.

2. The main class of the application containing the main method.

3. Types required in your application that are not statically embedded from the main class entry
point. Most required types are those that may be loaded dynamically by the application, using
the Class.forName() method.

4. Binary resources that need to be embedded by the application. These are usually loaded by
the application using the Class.getResourceAsStream() method.

5. Immutable objects’ description files. See the [BON 1.2] ESRdocumentation for use of immutable
objects.

3.11. SDK 5 User Guide 1583

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#forName-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#getResourceAsStream-java.lang.String-

MicroEJ Documentation,

Fig. 324: MicroEJ Launch Application Main Tab

Execution Tab

The next tab is the Execution tab. Here the target needs to be selected. Choose between
execution on aMicroEJ Platformor on aMicroEJ Simulator. Each of themmay providemultiple
launch settings. This page also allows you to keep generated, intermediate files and to print
verbose options (advanced debug purpose options).

3.11. SDK 5 User Guide 1584

MicroEJ Documentation,

Fig. 325: MicroEJ Launch Application Execution Tab

Configuration Tab

The next tab is the Configuration tab. This tab shows the available Application options.

3.11. SDK 5 User Guide 1585

MicroEJ Documentation,

Fig. 326: Configuration Tab

JRE Tab

The next tab is the JRE tab. This tab allows you to configure the Java Runtime Environment
used for running the underlying launch script. It does not configure the MicroEJ Application
execution. The VM Arguments text field allows you to set vm-specific options, which are
typically used to increase memory spaces:

• Tomodify heap space to 1024MB, set the -Xmx1024M option.

• To modify string space (also called PermGen space) to 256MB, set the -XX:PermSize=256M
-XX:MaxPermSize=256M options.

• To set thread stack space to 512MB, set the -Xss512M option.

• To set an advanced Application option, declare a system property with the following pattern
-D[OPTION_KEY]>=[OPTION_VALUE]

3.11. SDK 5 User Guide 1586

MicroEJ Documentation,

Source Tab

The next tab is the Source tab. By default, it is automatically configured to connect your
Add-On Libraries sources dependencies. To connect your PlatformFoundation Library sources,
please refer to the section Foundation Library Sources.

Common Tab

The last tab is the Common tab. This is a default Eclipse tab that allows to configure your
launch. Particularly, you can configure the console encoding. Refer to Eclipse help for more
details on other available options.

A Standalone Application is themain Application that is directly linked to the C code to produce
an Executable. Such an application must define a main entry point (i.e., a class containing a
public static void main(String[]) method).

The next chapters explain how to build and run a Standalone Application.

3.11. SDK 5 User Guide 1587

MicroEJ Documentation,

3.11.4 Sandboxed Application

Create a First Application

Now that the purposes of the Sandboxed Applications have been explained, let’s create a first
application.

A Sandboxed Application project can be created in the SDK with the menu File > New >
Sandboxed Application Project .

Fig. 327: Sandboxed Application Project Creation Menu

The project creation window is displayed:

3.11. SDK 5 User Guide 1588

MicroEJ Documentation,

Fig. 328: Sandboxed Application Project Creation Form

Once the Application information are fulfilled and validated, the project is created with the fol-
lowing structure:

src/main/java
Application Java sources;

src/main/resources
Application resources (raw resources, images, fonts, nls);

module.ivy
Module description file, containing build information and dependencies of the project.

The next sections describe the required files to have your first basic Application.

Entry Point

A Sandboxed Application must contain a class implementing the ej.kf.FeatureEntryPoint in-
terface in the src/main/java folder:

package com.mycompany;

import ej.kf.FeatureEntryPoint;

(continues on next page)

3.11. SDK 5 User Guide 1589

MicroEJ Documentation,

(continued from previous page)

public class MyApplication implements FeatureEntryPoint {

@Override
public void start() {

System.out.println(”Feature MyApplication started!”);
}

@Override
public void stop() {

System.out.println(”Feature MyApplication stopped!”);
}

}

This class is the entry point of the Application. Themethod start is calledwhen theApplication
is started. It is considered as themainmethod of the Sandboxed Application. Themethod stop
is called when the Application is stopped. Please refer to the Sandboxed Application Lifecycle
chapter to learn more about the Applications lifecycle.

The src/main/java folder is also the place to add all the other Java classes of the Application.

Configuration

A Sandboxed Application project must contain a file with the .kf extension in the src/main/
resources folder. This file contains the configuration of the Application. Here is an example:

name=MyApplication
entryPoint=com.mycompany.MyApplication
types=*
version=0.1.0

It contains the following properties:

• name: the name of the Application

• entryPoint: the Full Qualified Name of the class implementing ej.kf.FeatureEntryPoint

• types: this property defined the types included in the Application and must always be * (do
not forget the space at the end)

• version: the version of the Application

SSL Certificate

A Sandboxed Application requires a certificate for identification. It must be located in the src/
main/resources folder of the project. The project created by the SDK provides a sample certifi-
cate. This certificate is sufficient for testing, but it is recommended to provide your own.

3.11. SDK 5 User Guide 1590

MicroEJ Documentation,

Module Descriptor

The module.ivy file is the Module description file which contains the project information and
declares all the libraries required by the Application. See MicroEJ Module Manager for more
information.

The dependencies must contain at least a module containing the ej.kf.FeatureEntryPoint
class, for example the KF library:

SDK 6

SDK 5

implementation(”ej.api:kf:1.7.0”)

<dependency org=”ej.api” name=”kf” rev=”1.7.0” />

Run on the Simulator

Note: This page is releated to the version 5 and lower of the SDK. If you use the SDK 6, please refer to the page Run
on Simulator.

Once a Sandboxed Application project has been created, it can be tested on the Simulator.

The Simulator requires a Virtual Device to execute the Application. Please refer to the Kernel
Developer Guide to learn how to get or create one.

From the SDK

In order to test a Sandboxed Application in the SDK, the first thing to do is to import the Virtual
Device of the Multi-Sandbox Executable:

• go to Window > Preferences > MicroEJ > Virtual Devices

• click on Import…

• the Virtual Device can be provided as a folder or as a .vde file, select the adequate format and
the Virtual Device resource

• check the License checkbox to accept it

• click on Finish

3.11. SDK 5 User Guide 1591

MicroEJ Documentation,

Fig. 329: Virtual Device Import

Now the Application can be executed by right-clicking on its project, then clicking on Run As
> MicroEJ Application .

3.11. SDK 5 User Guide 1592

MicroEJ Documentation,

Fig. 330: Sandboxed Application Run

If there is only one Virtual Device imported in the SDK, it is automatically used to execute the
Application. Otherwise, you have to select the one you want to use.

With the Application created in the section Create a First Application, the output should be:

=============== [Initialization Stage] ===============
=============== [Converting fonts] ===============
=============== [Converting images] ===============
=============== [Launching on Simulator] ===============
KERNEL Hello World!
=> Starting Feature MyApplication
Feature MyApplication started!
=============== [Completed Successfully] ===============

SUCCESS

3.11. SDK 5 User Guide 1593

MicroEJ Documentation,

Run Multiple Sandboxed Applications

It is possible to execute additional Sandboxed Applications besides the main Sandboxed Ap-
plication project. This is typically useful when you want to test the integration of a Sandboxed
Application that communicates with an other one, for example through a Shared Interface.

The additional Sandboxed Applications must have been previously built in its binary format
(WPK, see Remote Deployment section). Then, to include them:

• Select the Sandboxed Application project,

• Create the META-INF/wpk folders,

• Drop any *.wpk files in the META-INF/wpk folder.

Your Sandboxed Application project shall look like:

Now, when launching the Sandboxed Application project, these additional Sandboxed Appli-
cations will also be executed on the Virtual Device.

From the Command Line Interface

An Sandboxed Application can also be launched on the Simulator via the Command Line Inter-
face. Before continuing, make sure the Command Line Interface is installed and correctly config-
ured.

In your favorite terminal application, go to the root folder of the Application and execute the
following commands:

mmm build
mmm run -Dplatform-loader.target.platform.file=/path/to/the/virtual-device.vde

With the Application created in the section Create a First Application, the output should be:

MicroEJ Simulator is being launched. Relax and enjoy...
=============== [Initializing Easyant] ===============
=============== [Resolving and retrieving dependencies] ===============
=============== [Compiling sources] ===============
=============== [Loading platform] ===============
=============== [Initialization Stage] ===============
=============== [Converting fonts] ===============

(continues on next page)

3.11. SDK 5 User Guide 1594

MicroEJ Documentation,

(continued from previous page)

=============== [Converting images] ===============
=============== [Launching on Simulator] ===============
KERNEL Hello World!
=> Starting Feature MyApplication
Feature MyApplication started!
=============== [Completed Successfully] ===============

SUCCESS

Note that the Virtual Device location can also be configured in the module.ivy file of the Sand-
boxed Application project:

<ea:property␣
→˓name=”platform-loader.target.platform.file” value=”/path/to/the/virtual-device.vde”/>

The Virtual Device can also be provided differently, for example from a dependency in the
module.ivy file. Refer to the Select a VEE Port section for the list of available capabilities.

Run on the Device

The deployment of a Sandboxed Application on a device depends on the Kernel implementa-
tion. We can group them in two categories:

• Local Deployment: the device is connected to the developer’s computer, the SDK builds the
.fo from the workspace project classes and transfers it on the device (recommended during
application development).

• Remote Deployment: the Application is built, then the device connects a Repository where the
Application is stored, and deploys it over the air using a device management system (produc-
tion deployment).

In both cases, deploying a Sandboxed Application requires that a Multi-Sandbox Executable
is running on the device. Please refer to the Kernel Developer Guide to learn how to build it
or browse the Resources Repository for Multi-Sandbox demo Firmware available for popular
hardware evaluation kits.

Local Deployment

Deploying an Application on a device locally is the easiest way to test it since it only requires:

• the Application project sources imported in the SDK,

• the device programmed with a Multi-Sandbox Executable that provides the Local Deployment
capability (youcanbrowse theResourcesRepository foravailabledemosof suchMulti-Sandbox
Executable),

• the device connected to the developer’s computer either on the same network (LAN) or using a
serial wire, depending on the Firmware capabilities.

If these prerequisites are fulfilled:

• duplicate the Run Configuration created in the chapter Run on the Simulator,

3.11. SDK 5 User Guide 1595

https://repository.microej.com/index.php?resource=FIRM&topic=ALL&version=ANY&edition=ANY
https://repository.microej.com/index.php?resource=FIRM&topic=ALL&version=ANY&edition=ANY

MicroEJ Documentation,

Fig. 331: Duplicate Run Configuration

• rename the duplicated Run Configuration, for example by prefixing by (Local) ,

• in the Execution tab, modify the Execution mode to Execute on Device ,

Note: The selected Platform must be a Virtual Device (VDE) including the Local Deployment
capability, not a VEE Port.

• select the option Local Deployment (Socket) in the Settings list. Note that depending on
the device capability, the virtual devicemay implement a local deployment over a CommPort.

3.11. SDK 5 User Guide 1596

MicroEJ Documentation,

Fig. 332: Configure Run Configuration

• go to the Configuration tab,

• select the item Local Deployment (Socket) ,

• set the IP address of the device in the Host field,

• click on the Run button to deploy the Application on the board.

The Console output should be:

=============== [Initialization Stage] ===============
=============== [Converting fonts] ===============
=============== [Converting images] ===============
=============== [Build Application] ===============
=============== [Completed Successfully] ===============
=============== [Deploy on 192.168.0.7:4000] ===============
=============== [Completed Successfully] ===============

SUCCESS

The Application is deployed on the device and automatically started. You can use a Serial ter-
minal to get the traces of the Application:

KERNEL Hello World!
=> Starting Feature MyApplication
Feature MyApplication started!

3.11. SDK 5 User Guide 1597

MicroEJ Documentation,

Remote Deployment

Remote Deployment requires building and publishing the Sandboxed Application module. To
do so, in the SDK, right-click on the Sandboxed Application project and click on Build Module
.

The build process will display messages in the console, ending up the following message:

[echo] project hello published locally with version 0.1.0-RC201907091602

BUILD SUCCESSFUL

Total time: 1 minute 6 seconds

The files produced by the build process are located in a dedicated target~/artifacts folder in
the project and is published to the target module repository declared in MicroEJ Module Man-
ager settings file.

The file that ends with .wpk (the WPK file) is a portable file that contains all necessary binary
data to build .fo files on any compatible Multi-Sandbox Executable. Then, the WPK file can
be published to a MICROEJ FORGE instance. Please contact our support team if you want to
get more information on MICROEJ FORGE and automated Applications deployment through a
device management system.

A Sandboxed Application is an Application that can run over a Multi-Sandbox Executable.

The Application development flow requires the following elements:

• a Virtual Device, a software package including the resources and tools required for building and
testing an application for a specific device. A Virtual Device will simulate all capabilities of the
corresponding hardware board:

– Computation and Memory

– Communication channels (e.g., Network, USB…)

– Display

– User interaction

• an hardware device that has been previously programmed with a Multi-Sandbox Executable.
Virtual Devices and Multi-Sandbox Executable share the same version (there is a 1:1 mapping).

The next chapters explain how to create, test and publish Sandboxed Applications.

3.11.5 Module Repository

Amodule repository is a module that bundles a set of modules in a portable ZIP file. It is a tree
structure where modules organizations and names are mapped to folders.

3.11. SDK 5 User Guide 1598

https://www.microej.com/product/forge/

MicroEJ Documentation,

Fig. 333: Example of MicroEJ Module Repository Tree

Amodule repository takes its inputmodules fromother repositories, usually theMicroEJCentral
Repository which is itself built by MicroEJ Corp. as a module repository.

3.11. SDK 5 User Guide 1599

MicroEJ Documentation,

Amodule repository is often called an offline repository as it includes the settings file for a local
configuration in MicroEJ SDK. It can also be imported in MicroEJ Forge.

Create a Repository Project

In the SDK, first create a newmodule project using the artifact-repository skeleton.

• The ivysettings.xml settings file describes how to import themodules of this repository when
it is extracted locally on file system. This file will be packaged at the root of the zip file and does
not need to bemodified.

• The module.ivy file describes how to build repository and lists themodule dependencies that
will be included in this repository.

Configure Resolver for Input Modules

MicroEJModuleManager (MMM)needs to import dependencies to build themodule repository.
The location fetched by MMM is defined by a resolver. The resolver is configured with the pa-
rameter bar.populate.from.resolver . The preset value is the resolver provided by default in
MicroEJ SDK configuration, which is connected toMicroEJ Central Repository.

<ea:property name=”bar.populate.from.resolver” value=”MicroEJChainResolver”/>

The MicroEJChainResolver is a URL resolver defined in $USER_HOME\.microej\
microej-ivysettings-[VERSION].xml that points to MicroEJ Central Repository.

Configure Consistency Check

The module repository consistency check consists in verifying that each declared module can
be imported using the settings file provided by the repository. Especially, it ensures that all
module transitive dependencies are also available.

It is enabled by default to avoid further issues for repository users such as Unresolved Depen-
dency. This is done by the following option:

<ea:property name=”skip.retrieve.checker” value=”false”/>

Moreover, to ensure the repository will be compliant with the MMM specification, add the fol-
lowing option:

<ea:property name=”bar.check.as.v2.module” value=”true”/>

Advanced Options

There are other advanced options that do not need to be modified by default. These options
are described in the module.ivy generated by the skeleton.

See alsoModule Repository for more details.

3.11. SDK 5 User Guide 1600

https://www.microej.com/product/forge/

MicroEJ Documentation,

Include Modules

Modules bundled into the module repository must be declared in the dependencies element
of the module.ivy file.

Include a Single Module

To add amodule, declare themodule dependency using the artifacts configuration:

<dependencies>
<dependency conf=”artifacts->*”␣

→˓transitive=”false” org=”[module_org]” name=”[module_name]” rev=”[module_version]” />

<!-- ... other dependencies ... -->
</dependencies>

For example, to add the ej.api.edc library version 1.2.3 , write the following line:

<dependency conf=”artifacts->*” transitive=”false” org=”ej.api” name=”edc” rev=”1.2.3” />

Note: We recommended to manually describe each dependency of the module repository, in order to keep full
control of the included modules as well as included modules versions. Module dependencies can still be transi-
tively included by setting the dependency attribute transitive to true . In this case, the includedmodule versions
are those that have been resolved when the module was built.

Multiple versions of the same module can be included by declaring each dependency using a
different configuration. The artifacts configurationhas tobederivedwith anewnameasmany
times as there are different versions to include.

<configurations defaultconfmapping=”default->default;provided->provided”>
<conf name=”artifacts” visibility=”private”/>
<conf name=”artifacts_1” visibility=”private”/>
<conf name=”artifacts_2” visibility=”private”/>

<!-- ... other configurations ... -->
</configurations>

<dependencies>
<dependency conf=”artifacts->*” transitive=

→˓”false” org=”[module_org]” name=”[module_name]” rev=”[module_version_1]” />
<dependency conf=”artifacts_1->*” transitive=

→˓”false” org=”[module_org]” name=”[module_name]” rev=”[module_version_2]” />
<dependency conf=”artifacts_2->*” transitive=

→˓”false” org=”[module_org]” name=”[module_name]” rev=”[module_version_3]” />

<!-- ... other dependencies ... -->
</dependencies>

3.11. SDK 5 User Guide 1601

MicroEJ Documentation,

Include a Module Repository

To add all the modules already included in an other module repository, add the configuration
repository if it does not exist:

<configurations defaultconfmapping=”default->default;provided->provided”>
<!-- ... other configurations ... -->
<conf name=”repository

→˓” visibility=”private” description=”Repository to be embedded in the repository” />

</configurations>

Then declare the module repository dependency using the repository configuration:

<dependencies>
<dependency conf=”repository->*” transitive=

→˓”false” org=”[repository_org]” name=”[repository_name]” rev=”[repository_version]” />

<!-- ... other dependencies ... -->
</dependencies>

Generate Javadoc

An overall Javadoc can be generated beside the included modules. It is built from of all Java
elements of all libraries included in the module repository.

Javadocgeneration isdisabled in the module.ivy generatedby the skeleton. Toenable javadoc
generation, remove skip.javadoc option or set it to false .

There are also javadoc specific options such as Java packages exclusion. Please refer to
javadoc options ofModule Repository reference documentation.

As of SDK 5.3.0, themodule dependency line that defines a Java type is shown in the topmenu.

Fig. 334: Example of Javadoc Module Dependency

3.11. SDK 5 User Guide 1602

MicroEJ Documentation,

Build the Repository

In the Package Explorer, right-click on the repository project and select Build Module .

The build consists of two steps:

1. Gathers all module dependencies. The whole repository content is created under target~/
mergedArtifactsRepository folder.

2. Checks the repository consistency. For each module, it tries to import it from this repository
and fails the build if at least one of the dependencies cannot be resolved.

The module repository .zip file is built in the target~/artifacts/ folder. This file may be pub-
lished along with a CHANGELOG.md , LICENSE.txt and README.md .

Use the Offline Repository

By default, when starting an emptyworkspace, MicroEJ SDK is configured to import dependen-
cies fromMicroEJ Central Repository.

To configureMicroEJ SDK to import dependencies froma localmodule repository, follow these
steps:

1. Open theMMMpreferences page: Window > Preferences > MicroEJ > Module Manager
.

2. In Module Manager group, click on Import Repository .

3. Select the module repository .zip file, and then click on Finish .

The import may take some time. Themodule repository is unzipped in the folder ${user.dir}/
.microej/repositories , and the settings are updated.

3.11.6 Select a VEE Port

Note: This page is releated to the version 5 and lower of the SDK. If you use the SDK 6, please refer to the page
Select a VEE Port.

Building or running an Application or a Test Suitewith MMM requires a VEE Port.

There are 4 different ways to provide a VEE Port for a module project:

• Set the build option platform-loader.target.platform.file to the path of a VEE Port file (.zip ,
.jpf or .vde).

• Set the build option platform-loader.target.platform.dir to the path of the source folder of
an already imported Source VEE Port.

• Declare amodule dependency with the conf platform :

<dependency␣
→˓org=”myorg” name=”myname” rev=”1.0.0” conf=”platform->default” transitive=”false”/>

• Copy a VEE Port file to the dropins folder. The default dropins folder location is
[module_project_dir]/dropins . It can be changed using the build option platform-loader.
target.platform.dropins .

3.11. SDK 5 User Guide 1603

MicroEJ Documentation,

Note: Using a VEE Port in the .zip format requires at least the version 5.4.0 of the SDK.

At least 1 of these 4 ways is required to build an Application with a VEE Port. If several ways are
used, the following rules are applied:

• If platform-loader.target.platform.file or platform-loader.target.platform.dir is set, the
other options are ignored.

• If the the module project defined several VEE Ports, the build fails. For example the following
cases are not allowed:

– Setting a VEE Port with the option platform-loader.target.platform.file and another one with
the option platform-loader.target.platform.dir

– Declaring a VEE Port as a dependency and adding a platform in the dropins folder

– Declaring 2 VEE Ports as Dependencies

– Adding 2 VEE Ports in the dropins folder

Refer to the Platform Loader section for a complete list of options.

3.11.7 Module Natures

Note: This page is releated to the version 5 and lower of the SDK. If you use the SDK 6, please refer to the page
Module Natures.

This page describes the most commonmodule natures as follows:

• Skeleton Name: the project skeleton name.

• Build Type Name: the build type name, derived from the module nature name: com.is2t.
easyant.buildtypes#build-[NATURE_NAME] .

• Documentation: a link to the documentation.

• SDK Menu: the menu to the direct wizard in the SDK (if available). Any module nature can be
created with the default wizard from File > New > Module Project .

• Configuration: properties that can be defined to configure themodule. Properties are defined
inside the ea:build tag of themodule.ivy file, using ea:property tag as described in the section
Build Options. A module nature also inherits the build options from the listed Natures Plugins.

Add-On Library

Skeleton Name: microej-javalib

Build Type Name: com.is2t.easyant.buildtypes#build-microej-javalib

Documentation: Libraries

SDKMenu: File > New > Add-On Library Project

Configuration:

This module nature inherits the build options of the following plugins:

• Java Compilation

3.11. SDK 5 User Guide 1604

MicroEJ Documentation,

• Platform Loader

• Javadoc

• Test Suite

• Artifact Checker

Add-On Processor

Skeleton Name: addon-processor

Build Type Name: com.is2t.easyant.buildtypes#build-addon-processor

Configuration:

This module nature inherits the build options of the following plugins:

• Java Compilation

• Java SE Unit Tests

• Artifact Checker

Foundation Library API

Skeleton Name: microej-javaapi

Build Type Name: com.is2t.easyant.buildtypes#build-microej-javaapi

Documentation: Libraries

Configuration:

This module nature inherits the build options of the following plugins:

• Java Compilation

• Javadoc

• Artifact Checker

This module nature defines the following dedicated build options:

Name Description Default
microej.lib.name Platform library name on the form: [NAME]-[VERSION]-api . -

[NAME] : name of the implemented Foundation Library API mod-
ule. - [VERSION] : version of the implemented Foundation Library
API module without patch (Major.minor).

Not set

rip.printableName Printable name for the Platform Editor. Not set

3.11. SDK 5 User Guide 1605

MicroEJ Documentation,

Foundation Library Implementation

Skeleton Name: microej-javaimpl

Build Type Name: com.is2t.easyant.buildtypes#build-microej-javaimpl

Documentation: Libraries

Configuration:

This module nature inherits the build options of the following plugins:

• Java Compilation

• Test Suite

• Artifact Checker3

This module nature defines the following dedicated build options:

Name Description Default
microej.lib.implfor Execution target. Possible values are emb (only onDevice), sim (only

Simulator) and common (both). common

Kernel Application

Skeleton Name: firmware-multiapp

Build Type Name: com.is2t.easyant.buildtypes#build-firmware-multiapp

Documentation: Kernel Developer Guide

Configuration:

This module nature inherits the build options of the following plugins:

• Java Compilation

• Platform Loader

• Javadoc

• Artifact CheckerPage 1606, 3

This module nature defines the following dedicated build options:

Name Description Default
application.main.class Full Qualified Name of the main class of the kernel. This option is

required.
Not set

runtime.api.name Name of the Runtime API of the kernel. This option is ignored when
a Runtime API is declared in the dependencies. RUNTIME

runtime.api.version Versionof theRuntimeAPIof thekernel. This option is ignoredwhen
a Runtime API is declared in the dependencies. 1.0

skip.build.virtual.de-
vice

When this property is set (any value), the virtual device is not built. Not set

virtual.device.sim.only When this property is set (any value), the Executable is not built. Not set
launch.properties.jvm Additional options to pass to the JVM for building the Executable. -Xmx1024M

3 Require SDK version 5.5.0 or higher.

3.11. SDK 5 User Guide 1606

MicroEJ Documentation,

Meta Build

Skeleton Name: microej-meta-build

Build Type Name: com.is2t.easyant.buildtypes#microej-meta-build

Documentation: Meta Build

Configuration:

This module nature defines the following dedicated build options:

Name Description Default
metabuild.root Path of the root folder containing the modules to build.

${basedir}/.
.

private.modules.file Name of the file listing the private modules to build.
private.
modules.list

public.modules.file Name of the file listing the public modules to build.
public.
modules.list

Mock

Skeleton Name: microej-mock

Build Type Name: com.is2t.easyant.buildtypes#build-microej-mock

Documentation: Mock

Configuration:

This module nature inherits the build options of the following plugins:

• Java Compilation

• Java SE Unit Tests

• Artifact Checker3

Module Repository

Skeleton Name: artifact-repository

Build Type Name: com.is2t.easyant.buildtypes#build-artifact-repository

Documentation: Module Repository

Configuration:

This module nature inherits the build options of the following plugins:

• Artifact Checker

This module nature defines the following dedicated build options:

3.11. SDK 5 User Guide 1607

MicroEJ Documentation,

Name Description Default
architecture.configura-
tions.includes1

Comma-separated list of configurations to include for the Architec-
turemodules. Set dist,eval or dist,prod to include only evaluation
or production Architectures or dist,eval,prod to include both.

dist,eval

bar.check.as.v2.module When this property is set to true, the artifact checker uses the Mi-
croEJ Module Manager semantic. false

bar.javadoc.dir Path of the folder containing the generated javadoc.
${target}/
javadoc

bar.notifica-
tion.email.from

The email address used as the from address when sending the noti-
fication emails.

Not set

bar.notifica-
tion.email.host

The hostname of the mail service used to send the notification
emails.

Not set

bar.notifica-
tion.email.password

The password used to authenticate on the mail service. Not set

bar.notifica-
tion.email.port

The port of the mail service used to send the notification emails Not set

bar.notifica-
tion.email.ssl

When this property is set to true, SSL/TLS is used to send the notifi-
cation emails.

Not set

bar.notifica-
tion.email.to

The notification email address destination. Not set

bar.notifica-
tion.email.user

The username used to authenticate on the mail service. Not set

bar.populate.from.re-
solver

Name of the resolver used to fetch the modules to populate the
repository. fetchRelease

bar.populate.ivy.set-
tings.file

Pathof the Ivy settings file used to fetch themodules topopulate the
repository. ${project.

ivy.settings.
file}

bar.populate.reposi-
tory.conf

Ivy configuration of included repositories. The modules of the
repositories declared as dependency with this configuration are in-
cluded in the built repository.

repository

bar.test.haltonerror When this property is set to true, the artifact checker stops at the
first error. false

javadoc.excludes Comma-separated list of packages to exclude from the javadoc. Empty string
javadoc.includes Comma-separated list of packages to include in the javadoc.

** (all pack-
ages)

javadoc.modules.ex-
cludes2

Comma-separated list of modules to exclude from the javadoc. Empty string

skip.artifact.checker When this property is set to true, all artifact checkers are skipped. Not set
skip.email When this property is set (any value), the notification email is not

sent. Otherwise the bar.notification.* properties are required.
Not set

skip.javadoc Prevents the generation of the javadoc.
false

skip.javadoc.depre-
cated

Prevents the generation of any deprecated API at all in the javadoc.
true

1 Require SDK version 5.4.0 or higher.
2 Require SDK version 5.6.0 or higher.

3.11. SDK 5 User Guide 1608

MicroEJ Documentation,

Runtime Environment

Skeleton Name: runtime-api

Build Type Name: com.is2t.easyant.buildtypes#build-runtime-api

Documentation: Runtime Environment

Configuration:

This module nature inherits the configuration properties of the following plugins:

• Artifact Checker

Sandboxed Application

Skeleton Name: application

Build Type Name: com.is2t.easyant.buildtypes#build-application

Documentation: Sandboxed Application

SDKMenu: File > New > Sandboxed Application Project

Configuration:

This module nature inherits the build options of the following plugins:

• Java Compilation

• Platform Loader

• Javadoc

• Test Suite

• Artifact Checker

Standalone Application

Skeleton Name: firmware-singleapp

Build Type Name: com.is2t.easyant.buildtypes#build-firmware-singleapp

Documentation: Standalone Application

SDKMenu: File > New > Standalone Application Project

Configuration:

This module nature inherits the build options of the following plugins:

• Java Compilation

• Platform Loader

• JavadocPage 1606, 3

• Test SuitePage 1606, 3

• Artifact CheckerPage 1606, 3

3.11. SDK 5 User Guide 1609

MicroEJ Documentation,

This module nature defines the following dedicated build options:

Name Description Default
application.main.class Full Qualified Nameof themain class of the application. This option

is required.
Not set

skip.build.virtual.de-
vice

When this property is set (any value), the virtual device is not built. Not set

virtual.device.sim.only When this property is set (any value), the Executable is not built. Not set
launch.properties.jvm Additional options to pass to the JVM for building the Executable. -Xmx1024M

Studio Rebranding

Skeleton Name: microej-studio-rebrand

Build Type Name: com.is2t.easyant.buildtypes#build-izpack

Configuration:

The skeleton template contains all the necessary files for a Studio that is ready to build. The
main elements are:

• HOWTO.md : This file describes the minimum configuration required to build the Studio template as it is.

• module.ivy : This file describes all available build options and dependencies.

• branding-resources : This folder containsdefault resources that canbe replacedwithyourowntocustomize
the Studio. These resources include names, images, icons, and license files.

Natures Plugins

This page describes the most commonmodule nature plugins as follows:

• Documentation: link to documentation.

• Module Natures: list ofModule Natures using this plugin.

• Configuration: properties that can be defined to configure themodule. Properties are defined
inside the ea:build tag of themodule.ivy file, using ea:property tag as described in the section
Build Options.

Java Compilation

Module Natures:

This plugin is used by the following module natures:

• Add-On Library

• Foundation Library API

• Foundation Library Implementation

• Standalone Application

• Sandboxed Application

3.11. SDK 5 User Guide 1610

MicroEJ Documentation,

Configuration:

This plugin defines the following build options:

Name Description Default
javac.debug.level Comma-separated list of levels for the Java compiler debugmode.

lines,source,
vars

javac.debug.mode When this property is set to true, the Java compiler is set in debug
mode. false

src.main.java Path of the folder containing the Java sources.
${basedir}/
src/main/
java

Platform Loader

Documentation: Select a VEE Port

Module Natures:

This plugin is used by the following module natures:

• Add-On Library

• Standalone Application

• Sandboxed Application

Configuration:

This plugin defines the following build options:

Name Description Default
platform-loader.platform.dirPath of the folder to unzip the loaded platform to.

${target}/
platform

plat-
form.loader.skip.load.plat-
form

When this property is set to true, the platform is not loaded. It
must be already available in the directory defined by the property
platform-loader.platform.dir . Use with caution: the platform con-
tent may be modified during the build (e.g. in case of Testsuite or
Virtual Device build).

false

platform-loader.target.platform.confThe Ivy configuration used to retrieved the platform if fetched via
dependencies. platform

platform-loader.target.platform.dirPath of the root folder of the platform to use in the build. See Select
a VEE Port section for Platform Selection rules.

Not set

platform-loader.target.platform.dropinsAbsolute or relative (to the project root folder) path of the folder
where the platform can be found (see Select a VEE Port). dropins

platform-loader.target.platform.filePath of the platform file to use in the build. See Select a VEE Port
section for Platform Selection rules.

Not set

3.11. SDK 5 User Guide 1611

MicroEJ Documentation,

Javadoc

Module Natures:

This plugin is used by the following module natures:

• Add-On Library

• Foundation Library API

• Sandboxed Application

Configuration:

This plugin defines the following build options:

Name Description Default
src.main.java Path of the folder containing the Java sources.

${basedir}/
src/main/
java

javadoc.file.encoding Encoding used for the generated Javadoc.
UTF-8

javadoc.failonerror When this property is set to true, the build is stopped if an error is
raised during the Javadoc generation. true

javadoc.failonwarning When this property is set to true, the build is stopped if a warning is
raised during the Javadoc generation. false

target.reports Path of the base folder for reports.
${target}/
reports

target.javadoc Path of the base folder where the Javadoc is generated.
${target.
reports}/
javadoc

target.javadoc.main Path of the folder where the Javadoc is generated.
${target.
javadoc}/
main

javadoc-microej.overview.htmlPath of the HTML template file used for the Javadoc overview page.
${src.main.
java}/
overview.
html if
exists, oth-
erwise a
default
template.

target.artifacts Path of the packaged artifacts.
${target}/
artifacts

target.arti-
facts.main.javadoc.jar.name

Name of the packaged JAR containing the generated Javadoc
(stored in folder target.artifacts). ${module.

name}-javadoc.
jar

javadoc.publish.conf Ivy configuration used to publish the Javadoc artifact.
documentation

3.11. SDK 5 User Guide 1612

MicroEJ Documentation,

Test Suite

Documentation: Test Suite with JUnit

Module Natures:

This plugin is used by the following module natures:

• Add-On Library

• Foundation Library API

• Foundation Library Implementation

• Standalone Application

• Sandboxed Application

Configuration:

This plugin defines the following build options:

3.11. SDK 5 User Guide 1613

MicroEJ Documentation,

Name Description Default
microej.testsuite.cc.ex-
cludes.classes

Pattern of classes excluded from the code coverage anal-
ysis.

Not set

microej.test-
suite.retry.count

A test execution may not be able to produce the success
trace for an external reason, for example an unreliable
harness script that may lose some trace characters or
crop the end of the trace. For all these unlikely reasons,
it is possible to configure the number of retries before a
test is considered to have failed.

0

microej.testsuite.time-
out

The time in seconds before a test is considered as failed.
Set it to 0 to disable the timeout. 60

microej.testsuite.prop-
erties.[name]

Inject an Application Option named [name] for all
tests. For example, declaring the build option microej.
testsuite.properties.core.memory.javaheap.size will
configure the Managed heap size of all tests.

Not applicable

microej.test-
suite.proper-
ties.launch.test.trace.file

Set this property to true if your VEE Port Run script redi-
rects execution traces.

Not set

microej.testsuite.prop-
erties.s3.cc.activated

When this property is set to true, the code coverage anal-
ysis is enabled. true

microej.testsuite.prop-
erties.testsuite.trace.ip

The TCP/IP address to connect for retrieving test execu-
tion traces. This property is required if your VEE Port Run
script does not redirect execution traces.

Not set

microej.test-
suite.properties.test-
suite.trace.port

The TCP/IP port to connect for retrieving test execution
traces. This property is required if your VEE Port Run
script does not redirect execution traces.

Not set

microej.test-
suite.properties.test-
suite.trace.timeout

The time in secondswithout activity on the standard out-
put before the trace analysis is stopped. 75

cc.src.folders Path to the folders containing the Java sources used for
code coverage analysis.

Java source folder (
src/main/java) and
Add-On Processor gen-
erated source folders (
src-adpgenerated/*)4

microej.testsuite.ver-
bose

When this property is set to true, the verbose trace level
is enabled. false

test.run.excludes.pat-
tern

Pattern of classes excluded from the test suite execution. Empty string (no test)

test.run.failonerror When this property is set to true, the build fails if an error
is raised. true

target.vm.name The execution target (S3 to execute on Simulator,
MICROJVM to execute on the Device). S3

test.run.includes.pat-
tern

Pattern of classes included in the test suite execution.
**/* (all tests)

skip.test When this property is set (any value), the tests are not ex-
ecuted.

Not set

4 Option cc.src.folders is not set by default for SDK versions lower than 5.5.0 .

3.11. SDK 5 User Guide 1614

MicroEJ Documentation,

Java SE Unit Tests

Warning: This plugin is reserved for tools written in Java Standard Edition. Tests classesmust
be created in the folder src/test/java of the project. See Test Suite section for MicroEJ tests.

Module Natures:

This plugin is used by the following module natures:

• Add-On Processor

• Mock

Configuration:

This plugin defines the following build options:

Name Description Default
test.run.excludes.pat-
tern

Pattern of classes excluded from the test suite execution. Empty string
(no test)

test.run.failonerror When this property is set to true, the build fails if an error is raised.
true

test.run.includes.pat-
tern

Pattern of classes included in the test suite execution.
**/* (all
tests)

skip.test When this property is set (any value), the tests are not executed. Not set

Artifact Checker

Module Natures:

This plugin is used by the following module natures:

• Add-On Library

• Foundation Library API

• Standalone Application

• Sandboxed Application

• Module Repository

Configuration:

This plugin defines the following build options:

3.11. SDK 5 User Guide 1615

MicroEJ Documentation,

Name Description Default
run.artifact.checker When this property is set (any value), the artifact checker is exe-

cuted.
Not set

skip.addonconf.checker When this property is set to true, the addon configurations checker
is not executed.

Not set

skip.changelog.checker When this property is set to true, the changelog checker is not exe-
cuted.

Not set

skip.foundation-
conf.checker

When this property is set to true, the foundation configurations
checker is not executed.

Not set

skip.license.checker When this property is set to true, the license checker is not executed. Not set
skip.nullanaly-
sis.checker5

When this property is set to true, the null analysis checker is not ex-
ecuted.

Not set

skip.publicconf.checker When this property is set to true, the public configurations checker
is not executed.

Not set

skip.readme.checker When this property is set to true, the readme checker is not exe-
cuted.

Not set

skip.retrieve.checker When this property is set to true, the retrieve checker is not exe-
cuted.

Not set

Global Build Options

The following Build Options are available in any module:

Name Description Default

target
Path of the build directory target~ .

${basedir}/target~

3.11.8 Debug an Application

Note: This page is releated to the version 5 and lower of the SDK. If you use the SDK 6, please refer to the page
Debug on Simulator.

Debug on Simulator

To debug an application on Simulator, select it in the left panel then right-click and select
Debug As > MicroEJ Application .

5 Require SDK version 5.5.0 or higher.

3.11. SDK 5 User Guide 1616

MicroEJ Documentation,

Fig. 335: MicroEJ Development Tools Overview of the Debugger on Simulator

Debug on Device

Todebug an application on device, first run theMicroEJ debugger proxy, and run a Remote Java
Application launch:

• Go to Run > Debug Configurations > Remote Java Application

• Set the informations about the project to debug, the proxy connections properties, etc.

• Click on Debug

3.11. SDK 5 User Guide 1617

MicroEJ Documentation,

Fig. 336: MicroEJ Development Tools Overview of the Remote Java Application

In the SDK, open the Debug perspective (Window > Perspective > Open Perspective >

Other… > Debug) to show the current debugging process.

Fig. 337: MicroEJ Development Tools Overview of the Debugger on Board

3.11. SDK 5 User Guide 1618

MicroEJ Documentation,

It makes use of Eclipse Java debugger client. If you are unfamiliar with Java debugging or
Eclipse IDE, see Debugging the Eclipse IDE for Java Developers to get started.

You can also debugwith IntelliJ IDEA. Formore information on IntelliJ IDEA Remote debug pro-
cess, see IntelliJ IDEA Remote debug

Get Library Sources

All libraries included in MicroEJ SDK are provided with their source code and resources. The
way the sources are retrieved depends on the kind of library (Add-On Library or Foundation
Library).

Add-On Library Sources

Add-On Library sources are packaged in a dedicated file named [module_name]-source.jar
available in the module directory:

3.11. SDK 5 User Guide 1619

https://help.eclipse.org/latest/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Fconcepts%2Fcremdbug.htm
https://www.jetbrains.com/help/idea/tutorial-remote-debug.html

MicroEJ Documentation,

Fig. 338: Add-On Library Sources Location

In the SDK, sources are automatically connected to Eclipse JDT when the new Add-On Library
is added as amodule dependency.

On any Java element (type, method, field), press F3 or CTRL-Click to open the implemen-
tation:

3.11. SDK 5 User Guide 1620

MicroEJ Documentation,

Fig. 339: Add-On Library Open Implementation

Then the implementation class is open in read-only mode.

Fig. 340: Add-On Library Read-Only Source Code

Foundation Library Sources

Foundation Library sources are directly included in the implementation file (JAR file) provided
by the Platform.

They are located in the following Platform folders:

• javaLibs for generic Foundation Libraries (defaults).

• MICROJVM/javaLibs for Foundation Libraries specific to the Core Engine.

• S3/javaLibs for Foundation Libraries specific to the Simulator.

3.11. SDK 5 User Guide 1621

MicroEJ Documentation,

Fig. 341: Foundation Library Platform Folders

3.11. SDK 5 User Guide 1622

MicroEJ Documentation,

In the SDK, sources can be connected while debugging an Application on Simulator. This en-
sures to get the exact source code which is executed on your Platform.

Here are the steps to attach Foundation Library sources from a Platform loaded in the
workspace:

• Open aMicroEJ Application launch,

• Select the Source tab (see also Source Tab),

• Click on Add… button,

• Select Archive item and press OK ,

Fig. 342: Add Foundation Library Sources to MicroEJ Application Launch

• Select the Foundation Libraries from Platform folders and press OK ,

3.11. SDK 5 User Guide 1623

MicroEJ Documentation,

Fig. 343: Select Foundation Libraries Implementation files

Warning: You must select the libraries from the Platform project corresponding to the execu-
tion Platform (see Execution Tab).

In the debug session the implementation sources will be now displayed.

3.11. SDK 5 User Guide 1624

MicroEJ Documentation,

Fig. 344: Foundation Library Read-Only Source Code

3.11.9 Development Tools

MicroEJ provides a number of tools to assist with various aspects of development. Some of
these tools are runusingMicroEJTool configurations, and createdusing theRunConfigurations
dialog of the MicroEJ SDK. A configuration must be created for the tool before it can be used.

3.11. SDK 5 User Guide 1625

MicroEJ Documentation,

Fig. 345: MicroEJ Tool Configuration

The above figure shows a tool configuration being created. In the figure, the MicroEJ Platform has been selected,
but the selection of which tool to run has not yet been made. That selection is made in the Execution Settings…
box. The Configuration tab then contains the options relevant to the selected tool.

Test Suite with JUnit

The SDK allows to run unit tests using the standard JUnit API during the build process of a Li-
brary or an Application. The MicroEJ Test Suite Engine runs tests on a VEE Port and outputs a
JUnit XML report.

3.11. SDK 5 User Guide 1626

https://repository.microej.com/modules/ej/library/test/junit/

MicroEJ Documentation,

Principle

JUnit testing can be enabledwhen using the microej-javalib (MicroEJ Add-On Library) or the microej-application
(MicroEJ Applications) build type. JUnit test cases processing is automatically enabled when the following depen-
dency is declared in the module.ivy file of the project.

<dependency conf=”test->*” org=”ej.library.test” name=”junit” rev=”1.6.2”/>

When a new JUnit test case class is created in the src/test/java folder, a JUnit processor gen-
eratesMicroEJ compliant classes into a specific source folder named src-adpgenerated/junit/
java . These files are automatically managed andmust not be edited manually.

JUnit Compliance

MicroEJ is compliant with a subset of JUnit version 4. MicroEJ JUnit processor supports the
following annotations: @After , @AfterClass , @Before , @BeforeClass , @Ignore , @Test .

Each test caseentrypointmustbedeclaredusing the org.junit.Test annotation (@Test before
a method declaration). Please refer to JUnit documentation to get details on usage of other
annotations.

Setup a Platform for Tests

Before running tests, a target platformmust be configured.

Execution in SDK

In order to execute theTest Suite in theSDK, a targetplatformmustbe configured in theMicroEJ
workspace. The following steps assume that a platform has been previously imported into the
MicroEJ Platform repository (or available in the Workspace):

• Go to Window > Preferences > MicroEJ > Platforms (or Platforms in workspace).

• Select the desired platform on which to run the tests.

• Press F2 to expand the details.

• Select the the platform path and copy it to the clipboard.

• Go to Window > Preferences > Ant > Runtime and select the Properties tab.

• Click on Add Property… button and set a new property named target.platform.dir with the
platform path pasted from the clipboard.

3.11. SDK 5 User Guide 1627

https://repository.microej.com/modules/ej/library/test/junit/

MicroEJ Documentation,

Execution duringmodule build

In order to execute the Test Suite during the build of the module, a target platform must be
configured in the module project as described in the section Select a VEE Port.

Setup a Project with a JUnit Test Case

This section describes how to create a new JUnit Test Case starting from a newMicroEJ library
project.

• First create a new module project using the microej-javalib skeleton. A new project named
mylibrary is created in the workspace.

• Right-click on the src/test/java folder and select New > Other… menu item.

• Select the Java > JUnit > New JUnit Test Case wizard.

• Enter a test nameandpress Finish . A newJUnit test case class is createdwith a default failing
test case.

Build and Run a JUnit Test Suite

• Right-click on the mylibrary project and select Build Module . After the library is built, the
test suite engine launches available test cases and the build process fails in the console view.

• On the mylibrary project, right-click and select Refresh . A target~ folder appears with
intermediate build files. The JUnit report is available at target~\test\xml\TEST-test-report.
xml .

• Double-click on the file to open the JUnit test suite report.

• Modify the test case by replacing

fail(”Not yet implemented”);

with

Assert.assertTrue(true);

• Right-click again on the mylibrary project and select Build Module . The test is now success-
fully executed on the target platform so the MicroEJ Add-On Library is fully built and published
without errors.

• Double-click on the JUnit test suite report to see the test has been successfully executed.

3.11. SDK 5 User Guide 1628

MicroEJ Documentation,

Test Suite Reports

Once a test suite is completed, the following test suite reports are generated:

• JUnit HTML report in the module project location target~/test/html/test/junit-noframes.
html . This report contains a summary and the execution trace of every executed test.

Fig. 346: Example of MicroEJ Test Suite HTML Report

• JUnit XML report in the module project location target~/test/xml/TEST-test-report.xml .

Fig. 347: Example of MicroEJ Test Suite XML Report

XML report file can also be opened in the JUnit View. Right-click on the file > Open With >

JUnit View :

Fig. 348: Example of MicroEJ Test Suite XML Report in JUnit View

3.11. SDK 5 User Guide 1629

MicroEJ Documentation,

If executed on device, the Firmware binary produced for each test is avail-
able in module project location target~/test/xml/<TIMESTAMP>/bin/
<FULLY-QUALIFIED-CLASSNAME>/application.out .

Configure the Execution on your Device

By default, the Test Suite is configured to execute tests on the Simulator using Mocks declared
by the VEE Port. You can switch the default configuration to execute tests on your Device. For
that, your VEE Port must implement the BSP Connection.

Also, a device must be connected to your workstation both for programming the Executable
and getting output traces. Consult your VEE Port specific documentation for setup.

Here is a summary of the options to add (see Testsuite Options and BSP Connection Options for
more details).

<!-- Execute tests on Device -->
<ea:property name=”target.vm.name” value=”MICROJVM”/>

<!-- Enable Executable built using the SDK -->
<ea:property name=”microej.testsuite.properties.deploy.bsp.microejscript” value=”true”/>
<ea:property␣
→˓name=”microej.testsuite.properties.microejtool.deploy.name” value=”deployToolBSPRun”/>

<!-- Tell the testsuite engine that your VEE Port Run script redirects execution traces -->
<ea:property name=”microej.testsuite.properties.launch.test.trace.file” value=”true”/>
<!-- Configure TCP/
→˓IP address and port if your VEE Port Run script does not redirect execution traces -->
<ea:property name=”microej.testsuite.properties.testsuite.trace.ip” value=”127.0.0.1”/>
<ea:property name=”microej.testsuite.properties.testsuite.trace.port” value=”5555”/>

Warning: If your VEE Port Run script does not redirect execution traces, the Serial to Socket
Transmitter tool must have been started before running the Test Suite.

Advanced Configurations

Autogenerated Test Classes

The JUnit processor generates test classes into the src-adpgenerated/junit/java folder. This
folder contains:

_AllTestClasses.java file
A single class with a main entry point that sequentially calls all declared test methods of all
JUnit test case classes.

AllTests[TestCase].java files
For each JUnit test case class, a classwith amain entry point that sequentially calls all declared
test methods.

SingleTest[TestCase]_[TestMethod].java files
For each test method of each JUnit test case class, a class with a main entry point that calls
the test method.

3.11. SDK 5 User Guide 1630

MicroEJ Documentation,

JUnit Test Case to MicroEJ Test Case

The MicroEJ Test Suite Engine allows to select the classes that will be executed, by adding the
following configuration in the project build file:

MMM (module.ivy)

Gradle (build.gradle.kts)

<ea:property␣
→˓name=”test.run.includes.pattern” value=”[MicroEJ Test Case Include Pattern]”/>

tasks.test {
filter {

includeTestsMatching([MicroEJ Test Case Include Pattern])
}

}

The following configuration considers all JUnit test methods of the same class as a single Mi-
croEJ test case (default behavior). If at least one JUnit test method fails, the whole test case
fails in the JUnit report.

MMM (module.ivy)

Gradle (build.gradle.kts)

<ea:property name=”test.run.includes.pattern” value=”**/_AllTests_*.class”/>

tasks.test {
filter {

includeTestsMatching(”*._AllTests_*”)
}

}

The following configuration considers each JUnit testmethod as a dedicatedMicroEJ test case.
Each test method is viewed independently in the JUnit report, but this may slow down the test
suite execution because a new deployment is done for each test method.

MMM (module.ivy)

Gradle (build.gradle.kts)

<ea:property name=”test.run.includes.pattern” value=”**/_SingleTest_*.class”/>

tasks.test {
filter {

includeTestsMatching(”*._SingleTest_*”)
}

}

3.11. SDK 5 User Guide 1631

MicroEJ Documentation,

Test Suite Options (SDK 5 only)

The MicroEJ Test Suite Engine can be configured with specific options which can be added to
the module.ivy file of the project running the test suite, within the <ea:build> XML element.

Test Suite options are described in the Test Suite Module Nature section.

Test Specific Options

The MicroEJ Test Suite Engine allows to define Standalone Application Options specific to each
test case. This can be done by defining a file with the same name as the generated test case
file with the .properties extension instead of the .java extension. The file must be put in the
src/test/resources folder and within the same package than the test case file.

Stack Trace Reader

Principle

Stack Trace Reader is a MicroEJ tool that reads and decodes the MicroEJ stack traces. When
an exception occurs, the Core Engine prints the stack trace on the standard output System.
out . The class names, non-required types names(see Types), and method names obtained
are encoded with a MicroEJ internal format. This internal format prevents embedding all class
names and method names in the executable image to save some memory space. The Stack
Trace Reader tool allows you to decode the stack traces by replacing the internal class names
andmethod names with their real names. It also retrieves the line numbers in the MicroEJ Ap-
plication.

Functional Description

The Stack Trace Reader reads the debug information from the fully linked ELF file (the ELF file
that contains the Core Engine, the other libraries, the BSP, the OS, and the compiled MicroEJ
Application). It prints the decoded stack trace.

When Multi-Sandbox capability is enabled, the Stack Trace Reader can simultaneously decode
heterogeneous stack traceswith lines owned by different MicroEJ Sandboxed Applications and
the firmware. Lines owned by the firmware can be decoded with the firmware debug informa-
tion file (optionally made available by your firmware provider).

Dependencies

No dependency.

3.11. SDK 5 User Guide 1632

MicroEJ Documentation,

Installation

This tool is a built-in Architecture tool.

Use (Standalone Application)

For example, write the following new line to dump the currently executed stack trace on the
standard output.

Fig. 349: Code to Dump a Stack Trace

To decode an application stack trace, the Stack Trace Reader tool requires the application exe-
cutable ELF file. In the case of a platform with full BSP connection (see BSP Connection Cases),
the file is application.out in the output folder. In the other cases, the ELF file is generated by
the C toolchain when building the BSP project (usually a .out or .axf file).

3.11. SDK 5 User Guide 1633

MicroEJ Documentation,

Fig. 350: Application Binary File

On successful deployment, the application is started on the device and the following trace is
dumped on standard output.

Fig. 351: Stack Trace Output

To create a new MicroEJ Tool configuration, right-click on the application project and click on

3.11. SDK 5 User Guide 1634

MicroEJ Documentation,

Run As… > Run Configurations… .

Create a new MicroEJ Tool configuration. In the Execution tab, select your target platform,
then select the Stack Trace Reader tool. Set an output folder in the Output folder field.

Fig. 352: Stack Trace Reader Tool Configuration (Platform Selection)

In Configuration tab, browse the previously generated application binary file with debug
information (application.out in case of a Standalone Application with full BSP connection)

3.11. SDK 5 User Guide 1635

MicroEJ Documentation,

Fig. 353: Stack Trace Reader Tool Configuration (Standalone Application)

Click on Run button and copy/paste the trace into the Eclipse console. The decoded trace is
dumped and the line corresponding to the application hook is now readable.

Fig. 354: Stack Trace Reader Console

3.11. SDK 5 User Guide 1636

MicroEJ Documentation,

Use (Sandboxed Application)

For example, write the following new line to dump the currently executed stack trace on the
standard output.

Fig. 355: Code to Dump a Stack Trace

To decode an application stack trace, the Stack Trace Reader tool requires the application bi-
nary file with debug information (application.fodbg in the output folder). Note that the file
uploaded on the device is application.fo (stripped version without debug information).

Fig. 356: Application Binary File with Debug Information

3.11. SDK 5 User Guide 1637

MicroEJ Documentation,

On successful deployment, the application is started on the device and the following trace is
dumped on standard output.

Fig. 357: Stack Trace Output

To create a new MicroEJ Tool configuration, right-click on the application project and click on
Run As… > Run Configurations… .

Create a new MicroEJ Tool configuration. In the Execution tab, select your target platform,
then select the Stack Trace Reader tool. Set an output folder in the Output folder field.

Fig. 358: Stack Trace Reader Tool Configuration (Virtual Device Selection)

In the Configuration tab, if the Kernel executable file is available to you (usually
named firmware.out and located in your Virtual Device files), you can browse for it in

3.11. SDK 5 User Guide 1638

MicroEJ Documentation,

the Executable file field, and then add your previously generated application binary file
with debug information (application.fodbg in case of a Sandboxed Application) in the
Additional object files field.

Fig. 359: Select the Kernel Executable File

To check where the Kernel executable file of your Virtual Device is located, if you have access
to it, go to Window > Preferences > MicroEJ > Virtual Devices , hover over your Vir-
tual Device in the list and wait until an information popup appears. Press F2 to get all the
informations and the path to the directory of your Virtual Device should appear in the list.

3.11. SDK 5 User Guide 1639

MicroEJ Documentation,

Fig. 360: Location of the Virtual Device Directory

In this directory, the Kernel executable file should be named firmware.out in the /firmware
sub-directory.

If you do not have access to the Kernel executable file, you can still get some information from
theStackTraceReaderusing theapplicationbinary file only. In the Configuration tab, browse
the previously generated application binary file with debug information (application.fodbg in
case of a Sandboxed Application)

3.11. SDK 5 User Guide 1640

MicroEJ Documentation,

Fig. 361: Stack Trace Reader Tool Configuration (Sandboxed Application)

Click on Run button and copy/paste the trace into the Eclipse console. The decoded trace is
dumped and the line corresponding to the application hook is now readable.

3.11. SDK 5 User Guide 1641

MicroEJ Documentation,

Fig. 362: Stack Trace Reader Console

Other debug information files can be appended using the Additional object files option.

Stack Trace Reader Options

The following section explains MicroEJ tool options.

3.11. SDK 5 User Guide 1642

MicroEJ Documentation,

Category: Stack Trace Reader

Group: Application

Option(browse): Executable file

Option Name: application.file

Default value: (empty)

Description:

Specify the full path of a full linked elf file.

Option(list): Additional object files

Option Name: additional.application.files

Default value: (empty)

Group: “Trace port” interface for Eclipse

Description:

This group describes the hardware link between the device and the PC.

3.11. SDK 5 User Guide 1643

MicroEJ Documentation,

Option(combo): Connection type

Option Name: proxy.connection.connection.type

Default value: Console

Available values:

Uart (COM)

Socket

File

Console

Description:

Specify the connection type between the device and PC.

Option(text): Port

Option Name: pcboardconnection.usart.pc.port

Default value: COM0

Description:

Format: port name

Specifies the PC COM port:

Windows - COM1 , COM2 , ... , COM*n*

Linux - /dev/ttyS0 , /dev/ttyS1 , ... , /dev/ttyS*n*

Option(combo): Baudrate

Option Name: pcboardconnection.usart.pc.baudrate

Default value: 115200

Available values:

9600

38400

57600

115200

Description:

Defines the COM baudrate for PC-Device communication.

3.11. SDK 5 User Guide 1644

MicroEJ Documentation,

Option(text): Port

Option Name: pcboardconnection.socket.port

Default value: 5555

Description:

IP port.

Option(text): Address

Option Name: pcboardconnection.socket.address

Default value: (empty)

Description:

IP address, on the form A.B.C.D.

Option(browse): Stack trace file

Option Name: pcboardconnection.file.path

Default value: (empty)

Code Coverage Analyzer

Principle

The Simulator features an option to output .cc (Code Coverage) files that represent the use rate
of functions of an application. It traces how the opcodes are really executed.

Functional Description

The Code Coverage Analyzer scans the output .cc files, and outputs an HTML report to ease the
analysis of methods coverage. The HTML report is available in a folder named htmlReport in
the same folder as the .cc files generated by enabling the Code Coverage option .

3.11. SDK 5 User Guide 1645

MicroEJ Documentation,

Fig. 363: Code Coverage Analyzer Process

Dependencies

In order to work properly, the Code Coverage Analyzer should input the .cc files. The .cc files
relay the classpath used during the execution of the Simulator to the Code Coverage Analyzer.
Therefore the classpath is considered to be a dependency of the Code Coverage Analyzer.

Installation

This tool is a built-in Architecture tool.

Use

A MicroEJ tool is available to launch the Code Coverage Analyzer tool. The tool name is Code
Coverage Analyzer.

Two levels of code analysis are provided, the Java level and the bytecode level. Also provided
is a view of the fully or partially covered classes andmethods. From theHTML report index, just
use hyperlinks to navigate into the report and source / bytecode level code.

3.11. SDK 5 User Guide 1646

MicroEJ Documentation,

Category: Code Coverage

Option(browse): *.cc files folder

Option Name: cc.dir

Default value: (empty)

Description:

Specify a folder which contains the cc files to process (*.cc).

Group: Classes filter

Option(list): Includes

Option Name: cc.includes

Default value: (empty)

Description:

List packages and classes to include to code coverage report. If no package/class is specified,
all classes found in the project classpath will be analyzed.

Examples:

packageA.packageB.* : includes all classes which are in package packageA.packageB

packageA.packageB.className : includes the class packageA.packageB.className

3.11. SDK 5 User Guide 1647

MicroEJ Documentation,

Option(list): Excludes

Option Name: cc.excludes

Default value: (empty)

Description:

List packages and classes to exclude to code coverage report. If no package/class is specified,
all classes found in the project classpath will be analyzed.

Examples:

packageA.packageB.* : excludes all classes which are in package packageA.packageB

packageA.packageB.className : excludes the class packageA.packageB.className

Heap Dumper & Heap Analyzer

Introduction

Heap Dumper is a tool that takes a snapshot of the heap. Generated files (with the .heap ex-
tension) are available in the application output folder.

The Heap Analyzer is a set of tools to help developers understand the contents of the Managed
heap and find problems such asmemory leaks. For its part, the Heap Analyzer plugin is able to
open dump files. It helps you analyze their contents thanks to the following features:

• memory leaks detection

• objects instances browse

• heap usage optimization (using immortal or immutable objects)

The Heap

The heap is amemory area used to hold Java objects created at runtime. Objects persist in the
heap until they are garbage collected. An object becomes eligible for garbage collection when
there are no longer any references to it from other objects.

Heap Dump

A heap dump is an XML file that provides a snapshot of the heap contents at the moment the
file is created. It contains a list of all the instances of both class and array types that exist in the
heap. For each instance, it records:

• The time at which the instance was created

• The thread that created it

• Themethod that created it

For instances of class types, it also records:

• The class

• The values in the instance’s non-static fields

For instances of array types, it also records:

3.11. SDK 5 User Guide 1648

MicroEJ Documentation,

• The type of the contents of the array

• The contents of the array

For each referenced class type, it records the values in the static fields of the class.

Heap Analyzer Tools

The Heap Analyzer is an Eclipse plugin that adds three tools to the MicroEJ environment.

Tool name Number of
input files

Purpose

Heap Viewer 1 Shows what instances are in the heap, when they were created,
and attempts to identify problem areas

Progressive
Heap Usage

1 or more Shows how the number of instances in the heap has changed over
time

Compare 2 Compares two heap dumps, showing which objects were created,
or garbage collected, or have changed values

Heap Dumper

The Heap Dumper generates .heap files. There are two implementations:

1. Integrated with the Simulator: Dumps .heap files directly from the Managed heap.

2. Heap Dumper Tool: Generates .heap files from .hex files, which must be retrieved from the
device using tools like GDB.

Heap dumps should be performed after a call to System.gc() to exclude discardable objects.

Simulator

To generate a Heap dump of an application running on the Simulator:

1. Set the s3.inspect.heap application property to true .

2. Update your application code to call the System.gc() method where you need a Heap dump.

3. Run the application on the Simulator.

When the System.gc() method is called:

• If called from the application, the .heap file is generated in the build/output/
<fqnMainClass>/heapDump/ folder of the project, where <fqnMainClass> is the Fully
Qualified Name of the application’s main class, e.g., com.mycompany.Main .

• If called from a test class, the .heap file is generated in the build/testsuite/output/
<buildDate>/bin/<fqnMainClass>/heapDump/ folder of the project, where
<fqnMainClass> is the Fully Qualified Name of the generated main class and <buildDate>
is the test execution date, e.g., build/testsuite/output/20240625-1605-24/bin/com.
mycompany._AllTests_MyTest/heapDump/ .

3.11. SDK 5 User Guide 1649

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#gc--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#gc--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#gc--

MicroEJ Documentation,

Device

To generate a Heap dump of an application running on a device:

1. Update your application code to call the System.gc() method where you need a Heap dump.

2. Build the executable and deploy it on the device.

3. Start a debug session.

4. Add a breakpoint to the LLMJVM_on_Runtime_gc_done Core Engine hook. This function
is called by the Core Engine when the System.gc() method is done. Alternatively, for out of
memory errors, add a breakpoint to the LLMJVM_on_OutOfMemoryError_thrown Core
Engine hook.

5. Resume execution until the breakpoint is reached. You are now ready to dump the memory.

Note: Core Engine hooks may be inlined by the third-party linker. If the symbol is not accessible to the debugger,
declare them in your VEE Port:

void LLMJVM_on_Runtime_gc_done(){
//No need to add code to the function

}

void LLMJVM_on_OutOfMemoryError_thrown(){
//No need to add code to the function

}

Retrieve the .hex file from the device

If you are in a Mono-Sandbox context, you only need to dump the Core Engine heap section.
Example GDB commands:

b LLMJVM_on_Runtime_gc_done
b LLMJVM_on_OutOfMemoryError_thrown
continue
dump ihex memory heap.hex &_java_heap_start &_java_heap_end

You now have the .hex file and need to extract the Heap dump.

In a Multi-Sandbox context, additionally dump the following sections:

• Installed features table:

dump ihex memory &java_features_dynamic_start &java_features_dynamic_end

• Installed features sections specific to your VEE Port, depending on the LLKERNEL implementa-
tion <LLKF-API-SECTION>:

dump ihex memory <installed_features_start_address> <installed_features_end_address>

To simplify the dump commands, consider:

• Dumping the entire memory where MicroEJ runtime and code sections are linked.

• Generating the VEEmemory dump script to dump all required sections.

3.11. SDK 5 User Guide 1650

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#gc--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#gc--

MicroEJ Documentation,

Convert .hex dump to .heap dump

To convert the Heap dump from .hex to .heap , use the Heap Dumper tool.

The Heap Dumper should be available in your VEE Port and can be configured and executed
from the SDK Run Configurations.

From the SDK topmenu, go to Run > Run Configurations...

1. Right-click on MicroEJ Tool and select New Configuration .

2. Configure the Execution tab:

1. Set the tool name, e.g., Convert Hex to Heap .

2. Select the platform in the Target > Platform field.

3. Select the Heap Dumper tool from the Execution > Settings list.

4. Set the Output folder path, where the .heap file will be generated.

3. Switch to the Configuration tab and configure it:

1. Set the path to the firmware executable ELF file.

2. Add the full path of application files with debug information (.fodbg files).

3. Set the full path of the heapmemory dump, in Intel Hex format.

4. Add the full pathof additionalmemory files in IntelHex format (installed feature areas, dynamic
features table, etc.).

5. Set the heap file output name, e.g., application.heap .

3.11. SDK 5 User Guide 1651

MicroEJ Documentation,

4. Finally, click Apply and Run .

Now you can open the generated .heap file in the Heap Viewer.

Heap Viewer

Toopen theHeapViewer tool, select aheapdumpXML file in the Package Explorer , right-click

on it and select Open With > Heap Viewer

Alternatively, right-click on it and select Heap Analyzer > Open heap viewer

This will open a Heap Viewer tool window for the selected heap dump1.

The Heap Viewer works in conjunction with two views:

1. The Outline view

2. The Instance Browser view

These views are described below.

The Heap Viewer tool has three tabs, each described below.
1 Although this is an Eclipse editor, it is not possible to edit the contents of the heap dump.

3.11. SDK 5 User Guide 1652

MicroEJ Documentation,

Outline View

The Outline view shows a list of all the types in the heap dump, and for each type shows a list
of the instances of that type. When an instance is selected it also shows a list of the instances
that refer to that instance. The Outline view is opened automatically when an Heap Viewer is
opened.

Fig. 364: Outline View

Instance Browser View

The Instance Browser view opens automatically when a type or instance is selected in the Out-
line view. It has two modes, selected using the buttons in the top right corner of the view. In
‘Fields’ mode it shows the field values for the selected type or instance, and where those fields
hold references it shows the fields of the referenced instance, and so on. In ‘Reference’ mode
it shows the instances that refer to the selected instance, and the instances that refer to them,
and so on.

3.11. SDK 5 User Guide 1653

MicroEJ Documentation,

Fig. 365: Instance Browser View - Fields mode

Fig. 366: Instance Browser View - References mode

Heap Usage Tab

The Heap usage page of the Heap Viewer displays four bar charts. Each chart divides the total
time span of the heap dump (from the time stamp of the earliest instance creation to the time
stamp of the latest instance creation) into a number of periods along the x axis, and shows, by
means of a vertical bar, the number of instances created during the period.

• The top-left chart shows the total number of instances created in each period, and is the only
chart displayed when the Heap Viewer is first opened.

• When a type or instance is selected in the Outline view the top-right chart is displayed. This
chart shows the number of instances of the selected type created in each time period.

• When an instance is selected in the Outline view the bottom-left chart is displayed. This chart

3.11. SDK 5 User Guide 1654

MicroEJ Documentation,

shows the number of instances created in each time period by the thread that created the se-
lected instance.

• When an instance is selected in the Outline view the bottom-right chart is displayed. This chart
shows the number of instances created in each time period by the method that created the
selected instance.

Fig. 367: Heap Viewer - Heap Usage Tab

Clicking on the graph area in a chart restricts the Outline view to just the types and instances
that were created during the selected time period. Clicking on a chart but outside of the graph
area restores the Outline view to showing all types and instances2.

The button Generate graphViz file in the top-right corner of the Heap Usage page generates a
file compatible with graphviz (www.graphviz.org).

The section Heap Usage Monitoring shows how to compute the maximum heap usage.
2 The Outline can also be restored by selecting the All types and instances option on the drop-down menu at the top of the

Outline view.

3.11. SDK 5 User Guide 1655

MicroEJ Documentation,

Dominator Tree Tab

The Dominator tree page of the Heap Viewer allows the user to browse the instance reference
tree which contains the greatest number of instances. This can be useful when investigating a
memory leak because this tree is likely to contain the instances that should have been garbage
collected.

The page contains two tree viewers. The top viewer shows the instances thatmake up the tree,
starting with the root. The left column shows the ids of the instances – initially just the root
instance is shown. The Shallow instances column shows the number of instances directly ref-
erenced by the instance, and the Referenced instances column shows the total number of in-
stances below this point in the tree (all descendants).

The bottom viewer groups the instances that make up the tree either according to their type,
the thread that created them, or the method that created them.

Double-clicking an instance in either viewer opens the Instance Browser view (if not already
open) and shows details of the instance in that view.

Fig. 368: Heap Viewer - Dominator Tree Tab

3.11. SDK 5 User Guide 1656

MicroEJ Documentation,

Leak Suspects Tab

The Leak suspects page of the Heap Viewer shows the result of applying heuristics to the rela-
tionships between instances in the heap to identify possible memory leaks.

The page is in three parts.

• The top part lists the suspected types (classes). Suspected types are classes which, based on
numbers of instances and instance creation frequency, may be implicated in a memory leak.

• Themiddle part lists accumulationpoints. An accumulationpoint is an instance that references
a high number of instances of a type that may be implicated in a memory leak.

• The bottom part lists the instances accumulated at an accumulation point.

Fig. 369: Heap Viewer - Leak Suspects Tab

3.11. SDK 5 User Guide 1657

MicroEJ Documentation,

Progressive Heap Usage

To open the Progressive Heap Usage tool, select one or more heap dump XML files in the
Package Explorer , right-click and select Heap Analyzer > Show progressive heap usage

This tool is much simpler than the Heap Viewer described above. It comprises three parts.

• The top-right part is a line graph showing the total number of instances in the heap over time,
based on the creation times of the instances found in the heap dumps.

• The left part is a pane with three tabs, one showing a list of types in the heap dump, another
a list of threads that created instances in the heap dump, and the third a list of methods that
created instances in the heap dump.

• Thebottom-left is a line graph showing the number of instances in the heapover time restricted
to those instances that match with the selection in the left pane. If a type is selected, the graph
shows only instances of that type; if a thread is selected the graph shows only instances created
by that thread; if a method is selected the graph shows only instances created by that method.

Fig. 370: Progressive Heap Usage

3.11. SDK 5 User Guide 1658

MicroEJ Documentation,

Compare Heap Dumps

The Compare tool compares the contents of two heap dump files. To open the tool select
two heap dump XML files in the Package Explorer, right-click and select Heap Analyzer >

Compare

TheCompare tool shows the types in theoldheapon the left-handside, and the types in thenew
heap on the right-hand side, andmarks the differences between them using different colors.

Types in the old heapdumpare colored red if there are one ormore instances of this typewhich
are in the old dump but not in the new dump. The missing instances have been garbage col-
lected.

Types in the new heap dump are colored green if there are one or more instances of this type
which are in the new dump but not in the old dump. These instances were created after the old
heap dumpwas written.

Clicking to the right of the type nameunfolds the list to show the instances of the selected type.

Fig. 371: Compare Heap Dumps

The combo box at the top of the tool allows the list to be restricted in various ways:

• All instances – no restriction.

3.11. SDK 5 User Guide 1659

MicroEJ Documentation,

• Garbage collected and new instances – show only the instances that exist in the old heap dump
but not in the new dump, or which exist in the new heap dump but not in the old dump.

• Persistent instances – show only those instances that exist in both the old and new dumps.

• Persistent instances with value changed – show only those instances that exist in both the old
and new dumps and have one or more differences in the values of their fields.

Instance Fields Comparison View

TheCompare toolworks in conjunctionwith the Instance Fields Comparison view,which opens
automatically when an instance is selected in the tool.

The view shows the values of the fields of the instance in both the old and new heap dumps,
and highlights any differences between the values.

Fig. 372: Instance Fields Comparison view

3.11. SDK 5 User Guide 1660

MicroEJ Documentation,

Serial to Socket Transmitter

Principle

The MicroEJ serialToSocketTransmitter is a piece of software which transfers all bytes from a
serial port to a tcp client or tcp server.

Installation

This tool is a built-in Architecture tool.

Use

This chapter explains MicroEJ tool options.

Category: Serial to Socket

Group: Serial Options

Option(text): Port

Option Name: serail.to.socket.comm.port

Default value: COM0

Description: Defines the COM port:

Windows - COM1 , COM2 , ... , COM*n*

3.11. SDK 5 User Guide 1661

MicroEJ Documentation,

Linux - /dev/ttyS0 , /dev/ttyUSB0 , ... , /dev/ttyS*n* , /dev/ttyUSB*n*

Option(combo): Baudrate

Option Name: serail.to.socket.comm.baudrate

Default value: 115200

Available values:

9600

38400

57600

115200

Description: Defines the COM baudrate.

Group: Server Options

Option(text): Port

Option Name: serail.to.socket.server.port

Default value: 5555

Description: Defines the server IP port.

Memory Map Analyzer

Principle

When aMicroEJ Application is linkedwith the MicroEJWorkbench, a Memory MAP file is gener-
ated. The Memory Map Analyzer (MMA) is an Eclipse plug-in made for exploring the map file. It
displays the memory consumption of different features in the RAM and ROM.

3.11. SDK 5 User Guide 1662

MicroEJ Documentation,

Functional Description

Fig. 373: Memory Map Analyzer Process

In addition to the executable file, the MicroEJ Platform generates a map file. Double click on
this file to open the Memory Map Analyzer.

Dependencies

No dependency.

Installation

This tool is a built-in SDK tool.

Use

Themap file is available in the MicroEJ Application project output directory.

3.11. SDK 5 User Guide 1663

MicroEJ Documentation,

Fig. 374: Retrieve Map File

Select an item (or several) to show thememory used by this item(s) on the right. Select “All” to
show thememory used by all items. This special itemperforms the same action as selecting all
items in the list.

Fig. 375: Consult Full Memory

Select an item in the list, and expand it to see all symbols used by the item. This view is useful
in understanding why a symbol is embedded.

3.11. SDK 5 User Guide 1664

MicroEJ Documentation,

Fig. 376: Detailed View

Null Analysis

NullPointerException thrown at runtime is one of the most common causes for failure of Java programs. The Null
Analysis tool can detect such programming errors (misuse of potential null Java values) at compile-time.

The following example of code shows a typical Null Analysis error detection in MicroEJ SDK.

3.11. SDK 5 User Guide 1665

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/NullPointerException.html

MicroEJ Documentation,

Fig. 377: Example of Null Analysis Detection

Principle

The Null Analysis tool is based on Java annotations. Each Java field, method parameter and
method return value must be marked to indicate whether it can be null or not.

Once the Java code is annotated, module projectsmust be configured to enable Null Analysis
detection in MicroEJ SDK.

Java Code Annotation

MicroEJ defines its own annotations:

• @NonNullByDefault: Indicates that all fields, method return values or parameters can never be null in the
annotated package or type. This rule can be overridden on each element by using the Nullable annotation.

• @Nullable: Indicates that a field, local variable, method return value or parameter can be null.

• @NonNull: Indicates that a field, local variable, method return value or parameter can never be null.

MicroEJ recommends to annotate the Java code as follows:

• In each Java package, create a package-info.java file and annotate the Java package with
@NonNullByDefault . This is a common good practice to deal with non null elements by de-
fault to avoid undesired NullPointerException. It enforces the behavior which is already widely
outlined in Java coding rules.

3.11. SDK 5 User Guide 1666

https://repository.microej.com/javadoc/microej_5.x/apis/ej/annotation/NonNullByDefault.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/annotation/Nullable.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/annotation/NonNull.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/NullPointerException.html

MicroEJ Documentation,

• In each Java type, annotate all fields, methods return values and parameters that can be null
with @Nullable . Usually, this information is alreadyavailable as textual information in the field
or method Javadoc comment. The following example of code shows where annotations must
be placed:

Module Project Configuration

Requirements

EDC-1.3.3 or higher is requiredwhenMicroEJ SDK 5.3.0 or higher is used. See EDC 1.3.3 Changelog formore details.

Project configuration

To enable the Null Analysis tool, amodule projectmust be configured as follows:

• In the Package Explorer, right-click on the module project and select Properties ,

• Navigate to Java Compiler > Errors/Warnings ,

• In the Null analysis section, configure options as follows:

3.11. SDK 5 User Guide 1667

https://repository.microej.com/modules/ej/api/edc/1.3.3/
https://repository.microej.com/modules/ej/api/edc/1.3.3/CHANGELOG-1.3.3.md

MicroEJ Documentation,

• Click on the Configure… link to configure MicroEJ annotations:

– ej.annotation.Nullable

– ej.annotation.NonNull

– ej.annotation.NonNullByDefault

3.11. SDK 5 User Guide 1668

MicroEJ Documentation,

• In the Annotations section, check Suppress optional errors with ‘@SuppressWarnings’ op-
tion:

3.11. SDK 5 User Guide 1669

MicroEJ Documentation,

This option allows to fully ignore Null Analysis errors in advanced cases using
@SuppressWarnings(”null”) annotation.

If you havemultiple projects to configure, you can then copy the content of the .settings folder
to an othermodule project.

3.11. SDK 5 User Guide 1670

MicroEJ Documentation,

Fig. 378: Null Analysis Settings Folder

Warning: You may lose information if your target module project already has custom param-
eterization or if it was created with another MicroEJ SDK version. In case of any doubt, please
configure the options manually or merge with a text file comparator.

MicroEJ Libraries

Many libraries available on Central Repository are annotatedwith Null Analysis. If you are using
a library which is not yet annotated, please contact our support team.

For the benefit of Null Analysis, some APIs have been slightly constrained compared to the
Javadoc description. Here are some examples to illustrate the philosophy:

• System.getProperty(String key, String def) does not accept a null default value, which allows to ensure the
returned value is always non null .

• Collections of the Java Collections Framework that can hold null elements (e.g. HashMap)
do not accept null elements. This allows APIs to return null (e.g. HashMap.get(Object)) only
when an element is not contained in the collection.

Implementations are left unchanged and still complywith the Javadoc descriptionwhether the
Null Analysis is enabled or not. So if these additional constraints are not acceptable for your
project, please disable Null Analysis.

3.11. SDK 5 User Guide 1671

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#getProperty-java.lang.String-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/HashMap.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/HashMap.html#get-java.lang.Object-

MicroEJ Documentation,

Advanced Use

Formore information aboutNull Analysis and inter-procedural analysis, please visit Eclipse JDT
Null Analysis documentation.

Troubleshooting

The project cannot build anymore after Null Analysis setup

java.lang.NullPointerException
at org.eclipse.

→˓jdt.internal.compiler.lookup.BinaryTypeBinding.getMethods(BinaryTypeBinding.java:1348)
at org.eclipse.jdt.

→˓internal.compiler.lookup.AnnotationBinding.setMethodBindings(AnnotationBinding.java:238)
at org.eclipse.jdt.internal.

→˓compiler.lookup.LookupEnvironment.createAnnotation(LookupEnvironment.java:995)
at org.eclipse.jdt.internal.

→˓compiler.lookup.AnnotationBinding.buildTargetAnnotation(AnnotationBinding.java:191)
at org.eclipse.jdt.internal.

→˓compiler.lookup.AnnotationBinding.addStandardAnnotations(AnnotationBinding.java:79)
at org.eclipse.jdt.internal.

→˓compiler.lookup.BinaryTypeBinding.retrieveAnnotations(BinaryTypeBinding.java:1698)
(continues on next page)

3.11. SDK 5 User Guide 1672

https://help.eclipse.org/2020-06/index.jsp?topic=/org.eclipse.jdt.doc.user/tasks/task-using_null_annotations.htm
https://help.eclipse.org/2020-06/index.jsp?topic=/org.eclipse.jdt.doc.user/tasks/task-using_null_annotations.htm

MicroEJ Documentation,

(continued from previous page)

at org.eclipse.
→˓jdt.internal.compiler.lookup.ReferenceBinding.getAnnotations(ReferenceBinding.java:1054)
at org.eclipse.jdt.internal.compiler.

→˓lookup.BinaryTypeBinding.evaluateTypeQualifierDefault(BinaryTypeBinding.java:2021)
at org.eclipse.jdt.internal.compiler.

→˓lookup.BinaryTypeBinding.getNonNullByDefaultValue(BinaryTypeBinding.java:1999)
at org.eclipse.jdt.internal.compiler.lookup.

→˓BinaryTypeBinding.scanTypeForNullDefaultAnnotation(BinaryTypeBinding.java:1943)
at org.eclipse.jdt.

→˓internal.compiler.lookup.BinaryTypeBinding.cachePartsFrom(BinaryTypeBinding.java:470)
at org.eclipse.jdt.internal.

→˓compiler.lookup.LookupEnvironment.createBinaryTypeFrom(LookupEnvironment.java:1055)
at org.eclipse.jdt.internal.

→˓compiler.lookup.LookupEnvironment.createBinaryTypeFrom(LookupEnvironment.java:1036)
at org.eclipse.jdt.internal.compiler.Compiler.accept(Compiler.java:308)
at org.eclipse.

→˓jdt.internal.compiler.lookup.LookupEnvironment.askForType(LookupEnvironment.java:326)
at org.eclipse.jdt.internal.compiler.lookup.PackageBinding.getType(PackageBinding.java:195)
at org.eclipse.

→˓jdt.internal.compiler.lookup.PackageBinding.initDefaultNullness(PackageBinding.java:325)
at org.eclipse.

→˓jdt.internal.compiler.lookup.PackageBinding.getDefaultNullness(PackageBinding.java:339)
at org.eclipse.jdt.internal.compiler.lookup.

→˓BinaryTypeBinding.scanTypeForNullDefaultAnnotation(BinaryTypeBinding.java:1965)
at org.eclipse.jdt.

→˓internal.compiler.lookup.BinaryTypeBinding.cachePartsFrom(BinaryTypeBinding.java:470)
at org.eclipse.jdt.internal.

→˓compiler.lookup.LookupEnvironment.createBinaryTypeFrom(LookupEnvironment.java:1055)
at org.eclipse.jdt.internal.

→˓compiler.lookup.LookupEnvironment.createBinaryTypeFrom(LookupEnvironment.java:1036)
at org.eclipse.jdt.internal.compiler.Compiler.accept(Compiler.java:308)
at org.eclipse.

→˓jdt.internal.compiler.lookup.LookupEnvironment.askForType(LookupEnvironment.java:326)
at org.eclipse.

→˓jdt.internal.compiler.lookup.LookupEnvironment.getType(LookupEnvironment.java:1705)
at org.eclipse.jdt.internal.

→˓compiler.lookup.LookupEnvironment.getResolvedType(LookupEnvironment.java:1633)
at org.eclipse.jdt.internal.compiler.

→˓lookup.LookupEnvironment.getResolvedJavaBaseType(LookupEnvironment.java:1645)
at org.eclipse.jdt.internal.

→˓compiler.lookup.AnnotationBinding.buildTargetAnnotation(AnnotationBinding.java:134)
at org.eclipse.jdt.internal.

→˓compiler.lookup.AnnotationBinding.addStandardAnnotations(AnnotationBinding.java:79)
at org.eclipse.jdt.internal.

→˓compiler.lookup.BinaryTypeBinding.retrieveAnnotations(BinaryTypeBinding.java:1698)
at org.eclipse.

→˓jdt.internal.compiler.lookup.ReferenceBinding.getAnnotations(ReferenceBinding.java:1054)
at org.eclipse.jdt.internal.compiler.

→˓lookup.BinaryTypeBinding.evaluateTypeQualifierDefault(BinaryTypeBinding.java:2021)
at org.eclipse.jdt.internal.compiler.

→˓lookup.BinaryTypeBinding.getNonNullByDefaultValue(BinaryTypeBinding.java:1999)
at org.eclipse.jdt.internal.compiler.lookup.

→˓BinaryTypeBinding.scanTypeForNullDefaultAnnotation(BinaryTypeBinding.java:1943)
at org.eclipse.jdt.

→˓internal.compiler.lookup.BinaryTypeBinding.cachePartsFrom(BinaryTypeBinding.java:470)
at org.eclipse.jdt.internal.

(continues on next page)

3.11. SDK 5 User Guide 1673

MicroEJ Documentation,

(continued from previous page)

→˓compiler.lookup.LookupEnvironment.createBinaryTypeFrom(LookupEnvironment.java:1055)
at org.eclipse.jdt.internal.

→˓compiler.lookup.LookupEnvironment.createBinaryTypeFrom(LookupEnvironment.java:1036)
at org.eclipse.jdt.internal.compiler.Compiler.accept(Compiler.java:308)
at org.eclipse.

→˓jdt.internal.compiler.lookup.LookupEnvironment.askForType(LookupEnvironment.java:326)
at org.eclipse.jdt.internal.compiler.lookup.PackageBinding.getType(PackageBinding.java:195)
at org.eclipse.jdt.

→˓internal.compiler.lookup.PackageBinding.isViewedAsDeprecated(PackageBinding.java:314)
at org.eclipse.jdt.internal.

→˓compiler.lookup.ReferenceBinding.isViewedAsDeprecated(ReferenceBinding.java:1745)
at org.eclipse.jdt.

→˓internal.compiler.lookup.BinaryTypeBinding.cachePartsFrom(BinaryTypeBinding.java:566)
at org.eclipse.jdt.internal.

→˓compiler.lookup.LookupEnvironment.createBinaryTypeFrom(LookupEnvironment.java:1055)
at org.eclipse.jdt.internal.

→˓compiler.lookup.LookupEnvironment.createBinaryTypeFrom(LookupEnvironment.java:1036)
at org.eclipse.jdt.internal.compiler.Compiler.accept(Compiler.java:308)
at org.eclipse.

→˓jdt.internal.compiler.lookup.LookupEnvironment.askForType(LookupEnvironment.java:257)
at org.eclipse.

→˓jdt.internal.compiler.lookup.LookupEnvironment.getType(LookupEnvironment.java:1703)
at org.eclipse.jdt.internal.compiler.

→˓lookup.BinaryTypeBinding.getNonNullByDefaultValue(BinaryTypeBinding.java:1995)
at org.eclipse.jdt.internal.compiler.lookup.

→˓BinaryTypeBinding.scanTypeForNullDefaultAnnotation(BinaryTypeBinding.java:1943)
at org.eclipse.jdt.

→˓internal.compiler.lookup.BinaryTypeBinding.cachePartsFrom(BinaryTypeBinding.java:470)
at org.eclipse.jdt.internal.

→˓compiler.lookup.LookupEnvironment.createBinaryTypeFrom(LookupEnvironment.java:1055)
at org.eclipse.jdt.internal.

→˓compiler.lookup.LookupEnvironment.createBinaryTypeFrom(LookupEnvironment.java:1036)
at org.eclipse.jdt.internal.compiler.Compiler.accept(Compiler.java:308)
at org.eclipse.

→˓jdt.internal.compiler.lookup.LookupEnvironment.askForType(LookupEnvironment.java:326)
at org.eclipse.jdt.internal.compiler.lookup.PackageBinding.getType(PackageBinding.java:195)
at org.eclipse.

→˓jdt.internal.compiler.lookup.PackageBinding.initDefaultNullness(PackageBinding.java:325)
at org.eclipse.

→˓jdt.internal.compiler.lookup.PackageBinding.getDefaultNullness(PackageBinding.java:339)
at org.eclipse.jdt.internal.compiler.lookup.

→˓BinaryTypeBinding.scanTypeForNullDefaultAnnotation(BinaryTypeBinding.java:1965)
at org.eclipse.jdt.

→˓internal.compiler.lookup.BinaryTypeBinding.cachePartsFrom(BinaryTypeBinding.java:470)
at org.eclipse.jdt.internal.

→˓compiler.lookup.LookupEnvironment.createBinaryTypeFrom(LookupEnvironment.java:1055)
at org.eclipse.jdt.internal.

→˓compiler.lookup.LookupEnvironment.createBinaryTypeFrom(LookupEnvironment.java:1036)
at org.eclipse.jdt.internal.compiler.Compiler.accept(Compiler.java:308)
at org.eclipse.

→˓jdt.internal.compiler.lookup.LookupEnvironment.askForType(LookupEnvironment.java:326)
at org.eclipse.

→˓jdt.internal.compiler.lookup.LookupEnvironment.getType(LookupEnvironment.java:1705)
at org.eclipse.jdt.internal.

→˓compiler.lookup.LookupEnvironment.getResolvedType(LookupEnvironment.java:1633)
at org.eclipse.jdt.internal.compiler.

(continues on next page)

3.11. SDK 5 User Guide 1674

MicroEJ Documentation,

(continued from previous page)

→˓lookup.LookupEnvironment.getResolvedJavaBaseType(LookupEnvironment.java:1645)
at org.eclipse.jdt.internal.compiler.lookup.Scope.getJavaLangObject(Scope.java:2961)
at org.eclipse.jdt.internal.compiler.lookup.ClassScope.connectSuperclass(ClassScope.java:1065)
at org.

→˓eclipse.jdt.internal.compiler.lookup.ClassScope.connectTypeHierarchy(ClassScope.java:1246)
at org.eclipse.jdt.internal.compiler.

→˓lookup.CompilationUnitScope.connectTypeHierarchy(CompilationUnitScope.java:367)
at org.eclipse.jdt.internal.

→˓compiler.lookup.LookupEnvironment.completeTypeBindings(LookupEnvironment.java:518)
at org.eclipse.jdt.internal.compiler.Compiler.internalBeginToCompile(Compiler.java:878)
at org.eclipse.jdt.internal.compiler.Compiler.beginToCompile(Compiler.java:394)
at org.eclipse.jdt.internal.compiler.Compiler.compile(Compiler.java:444)
at org.eclipse.jdt.internal.compiler.Compiler.compile(Compiler.java:426)
at org.eclipse.

→˓jdt.internal.core.builder.AbstractImageBuilder.compile(AbstractImageBuilder.java:386)
at␣

→˓org.eclipse.jdt.internal.core.builder.BatchImageBuilder.compile(BatchImageBuilder.java:214)
at org.eclipse.

→˓jdt.internal.core.builder.AbstractImageBuilder.compile(AbstractImageBuilder.java:318)
at org.eclipse.jdt.internal.core.builder.BatchImageBuilder.build(BatchImageBuilder.java:79)
at org.eclipse.jdt.internal.core.builder.JavaBuilder.buildAll(JavaBuilder.java:275)
at org.eclipse.jdt.internal.core.builder.JavaBuilder.build(JavaBuilder.java:192)
at org.eclipse.core.internal.events.BuildManager$2.run(BuildManager.java:832)
at org.eclipse.core.runtime.SafeRunner.run(SafeRunner.java:45)
at org.eclipse.core.internal.events.BuildManager.basicBuild(BuildManager.java:220)
at org.eclipse.core.internal.events.BuildManager.basicBuild(BuildManager.java:263)
at org.eclipse.core.internal.events.BuildManager$1.run(BuildManager.java:316)
at org.eclipse.core.runtime.SafeRunner.run(SafeRunner.java:45)
at org.eclipse.core.internal.events.BuildManager.basicBuild(BuildManager.java:319)
at org.eclipse.core.internal.events.BuildManager.basicBuildLoop(BuildManager.java:371)
at org.eclipse.core.internal.events.BuildManager.build(BuildManager.java:392)
at org.eclipse.core.internal.events.AutoBuildJob.doBuild(AutoBuildJob.java:154)
at org.eclipse.core.internal.events.AutoBuildJob.run(AutoBuildJob.java:244)
at org.eclipse.core.internal.jobs.Worker.run(Worker.java:63)

You may encounter the two popup windows and the full stack trace above when your version
of EDC is too old. To fix this issue, please use EDC-1.3.3 or higher with MicroEJ SDK 5.3.0 or
higher.

3.11.10 IDE

The SDK provides an Integrated Development Environment (IDE) for creating and building Ap-
plications. It is based on Eclipse Java Edition and relies on the integrated Java Compiler (JDT).

3.11. SDK 5 User Guide 1675

https://repository.microej.com/modules/ej/api/edc/1.3.3/

MicroEJ Documentation,

Startup

When starting the SDK, it prompts you to select the last usedworkspace or a default workspace
on the first run.

Fig. 379: Workspace selection

A workspace is the Eclipse main folder where are imported a set of projects containing the
source code.

When loading a new workspace, the SDK prompts for the location of the MicroEJ repository,
where Architectures, Platforms or Virtual Devices will be imported.

Fig. 380: Repository selection

By default, the SDK suggests to point to the default repository on your operating system, lo-
cated at ${user.home}/.microej/repositories/[version] . You can select an alternative loca-

3.11. SDK 5 User Guide 1676

MicroEJ Documentation,

tion. Another common practice is to define a local repository relative to the workspace, so that
the workspace is self-contained, without external file system links and can be shared within a
zip file.

Resolve Dependencies in Workspace

When resolving the modules’ dependencies, if the project of a dependency is imported and
opened in the same workspace as the module, the project is directly used for compilation and
execution instead of using the dependency, provided that the dependency’s project has the
same version as the one required by the module.

For example, suppose that the workspace contains a module myApp and its dependency
mylib :

Fig. 381: A module and its dependency opened in the same workspace

If the mylib project’s version is 1.0.0 , it is used for compilation and execution. Otherwise the
published artifact is downloaded from the artifact repository.

To avoid a dependency to be resolved in the workspace, you can close the corresponding
project or remove it from the workspace.

Warning: If you open, close, import or remove a project, you must refresh the dependency
resolution of other previously imported projects by clicking on the Resolve All button :

Fig. 382: Resolve all the workspace projects

3.11. SDK 5 User Guide 1677

MicroEJ Documentation,

Resolve Foundation Libraries in Workspace

A Foundation Library is composed of :

• An API project that contains Java classes, methods and fields used at compile time with their
associated Javadoc,

• An Implementation project that contains the runtime code executed by the Platform and Low
Level C header files

Beside Foundation Library projects, there is usually aMock project that contains the implemen-
tation of native methods for simulation.

Note: To learn how to setup a Foundation Library, please consult the How-to available on https://github.com/
MicroEJ/How-To/tree/master/FoundationLibrary-Get-Started.

When the API is set as a dependency, the Implementation project is automatically used at run-
time if it is opened in the workspace.

If a Mock project or a Front Panel project is also opened in the workspace, it is automatically
used for execution on Simulator.

Note: When opened in the workspace, Foundation Library Implementation projects, Mock projects and Front
Panel projects are loaded, regardless of their version, prior to the ones provided by the Platform (if any).

To avoid the use of an Implementation project, a Mock project or a Front Panel project,
uncheck the Resolve Foundation Library in workspace option in Window > Preferences

> MicroEJ > Settings .

3.11. SDK 5 User Guide 1678

https://github.com/MicroEJ/How-To/tree/master/FoundationLibrary-Get-Started
https://github.com/MicroEJ/How-To/tree/master/FoundationLibrary-Get-Started

MicroEJ Documentation,

Fig. 383: Resolve Foundation Library in workspace

Resolve Front Panel in Workspace

A Front Panel is a “mock” of the control panel of the device. The Front Panel generates a graph-
ical representation of the device, and is displayed in a window on the user’s development ma-
chine when the application is executed in the Simulator.

Note: To learn more about Front Panels, consult the Front Panel section.

WhenaFrontPanel project is opened in theworkspace, it is automatically usedat runtimewhen
launching the Simulator.

Note: This feature requires SDK version 5.7.0 or higher and Architecture version 8.0 or higher.

If the workspace contains several Front Panel projects, they are all automatically used by the

3.11. SDK 5 User Guide 1679

MicroEJ Documentation,

Simulator, which can very probably causes issues. You can select the Front Panel you want to
use by closing all the other Front Panel projects.

Also, a Front Panel project can contain several Front Panel descriptor files. Refer to theMultiple
Front Panel Files section to know how to select the file you want to use.

3.11.11 SDK Version

In the SDK, go to Help > About MicroEJ SDK menu.

In case of SDK 4.1.x , the SDK version is directly displayed, such as 4.1.5 :

In case of SDK 5.x , the value displayed is the SDK distribution, such as 19.05 or 20.07 :

3.11. SDK 5 User Guide 1680

MicroEJ Documentation,

To retrieve the SDK version that is currently installed in this distribution, proceed with the fol-
lowing steps:

• Click on the Installation Details button,

• Click on the Installed Software tab,

• Retrieve the version of entry named MicroEJ SDK .

3.11. SDK 5 User Guide 1681

MicroEJ Documentation,

3.11.12 MicroEJ Module Manager

Introduction

Modern electronic device design involvesmany parts and teams to collaborate to finally obtain
a product to be sold on its market. MicroEJ encouragesmodular design which involves various
stake holders: hardware engineers, UX designers, graphic designers, drivers/BSP engineers,
software engineers, etc.

Modular design is a design technique that emphasizes separating the functionality of an appli-
cation into independent, interchangeable modules. Each module contains everything neces-
sary to executeonly oneaspect of thedesired functionality. In order tohave teammembers col-
laborate internally within their team and with other teams, MicroEJ provides a powerful mod-
ular design concept, with smartmodule dependencies, controlled by theMicroEJModuleMan-
ager (MMM). MMM frees engineers from the difficult task of computing module dependencies.
Engineers specify the bare minimum description of the module requirements.

The following schema introduces the main concepts detailed in this chapter.

Fig. 384: MMM Overview

MMM is based on the following tools:

• Apache Ivy (http://ant.apache.org/ivy) for dependencies resolution andmodule publication;

• Apache EasyAnt (https://ant.apache.org/easyant/history/trunk/reference.html) for module
build from source code.

3.11. SDK 5 User Guide 1682

http://ant.apache.org/ivy
https://ant.apache.org/easyant/history/trunk/reference.html

MicroEJ Documentation,

Specification

MMM provides a non ambiguous semantic for dependencies resolution. Please consult
theMMM specification available on https://developer.microej.com/packages/documentation/
TLT-0831-SPE-MicroEJModuleManager-2.0-E.pdf.

Module Project Skeleton

In the SDK, a newMicroEJ module project is created as follows:

• Select File > New > Project… ,

• Select MicroEJ > Module Project 1,

• Fill the module information (project name, module organization, name and revision),

• Select one of the suggested skeletons depending on the desiredmodule nature,

• Click on Finish .

Theproject is createdanda set of files anddirectories are generated from the selected skeleton.

Note: When an empty Eclipse project already exists or when the skeleton has to be created within an existing
directory, the MicroEJ module is created as follows:

• In the Package Explorer, click on the parent project or directory,

• Select File > New > Other… ,

• Select EasyAnt > EasyAnt Skeleton .

Module Description File

A module description file is an Ivy configuration file named module.ivy , located at the root
of each MicroEJ module project. It describes the module nature (also called build type) and
dependencies to other modules.

<ivy-module version=
→˓”2.0” xmlns:ea=”http://www.easyant.org” xmlns:m=”http://ant.apache.org/ivy/extra”

xmlns:ej=”https://developer.microej.com” ej:version=”2.0.0”>
<info␣

→˓organisation=”[organisation]” module=”[name]” status=”integration” revision=”[version]”>
<ea:build organisation=

→˓”com.is2t.easyant.buildtypes” module=”[buildtype_name]” revision=”[buildtype_version]”>
<ea:property name=”[buildoption_name]” value=”[buildoption_value]”/>

</ea:build>
</info>

<configurations defaultconfmapping=”default->default;provided->provided”>
<conf name=”default” visibility=”public”/>
<conf name=”provided” visibility=”public”/>
<conf name=”documentation” visibility=”public”/>
<conf name=”source” visibility=”public”/>

(continues on next page)

1 If using SDK versions lower than 5.2.0 , please refer to the following section.

3.11. SDK 5 User Guide 1683

https://developer.microej.com/packages/documentation/TLT-0831-SPE-MicroEJModuleManager-2.0-E.pdf
https://developer.microej.com/packages/documentation/TLT-0831-SPE-MicroEJModuleManager-2.0-E.pdf

MicroEJ Documentation,

(continued from previous page)

<conf name=”dist” visibility=”public”/>
<conf name=”test” visibility=”private”/>

</configurations>

<publications>
</publications>

<dependencies>
<dependency org=”[dep_organisation]” name=”[dep_name]” rev=”[dep_version]”/>

</dependencies>
</ivy-module>

Enable MMM Semantic

The MMM semantic is enabled in a module by adding the MicroEJ XML namespace and the
ej:version attribute in the ivy-module node:

<ivy-module xmlns:ej=”https://developer.microej.com” ej:version=”2.0.0”>

Note: Multiple namespaces can be declared in the ivy-module node.

MMM semantic is enabled in the module created with theModule Project Skeleton.

Module Dependencies

Module dependencies are added to the dependencies node as follow:

<dependencies>
<dependency org=”[dep_organisation]” name=”[dep_name]” rev=”[dep_version]”/>

</dependencies>

When nomatching rule is specified, the default matching rule is compatible .

Dependency Matching Rule

The following matching rules are specified by MMM:

Name Range Notation Semantic
compatible [M.m.p-RC, (M+1).0.0-RC[Equal or up to next major version. Default if

not set.
equivalent [M.m.p-RC, M.(m+1).0-RC [Equal or up to next minor version
greaterOrEqual [M.m.p-RC, ∞[Equal or greater versions
perfect [M.m.p-RC, M.m.(p+1)-RC[Exact match (strong dependency)

Set the matching rule of a given dependency with ej:match=”matching rule” . For example:

<dependency␣
→˓org=”[dep_organisation]” name=”[dep_name]” rev=”[dep_version]” ej:match=”perfect” />

3.11. SDK 5 User Guide 1684

MicroEJ Documentation,

Dependency Visibility

• A dependency declared public is transitively resolved by upper modules. The default when
not set.

• A dependency declared private is only used by the module itself, typically for:

– Bundling the content into the module

– Testing the module

The visibility is set by the configurations declared in the configurations node. For example:

<configurations defaultconfmapping=”default->default;provided->provided”>
<conf name=”[conf_name]” visibility=”private”/>

</configurations>

The configuration of a dependency is specified by setting the conf attribute, for example:

<dependency org=
→˓”[dep_organisation]” name=”[dep_name]” rev=”[dep_version]” conf=”[conf_name]->*” />

Build Options

MMMbuilds can be configured by settings options in the module.ivy file using the ea:property
tag inside the ea:build tag:

<ea:build organisation=”...” module=”...” revision=”x.y.z”>
<ea:property name=”[build_option_name]” value=”[build_option_value]”/>

</ea:build>

Refer to the documentation of Module Natures for the list of available build options for each
Module Nature.

The options can also be defined via System Properties. If an option is defined as both System
Property and ea:property tag, the value passed as System Property takes precedence.

Automatic Update Before Resolution

The Easyant plugin ivy-update can be used to automatically update the version (attribute rev
) of every module dependencies declared.

<info␣
→˓organisation=”[organisation]” module=”[name]” status=”integration” revision=”[version]”>

<ea:plugin org=”com.is2t.easyant.plugins” name=”ivy-update” revision=”1.+” />
</info>

When the plugin is enabled, for eachmodule dependency, MMMwill check the version declared
in the module file and update it to the highest version available which satisfies the matching
rule of the dependency.

3.11. SDK 5 User Guide 1685

MicroEJ Documentation,

SDK Configuration

By default, when starting an empty workspace, the SDK is configured to import dependencies
from MicroEJ Central Repository and to publish built modules to a local directory. The reposi-
tory configuration is stored in a settings file (ivysettings.xml), and the default one is located
at $USER_HOME\.microej\microej-ivysettings-[VERSION].xml

Preferences Page

The MMMpreferences page in the SDK is available at Window > Preferences > MicroEJ >
Module Manager Page 1683, 1.

Fig. 385: MMM Preferences Page

This page allows to configure the following elements:

1. Settings File : the file describing how to connectmodule repositories. See the settings file section.

2. Options : files declaring MMM options. See the Options section.

3. Use Module repository as Build repository : the settings file for connecting the build repository in place
of the one bundled in the SDK. This option shall not be enabled by default and is reserved for advanced
configuration.

4. Build repository Settings File : the settings file for connecting the build repository in place of the one bun-
dled in the SDK. This option is automatically initialized the first time the SDK is launched. It shall not be
modified by default and is reserved for advanced configuration.

3.11. SDK 5 User Guide 1686

MicroEJ Documentation,

5. Set verbose mode : to enable advanced debug traces when building a module.

6. Runtime JRE : the Java Runtime Environment that executes the build process.

7. Max build history size : the maximum number of previous builds available in Build Module shortcut list:

Settings File

The settings file is an XML file that describes how MMM connects local or onlinemodule repos-
itories. The file format is described in Apache Ivy documentation.

To configure MMM to a custom settings file (usually from an offline repository):

1. Set Settings file to a custom ivysettings.xml settings filePage 1683, 1,

2. Click on Apply and Close button

If the workspace is not empty, it is recommended to trigger a full resolution and rebuild all the
projects using this new repository configuration:

1. Clean caches

• In the Package Explorer, right-click on a project;

• Select Ivy > Clean all caches .

2. Resolve projects using the new repository

To resolve all the workspace projects, click on the Resolve All button in the toolbar:

To only resolve a subset of the workspace projects:

• In the Package Explorer, select the desired projects,

• Right-click on a project and select Ivy > Clean all caches .

3. Trigger Add-On Library processors for automatically generated source code

• Select Project > Clean… ,

• Select Clean all projects ,

• Click on Clean button.

3.11. SDK 5 User Guide 1687

https://ant.apache.org/ivy/history/2.5.0/settings.html

MicroEJ Documentation,

Options

Options can be used to parameterize a module description file or a settings file. Options are
declared as key/value pairs in a standard Java properties file, and are expanded using the
${my_property} notation.

A typical usage in a settings file is for extracting repository server credentials, such as HTTP
Basic access authentication:

1. Declare options in a properties file

2. Register this property file to MMM options

3. Use this option in a settings file

A typical usage in amodule description file is for factorizing dependency versions across multi-
ple modules projects:

1. Declare an option in a properties file

2. Register this property file to MMM options

3.11. SDK 5 User Guide 1688

https://en.wikipedia.org/wiki/.properties

MicroEJ Documentation,

3. Use this option in amodule description file

Resolution Logs

Resolution logs of module projects imported in the workspace are available from the console
view:

• Select Windows > Show View > Console ,

• In the Console view, click on the console window icon and select Ivy console :

To enable the verbose mode:

• In the Ivy console view, click on the debug icon and select debug instead of info (defaults):

This triggers the full workspace resolution with verbose mode enabled.

3.11. SDK 5 User Guide 1689

MicroEJ Documentation,

Module Build

In the SDK, the build of a MicroEJ module project can be started as follows:

• In the Package Explorer, right-click on the project,

• Select Build Module .

Fig. 386: Module Build

The build of a module can take time depending on

• themodule nature to build,

3.11. SDK 5 User Guide 1690

MicroEJ Documentation,

• the number and the size of module dependencies to download,

• the repository connection bandwidth, …

Themodule build logs are redirected to the integrated console.

Alternatively, the build of a MicroEJ module project can be started from the build history:

Fig. 387: Module Build History

Build Kit

TheModuleManager Build Kit is a consistent set of tools, scripts, configuration and artifacts re-
quired for buildingmodules in command-linemode. Starting fromSDK 5.4.0 , it also contains a
Command Line Interface (CLI). The Build Kit allows towork in headlessmode (e.g. in a terminal)
and to build your modules using a Continuous Integration tool.

The Build Kit is bundled with the SDK and can be exported using the following steps:2

• Select File > Export > MicroEJ > Module Manager Build Kit ,

• Choose an empty Target directory ,

• Click on the Finish button.

Once the Build Kit is fully exported, the directory content shall look like:

/
�� bin
� �� mmm
� �� mmm.bat
�� conf
�� lib
�� microej-build-repository
� �� ant-contrib
� �� com
� �� ...
� �� ivysettings.xml
�� microej-module-repository
� �� ivysettings.xml
�� release.properties

• Add the bin directory of the Build Kit directory to the PATH environment variable of your
machine.

2 If using SDK versions lower than 5.4.0 , please refer to the following section.

3.11. SDK 5 User Guide 1691

MicroEJ Documentation,

• Make sure the JAVA_HOME environment variable is set and points to a JRE/JDK installation
or that java executable is in the PATH environment variable (Java 8 is required)

• Confirm that the installationworks fine by executing the command mmm --version . The result
should display the MMM CLI version.

The mmm tool can run on any supported Operating Systems:

• on Windows, either in the command prompt using the Windows batch script mmm.bat or in
MinGW environments such as Git BASH using the bash script mmm .

• onmacOS and Linux distributions using the bash script mmm .

Warning: When copying a build kit from one system to another, make sure to delete the cache
of the buildtype repository (/microej-build-repository/cache) which may contain absolute
paths.

The build repository (microej-build-repository directory) contains scripts and tools for build-
ing modules. It is specific to a SDK version and shall not be modified by default.

The module repository (microej-module-repository directory) contains a default Settings File
for importing modules from Central Repository and this local repository (modules that are lo-
cally built will be published to this directory). You can override with custom settings or by ex-
tracting an offline repository.

To go further with headless builds, please consult the next chapter for command line builds,
and this tutorial to setup MicroEJ modules build in continuous integration environments.

Command Line Interface

Starting from version 5.4.0 , the SDK provides a Command Line Interface (CLI). Please refer to
the Build Kit section for installation details.

The following operations are supported by the MMM CLI:

• creating a module project

• cleaning a module project

• building a module project

• running a MicroEJ Application project on the Simulator

• publishing a module in a module repository

Usage

In order to use the MMM CLI for your project:

• go to the root directory of your project

• run the following command

mmm [COMMAND] [OPTION]...

where COMMAND is the command to execute (for example mmm build). The available
commands are:

• help : display help information about the specified command

3.11. SDK 5 User Guide 1692

https://en.wikipedia.org/wiki/MinGW
https://gitforwindows.org/

MicroEJ Documentation,

• init : create a new project

• clean : clean the project

• build : build the project

• publish : build the project and publish the module

• run : run the MicroEJ Application project on the Simulator

The available options are:

• --help (-h): show the help message and exit

• --version (-V): print version information and exit

• --build-repository-settings-file (-b): path of the Ivy settings file for build scripts and tools. Defaults to
${CLI_HOME}/microej-build-repository/ivysettings.xml .

• --module-repository-settings-file (-r): path of the Ivy settings file for modules. Defaults to
${CLI_HOME}/microej-module-repository/ivysettings.xml .

• --ivy-file (-f): path of the project’s Ivy file. Defaults to ./module.ivy .

• --verbose (-v): verbose mode. Disabled by default. Add this option to enable verbose mode.

• -Dxxx=yyy : any additional option passed as system properties.

When no command is specified, MMM CLI executes Easyant with custom targets using the
--targets (-t) option (defaults to clean,verify).

Shared configuration

In order to share configuration across several projects, these parameters can be defined in the
file ${user.home}/.microej/.mmmconfig . This file uses the TOML format. Parameters names
are the same than the ones passed as system properties, except the character _ is used as a
separator instead of - . The parameters defined in the [options] section are passed as system
properties. Here is an example:

build_repository_settings_file = ”/home/johndoe/ivy-configuration/ivysettings.xml”
module_repository_settings_file = ”/home/johndoe/ivy-configuration/ivysettings.xml”
ivy_file = ”ivy.xml”

[options]
my.first.property = ”value1”
my.second.property = ”value2”

Warning:

• TOML values must be surrounded with double quotes

• Backslash characters (\)must bedoubled (for example aWindowspath C:\\Users\\johndoe\
\ivysettings.xml)

Command line options take precedence over those defined in the configuration file. So if the
same option is defined in both locations, the value defined in the command line is used.

3.11. SDK 5 User Guide 1693

https://toml.io

MicroEJ Documentation,

Commands

init

The command init creates a new project (executes Easyant with skeleton:generate target).
The skeleton and project information must be passed with the following system properties:

• skeleton.org : organisation of the skeletonmodule. Defaults to com.is2t.easyant.skeletons .

• skeleton.module : name of the skeletonmodule. Mandatory, defaults to microej-javalib .

• skeleton.rev : revision of the skeleton module. Mandatory, defaults to + (meaning the latest released ver-
sion).

• project.org : organisation of the project module. Mandatory, defaults to com.mycompany .

• project.module : name of the project module. Mandatory, defaults to myproject .

• project.rev : revision of the project module. Defaults to 0.1.0 .

• skeleton.target.dir : relative path of the project directory (created if it does not exist). Mandatory, defaults
to the current directory.

For example

mmm init -Dskeleton.org=com.is2t.easyant.skeletons␣
→˓-Dskeleton.module=microej-javalib -Dskeleton.rev=4.2.8 -Dproject.org=com.mycompany␣
→˓-Dproject.module=myproject -Dproject.rev=1.0.0 -Dskeleton.target.dir=myproject

If one of these properties is missing, it will be asked in interactive mode:

$ mmm init␣
→˓-Dskeleton.org=com.is2t.easyant.skeletons -Dskeleton.module=microej-javalib -Dskeleton.
→˓rev=4.2.8 -Dproject.org=com.mycompany -Dproject.module=myproject -Dproject.rev=1.0.0

...

-skeleton:check-generate:
[input] skipping input as property skeleton.org has already been set.
[input] skipping input as property skeleton.module has already been set.
[input] skipping input as property skeleton.rev has already been set.
[input] The path␣

→˓where the skeleton project will be unzipped [/home/tdelhomenie/microej/working/skeleton]

To force thenon-interactivemode, theproperty skeleton.interactive.mode mustbe set to false
. In non-interactive mode the default values are used for missing non-mandatory properties,
and the creation fails if mandatory properties are missing.

$ mmm init -Dskeleton.org=com.
→˓is2t.easyant.skeletons -Dskeleton.module=microej-javalib -Dskeleton.rev=4.2.8 -Dproject.
→˓org=com.mycompany -Dskeleton.target.dir=myproject -Dskeleton.interactive.mode=false

...

* Problem Report:

expected property 'project.module': Module name of YOUR project

clean

The command clean cleans the project (executes Easyant with clean target). For example

3.11. SDK 5 User Guide 1694

MicroEJ Documentation,

mmm clean

cleans the project.

build

The command build builds the project (executes Easyant with clean,verify targets). For ex-
ample

mmm build -f ivy.xml -v

builds the project with the Ivy file ivy.xml and in verbose mode.

publish

The command publish builds the project and publishes the module. This command accepts
the publication target as a parameter, amongst these values:

• local (default value): executes the clean,publish-local Easyant target, which publishes the project with the
resolver referenced by the property local.resolver in the Settings File.

• shared : executes the clean,publish-shared Easyant target, which publishes the project with the resolver
referenced by the property shared.resolver in the Settings File.

• release : executes the clean,release Easyant target, which publishes the project with the resolver referenced
by the property release.resolver the Settings File.

For example

mmm publish local

builds the project and publishes the module using the local resolver.

run

The command run runs the application on the Simulator (executes Easyant with compile,
simulator:run targets). It has the following requirements:

• to run on the Simulator, the project must be configured with one of the following Module Na-
tures:

– Sandboxed Application

– Standalone Application

– Add-On Library

• the property application.main.class must be set to the Fully QualifiedNameof the application
main class (for example com.mycompany.Main)

• a MicroEJ Platformmust be provided (see Select a VEE Port section)

• Standalone Application Optionsmust be defined using properties file under in the build direc-
tory (see Using a Properties File section)

• themodulemust have been built once before running the Simulator. So the mmm build com-
mand must be executed before running the Simulator the first time or after a project clean (
mmm clean command).

Note: The next times, it is not required to rebuild the module if source code files have been
modified. The content of src/main/java and src/main/resources folders are automatically
compiled by mmm run command before running the Simulator.

3.11. SDK 5 User Guide 1695

MicroEJ Documentation,

For example

mmm run -D”platform-loader.target.platform.file”=”/path/to/the/platform.zip”

runs the application on the given platform.

The Simulator can be launched in debugmode by setting the property execution.mode of the
application file build/commons.properties to debug :

execution.mode=debug

The debug port can be defined with the property debug.port . Go to Simulator Debug options
section for more details.

help

The command help displays the help for a command. For example

mmm help run

displays the help of the command run .

Build SystemOptions

MMMallows tomodify thebehaviorof abuildviaSystemoptions. Theseoptionsmustbepassed
as system properties, using CLI -D option or via the SDK Configuration options. MMM provides
the following options:

• easyant.debug.port : defines the debug port and triggers the debugmode for the build execution.

Meta Build

AMetaBuild is amoduleallowing tobuildothermodules. It is typicallyused inaproject contain-
ingmultiplemodules. The Meta Buildmodule serves as an entry point to build all themodules
of the project.

Meta Build creation

• In the SDK, select File > New > Module Project .

Fig. 388: New Meta Build Project

3.11. SDK 5 User Guide 1696

MicroEJ Documentation,

• Fill in the fields Project name , Organization , Module and Revision , then select the Skeleton
named microej-meta-build

• Click on Finish . A template project is automatically created and ready to use.

Meta Build configuration

The main element to configure in a meta build is the list of modules to build. This is done in 2
files, located at the root folder:

• public.modules.list which contains the list of the modules relative paths to build and publish.

• private.modules.list which contains the list of the modules relative paths to build. These modules are not
published but only stored in a private and local repository in order to be fetched by the public modules.

The format of these files is a plain text file with onemodule path by line, for example:

module1
module2
module3

These paths are relative to themeta build root folder, which is set by default to the parent folder
of the meta build module (..). For this reason, a meta build module is generally created at the
same level of the other modules to build. Here is a typical structure of a meta build:

/
�� module1
� �� ...
� �� module.ivy
�� module2
� �� ...
� �� module.ivy
�� module3
� �� ...
� �� module.ivy
�� metabuild

�� private.modules.list
�� public.modules.list
�� module.ivy

The modules build order is calculated based on the dependency information. If a module is a
dependency of another module, it is built first.

For a complete list of configuration options, please refer toMeta Build Module Nature section.

Troubleshooting

Unresolved Dependency

If the following message appears when resolving module dependencies:

:: problems summary ::
:::: WARNINGS

module not found: com.mycompany#mymodule;[M.m.p-RC,M.m.(p+1)-RC[

::
(continues on next page)

3.11. SDK 5 User Guide 1697

MicroEJ Documentation,

(continued from previous page)

:: UNRESOLVED DEPENDENCIES ::

::

:: com.mycompany#mymodule;[M.m.p-RC,M.m.(p+1)-RC[: not found

::

First, check that either a released module com.mycompany/mymodule/M.m.p or a snap-
shot module com.mycompany/mymodule/M.m.p-RCYYYYMMDD-HHMM exists in your
module repository.

• If the module does not exist,

– if it is declaredasadirectdependency, themodule repository isnot compatiblewithyour source
code. You can either check if an other module version is available in the repository or add the
missing module to the repository.

– otherwise, this is likely a missing transitive module dependency. The module repository is not
consistent. Check the module repository settings file and that consistency check has been en-
abled during the module repository build (see Configure Consistency Check).

• If themodule exists, this may be either a configuration issue or a network connection error. We
have to find the cause in the resolution logs.

Note:

The activation of the verbose mode depends on how the resolution has been launched:

– if the error occurs during workspace resolution, configure the verbosemode of resolution logs,

– if the error occurs while building amodule fromworkspace, check the verbosemode option in
preferences page,

– if the error occurs while building amodule from command line, set the verbosemode option in
command line options.

For URL repositories, find:

trying https:/
→˓/[MY_REPOSITORY_URL]/[MY_REPOSITORY_NAME]/com.mycompany/mymodule/
tried https:/
→˓/[MY_REPOSITORY_URL]/[MY_REPOSITORY_NAME]/com.mycompany/mymodule/

For filesystem repository, find:

trying [MY_REPOSITORY_PATH]/com.mycompany/mymodule/
tried [MY_REPOSITORY_PATH]/com.mycompany/mymodule/

If yourmodule repository URL or filesystem path does not appear, check your settings file. This
is likely a missing resolver.

Otherwise, if yourmodule repository is anURL, thismaybeanetworkconnectionerrorbetween
MMM(theclient) and themodule repository (the server). First, check for InvalidCertificate issue.

Otherwise, the next step is to debug at the HTTP level:

3.11. SDK 5 User Guide 1698

MicroEJ Documentation,

HTTP response status: [RESPONSE_
→˓CODE] url=https://[MY_REPOSITORY_URL]/com.mycompany/mymodule/
CLIENT␣
→˓ERROR: Not Found url=https://[MY_REPOSITORY_URL]/com.mycompany/mymodule/

Depending on the HTTP error code:

– 401 Unauthorized : check your settings file credentials configuration.

– 404 Not Found : add the following options to log raw HTTP traffic:

-Dorg.apache.commons.
→˓logging.Log=org.apache.commons.logging.impl.SimpleLog -Dorg.apache.commons.logging.
→˓simplelog.showdatetime=true -Dorg.apache.commons.logging.simplelog.log.org.apache.
→˓http=DEBUG -Dorg.apache.commons.logging.simplelog.log.org.apache.http.wire=ERROR

Particularly, Ivy requires the HTTP HEAD request which may be disabled by some servers.

Invalid Certificate

If the following message appears when resolving module dependencies:

HttpClientHandler: sun.security.validator.ValidatorException:␣
→˓PKIX path building failed: sun.security.provider.certpath.SunCertPathBuilderException:␣
→˓unable to find valid certification path to requested target url=[artifactory address]

This can be raised in several cases, such as:

• an artifact repository configured in the MicroEJ Module Manager settings using a self-signed
SSL certificate or a SSL certificate not trusted by the JDK.

• the requests to an artifact repository configured in the MicroEJ Module Manager settings are
redirected to a proxy server using a SSL certificate not trusted by the JDK.

In all cases, the SSL certificate (used by the artifact repository server or the proxy) must be
added to the JDK trust store that is running MicroEJ Module Manager. Ask your System Ad-
ministrator, or retrieve the SSL certificate and add it to the JDK trust store:

• on Windows

1. Install Keystore Explorer.

2. Start Keystore Explorer, and open file [JRE_HOME]/lib/security/cacerts or
[JDK_HOME]/jre/lib/security/cacerts with the password changeit . You may not
have the right to modify this file. Edit rights if needed before opening it or open Keystore
Explorer with admin rights.

3. Click on Tools , then Import Trusted Certificate .

4. Select your certificate.

5. Save the cacerts file.

• on Linux/macOS

1. Open a terminal.

2. Make sure the JDK’s bin folder is in the PATH environment variable.

3. Execute the following command:

3.11. SDK 5 User Guide 1699

https://ant.apache.org/ivy/history/2.5.0/settings/credentials.html
http://keystore-explorer.org/downloads.html

MicroEJ Documentation,

keytool -importcert -v -noprompt -trustcacerts -alias myAlias␣
→˓-file /path/to/the/certificate.pem -keystore /path/to/the/truststore -storepass changeit

If the problem still occurs, set the javax.net.debug property to all to enable SSL protocol
traces:

• when using theMMMCLI, add the property in the command linewith: -Djavax.net.debug=all

• when using the Build Module button in the SDK, add the property in the MicroEJ Module
Manager options as described in the section Options

• when resolving the dependencies on a project in the SDK with the button Ivy > Resolve ,
add the following line at the end of the file MicroEJ-SDK.ini located at the root of the SDK
installation:

-Djavax.net.debug=all

and start the SDK from a terminal.

In all cases, such logs should appear in the terminal or in the SDK console:

...
javax.net.ssl|DEBUG|01|main|2022-09-09 18:22:20.
→˓828 CEST|SSLContextImpl.java:428|System property jdk.tls.client.cipherSuites is set to 'null'
javax.net.ssl|DEBUG|01|main|2022-
→˓09-09 18:22:20.871 CEST|SSLCipher.java:464|jdk.tls.keyLimits: entry = AES/GCM/
→˓NoPadding KeyUpdate 2^37. AES/GCM/NOPADDING:KEYUPDATE = 137438953472
javax.net.ssl|DEBUG|01|main|2022-09-09 18:22:20.892 CEST|SSLContextImpl.java:402|Ignore␣
→˓disabled cipher suite: TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
...

There should be a trace at the beginning which indicates the path of the truststore used by the
JDK:

javax.net.ssl|FINE|01|main|2022-
→˓09-05 14:34:38.631 CEST|TrustStoreManager.java:112|trustStore is: /path/to/the/truststore

The error very probably occurs during the handshake phase of the SSL negotiation. There
should be the following trace before the error:

Consuming server Certificate handshake message

The traces below this one indicates the SSL certificate (or the SSL certificates chain) presented
by the server. This certificate or one of the root or intermediate certificates must be added in
the JDK truststore as explained previously.

Target “simulator:run” does not exist

If the following message appears when executing the mmm run command:

* Problem Report:

Target ”simulator:run” does not exist in the project ”my-app”.

it means that the command run is not supported by the build type declared by your module
project. Make sure it is one of the following ones:

3.11. SDK 5 User Guide 1700

MicroEJ Documentation,

• build-application , with version 7.1.0 or higher

• build-microej-javalib , with version 4.2.0 or higher

• build-firmware-singleapp , with version 1.3.0 or higher

Could not load SWT library

Trying
to use MMM Build Kit on headless systemmay lead to this error when building a VEE Port.
To fix this on Ubuntu (tested on 22.04), install the libwebkit2gtk-4.0-37 package.

Note: Also see our full Docker image configuration: https://github.com/MicroEJ/Tool-SDK-Docker/blob/
67a9f4397a9c1d5608a244e2778c0cfecc5c6113/5.8.2-jdk11/Dockerfile

systemmicroui.xml:47: Terminated with errors

Trying to build
a VEE Port may lead to an “Internal limits reached” for which the log file contains this error.
This is caused
by using an incompatible JDK distribution (such as openjdk-11-jdk Ubuntu distribution).
To fix this, change your JDK distribution. See recommended JDK distributions.

Former SDK Versions (lower than 5.2.0)

This section describes MMM configuration elements for SDK versions lower than 5.2.0 .

NewMicroEJ Module Project

TheNewMicroEJModule Projectwizard is available at File > New > Project… , EasyAnt

> EasyAnt Project .

Preferences Pages

MMM Preferences Pages are located in two dedicated pages. The following pictures show the
options mapping using the same options numbers declared in Preferences Page.

3.11. SDK 5 User Guide 1701

https://github.com/MicroEJ/Tool-SDK-Docker/blob/67a9f4397a9c1d5608a244e2778c0cfecc5c6113/5.8.2-jdk11/Dockerfile
https://github.com/MicroEJ/Tool-SDK-Docker/blob/67a9f4397a9c1d5608a244e2778c0cfecc5c6113/5.8.2-jdk11/Dockerfile

MicroEJ Documentation,

Ivy Preferences Page

The Ivy Preferences Page is available at Window > Preferences > Ivy > Settings .

Easyant Preferences Page

The Easyant Preferences Page is available at Window > Preferences > EasyAnt4Eclipse .

3.11. SDK 5 User Guide 1702

MicroEJ Documentation,

Build Kit

• Create an empty directory (e.g. mmm_sdk_[version]_build_kit),

• Locate your SDK installation plugins directory (by default, C:\Program Files\MicroEJ\
MicroEJ SDK-[version]\rcp\plugins on Windows OS),

• Open the file com.is2t.eclipse.plugin.easyant4e_[version].jar with an archive manager,

• Extract the directory lib to the target directory,

• Open the file com.is2t.eclipse.plugin.easyant4e.offlinerepo_[version].jar with an archive
manager,

• Navigate to directory repositories ,

• Extract the file named microej-build-repository.zip for SDK 5.x or is2t_repo.zip for SDK
4.1.x to the target directory.

Former SDK Versions (from 5.2.0 to 5.3.x)

Build Kit

The Build Kit is bundled with the SDK and can be exported using the following steps:

• Select File > Export > MicroEJ > Module Manager Build Kit ,

• Choose an empty Target directory ,

• Click on the Finish button.

Once the Build Kit is fully exported, the directory content shall look like:

3.11.13 VEE Port

Create a VEE Port

This section describes the steps to create a new VEE Port with the SDK, and options to connect
it to an external Board Support Package (BSP) as well as a third-party C toolchain.

Note: The creation of a VEE Port with this guide requires at least the version 5.4.0 of the SDK.

Note: If you own a legacy VEE Port, you can either create your VEE Port again from scratch, or follow the Former
PlatformMigration chapter.

3.11. SDK 5 User Guide 1703

MicroEJ Documentation,

VEE Port Project Creation

The first step is to create a VEE Port configuration project:

• Select File > New > Project… > General > Project ,

• Enter a Project name . The name is arbitrary and can be changed later. The usual convention
is [PLATFORM_NAME]-configuration ,

• Click on Finish button. A new empty project is created,

• Install the latest Platform Configuration Additions by following instructions described
at https://github.com/MicroEJ/VEEPortQualificationTools/blob/master/framework/platform/
README.rst.

– Files within the content-sdk-5 folder must be copied to the configuration project folder.

– Fileswithin the content-architecture-7 must be copied to the configuration project folder only
if you are using an Architecture version 7.x . If you are using an Architecture version 8.x , the
files are already included andmust not be copied.

You should get a MicroEJ Platform configuration project that looks like:

Fig. 389: MicroEJ Platform Configuration Project Skeleton

Note: Theversionof installedPlatformConfigurationAdditions is indicated in theCHANGELOG
file.

3.11. SDK 5 User Guide 1704

https://github.com/MicroEJ/VEEPortQualificationTools/blob/master/framework/platform/
https://github.com/MicroEJ/VEEPortQualificationTools/blob/master/framework/platform/README.rst
https://github.com/MicroEJ/VEEPortQualificationTools/blob/master/framework/platform/README.rst
https://github.com/MicroEJ/VEEPortQualificationTools/blob/master/framework/platform/content-sdk-5/build/CHANGELOG.md

MicroEJ Documentation,

Architecture Selection

The next step is to select a MicroEJ Architecture compatible with your device instructions set
and C compiler.

MicroEJ Corp. provides MicroEJ Evaluation Architectures for most common instructions sets
and compilers at https://repository.microej.com/modules/com/microej/architecture.

Please refer to the chapter Architectures MCU / Compiler for the details of ABI and compiler op-
tions.

If the requestedMicroEJ Architecture is not available for evaluation or to get a MicroEJ Produc-
tion Architecture, please contact your MicroEJ sales representative or our support team.

Once you knowwhich Architecture to use, add it as a dependency of the VEE Port configuration
project as described below:

• Edit theModule Description File module.ivy to declare the MicroEJ Architecture dependency:

<dependencies>

<dependency␣
→˓org=”com.microej.architecture.[ISA].[TOOLCHAIN]” name=”[UID]” rev=”[VERSION]”>

<artifact name=”[UID]” m:classifier=”[USAGE]” ext=”xpf”/>
</dependency>

</dependencies>

The name of the module dependency needed for your Platform can be found in the chapter
Architectures MCU / Compiler. Check the table of your corresponding Architecture and follow
the link in the Module column.

Forexample, todeclare theMicroEJEvaluationArchitectureversion 7.14.0 forArm®Cortex®-M4
microcontrollers compiled with GNU CC toolchain:

<dependencies>

<dependency␣
→˓org=”com.microej.architecture.CM4.CM4hardfp_GCC48” name=”flopi4G25” rev=”7.14.0”>

<artifact name=”flopi4G25” m:classifier=”eval” ext=”xpf”/>
</dependency>

</dependencies>

And the module for this Architecture is located in the Central Repository at https://repository.
microej.com/modules/com/microej/architecture/CM4/CM4hardfp_GCC48/flopi4G25/7.14.0/.

Note: The Platform Configuration Additions allow to select the Architecture USAGE using
the option com.microej.platformbuilder.architecture.usage . Edit the file module.properties
to set the property to prod to use a Production Architecture and to eval to use an Evaluation
Architecture.

3.11. SDK 5 User Guide 1705

https://repository.microej.com/modules/com/microej/architecture
https://repository.microej.com/modules/com/microej/architecture/CM4/CM4hardfp_GCC48/flopi4G25/7.14.0/
https://repository.microej.com/modules/com/microej/architecture/CM4/CM4hardfp_GCC48/flopi4G25/7.14.0/

MicroEJ Documentation,

Pack Import

MicroEJ Pack provides additional features on top of the MicroEJ Architecture such as Graphical User Interface or
Networking.

Note: MicroEJ Packs are optional. You can skip this section if you intend to integrate MicroEJ runtime only with
custom libraries.

ToaddaMicroEJPack, add it asadependencyof theVEEPort configurationprojectasdescribed
below:

• Edit theModule Description File module.ivy as follows:

<dependencies>
<!-- MicroEJ Architecture Specific Pack -->
<dependency org=”com.microej.

→˓architecture.[ISA].[TOOLCHAIN]” name=”[UID]-[NAME]-pack” rev=”[VERSION]”/>

<!-- MicroEJ Generic Pack -->
<dependency␣

→˓org=”com.microej.pack.[NAME]” name=”[NAME]-pack” rev=”[VERSION]”/>

<!-- Legacy MicroEJ Generic Pack -->
<dependency org=”com.microej.pack” name=”[NAME]” rev=”[VERSION]”/>

</dependencies>

For example, to declare the MicroEJ Architecture Specific Pack UI version 13.0.4 for MicroEJ
Architecture flopi4G25 onArm®Cortex®-M4microcontrollers compiledwithGNUCC toolchain:

<dependencies>
<!-- MicroEJ Architecture Specific Pack -->
<dependency org=”com.

→˓microej.architecture.CM4.CM4hardfp_GCC48” name=”flopi4G25-ui-pack” rev=”13.0.4”/>

</dependencies>

To declare the MicroEJ Generic Pack Bluetooth version 2.1.0:

<dependencies>
<!-- MicroEJ Generic Pack -->
<dependency org=”com.microej.pack.bluetooth” name=”bluetooth-pack” rev=”2.1.0”/>

</dependencies>

And to declare the Legacy MicroEJ Generic Pack Net version 9.2.3:

<dependencies>
<!-- Legacy MicroEJ Generic Pack -->
<dependency org=”com.microej.pack” name=”net” rev=”9.2.3”/>

</dependencies>

3.11. SDK 5 User Guide 1706

https://repository.microej.com/modules/com/microej/architecture/CM4/CM4hardfp_GCC48/flopi4G25-ui-pack/13.0.4/
https://repository.microej.com/modules/com/microej/pack/bluetooth/bluetooth-pack/2.1.0/
https://repository.microej.com/modules/com/microej/pack/net/9.2.3/

MicroEJ Documentation,

Warning: MicroEJ Architecture Specific Packs and Legacy MicroEJ Generic Packs provide Plat-
formmodules that are not installed by default. See Platform Module Configuration section for
more details.

VEE Port Build

The VEE Port can be built either from the SDK or from theMMM CLI. To build the VEE Port from
the SDK, perform a regularModule Build:

• Right-click on the VEE Port Configuration project,

• Select Build Module .

To build the VEE Port from the MMM CLI:

• Set the eclipse.home property to the path of your SDK, using -Declipse.home=<path> in the
command line or using the Shared configuration.

By default, the SDK’s path is one of the following directories:

– on Windows: C:\Program Files\MicroEJ\MicroEJ-SDK-<YY.MM>\rcp

– on Linux: /home/<user>/MicroEJ/MicroEJ-SDK-<YY.MM>/rcp

– on macOS: /Applications/MicroEJ/MicroEJ-SDK-<YY.MM>/rcp/MicroEJ-SDK-<YY.
MM>.app/Contents/Eclipse

• From the VEE Port Configuration project, execute the command: mmm

In both cases, the build starts and the build logs are redirected to the integrated console. Once
the build is terminated, you should get the following message:

module-platform:report:
␣
→˓␣
→˓[echo]␣
→˓␣
→˓␣
→˓␣
→˓␣
→˓==
[echo] ␣

→˓ Platform has been built in this directory 'C:\tmp\mydevice-Platform-[TOOLCHAIN]-0.1.0'.
[echo] To import this project in your MicroEJ SDK workspace (if not already available):
[echo]␣

→˓ - Select 'File' > 'Import...' > 'General' > 'Existing Projects into Workspace' > 'Next'
[echo] - Check 'Select␣

→˓root directory' and browse 'C:\tmp\mydevice-Platform-[TOOLCHAIN]-0.1.0' > 'Finish'
␣
→˓␣
→˓[echo]␣
→˓␣
→˓␣
→˓␣
→˓␣
→˓==

BUILD SUCCESSFUL
(continues on next page)

3.11. SDK 5 User Guide 1707

MicroEJ Documentation,

(continued from previous page)

Total time: 43 seconds

Then, import the VEE Port directory to your SDK workspace as mentioned in the report. You
should get a ready-to-use VEE Port project in the workspace available for the MicroEJ Applica-
tionproject to runon. Youcanalso check theVEEPort availability in: Window > Preferences
> MicroEJ > Platforms in workspace .

Fig. 390: VEE Port Project

This step is only required the first time the VEE Port is built, or if the VEE Port properties have
changed (i.e, name, version). When the sameVEEPort is built again, thePlatformproject should
be automatically refreshed after a few seconds. In case of any doubt, right-click on the VEE Port
project and select Refresh to get the new content.

3.11. SDK 5 User Guide 1708

MicroEJ Documentation,

PlatformModule Configuration

The primary mechanism for augmenting the capabilities of a Platform is to addmodules to it.

A MicroEJ module is a group of related files (Foundation Libraries, scripts, link files, C libraries,
Simulator Mock, tools, etc.) that together provide all or part of a Platform capability.

A module can extend a Architecture with additional features such as:

• Runtime Capability (e.g. Multi-Sandbox, External Resources Loader) ,

• Foundation Library Implementation (e.g. MicroUI, NET),

• Simulator (e.g. Front Panel Mock),

• Tool (e.g. MicroEJ Java H).

VEE Portmodules provided byMicroEJ Generic Packs are automatically installed during the VEE
Port build and do not require extra configuration. They are not displayed in the VEE Port Editor.

VEE Port modules provided by MicroEJ Architectures, MicroEJ Architecture Specific Packs and
Legacy MicroEJ Generic Packs are not installed by default. They must be enabled and config-
ured using the VEE Port Editor.

Beforeopening theVEEPortEditor, theVEEPortmusthavebeenbuilt once to letMicroEJModule
Manager resolve and download MicroEJ Architecture and Packs locally. Then import them in
the SDK as follows:

• Select File > Import > MicroEJ > Architectures ,

• Browse myplatform-configuration/target~/dependencies folder (contains .xpf and .xpfp
files once the VEE Port is built),

• Check the I agree and accept the above terms and conditions… box to accept the license,

• Click on Finish button. This may take some time.

Once imported, double-click on the default.platform file to open the VEE Port Editor.

From the VEE Port Editor, select the Content tab to access the modules selection. VEE Port
modules can be selected/deselected from the Modules frame.

VEE Port modules are organized in groups. When a group is selected, by default all its modules
are selected. To view all the modules making up a group, click on the Expand All icon on the
top-right of the frame. This will let you select/deselect on a per-module basis. Note that indi-
vidualmodule selection is not recommended and that it is only available when themodule has
been imported.

The description and contents of an item (group or module) are displayed next to the list when
an item is selected.

All the selected VEE Port modules will be installed in the VEE Port.

3.11. SDK 5 User Guide 1709

MicroEJ Documentation,

Fig. 391: VEE Port Configuration Modules Selection

Each selectedVEEPortmodule canbe customizedby creating a [module] folder (namedafter

the module name), next to the .platform file definition. It may contain:

• A [module].properties file named after the module name. These properties will be injected
in the execution context prefixed by the module name. Some properties might be needed for
the configuration of somemodules. Please refer to themodules documentation formore infor-
mation.

• A bsp.xml file which provides additional information about the BSP implementation of Low
Level APIs.

This file must start with the node <bsp> . It can contain several lines
like this one: <nativeName=”A_LLAPI_NAME” nativeImplementation
name=”AN_IMPLEMENTATION_NAME”/>

where:

– A_LLAPI_NAME refers to a Low Level API native name. It is
specific to the MicroEJ C library which provides the Low Level API.

– AN_IMPLEMENTATION_NAME refers to the implementation name of the
Low Level API. It is specific to the BSP; and more specifically, to the C file which does the link
between the MicroEJ C library and the C driver.

These files will be converted into an internal format during the MicroEJ Platform build.

• Optional module specific files and folders

Modifying one of these files requires to build the Platform again.

Note: It is possible to quickly rebuild the Platform from the Platform Editor if only the Platform module configu-
ration has changed. Click on the Build Platform link on the Overview tab of the Platform Editor.

3.11. SDK 5 User Guide 1710

MicroEJ Documentation,

VEE Port Customization

The VEE Port configuration project can contain an optional dropins folder. The full content of
this folderwill be copied in theVEEPort during thebuild. This feature allows toaddoroverwrite
libraries, tools, etc. into the VEE Port.

The dropins folder organization should respect the PlatVEE Portform files and folders organi-
zation. For instance, the tools are located in the sub-folder tools . Launch a VEE Port build
without the dropins folder to see how the VEE Port files and folders are organized. Then fill the
dropins folder with additional features and build again the VEE Port to get a customized VEE
Port.

Files in the dropins folder have priority. If one file has the same path and name as a file already
installed in the VEE Port, the file from the dropins folder will be selected first.

The VEE Port build can also be customized by updating the configuration.xml file next to the

.platform file. This Ant script can extend one or several of the extension points available. By
default, you should not have to change the default configuration script.

Modifying one of these files requires to build the Platform again.

VEE Port Publication

The publication of the built VEE Port to a module repository is disabled by default. It can be
enabled by setting the skip.publish property to false in the module.properties file of the VEE
Port configuration project .

The publication is kept disabled by default in the project sources because developers usually
use the locally built VEE Port in the workspace. However, the publication is required in a Con-
tinuous Integration environment. This can be done by leaving the skip.publish property to
true in the project sources and by overwriting it in the command launched by the Continuous
Integration environment, for example:

mmm publish shared -Dskip.publish=false

If the VEE Port is configured with Full BSP connection, the build script can be launched to val-
idate that the BSP successfully compiles and links before the VEE Port is published. It can be
enabled by setting the com.microej.platformbuilder.bsp.build.enabled property to true in
the module.properties file of the VEE Port configuration project (defaults to false if not set).

BSP Connection

In order to build the Executable of an Application, the BSP Connection must be configured.
Refer to the BSP Connection section for more details.

3.11. SDK 5 User Guide 1711

MicroEJ Documentation,

Platform API Documentation

The Platform API documentation provides a comprehensive HTML Javadoc that combines all
the Foundation Library APIs.

It can be built using the following steps:

• Create a newmodule repository project.

• Enable module repository javadoc generation (see Generate Javadoc).

• Go to your Platform build directory and browse source/javaLibs and source/MICROJVM/
javaLibs directories. You will find Foundation Libraries implementations JAR files in the fol-
lowing pattern: <module_name>-<major>.<minor>.jar .

Example: EDC-1.3.jar : module_name = edc , major = 1 , minor = 3 .

• For each Foundation Library your want to include,

– Retrieve its api module in either the Central Repository, Developer Repository or your custom
repository. Most of the Foundation Library APIs provided by MicroEJ are available under the
ej.api organization.

Example: EDC is on the Central Repository (https://repository.microej.com/modules/ej/api/
edc/)

– Get the latest available patch version corresponding to your <major>.<minor> version. This
allows to benefit from the latest javadoc fixes and updates for the corresponding version.

Example: ej.api#edc#1.3.5 : patch``=``5

– Declare a dependency line in the module repository.

<dependency conf=”artifacts->*” transitive=
→˓”false” org=”<org>” name=”<module_name>” rev=”<major>.<minor>.<patch>” />

Example:

<dependency␣
→˓conf=”artifacts->*” transitive=”false” org=”ej.api” name=”edc” rev=”1.3.5” />

• Build the module repository.

The Platform API documentation is available in <module_repository_project>/target~/
artifacts/<module_repository_name>-javadoc.zip .

Link-Time Option

It is possible to define custom Application options that can be passed to the BSP through an ELF
symbol defined at link-time, hence the term link-time option. This allows to provide configura-
tion options to the Application developer without the need to rebuild the BSP source code.

To define a link-time option, first choose an option name with only alphanumeric characters (
[a-zA-Z][a-zA-Z0-9]* without spaces).

Proceed with the following steps by replacing [my_option] with your option name every-
where:

• Create a folder inside your VEE Port Customization part (e.g: [platform]-configuration/
dropins/scripts/init-[my_option])

3.11. SDK 5 User Guide 1712

https://repository.microej.com/modules/ej/api/edc/
https://repository.microej.com/modules/ej/api/edc/

MicroEJ Documentation,

• Create an init script file and put it inside (e.g: [platform]-configuration/dropins/scripts/
init-[my_option]/init-[my_option].xml file). Here is the init script file template content:

<project name=”[my_option]-init”>
<target name=”init/execution/[my_option]” extensionOf=”init/execution” if=”onBoard”>
<!-- Set option default value -->
<property name=”[my_option]” value=”0”/>

<!-- Create tmp dir -->
<local name=”link.files.dir”/>
<microejtempfile deleteonexit=”true” prefix=”link[my_option]” property=”link.files.dir”/>
<mkdir dir=”${link.files.dir}”/>
<!-- Get tmp link file name -->
<local name=”link.[my_option]”/>
<property name=”link.[my_option]” value=”${link.files.dir}/[my_option].lscf” />
<echoxml file=”${link.[my_option]}” append=”false”>
<lscFragment>
<defSymbol name=”[my_option]” value=”${[my_option]}” rootSymbol=”true”/>

</lscFragment>
</echoxml>
<!-- Add link file in linker's link files path -->
<augment id=”partialLink.lscf.path”>
<path location=”${link.files.dir}”/>
<path location=”${jpf.dir}/link”/>

</augment>
</target>

</project>

• In your BSP source code, define an ELF symbol [my_option] can then be used inside C files in
your BSP with:

// Declare the symbol as an extern global
extern int [my_option];

void my_func(void){
// Get the symbol value
int [my_option]_value = ((int)(&[my_option]));

// Get the symbol value
if([my_option]_value == 1){
...

}
else{
...

}
}

Warning: A Link-time option should avoid to be set to 0 . Some third-party linkers consider
such symbols as undefined, even if they are declared.

3.11. SDK 5 User Guide 1713

MicroEJ Documentation,

Test a VEE Port

VEE Port Qualification

The SDK provides the capability to test a VEE Port. While you can create your own tests (see
Create a VEE Port Test Suite), MicroEJ provides a set of tools and pre-defined projects aimed
at simplifying the steps for validating VEE Ports in the form of the VEE Port Qualification Tools
(PQT).

Please refer to the VEEPortQualification Tools README to learn how to setup and run this Qual-
ification process.

Create a VEE Port Test Suite

A VEE Port Test Suite is composed of two projects:

• theTest Suitemodule: theproject that contains test cases. Test cases arewritten in Junit. When
this project is built, it produces a versionned library. See Test Suite Versioning for available Test
Suite modules for the most common Packs provided by MicroEJ Corp.

• the Test Suite runner: the project that contains the configuration for its executionon a VEEPort.
When this project is built, it runs the Test Suite on a Device and generates the Test Suite report.

Note: Creating a VEE Port Test Suite requires SDK 5.6.0 or higher.

Create the Test Suite Module

The Test Suite module contains the tests of the Foundation Library to be qualified.

Create the Test Suite Module Project

A new Test Suite module is created using the microej-javaimpl Skeleton (see Foundation Li-
brary Implementation).

To create the Test Suite module, click on: File > New > Project… then select MicroEJ

> Module Project

Fill up the following fields of the form:

• Project name (e.g: myFoundationLib-testsuite).

• Organization (e.g: com.mycompany).

• Module (e.g: myFoundationLib-testsuite).

• Revision (version of your Test Suite module).

• Select the Skeleton: microej-javaimpl .

Then, create two test source folders:

• Right-click on your project.

• Click on: New > Source Folder .

3.11. SDK 5 User Guide 1714

https://github.com/MicroEJ/VEEPortQualificationTools

MicroEJ Documentation,

• Fill up the Folder name field of the form with: src/test/java and for the second folder: src/
test/resources .

You should get a Foundation Library Test Suite project that looks like:

Fig. 392: Foundation Library Test Suite Project Skeleton

Your Test Suite module project is created and ready to be setup.

Configure the Test Suite Module Project

Open the module.ivy file and follow steps below:

• Edit the module ivy-module > info > ea:build node to update rip.printableName :

<ea:build organisation=”com.is2t.
→˓easyant.buildtypes” module=”build-microej-javaimpl” microej.lib.name=”myFoundationLib-
→˓testsuite-1.0” rip.printableName=”myFoundationLib Test Suite Impl” revision=”5.2.+”>

• Add the following properties in the ivy-module > info node:

<ea:property name=”skip.test” value=”set”/>
<ea:property name=”target.main.classes” value=”${basedir}/target~/test/classes”/>
<ea:property name=”addon-processor.src.test.java.path.ref.name” value=”src.java.path”/>

• Update the JUnit dependency to:

<dependency org=”ej.library.test” name=”junit” rev=”1.7.1” conf=”default;test->*”/>

• Add a module.ant file at the root of the Test Suite project with the following content:

<project>
<target name=”BuildTestTarget”␣

→˓extensionOf=”abstract-compile:compile-ready” depends=”resources-std:copy-test-resources”>
<augment id=”src.java.path”>

<path location=”${basedir}/src/test/java” />
<path location=”${target}/adpgenerated/src-adpgenerated/junit/java”/>

(continues on next page)

3.11. SDK 5 User Guide 1715

MicroEJ Documentation,

(continued from previous page)

</augment>
</target>

</project>

Note: An error on module.ant file can occurred with message Target resources-std:copy-test-resources does
not exist in this project . Please ignore it.

Create a New Test Case

Right click on src/test/java , then click on New > Class . Fill Name: with the MyTest and
then click on Finish . Copy/paste the following example in MyTest.java file:

import org.junit.Assert;
import org.junit.Test;

public class MyTest {

@Test
public static void Test() {

Assert.assertTrue(true);
}

}

The console output on the Simulator for this test should be:

=============== [Initialization Stage] ===============
=============== [Launching on Simulator] ===============
OK: Test
PASSED: 1
=============== [Completed Successfully] ===============

SUCCESS

Build the Test Suite Module

Once the test cases are implemented, you can build themodule. The next step is to create a Test
Suite Runner. The Test Suite Runner will fetch the Test Suite Module dependency.

Create the Test Suite Runner

The Test Suite runner project contains configuration files for running a Test Suite module on a
Device using a VEE Port.

3.11. SDK 5 User Guide 1716

MicroEJ Documentation,

Create the Test Suite Runner Project

• To create the Test Suite runner project, click on: File > New > Other… > MicroEJ >
Module Project .

• Fill up the following fields of the form:

– Project name

– Organization

– Module

– Revision (version of your Test Suite module)

– Select the Skeleton: microej-testsuite

• Inside the module.ivy file, add the dependency to the Test Suite module as following:

<dependency org=”com.mycompany” name=
→˓”myFoundationLib-testsuite” rev=”0.1.0” conf=”test->default;provided->provided”/>

• Inside the module.ant , add the following ANT target to configure trace redirection options :

<target name=”tracefile:init” extensionOf=”abstract-test:test-ready”>
<!-- Set the launch.test.trace.file when the testsuite.trace.ip properties is not set -->
<condition property=”microej.testsuite.properties.launch.test.trace.file”>

<not>
<isset property=”microej.testsuite.properties.testsuite.trace.ip” />

</not>
</condition>

</target>

• Create the file override.module.ant at the root of the project. Add the following content to
configure the load of testsuite options:

<project name=”myFoundationlib.testsuite.override” xmlns:ac=”antlib:net.sf.antcontrib”>
<!-- Load options from 'local.properties' beside this file -->
<ac:if>

<available file=”local.properties” type=”file”/>
<ac:then>

<property file=”local.properties”/>
</ac:then>

</ac:if>
<!-- Load options from 'config.properties' beside this file -->
<property file=”config.properties”/>

</project>

• Create the following .properties files:

– {PROJECT_LOC}/validation/microej-testsuite-common.properties : see
microej-testsuite-common.properties template.

– {PROJECT_LOC}/config.properties : see config.properties template.

Note: {PROJECT_LOC} refers here to the location of your Test Suite runner project.

3.11. SDK 5 User Guide 1717

https://github.com/MicroEJ/VEEPortQualificationTools/blob/2.9.0/tests/core/java-testsuite-runner-core/validation/microej-testsuite-common.properties
https://github.com/MicroEJ/VEEPortQualificationTools/blob/2.9.0/tests/core/java-testsuite-runner-core/config.properties.tpl

MicroEJ Documentation,

Configure and Run the Test Suite

Follow the Run the FS Test Suite on ESP32-WROVER VEE Port tutorial to configure your VEE Port
and run the Test Suite on your Device.

Run the FS Test Suite on ESP32-WROVER VEE Port

This guide describes all the steps to configure and run a VEE Port Test Suite on a device using
the Port Qualification Tools.

The target device is the Espressif ESP32-WROVER-KIT V4.1 board and the Filesystem Test Suite
for FSmodule will be used as an example.

This guide should take 1hour tocomplete (excluding theVEEPort setup fromtheGettingStarted
page).

Prerequisites

This guide assumes the following:

• Good knowledge of theMicroEJ Glossary and Executable Build Workflow.

• MICROEJ SDK distribution 20.07 or more (see SDK Version).

• TheWROVER VEE Port has been properly setup (i.e., it can be used to generate aMono-Sandbox
Executable).

The instructions of this page can be adapted to run the test suite on any other VEE Port provid-
ing:

• An implementation of LLFS: File System version 1.0.2 in com.microej.pack#fs-4.0.3.

• A partial or full BSP Connection.

Note: This documentation can also be adapted to run other test suites in addition to the Filesystem Test Suite
presented here.

Introduction

This guide presents a local setup of the VEE Port Test Suite for the FS Foundation Library on a
concrete device (not on Simulator).

In essence, a Foundation Library provides an API to be used by an Application or an Add-On
Library.

3.11. SDK 5 User Guide 1718

https://github.com/MicroEJ/VEEPortQualificationTools
https://github.com/MicroEJ/Platform-Espressif-ESP-WROVER-KIT-V4.1/tree/1.6.2
https://repository.microej.com/modules/com/microej/pack/fs/4.0.3/

MicroEJ Documentation,

Fig. 393: MicroEJ Foundation Libraries, Add-On Libraries and Application

For example, the Java file systemAPI java.io.File is provided by theMicroEJ Foundation Library
namedFS. TheAbstractionLayerof eachFoundationAPImustbe implemented inC in theBoard
Support Package. The Test Suite is used to validate the C code implementation of the Abstrac-
tion Layer.

Import the Test Suite

Follow these steps to import the Filesystem Test Suite into the workspace from the Port Quali-
fication Tools:

• Clone or download the Port Qualitification Tools project 2.3.0.

• Select File > Import… .

• Select Existing Projects into Workspace .

• Set Select the root directory to the directory tests/fs in the Port Qualification Tools fetched
in the previous step.

• Ensure Copy projects into workspace is checked.

• Click on Finish .

The project java-testsuite-fs should now be available in the workspace.

Configure the Test Suite

Select the Test Suite Version

For a given Foundation Library version, a specific Test Suite version should be used to validate
the Abstraction Layer implementation. Please refer to Test Suite Versioning to determine the
correct Test Suite version to use.

On the WROVER VEE Port, the FS Test Suite version to use is specified in {VEE
Port}-configuration/testsuites/fs/README.md . The Test Suite version must be set in the
module.ivy of the java-testsuite-fs project (e.g. java-testsuite-fs/module.ivy). For example:

<dependency org=”com.microej.pack.fs” name=”fs-testsuite” rev=”3.0.3”/>

3.11. SDK 5 User Guide 1719

https://repository.microej.com/javadoc/microej_5.x/apis/java/io/File.html
https://repository.microej.com/modules/com/microej/pack/fs/
https://github.com/MicroEJ/VEEPortQualificationTools/blob/2.3.0/tests/fs
https://github.com/MicroEJ/VEEPortQualificationTools/blob/2.3.0/tests/fs
https://github.com/MicroEJ/VEEPortQualificationTools/releases/tag/2.3.0

MicroEJ Documentation,

Configure the VEE Port BSP Connection

Several properties must be defined depending on the type of BSP Connection used by the VEE
Port.

For aApplication, theseproperties are setusing the launcherof theapplication. For aTestSuite,
the properties are defined in a file named config.properties in the root folder of the Test Suite.
For example, see this example of config.properties file.

See BSP Connection for an explanation of the properties. See the comments in the file for a
details description of each properties. The microej.testsuite.properties.deploy.* and target.
platform.dir properties are required.

Configure Execution Trace Redirection

When the Test Suite is executed, the Test Suite Engine must read the trace to determine the
result of the execution. To do that, we will use the Serial to Socket Transmitter tool to redirect
the execution traces dumped to a COM port.

TheWROVERVEEPort used in this documentation is particular because theUARTport is already
used to flash the device. Thus, a separate UART port must be used for the trace output.

This VEE Port defines the option microej.testsuite.properties.debug.traces.uart to redirect
traces from standard input to UART.

See the Testsuite Configuration section of the WROVER VEE Port documentation for more de-
tails.

3.11. SDK 5 User Guide 1720

https://github.com/MicroEJ/VEEPortQualificationTools/blob/2.3.0/tests/fs/java/java-testsuite-fs/config.properties.tpl
https://github.com/MicroEJ/Platform-Espressif-ESP-WROVER-KIT-V4.1/tree/1.6.2

MicroEJ Documentation,

Start Serial To Socket

The Serial to Socket Transmitter tool can be configured to listen on a particular COM port and
redirect the output on a local socket. The properties microej.testsuite.properties.testsuite.
trace.ip and microej.testsuite.properties.testsuite.trace.port must be configured.

Follow these steps to create a launcher for Serial To Socket Transmitter:

• Select Run > Run Configurations… .

• Right-click on MicroEJ Tool > New .

• In the Execution tab:

– Set Name to Serial To Socket Transmitter .

– Select a VEE Port available in the workspace in Target > Platform .

– Select Serial To Socket Transmitter in Execution > Settings .

– Set the Output folder to the workspace.

• In the Configuration tab:

– Set the correct COM port and baudrate for the device in Serial Options .

– Set a valid port number in Server Options > Port . This port is the same as the one set in
config.properties as microej.testsuite.properties.testsuite.trace.port .

Configure the Test Suite Specific Options

Depending on the Test Suite and the specificities of the device, various properties may
be required and adjusted. See the file validation/microej-testsuite-common.properties
(for example https://github.com/MicroEJ/VEEPortQualificationTools/blob/2.3.0/tests/fs/java/
java-testsuite-fs/validation/microej-testsuite-common.properties) and the README of the
Test Suite for a description of each property.

On the WROVER VEE Port, the configuration files config.properties and
microej-testsuite-common.properties are provided in {VEE Port}-configuration/
testsuites/fs/ .

In config.properties , the property target.platform.dir must be set to the abso-
lute path to the VEE Port. For example C:/P0065_ESP32-WROVER-Platform/
ESP32-WROVER-Xtensa-FreeRTOS-platform/source .

3.11. SDK 5 User Guide 1721

https://github.com/MicroEJ/VEEPortQualificationTools/blob/2.3.0/tests/fs/java/java-testsuite-fs/validation/microej-testsuite-common.properties
https://github.com/MicroEJ/VEEPortQualificationTools/blob/2.3.0/tests/fs/java/java-testsuite-fs/validation/microej-testsuite-common.properties

MicroEJ Documentation,

Run the Test Suite

To run the Test Suite, right-click on the Test Suite module and select Build Module .

Configure the Tests to Run

It is possible to exclude some tests from being executed by the Test Suite Engine.

To speed-up the execution, let’s configure it to run only a small set of tests. In the following
example, only the classes that match TestFilePermission are executed. This configuration
goes into the file config.properties in the folder of the test suite.

Comma separated list of patterns of files that must be included
test.run.includes.pattern=**/Test*.class
test.run.includes.pattern=**/TestFilePermission*.class
Comma separated list of patterns of files that must be excluded (defaults to inner classes)
test.run.excludes.pattern=**/*$*.class

Several reasons might explain why to exclude some tests:

• Iterative development. Test only the Abstraction Layer that is currently being developed. The
full Test Suite must still be executed to validate the complete implementation.

• Known bugs in the Foundation Library. The latest version of the Test Suite for a given Foun-
dation Library might contain regression tests or tests for new features. If the VEE Port doesn’t
use the latest Foundation Library, then it can be necessary to exclude the new tests.

• Known bugs in the Foundation Library implementation. The project might have specific re-
quirements that prevent a fully compliant implementation of the Foundation Library.

Examine the Test Suite Report

Once the Test Suite is completed, open the HTML Test Suite Report stored in java-testsuite-fs/
target~/test/html/test/junit-noframes.html .

At the beginning of the file, a summary is displayed. Below, all execution traces for each test
executed are available.

If necessary, the binaries produced and ran on the device by the Test Suite Engine are available
in target~/test/xml/<TIMESTAMP>/bin/<FULLY-QUALIFIED-CLASSNAME>/
application.out .

The following image shows the test suite report fully passed:

3.11. SDK 5 User Guide 1722

MicroEJ Documentation,

3.11.14 How-to Guides

How To Add IAR to MICROEJ SDK Docker Image

This document presents how to create a Dockerfile with MICROEJ SDK version 5.x and
Cross-platform Build Tools for Arm to build a MicroEJ application. You can use this image in
your automated CI.

Prerequisites

• A recent version of IAR BXARM and its user licence.

This training was tested with MICROEJ SDK 5.8.1-jdk11 , IAR 9.30.1 , and Docker 24.0.6 .

Create the Dockerfile

Here is our final Dockerfile. We will explain each specific step below.

FROM microej/sdk:5.8.1-jdk11

USER root
SHELL [”/bin/bash”, ”-c”]

ARG IAR_BXARM_VERSION=9.30.1
ARG IAR_BXARM_PACKAGE=”bxarm-$IAR_BXARM_VERSION.deb”

COPY ressources/$IAR_BXARM_PACKAGE /tmp/$IAR_BXARM_PACKAGE
RUN apt-get update && apt-get␣
→˓install sudo libsqlite3-0 libxml2 tzdata dos2unix /tmp/$IAR_BXARM_PACKAGE -y && \

apt-get clean autoclean autoremove && rm -rf /var/lib/apt/lists/* /tmp/*.deb

ENV␣
→˓PATH=”/opt/iarsystems/bxarm/arm/bin/:/opt/iarsystems/bxarm/common/bin/:$PATH”
ENV IAR_LICENSE_SERVER=$IAR_LICENSE_SERVER_IP

Set workdir
(continues on next page)

3.11. SDK 5 User Guide 1723

https://docs.microej.com/en/latest/SDKUserGuide/
https://www.iar.com/products/architectures/arm/iar-build-tools-for-arm/

MicroEJ Documentation,

(continued from previous page)

WORKDIR ${HOME}

ADD run.sh /run.sh
RUN chmod a+x /run.sh

Good practice, switch back to user.
USER ${user}

ENTRYPOINT [”/run.sh”]

1. In a new directory create a file named Dockerfile .

2. We use MICROEJ SDK base image, they are available on docker hub. In your Dockerfile add this
code:

FROM microej/sdk:5.8.1-jdk11

3. Add IAR BXARM deb package in a directory named resources .

4. Add the package info to your Dockerfile (update the version with the one you want to use):

ARG IAR_BXARM_VERSION=9.30.1
ARG IAR_BXARM_PACKAGE=”bxarm-$IAR_BXARM_VERSION.deb”

5. Copy the package to a temporary directory.

COPY ressources/$IAR_BXARM_PACKAGE /tmp/$IAR_BXARM_PACKAGE

6. Install this package along with any others required packages.

RUN apt-get update && apt-get␣
→˓install sudo libsqlite3-0 libxml2 tzdata dos2unix /tmp/$IAR_BXARM_PACKAGE -y && \
apt-get clean autoclean autoremove && rm -rf /var/lib/apt/lists/* /tmp/*.deb

7. Set IAR path and license server address:

ENV␣
→˓PATH=”/opt/iarsystems/bxarm/arm/bin/:/opt/iarsystems/bxarm/common/bin/:$PATH”
ENV IAR_LICENSE_SERVER=$IAR_LICENSE_SERVER_IP

8. Finally create a run.sh script with the following content:

lightlicensemanager setup -s $IAR_LICENSE_SERVER
exec ”$@”

3.11.15 Release Notes

Starting from SDK version 5.0.0 , Architectures are distributed separately from the Integrated
Development Environment. Evaluation Architectures can be downloaded from the Architec-
tures Repository.

The SDK is now packaged into an Eclipse P2 repository (https://repository.microej.com/p2/
sdk), allowingpartial updates and installationonany compatible Eclipse version. Thehistorical
version (5) of MicroEJ is reused for the P2 repository delivery.

3.11. SDK 5 User Guide 1724

https://hub.docker.com/r/microej/sdk
https://repository.microej.com/modules/com/microej/architecture/
https://repository.microej.com/modules/com/microej/architecture/
https://repository.microej.com/p2/sdk
https://repository.microej.com/p2/sdk

MicroEJ Documentation,

MicroEJ Corp. continues to regularly build all-in-one packages, called Distributions, including
the SDK and dedicated OS installers. This distribution has a separate versioning, which follows
modern convention: [YY].[MM] .

3.11.16 SDK Distribution Changelog

[24.01] - 2024-01-31

Note: This release requires a JDK 11 and therefore an Architecture 7.17.0 or higher. Please refer to System Re-
quirements for more details.

• Included SDK 5.8.2.

• Enabled the “Terminate andRelaunchwhile launching” launcher option by defaultwhen a new
Workspace is created.

[23.07] - 2023-07-03

Note: This release requires a JDK 11 and therefore an Architecture 7.17.0 or higher. Please refer to System Re-
quirements for more details.

• Included SDK 5.8.0.

• Downgraded to Eclipse version 2022-03 to fix incompatibilities of components with JDK 11.

• Fixed no JDK found error when launching the installer in the case the JDK path has not been
set in the Windows registry.

[23.02] - 2022-02-28

Note: This release requires a JDK 11 and therefore an Architecture 7.17.0 or higher. Please refer to System Re-
quirements for more details.

• Included SDK 5.7.0.

• Updated to Eclipse version 2022-12 .

[22.06] - 2022-06-29

Note: This release requires a JDK 11 and therefore an Architecture 7.17.0 or higher. Please refer to System Re-
quirements for more details.

• Included SDK 5.6.0.

• Added support for macOS aarch64 (M1 chip).

• Updated to Eclipse version 2022-03 .

3.11. SDK 5 User Guide 1725

MicroEJ Documentation,

• Changed required Java Runtime to JDK 11 (JRE and other versions are not supported anymore).

[21.11] - 2021-11-15

Note: This release prepares for a future JRE 11 support. However, the only officially supported JRE version is still
JRE 8. Please refer to System Requirements for more details.

• Included SDK 5.5.0.

• Updated installer to accept both JRE 8 and JRE 11.

• Fixed error Error while loading manipulator when installing SDK updates on MacOS.

• Updated End User License Agreement.

[21.03] - 2021-03-25

• Included SDK 5.4.0.

• Updated End User License Agreement.

KNOWN ISSUES:

• The following error occurs when installing an SDK update on MacOS:

!MESSAGE Error while loading manipulator.
!STACK 0
java.lang.IllegalStateException: Error while loading manipulator.

at org.eclipse.equinox.
→˓internal.p2.touchpoint.eclipse.LazyManipulator.loadDelegate(LazyManipulator.java:64)

at org.eclipse.equinox.
→˓internal.p2.touchpoint.eclipse.LazyManipulator.getConfigData(LazyManipulator.java:117)

at org.eclipse.equinox.internal.p2.touchpoint.
→˓eclipse.actions.UninstallBundleAction.uninstallBundle(UninstallBundleAction.java:57)

at org.eclipse.equinox.internal.
→˓p2.touchpoint.eclipse.actions.UninstallBundleAction.execute(UninstallBundleAction.java:33)

at org.eclipse.equinox.internal.p2.
→˓engine.ParameterizedProvisioningAction.execute(ParameterizedProvisioningAction.java:42)

at org.eclipse.equinox.internal.p2.engine.Phase.mainPerform(Phase.java:186)
at org.eclipse.equinox.internal.p2.engine.Phase.perform(Phase.java:99)
at org.eclipse.equinox.internal.p2.engine.PhaseSet.perform(PhaseSet.java:50)
at org.eclipse.equinox.internal.p2.engine.Engine.perform(Engine.java:80)
at org.eclipse.equinox.internal.p2.engine.Engine.perform(Engine.java:48)
at org.eclipse.equinox.

→˓p2.operations.ProvisioningSession.performProvisioningPlan(ProvisioningSession.java:181)
at org.eclipse.

→˓equinox.p2.operations.ProfileModificationJob.runModal(ProfileModificationJob.java:76)
at org.eclipse.equinox.p2.operations.ProvisioningJob.run(ProvisioningJob.java:190)
at org.eclipse.core.internal.jobs.Worker.run(Worker.java:63)

The workaround is to replace /eclipse/plugins/ by /Eclipse/plugins/ (capital E) in
MicroEJ-SDK-21.03.app\Contents\Eclipse\eclipse.ini .

• See SDK 5.4.0 Known Issues section

3.11. SDK 5 User Guide 1726

MicroEJ Documentation,

[20.12] - 2020-12-11

• Included SDK 5.3.1

• Disabled Java version check when updating SDK (see known issues of SDK Distribution 20.10)

[20.10] - 2020-10-30

• Included SDK 5.3.0

• Updated to Eclipse version 2020-06

• Fixed low quality MacOS SDK icons

Note: Starting with this release, only 64bits JRE are supported because 32bits JRE support has been removed
since Eclipse version 2018-12 .

KNOWN ISSUES:

• Projects configured with Null Analysis must be updated to import EDC API 1.3.3 or higher in
order to avoid an Eclipse JDT builder error (see also this link for more details).

• The default settings file for connecting MicroEJ Central Repository is not automatically in-
stalled. To connect to the MicroEJ Central Repository, follow the procedure:

– For Windows, create the folder: C:\Users\%USERNAME%\.microej .

– For Linux, create the folder: /home/$USER/.microej .

– For macos, create the folder: /Users/$USER/.microej .

– Downloadand save this filemicroej-ivysettings-5.xml to thepreviously created .microej folder.

• By default, a check is done on the JRE version required by the plugins on install/update. Since
CDT requires JRE 11, it prevents to install/update a newer SDK version. The CDT documenta-
tion explains that this can be bypassed by disabling the option Windows > Preferences >
Install/Update > Verify provisioning operation is compatible with currently running JRE .

[20.07] - 2020-07-28

• IncludedMicroEJ SDK 5.2.0

• Updated the default microej repository folder name (replaced SDK version by the distribution
number)

• Added Dist. prefix in installer name (e.g. MicroEJ SDK Dist. 20.07) to avoid confusion
between SDK distribution vs SDK version

• Updated SDK End User License Agreement

• Disabled popupwindowwhen installing a SDK update site (allow to install unsigned content by
default)

3.11. SDK 5 User Guide 1727

https://repository.microej.com/modules/ej/api/edc/1.3.3/
https://bugs.eclipse.org/bugs/show_bug.cgi?id=566599
https://repository.microej.com/microej-ivysettings-5.xml

MicroEJ Documentation,

[19.05] - 2019-05-17

• Included SDK version 5.1.0

• Updated MicroEJ icons (16x16 and 32x32)

• Updated the publisher of Windows executables (MicroEJ instead of IS2T SA.)

• Updated the JRE link to download in case the default JRE is not compatible. (https://www.
java.com is deprecated)

[19.02] - 2019-02-22

• Updated to Eclipse Oxygen version 4.7.2

• Included SDK version 5.0.1

• Included Sonarlint version 4.0.0

3.11.17 SDK Changelog

[5.9.0] - 2024-07-23

General

• Hide MicroEJ project wizards when SDK 5 is installed in an Eclipse distribution including SDK 6
plugins.

MicroEJ Module Manager

General

• Upgraded Testsuite Engine to version 5.8.1 to separate test cases in the testsuite reports and
escape console output in HTML report to prevent code injection.

Build Types

• Setdefault Java test compile version to 1.8 for build-std-javalib and build-microej-mock build
types.

• New build types added:

– build-application#9.3.0

– build-firmware-singleapp#2.4.0

– build-microej-javaimpl#5.3.0

– build-microej-javalib#6.3.0

– build-microej-mock#2.2.1

– build-microej-testsuite#4.3.0

– build-std-javalib#3.3.1

3.11. SDK 5 User Guide 1728

MicroEJ Documentation,

[5.8.2] - 2024-01-31

General

• Added the --keep-going option for the MMM Command Line Interface to continue the build of
the meta-build when a subproject fails.

MicroEJ Module Manager

General

• Upgraded Front Panel plugin to version 6.3.0 to use FP framework dependency only by default.

Build Types

• Set default Java compile version to 1.8 for build-std-javalib build type.

• Fixed hardcoded dependency line in generated javadoc of artifacts repositories.

• Fixed incompatibility of the Artifact Checker with modules published with the SDK 6.

• New build types added:

– build-firmware-multiapp#8.2.0

– build-firmware-singleapp#2.3.0

– build-std-javalib#3.3.0

[5.8.1] - 2023-09-19

General

• Fixed unreadable tooltip because of black text on black background for the VEE Ports and Ar-
chitectures views.

• Fixed wrong value for the example in the StackOverflow error message in the Memory Map An-
alyzer plugin.

• Fixed Configuration tab content disappearing when navigating in Run Configurations.

MicroEJ Module Manager

General

• Remove legacy configuration fields for application project wizard (Application ID, Printable
Name and Description).

3.11. SDK 5 User Guide 1729

MicroEJ Documentation,

Build Types

• New build types added:

– None

Skeletons

• Add section in README of the build-addon-processor skeleton to document how to override a
generated source file.

[5.8.0] - 2023-07-03

General

• Added improvements in Outline view and Instance Browser view (new Owner column, new fil-
ters) of the Heap Viewer.

• Enabled on/off tags in the MicroEJ Java format profile.

• Updated Code template for Widget.handleEvent to use MWT 3 API.

• Fixed default Ivy settings file not created at startup.

• Fixed topological order in Application classpath.

MicroEJ Module Manager

General

Build Types

• Added Gradle dependency line in the generated Javadoc of an artifact repository (
build-artifact-repository build type).

• New build types added:

– build-artifact-repository#3.4.0

– build-izpack#3.3.0

Skeletons

• Removed META-INF folder from firmware-multiapp skeleton.

3.11. SDK 5 User Guide 1730

MicroEJ Documentation,

[5.7.0] - 2023-02-27

General

• Added latest BSD license and SDK/BSD license and deprecate ESR.

• Added the capability to resolve a Front Panel dependency as a project in the workspace, as any
other module type.

• Added the capability to resolve a Front Panel Mock dependency as a project in the workspace,
as any other module type.

• Added the support to fetch Mavenmodules fromMMM projects.

• Changed the errormessage displayed by theMemory Map Analyzer to show the real errormes-
sage.

• Fixed build error when an ADP is opened in the workspace.

• Fixed slowness issue during Ivy resolution on Windows with JDK 11.

• Fixed syntaxic coloration lost in an openedmodule.ivy file after an SDK restart.

• Fixed inadequate colors in editors and console in Dark theme.

• Fixed failing Ivy resolution after an SDK restart.

• Fixed the freeze of the Heap Analyzer when opening a large heap file or clicking on a large byte
array.

• Fixed error when building a VEE Port using the Build Platform button in the .platform file.

• Fixed “Resolve Foundation Library in workspace” option unchecked after closing and
re-opening the workspace.

• Fixed Addon Processor modules not resolved when opened in the workspace.

MicroEJ Module Manager

General

• Fixed release version of a runtime API module.

• Fixed build of a module that uses the obf-proguard plugin with JDK 11.

• Upgraded ProGuard to version 7.2.1 to support JDK 11.

• Fixed Application external jars resolution at compile time.

• Fixed resolution in workspace error depending on a Mock’s name.

• Fixed error message when an Easyant target is executed in a folder that does not contain a
module.ivy file.

3.11. SDK 5 User Guide 1731

MicroEJ Documentation,

Build Types

• Fixed build-std-javalib compilation with JDK 11.

• Fixed Artifact Checker’s execution on build-std-javalib .

• Fixed build-artifact-repository build type which couldn’t find the previous release of the
repository to merge it.

• New build types added:

– build-addon-processor#2.2.0

– build-application#9.2.0

– build-artifact-repository#3.3.0

– build-custom#2.2.0

– build-firmware-customizer#3.2.0

– build-firmware-multiapp#8.1.0

– build-firmware-singleapp#2.2.0

– build-izpack#3.2.0

– build-microej-extension#2.2.0

– build-microej-javaapi#5.2.0

– build-microej-javaimpl#5.2.0

– build-microej-javalib#6.2.0

– build-microej-mock#2.2.0

– build-microej-ri#3.2.0

– build-microej-testsuite#4.2.0

– build-product-java#2.2.0

– build-runtime-api#4.1.0

– build-std-javalib#3.2.0

Skeletons

• Aligned Kernel APIs dependencies between runtime-api and firmware-multiapp skeletons.

• Changed default compilation level to Java 8 for Mock projects.

• Fixed Build Executable options to make the “No BSP Connection” work.

3.11. SDK 5 User Guide 1732

MicroEJ Documentation,

[5.6.2] - 2022-08-31

General

• Fixed error when opening some heap dump files.

• Fixed error when saving a EJF file with the Font Designer.

MicroEJ Module Manager

General

• Fixed invalid module name when using spaces in the project name.

Skeletons

• Fixed wrong package name in the class generated when creating a firmware-multiapp project.

[5.6.1] - 2022-07-08

General

• Removed check on JRE version when opening a workspace.

[5.6.0] - 2022-06-29

General

• Added support for JDK 11.

• Changed Easyant targets executed by mmm build from clean,verify to clean,package .

• Upgraded Front Panel plugin to version 6.1.3 to remove warning on fp framework.

• Updated Workspace settings to ignore errors in Ant build files by default.

• Fixed error when opening a Heap Dump file not part of the workspace.

• Fixed error when opening a Map file not part of the workspace.

• Removed Resources Center view.

MicroEJ Module Manager

General

• Added the capability to override module organisation/name/revision with Build System Op-
tions.

• Added error message when using non-supported Eclipse Link Folders.

• Updated End User License Agreement.

3.11. SDK 5 User Guide 1733

MicroEJ Documentation,

• Fixed MMM failure when resolving a dependency with a version containing a number with 4
digits.

• Fixed errorwhenbuilding ameta-build projectwithpublic sub-modules andusing target verify
.

Build Types

• Added support for Kernel Runtime Environments (build-firmware-multiapp ,
build-runtime-api and build-application).

• Added option javadoc.modules.excludes to exclude modules from Javadoc generation when
building a module repository.

• New build types added:

– build-addon-processor#2.1.0

– build-application#9.1.0

– build-artifact-repository#3.2.0

– build-custom#2.1.0

– build-firmware-customizer#3.1.0

– build-firmware-multiapp#8.0.0

– build-firmware-singleapp#2.1.0

– build-izpack#3.1.0

– build-microej-extension#2.1.0

– build-microej-javaapi#5.1.0

– build-microej-javaimpl#5.1.0

– build-microej-javalib#6.1.0

– build-microej-mock#2.1.0

– build-microej-ri#3.1.0

– build-microej-testsuite#4.1.0

– build-product-java#2.1.0

– build-runtime-api#4.0.0

– build-std-javalib#3.1.0

Build Plugins

• Updated elf-utils plugin to load the ELF related tools from the architecture/platform.

3.11. SDK 5 User Guide 1734

MicroEJ Documentation,

Skeletons

• Added JUnit dependency to all Java module skeletons (including default JUnit tests pattern).

• Updated firmware-singleapp and firmware-multiapp skeletons for building the executable
by default.

• Updated Sandboxed Application skeleton (application) to be compatible with any Kernel
(based on KF FeatureEntryPoint).

[5.5.3] - 2022-05-03

MicroEJ Module Manager

• Fixed error Can't parse module descriptor when building a Module on Windows with a JDK
8.0.331+.

[5.5.2] - 2021-12-22

General

• Fixed Addon Processors of a project in a workspace being applied to others projects.

MicroEJ Module Manager

Build Plugins

• Updated Log4j in Artifact Checker and Cobertura plugins to version 2.17.0.

[5.5.1] - 2021-12-02

General

• Fixed wrong category name in New Project wizard.

[5.5.0] - 2021-11-15

Note: This release prepares for a future JRE 11 support. However, the only officially supported JRE version is still
JRE 8. Please refer to System Requirements for more details.

3.11. SDK 5 User Guide 1735

MicroEJ Documentation,

General

• Added Add-On Processor resolution in workspace.

• Updated tools for both JRE 8 and JRE 11 compatibility.

• Fixed corrupted font file created by the Font designer when importing large number of glyphs.

• Updated Architecture version check during Pack import (greaterOrEqual instead of
compatible). This allows to importArchitectureSpecific Pack and LegacyGeneric Pack on future
Architecture versions 8.x .

• Updated End User License Agreement.

MicroEJ Module Manager

• Added bin folder to .gitignore file of module natures Java project skeleton.

• AddedNull Analysis configuration to artifact-checker . Whenbuilding amodule repository, null
analysis configuration is only checkedon thehighestmodule version included in the repository.

• Added Eclipse Public License v2.0 to the list of default licenses allowed for artifact-checker .

• Clarified input messages of mmm init command.

• Updated artifact-checker plugin binding to target verify . This allow module checks to be
executed on builds triggered by a pull request (no publication).

• Fixed missing artifact-checker plugin to somemodule natures (custom , firmware-multiapp
, firmware-singleapp , microej-javaimpl , microej-mock , microej-testsuite , product-java).

• Fixed mmm run execution on a firmware-singleapp module (do not trigger the Firmware
build).

• Fixed kf-testsuite plugin test project build.

• Added support of branch analysis with Sonar.

• Added ability to package private dependencies to mock module natures (configuration
embedded).

• Added testsuite and javadoc plugin to firmware-singleapp module nature.

• Added ssh deployment to microej-kf-testsuite plugin.

• Updated firmware-multiapp to remove the bsp directory in Virtual Devices.

• Updated firmware-multiapp to allow Virtual Devices for launching a specific main class other
than the Kernel main class. This is useful for running JUnit tests using a Virtual Device instead
of a Platform.

• Updated firmware-multiapp to allowVirtual Devices for automatically launching a Sandboxed
Application project in the SDK.

• Updated firmware-multiapp to automatically configure the Virtual Device Kernel UID when a
Firmware is built.

• Fixed firmware-multiapp skeleton default dependencies with only modules available in Mi-
croEJ Central Repository.

• Fixed firmware-multiapp unexpected build error when no declared pre-installed Application.

3.11. SDK 5 User Guide 1736

MicroEJ Documentation,

• Fixed firmware-multiapp buildwhichmay fail anunexpected Unresolved Dependencies error
the first time, for Kernel APIsmodule dependencies (configuration kernelapi) or Virtual Device
specific modules dependencies (configuration default-vd).

• Fixed firmware-multiapp unexpected build error when no Application (.wpk file) found in the
dropins folder.

• Fixed firmware-multiapp unexpected build error when no declared pre-installed Application.

• Fixed firmware-singleapp and firmware-multiapp skeletonswrongpackage namegeneration
for the default Main class.

• Fixed artifact-repository changelog check for modules with a snapshot version.

• New build types added:

– build-addon-processor#2.0.0

– build-application#9.0.0

– build-artifact-repository#3.0.0

– build-custom#2.0.0

– build-firmware-customizer#3.0.0

– build-firmware-multiapp#7.0.0

– build-firmware-singleapp#2.0.0

– build-izpack#3.0.0

– build-microej-extension#2.0.0

– build-microej-javaapi#5.0.0

– build-microej-javaimpl#5.0.0

– build-microej-javalib#6.0.0

– build-microej-mock#2.0.0

– build-microej-ri#3.0.0

– build-microej-testsuite#4.0.0

– build-product-java#2.0.0

– build-runtime-api#3.0.0

– build-std-javalib#3.0.0

– microej-meta-build#3.0.0

[5.4.1] - 2021-04-16

Note: This release is both compatible with Eclipse version 2020-06 and Eclipse Oxygen, so it can still be installed
on a previous SDK Distribution.

3.11. SDK 5 User Guide 1737

MicroEJ Documentation,

MicroEJ Module Manager

• Fixed missing repository configuration in artifact-repository skeleton (this configuration is
required to include modules bundled in an other module repository)

• Fixed missing some old build types versions that were removed by error. (introduced in SDK
5.4.0 , please refer to the Known Issues section for more details)

• Fixed wrong version of module built in a meta-build (module was published with the module
version instead of the snapshot version)

• Fixed code coverage analysis on source code (besides on bytecode) thanks to the property cc.
src.folders (only for architectures in version 7.16.0 and beyond)

• New build types added:

– microej-meta-build#2.0.1

[5.4.0] - 2021-03-25

Note: This release is both compatible with Eclipse version 2020-06 and Eclipse Oxygen, so it can still be installed
on a previous SDK Distribution.

Known Issues

• Some older build types versions have been removed by error. Consequently, using SDK 5.4.0 ,
it may be not possible to build modules that have been created with an older SDK version (For
example, MicroEJ GitHub code). The list of missing build types:

– build-application 7.0.2

– build-microej-javalib 4.1.1

– build-firmware-singleapp 1.2.10

– build-microej-extension 1.3.2

General

• Added MicroEJ Module Manager Command Line Interface in Build Kit

• Added ignore optional compilation problems in Addon Processor generated source folders

• Added logs to Standalone Application build indicating the mapping of Foundation Libraries to
the Platform

• Updated End User License Agreement

• Added the latest HIL Engine API to mock-up skeleton (native resources management)

• Updated the Architecture import wizard to automatically accept Pack licenses when the Archi-
tecture license is accepted

3.11. SDK 5 User Guide 1738

https://github.com/MicroEJ/

MicroEJ Documentation,

MicroEJ Module Manager

General

• Added JSCH library to execute MicroEJ test suites on Device through ssh

• Added pre-compilation phase before executing Addon Processor to have compiled classes
available

• Updated thedefault settings file to importmodules fromMicroEJDeveloper repository (located
at ${user.dir}\.microej\microej-ivysettings-5.4.xml)

Build Types

• Updated all relevant build types to load the Platform using the platform configuration instead
of the test configuration:

– Sandboxed Application (application)

– Foundation Library Implementation (javaimpl)

– Addon Library (javalib)

– MicroEJ Testsuite (testsuite)

• Updated Module Repository to allow to partially include an Architecture module (eval and/or
prod)

• Fixed potential AddonProcessor error NoClassDefFoundError: ej/tool/addon/util/Message
depending on the resolution order

• Removed javadoc generation for microej-extension

• New build types added:

– build-application#8.0.0

– build-artifact-repository#2.3.0

– build-firmware-singleapp#1.4.0

– build-microej-extension#1.4.0

– build-microej-javaimpl#4.0.0

– build-microej-javalib#5.0.0

– build-microej-testsuite#3.0.0

Build Plugins

• Updated Addon Processor to fail the build when an error is detected. Error messages are
dumped to the build logs.

• Updated Platform Loader to handle Platformmodule (.zip file)

• UpdatedPlatformLoader tohandleVirtualDevicemodule (.vde file) declaredasadependency.
It worked before only by using the dropins folder.

• Updated Platform Loader to list the Platforms locations when too many Platformmodules are
detected

3.11. SDK 5 User Guide 1739

https://forge.microej.com/artifactory/microej-developer-repository-release/

MicroEJ Documentation,

Skeletons

• Fixed wrong README.md generation for artifact-repository skeleton

• Removeduseless files in microej-javaapi , microej-javaimpl and microej-extension skeletons
(intern changelog and .dbk file)

[5.3.1] - 2020-12-11

Note: This release is both compatible with Eclipse version 2020-06 and Eclipse Oxygen, so it can still be installed
on a previous SDK Distribution.

General

• Fixed missing default settings file for connecting MicroEJ Central Repository when starting a
fresh install (introduced in 5.3.0)

MicroEJ Module Manager

Build Plugins

• Fixed potential build error when computing Sonar classpath from dependencies (
ivy:cachepath task was sometimes using a wrong cache location)

Skeletons

• Fixed skeleton dependency to EDC API 1.3.3 to avoid an Eclipse JDT builder error when Null
Analysis is enabled (see known issues of SDK Distribution 20.10)

[5.3.0] - 2020-10-30

Note: This release is both compatible with Eclipse version 2020-06 and Eclipse Oxygen, so it can still be installed
on a previous SDK Distribution.

Known Issues

• Library module build may lead to unexpected Unresolved Dependencies error in some cases
(in sonar:init target / ivy:cachepath task). Workaround is to trigger the library build again.

3.11. SDK 5 User Guide 1740

https://repository.microej.com/modules/ej/api/edc/1.3.3/

MicroEJ Documentation,

General

• Fixed various plugins for Eclipse version 2020-06 compatibility (icons, project explorer menu
entries)

• Fixed closedmodule.ivy files after an SDK restart that were opened before

• Removed license check before launching an Application on Device

• Disabled Activate on new event option of the Error Log view to prevent popup of this view
when an internal error is thrown

• Removed license check before Platform build

• Updated filter of the Launch Group configuration (exclude the deprecated Eclipse CDT one)

• Fixed inclusion of mock project dependencies in launcher mock classpath

• Enhance errormessage in Platform editor (.platform files) when the required Architecture has
not been imported (displays Architecture information)

MicroEJ Module Manager

General

• Fixed workspace default settings file when clicking on the Default button

• First wrong resolved dependency when ChainResolver returnFirst option is enabled and the
module to resolve is already in the cache

• Fixed potential build module crash (Not comparable issue) when resolving module depen-
dencies across multiple configurations

Build Types

• Exclude packs from artifact checker when building a module repository

• Merged Foundation & Add-On Libraries javadoc when building a module repository

• Added Module dependency line for each type in module repository javadoc

• Added an option to skip deprecated types, fields, methods in module repository javadoc

• Allow to include or exclude Java packages in module repository javadoc

• Added an option skip.publish to skip artifacts publication in build-custom build type

• Allow to define Application options frombuild option using the platform-launcher.inject. pre-
fix

• Added generation and publication of code coverage report after a testsuite execution. The re-
port generation is enabled under the following conditions:

– at least one test is executed,

– tests are executed on Simulator,

– build option s3.cc.activated is set to true (default),

– the Platform is based on an Architecture version 7.12.0 or higher

3.11. SDK 5 User Guide 1741

https://ant.apache.org/ivy/history/2.5.0/resolver/chain.html

MicroEJ Documentation,

– if testing a Foundation Library (using microej-testsuite), build option microej.testsuite.cc.
jars.name.regex mustbe set tomatch the simplenameof the library being covered (e.g. edc-*.
jar or microui-*.jar)

• Fixed sonar false negative Null Analysis detection in some cases

• Added a better error message for Studio rebrand build when izpack.microej.product.location
option is missing

• Deprecated build-microej-ri and disabled documentation generation (useless docbook
toolchains have been removed to reduce the bundle size: -150MB)

• New build types added:

– build-artifact-repository#2.0.1

– build-custom#1.2.0

– build-firmware-singleapp#1.2.10

– build-microej-ri#2.4.0

Skeletons

• Fixed microej-mock content script initialization folder name

[5.2.0] - 2020-07-28

General

• Added Dist. prefix in default workspace and repository name to avoid confusion between SDK
distribution vs SDK version

• Replaced Version by Dist. in Help > About MicroEJ® SDK menu. The SDK version is
available in Installation Details view.

• Replaced IS2T S.A. and MicroEJ S.A. by MicroEJ Corp. in Help > About MicroEJ® SDK
menu.

• Updated Front Panel plugin to version 6.1.1

• Removed MicroEJ Copyright in Java class template and skeletons files

• Fixed Stopping a MicroEJ launch in the progress view doesn’t stop the launch

MicroEJ Module Manager

General

• Added a new configuration page (Window > Preferences > Module Manager). This page
is a merge of formerly named Easyant4Eclipse preferences page and Ivy Settings relevant
options for MicroEJ.

• Added Export > MicroEJ > Module Manager Build Kit wizard, to extract the files required
for automating MicroEJ modules builds out of the IDE.

3.11. SDK 5 User Guide 1742

MicroEJ Documentation,

• Added New > MicroEJ > Module Project wizard (formerly named New Easyant Project
), with module fields content assist and alphabetical sort of the skeletons list

• Added Import > MicroEJ > Module Repository wizard to automatically configure
workspace with a module repository (directory or zip file)

• Added NewMicroEJ Add-On Library Project wizard to simplify Add-On Library skeleton
project creation

• Updated the build repository (microej-build-repository.zip) to be self containedwith its owns
ivysettings.xml

• Updated Virtual Device Player (firmware-singleapp) launcher-windows.bat (use
launcher-windows-verbose.bat to get logs)

• Renamed the classpath container to Module Dependencies instead of Ivy

• Fixed Addon Processor src-adpgenerated folder generation when creating or importing a
project with the same name than a previously deleted one

• Fixed implementation of settings ChainResolver returnFirst option

• Fixed Ivy module resolution being blocked from time to time

Build Types

• Fixed meta build to publish correct snapshot revisions for built dependencies. (Indirectly fixes
ADP resolution issue when an Add-On Library and its associated Addon Processor were built
together using a meta build)

• Fixed potential infinite loop when building a Modules Repository with MMM semantic enabled

• Fixed javadoc not being generated in artifactory repository build when skip.javadoc is set to
false

• Added the capability to build partial modules repository, by using the user provided
ivysettings.xml file to check the repository consistency

• Added the possibility to partially extend the build repository in a module repository.
The build repository can be referenced by a file system resolver using the property
${microej-build-repository.repo.dir}

• Added the possibility to include a module repository into an other module repository (using
new configuration repository->*)

• Added the possibility to bundle a set of Virtual Devices when building a branded Studio. They
are automatically imported to the MicroEJ repository when booting on a newworkspace.

• Added the possibility to bundle a Module Repository when building a branded Studio. It is au-
tomatically imported and settings file is configured when booting on a newworkspace.

3.11. SDK 5 User Guide 1743

https://ant.apache.org/ivy/history/2.5.0/resolver/chain.html

MicroEJ Documentation,

Build Plugins

• Added variables @MMM_MODULE_ORGANISATION@ ,
@MMM_MODULE_NAME@ and @MMM_MODULE_VERSION@ for README.md file

• Fixed microej-kf-testsuite repository access issue (introduced in SDK 5.0.0).

• Fixed artifact-checker to accept revisions surrounded by brackets (as specified by https:
//keepachangelog.com/en/1.0.0/)

Skeletons

• Updated module.ivy indentation characters with tabs instead of spaces

• Updated CHANGELOG.md formatting

• Updated and standardized README.md files

• Updated dependencies in module.ivy to use the latest versions

• Added .gitignore to ignore the target~ and src-adpgenerated folder where the module is
built

• Added Sandboxed Application WPK dropins folder (META-INF/wpk)

• Removed conf provided in module.ivy for foundation libraries dependencies

• Remove MicroEJ internal site reference in module.ant file

• Fixed corrupted library workbenchExtension-api.jar in microej-extension skeleton

• Fixed corrupted library HILEngine.jar in microej-mock skeleton

• Fixed javadoc content issue in Main class firmware-singleapp skeleton

Misc

• Updated End User License Agreement

• Added support for generating Application Options in reStructured Text format

[5.1.2] - 2020-03-09

MicroEJ Module Manager

• Fixed potential build error when generating fixed dependencies file (fixdeps task was some-
times using a wrong cache location)

• Fixed topogical sort of classpath dependencies when building using Build Module (same as
in IvyDE classpath sorted view)

• Fixed resolution of modules with a version 0.m.p when transitively fetched (an error was
thrown with the range [1.m.p-RC,1.m.(p+1)-RC[)

• Fixed missing classpath dependencies to prevent an error when building a standard JAR with
JUnit tests

3.11. SDK 5 User Guide 1744

https://keepachangelog.com/en/1.0.0/
https://keepachangelog.com/en/1.0.0/

MicroEJ Documentation,

[5.1.1] - 2019-09-26

General

• Fixed files locked in Platform in workspace projects preventing the Platform from being
deleted or rebuilt

[5.1.0] - 2019-05-17

General

• Updated MicroEJ icons (16x16 and 32x32)

• Fixed potential long-blocking operation when launching an application on a Virtual Device on
Windows 10 (Windows defender performs a slow analysis on a zip file when it is open for the
first time since OS startup)

• Fixed missing ADP resolution on a fresh MicroEJ installation

• Fixed ADP source folders order generation in .classpath (alphabetical sort of the ADP id)

• Fixed Run As… > MicroEJ Application automatic launcher creation: when selecting a
Platform in workspace , an other platform of the repository was used instead

• Fixed Memory Map Analyzer load of mapping scripts from Virtual Devices

• Fixed MMM and ADP resolution when importing a zip project in a fresh MicroEJ install

• Fixed ADP crash when a project declares dependencies without a source folder

• Fixed inability to debug an application on a Virtual Device if option execution.mode was spec-
ified in firmware build properties (now SDK options cannot be overridden)

• Updated Front Panel plugin to comply with the new Front Panel engine

– The Front Panel engine has been refactored and moved from UI Pack to Architecture (UI pack
12.0.0 requires Architecture version 7.11.0 or higher)

– New Front Panel Project wizard now generates a project skeleton for this new Front Panel
engine, based on MMM

– Legacy Front Panel projects for UI Pack v11.1.0 or higher are still valid

• Updated Virtual Device builder to speed-up Virtual Device boot time (pre-installed Applications
are now extracted at build time)

• Fixed inability to select a Platform in workspace in a MicroEJ Tool launch configuration

• Fixed broken title in MicroEJ export menu (Platform Export)

3.11. SDK 5 User Guide 1745

MicroEJ Documentation,

MicroEJ Module Manager

Build Plugins

• Added a new option application.project.dir passed to launch scripts with the workspace
project directory

• Updated MMM to throw a non ambiguous error message when a module.ivy configured for
MMM declares versions with legacy Ivy range notation

• Updated MicroEJ Central Repository cache directory to ${user.dir}\.microej\caches\
repository.microej.com-[version] instead of ${user.dir}\.ivy2

• Updated Update Module Dependencies... tobedisabledwhen module.ivy cannotbe loaded.
Themenu entry is now grayed when the project does not declare an IvyDE classpath container

• Fixed wrong resolution order when a module is both resolved in the repository and the
workspace (theworkspacemodulemust always take precedence to themodule resolved in the
repository)

• Fixed useless unknown resolver trace when cache is used by multiple Ivy settings configura-
tions with different resolver names.

• Fixed slow Add-On Processor generation. The classpath passed to ADPmodules could contain
the same entry multiple times, which leads each ADP module to process the same classpath
multiple times.

• Fixed misspelled recommendation message when a build failed

• Fixed Update Module Dependencies... tool: wrong ej:match=”perfect” added where it was
expected to be compatible

• Fixed Update Module Dependencies... tool: parse errorwhen module.ivy contains <artifact
type=”rip”/> element

• Fixed resolution and publication of a module declared with an Ivy branch

• Fixed character '-' rejected in module organisation (according to MMM specification 2.0-B)

• Fixed ADP resolution error when the Add-On Processor module was only available in the cache

• Fixed potential build crash depending on the build kit classpath order (error was This module
requires easyant [0.9,+])

• Fixed product-java broken skeleton

Build Types

• Updated Platform Loader error message when the property platform-loader.target.platform.
dir is set to an invalid directory

• Fixed meta build property substitution in *.modules.list files

• Fixed missing publications for README.md and CHANGELOG.md files

• Update skeletons to fetch latest libraries (Wadapps Framework v1.10.0 and Junit v1.5.0)

• Updated README.md publication to generate MMM usage and the list of Foundation Li-
braries dependencies

• Added a new build nature for building platform options pages (microej-extension)

3.11. SDK 5 User Guide 1746

MicroEJ Documentation,

• Updated Virtual Device builder to speed-up Virtual Device boot time (pre-installed Applications
are now extracted at build time)

• Fixed Virtual Device Player builder (dependencies were not exported into the zip file) and up-
dated firmware-singleapp skeleton with missing configurations

Skeletons

• Updated CHANGELOG.md based on Keep a Changelog specification (https://
keepachangelog.com/en/1.0.0/)

• Updated offline module repository skeleton to fetch in a dedicated cache directory under
${user.dir}/.microej/caches

[5.0.1] - 2019-02-14

General

• Removed Wadapps Code generation (see migration notes below)

• Added support for MicroEJ Module Manager semantic (see migration notes below)

• Added a dedicated view for Virtual Devices in MicroEJ Preferences

• Removed Platform related views andmenus in the SDK (Import/Export and Preferences)

• Added Studio rebranding capability (product name, icons, splash screen and installer for Win-
dows)

• Added a newmeta build version, with simplified syntax for multi-projects build (see migration
notes below)

• Added a skeleton for building offline module repositories

• Added support for importing extended characters in Fonts Designer

• Allow to import Virtual Devices with .vde extension (*.jpf import still available for backward
compatibility)

• Removed legacy selection for Types, Resources and Immutables in MicroEJ Launch Configura-
tion (replaced by *.list files since MicroEJ 4.0)

• Enabled IvyDE workspace dependencies resolution by default

• Enabled MicroEJ workspace Foundation Libraries resolution by default

• Added possibility for Architectures to check for a minimum required version of SDK (sdk.min.
version property)

• Updated New Standalone Application Project wizard to generate a Mono-Sandbox Exe-
cutable skeleton

• Updated Virtual Device Builder to manage Sandboxed Applications (compatible with Architec-
tures Products *_7.10.0 or newer)

• Updated Virtual Device Builder to include kernel options (now options are automatically filled
for the application developer on Simulator)

3.11. SDK 5 User Guide 1747

https://keepachangelog.com/en/1.0.0/
https://keepachangelog.com/en/1.0.0/

MicroEJ Documentation,

MicroEJ Module Manager

Build Plugins

• Added IvyDE resolution from properties defined in Windows > Preferences > Ant >
Runtime > Properties

• Fixed Illegal character in path error that may occur when running an Add-On Processor

• Fixed IvyDE crash when defining an Ant property file with Eclipse variables

Build Types

• Kept only latest build types versions (skeletons updated)

• Updatedmetabuild to execute tests by default for private module dependencies

• Removed remaining build dependencies to JDK (Java code compiler and Javadoc processors).
All MicroEJ code is now compiled using the JDT compiler

• Introduced a new plugin for executing custom testsuite using MicroEJ testsuite engine

• FixedMalformedURLException error in Easyant trace

• Fixed Easyant build crash when an Ivy settings file contains a cache definitions with a wildcard

• Updated PlatformBuilder to keep track in the Platformof the architecture onwhich it has been
built (architecture.properties)

• Updated Virtual Device Builder to generate with .vde extension

• Updated Multi-Sandbox Executable Builder to embed (Sim/Emb) specific modules (Add-On li-
braries and pre-installed Applications)

• Fixed build-microej-ri v1.2.1 missing dependencies (embedded in SDK 4.1.5)

Skeletons

• Updated all skeletons: migrated to latest build types, added more comments, copyright
cleanup and configuration for MicroEJ Module Manager semantic)

• Added the latest HIL Engine API to mock-up skeleton (Start and Stop listeners hooks)

3.11.18 Build Types per SDK

• SDK 5.9.0

– build-addon-processor#2.2.0

– build-application#9.3.0

– build-artifact-repository#3.4.0

– build-custom#2.2.0

– build-firmware-customizer#3.2.0

– build-firmware-multiapp#8.2.0

3.11. SDK 5 User Guide 1748

MicroEJ Documentation,

– build-firmware-singleapp#2.4.0

– build-izpack#3.3.0

– build-microej-extension#2.2.0

– build-microej-javaapi#5.2.0

– build-microej-javaimpl#5.3.0

– build-microej-javalib#6.3.0

– build-microej-mock#2.2.1

– build-microej-ri#3.2.0

– build-microej-testsuite#4.3.0

– build-product-java#2.2.0

– build-runtime-api#4.1.0

– build-std-javalib#3.3.1

– microej-meta-build#3.0.0

• SDK 5.8.2

– build-addon-processor#2.2.0

– build-application#9.2.0

– build-artifact-repository#3.4.0

– build-custom#2.2.0

– build-firmware-customizer#3.2.0

– build-firmware-multiapp#8.2.0

– build-firmware-singleapp#2.3.0

– build-izpack#3.3.0

– build-microej-extension#2.2.0

– build-microej-javaapi#5.2.0

– build-microej-javaimpl#5.2.0

– build-microej-javalib#6.2.0

– build-microej-mock#2.2.0

– build-microej-ri#3.2.0

– build-microej-testsuite#4.2.0

– build-product-java#2.2.0

– build-runtime-api#4.1.0

– build-std-javalib#3.3.0

– microej-meta-build#3.0.0

• SDK 5.8.0 and SDK 5.8.1

– build-addon-processor#2.2.0

– build-application#9.2.0

3.11. SDK 5 User Guide 1749

MicroEJ Documentation,

– build-artifact-repository#3.4.0

– build-custom#2.2.0

– build-firmware-customizer#3.2.0

– build-firmware-multiapp#8.1.0

– build-firmware-singleapp#2.2.0

– build-izpack#3.3.0

– build-microej-extension#2.2.0

– build-microej-javaapi#5.2.0

– build-microej-javaimpl#5.2.0

– build-microej-javalib#6.2.0

– build-microej-mock#2.2.0

– build-microej-ri#3.2.0

– build-microej-testsuite#4.2.0

– build-product-java#2.2.0

– build-runtime-api#4.1.0

– build-std-javalib#3.2.0

– microej-meta-build#3.0.0

• SDK 5.7.0

– build-addon-processor#2.2.0

– build-application#9.2.0

– build-artifact-repository#3.3.0

– build-custom#2.2.0

– build-firmware-customizer#3.2.0

– build-firmware-multiapp#8.1.0

– build-firmware-singleapp#2.2.0

– build-izpack#3.2.0

– build-microej-extension#2.2.0

– build-microej-javaapi#5.2.0

– build-microej-javaimpl#5.2.0

– build-microej-javalib#6.2.0

– build-microej-mock#2.2.0

– build-microej-ri#3.2.0

– build-microej-testsuite#4.2.0

– build-product-java#2.2.0

– build-runtime-api#4.1.0

– build-std-javalib#3.2.0

3.11. SDK 5 User Guide 1750

MicroEJ Documentation,

– microej-meta-build#3.0.0

• SDK 5.6.2, 5.6.1 and SDK 5.6.0

– build-addon-processor#2.1.0

– build-application#9.1.0

– build-artifact-repository#3.2.0

– build-custom#2.1.0

– build-firmware-customizer#3.1.0

– build-firmware-multiapp#8.0.0

– build-firmware-singleapp#2.1.0

– build-izpack#3.1.0

– build-microej-extension#2.1.0

– build-microej-javaapi#5.1.0

– build-microej-javaimpl#5.1.0

– build-microej-javalib#6.1.0

– build-microej-mock#2.1.0

– build-microej-ri#3.1.0

– build-microej-testsuite#4.1.0

– build-product-java#2.1.0

– build-runtime-api#4.0.0

– build-std-javalib#3.1.0

– microej-meta-build#3.0.0

• SDK 5.5.3, SDK 5.5.2, SDK 5.5.1 and SDK 5.5.0

– build-addon-processor#2.0.0

– build-application#9.0.0

– build-artifact-repository#3.0.0

– build-custom#2.0.0

– build-firmware-customizer#3.0.0

– build-firmware-multiapp#7.0.0

– build-firmware-singleapp#2.0.0

– build-izpack#3.0.0

– build-microej-extension#2.0.0

– build-microej-javaapi#5.0.0

– build-microej-javaimpl#5.0.0

– build-microej-javalib#6.0.0

– build-microej-mock#2.0.0

– build-microej-ri#3.0.0

3.11. SDK 5 User Guide 1751

MicroEJ Documentation,

– build-microej-testsuite#4.0.0

– build-product-java#2.0.0

– build-runtime-api#3.0.0

– build-std-javalib#3.0.0

– microej-meta-build#3.0.0

• SDK 5.4.1

– build-addon-processor#1.0.3

– build-application#8.0.0

– build-artifact-repository#2.3.0

– build-custom#1.2.0

– build-firmware-customizer#2.0.1

– build-firmware-multiapp#5.1.2

– build-firmware-singleapp#1.4.0

– build-izpack#2.0.1

– build-microej-extension#1.4.0

– build-microej-javaapi#4.0.4

– build-microej-javaimpl#4.0.0

– build-microej-javalib#5.0.0

– build-microej-mock#1.0.3

– build-microej-ri#2.4.0

– build-microej-testsuite#3.0.0

– build-product-java#1.2.4

– build-runtime-api#2.0.2

– build-std-javalib#2.0.1

– microej-meta-build#2.0.1

• SDK 5.4.0

– build-addon-processor#1.0.3

– build-application#8.0.0

– build-artifact-repository#2.3.0

– build-custom#1.2.0

– build-firmware-customizer#2.0.1

– build-firmware-multiapp#5.1.2

– build-firmware-singleapp#1.4.0

– build-izpack#2.0.1

– build-microej-extension#1.4.0

– build-microej-javaapi#4.0.4

3.11. SDK 5 User Guide 1752

MicroEJ Documentation,

– build-microej-javaimpl#4.0.0

– build-microej-javalib#5.0.0

– build-microej-mock#1.0.3

– build-microej-ri#2.4.0

– build-microej-testsuite#3.0.0

– build-product-java#1.2.4

– build-runtime-api#2.0.2

– build-std-javalib#2.0.1

– microej-meta-build#2.0.0

• SDK 5.3.1 and SDK 5.3.0

– build-addon-processor#1.0.3

– build-application#7.0.2

– build-artifact-repository#2.0.1

– build-custom#1.2.0

– build-firmware-customizer#2.0.1

– build-firmware-multiapp#5.1.2

– build-firmware-singleapp#1.2.10

– build-izpack#2.0.1

– build-microej-extension#1.3.2

– build-microej-javaapi#4.0.4

– build-microej-javaimpl#3.2.2

– build-microej-javalib#4.1.1

– build-microej-mock#1.0.3

– build-microej-ri#2.4.0

– build-microej-testsuite#2.2.2

– build-product-java#1.2.4

– build-runtime-api#2.0.2

– build-std-javalib#2.0.1

– microej-meta-build#2.0.0

• SDK 5.2.0

– build-addon-processor#1.0.3

– build-application#7.0.2

– build-artifact-repository#1.6.2

– build-custom#1.1.3

– build-firmware-customizer#2.0.1

– build-firmware-multiapp#5.1.2

3.11. SDK 5 User Guide 1753

MicroEJ Documentation,

– build-firmware-singleapp#1.2.9

– build-izpack#2.0.1

– build-microej-extension#1.3.2

– build-microej-javaapi#4.0.4

– build-microej-javaimpl#3.2.2

– build-microej-javalib#4.1.1

– build-microej-mock#1.0.3

– build-microej-ri#2.3.1

– build-microej-testsuite#2.2.2

– build-product-java#1.2.4

– build-runtime-api#2.0.2

– build-std-javalib#2.0.1

– microej-meta-build#2.0.0

• SDK 5.1.2, SDK 5.1.1 and SDK 5.1.0

– build-addon-processor#1.0.3

– build-application#7.0.2

– build-artifact-repository#1.6.0

– build-custom#1.1.3

– build-firmware-customizer#2.0.1

– build-firmware-multiapp#5.1.2

– build-firmware-singleapp#1.2.9

– build-izpack#2.0.1

– build-microej-extension#1.3.2

– build-microej-javaapi#4.0.4

– build-microej-javaimpl#3.2.2

– build-microej-javalib#4.1.1

– build-microej-mock#1.0.3

– build-microej-ri#2.3.1

– build-microej-testsuite#2.2.2

– build-product-java#1.2.4

– build-runtime-api#2.0.2

– build-std-javalib#2.0.1

– microej-meta-build#2.0.0

3.11. SDK 5 User Guide 1754

MicroEJ Documentation,

3.11.19 Migration Notes

From 5.2.x to 5.3.x or more

This section applies if MicroEJ SDK 5.3.x is started on aworkspace that was previously created
using MicroEJ SDK 5.2.x .

Workspacemigration warning

Starting with the MicroEJ SDK Distribution 20.10, when opening a workspace which has been
created with an older MicroEJ Distribution, a message is displayed with the following warning:

The workspace was written with an older version.
→˓ Continue and update workspace which may make it incompatible with older versions?

This is a generic warning from Eclipse which can be safely ignored as long as you don’t intend
to open it back with an older MicroEJ SDK Distribution then.

From 5.1.x to 5.2.x

This section applies if MicroEJ SDK 5.2.x is started on aworkspace that was previously created
using MicroEJ SDK 5.1.x .

Enable NewWizards Shortcuts in MicroEJ Perspective

Eclipse perspective settings are stored in the workspace metadata, so the new wizards short-
cuts (Add-On Library Project and Module Project) are not visible in the File > New
menu.

The MicroEJ perspective must be reset to its default settings as following:

• Click on Windows > Perspective > Open Perspective > Other… menu

• Select MicroEJ perspective

• Click on Windows > Perspective > Reset Perspective… menu

• Click on Yes button to accept to reset the MicroEJ perspective to its defaults.

The new wizards shortcuts are now visible into File > New menu.

Re-enable the Ivy Preferences Pages (Advanced Use)

The original Window > Preferences > Ivy pages can be re-enabled as following:

• Close all running instances of the SDK

• Edit MicroEJ-SDK.ini and add the property -Dorg.apache.ivy.showAdvancedPrefs=true

• Start the SDK again

• Go to Window > Preferences > Module Manager page

3.11. SDK 5 User Guide 1755

MicroEJ Documentation,

A new link Ivy settings should appear on the bottom of the page. It opens a popup window
with the original Ivy preferences pages.

From 4.1.x to 5.x

This section applies if MicroEJ SDK 5.x is started on a workspace that was previously created
using MicroEJ SDK 4.1.x .

Wadapps Application Update

The Wadapps code generator has been moved from IDE to an Addon Processor coming with
ej.library.wadapps.framework module (v1.9.0 or higher is required).

A Wadapps Application Project can be updated as follows:

• Right-click on the project, then Configure > Remove Sandboxed Application Nature

• Right-click on the project, then Configure > Add Sandboxed Application Nature

• Update module.ivy dependency to fetch ej.library.wadapps.framework version 1.9.0 (or
performMicroEJ Module Manager update as defined below)

• Delete remaining folder src/.generated~ if any

• Check that project compiles and folder src-adpgenerated/wadapps is generated

MicroEJ Module Manager Update

It is highly recommended to migrate module.ivy to the MicroEJ Module Manager semantic,
since the default Ivy resolution will be nomore maintained in future versions.

The module.ivy can be updated as follows:

• Right-click on module.ivy , then Update Module Dependencies…

This has for effect to both migrate the module.ivy to the MicroEJ Module Manager semantic
and also to update dependencies version to the latest available in the target repository.

Meta build Project Update

A project using microej-meta-build version 1.x can be updated to version 2.x as follows:

• Edit module.ivy

– Replace the microej-meta-build version by 2.0.+

– Update all properties declaration to append the metabuild.inject. prefix (e.g. <ea:property
name=”skip.test” value=”true” /> must be updated to <ea:property name=”metabuild.
inject.skip.test” value=”true” />)

– Optionally remove or comment the root folder declaration as it is the default. (<ea:property
name=”metabuild.root” value=”..” />)

3.11. SDK 5 User Guide 1756

MicroEJ Documentation,

• Delete module.properties . It only contains the property easyant.fork.build=true . This prop-
erty is now automatically set by easyant-build-component since version 1.12.0 . Otherwise
it must be explicitly injected by the build system as an Ant property: easyant.inject.easyant.
fork.build=true

• Extract from override.module.ant the projects declarations lines:

– Extract the project declarations of local.submodule.dirs.id into a new file named private.
modules.list (one project per line)

– Extract the project declarations of submodule.dirs.id into a new file names public.modules.
list (one project per line)

• Delete override.module.ant

The new file system structure shall look like:

metabuild-project
module.ivy
private.modules.list
public.modules.list

3.12 Get Support

If any questions, the best starting point is to consult the MicroEJ Forum. Feel free to create a
new topic if there is no relevant content for your issue. MicroEJ Corp. engineers are listening to
the forum activity, so you can expect to get a quick reply.

Otherwise, you can contact our support team.

In both cases, please provide as much information as possible on your installed environment
(the table below is an example):

Delivery Name
MicroEJ SDK Distribution 20.07 / Version 5.2.0 (see SDK Version)
MicroEJ Architecture ARM Cortex-M4 / IAR / Evaluation | Production (see MicroEJ Architecture)

version XYZ
Module Repository https://repository.microej.com/packages/repository/2.5.0/microej-5_

0-2.5.0.zip (see Central Repository)
C compiler IAR 8.40.1
Host Operating System Windows 10 (see System Requirements)

3.13 About MicroEJ

MicroEJ’s mission is to democratize virtualization and Object Oriented Programming (OOP) to
the embedded world. These two technologies, widely used in computers and smartphones,
radically simplifies how device software is built, from prototyping to hardware choice, by inte-
grating simulation, systemic software reuse, modularity, agility, continuous integration, auto-
mated testing and software component update in the development process.

The virtualized environment provided by MICROEJ VEE on-device platform allows for soft-
ware development on virtual devices, exact “virtual twins” of real electronic configurations.

3.12. Get Support 1757

https://forum.microej.com/
https://www.microej.com/contact/#form_2
https://repository.microej.com/packages/repository/2.5.0/microej-5_0-2.5.0.zip
https://repository.microej.com/packages/repository/2.5.0/microej-5_0-2.5.0.zip

MicroEJ Documentation,

Since several configurations can be tested and evaluated within days, it is therefore much eas-
ier to build several prototypes while capitalizing on the code that has already been built as
“ready-to-use” binary software assets.

MicroEJ also offers an integrated development environment, called MICROEJ SDK, which pro-
vides one of the widest ranges of standard and specialized tools and libraries, making it possi-
ble to easily develop applications implementing IoT connectivity, graphical interfaces, security,
and real-time processing of data (Edge Computing).

Browse this documentation to discover MicroEJ technology, learn about application and plat-
form development, and begin your coding journey thanks to a comprehensive range of dedi-
cated training courses.

For more information about MicroEJ, go to: https://www.microej.com/.

3.13. About MicroEJ 1758

https://www.microej.com/

	Navigation
	Useful Links
	Useful Resources
	MicroEJ Glossary
	Overview
	What is MicroEJ?
	MICROEJ VEE
	MICROEJ SDK
	Executable Build Workflow

	Getting Started
	VEE Ports for Evaluation
	i.MX RT1170 Evaluation Kit
	Prerequisites
	Environment Setup
	Install MICROEJ SDK 6
	Install West
	Get the i.MX RT1170 VEE Port project

	Set up the i.MX RT1170 VEE Port project on your IDE
	Import the Project

	Accept the MICROEJ SDK EULA
	Run an Application on the Virtual Device
	Well Done!
	Run an Application on the i.MX RT1170 Evaluation Kit
	Environment Setup
	MCUXPresso SDK Setup
	Install MCUXPresso SDK
	Add GNU ARM Embedded Toolchain Environment variable
	Install Make
	Add the Flashing Tool Environment variable
	Hardware Setup
	Build the Executable for i.MX RT1170 Evaluation Kit
	Flash the Application on the i.MX RT1170 Evaluation Kit

	Modify the Java Application
	Going Further

	i.MX93 Evaluation Kit
	Prerequisites
	Environment Setup
	Install MICROEJ SDK 6
	Get Example-Java-Widget

	Set up the Application on your IDE
	Import the Project
	Select the VEE Port

	Accept the MICROEJ SDK EULA
	Run an Application on the Virtual Device
	Well done!
	Run an Application on i.MX93 Evaluation Kit
	Environment Setup
	Install the Yocto SDK
	Install Required Packages
	Flash the image on an SD card
	Linux
	Windows
	Hardware Setup
	Configure boot
	LVDS display support
	Build the Executable for i.MX93 Evaluation Kit
	Run the Application on the i.MX93 Evaluation Kit

	Modify the Java Application
	Going Further

	STM32F7508-DK Evaluation Kit
	Prerequisites
	Environment Setup
	Install MICROEJ SDK 6

	Set up the Application on your IDE
	Import the Project

	Accept the MICROEJ SDK EULA
	Run an Application on the Virtual Device
	Well Done!
	Run an Application on STM32F7508-DK Evaluation Kit
	Environment Setup
	Install the STM32CubeIDE software
	Hardware Setup
	Build the Executable for the STM32F7508-DK Evaluation Kit
	Flash the Application on the STM32F7508-DK Evaluation Kit

	Modify the Java Application
	Going Further

	VEE Port Examples
	i.MX RT595 Evaluation Kit
	Prerequisites
	Environment Setup
	Install MICROEJ SDK 6
	Get Demo-Wearable-VG

	Set up the Application on your IDE
	Import the Project

	Accept the MICROEJ SDK EULA
	Run an Application on the Virtual Device
	Well Done!
	Run an Application on i.MX RT595 Evaluation Kit
	Environment Setup
	Install the C Toolchain
	Install GNU ARM Embedded Toolchain
	Install CMake
	Install Make
	Install the Flashing Tool
	Hardware Setup
	Build the Executable for i.MX RT595 Evaluation Kit
	Flash the Application on the i.MX RT595 Evaluation Kit

	Modify the Java Application
	Going Further

	SDK 6 User Guide
	Installation
	System Requirements
	Check your JDK version
	Configure Repositories
	SDK EULA Acceptation
	Install the IDE
	Install the IDE Plugins

	Licenses
	SDK EULA
	Commercial Component License
	License Manager Overview
	License Check
	SDK EULA Acceptation
	Evaluation Licenses
	Get your Machine UID
	Request your Activation Key
	Install the License Key
	Check Activation
	Troubleshooting
	Machine UID has changed

	Production Licenses
	Request your Activation Key
	Activate your USB Dongle
	Check Activation
	USB Dongle on GNU/Linux
	USB Dongle with Docker on Linux
	USB Dongle with WSL
	Troubleshooting
	Windows Troubleshooting
	VirtualBox Troubleshooting
	WSL Troubleshooting

	Remote USB Dongle Connection

	Sentinel License Management
	Setup the Sentinel Floating License Server
	Install the Sentinel LDK Run-time Environment (RTE) for License Server
	Configure the License Server

	Setup the Developer Workstation
	Add Remote Floating License Server
	Running in a container

	Runtime Installation Instructions and Troubleshooting
	Check Activation with the Command Line Tool
	Troubleshooting
	Sentinel API dynamic library not found (code 400)
	Sentinel key not found (code 7)
	No Administrator Privileges on Developer Workstation

	Scope and Limitations
	Create a Project
	Configure a Project
	Application Project
	Add-On Library Project
	Mock
	Java SE Library Project
	Runtime Environment Project

	Create a subproject in an existing project
	Gradle Wrapper

	Import a Project
	Select a VEE Port
	Using a Module Dependency
	VEE Port project inside a multi-project
	Local VEE Port project outside a multi-project
	Using a Local VEE Port Directory
	Using a Local VEE Port Archive
	Architecture Usage Selection

	Run on Simulator
	Verbose Mode
	Debug on Simulator
	Generate Code Coverage
	Generate Heap Dump
	Run several Applications on Simulator

	Build an Executable
	Trigger Executable Build by Default

	Run on Device
	Deploying the Executable without building it

	Select a Kernel
	Using a Module Dependency
	Using a Project Dependency
	Using a Local Kernel

	Build a Feature file
	Trigger Feature Build by Default
	Build a Feature file from a WPK

	Build a Virtual Device
	Add a Pre-Installed Application in a Virtual Device
	Add a Kernel API in a Virtual Device
	Add a Runtime Environment in a Virtual Device
	Add a Tool in a Virtual Device
	Trigger Virtual Device Build by Default

	Add a Dependency
	Configurations
	Version
	Version Check

	Dependencies Repositories

	Test a Project
	JUnit Compliance
	Gradle Integration
	Test on Simulator
	Configure the Testsuite
	Configure the VEE
	Create a Test Class
	Execute the Tests
	Generate Code Coverage
	Filter the Tests

	Test on Device
	Test on Java SE VM
	Test Suite Reports
	Publish Test Suite Reports

	Mixing tests
	Mixing tests on the Simulator and on a device
	Mixing tests on the Simulator and on a Java SE VM

	Configure the Testsuite Engine
	Inject Application Options
	Inject Application Options Globally
	Inject Application Options For a Specific Test

	Test Suite Advanced Configuration
	Configure a VEE by Test Suite

	Publish a Project
	Development Tools
	Stack Trace Reader
	Principle
	Functional Description
	Usage
	In an Application project
	Custom Executable File Location
	Configure

	Code Coverage Analyzer
	Principle
	Functional Description
	Dependencies
	Installation
	Use
	Options
	Option: *.cc files folder
	Option: Source Folders
	Option: HTML Dir
	Option: Includes
	Option: Excludes

	Memory Map Analyzer
	Principle
	Use
	Troubleshooting

	Heap Dumper & Heap Analyzer
	Introduction
	The Heap
	Heap Dump
	Heap Analyzer Tools

	Heap Dumper
	Simulator
	Device
	Retrieve the .hex file from the device
	Extract the Heap dump from the .hex file

	Heap Viewer
	Outline View
	Instance Browser View
	Heap Usage Tab
	Dominator Tree Tab
	Leak Suspects Tab
	Progressive Heap Usage
	Compare Heap Dumps
	Instance Fields Comparison View

	Font Designer
	Principle
	Functional Description
	Create an EJF Font
	Edit an EJF Font
	Main Properties
	Font Height
	Font Width: Proportional and Monospace Fonts
	Baseline
	Space Character
	Styles
	Identifiers

	Character List
	Import from System Font
	Import from Images

	Character Editor
	Properties
	Anti-Aliased Fonts
	Character Pixmap

	Preview
	Removing Unused Characters
	Use an EJF Font
	Dependencies
	Installation
	Use

	Local Deployment Socket
	Principle
	Functional Description
	Use
	Options
	Option: Application Feature Class
	Option: Kernel Executable
	Option: Server Host
	Option: Server Port
	Option: Timeout
	Option: Use Storage

	Serial to Socket Transmitter
	Principle
	Use
	Run Serial to Socket Transmitter with Custom Task

	Options
	Serial Port
	Baudrate
	Socket Port

	Null Analysis
	Principle
	Java Code Annotation
	IDE Configuration
	Requirements
	Project configuration

	Launching Null Analysis
	Disabling Analysis for Test Folder
	Sharing Null Analysis IDE Configuration
	MicroEJ Libraries

	VEE Port
	Create a VEE Port
	VEE Port Project Creation
	Architecture Selection
	Runtime Capability

	Pack Import
	Enabling/Disabling modules of Legacy and Architecture Specific Packs

	Packs Configuration
	VEE Port Usage
	VEE Port Customization
	BSP Connection
	VEE Port Publication
	BSP Publication Filtering
	Filtering the VEE Runtime Library

	Link-Time Option

	Test a VEE Port
	Configure a Testsuite

	Manage Versioning
	Manage Resolution Conflicts
	Migrate an SDK 5 Project
	Migrate an Application/Library Project
	Build Descriptor File
	Build Type
	Module Information
	Dependencies
	Tests

	Configuration Folder
	Specific Configuration
	Main class of Standalone Application
	Feature Entry Point class of Sandboxed Application
	Example

	Build Scripts

	Migrate a VEE Port Project
	Project Structure
	New Development Flow
	Settings Build File
	Configuration Subproject
	Front Panel Project
	Mock
	Tool Subproject
	Testsuites Project
	BSP
	Wrap up

	Module Natures
	Add-On Library
	Application
	Java SE Library
	Mock
	Runtime Environment
	VEE Port
	Tasks
	adp
	loadVee
	runOnSimulator
	checkModule
	buildApplicationObjectFile
	buildExecutable
	buildWPK
	buildVirtualDevice
	loadKernelExecutable
	buildFeature
	runOnDevice
	buildMockRip
	execTool
	generateApplicationWrapper
	compileWrapperJava
	shrinkRuntimeEnvironment
	compileRuntimeEnvironment
	buildRuntimeEnvironmentJar
	buildFeatureFromWPK
	buildVeePort
	buildVeePortConfiguration

	Global Properties

	Troubleshooting
	Java Compiler Version Issue
	Unresolved Dependency
	Invalid SSL Certificate
	Failing Resolution in adp Task
	Missing Version for Publication
	Fail to load a VEE Port as dependency
	Slow Build because of File System Watching
	Missing Tasks in the Gradle view of Android Studio
	Code Detected as Unreachable in IntelliJ
	Resolution Conflict with Testsuite Dependencies
	Gradle Build Files (*.kts) Errors in IntelliJ IDEA

	Tutorials
	Branding an Eclipse IDE
	Install Eclipse and the MicroEJ Plugin
	Create the Project
	Configure the Product
	Advanced Options
	Export the Product

	Creating and Using an Offline Repository
	Offline Repository for the Gradle Plugins
	Offline Repository for the Modules
	Download an existing online repository
	Custom Offline Repository
	Use an Offline Modules Repository

	How-to Guides
	How To Define a Specific Java Home for Gradle
	How To Pass a Property to Project Build Script
	How To Skip a Gradle Task
	Skip the task only

	How To Automatically reload a Gradle project
	How To Add a Repository
	How To Add a Modules Repository
	How To Add a Plugins Repository

	How To Configure Multiple Gradle Repositories
	How To Resolve Dependencies in the IDE
	Dependencies Between Subprojects of a Multi-Project

	How To Install MicroEJ Plugin Snapshot Version on Android Studio or IntelliJ IDEA
	How To Build a Project
	How To Build and Deploy Object Files without Building the Executable
	How To Build an Executable With Multiple VEE Ports
	How To Create a Custom Configuration in the IDE
	How To Use a FeatureEntryPoint class as my Application EntryPoint
	How To Disable Ivy Descriptor Publication
	Disable Ivy Descriptor Publication by Default
	Force Ivy Descriptor Publication When Disabled by Default

	How To Check Dependencies Updates
	Configure the Project
	Generate the Report

	How To Create Custom ExecTool Task

	Appendices
	Virtual Device
	Structure

	Dependencies Configurations
	Dependencies Configurations in a VEE Port Project
	Variants
	Add-On Library
	runtimeAndMockElements
	Application
	microejWPK
	microejExecutable
	microejExecutableBuildFiles
	microejVirtualDevice
	microejFeatureBuildFiles
	Mock
	microejMockRip
	Runtime Environment
	runtimeEnvironment
	VEE Port
	microejVeePort

	Attributes of a Variant
	Standard Attributes
	Custom Attributes

	Application Wrapper
	Cheat Sheet
	Java Lambdas

	Changelog
	[1.3.0] - 2025-06-19
	Added
	Changed
	Fixed

	[1.2.0] - 2025-04-09
	Added
	Changed
	Fixed

	[1.1.0] - 2025-02-28
	Added
	Removed
	Changed
	Fixed

	[1.0.0] - 2024-12-18
	Added
	Changed
	Fixed

	[0.20.0] - 2024-10-23
	Added
	Changed
	Fixed

	[0.19.0] - 2024-09-13
	Added
	Changed
	Fixed

	[0.18.0] - 2024-08-22
	Added
	Fixed

	[0.17.0] - 2024-05-30
	Added
	Changed
	Fixed

	[0.16.0] - 2024-03-18
	Added
	Changed
	Fixed

	[0.15.0] - 2024-01-26
	Added
	Changed
	Fixed
	Removed

	[0.14.0] - 2024-01-03
	Added
	Changed
	Fixed

	[0.13.0] - 2023-11-10
	Added
	Fixed

	[0.12.1] - 2023-10-16
	Fixed

	[0.12.0] - 2023-10-13
	Added
	Changed
	Fixed

	[0.11.1] - 2023-09-22
	Fixed

	[0.11.0] - 2023-09-22
	Changed

	[0.10.0] - 2023-09-13
	Added
	Fixed

	[0.9.0] - 2023-09-01
	Added
	Changed
	Fixed

	[0.8.0] - 2023-07-13
	Added
	Fixed

	[0.7.0] - 2023-06-26
	Added
	Changed

	[0.6.0] - 2023-05-30
	Added
	Changed
	Fixed

	[0.5.0] - 2023-03-24
	Added
	Changed

	[0.4.0] - 2023-01-27
	Added
	Changed
	Fixed

	[0.3.0] - 2022-12-09
	Added
	Changed
	Fixed

	[0.2.0] - 2022-05-17
	Changed

	[0.1.0] - 2022-05-03
	Added
	Fixed

	Migration Notes
	From 1.0.0 to 1.1.0
	From 0.19.0 to 0.20.0
	Minimum Gradle version
	New SDK EULA
	Plugins and Configurations renaming
	Virtual Device Build

	From 0.15.0 to 0.16.0
	Unification of Application EntryPoint
	Testsuite Execution

	From 0.14.0 to 0.15.0
	Unification of VEE dependency declaration

	From 0.11.1 to 0.12.0
	Use of File Dependencies to Define a Local VEE Port or a Kernel Executable

	From 0.10.0 to 0.11.0
	Gradle mechanism usage for Multiple VEE Ports Support

	From 0.8.0 to 0.9.0
	Merge of the veePortDirs and veePortFiles properties

	Application Developer Guide
	MicroEJ Runtime
	Language
	Java Lambdas

	Core Libraries
	Embedded Device Configuration (EDC)
	Beyond Profile (BON)
	Simple Native Interface (SNI)
	Kernel & Features (KF)
	Specifications
	Beyond Profile Specification (BON)
	Introduction
	Specification Summary
	Comments
	Why BON ?
	First Example
	Object Natures
	Persistent Immutable Objects
	Object ID and Immutable Object Querying
	Immutable Objects Descriptions and Creation
	XML Grammar
	Immutable XML Description Examples
	Immortal Objects
	Non Garbageable Objects
	Turning Objects Into Immortal Objects
	Runtime Phases
	Mono-threaded Phase
	Deterministic Initialization Order
	Utilities
	Timer & TimerTask
	Platform Time
	Byte Array Accesses
	Annex A: Immutables DTD
	Simple Native Interface Specification (SNI)
	Introduction
	Specification Summary
	Comments
	First Example
	Java and C Execution Sequence
	Calling C from Java
	Synchronization
	Java And Native Separation
	Managed World to C World
	C Function Call From Managed World
	Java Types And C Types
	Base Types
	Java Array
	Strings
	Naming Convention
	Parameters Constraints
	Startup
	Kernel & Features Specification (KF)
	Introduction
	Specification Summary
	Comments
	Basic Concepts
	First Example
	Kernel class
	Feature class
	Expected Output
	Ownership Rules
	Type
	Object
	Execution Context
	Kernel Mode
	Execution Rules
	Type References
	Method References
	Field References
	Instance Field References
	Static Field References
	Context Local Static Field References
	Object References
	Local References
	Monitor Access
	Native Method Declaration
	Reflective Operations
	Class.forName
	Class.newInstance
	Class.getResourceAsStream
	Thread.currentThread
	Feature Lifecycle
	Entry point
	States
	Installation
	Start
	Stop
	Uninstallation
	Class Spaces
	Overview
	Private Types
	Kernel API Types
	Precedence Rules
	Resource Control Manager
	CPU Control: Quotas
	RAM Control: Managed Heap Configuration
	RAM Control: Feature Criticality
	Time-out Control: Watchdog
	Native Resource Control: Security Manager
	Communication Between Features
	Method Binding
	Object Binding
	Kernel Type Converters
	Configuration Files
	Kernel and Features Declaration
	Kernel API Definition
	Identification
	Shared Interface Declaration
	Kernel Advanced Configuration
	Context Local Storage Static Field Configuration
	XML Schema & Format
	Typical Example

	Scheduler
	Garbage Collector
	Death Notification
	Death Notification Actions

	Limitations
	Primitive Types

	Architecture Characteristics

	SOAR
	Java Symbols Encoding
	Class Initialization Code
	Method Devirtualization
	Method Inlining
	Binary Code Verifier
	Enable SOAR Verbose Logs

	SOAR Output Files
	Launch Output Folder
	Published Module Files
	The SOAR Map File
	The SOAR Information File

	Virtual Device
	MicroEJ Classpath
	Application Classpath
	Classpath Load Model
	Classpath Elements
	Application Entry Points
	Types
	Resources
	Immutable Objects
	System Properties
	Constants

	Application Resources
	Standalone Application
	Introduction
	Standalone Application Options
	Defining an Option with SDK 6
	Using a Properties File
	Using System Properties

	Defining an Option with SDK 5 or lower
	Using a Launcher
	Using a Properties File
	Generating a Properties File

	Category: Runtime
	Group: Types
	Option(checkbox): Embed all type names
	Option(checkbox): Group Methods by Type

	Group: Assertions
	Option(checkbox): Execute assertions on Simulator
	Option(checkbox): Execute assertions on Device

	Group: Trace
	Option(checkbox): Enable execution traces
	Option(checkbox): Start execution traces automatically

	Category: Memory
	Group: Heaps
	Option(text): Managed heap size (in bytes)
	Option(text): Immortal heap size (in bytes)
	Group: Threads
	Option(text): Number of threads
	Option(text): Number of blocks in pool
	Option(text): Block size (in bytes)
	Option(text): Maximum size of thread stack (in blocks)

	Category: Simulator
	Group: Options
	Option(checkbox): Use target characteristics
	Option(text): Slowing factor (0 means disabled)

	Group: HIL Connection
	Option(checkbox): Specify a port
	Option(text): Port
	Option(text): Timeout (s)
	Option(text): Maximum frame size (bytes)

	Group: Shielded Plug server configuration
	Option(text): Server socket port

	Group: Advanced Simulation Options
	Option: Objects Heap Size
	Option: System Chars Size
	Option: Application Chars Size
	Option: Methods Size
	Option: Thread Stack Size
	Option: Icetea Heap End
	Option: Symbol Table Size

	Category: Code Coverage
	Group: Code Coverage
	Option(checkbox): Activate code coverage analysis
	Option(text): Saving coverage information period (in sec.)

	Category: Debug
	Group: Remote Debug
	Option(text): Debug port

	Category: Heap Dumper
	Group: Heap Inspection
	Option(checkbox): Activate heap dumper

	Category: Logs
	Group: Logs
	Option(checkbox): system
	Option(checkbox): thread
	Option(checkbox): monitoring
	Option(checkbox): memory
	Option(checkbox): schedule
	Option(checkbox): monitors
	Option(text): period (in sec.)

	Category: Mock
	Group: Debug
	Option(checkbox): Enable Mock debug
	Option(text): Port

	Category: Kernel
	Group: Kernel UID
	Option(checkbox): Enable
	Option(text): UID

	Category: Libraries
	Category: EDC
	Group: Java System.out
	Option(checkbox): Use a custom Java output stream
	Option(text): Class
	Group: Runtime options
	Option(checkbox): Embed UTF-8 encoding
	Option(checkbox): Enable SecurityManager checks

	Category: Shielded Plug
	Group: Shielded Plug configuration
	Option(browse): Database definition

	Category: External Resources Loader
	Group: External Resources Loader
	Option(browse):

	Category: Device
	Category: Core Engine
	Group: Memory
	Option(text): Maximum number of monitors per thread
	Option(text): Maximum number of frames dumpers on OutOfMemoryError
	Option(checkbox): Enable Managed heap usage monitoring
	Option(text): Managed heap initial size
	Group: SOAR
	Option(checkbox): Enable Bytecode Verifier
	Group: Garbage Collector
	Option(text): GC mark stack size
	Category: Kernel
	Group: Threads
	Option(text): Maximum number of threads per Feature
	Option(text): Feature stop timeout
	Group: Features Installation
	Option(text): Maximum number of installed Features
	Option(text): Code chunk size
	Option(text): InputStream transfer buffer size
	Option(text): Maximum number of relocations applied simultaneously
	Group: Feature Portability Control
	Option(checkbox): Enable Feature Portability Control
	Option(browse): Kernel Metadata File
	Category: Watchdog
	Option(checkbox): Enable watchdog support
	Group: Watchdog
	Option(text):

	Category: Deploy
	Group: Configuration
	Option(checkbox): Deploy the Application (microejapp.o) at a location known by the 3rd-party BSP project.
	Option(browse):
	Option(checkbox): Deploy the Architecture library (microejruntime.a) at a location known by the 3rd-party BSP project.
	Option(browse):
	Option(checkbox): Deploy the Abstraction Layer header files (*.h) at a location known by the 3rd-party BSP project.
	Option(browse):
	Option(checkbox): Execute the MicroEJ build script (build.bat) at a location known by the 3rd-party BSP project.
	Option(browse):
	Option(browse):

	Category: Feature
	Group: Build
	Option(text): Output Name
	Option(browse): Kernel

	Sandboxed Application
	Fundamental Concepts
	Shared Interfaces
	Principle
	Shared Interface Usage
	Define the Shared Interface
	Define the Java Interface
	Implement the Proxy Class
	Register the Shared Interface
	Use the Shared Interface at Runtime
	Projects Structure
	Create and Share an instance of a Shared Interface
	Retrieve and Use a Proxy of a Shared Interface Instance

	Transferable Types
	Implementing the Proxy Class

	Character Encoding
	Default Encoding
	UTF-8 Encoding
	Custom Encoding
	Console Output
	Set Encoding in MicroEJ SDK Console

	Limitations
	GitHub Repositories
	Repository Import
	MicroEJ GitHub Badges

	Module Repositories
	Central Repository
	Use
	Licensing
	Changelog
	Java APIs (Javadoc)

	Developer Repository
	Use
	Licensing
	Changelog
	Javadoc
	Community

	Content Organization

	Libraries
	Graphical User Interface
	MicroUI
	Usage
	Rendering
	Clipping Region
	Translation Vector
	Rendering Pipeline
	Display Buffer Management
	Drawing Logs
	Usage Overview
	Default Behavior
	Explicit Checks
	Configuration
	Available Constants
	Images
	Immutable Images
	Overview
	Configuration File
	Unspecified Output Format
	Display Output Format
	Standard Output Formats
	Grayscale Output Formats
	Compressed Output Formats
	Alpha Format
	Expected Result
	Usage Advice
	Caching Generated Images
	External Images
	Image Generator Error Messages
	Mutable Images
	Overview
	Display Format
	Other Formats
	Images Heap
	Fonts
	Overview
	Internal Font
	Principle
	Height
	Color
	Languages
	FNT Font File
	fontbm
	bmfont
	EJF Font File
	Usage
	Configuration File
	Font Range
	Custom Range
	Known Range
	Transparency
	External Fonts
	Font Generator Error Messages
	Default Character
	Caching Generated Fonts
	Extended Font
	Application Options
	Category: Libraries
	Category: MicroUI
	Group: Memory
	Option(text): Pump events (inputs and display) queue size (in number of events)
	Option(combo): Pump events thread priority
	Option(text): Images heap size (in bytes)
	Category: Font
	Group: Fonts to Process
	Option(checkbox): Activate the font pre-processing step
	Option(checkbox): Define an explicit list file
	Option(browse):
	Category: Image
	Group: Images to Process
	Option(checkbox): Activate the image pre-processing step
	Option(checkbox): Define an explicit list file
	Option(browse):
	Debug Traces
	Trace format
	Trace identifiers
	SystemView Integration
	Error Messages
	Migration Guide
	From 13.x to 14.x
	From 12.x to 13.x
	From 10.x to 12.x
	From 9.x to 10.x

	MicroVG
	Usage
	Path
	Path Creation
	Path Drawing
	Fill Path With Graphics Context Color
	Fill Path With a Linear Gradient
	Fill Type
	Opacity and Blending Mode
	Matrix
	Translation
	Rotation
	Scale
	Concatenate Matrixes
	Linear Gradient
	Vector Fonts
	Overview
	Loading a Font File
	Text String Drawing
	Text Color
	Text Transformations
	Letter Spacing
	Colored Emojis
	Metrics and Text Positioning
	Drawing a Text on a Circle
	Complex Text Layout
	Text Measurement and Positioning
	Bidirectional Text
	Limitations
	External Fonts
	Vector Images
	Overview
	Supported Input Files
	Drawing Images
	Drawing and Transforming Images
	Drawing With Opacity
	Color Filtering
	Animated Vector Images
	Supported animations
	TranslateX and TranslateY
	TranslateXY over a path
	ScaleX and ScaleY
	Rotate
	Morphing
	Color and Opacity
	Easing Interpolators
	External Images
	Caching Generated Images
	Limitations / Supported Features
	Android Vector Drawable
	SVG
	Debug Traces
	Trace format
	Trace identifiers
	SystemView Integration
	Error Messages
	Android Vector Drawable Loader
	Overview
	Supported Format
	Format Limitations
	Loading a Vector Drawable
	Limitations
	Advanced
	Make a AVD Compatible with the Library
	Make a SVG Compatible with the Library
	Memory Usage
	Simplify the Path Data
	Monitor the Number of Path Commands
	Troubleshooting
	The Image Cannot Be Parsed
	How to Add Emojis to a Vector Font
	Prerequisites
	Append the Emoji Glyphs

	Motion
	Usage
	Concepts
	Functions
	Simple functions
	Easing functions
	Custom Function
	Motion

	MWT (Micro Widget Toolkit)
	Usage
	Concepts
	Graphical Elements
	Widget
	Container
	Desktop
	Rendering
	Render Policy
	Widget Lifecycle
	Hooks
	Lay Out
	Rendering Pipeline
	Event Dispatch
	Pointer Event Dispatcher
	Style
	Dimension
	Alignment
	Outlines
	Background
	Color
	Font
	Extra Fields
	Stylesheet
	Widget’s Style
	Animations
	Partial Buffer Considerations
	How to Create a Widget
	Implementing the Mandatory Methods
	Computing the Optimal Size of the Widget
	Rendering the Content of the Widget
	Handling Events
	Consuming Events
	Listening to the Life-cycle Hooks
	How to Create a Container
	Implementing the Mandatory Methods
	Computing the Optimal Size of the Container
	Laying out the Children of the Container
	Managing the Visibility of the Children of the Container
	Providing APIs to Change the Children list of the Container
	How to Animate a Widget
	Starting and stopping the animation
	Performing an animation step
	How to Define an Outline or Border
	Applying the outline on an outlineable object
	Applying the outline on a graphics context
	How to Define a Background
	Informing whether the background is transparent
	Applying the background on a graphics context
	How to Create a Desktop Event Dispatcher
	Dispatching the events to the widgets
	Initializing and disposing the dispatcher
	How to Define an Extra Style Field
	Defining an extra field ID
	Setting an extra field in the stylesheet
	Getting an extra field during rendering
	How to Use the Overlap Render Policy
	Making Widgets Overlap
	Requesting a New Render
	Using the OverlapRenderPolicy
	How to Debug
	Highlighting the Bounds of the Widgets
	Enabling Traces for System View
	Monitoring the Render Operations
	Monitoring the Animators
	Finding which Rule Originates the Attributes of a Widget’s Style
	Detecting Text Overflow
	Instrumenting the Widget
	Overriding the onLaidOut() Method
	Testing
	Improving the Detection
	MWT Examples
	Source
	Provided Examples
	Attribute Selectors
	Buffered Image Pool
	Context-Sensitive Container
	Drag’n’Drop
	Focus
	Immutable Stylesheet
	Lazy Stylesheet
	Masking Grid
	MVC
	Popup
	Remove Widget
	Slide Container
	Stack Container
	Stashing Grid
	Theming and Branding
	Transition
	Virtual Watch

	Widgets
	Usage
	Provided Widgets
	Color Utilities
	Debug Utilities
	Print the Hierarchy of Widgets
	Print the Path to a Widget
	Count the Number of Widgets or Containers
	Count the Maximum Depth of a Hierarchy
	Print the Bounds of a Widget
	Print the bounds of all the widgets in a hierarchy
	Widget Examples
	Source
	Provided Widgets

	Simulation
	Front Panel Overview
	Zoom
	Interpolation
	Fit
	Device Coordinates
	Display Coordinates
	Display Screenshot
	Refresh Strategy
	Flush Visualizer
	Front Panel Options
	Cache
	Properties
	Flush Visualizer
	Presentation
	Installation
	Usage
	Examples
	Refresh Strategy Highlighting
	Presentation
	Drawn Region(s)
	Restored Region(s)
	Dirty Region(s)
	Combining Highlightings
	Front Panel Tips
	Pixel Accurate Display: Window scaling
	Zoom on pixelated view for checking custom drawings
	Take screenshots of the simulated display
	Visual Testing
	Compare screenshots with Figma frames
	Keep the Front Panel always on top

	Native Language Support (NLS)
	Introduction
	Principle
	Localization Source Files
	NLS List Files
	Usage
	Locale
	Plural Forms
	Missing Translations
	Converter
	Problematic
	Solution
	Principle
	List of Converters
	Bidi
	Arabic
	Hebrew
	Limitations

	Resource Generation
	External Resource
	Usage
	Fallback on Default Resource

	Limitations
	Virtual Device PO Loader Tool
	Installation
	Usage
	Troubleshooting
	java.io.IOException: NLS-PO:S=4
	Crowdin

	Data Serialization
	Description
	XML
	XML Module
	Example Of Use

	JSON
	JSON Module
	Example Of Use

	CBOR
	CBOR Module
	Example Of Use

	Networking
	Foundation Libraries
	Add-On Libraries
	IoT Libraries
	Data Serialization Libraries
	Cloud Agent Libraries

	HOKA Web Server
	Intended Audience
	Getting Started
	Routes Mapping
	Path Parameters
	Splat Parameters
	Request
	Body Parsers
	Cookies
	Response
	MIME Types
	Halt Request Processing Chain
	Filters
	Before
	After
	Error Handling
	Not Found Error
	Internal Server Error
	Exception Mapping
	Static Files
	Web Server Configuration
	Trailing Slash Matching
	Development Mode
	Generate Server Self Signed Key and Certificate for HOKA WebServer TLS
	Generate Root CA Key & Certificate
	Generate HOKA Server Private Key
	Generate HOKA Server Self Signed Public Key
	Convert HOKA Private Key to DER Format
	Handle Encoding
	Content And Transfer Encoding
	Request And Response Encoding
	URL Encoding
	Session
	HOKA Configuration

	Bluetooth
	Bluetooth API Library
	Introduction
	Usage
	Basic Knowledge and APIs
	Connection APIs
	Pairing APIs
	GATT Services APIs
	Classes Summary
	Use-Cases
	Achieving Maximum Throughput
	Examples

	Bluetooth Utility Library
	Introduction
	Usage
	Classes Summary

	Audio
	Introduction
	Usage
	APIs
	Audio Format
	Audio Recording
	Audio Playback
	Classes Summary

	Configuration
	Examples

	MicroAI
	Introduction
	Usage
	Machine Learning Model Format
	MicroEJ Simulator

	APIs
	MLInferenceEngine
	Tensor
	Classes Summary

	Configuration
	Example

	Date and Time
	Introduction
	Overview
	Usage
	Examples
	Instant
	LocalDate
	LocalTime
	LocalDateTime
	Duration
	Period

	Time Zone Support
	Default Zone Rules Provider
	TZDB Zone Rules Provider
	Using the TZDB Provider
	Loading the TZDB Data as an External Resource

	Migration Guide
	Displaying the Current Date
	Calculating a Timestamp from a Date
	Calculating Date and Time Differences
	Calculating the Day of the Week
	Handling Time Zones

	Restrictions
	Static Interface Methods

	Event Queue
	Principle
	Functional Description
	Overview
	Architecture
	Event format
	Event Queue listener
	Standard event
	Offer the event
	From C API
	From Java API
	Handle the event
	Extended event
	Data Alignment
	Offer the event
	From C API
	From Java API
	Handle the event
	Mock the Event Queue

	Use

	GNSS
	Principle
	Functional Description
	Turning the GNSS Engine ON
	Retrieving GNSS data
	Turning the GNSS Engine OFF

	Use

	JavaScript
	Getting Started
	Sources Management
	JavaScript Sources Location
	JavaScript Sources Load Order
	JavaScript Sources Load Scope
	JavaScript Sources Processing

	Examples
	Simple Application
	Use a Java API in JavaScript
	Create a JavaScript API from Java

	API
	Built-in Objects
	Array
	Boolean
	Date
	Error
	Function
	Global
	JSON
	Math
	Number
	Object
	Regex
	String
	Host Objects
	Global
	setTimeout(function[, delay, arg1, arg2, …])
	setInterval(function[, delay, arg1, arg2, …])
	clearTimeout(timer)
	clearInterval(timer)
	print([arg1, arg2, …])

	Communication Between Java and JS
	JavaScript Engine
	Calling Java from JavaScript
	Import Java Types from JavaScript
	Implement JavaScript Functions in Java
	Calling JavaScript from Java
	Passing Values Between JavaScript and Java

	Tests
	Limitations
	Unsupported Directives
	Unsupported Statements
	Unsupported Built-in Objects

	Troubleshooting
	Compilation error cannot be resolved to a type in FFI class

	Internals
	JavaScript Sources Processing
	Foreign Function Interface

	Development Tools
	Code Instrumentation for Logging
	Introduction
	Overview
	Log with the Trace Library
	Log with the Message Library
	Log with the Logging Library
	Remove Logging Related Code
	Wrap with a Constant If Statement
	Shrink Code Using ProGuard

	Event Tracing
	Description
	Event Recording
	Java API Usage
	VEE Port Implementation
	Advanced Event Tracing

	VEE Debugger Proxy
	Principle
	Installation
	Debugging Executable for Linux or QNX target
	Generate a Core Dump File using GDB
	Run the VEE Debugger Proxy

	Debugging Executable for MCU target
	Generate VEE memory dump script
	Dump the memory of the running Executable
	With IAR Debugger
	With GNU Debugger (GDB)
	Start the VEE Debugger Proxy
	Update the State of the Debugged Application

	VEE Debugger Proxy Options Summary
	Troubleshooting

	Dependency Discoverer
	Introduction
	Installation
	Use

	MicroEJ Linker
	Overview
	ELF Overview
	Linking Process
	Linker Specific Configuration File Specification
	Description
	File Fragments
	Symbols and Sections
	Memory Layout
	Tags Specification
	Expressions

	Auto-generated Sections
	Execution
	Error Messages
	Map File Interpretor

	MicroEJ Test Suite Engine
	Introduction
	Using the MicroEJ Test Suite Ant Tasks
	The testsuite Task
	The javaTestsuite Task
	The htmlReport Task

	Using the Trace Analyzer
	The TraceAnalyzer Tasks Options
	The FileTraceAnalyzer Task Options
	The SerialTraceAnalyzer Task Options

	Appendix
	Specific Custom Properties

	Heap Usage Monitoring
	Introduction
	Heap Usage Introspection
	Automatic Heap Usage Monitoring
	Heap Usage Analysis

	GUI Software Robot
	Overview
	Record the Scenario
	Set Up the Event Recorder

	Set Up the Scenario Player
	Run the Scenario

	VEE Porting Guide
	Introduction
	VEE Port Build Process
	Create a VEE Port for a Custom Device
	A VEE Port Example is already available for the same MCU/RTOS/C Compiler
	VEE Port Configuration
	BSP
	Simulator

	A VEE Port Example is not available for the same MCU/RTOS/C Compiler
	MCU
	RTOS
	C Compiler

	Platform Validation
	Further Assistance Needed

	MicroEJ Architecture
	Naming Convention
	Architectures Changelog
	Notation
	[8.4.0] - 2025-05-28
	Core Engine
	Integration
	Simulator
	SOAR

	[8.3.0] - 2024-12-24
	Foundation Libraries
	Integration
	Simulator
	SOAR
	Tools

	[8.2.0] - 2024-09-19
	Core Engine
	Integration
	Simulator

	[8.1.1] - 2024-06-17
	Core Engine
	Foundation Libraries
	Integration
	Simulator
	SOAR
	Tools

	[8.1.0] - 2023-12-22
	Core Engine
	Foundation Libraries
	Integration
	Simulator
	SOAR
	Tools

	[8.0.0] - 2023-06-27
	Core Engine
	Foundation Libraries
	Integration
	Simulator
	SOAR
	Tools

	[maintenance/7.20.5] - 2024-05-24
	Foundation Libraries

	[7.20.1] - 2023-04-10
	Foundation Libraries

	[7.20.0] - 2023-04-04
	Known Issues
	Core Engine
	Foundation Libraries

	[7.19.0] - 2023-02-16
	Known Issues
	Core Engine
	Tools

	[7.18.1] - 2022-10-26
	Integration

	[7.18.0] - 2022-09-14
	Integration
	SOAR

	[7.17.0] - 2022-06-13
	Core Engine
	Foundation Libraries
	Integration
	Simulator
	SOAR

	[7.16.3] - 2022-04-06
	Core Engine

	[7.16.2] - 2021-11-10
	Core Engine

	[7.16.1] - 2021-07-16
	Core Engine

	[7.16.0] - 2021-06-24
	Known Issues
	Notes
	Core Engine
	Foundation Libraries
	Integration
	Simulator
	SOAR
	Tools

	[7.15.1] - 2021-02-19
	SOAR

	[7.15.0] - 2020-12-17
	Core Engine
	Foundation Libraries
	Integration
	SOAR
	Tools

	[7.14.1] - 2020-11-30
	Core Engine
	Tools

	[7.14.0] - 2020-09-25
	Notes
	Foundation Libraries
	Integration
	SOAR
	Tools

	[7.13.3] - 2020-09-18
	Core Engine
	Simulator
	Tools

	[7.13.2] - 2020-08-14
	Core Engine
	Tools

	[7.13.1] - 2020-07-20
	Core Engine

	[7.13.0] - 2020-07-03
	Core Engine
	Foundation Libraries
	Integration
	Simulator
	SOAR
	Tools

	[7.12.0] - 2019-10-16
	Core Engine
	Foundation Libraries
	Simulator
	SOAR
	Tools

	[7.11.0] - 2019-06-24
	Important Notes
	Known Issues
	Core Engine
	Foundation Libraries
	Integration
	Simulator
	SOAR
	Tools

	[7.10.1] - 2019-04-03
	Simulator

	[7.10.0] - 2019-03-29
	Core Engine
	Foundation Libraries
	Integration
	Simulator
	Tools

	[7.9.1] - 2019-01-08
	Tools

	[7.9.0] - 2018-09-20
	Core Engine
	SOAR

	[7.8.0] - 2018-08-01
	Tools

	[7.7.0] - 2018-07-19
	Core Engine
	SOAR
	Tools

	[7.6.0] - 2018-06-29
	Foundation Libraries

	[7.5.0] - 2018-06-15
	[7.4.0] - 2018-06-13
	Core Engine
	Foundation Libraries
	Simulator
	SOAR
	Tools

	[7.3.0] - 2018-03-07
	Simulator

	[7.2.0] - 2018-03-02
	Core Engine
	Simulator

	[7.1.2] - 2018-02-02
	SOAR

	[maintenance/6.18.0] - 2017-12-15
	Core Engine
	Simulator
	Tools

	[7.1.1] - 2017-12-08
	Tools

	[7.1.0] - 2017-12-08
	Core Engine
	Integration
	SOAR
	Tools

	[7.0.0] - 2017-11-07
	Core Engine
	Foundation Libraries

	[6.17.2] - 2017-10-26
	Simulator

	[6.17.1] - 2017-10-25
	Core Engine

	[6.17.0] - 2017-10-10
	Tools

	[6.16.0] - 2017-09-27
	Core Engine

	[6.15.0] - 2017-09-12
	Core Engine
	Foundation Libraries
	SOAR

	[6.14.2] - 2017-08-24
	Tools

	[6.14.1] - 2017-08-02
	Simulator
	Foundation Libraries
	Tools

	[6.13.0] - 2017-07-21
	Core Engine
	Foundation Libraries
	SOAR
	Tools

	[6.12.0] - 2017-07-07
	Core Engine
	Tools
	Simulator

	[6.11.0] - 2017-06-13
	Integration

	[6.11.0-beta1] - 2017-06-02
	Core Engine
	Foundation Libraries

	[6.10.0] - 2017-06-02
	Core Engine

	[6.9.2] - 2017-06-02
	Integration

	[6.9.1] - 2017-05-29
	SOAR

	[6.9.0] - 2017-03-15

	Release Notes
	Foundation Libraries

	Default Application

	MicroEJ Packs
	Overview
	Naming Convention
	Architecture Specific Pack
	Generic Pack
	Legacy Generic Pack

	BSP Connection
	Principle
	Options
	Build Script File
	Run Script File

	VEE Port Qualification
	Introduction
	VEE Port Qualification Tools Overview
	VEE Port Test Suite
	Test Suite Versioning
	Core Engine
	UI Pack
	FS Pack
	GNSS Pack
	Bluetooth Pack
	NET Pack
	Audio Pack
	MicroAI Pack
	EVENT QUEUE Pack

	Core Engine
	Block Diagram
	Link Flow
	Architecture
	Capabilities
	Implementation
	Initialization
	Scheduling
	Idle Mode
	Time
	Error Codes
	Example
	Restart the Core Engine
	Dump the State of the Core Engine
	Dump The State Of All MicroEJ Threads From A Fault Handler
	Trigger Core Engine Dump From Debugger

	Check Internal Structure Integrity

	Generic Output
	Link
	Dependencies
	Installation
	Abstraction Layer
	Memory Considerations
	Use

	Advanced Event Tracing
	Principle
	Platforms using GNU LD linker
	Platforms using IAR ILINK linker

	Multi-Sandbox
	Principle
	Functional Description
	Memory Considerations
	Dependencies
	Installation
	Use
	Feature Installation
	Introduction
	Installation Flow
	Feature Persistency
	Advanced Options
	Code Chunk Size
	InputStream Transfer Buffer Size
	Relocation Process Yield

	Determining the Amount of Required Memory
	In-Place Installation

	RAM Control

	Tiny-Sandbox
	Principle
	Installation
	Limitations

	Native Interface Mechanisms
	Shielded Plug (SP)
	Principle
	Functional Description
	Shielded Plug Compiler
	Example
	Database Description
	Java Code
	C Code

	Dependencies
	Installation
	Use

	MicroEJ Java H
	Principle
	Functional Description
	Dependencies
	Installation
	Use

	External Resources Loader
	Functional Description
	Implementations
	Open a Resource
	Resource Identifier
	Resource Offset
	Resource Inside the CPU Address Space Range

	External Resources Folder
	Dependencies
	Installation
	Use
	On Simulator
	On Device

	Serial Communications
	ECOM
	Principle
	Functional Description
	Device Management API
	Dependencies
	Installation
	Use

	ECOM Comm
	Principle
	Functional Description
	Component Architecture
	Comm Port Identifier
	Application Port Mapping
	Opening Sequence

	Dynamic Connections
	Java API
	Driver API
	The Buffered Comm Stream
	The Custom Comm Stream

	BSP File
	XML File
	ECOM Comm Mock
	Dependencies
	Installation
	Use

	Graphical User Interface
	Principle
	UI Port
	UI Port Configuration
	Principle
	UI Pack Selection
	UI Pack Modules
	Module MicroUI
	Module LEDs
	Modules Image Decoders
	Module Image Generator
	Module Font Generator
	Module Display
	Size
	Pixel Format
	Constraints
	Configuration
	VEE Port Build

	Simulation
	Principle
	Project Extension
	LEDs
	Buttons
	Widget Button Code
	Application Code
	Button to Command Event
	Touch Panel
	Display
	Build

	BSP Port
	Principle
	MicroUI C Module
	LEDs
	Inputs
	Display
	Display: LCD Constraints
	Display: Buffer Configuration
	Display: Optional Features
	Test Suite

	GPU Port
	Principle
	Existing C Modules
	Port a GPU
	Drawing Function
	Fallback
	Image Constraints
	Address Alignment
	Stride (Compile-time Images)
	Stride (Runtime Images)
	Test Suite

	MicroUI
	Principle
	Architecture
	Library ej.api.Drawing
	Thread
	Principle
	Role
	Memory
	Exceptions

	Native Calls
	Antialiasing
	Images
	Fonts

	Installation
	Use

	Static Initialization
	Principle
	Functional Description
	XML File
	XML File Example
	Dependencies
	Installation
	Use

	Abstraction Layer API
	Principle
	Embedded VEE Port
	Simulator

	LED
	Principle
	Functional Description
	Abstraction Layer API
	Typical Implementation
	Dependencies
	Installation
	Use

	Input
	Principle
	Functional Description
	Driver Listener
	Static Initialization
	Standard Event Generators
	Generic Event Generators
	Abstraction Layer API
	Typical Implementation
	LLUI_INPUT_impl.c
	buttons_helper.c
	touch_helper.c
	event_generator.c

	Event Buffer
	Dependencies
	Installation
	Use

	Display
	Principle
	Chapters Organization
	Display Configuration
	Display Connection
	Serial
	Parallel

	Buffer Policy
	Overview
	Decision Tree
	Serial Connection
	Parallel Connection
	Chapter Sum-up
	Direct Buffer (parallel)
	Swap Double Buffer (parallel)
	Swap Triple Buffer (parallel)
	Single Buffer
	Serial Connection
	Parallel Connection
	Transmit and Swap Buffer
	Serial Connection
	Parallel Connection
	Partial Buffer
	Workflow
	Dual Partial Buffer
	Application Limitations
	Implementation Example

	Pixel Structure
	Principle
	Standard
	Driver-Specific

	CLUT
	Color Conversion
	Alpha Blending

	Memory Layout
	Byte Layout
	Display Synchronization
	Overview
	Tearing Signal
	Additional Buffer
	Time Sum-up

	Abstraction Layer API
	Overview
	Display Size
	Semaphores
	Required Abstraction Layer API
	Optional Abstraction Layer API
	Painter Abstraction Layer API
	Graphics Engine API

	Typical Implementations
	Common Functions
	Direct Buffer (parallel)
	Swap Double Buffer (parallel)
	Swap Triple Buffer (parallel)
	Single Buffer (serial)
	Single Buffer (parallel) and Tearing Disabled
	Single Buffer (parallel) and Tearing Enabled
	Transmit and Swap Buffer

	Dependencies
	Installation
	Use

	Buffer Refresh Strategy
	Overview
	Timeline
	Basic Principle
	Additional Hooks
	Implicit Region
	Explicit Region
	Flush vs Refresh

	Strategies
	Strategy: Single
	Principle
	Behavior
	Use

	Strategy: Predraw
	Principle
	Behavior
	Read the Display
	Use (Swap Double Buffer)
	Use (Swap Triple Buffer)
	Use (Transmit and Swap Buffer)

	Strategy: Default
	Principle
	Behavior
	Use

	Strategy: Custom
	Principle
	Behavior
	Use

	Strategy: Legacy
	Principle
	Behavior
	Use

	MicroUI C Module
	Principle
	Options
	Weak Functions
	Debug Traces

	Simulation
	Principle
	Usage
	Available Implementations
	Custom Implementation

	Drawings
	Abstraction Layer
	Destination Format
	Graphics Engine Software Algorithms
	MicroUI C Module
	Principle
	Default Implementation
	Custom Implementation
	GPU Synchronization
	Extended C Modules

	Simulation
	Principle
	Default Implementation
	Custom Implementation

	Custom Drawing
	Principle
	Application Method
	BSP Implementation
	Simulation

	Drawing Logs
	Usage Overview
	Available Constants
	Embedded Targets
	Simulator

	Images
	Overview
	Principle
	Functional Description
	Dependencies

	Image Format
	MicroEJ Format: Display
	MicroEJ Format: Standard
	MicroEJ Format: Grayscale
	MicroEJ Format: RLE Compressed
	MicroEJ Format: Custom
	Binary Format
	Original Input Format
	GPU Format Support

	Image Generator
	Principle
	Functional Description
	Structure
	Standalone Mode
	Extended Mode
	Advanced: Test the Extension Project
	Service Image Loader
	MicroUIRawImageGeneratorExtension
	ImageReaderSpi
	Customize MicroEJ Standard Format
	VEE Port MicroEJ Custom Format
	VEE Port Binary Format
	Configuration File
	Link
	External Resources
	Installation
	Use

	Image Loader
	Principle
	Functional Description
	Images Heap
	External Resource
	Principle
	Configuration File
	Process
	Simulation
	Image in MicroEJ Format
	Encoded Image
	Installation
	Use

	Image Renderer
	Principle
	Functional Description
	Destination Format
	Input Formats
	Standard
	Custom
	MicroUI C Module
	Principle
	Standard Formats Only (Default)
	Custom Format Support
	Simulation
	Principle
	Standard Formats Only (Default)
	Custom Format Support
	Image Pixel Conversion
	Overview
	Functions
	Linker File
	Installation
	Use

	Buffered Image
	Overview
	Drawer
	Formats
	Display
	Standard
	Custom
	MicroUI C Module
	Drawer
	Single Format Implementation (Default Implementation)
	Multiple Formats Implementation
	Custom Format
	Image Creation
	Overview
	Single Format Implementation
	Multiple Formats Implementation
	Display and Standard Image
	Custom Image
	Image Closing
	Single Format Implementation
	Multiple Formats Implementation
	Display and Standard Image
	Custom Image
	Draw into the Image: Display Format
	Overview
	Single Format Implementation
	Multiple Formats Implementation
	Draw into the Image: Non-Display Format
	Draw the Image: Single Format Implementation
	Draw the Image: Multiple Formats Implementation
	Extended C Modules
	Simulation
	Drawer
	Image Creation
	Draw into the Image: Non-Display Format
	Draw the Image: Multiple Formats Implementation
	Dependencies
	Installation
	Use

	Fonts
	Overview
	Principle
	Functional Description
	Internal Font
	Custom Font
	Dependencies

	Internal Font Format
	Overview
	Characteristics
	Pixel Transparency
	Languages
	Supported Languages
	Complex Layout

	Font Generator
	Principle
	Functional Description
	Pixel Transparency
	Configuration File
	External Resources
	Installation
	Use

	Font Loader
	Principle
	External Resources
	Memory Management
	Configuration File
	Process
	Simulation
	Backward Compatibility
	Installation
	Use

	Custom Font
	Principle
	Requirements
	MicroUI Drawings
	Renderable String
	Additional APIs
	Rendering

	Font Renderer
	Principle
	Functional Description
	Font Formats
	Internal Font Format
	Custom Font Format
	MicroUI C Module
	Principle
	Internal Font Format Only (Default)
	Custom Font Format
	Simulation
	Principle
	Internal Font Format Only (Default)
	Custom Font Format
	Installation
	Use

	C Modules
	Principle
	UI Pack
	C Module: MicroUI
	Drawings
	Overview
	Files
	Usage
	Images Heap
	Overview
	Files
	Usage
	Events Logger
	Overview
	Files
	Usage (to enable the events logger)
	Buffer Refresh Strategy
	Overview
	Files
	Usage

	C Module: MicroUI Over DMA2D
	Overview
	Files
	Usage
	Drawings
	Cache
	Usage
	Buffer Refresh Strategy “Predraw”
	Usage
	Example of Implementation
	Buffer Refresh Strategy “Single”
	Usage
	Example of Implementation
	Buffer Refresh Strategy “Legacy”
	Usage
	Example of Implementation

	C Module: MicroUI Over VGLite
	Overview
	Files
	Usage
	Options
	Drawings
	Compatibility With MCU i.MX RT595
	UI Pack 13
	UI Pack 14

	C Module: MicroUI Over NemaGFX
	Overview
	Files
	Usage
	Implementation
	Options
	Drawings

	Compatibility

	Simulation
	Principle
	Module Dependencies
	MicroUI Implementation
	Display Widget
	Features
	Refresh Rate
	Flush Time
	Non-rectangular Display

	Inputs Extensions
	Heap Simulation
	Image Decoders
	Generic Image Decoders
	Custom Image Decoders

	Drawings
	Image Rendering
	Buffered Image
	Classpath
	Dependencies
	Installation
	Use

	Release Notes
	MicroEJ Architecture Compatibility Version
	Standard Versions
	Maintenance Versions

	Foundation Libraries
	Abstraction Layer Interface
	Display
	Input
	LED

	Front Panel API
	Image Generator API
	C Modules
	MicroUI C Module
	Extended C Modules

	Changelog
	[14.4.2] - 2025-05-20
	VG Pack
	FrontPanel
	C Module DMA2D
	C Module VGLite
	C Module NemaGFX

	[14.4.1] - 2025-03-13
	Known Issue
	MicroUI
	FrontPanel
	C Module MicroUI

	[14.3.3] - 2025-02-18
	FrontPanel

	[14.3.2] - 2025-02-10
	FrontPanel

	[14.3.0] - 2025-01-24
	FrontPanel
	ImageGenerator
	FontGenerator

	[14.2.0] - 2024-11-18
	ImageGenerator
	FontGenerator

	[13.7.3] - 2024-10-18
	FontGenerator

	[14.1.1] - 2024-10-17
	MicroUI
	Drawing
	FrontPanel
	ImageGenerator
	FontGenerator
	LLAPIs
	C Module MicroUI
	C Module DMA2D
	C Module VGLite
	C Module NemaGFX

	[14.0.3] - 2024-10-01
	MicroUI
	FrontPanel
	LLAPIs

	[14.0.2] - 2024-07-26
	MicroUI
	Front Panel

	[14.0.1] - 2024-04-09
	MicroUI
	Front Panel
	LLAPIs
	C Module MicroUI
	C Module DMA2D
	C Module VGLite
	C Module NemaGFX

	[14.0.0] - 2024-02-14
	MicroUI
	Front Panel
	LLAPIs
	C Module MicroUI
	C Module DMA2D
	C Module VGLite
	C Module NemaGFX

	[13.7.2] - 2023-12-21
	MicroUI
	FontGenerator
	C Module NemaGFX

	[13.7.0] - 2023-10-23
	MicroUI
	Front Panel
	Image Generator
	Font Generator
	C Module MicroUI
	C Module DMA2D
	C Module VGLite
	C Module NemaGFX

	[13.6.2] - 2023-09-20
	Image Generator
	Font Generator
	C Module VGLite

	[13.6.1] - 2023-07-26
	MicroUI

	[13.6.0] - 2023-07-17
	MicroUI
	Front Panel
	Image Generator
	Font Generator
	C Module VGLite
	C Module NemaGFX

	[13.5.1] - 2023-06-08
	MicroUI
	Front Panel
	C Module VGLite

	[13.5.0] - 2023-05-03
	MicroUI
	Drawing
	Front Panel
	Image Generator
	LLAPIs
	C Module MicroUI
	C Module DMA2D
	C Module VGLite

	[13.4.1] - 2023-02-06
	Drawing
	Front Panel
	Image Generator
	C Module VGLite

	[13.4.0] - 2022-12-13
	MicroUI
	Front Panel
	Image Generator
	Font Generator
	C Module MicroUI
	C Module DMA2D
	C Module VGLite

	[13.3.1] - 2022-09-09
	Image Generator

	[13.3.0] - 2022-09-02
	MicroUI
	Front Panel
	Image Generator
	LLAPIs
	C Module MicroUI
	C Module DMA2D for UI Pack 13.2.0 (maintenance)
	C Module DMA2D for UI Pack 13.3.0
	C Module VGLite

	[13.2.0] - 2022-05-05
	Integration
	MicroUI
	Drawing
	Front Panel
	Image Generator
	LLAPIs
	C Module DMA2D
	C Module VGLite
	BSP

	[13.1.0] - 2021-08-03
	MicroUI API
	MicroUI Implementation
	Drawing Implementation
	Front Panel
	LLAPIs
	C Module MicroUI

	[13.0.7] - 2021-07-30
	MicroUI Implementation
	Misc

	[13.0.6] - 2021-03-29
	LLAPIs

	[13.0.5] - 2021-03-08
	MicroUI Implementation
	Front Panel

	[13.0.4] - 2021-01-15
	MicroUI API
	MicroUI Implementation
	Drawing Implementation
	Image Generator

	[13.0.3] - 2020-12-03
	MicroUI API
	MicroUI Implementation
	C Module MicroUI
	C Module DMA2D

	[13.0.2] - 2020-10-02
	C Module DMA2D

	[13.0.1] - 2020-09-22
	MicroUI API
	MicroUI Implementation
	Front Panel
	Image Generator
	LLAPIs
	C Module MicroUI
	C Module DMA2D

	[13.0.0] - 2020-07-30
	Architecture
	MicroUI API
	MicroUI Implementation
	Front Panel
	Image Generator
	Font Generator
	LLAPIs
	C Modules

	[12.1.5] - 2020-10-02
	[12.1.4] - 2020-03-10
	MicroUI Implementation

	[12.1.3] - 2020-02-24
	MicroUI Implementation

	[12.1.2] - 2019-12-09
	MicroUI Implementation

	[12.1.1] - 2019-10-29
	MicroUI Implementation

	[(maint) 8.0.0] - 2019-10-18
	Architecture
	MicroUI Implementation

	[12.1.0] - 2019-10-16
	MicroUI API
	MicroUI Implementation

	[12.0.2] - 2019-09-23
	MicroUI Implementation

	[12.0.1] - 2019-07-25
	MicroUI Implementation
	Front Panel

	[12.0.0] - 2019-06-24
	Architecture
	MicroUI Implementation
	Front Panel
	Front Panel Plugin

	[11.2.0] - 2019-02-01
	MicroUI Implementation
	Tools

	[11.1.2] - 2018-08-10
	MicroUI Implementation

	[11.1.1] - 2018-08-02
	[11.1.0] - 2018-07-27
	MicroUI API
	MicroUI Implementation

	[11.0.1] - 2018-06-05
	MicroUI Implementation

	[10.0.2] - 2018-02-15
	MicroUI Implementation

	[11.0.0] - 2018-02-02
	Architecture
	MicroUI Implementation

	[10.0.1] - 2018-01-03
	MicroUI Implementation

	[10.0.0] - 2017-12-22
	Architecture
	MicroUI Implementation
	Front Panel
	Misc

	[9.4.1] - 2017-11-24
	Image Generator

	[9.4.0] - 2017-11-23
	MicroUI Implementation

	[9.3.1] - 2017-09-28
	MicroUI Implementation

	[9.3.0] - 2017-08-24
	MicroUI Implementation
	Front Panel

	[9.2.1] - 2017-08-14
	Front Panel

	[9.2.0] - 2017-07-21
	Architecture
	MicroUI API
	MicroUI Implementation
	Image Generator
	Misc

	[9.0.2] - 2017-04-21
	MicroUI Implementation
	Image Generator

	[9.1.2] - 2017-03-16
	MicroUI API
	MicroUI Implementation
	Image Generator

	[9.0.1] - 2017-03-13
	MicroUI Implementation
	Front Panel
	Front Panel Plugin

	[9.1.1] - 2017-02-14
	Misc

	[9.1.0] - 2017-02-13
	Architecture
	MicroUI API
	MicroUI Implementation
	Front Panel
	Front Panel Plugin

	[9.0.0] - 2017-02-02
	MicroUI API
	MicroUI Implementation
	MWT
	Front Panel
	Tools
	Misc

	[8.1.0] - 2016-12-24
	MicroUI Implementation
	MWT
	Front Panel

	[8.0.0] - 2016-11-17
	Architecture
	MicroUI Implementation
	MWT
	Front Panel

	[7.4.7] - 2016-06-14
	MicroUI Implementation
	Front Panel

	[7.4.2] - 2016-05-25
	MicroUI Implementation

	[7.4.1] - 2016-05-10
	MicroUI Implementation

	[7.4.0] - 2016-04-29
	MicroUI Implementation
	Front Panel

	[7.3.0] - 2016-04-25
	MicroUI Implementation

	[7.2.1] - 2016-04-18
	Misc

	[7.2.0] - 2016-04-05
	Tools

	[7.1.0] - 2016-03-02
	MicroUI Implementation

	[7.0.0] - 2016-01-20
	Misc

	[6.0.1] - 2015-12-17
	MicroUI Implementation

	[6.0.0] - 2015-11-12
	MicroUI Implementation

	Migration Guide
	From 14.3.3 to 14.4.2
	MicroUI
	Front Panel
	BSP with DMA2D
	BSP with VGLite
	BSP with NemaGFX

	From 14.3.3 to 14.4.1
	From 14.2.0 to 14.3.3
	Front Panel

	From 14.1.1 to 14.2.0
	All BSP

	From 14.0.3 to 14.1.1
	BSP without GPU
	BSP with DMA2D
	BSP with VGLite
	BSP with NemaGFX

	From 14.0.1 to 14.0.3
	BSP without GPU
	BSP with DMA2D
	BSP with VGLite
	BSP with NemaGFX

	From 13.7.x to 14.0.1
	Front Panel
	BSP Without GPU
	BSP with DMA2D
	BSP with VGLite
	BSP with NemaGFX

	From 13.6.x to 13.7.2
	Front Panel
	BSP without GPU
	BSP with DMA2D
	BSP with VGLite
	BSP with NemaGFX

	From 13.5.x to 13.6.2
	Front Panel
	BSP with VGLite
	BSP With MCU i.MX RT595
	BSP with NemaGFX

	From 13.4.x to 13.5.1
	Front Panel
	BSP without GPU
	BSP with DMA2D
	BSP with VGLite

	From 13.3.x to 13.4.1
	BSP without GPU
	BSP with DMA2D
	BSP with VGLite

	From 13.2.x to 13.3.1
	Front Panel
	BSP without GPU
	BSP with DMA2D
	BSP with VGLite

	From 13.1.x to 13.2.0
	Front Panel

	From 13.0.x to 13.1.0
	Front Panel
	BSP without GPU
	BSP with DMA2D

	From 12.x to 13.0.7
	VEE Port Configuration Project
	Hardware Accelerator
	Front Panel
	Front Panel API
	Image Generator
	Image Generator API
	Font
	BSP
	LLAPI
	Custom Native Drawing Functions
	Application

	From 11.x to 12.1.5
	VEE Port Configuration Project
	Front Panel
	Application

	From 10.x to 11.2.0
	VEE Port Configuration Project

	From 9.x to 10.0.2
	VEE Port Configuration Project
	BSP
	Application

	From 8.x to 9.4.1
	VEE Port Configuration Project
	Application

	From 7.x to 8.1.0
	VEE Port Configuration Project
	BSP
	STM32 VEE Ports with DMA2D only

	Vector Graphics
	Principle
	MicroVG
	Principle
	Architecture
	Native Calls
	Installation
	Use

	Abstraction Layer API
	Principle
	Embedded VEE Port
	Simulator

	Matrix
	Principle
	Functional Description
	Abstraction Layer API
	Use

	Path
	Principle
	Functional Description
	Abstraction Layer API
	Use

	Gradient
	Principle
	Functional Description
	Abstraction Layer API
	Use

	Image
	Principle
	Compile-time Image
	Overview
	Image Generator
	Default Extensions
	Custom Extension
	MicroVG Library

	Resource Vector Image
	Filtered Image
	External Memory
	Principle
	Configuration File
	Process
	Simulation

	Buffered Vector Image
	Runtime Image
	Rendering Engine
	Abstraction Layer API
	Simulation
	Use

	Font
	Principle
	Functional Description
	Abstraction Layer API
	External Memory
	Principle
	Configuration File
	Process
	Simulation

	Use

	C Modules
	Principle
	UI Pack & MicroUI C Modules
	VG Pack
	C Module: MicroVG
	Description
	Dependencies
	Usage

	Library: FreeType
	Description
	Memory Heap Configuration
	Principle

	Library: HarfBuzz
	C Module: MicroVG Over VGLite
	Overview
	Usage

	C Module: MicroVG Over NemaVG
	Overview
	Usage

	Compatibility

	Simulation
	Principle
	Default Extensions
	Custom Extension
	Overview
	Image Decoder
	Display Drawer
	Buffered Vector Image

	Installation
	Use

	Release Notes
	UI Pack Compatibility Version
	Foundation Libraries
	C Modules Compatibility Version

	Changelog
	[1.7.1] - 2025-04-09
	Front Panel
	C Module MicroVG
	C Module VGLite
	C Module NemaVG

	[1.7.0] - 2024-10-09
	UI Pack
	MicroVG Implementation
	C Module FreeType
	C Module HarfBuzz

	[1.6.0] - 2024-07-19
	MicroVG Implementation
	Front Panel
	LLAPIs

	[1.5.1] - 2024-04-11
	Front Panel
	C Module VGLite

	[1.5.0] - 2024-02-15
	UI Pack
	MicroVG
	Front Panel
	LLAPIs
	C Module MicroVG
	C Module VGLite

	[1.4.2] - 2023-11-13
	MicroVG
	Front Panel
	C Module MicroVG
	C Module VGLite

	[1.4.1] - 2023-09-21
	MicroVG
	C Module VGLite

	[1.4.0] - 2023-07-21
	MicroVG
	C Module MicroVG
	C Module VGLite

	[1.3.0] - 2023-05-10
	UI Pack
	MicroVG
	Front Panel
	C Module MicroVG
	C Module VGLite

	[1.2.1] - 2023-02-06
	Front Panel
	C Module VGLite

	[1.2.0] - 2022-12-30
	MicroVG
	Front Panel
	Vector Image Converter
	C Module MicroVG
	C Module VGLite

	[1.1.1] - 2022-09-05
	UI Pack
	MicroVG
	LLAPIs
	C Module MicroVG
	C Module VGLite

	[1.0.1] - 2022-05-16
	MicroVG

	[1.0.0] - 2022-05-13
	UI Pack
	MicroVG

	Migration Guide
	From 1.7.0 to 1.7.1
	BSP with VGLite
	BSP with NemaVG

	From 1.6.0 to 1.7.0
	VEE Port Configuration project
	BSP with VGLite
	BSP with NemaVG
	FreeType
	HarfBuzz

	From 1.5.x to 1.6.0
	VEE Port Configuration project
	LLAPIs
	BSP with VGLite

	From 1.4.x to 1.5.1
	VEE Port Configuration Project
	BSP with VGLite

	From 1.3.x to 1.4.2
	BSP with VGLite

	From 1.2.x to 1.3.0
	VEE Port Configuration Project
	BSP with VGLite

	Networking
	Principle
	Network Core Engine
	Principle
	Functional Description
	Dependencies
	Installation
	Use

	SSL
	Principle
	Functional Description
	Dependencies
	Installation
	Use

	Network Interfaces Management
	Overview
	Dependencies
	Installation
	Use

	Wi-Fi
	Overview
	Dependencies
	Installation
	Use

	Bluetooth
	Principle
	Functional Description
	Dependencies
	Installation
	Use

	Audio
	Principle
	Functional Description
	Dependencies
	Installation
	Use

	MicroAI
	Principle
	Functional Description
	Dependencies
	Installation
	Use

	Event Queue
	Principle
	Dependencies
	Installation

	File System
	Principle
	Functional Description
	Dependencies
	Installation
	Properties File Template

	Use

	GNSS
	Principle
	Functional Description
	GNSS Mock
	Dependencies
	Installation
	Use

	Hardware Abstraction Layer
	Principle
	Functional Description
	Identifier
	Basic Rule
	Generic Rules

	Configuration
	Dependencies
	Installation
	Use

	Device Information
	Principle
	Dependencies
	Installation
	Use

	Security
	Principle
	Dependencies
	Installation
	Use

	Watchdog Timer
	Overview
	Principle
	Mock Implementation
	Dependencies
	Installation
	Use in an Application
	Code example in Java
	Use in C inside the BSP
	Code example in C

	SystemView
	Principle
	References
	Pre-requisites
	Integrate SystemView in your VEE Port
	Apply FreeRTOS patch
	Add source files to your BSP for SystemView with MicroEJ/FreeRTOS integration
	Configure FreeRTOS for SystemView
	Modify startup code of your BSP
	Add description files to Systemview installation folder
	Non default CPU recommendations
	Post Mortem analysis data extraction

	Usage
	Trace application events
	Add custom events to the SystemView analysis
	Core Engine OS Task
	OS Tasks and Threads Names
	OS Tasks and Threads Priorities

	Troubleshooting
	SystemView doesn’t see any activity in MicroEJ Tasks
	OVERFLOW Events in SystemView
	RTT Control Block Not Found
	RTT block found by SystemView but no traces displayed
	Bus hardfault when running SystemView without Core Engine
	Partial or wrong analysis with warning messages in the logs
	SystemView for STM32 ST-Link Probe

	Simulation
	Principle
	Functional Description
	Dependencies
	Installation
	Use
	Mock
	Principle
	Functional Description
	Example
	Mocks Design Support
	Interface
	Array Type Arguments
	Blocking Native Methods
	Resource Management
	Synchronous Terminations
	Define a Mock Option

	Dependencies
	Installation
	In a VEE Port
	In an Application

	Use
	JavaFX
	Mock Framework
	Usage
	Mock Framework Property
	Getter and Setter Attributes
	Mock Framework Widgets
	Mock Framework Dashboard
	Examples
	Installation

	Event Tracing

	Shielded Plug Mock
	General Architecture
	Configuration

	Front Panel Mock
	Principle
	Functional Description
	The Front Panel Project
	Creating a Front Panel Project
	Project Contents

	Module Dependencies
	Front Panel File
	File Content
	Editing Front Panel Files
	Multiple Front Panel Files

	Widget
	Description
	Runtime
	Example
	Empty Widget
	Input Device Filters

	Extension / Customization
	Tool Bar
	Status Bar
	Around the Device

	Installation
	Advanced: Test the Front Panel Project

	Use

	Bluetooth Mock
	Overview
	Requirements
	Controller Firmwares
	Usage
	Controller Firmware Installation
	Wi-Fi Setup
	Simulation

	Troubleshooting
	Network Setup Errors
	I can’t find the “BLE-Mock-Controller-[hexa device id]” access point
	I want to override the network configuration
	“Invalid parameter type: 0x47 expected 0x53” error
	Simulation Errors
	Error during the simulation: mock could not connect to controller

	Appendices
	Low Level API
	Low Level API Pattern
	Principle
	Multiple Implementations and Instances

	LLMJVM: Core Engine
	Naming Convention
	Header Files

	LLKERNEL: Multi-Sandbox
	Naming Convention
	Header Files

	LLSP: Shielded Plug
	Naming Convention
	Header Files

	LLEXT_RES: External Resources Loader
	Principle
	Naming Convention
	Header Files

	LLCOMM: Serial Communications
	Naming Convention
	Header Files

	LLUI_INPUT: Input
	Implementation
	Sending Events
	Event Buffer

	LLUI_DISPLAY: Display
	Principle & Naming Convention
	Initialization
	Image Heap
	External Font Heap
	Flush and Synchronization
	Display Characteristics
	Contrast
	BackLight
	Color Conversions
	CLUT
	Image Decoders

	LLUI_LED: LEDs
	Principle
	Naming Convention
	Initialization

	LLVG: VectorGraphics
	Principle
	Naming Convention
	Initialization

	LLVG_MATRIX: Matrix
	Principle
	Naming Convention
	Implementation

	LLVG_PATH: Vector Path
	Principle
	Naming Convention
	Creation
	Drawing

	LLVG_GRADIENT: Vector Linear Gradient
	Principle
	Naming Convention
	Implementation

	LLVG_FONT: Vector Font
	Principle
	Naming Convention
	Initialization
	Font Characteristics
	Drawing

	LLNET: Network
	Naming Convention
	Header Files

	LLNET_SSL: SSL
	Naming Convention
	Header Files

	LLECOM_NETWORK: Network Interfaces
	Naming Convention
	Header Files

	LLECOM_WIFI: Wi-Fi Management
	Naming Convention
	Header Files

	LLBLUETOOTH: Bluetooth
	Naming Convention
	Header Files

	LLAUDIO: Audio
	Naming Convention
	Header Files

	LLML: MicroAI
	Naming Convention
	Header Files

	LLEVENT: Event Queue
	Naming Convention
	Header Files

	LLFS: File System
	Naming Convention
	Header Files

	LLGNSS: GNSS
	Naming Convention
	Header Files

	LLHAL: Hardware Abstraction Layer
	Naming Convention
	Header Files

	LLDEVICE: Device Information
	Naming Convention
	Header Files

	LLWATCHDOG_TIMER: Watchdog Timer
	Naming Convention
	Header Files

	LLSEC: Security
	Naming Convention
	Header Files

	MicroEJ Foundation Libraries
	EDC
	Error Messages
	Exit Codes

	SNI
	Error Messages

	KF
	Definitions
	Feature Definition Files
	Kernel Definition Files
	Kernel API Files
	Access Error Codes
	Feature Installation and Loading Error Codes
	Corrupted Feature File

	ECOM
	Error Messages

	ECOM Comm
	Error Messages

	MicroUI
	Error Messages

	FS
	Error Messages

	GNSS
	Error Messages

	Net
	Error Messages

	SSL
	Error Messages

	Tools Options and Error Codes
	Immutable Files Related Error Messages
	SNI
	SP Compiler
	Options
	Error Messages

	NLS Immutables Creator
	MicroUI Static Initializer
	Inputs
	Display

	Front Panel
	FP File
	XML Schema
	File Specification

	HIL Engine
	Heap Dumping
	XML Schema
	File Specification

	Architectures MCU / Compiler
	Principle
	Supported Core Engine Capabilities by Architecture Matrix
	ARM Cortex-M0
	ARM Cortex-M33
	ARM Cortex-M4
	ARM Cortex-M7
	ARMv7A (ARMv7-A without integer division extension: Cortex-A5/Cortex-A8/Cortex-A9)
	ARMv7VE (ARMv7-A with integer division extension: Cortex-A7/Cortex-A15)
	ESP32
	IAR Linker Specific Options
	--no_range_reservations
	--diag_suppress=Lp029

	GNU LD Specific Options
	--start-group --end-group

	ARM Linker Specific Options
	Fix Unexpected Undefined Symbol
	Link the SOAR Debug Section

	Former Platform Migration
	Create an Architecture Repository
	Import the Former Platform Sources
	Install the Platform Configuration Additions
	Update the Front Panel Configuration
	Configure the BSP Connection
	Add the Build and Run Scripts
	Use the Platform in Module Projects
	Going further

	Architecture 8.0.0 Migration
	Migrate Core Engine Capability Configuration
	Mono-Sandbox
	Multi-Sandbox
	Tiny-Sandbox

	Migrate Your LLKERNEL Implementation

	Architecture 7.x Migration
	Update Platform Configuration Additions
	Update BSP with new Sections Names
	Remove LLBSP_IMPL_isInReadOnlyMemory
	Migrate Built-in Modules
	Migrate Device Module
	Migrate ECOM-COMM Module

	Migrate Your LLKERNEL Implementation
	Migrate Trace C Library Usage
	Migrate Legacy System Properties Files

	C Modules Installation
	Fetching the module source files
	C module configuration and firmware build

	Kernel Developer Guide
	Overview
	Introduction
	Terms and Definitions
	Overall Architecture
	Input and Output Artifacts
	Kernel Build Flow
	Kernel Implementation Libraries
	Getting started

	Kernel Creation
	Create a new Project
	Configure a VEE Port
	Build the Executable and Virtual Device
	Build the Executable in the Workspace

	Expose APIs
	Implement a Security Policy
	Add Pre-installed Applications
	Kernel Application Configuration with SDK 5
	Module Configuration
	Build Options
	Build only a Virtual Device with a pre-existing Kernel

	Kernel APIs
	Kernel API Definition
	Writing Kernel APIs
	Default Kernel APIs Derivation
	Kernel API Generator
	Category: Kernel API Generator
	Group: Classpath
	Option(list):
	Group: Types Filters
	Option(text): Includes Patterns
	Option(text): Excludes Patterns

	Runtime Environment
	Principle
	Create a new Runtime Environment Module
	Kernel APIs as Dependencies
	Kernel APIs as Project File
	Add Add-On Processors

	Use a Runtime Environment in an Application
	Extend a Runtime Environment

	Kernel UID
	Sandboxed Application Lifecycle
	Define a Security Policy
	Register a Security Manager
	Implement a Security Manager
	Security Manager with Application Declared Permissions
	Principle
	Policy File Format
	Policy File Example
	Kernel Implementation

	Security Manager with Permission Dispatch

	Kernel and Features Communication
	Shared Services
	Communication between Features
	Register a Service
	Get a Service

	Communication between Kernel and Feature
	Register a Service
	Get a Service

	Implement a Registry
	Kernel Types Converter

	Multi-Sandbox Enabled Libraries
	Manage Internal Global State
	Declare a Static Field Local to the Feature
	Allow a Field Assignment in Kernel Mode
	Use Existing Multi-Sandbox Enabled Data Structures

	Implement a Security Manager Permission Check
	Known Foundation Libraries Behavior
	MicroUI
	Physical Display Ownership
	Automatically Reclaimed Resources

	BON
	Kernel Timer
	Automatically Reclaimed Resources

	ECOM
	ECOM-COMM
	FS
	NET
	SSL

	Setup a KF Test Suite
	Enable the Test Suite
	Add a KF Test
	KF Test Suite Options (SDK 5 only)

	Kernel Linking
	Link Flow
	Kernel Metadata Generation
	Feature Portability Control
	Principle
	Enable
	Portability Rules

	Application Linking
	SOAR Build Phases
	Feature Build Off Board
	Feature Build On Device
	General Workflow
	Implement the Kernel

	FSO Compatibility
	Feature Portability

	VEE Wear User Guide
	VEE Wear Framework
	VEE Wear Kernel
	VEE Wear Services Library
	VEE Wear Apps
	Creating an App
	Implementing the Entry Point
	Implementing an Activity
	Implementing a Watchface
	Implementing a Renderable
	Implementing a Complication Data Source
	Building an App
	Selecting the Kernel
	Building the App

	Android Compatibility Kit
	Overview
	Workflow
	Software Architecture
	Available APIs and Features

	Installation
	JDK Version
	Configure Repositories

	Project Setup
	Create or Import an Android project
	Create or Import a MicroEJ Application
	Configure the Android Application
	Start the MicroEJ Application
	Run on MicroEJ VEE and Android

	VEE Port
	VEE Port Configuration
	MicroEJ Android Packs
	Custom Android Packs
	Setting Android SDK Environment Variable
	Creating the Android Pack Module
	Compiling against Android SDK
	Implementing the Android mock
	Using the Android Pack in the VEE Port

	iOS Compatibility Kit
	Software Architecture
	Workflow
	Evaluation

	Offloading
	Solution
	One Code, Two Targets
	Offloading Framework

	Evaluation

	VEE Script
	Introduction
	Tags and Functions
	Examples
	Expression Types
	Value Types
	Language Syntax
	Language Configuration
	Evaluation

	VEE Energy User Guide
	Training Courses
	For Beginners
	MICROEJ SDK Basics
	Description
	Intended Audience
	Prerequisites
	Training Resources

	Mastering MICROEJ SDK Development Tools
	Description
	Intended Audience
	Prerequisites
	Training Resources
	Unit 1: Master logging within your Application
	Unit 2: MicroEJ Development Tools Overview

	C / Managed Code Communication
	Description
	Intended Audience
	Prerequisites
	Training Resources
	Unit 1: C / Managed Code Communication with MICROEJ VEE
	Unit 2: Implementing a Blocking Java Native Method with SNI
	Implement a Blocking Java Native Method with SNI
	Intended Audience
	Prerequisites
	Overview
	Requirements
	Example Code
	Application Behavior
	Implement a Non-Blocking Method
	Update the C Native Function Implementation
	Step 1: Update the C Native Function
	Step 2: Update the Button Interrupt Function
	Step 3: Implement the Callback Function
	Application Behavior

	Simulate Hardware Behavior using Mocks
	Description
	Intended Audience
	Prerequisites
	Training Resources
	Unit 1: Read the Mock Developer Guide
	Unit 2: Run Mock Framework Examples

	For Application Developers
	Get Started with Sandboxed Applications
	Description
	Intended Audience
	Prerequisites
	Hardware setup
	Environment Setup
	Install MICROEJ SDK 6
	Accept the MICROEJ SDK EULA
	Hardware Setup for NXP i.MXRT1170 EVKB
	Flash the Multi-Sandbox Executable on your NXP i.MXRT1170 Evaluation Kit

	Training Course
	Run the Demo-Sandboxed-Applications
	Import the Project
	Run the Demo-Sandboxed-Applications on the Virtual Device
	Run the Demo on the NXP i.MXRT1170 Evaluation Kit
	Subscribe to the MQTT Topic to Get the Power Values
	Managing Applications Lifecycle
	Well Done!
	Create and Run a Sandboxed Application
	Create the Sandboxed Application Project
	Run the Sandboxed Application on the Virtual Device
	Run the Sandboxed Application on the NXP i.MXRT1170 Evaluation Kit
	Well Done!
	Going Further

	MicroEJ Java Programming Practices
	Description
	Intended Audience
	Prerequisites
	Readable Code
	Naming Convention
	Interfaces and Subclasses Naming Convention
	Visibility
	Javadoc
	Code Convention
	Class Declaration
	Fields Order
	Methods Order
	Modifiers Order
	Code Style and Formatting

	Best Practices
	Common Pitfalls
	Simplify Maintenance
	Basic Optimizations
	Local Extraction
	Equals and Hashcode
	Autoboxing and Numbers
	Generic Types
	Memory Use of Objects
	Reflection
	BON Constants
	Enums
	Concurrency
	Serialization
	Annotations
	Polymorphism, Inheritance, and Interfaces
	Exceptions
	Data Encapsulation and Fields
	Native Interfaces
	Usage of Inner Classes
	Usage of Clinits
	About Limitations
	Inlining
	Binary creation from classpath
	Immutables and Immortals
	Loop Invariants
	Use of I/O Classes
	Logging
	Array Copy
	Switch Statements

	Related Tools
	Unit Testing
	Code Analysis with SonarQube™
	Code Instrumentation

	Sandboxed Application Development
	Description
	Intended Audience
	Prerequisites
	Training Resources
	Unit 1: Sandboxed Application Training
	Unit 2: Run Demo Sandboxed Application

	Optimize the Memory Footprint of an Application
	Description
	Intended Audience
	Prerequisites
	Introduction
	How to Analyze the Footprint of an Application
	How to Analyze the Files Generated by the MicroEJ Linker
	How to Analyze a Map File Generated by a Third-Party Linker
	File Structure
	Finding the Size of a Section or Symbol

	How to Reduce the Image Size of an Application
	Application Resources
	Fonts
	Default Font
	Character Ranges
	Pixel Transparency
	External Storage
	Internationalization Data
	Implementation
	External Storage
	Images
	Encoding
	Color Depth (BPP)
	External Storage
	Application Code
	MicroEJ Platform Configuration
	Application Configuration
	Stripping Class Names from an Application
	Removing All Class Names
	Listing Required Class Names
	Case of Service Library
	Case of Properties Loading
	Case of Logger and Other Debugging Facilities

	How to Reduce the Runtime Size of an Application
	Application Code
	MicroEJ Platform Configuration
	Debugging Stack Overflows
	Application Configuration
	Managed heap and Immortals Heap
	Thread Stacks
	Core Engine Dump
	MicroUI Images Heap

	Application Testing
	Description
	Intended Audience
	Prerequisites
	Training Resources

	For VEE Developers
	VEE Port Creation for a Custom Device
	Description
	Intended Audience
	Prerequisites
	Training Resources
	Create a MicroEJ Firmware From Scratch
	Intended Audience
	Introduction
	Prerequisites
	Overview
	Setup the Development Environment
	Get Running BSP
	FreeRTOS Hello World
	Create a MicroEJ Platform
	Import the MicroEJ Architecture
	Install an Evaluation License
	Create the MicroEJ Platform
	Setup the MicroEJ Platform
	Create MicroEJ Application HelloWorld
	Configure BSP Connection in MicroEJ Application
	MicroEJ and FreeRTOS Integration
	Minimal Low Level APIs
	Invoke the Core Engine
	Build and Link the Firmware with the MicroEJ Runtime and MicroEJ Application
	Create MicroEJ Platform Build and Run Scripts
	Intended Audience
	Prerequisites
	Introduction
	Overview
	Create Build and Run Scripts
	Create build.sh and run.sh Scripts
	Create build.bat and run.bat Scripts
	Use Build Script in MicroEJ SDK
	Build Firmware from MicroEJ SDK
	Convert from partial BSP connection to full BSP connection (optional)
	Going Further
	Unit 1: Create a MicroEJ Firmware From Scratch
	Unit 2: Create VEE Port Build and Run Scripts

	Qualify & Test your VEE Port
	Description
	Intended Audience
	Prerequisites
	Training Resources
	Unit 1: Introduction to Port Qualification Tool
	Unit 2: Run a Test Suite on a Device

	Debug a HardFault
	Description
	Intended Audience
	Prerequisites
	Introduction
	Useful Resources
	Exceptions, HardFaults And Exception Handler
	What To Do In Exception Handlers?
	Memory Protection Unit (MPU)
	Memory Corruption
	Investigation
	When a HardFault Occurs
	Extract Information and Coredump
	Memory Dump Analysis
	Trigger a Core Engine Dump

	Delegate Blocking Operations using Async Worker
	Description
	Intended Audience
	Prerequisites
	Training Resources
	Unit 1: Async Worker Overview
	Unit 2: Implementation Guide

	For Kernel Developers
	Get Started with Kernel
	Prerequisites
	Hardware setup
	Environment Setup
	Install MICROEJ SDK 6
	Accept the MICROEJ SDK EULA
	Setup the NXP i.MXRT1170 EVKB

	Set up the Kernel GREEN on your IDE
	Import the Project
	Configure the Project
	Select a VEE Port
	Kernel Configuration

	Run the Kernel GREEN on NXP i.MXRT1170 Evaluation Kit
	Build the Executable for the NXP i.MXRT1170 Evaluation Kit
	Flash the Kernel GREEN on the NXP i.MXRT1170 Evaluation Kit

	Well Done!
	Run a Sandboxed Application on your Multi-Sandbox Executable and Virtual Device
	Going Further

	Kernel Development
	Description
	Intended Audience
	Prerequisites
	Training Resources
	Unit 1: Kernel Development with MICROEJ SDK
	Unit 2: Kernel-GREEN

	Graphical User Interface
	Develop GUI with MicroEJ
	Description
	Intended Audience
	Prerequisites
	Training Resources
	How to Validate GUIs
	Description
	Intended Audience
	Prerequisites
	Implementing GUIs Efficiently
	Documents and Tools to Improve Application Code Quality
	Using Recent Versions of UI Libraries
	Memory Management
	Format of UI Resources
	Decoding Immutable Images
	Format of Immutable Images
	Images Heap
	Benchmarking GUIs
	SystemView
	MicroUI Flush Visualizer
	Debugging GUIs
	High-level Debugging and Optimizations
	Widget Hierarchy and Layout
	Bad Use of requestRender and requestLayout
	Animations Implementation
	Animator
	TimerTask
	Animator and TimerTask mix
	Hardware and Low-level Debugging and Optimizations
	At Project Level
	Compiling Optimization Options
	RTOS Tasks Environment
	At Hardware Level
	Hardware Capabilities
	Hardware Configuration
	Buffers Location in Memory
	Flush Policy
	Testing GUIs
	Test a GUI Application with a Software Robot
	Test a GUI Application with the Test Automation Tool
	Unit 1: Coding Challenges
	Unit 2: GUI Validation

	Grayscale Display Considerations
	Description
	Intended Audience
	Prerequisites
	Training
	Application Considerations
	Footprint Considerations

	Debug a GUI Application Freeze
	Description
	Intended Audience
	Prerequisites
	Introduction
	Check RTOS Tasks Scheduling
	Check Threads Scheduling
	Check UI Thread Liveness
	Check Input Events Processing
	Implementation Details
	Threads Creation
	UART Not Available

	Connectivity
	Networking Basics
	Description
	Intended Audience
	Prerequisites
	Training Resources

	For DevOps
	Setup an Automated Build using Jenkins and Artifactory
	Description
	Intended Audience
	Prerequisites
	Introduction
	Overview
	Prepare your Docker environment
	Get a Module Repository
	Setup Artifactory
	Configure Artifactory
	Create Repositories
	Import MicroEJ Repositories

	Setup Gitea
	Install Gitea

	Configure Gitea
	Setup Jenkins
	Install Jenkins
	Configure Jenkins

	Build a new Module using Jenkins
	Create a new MicroEJ Module
	Create a New Jenkins Job
	Build the “Hello World” Application

	Appendix
	Customize Jenkins

	SDK 5 User Guide
	Installation
	Install Latest SDK Distribution
	Download SDK Distribution
	Check JDK Version
	Install SDK Distribution

	Update SDK Version
	Install Other SDK Distributions
	Install Portable SDK Distribution
	Install SDK Distribution 21.11
	Download SDK Distribution
	Check JDK Version
	Install SDK Distribution

	System Requirements
	Get JDK

	Troubleshooting
	Incompatible Default Java Version
	Windows Specifics
	Linux Specifics
	MacOS Specifics

	Licenses
	SDK EULA
	License Manager Overview
	License Check
	Evaluation Licenses
	Get your Machine UID
	Request your Activation Key
	Install the License Key
	Troubleshooting
	Unable to add an Evaluation license key in the SDK
	Machine UID has changed

	Production Licenses
	Request your Activation Key
	Activate your USB Dongle
	Check Activation
	Check Activation in the SDK
	Check Activation with the Command Line Tool

	USB Dongle on GNU/Linux
	USB Dongle with Docker on Linux
	USB Dongle with WSL
	Troubleshooting
	Windows Troubleshooting
	VirtualBox Troubleshooting
	WSL Troubleshooting

	Dongle not detected in the licenses screen
	Remote USB Dongle Connection

	Standalone Application
	Platform Import
	Source Platform Import
	Import from Folder
	Import from Zip File
	Platform Build

	Binary Platform Import

	Build and Run an Application
	Create a MicroEJ Standalone Application
	Run on the Simulator
	Run on the Device
	Build the Application
	Build the Executable File

	MicroEJ Launch
	Main Tab
	Execution Tab
	Configuration Tab
	JRE Tab
	Source Tab
	Common Tab

	Sandboxed Application
	Create a First Application
	Entry Point
	Configuration
	SSL Certificate
	Module Descriptor

	Run on the Simulator
	From the SDK
	Run Multiple Sandboxed Applications

	From the Command Line Interface

	Run on the Device
	Local Deployment
	Remote Deployment

	Module Repository
	Create a Repository Project
	Configure Resolver for Input Modules
	Configure Consistency Check
	Advanced Options
	Include Modules
	Include a Single Module
	Include a Module Repository

	Generate Javadoc
	Build the Repository
	Use the Offline Repository

	Select a VEE Port
	Module Natures
	Add-On Library
	Add-On Processor
	Foundation Library API
	Foundation Library Implementation
	Kernel Application
	Meta Build
	Mock
	Module Repository
	Runtime Environment
	Sandboxed Application
	Standalone Application
	Studio Rebranding
	Natures Plugins
	Java Compilation
	Platform Loader
	Javadoc
	Test Suite
	Java SE Unit Tests
	Artifact Checker

	Global Build Options

	Debug an Application
	Debug on Simulator
	Debug on Device
	Get Library Sources
	Add-On Library Sources
	Foundation Library Sources

	Development Tools
	Test Suite with JUnit
	Principle
	JUnit Compliance
	Setup a Platform for Tests
	Execution in SDK
	Execution during module build

	Setup a Project with a JUnit Test Case
	Build and Run a JUnit Test Suite
	Test Suite Reports
	Configure the Execution on your Device
	Advanced Configurations
	Autogenerated Test Classes
	JUnit Test Case to MicroEJ Test Case
	Test Suite Options (SDK 5 only)
	Test Specific Options

	Stack Trace Reader
	Principle
	Functional Description
	Dependencies
	Installation
	Use (Standalone Application)
	Use (Sandboxed Application)
	Stack Trace Reader Options
	Category: Stack Trace Reader
	Group: Application
	Option(browse): Executable file
	Option(list): Additional object files
	Group: “Trace port” interface for Eclipse
	Option(combo): Connection type
	Option(text): Port
	Option(combo): Baudrate
	Option(text): Port
	Option(text): Address
	Option(browse): Stack trace file

	Code Coverage Analyzer
	Principle
	Functional Description
	Dependencies
	Installation
	Use
	Category: Code Coverage
	Option(browse): *.cc files folder
	Group: Classes filter
	Option(list): Includes
	Option(list): Excludes

	Heap Dumper & Heap Analyzer
	Introduction
	The Heap
	Heap Dump
	Heap Analyzer Tools

	Heap Dumper
	Simulator
	Device
	Retrieve the .hex file from the device
	Convert .hex dump to .heap dump

	Heap Viewer
	Outline View
	Instance Browser View
	Heap Usage Tab
	Dominator Tree Tab
	Leak Suspects Tab

	Progressive Heap Usage
	Compare Heap Dumps
	Instance Fields Comparison View

	Serial to Socket Transmitter
	Principle
	Installation
	Use
	Category: Serial to Socket
	Group: Serial Options
	Option(text): Port
	Option(combo): Baudrate
	Group: Server Options
	Option(text): Port

	Memory Map Analyzer
	Principle
	Functional Description
	Dependencies
	Installation
	Use

	Null Analysis
	Principle
	Java Code Annotation
	Module Project Configuration
	Requirements
	Project configuration

	MicroEJ Libraries
	Advanced Use
	Troubleshooting
	The project cannot build anymore after Null Analysis setup

	IDE
	Startup
	Resolve Dependencies in Workspace
	Resolve Foundation Libraries in Workspace
	Resolve Front Panel in Workspace

	SDK Version
	MicroEJ Module Manager
	Introduction
	Specification
	Module Project Skeleton
	Module Description File
	Enable MMM Semantic
	Module Dependencies
	Dependency Matching Rule
	Dependency Visibility

	Build Options
	Automatic Update Before Resolution

	SDK Configuration
	Preferences Page
	Settings File
	Options
	Resolution Logs

	Module Build
	Build Kit
	Command Line Interface
	Usage
	Shared configuration
	Commands

	Build System Options
	Meta Build
	Meta Build creation
	Meta Build configuration

	Troubleshooting
	Unresolved Dependency
	Invalid Certificate
	Target “simulator:run” does not exist
	Could not load SWT library
	systemmicroui.xml:47: Terminated with errors

	Former SDK Versions (lower than 5.2.0)
	New MicroEJ Module Project
	Preferences Pages
	Ivy Preferences Page
	Easyant Preferences Page

	Build Kit

	Former SDK Versions (from 5.2.0 to 5.3.x)
	Build Kit

	VEE Port
	Create a VEE Port
	VEE Port Project Creation
	Architecture Selection
	Pack Import
	VEE Port Build
	Platform Module Configuration
	VEE Port Customization
	VEE Port Publication
	BSP Connection
	Platform API Documentation
	Link-Time Option

	Test a VEE Port
	VEE Port Qualification
	Create a VEE Port Test Suite
	Create the Test Suite Module
	Create the Test Suite Module Project
	Configure the Test Suite Module Project
	Create a New Test Case
	Build the Test Suite Module
	Create the Test Suite Runner
	Create the Test Suite Runner Project
	Configure and Run the Test Suite
	Run the FS Test Suite on ESP32-WROVER VEE Port
	Prerequisites
	Introduction
	Import the Test Suite
	Configure the Test Suite
	Select the Test Suite Version
	Configure the VEE Port BSP Connection
	Configure Execution Trace Redirection
	Start Serial To Socket
	Configure the Test Suite Specific Options
	Run the Test Suite
	Configure the Tests to Run
	Examine the Test Suite Report

	How-to Guides
	How To Add IAR to MICROEJ SDK Docker Image
	Prerequisites
	Create the Dockerfile

	Release Notes
	SDK Distribution Changelog
	[24.01] - 2024-01-31
	[23.07] - 2023-07-03
	[23.02] - 2022-02-28
	[22.06] - 2022-06-29
	[21.11] - 2021-11-15
	[21.03] - 2021-03-25
	[20.12] - 2020-12-11
	[20.10] - 2020-10-30
	[20.07] - 2020-07-28
	[19.05] - 2019-05-17
	[19.02] - 2019-02-22

	SDK Changelog
	[5.9.0] - 2024-07-23
	General
	MicroEJ Module Manager
	General
	Build Types

	[5.8.2] - 2024-01-31
	General
	MicroEJ Module Manager
	General
	Build Types

	[5.8.1] - 2023-09-19
	General
	MicroEJ Module Manager
	General
	Build Types
	Skeletons

	[5.8.0] - 2023-07-03
	General
	MicroEJ Module Manager
	General
	Build Types
	Skeletons

	[5.7.0] - 2023-02-27
	General
	MicroEJ Module Manager
	General
	Build Types
	Skeletons

	[5.6.2] - 2022-08-31
	General
	MicroEJ Module Manager
	General
	Skeletons

	[5.6.1] - 2022-07-08
	General

	[5.6.0] - 2022-06-29
	General
	MicroEJ Module Manager
	General
	Build Types
	Build Plugins
	Skeletons

	[5.5.3] - 2022-05-03
	MicroEJ Module Manager

	[5.5.2] - 2021-12-22
	General
	MicroEJ Module Manager
	Build Plugins

	[5.5.1] - 2021-12-02
	General

	[5.5.0] - 2021-11-15
	General
	MicroEJ Module Manager

	[5.4.1] - 2021-04-16
	MicroEJ Module Manager

	[5.4.0] - 2021-03-25
	Known Issues
	General
	MicroEJ Module Manager
	General
	Build Types
	Build Plugins
	Skeletons

	[5.3.1] - 2020-12-11
	General
	MicroEJ Module Manager
	Build Plugins
	Skeletons

	[5.3.0] - 2020-10-30
	Known Issues
	General
	MicroEJ Module Manager
	General
	Build Types
	Skeletons

	[5.2.0] - 2020-07-28
	General
	MicroEJ Module Manager
	General
	Build Types
	Build Plugins
	Skeletons

	Misc

	[5.1.2] - 2020-03-09
	MicroEJ Module Manager

	[5.1.1] - 2019-09-26
	General

	[5.1.0] - 2019-05-17
	General
	MicroEJ Module Manager
	Build Plugins
	Build Types
	Skeletons

	[5.0.1] - 2019-02-14
	General
	MicroEJ Module Manager
	Build Plugins
	Build Types
	Skeletons

	Build Types per SDK
	Migration Notes
	From 5.2.x to 5.3.x or more
	Workspace migration warning

	From 5.1.x to 5.2.x
	Enable New Wizards Shortcuts in MicroEJ Perspective
	Re-enable the Ivy Preferences Pages (Advanced Use)

	From 4.1.x to 5.x
	Wadapps Application Update
	MicroEJ Module Manager Update
	Meta build Project Update

	Get Support
	About MicroEJ

