MicroEJ Documentation

MicroEJ Corp.

Revision b25dd891

Mar 14, 2022

Copyright 2008-2022, MicroEJ Corp. Content in this space is free for read and redistribute. Except if otherwise stated,
modification is subject to MicroEJ Corp prior approval. MicroEJ is a trademark of MicroEJ Corp. All other trademarks and
copyrights are the property of their respective owners.

1 MicroEJ Glossary

2 Overview
21 GettingStarted oL e
22 MicroEJFirmware v v v vt v v e e e
2.2.1 Bootable Binary with Core Services
2.2.2 Specification,
23 MicroEJRuntime oo
2.3.1 Language
232 Scheduler.....................
2.3.3 Garbage Collector
ot —

MicroEJ Librari

2.5 Module Repositories

2.5.1

MicroEJ Central Repository

2.5.2

Developer Repository

2.5.3

Content Organization

2.6 Embedded Specification Requests

2.7 GitHub Repositories

2.7.1

Repository Import

2.7.2

MicroEJ GitHub Badges

DK r

3.2 System Requirements

3.3 Workspaces and MicroEJ Repositories

3.4 SDKVersion
3.5 licenses
License Manager Overview

3.5.1

3.5.2 Evaluation Licenses

3.6 MicroEJ Module Manager

Specification

3.61 Introduction
3.6.2
3.6.3 Module Project Skeleton
3.6.4 Module Description File
3.6.5 MicroEJ Module Manager Configuration
3.6.6 ModuleBuild

7

: | Line Interf

CONTENTS

N

OO ~N~N~NO0OOoO oo o U

3.6.9 Troubleshooting e e e e e e e 43

3610 MetaBuild e e e e e e e e e 45

3.6.11 Former SDK Versions (lowerthan5.2.0) 0 v i i i i i it 46
3.6.12 Former SDKVersions (from 5.2.0t05.3.X) v v v v v v v i i e e e e e e e e e 48

37 Release NOteS v v i i e e e e e e e e e e e e e e e 48
3.8 SDKDistribution Changelog e e e e 48
3.8.1 [2100]-2021-T1-05 L o s e e e e e e e e e e e e e e e e e e e 48

3.8.2 [21.03]-2021-03-25 . o o ot e 49

3.8.3 [20.02]-2020-12-11 & v v i e 49

3.8.4 [20.00]-2020-10-30 . & v v vt e 49

3.8.5 [20.07]1-2020-07-28 . . . v v i it e 50

3.8.6 [19.05]-2019-05-17 . . v v v v i i e e e e e e e e e e e e e e e e e 50

3.87 [19.02]-2019-02-22 . . . o v v v e 50

3.9 SDKChangelog. o o v i e e e e e e e e e e e e e e e e e 50
3.9.1 [5.5.2]-2021-12-22 . . . i e e e e e e e e e e e e e e e e 50

3.9.2 [5.5.0]-2021-12-02 e e e e e e e e e e e e e e e e e e e 51

3.9.3 [5.5.0]-2021-T1-15 . o o vt e 51

3.9.4 [5.4.01-2021-04-16 « v v v o i e 52

3.9.5 [5.4.0]1-2021-03-25 . . i it i e 52

3.9.6 [5.3.0]-2020-12-T1 4 v v e 54

3.9.7 [5.3.0]1-2020-10-30 &+ & & v v v e 54

3.9.8 [5.2.0]-2020-07-28 i i e e e e e e e e e e e e e 56

3.9.9 [5.1.2]-2020-03-00 . v o v vt e e e e e e e e e e e e e e e e e e 58
3.900 [5.0.0]-2019-09-26 .+« v o i e 58

3.9.01 [5.0.0]-2019-05-T7 & v v v e 58
3.9.92 [5.0.7]1-2019-02-T4 . . v i vt e e e e e e e e e e e e e e e e e e 60

300 Migration NOteS . . . v v i it e 61
3101 From5.2.Xt05.3.X o . e e e e e e e e e e e e e e e e 61
3102 FromBdXt05.2.X . v v v v e 62
3103 From4dXTO DX v v v vt e 62

3101 Troubleshooting o o e e e e e 64
3110 Windows Specifics o e e e e e e e e e e 64

311.2 LinUXSPecifics e e e e e e e e e e e e e e e e 64

301.3 MacOS SPeCifics . . v v v vt e e e e e e e e e e e e 65

4 Application Developer Guide 66
41 Intr O v v e 66
4.2 Standalone Application L e e e e e e e e e e e 66
4.2.1 MicroEJ Platform Import e e e e e e 66

4.2.2 BuildandRunanApplication e e 70

423 BuildOutputFiles e e e e 74

424 MicroEJLaunch o o e e e e e e e e e e e 76

4.2.5 Application Options L e e e e e e e e e e e e e e 80
426 SOAR . i i it e e e e e e e e e e e e e e e e e 107

4.3 Sandboxed Application e e e e e e e e e e 108
4.3.1 Sandboxed Application Structure e 108

4.3.2 Application Publication e 109

433 SharedlInterfaces. o e e e e 109

44 VirtualDeviCe . . . v v i e e e e e e e e e e e e e e e e e e e 113
45 ModuleNatures o v i i e e e e e e e e e e e e e e e e e 113
451 Add-OnLibrary e e e e e e 14

452 Add-On ProCESSOL v v v v e 14

4.5.3 FoundationLibrary APl e e e e e e e 14

4.5.4 Foundation Library Implementation, 115

45,5 Kernel Application e e e e e 15

456 MetaBuild e e e e e e 116
457 MOCK .+ v v i e e e e e e e e e e e e e 116
4.5.8 Module RepOSItOry . . . v v v v i i e e e e e e e e e e e e e e e e e e 116
4.5.9 Sandboxed Application e e e e e nr
4,510 StandaloneApplication e e e 118
4511 Natures Plugins o i i i e e e e e e e e e e e e e e 18
4.6 Module REpOSItOry o i i e e e e e e e e e e e e e e e e e 123
4.60 CreateaRepository Project i i i e e 125
4.6.2 Configure Resolver for InputModules 125
4.6.3 Configure Consistency Check i 125
4.6.4 Advanced Options i e e e e e e e e e e e e 125
465 IncludeModules e 125
466 GenerateJavadoCo e 127
4.6.7 Buildthe Repository i i i e e e e 127
4.6.8 UsetheOffline Repository i i et e e 128
47 MicroEJ Classpath e e e e e e e 128
4.7.1 Application Classpath o o i e e e e e e e e e 128
472 ClasspathLoad Model @ i i i e e e e 129
473 ClasspathElements e e e 130
4.8 ApplicatioNn RESOUICES i i i e e e e s e e e e e e e e e e e e e e e e e e 133
4.8.1 IMages . . . o e 134
482 Fonts e e e e e e e e e 134
4.8.3 Native Language SUpport o o i i e e e e e e e e e e e e e 136
49 NISExternalloader v o i v ittt e e e 137
491 Installation e e e e 137
492 Usaget e e e e 137
4.9.3 Troubleshooting e e e e e e e e 138
494 Crowdin h s e e e e e e e e e e e e e e e e e e e 138
410 DebuganApplication e e e e e e e e e e e e e e e e 139
4.10.1 Add-On Library SOUICES . . . v v v v i e 139
4.10.2 FoundationLibrarySources e e e e e e 14
411 Platform 0 2 P 145
412 DevelopmentTools v i i i e e e e e e e e e e e e 146
4121 TestSuitewithJURNIt o o o e e e 147
4122 StackTraceReader o o v it e e e e e e e e e e e 151
412.3 CodeCoverage Analyzer i i i i i i e e e e e e e e e e 164
412.4 Heap Usage MoNnitoring i i i i i i e e i e e e e e e e e e e e e e 167
412.5 HeapDumper&HeapAnalyzer 169
412.6 ELFtoMapFileGenerator i i i e e e e e 180
4127 Serialto Socket Transmitter v v v v v v it e e e e e e e 182
412.8 Memory Map Analyzer e e e e e e e e e e 183
4029 EVentTraCing . . ¢ v v v i v e 186
41210 NullAnalysis o o e e e e e e e e e e e e e 188
413 Advanced ToOolS e e e e e e e e e e e e e e e e 195
4131 MicroEJLinker o o i o e e e e e e e e e e 195
413.2 MicroEJ TestSuiteEngine e 207
414 Graphical Userinterface e e e e 213
4140 MICroUL . . v v o e e e e e e e e e e e e e e e e e e e 214
4142 MWT (Micro Widget Toolkit) e e e e e e e et 245
4143 Widgetsand Examples e e e e e e e e e 265
4144 Advanced e 268
415 JavaScript e e 272
4151 GettingStarted e e e e e e e 273

4.15.2 SourcesManagementl e e e e e e e e e e e e e e e e 274

4153 Examples . . . e e e e e e e e e e e e e 275
4154 APL. . o o e e e e e e e e e e e e 279
4155 Communication BetweenJavaandJSo 285
415.6 S . L L e e e e e e e e e e e e e e e 289
4157 Limitations oL e 290
415.8 Troubleshooting e e e e e e e 290
4159 Internals o e e e e e e e e e e e e 291
416 Networking o o o e 292
4.16. Foundation Libraries o v i i i e e e e e e e e e e e e e 294
416.2 Add-Onlibraries o i i i e e e e e e e e e e 294
417 Character Encoding i i it e e e e e e e e e e e e e 296
4171 DefaultEncoding v v i i i e e e e e e e e e 296
4172 UTF-8ENCOAING o v o o i e 297
4173 CustomEncoding o e e e e 297
4174 Console QUtpUL o o e e e e e e e e 297
418 Limitations . . . v v v o e 298
Platform Developer Guide 300
5. ntroduction e e e e e e e e e e 300
5.1.1 SCOPE . . e e e e e 300
512 IntendedAudience 300
52 MicroEJPlatform e 300
521 Introduction e e e e e e e e 300
52.2 BUldProcess v v v i i i i e e e e e e e e e e e e e e e e 301
5.2.3 CONCEPLS . . v o e 302
53 MicroEJArchitecture e e e e e e e e e e e e 307
5.3.1 Naming Convention 0 0 i it e e e e e e e e e e e 308
5.3.2 MicroEJ Architectures Changelog i e 309
54 MIicroEJ Packs i i i e e e e e e e e e e e e e e e 331
5.41 OVEIVIEBW .« v o o e e i e 331
542 Naming Convention i i i i i et e e e e e e e e e e e e 331
55 Platform Creation « . . v v v v vt e e e e e e e e e e e e 332
551 ArchitectureSelection oo e 332
5.5.2 Platform Configuration. e 333
55.3 PackIimport. e e e e e e e e e e 334
554 PlatformBuild e e e e e e e e e 335
5.5.5 Platform Module Configuration e 336
556 Platform Customization 339
557 BSPCONNECHION . v v v v v i e e e e e 339
5.6 Platform Qualification e e e e e e e 345
5.6.1 Introduction e e e e e e e e e e 345
5.6.2 Platform Qualification Tools Overview i i it 346
563 PlatformTestSUIte . . . ¢ v v v i e e e e e 347
5.6.4 TestSuiteVersioning o i i i i i i e e e e e 348
57 MicroEJCoreEngine L e e e e e e e e 349
5.7.1 Functional Description 0 i e e e e e e 349
572 ArchitectUre. . . . o oo it e e 350
573 Capabilities e e e e e e e e e e 351
574 Implementation e e e e e e e e e e e e 351
575 GenericOUtPUL i it e e e e e e e e e e e e e 357
5.1.6 LK . e e e e e e e e e e 357
577 Dependencies it e e e e e e e e e e e e e e e e e 358
578 Installation oo e e e e e e e e e e 358

iv

5.8 Multi-SandboX e e e e e e e e 359
5.8.1 Principle e e e e e e e e 359

5.8.2 Functional Description o i i i i e e e e e e e e e 359

5.8.3 MemoryConsiderations e e e e e e e e 359

5.8.4 Dependenciest e e e e e e e e e e e e e e e e e 360
585 Installation oo e e e e e e e e e 360
D86 USE . i it e e e e e e e e e s 360

5.9 Tiny Application L e e e e e e e e e e e e e e e 360
5.9.1 Principle e e e e e e e e e e 360

59.2 Installation e e e e e e e e e 360

593 Limitations . . . v v e 360

510 Native Interface MechanisSms v v v v v vt o e e e e e e e e e e e e e e e e e e 361
5.10.1 Simple Native Interface (SNI) o e e e e e e 361
510.2 Shielded Plug (SP) o o i i i i e e e e e e e e e e 364
5103 MicroEJJavaH e e e e e e e e e e e e e e e e e 367
11___ExternalR rces L L e 368
5110 Principle . . o o e e e e e e e e e e e e e e e 368

5.11.2 Functional Description i e e e e e e e e e e e 369

511.3 Implementations o i e e e e e e e e e e e e e 369

511.4 ExternalResourcesFolder i i i i i e e e e e e 369

511.5 Dependencies i i e 370
5116 Installationo o e e e e e e e e e e 370
SILT USE o o v e 370

512 SerialCommunications v v o e e e e e e e e e e e 370
5.12. ECOM . .t e 370
5122 ECOMCOMM v v v v v e 372

513 GraphicalUseriInterface e e e e e 379
51301 Principle . . o e e e e e e e e e e e e e e e 379
5132 MICroUL . v v v v e e e e e e e e e e e e e e e e e e e 381
5133 Staticlnitialization e e e e 384
5134 lowlevelAPl . . . o v i e e e e e e e e e 388
5135 LED o o it e e e e e e e e e e e e e e 389
513.6 Input e e e e 391
5137 Display o e e 397
5138 IMages i i e e e e e e e e 420
5J3.9 FOoNtsS e 440
51300 SIMUIAtion .« . . .t e e e e e e e 448
513011 ReleaseNOES . . v v v v v v e e e e e e e e e e 454
51302 Changelog ot i i e e e e e e e e e e e e e e e 458
51313 MigrationGuide. L e e e e e e e 481

514 Networking o o o o o e e e e e e e e e e 499
5141 Principle e e e e e e e e e e 499
514.2 Network CoreENgine o o v i i i i it e e e e e e e e e e e e 499
BI43 SSL o i i e e e e e e e e e e e 500

515 File System i e e e e e e e e e e e e e e e e e 501
515.1 Principle e e e e e e e e e e 501
5.15.2 Functional Description e e e e e 501

5153 Dependencies e e e e e e e e e e e e e e e e e e 501
5154 Installation oo e e e e e e e e e e 502
BI85 USE o v i i e e e e e e e e e e e e e e 503

516 Hardware Abstraction Layer. i i e e e e e e e e e e e e e e 504
5.16.1 Principle e e e e e e e e e 504
5.16.2 Functional Description e e e e e e 504

5.16.3 Identifier e e e e 504

516.4 Configuration e e e e e e e 505
516.5 Dependenciest e e e e e e e e e e e e e e e e e 505
516.6 Installation L e e e e e 505
S506.7 USe . . . e e e e e e e e e e e e e e e e e e 505

517 Devicelnformation i i e e e e e e e e e e e e e e e e 506
5170 Principle . . o o e e e e e e e e e e e e e e 506

517.2 Dependencies i i i it e e e e e e e e e e e e e e e e 506
5173 Installation o o e e e e e e e e 506
SITA USE . o ot e 506

518 Watchdog Timer e e e e e e e e e e e e e e e e 506
5181 OVEIVIEW v v v v o v e 506

518.2 Principle e e e e e e e e e e 507
5.18.3 MockImplementation e e e e e 509
518.4 Dependencies i i it e 509
5185 Installation e e e e e e 509
518.6 UseinanApplication i e e e e e e e 510
518.7 CodeexampleinJava o v i i i it e e e e e e e e e 510
5188 UseinCinsidetheBSP e e 51
518.9 CodeexampleinC i i i i i i e e e e e e e e e e 512

519 SystemVieW e 513
519.1 Principle e e e e e e e e e e e e e e 513
5192 References v v i i e e e e e e e e e e e e 514
5193 Installation oo o e e e e e e e e e 514
519.4 MicroEJ CoreEngineOSTask ittt e 517
519.5 OSTasksandJavaThreadsNameso v v v v v v v v vt ie e et e e e e 517
519.6 OSTasksand Java Threads Priorities it i i i e e 518
5097 USE . i i e 519
5.19.8 Troubleshooting e e e e e e 519
5.19.9 RTT block found by SystemView but no tracesdisplayed 521
5.19.10 Bus hardfault when running SystemView without Java Virtual Machine (JVM) 521
5.19.11 SystemView for STM32 ST-Link Probe 521

2 IMULAEION . . . vt o e 522
52001 Principle . . . o e e e e e e e e e e e e e 522
5.20.2 Functional Description i e e e e e e e e e 522
5.20.3 Dependencies i e 523
5204 Installation e e e e e e e e 523
5205 USE & i i i i e 523
5206 MOCK . . v v i it e e e e e e e e e e e e e e e 524
5.20.7 Shielded PlugMock e e e e e e e 528
520.8 FrontPanelMock o o i i e e e e e e e 529
520.9 Bluetooth LEMOCK . . . v v v v o e 537

5.21 APPeNndiCeS . . v v i i e 543
5210 Low leVel APl . . . v o e e e e e e e e e e e e e e e e e e 543
521.2 MicroEJ Foundation Libraries o oo e e e e 552
5.21.3 ToolsOptionsand ErrorCodes. i i i i i e e e e e e e e e e 562

5.21.4 Architectures MCU /Compiler e e e e e e 573
5.21.5 Former Platform Migration e e e 577

6 Kernel Developer Guide 584
61 OVEIVIEW . . v v v o e i e et e e e e e e e e e e e e e e e e e 584
6.1.1 Introduction L e e e e e e e e e e 584

1.2 Termsand Definitions o v o i i e e e e e e e e e e 584

613 OverallArchitecture oot i e 585

vi

1.4 Multi-San XxBUuild Flow o o e e e e e e e e e e e

6.1.5 Firmware Implementation Libraries e e e

6.2 Kernel & Features Specification i i i i e e e e e e e e
6.3 GettingStarted L e e e e e e e e e e e
6.3.1 OnlineGettingStarted e e

6‘3‘2 ! C'QEJ De “Q !EE la!Q's

6.4.1 Createanew Firmware Project o 0 i i i i i it i e e
6.4.2 ConfigureaPlatform e e
5. l|3 Bu.ld t e .l M!ale al d !. tual De“icﬁ
6.44 DefineaRuntime Environment
6.4.5 Add System Applications e e e e e
6.4.6 Build FirmwareusingMetaBuild e e
6.4.7 Build Firmware using MicroEJ Launches 0.

6.5 Writing Kernel APIs e e e e e e e e e e e
6.5.1 Default Kernel APIs Derivation v v v v v v i e e e e e e e e e e e e e
652 BuildaKernelAPIModule e

BT SSL v v e
6.8 Setupa KFTestSUIte i i it e e e e e e e e e e e e e e e e e

6.8.3 KFTestSuite Options . . . v v v i vt e it e e e e e e e e e e e e e e e e e e
6.9 KernelLinking e e e e e e e e
691 LIDKFIOW . . v v v e

6.10 ApplicationLinking e e e e e e e e e
6] QI SQI slg Bu.ldl | ases ---------------------------------------

6.10.4 Compatibility Rules e e e e e e e

I__Tutorials
7.1 Understand how to build a MicroEJ Firmware and its dependencies
7.1.1 The COMPONENtS . . o o v v o o e
i. ,2 IIQ&“ tQ Bu.ld ..

7.2.2 A MicroEJ Platform Project is already available for the same MCU/RTOS/C Compiler
7.2.3 A MicroEJ Platform Project is not available for the same MCU/RTOS/C Compiler
224 PlatformValidation v v o e

614
614
614
617
619
619
620
621
621
622
622
622

vii

7.3.2 Intr oY 622

7.3.3 Prerequisites . . . o v i e 623
234 OVEIVIEW . v v v v v e 623
7.3.5 Setupthe Development Environment 623
7.3.6 GetRUNNINg BSP e e e e e e e e e e e e e 624
737 FreeRTOSHelloWorld e e e e e e e e e 626
13.8 CreateaMicroEJPlatform 627
7.3.9 Create MicroEJ ApplicationHelloWorld 633
7.3.10 Configure BSP Connection in MicroEJ Application 635
7.3101 MicroEJ and FreeRTOS Integration it e 637
7.4 Create MicroEJ Platform Build and RunScripts 648
741 Inten AUdienCe e 648
T4.2 Prerequisites . . . v i i e 649
143 Introduction e 649
ZAA QVEIVIEW .+ v v v o v e 649
7.4.5 CreateBuildand RunScripts. i i it e e e e e 649
7.4.6 UseBuild Scriptin MicroEJSDK e e e e e 653
TAT GoINgFUIther e e e e e e e e e e e e e e 656
7.5 Setup an Automated Build using Jenkins and Artifactory o000, 657
151 IntendedAudience e e e e e e 657
1.5.2 Introduction e e e e e e e e e e 657
7.5.3 PrerequUIsSites . . . v v i i e 658
154 OVEIVIEW . v v v v e e e i e 658
255 InstalltheBuildTools v oo i it 658
7.5.6 GetaModule ReposSitory v v v i i e e e e e e e e e e e e e 660
757 SetupArtifactory L e e e e e e e e 661
7.5.8 SetupJenkins e e e e e e e e e e 662
7.5.9 Buildanew ModuleusingJenkins 664
7500 ApPendiX . . i e e e e e e e e e e e e e e e e 667
7.6 Improvethe QualityofJavaCode i i i i i i e e e e 668
261 IntendedAudience oL e e e 668
1.6.2 ReadableCode i i e e e 668
7 BestPractices i e e e e e e e e e e e e 672
264 RelatedTools . . . ¢ v vt e 674
7.7 Optimize the Memory Footprint of an Application 675
171 IntendedAudience e e e e e e e 675
1.71.2 Introduction e e e e e e e e 675
7.7.3 How to Analyze the Footprintof an Application 675
7.7.4 How to Reduce the Image Size of an Application 677
7.7.5 How to Reduce the Runtime Size of an Application 682
7.8 Explore Data Serialization Formats o o e e e e e e 684
181 IntendedAudience e e e e e 684
182 XML . ot v e 684
783 JSON . o ittt e e e e e e e e e e e 686
184 CBOR . . v vt ittt e e e e e e e e e e e e e e e 688
7.9 InstrumentJavaCodeforLogging i i i i it e e e e e e e 689
291 Intended Audience L. e e e e 690
7.9.2 Introduction e e e e e e e e 690
793 OVEIVIEW .+ v v v vt i e 690
7.9.4 LogwiththeTraceLibrary i e e e e e 691
7.9.5 LogwiththeMessagelLibrary i i i i e 692
7.9.6 LogwiththeLoggingLibrary e e 693
7.9.7 RemoveloggingRelatedCode 694
710 RunaTestSuiteonaDeVviCe v v v v i vt e 696

7.10.1 Intended Audience and SCOPE i e e e e e e e e e

7002 PrerequISites . . . v v v i e
2103 Introduction o e e e e e e e e e e e e e e e e e e
710.4 ImporttheTestSuite o o i i i i e e e e e e e e e
7.10.5 ConfiguretheTestSuite i i e
]. Qlﬁ Igu t e est suite ---------------------------------------
710.7 Configurethe TeststoRUN it e e e e e e e e
710.8 ExaminetheTestSuite Report i i i i i e e e e
711 Implement a Blocking Java Native MethodwithSNIo oo ..
i. s I te Idedlsudie ge
TA1.2 PrerequUISIites . . v v v v i e
Z113 OVEIVIEW '« v v o v v e
TATA ReqUIrEMENTS . . . v v i e e s e
7115 ExampleCode e e e e e e e e e e
711.6 ImplementaNon-BlockingMethod L L.
il 2 Getsta ted M“itlgul ...
7020 SetupyourEnvironment L e e e e e e e e e e e e e
702.2 Starting MicroUl L e e e e e e e e e e e e e e e e e
712.3 BasicDrawingOnSCreen o i i e e e e e e e e e e e e e e e e
2124 Animation v v
7125 CreatingWidgets o i i i e e e e e e e e e e e e
T702.6 UsSing LayoUtsS . . . v v v it e
TA2.7 Style . o oo e
T12.8 IMAGES . . v v i i e e e e e e e
7129 Advanced Styling e e e e
71200 EventHandling e e e
L1201 FONES . o v v e i e
11212 FOlL LISt » v o e
71213 Creatinga Contact ListusingScrollList
11214 Internationalization
713 Discover Embedded Debugging Techniques i e
7131 Intended Audience e e e e e e e e e e e e
713.2 DebuggingTools i i i e e e e e e e e e e e e e e
713.3 Use Case 1: Debugging a GUI ApplicationFreeze
713.4 UseCase2:DebuggingaHardFault,

8 Get Support
9 About MicroEJ

Index

764

765

766

MicroEJ Documentation, Revision b25dd891

Welcome to MicroEJ developer documentation. Browse the following chapters to familiarize yourself with MicroEJ
Technology and understand the principles of app and platform development with MicroEJ.

The Glossary chapter describes MicroEJ terminology.

The Overview chapter introduces MicroEJ products and technology.

The SDK User Guide chapter presents the MicroEJ Software Development Kit.
The Application Developer Guide presents how to develop a Java application.

The Platform Developer Guide teaches you how to integrate a C Board Support as well as simulation config-
urations.

The Kernel Developer Guide introduces you to advanced concepts, such as partial updates and dynamic app
life cycle workflows.

The Tutorials chapter covers a variety of topics related to developing with the MicroEJ ecosystem.

CONTENTS 1

glossary.html
overview/index.html
SDKUserGuide/index.html
ApplicationDeveloperGuide/index.html
PlatformDeveloperGuide/index.html
KernelDeveloperGuide/index.html
Tutorials/index.html

CHAPTER

ONE

MICROEJ GLOSSARY

This glossary defines the technical terms upon which the MICROEJ VEE (Virtual Execution Environment) is built.

Add-On Library A MicroEJ Add-On Libraryis a pure managed code (Java) library. It runs over one or more MicroEJ
Foundation Libraries.

Abstraction Layer An Abstraction Layer is the C code that implements a Foundation Library’s low-level APIs over
a board support package (BSP) or a C library.

Application A MicroEJ Application is a software program that runs on a Powered by MicroEJ device.

Standalone Application MicroEJ Standalone Application is a MicroEJ Application that is directly
linked to the C code to produce a MicroEJ Mono-Sandbox Firmware. Itis edited using MicroEJ
SDK.

Sandboxed Application A MicroEJ Sandboxed Application is a MicroEJ Application that can run
over a MicrokEJ Multi-Sandbox Firmware. It can be linked either statically or dynamically.

System Application A MicroEJ System Application (formerly called a Resident Application) is a
MicroEJ Sandboxed Application that is statically linked to a MicroEJ Multi-Sandbox Firmware,
as itis part of the initial image and cannot be removed.

Kernel Application A MicroEJ Kernel Application is a MicroEJ Standalone Application that imple-
ments the ability to be extended to produce a MicroEJ Multi-Sandbox Firmware.

Architecture A MicroEJ Architecture is a software package that includes the MicroEJ Core Engine port to a target
instruction set and a C compiler, core MicroEJ Foundation Libraries (EDC, [BON], [SN/], [KF]) and the MicroEJ
Simulator. MicroEJ Architectures are distributed either as evaluation or production version.

Core Engine, also named “MEJ32” MicroEJ Core Engine, also named MEJ32, is a scalable 32-bit core for
resource-constrained embedded devices. It is delivered in various flavors, mostly as a binary software pack-
age. MicroEJ Core Engine allows applications written in various languages to run in a safe container.

Firmware A MicroEJ Firmware is the result of the binary link of a MicroEJ Standalone Application with a MicroEJ
Platform. The firmware is a binary program that can be programmed into the flash memory of a device.

Mono-Sandbox Firmware A MicroEJ Mono-Sandbox Firmware is a MicroEJ Firmware thatimple-
ments an unmodifiable set of functions. (previously MicroEJ Single-app Firmware)

Multi-Sandbox Firmware A MicroEJ Multi-Sandbox Firmware is a MicroEJ Firmware that imple-
ments the ability to be extended, by exposing a set of APIs and a memory space to link MicroEJ
Sandboxed Applications. (previously MicroEJ Multi-app Firmware)

Foundation Library AMicroEJ Foundation Libraryis a library that provides core or hardware-dependent function-
alities. A Foundation Library combines managed code (Java) and low-level APIs (C) implemented by one or
more Abstraction Layers through a native interface (SNV/).

Mock A MicroEJ Mock is a mockup of a Board Support Package capability that mimics an hardware functionality
for the MicroEJ Simulator.

https://developer.microej.com/microej-vee-virtual-execution-environment
https://en.wikipedia.org/wiki/Managed_code
https://developer.microej.com/mej32-virtual-machine-for-embedded-systems/
https://en.wikipedia.org/wiki/Managed_code

MicroEJ Documentation, Revision b25dd891

Module Manager MicroEJ Module Manager downloads, installs and controls the consistency of all the dependen-
cies and versions required to build and publish a MicroEJ asset. It is based on Semantic Versioning specifi-
cation.

Platform A MicroEJ Platform integrates a MICROEJ VEE, a MicroEJ Architecture, one or more Foundation Libraries
with their respective Abstraction Layers, and the board support package (BSP) for the target Device. It also
includes associated MicroEJ Mocks for the MicroEJ Simulator.

SDK MicroEJ SDK allows MicroEJ Firmware developers to build a MicroEJ-ready device, by integrating a MicroEJ
Architecture with both Java and C software on their device.

Simulator MicroEJ Simulator allows running MicroEJ Applications on a target hardware simulator on the devel-
oper’s desktop computer. The MicroEJ Simulator runs one or more MicrokEJ mock that mimics the hardware
functionality. It enables developers to develop their MicroEJ Applications without the need of hardware.

Studio MicroEJ Studio is the part of the SDK that can be rebranded by customers for their specific ecosystem. It
allows application developers to write a MicroEJ Sandboxed Application, run it on a Virtual Device, deploy it
on a MicroEJ-ready device, and publish it to a MicroEJ Forge instance.

VEE MICROEJVEE is an applications container. VEE stands for Virtual Execution Environment, and refers to the first
implementation that embeds a virtual 32-bit processor, hence the term “Virtual”. MICROEJ VEE runs on any
OS/RTOS commonly used in embedded systems (FreeRTOS, QP/C, uc/0S, ThreadX, embOS, Mbed OS, Zephyr
0S, VxWorks, PikeOS, Integrity, Linux, QNX, ...) and can also run without RTOS (bare-metal) or proprietary
RTOS. MICROEJ VEE includes the small MEJ32, along with a wide range of libraries (Add-On Libraries and
Foundation Libraries).

Virtual Device A MicroEJ Virtual Device is a software package that includes the simulation part of a MicroEJ
Firmware: runtime, libraries and application(s). It can be run on any PC without the need of the SDK. In
case a MicroEJ Multi-Sandbox Firmware, it is also used for developing a MicroEJ Sandboxed Application in
the SDK.

https://semver.org
https://www.microej.com/product/forge/

CHAPTER

TWO

OVERVIEW

MicroEJ SDK offers a comprehensive toolset to build the embedded software of a device. The SDK covers two levels
in device software development:

« Device Firmware development
+ Application development

The firmware will generally be produced by the device OEM, it includes all device drivers and a specific set of Mi-
croEJ functionalities useful for application developers targeting this device.

Firmware Application .
Platform Sources @s Sources Simulator
MICROEJ.SDK
Firmware Development Application Development
Import Build
Virtual
Device
Build
I 4
Target Local Deploy
Fi MICROEJ
7 irmware | —— APPLICATION
Build Flash — (-) —
L7 Install \ Publish

MICROEJ.Forge

Fig. 1: MicroEJ Development Tools Overview

Using the SDK, a firmware developer will produce two versions of the MicroEJ binary, each one able to run appli-
cations:

« A Firmware binary to be flashed on OEM devices;
« AVirtual Device which will be used as a device simulator by application developers.
Using the SDK, an application developer will be able to:

« Import Virtual Devices matching his target hardware in order to develop and test applications on the Simu-
lator;

MicroEJ Documentation, Revision b25dd891

+ Deploy the application locally on an hardware device equipped with the Firmware;

« Package and publish the application on a MicroEJ Forge Instance, enabling remote end users to install it on
their devices. For more information about MicroEJ Forge, please consult https://www.microej.com/product/
forge.

2.1 Getting Started

MicroEJ Getting Started is available on https://developer.microej.com/get-started/.
Starting from scratch, the steps to go through the whole process are:
1. Setup a board and test a Firmware:
« Select between one of the available boards;
« Download and install a Firmware on the target hardware;
« Deploy and run a demo Application on the board.
2. Setup and learn to use development tools:
« Download and install the SDK;
« Download and install the corresponding Virtual Device for the target hardware;
« Download, build and run your first Application on Simulator;
« Build and run your first Application on target hardware.

The following figure gives an overview of the MicroEJ software components required for both host computer and

target hardware:
MicrokJ - MicrokJ
Virtual Device Firmware
(.vde)

@ Software

(.exe)

MICROEJ Studio (binary)
l Install I Install I Flash
$
. ——
Your Workstation Local Target
with Simulator Deploy
Download
& Install

» | 1@ MICROEJ forge
Publish | S

Fig. 2: SDK Development Imported Elements

2.1. Getting Started 5

https://www.microej.com/product/forge
https://www.microej.com/product/forge
https://developer.microej.com/get-started/

MicroEJ Documentation, Revision b25dd891

2.2 MicroEJ Firmware

2.2.1 Bootable Binary with Core Services
A MicroEJ Firmware is a binary software program that can be programmed into the flash memory of a device. A
MicroEJ Firmware includes an instance of a MicroEJ runtime linked to:

+ underlying native libraries and BSP + RTOS,

« MicroEJ libraries and application code (C and Java code).

YOUR APPLICATIONS

)

ADD-ON LIBRARIES L
Qo =
O g
FOUNDATION LIBRARIES E} @
m U
=
=5
2 =
z MICROEJ,VEE
VIRTUALIZATION
LOW.LEVELAPI . LOW.LFVELAPI

e ABSTRACTION LAYERS = g ME132 = ABSTRACTION LAYERS —
File Internet Lelne * © —
o] stewos s-
: : vz
Drivers BSP Drivers =z
=S,

RTOS/0S

PLATFORM

PROCESSOR
Mass Ethernet D CORE Bluetooth

Storage Wi-Fi / LTE Display

HARDWARE

Fig. 3: MicroEJ Firmware Architecture

2.2.2 Specification

The set of libraries included in the firmware and its dimensioning limitations (maximum number of simulta-
neous threads, open connections, ...) are firmware specific. Please refer to https://developer.microej.com/5/

getting-started-studio.html for evaluation firmware release notes.

2.3 MicroEJ Runtime

2.3.1 Language

MicroEJ is compatible with the Java language version 7.

2.2. MicroEJ Firmware

https://developer.microej.com/5/getting-started-studio.html
https://developer.microej.com/5/getting-started-studio.html

MicroEJ Documentation, Revision b25dd891

Java source code is compiled by the Java compiler' into the binary format specified in the JVM specification’. This
binary code needs to be linked before execution: .class files and some other application-related files (see MicroEJ
Classpath) are compiled to produce the final application that the MicroEJ Runtime can execute.

MicroEJ complies with the deterministic class initialization (<clinit>) order specified in /BON]. The application is
statically analyzed from its entry points in order to generate a clinit dependency graph. The computed clinit se-
quence is the result of the topological sort of the dependency graph. An error is thrown if the clinit dependency
graph contains cycles.

2.3.2 Scheduler
The MicroEJ Architecture features a green thread platform that can interact with the C world [SNI]. The (green)
thread policy is as follows:

« preemptive for different priorities,

« round-robin for same priorities,

« “priority inheritance protocol” when priority inversion occurs.’?

MicroEJ stacks (associated with the threads) automatically adapt their sizes according to the thread requirements:
Once the thread has finished, its associated stack is reclaimed, freeing the corresponding RAM memory.

2.3.3 Garbage Collector

The MicroEJ Architecture includes a state-of-the-art memory management system, the Garbage Collector (GC).
It manages a bounded piece of RAM memory, devoted to the Java world. The GC automatically frees dead Java
objects, and defragments the memory in order to optimize RAM usage. This is done transparently while the MicroEJ
Applications keep running.

2.3.4 Foundation Libraries

Embedded Device Configuration (EDC)
The Embedded Device Configuration specification defines the minimal standard runtime environment for embed-
ded devices. It defines all default API packages:

« java.io

+ java.lang

+ java.lang.annotation

« java.lang.ref

+ java.lang.reflect

« java.util

" The JDT compiler from the Eclipse IDE.
2 Tim Lindholm & Frank Yellin, The Java™ Virtual Machine Specification, Second Edition, 1999
3 This protocol raises the priority of a thread (that is holding a resource needed by a higher priority task) to the priority of that task.

2.3. MicroEJ Runtime 7

MicroEJ Documentation, Revision b25dd891

Beyond Profile (BON)

[BON] defines a suitable and flexible way to fully control both memory usage and start-up sequences on devices
with limited memory resources. It does so within the boundaries of Java semantics. More precisely, it allows:

+ Controlling the initialization sequence in a deterministic way.

« Defining persistent, immutable, read-only objects (that may be placed into non-volatile memory areas), and
which do not require copies to be made in RAM to be manipulated.

+ Definingimmortal, read-write objects that are always alive.

« Defining and accessing compile-time constants.

2.4 MicroEJ Libraries

A MicroEJ Foundation Library is a MicroEJ Core library that provides core runtime APIs or hardware-dependent
functionality. A Foundation library is divided into an APl and an implementation. A Foundation library APl is com-
posed of a name and a 2 digits version (e.g. EDC-1.3) and follows the semantic versioning (http://semver.org)
specification. A Foundation Library API only contains prototypes without code. Foundation Library implementa-
tions are provided by MicroEJ Platforms. From a MicroEJ Classpath, Foundation Library APIs dependencies are
automatically mapped to the associated implementations provided by the Platform or the Virtual Device on which
the application is being executed.

A MicroEJ Add-On Library is a MicroEJ library that is implemented on top of MicroEJ Foundation Libraries (100%
full Java code). A MicroEJ Add-On Library is distributed in a single JAR file, with a 3 digits version and provides its
associated source code.

Foundation and Add-On Libraries are added to MicroEJ Classpath by the application developer as module depen-
dencies (see MicroEJ Module Manager).

YOUR APPLICATIONS

ADD-ON LIBRARIES
FOUNDATION LIBRARIES

Java code

=

Fig. 4: MicroEJ Foundation Libraries and Add-On Libraries

MicroEJ Corp. provides a large number of libraries through the MicroEJ Central Repository. To consult its libraries
APIs documentation, please visit https://developer.microej.com/microej-apis/.

2.5 Module Repositories

This chapter describes the module repositories provided by MicroEJ Corp.

2.5.1 MicroEJ Central Repository

The MicroEJ Central Repository is the module repository distributed and maintained by MicroEJ Corp. It contains
Foundation Library APls and numerous Add-On Libraries.

2.4. MicroEJ Libraries 8

http://semver.org
https://developer.microej.com/microej-apis/

MicroEJ Documentation, Revision b25dd891

Use

By default, MicroEJ SDK is configured to connect the MicroEJ Central Repository.
You can also manually browse the repository at https://repository.microej.com/modules/.

Before starting to develop production code, it is strongly recommended to import the repository to your local en-
vironment. Please follow the steps described at https://developer.microej.com/central-repository/.

Licensing

Please consult the LICENSE. txt file attached to each module.

Changelog
The MicroEJ Central Repository content is versioned. The changelog is available at https://repository.microe;j.
com/.

Please consult the CHANGELOG.md file attached to each module.

Javadoc

To consult the APIs documentation (Javadoc) of all libraries available in the repository, please visit https://
repository.microej.com/javadoc/microej_5.x/apis/.

2.5.2 Developer Repository
The developer repository is an online repository hosted by MicrokEJ Corp., contains community modules provided
“as-is”. It is similar to what Maven Central Repository are for hosting Java standard modules.
MicroEJ Corp. contributes to the developer repository in the following cases:
« Demos (Platforms, Firmware, Virtual Devices, Applications),
+ Incubating Libraries,
« Former MicroEJ Central Repository versions,

« Hardware specific modules.

Use

By default, MicroEJ SDK is configured to connect the developer repository'.

You can also manually browse the repository at https://forge.microej.com/artifactory/
microej-developer-repository-release/.

Before starting to develop production code, it is strongly recommended to transfer the desired modules to your
local environment by creating your own module repository copy.

Licensing

Please consult the LICENSE. txt file attached to each module.

1 Require SDK version 5.4.0 or higher.

2.5. Module Repositories 9

https://repository.microej.com/modules/
https://developer.microej.com/central-repository/
https://repository.microej.com/
https://repository.microej.com/
https://repository.microej.com/javadoc/microej_5.x/apis/
https://repository.microej.com/javadoc/microej_5.x/apis/
https://repo1.maven.org/maven2/
https://forge.microej.com/artifactory/microej-developer-repository-release/
https://forge.microej.com/artifactory/microej-developer-repository-release/

MicroEJ Documentation, Revision b25dd891

Changelog

The developer repository is populated from multiple sources, thus there is no changelog for the whole repository
content as it is the case of the MicroEJ Central Repository.

Please consult the CHANGELOG.md file attached to each module.
Javadoc

To consult the APIs documentation (Javadoc) of libraries available in the developer repository, please consult the
javadoc attached to each module.

Community

The developer repository can host modules developed by the community. If your organization plan to develop
such module, please contact our support team to get dedicated credentials for publication.

2.5.3 Content Organization

The following table describes how are organized the modules natures within the repository.

Table 1: MicroEJ Modules Organization

Organization Module Nature
Foundation Library API

ej.api, com.microej.api

MicroEJ Architecture

com.microej.architecture

MicroEJ Pack
com.microej.pack —_—

) . . Tool or Add-On processor
ej.tool, com.microej.tool

Any other Add-On Library

2.6 Embedded Specification Requests

MicroEJ implements the following ESR Consortium specifications:

BON] | http://e-s-r.net/download/specification/ESR-SPE-0001-BON-1.2-F.pdf

SNI] http://e-s-r.net/download/specification/ESR-SPE-0012-SNI_GT-1.2-H.pdf
SP] http://e-s-r.net/download/specification/ESR-SPE-0014-SP-2.0-A.pdf N
KF] http://e-s-r.net/download/specification/ESR-SPE-0020-KF-1.4-F.pdf |

2.7 GitHub Repositories

Alarge number of examples, libraries, demos and tools are shared on MicroEJ GitHub account: https://github.com/
MicroEJ.

Most of these GitHub repositories contain projects ready to be imported in MicroEJ SDK.

2.6. Embedded Specification Requests 10

http://www.e-s-r.net
http://e-s-r.net/download/specification/ESR-SPE-0001-BON-1.2-F.pdf
http://e-s-r.net/download/specification/ESR-SPE-0012-SNI_GT-1.2-H.pdf
http://e-s-r.net/download/specification/ESR-SPE-0014-SP-2.0-A.pdf
http://e-s-r.net/download/specification/ESR-SPE-0020-KF-1.4-F.pdf
https://github.com/MicroEJ
https://github.com/MicroEJ

MicroEJ Documentation, Revision b25dd891

2.7.1 Repository Import

This section explains the steps to import a Github repository in MicroEJ SDK, illustrated with the MWT Examples
repository.

Note: MicroEJ SDK Distribution includes the Eclipse plugin for Git.

First, from the GitHub page, copy the repository URI (HTTP address) from the dedicated field in the right menu
(highlighted in red):

O Why GitHub? Team Enterprise Explore Marketplace Pricing Search
8 MicroEJ / ExampleJava-MWT & Watch | 2 Yrstar 1 Y Fork 0
<> Code Issues Pull requests Actions Projects Security Insights

¥ master ~ P 1branch © 2 tags Go to file About

These projects provide examples
\ Q‘ privron Merge branch ‘develop’ into 'master’ .. BJ Clone @ for MWT

HTTPS GitHub CLI
. . . o (5 OO Readme
com.microej.example.mwt.basic ix api minor version @igne https://github.com/MicroEl/Exampleda | (9]
com.microej.example.mwtbutt.. Fix api minor version @ignc Use Git or checkout with SVN using the web URL. 5 View license
com.microej.example.mwt.hello.. Fix api minor version @ignc
[é] Open with GitHub Desktop
. o)] Releases
com.microej.example.mwt.mvc Fix api minor version @ignc
: - o - X B b load ZIP 2 tags
com.microej.example.mwt.slidi... Fix api minor version @igne 1§ ownloa
[.gh-copyright.template Move mwt example from foundation libraries @ignore_branc... 3 years ago
N e P U PR e Packages

In MicroEJ SDK, to clone and import the project from the remote Git repository into the MicroEJ workspace, select
File > Import > Git > Projectsfrom Git wizard.

2.7. GitHub Repositories 1

https://github.com/MicroEJ/ExampleJava-MWT
https://github.com/MicroEJ/ExampleJava-MWT
https://www.eclipse.org/egit/

MicroEJ Documentation, Revision b25dd891

® |mport

Select

Import one or more projects from a Git Repository. Iﬁ

Select an import wizard:

type filter text

= General

= C/C++

= CV5
v = Git

S0 Projects from Git

= Install
= MicroEl
= Plug-in Development
[= Run/Debug
= Tasks
= Teamn
= XML

® < Back Finish Cancel

Click Next , select CloneURI ,click Next and paste the remote repository address in the URI field. For
this repository, the address is https://github.com/MicroEJ/ExampleJava-MWT.git. If the HTTP address is a valid
repository, the other fields are filed automatically.

2.7. GitHub Repositories 12

https://github.com/MicroEJ/ExampleJava-MWT.git

MicroEJ Documentation, Revision b25dd891

® |mport Projects from Git
Source Git Repository GIT
Enter the location of the source repository. :_‘:n‘
Location
URJ: ?| https:.-"fgithul:l.cum.-"MicrDElexampI&lava-M‘."H"T.giﬂ | Lacal File...
Host: | github.com |
Repository path: | /Microbl/Examplelava-MWT.git |
Connection
Protocol: | https
Authentication
User | |
Password: | |
[]5tore in Secure Store
® = Back Finish Cancel

Click Next , selectthe master branch, click Next and acceptthe proposed Local Destination by clicking Next

once again.

2.7. GitHub Repositories

13

MicroEJ Documentation, Revision b25dd891

® |mport Projects from Git

Local Destination

GIT

Configure the local storage location for Examplelava-MWT. E‘
Destination

Directory: | IC:\Users\user\git\Examplelava-MWT | Browse
Initial branch: K master v

[]Clene submodules

Configuration

Remote name: | crigin

® < Back Finish Cancel

Click Next once more and finally Finish . The Package Explorer view now contains the imported projects.

£ Package Explorer &2 ‘Eg Type Hierarchy % ™

w '[c‘.gl- com.microgj.example.mwt.basic [Examplelava-MWT master]
& src/main/java
B\ Module Dependencies module.ivy [*]
[src
[%} CHANGELOG.md
5 LICEMSE.txt
ke moduleivy
[#} README.md
'[c".gl- com.microgj.example.mwt.button [Examplelava-MWT master]
'_,fé com.microg).example.rmwt.helloworld [Examplelava-MWT master]
'[;_—'é com.microgj.example.mwt.mve [Examplelava-MWT master]

1—.;‘- com.microg).example.mwt.slidingwidget [Examplelava-MWT master]

2.7. GitHub Repositories 14

MicroEJ Documentation, Revision b25dd891

If you want to import projects from another (GitHub) repository, you simply have to do the same procedure using
the Git URL of the desired repository.

2.7.2 MicroEJ GitHub Badges
MicroEJ GitHub Badges are badges embedded in a README at the root of the repository. They highlight the com-

patibilities of the repository at a quick glance with MicroEJ Architecture, MicroEJ SDK and Graphical User Interface
versions.

The color of the badge has the following meaning:

« Green means a current supported version:
+ Orange means a still supported version that will be deprecated in the future: m
« Gray means a deprecated version: m

2.7. GitHub Repositories 15

CHAPTER

THREE

SDK USER GUIDE

MicroEJ SDK provides tools based on Eclipse to develop software applications for MicroEJ-ready devices. MicroEJ
SDK allows application developers to write MicroEJ Applications and run them on a virtual (simulated) or real de-
vice.

The purpose of MicroEJ SDK is to develop for targeted MCU/MPU computers (IoT, wearable, etc.) and it is therefore
a cross-development tool. Unlike standard low-level cross-development tools, MicroEJ SDK offers unique services
like hardware simulation and local deployment to the target hardware.

Application development is based on the following elements:

+ MicroEJ SDK, the integrated development environment for writing applications. It is based on Eclipse and
relies on the integrated Java compiler (JDT). It also provides a dependency manager for managing MicroEJ
Libraries (see MicroEJ Module Manager). The current distribution of MicroEJ SDK (21.03) is built on top of
Eclipse 2020-06.

MicroEJ Platform, a software package including the resources and tools required for building and testing an
application for a specific MicroEJ-ready device. MicroEJ Platforms are imported into MicroEJ SDK within a
local folder called MicroEJ Platforms repository. Once a MicroEJ Platform is imported, an application can be
launched and tested on Simulator. It also provides a mean to locally deploy the application on a MicroEJ-
ready device.

+ MicroEJ Virtual Device, a software package including the resources and tools required for building and test-
ing an application for a specific MicroEJ-ready device. A Virtual Device will simulate all capabilities of the
corresponding hardware board:

- Computation and Memory,

- Communication channels (e.g. Network, USB...),
- Display,

- Userinteraction.

Virtual Devices are imported into MicroEJ SDK within a local folder called MicroEJ Repository. Once a Virtual
Deviceisimported, an application can be launched and tested on Simulator. It also provides a mean to locally
deploy the application on a MicroEJ-ready device.

«+ MicroEJ-ready device, a hardware device that has been previously programmed with a MicroEJ Firmware. A
MicroEJ Firmware is a binary instance of MicroEJ runtime for a target hardware board. MicroEJ-ready devices
are built using MicroEJ SDK. MicroEJ Virtual Devices and MicroEJ Firmwares share the same version (there is
a 1:1 mapping).

The following figure gives an overview of MicroEJ SDK possibilities:

16

https://www.eclipse.org/downloads/packages/release/2020-06/r/eclipse-ide-java-developers

MicroEJ Documentation, Revision b25dd891

Simulator

MICROE)

2 ‘

|

- Test
MICROEJ,SDK MICROE
APPLICATION Target
[9 | Publish Deploy
N g
MICROEJ, Forge

Fig. 1: MicroEJ Application Development Overview

Starting from scratch, the steps to go through the whole process are detailed in the following sections of this chapter

« Download and install a MicroEJ Platform

« Build and run your first Application on Simulator

« Build and run your first Application on Device

3.1 Download and Install

The SDK is available for download at https://developer.microej.com/get-started. Check the System Requirements
page for the list of supported environments.

Once downloaded, execute the installer and follow the installation process.

3.2 System Requirements

+ Intel x64 PC with minimum :
- Dual-core Core i5 processor
- 4GB RAM
- 2GB Disk
« Operating Systems :
- Windows 10, Windows 8.1 or Windows 8

- Linux distributions (tested on Ubuntu 18.04 and 20.04) - As of SDK Distribution 20.10 (based on
Eclipse 2020-06), Ubuntu 16.04 is not supported.

- Mac OS X (tested on version 10.13 High Sierra, 10.14 Mojave)
« Java:

- JRE or JDK 8 (Oracle JDK or other OpenJDK build: tested on AdoptOpenJDK/Eclipse Adoptium)

3.1. Download and Install 17

https://developer.microej.com/get-started

MicroEJ Documentation, Revision b25dd891

Warning: When installing the AdoptOpenJDK build on Windows, the option JavaSoft (Oracle) registry
keys must be enabled:

ﬁ AdoptOpen) DK JDK with Hotspot 8u282-b08 (x64) Setup — *

Custom Setup

Select the way you want features to be installed.

Click the icons in the tree below to change the way features will be installed.

AdoptOpen]DK Development Kit with
......... =3-| Add to PATH Hotspot

--------- =3~ | Associate .jar

--------- X -1 Set JAVA HOME variable

--------- gl JavaSoft (Oracle) registry keys

B EI TEOTEa-VIED This feature requires 186MB on your

hard drive. It has 3 of 5 subfeatures

selected. The subfeatures require 4KB

on your hard drive.

Location: C:\Program Files\AdoptOpen]DK\jdk-8.0.282.8-hotspot), e

Reset Disk Usage Back Mext Cancel

Without this option, the SDK installer cannot find the JRE/JDK and the message The application requires
a Java Runtime Environment 1.8.0 isdisplayed.

3.3 Workspaces and MicroEJ Repositories

When starting the SDK, it prompts you to select the last used workspace or a default workspace on the first run. A
workspace is a main folder where to find a set of projects containing MicroEJ source code.

When loading a new workspace, the SDK prompts for the location of the MicroEJ repository, where Architectures,
Platforms or Virtual Devices will be imported. By default, the SDK suggests to point to the default MicroEJ reposi-
tory on your operating system, located at ${user.home}/.microej/repositories/[version].You can selectan
alternative location. Another common practice is to define a local repository relative to the workspace, so that the
workspace is self-contained, without external file system links and can be shared within a zip file.

3.3. Workspaces and MicroEJ Repositories 18

MicroEJ Documentation, Revision b25dd891

3.4 SDKVersion

In the SDK, go to Help > About MicroEJ SDK menu.

In case of SDK 4.1.x,the SDK version is directly displayed, suchas 4.1.5:

o About MicroE) ® SDK

MicroEl® SDHE

Version 4.1.5

Copyright ©2016-2018 52T 5.A. All Rights Reserved.

Use of this program is subject to MicroE) License Agreement.

MicroEl ® 50K is built on Eclipse, licensed under the terms of the Common Public
License (CPL).

MicroEl ® 50K and the MicrokE) logos are trademarks of MicroEl 5.4,

CCREOFSdIEBOF

® Installation Details

In case of SDK 5. x, the value displayed is the SDK distribution, such as 19.05 or 20.07:

= phout MicroE)® SDE

MicroEl® SDK

Dist. 20.07

Copyright ©2012-2020 Microk) Cerp. All Rights Reserved.

Use of this program is subject to MicroB) License Agreement.

MicroEl® 50K is built on Eclipse, licensed under the terms of the Common
Public License (CPL).

MicroEl® 5DK and the MicrokEl logos are trademarks of MicroBl Corp.

ESEO®FPF ST & i s

® Installation Details

To retrieve the SDK version that is currently installed in this distribution, proceed with the following steps:

 Clickonthe Installation Details button,

3.4. SDK Version 19

MicroEJ Documentation, Revision b25dd891

o Clickonthe Installed Software tab,

+ Retrieve the version of entry named MicroEJ SDK.

® MicroE) ® SDK Installation Details

Installed Software |nstallation History Features Plug-ins Configuration

MName Version Id Provider
[k C/C++ Development Tools SDK 0.4.3.201802261533 erg.eclipse.cdt.sdk.feature.group Eclipse COT
[C/C++ GCC Cross Compiler Support 0.4.3.201802261533 erg.eclipse.cdt.build.crossgec.feature.group Eclipse COT
@ C/C++ GDB Hardware Debugging 0.4.3.201802261533 erg.eclipse.cdt.debug.gdbijtag feature.gro.., Eclipse CDT
[{f- Eclipse Checkstyle Plug-in 6.8.0.201507251301 net.sf.eclipsecs.feature.group http:/Yeclipse-cs.sf
@: Eclipse Runner Feature 134 com.eclipserunnerfeaturefeature.group Eclipse Runner Tearn
@: Eclipse SDK 4.7.3.M20180330-06... org.eclipse.sdk.ide Eclipse.org
@: Eclipse XML Editors and Tools 3.9.2.201803221834 erg.eclipse.wstxml_uifeaturefeature.group Eclipse Web Tools P
EE= Git integration for Eclipse 4.9.2.201712130930-r org.eclipse.egit.feature.group Eclipse EGit
[JAutodoc 1.13.0 net.sf jautodec.feature feature.group Martin Kesting
[Markdown Editor 0.2.3 markdown.editor.feature.feature.group Winterwell

duct Jolleded200728-1506 com.is2t.microej.mpp-feature feature.gro... MicroEl

@; MicroE) SDK 5.2.0 com.is2t.microgj.sdk.featurefeature.group MicroE)

- LLUZ0200728-1306 com.is2t.microg).mpp.product.feature.fea.. MicroE)
@: Mylyn WikiText 3.0.19.201711172000 erg.eclipse.mylynwikitext_featurefeature.... Eclipse Mylyn
@: PMD Plug-in 4.0.5.v20141105-1906 net.sourceforge.pmd.eclipsefeature.group PMD Project
EE: SonarlLint for Eclipse 4.0.0.201810170711 org.sonarlint.eclipse featurefeature.group SonarSource

3.5 Licenses

3.5.1 License Manager Overview

MicroEJ Architectures are distributed in two different versions:

« Evaluation Architectures, associated with a software license key. They can be downloaded at https://
repository.microej.com/modules/com/microej/architecture/.

« Production Architectures, associated with a hardware license key stored on a USB dongle. They can be re-
quested to our support team.
The license manager is provided with MicroEJ Architectures and then integrated into Platforms, consequently:

« Evaluation licenses will be shown only if at least one Evaluation Architecture or Platform built from an Eval-
uation Architecture has been imported in the SDK.

« Production licenses will be shown only if at least one Production Architecture or Platform built from a Pro-
duction Architecture has been imported in the SDK.

Thelist ofinstalled licensesis available in the SDK preferences dialog pagein Window > Preferences > MicroEJ

3.5. Licenses 20

https://repository.microej.com/modules/com/microej/architecture/
https://repository.microej.com/modules/com/microej/architecture/

MicroEJ Documentation, Revision b25dd891

S Preferences l (Sl S

type filter text MicroEJ & i
Checkstyle -
Copyright

- Data Management MicroEl repository

EasyantdEclipse

Help

- IceTea

> Install/Update

Instant Messaging
> vy

» Java

4 Microkl |
Architectures i

Maming Convention

General settings for MicroE) development:

CAPyruntime-Mew_configuration\repo Browse...] [Refresh

Licenses

m

LicenseId Edition License Tags Expiration Date Packs Add...

!,J(FRYS -J2MSN-Y3MAS-RBK46 | STD 152T_J8F5C « 2020-12-31 P

Platforms
Platforms in workspace
Updates

[Restore Defaultsl [Apply]

@ [ok || canca |

Fig. 2: MicroEJ Licenses View

3.5.2 Evaluation Licenses

This section should be considered when using Evaluation Architectures, which use software license keys. Amachine
UID needs to be provided to activate an Evaluation license on the MicroEJ Licenses Server. The machine UID isa 16
hexadecimal digits number.

Get your Machine UID

Retrieving the machine UID depends on the kind of MicroEJ Platform being evaluated.

If your MicroEJ Platform is already imported in Package Explorer and built with MicroEJ Module Manager, the Mi-
croEJ Architecture has been automatically imported. The machine UID will be displayed when building a MicroEJ
Standalone Application on device.

[INFO] Launching in Evaluation mode. Your UID is XXXXXXXXXXXXXXXX.
[ERROR] Invalid license check (No license found).

Otherwise, a MicroEJ Architecture or Platform should have been manually imported from the SDK preferences
page. The machine UID can be retrieved as follows:

« Goto Window > Preferences > MicroEJ ,
« Select either Architectures or Platforms ,

« Click on one of the available Architectures or Platforms,

+ Pressthe GetUID button to getthe machine UID.

Note: To accessthis GetUID option, at least one Evaluation Architecture or Platform must have been imported
before (see License Manager Overview).

Copy the UID. It will be needed when requesting a license.

3.5. Licenses 21

MicroEJ Documentation, Revision b25dd891

& UID successfully generated @

Your UID was successfully generated.

Your UID is: |A856470297673E28

Fig. 3: Machine UID for Evaluation License

Request your Activation Key

« Go to MicroEJ Licenses Server https://license.microej.com.
+ Clickon Create anew account link.

« Create your account with a valid email address. You will receive a confirmation email a few minutes after.
Click on the confirmation link in the email and log in with your new account.

+ Click on Activate a License .
« Set Product P/N: to 9PEVNLDBU6IJ.
« Set UID: to the machine UID you copied before.

« Clickon Activate .

« The license is being activated. You should receive your activation by email in less than 5 minutes. If not,
please contact our support team.

« Once received by email, save the attached zip file that contains your activation key.
Install the License Key

If your MicroEJ Platform is already imported in Package Explorer and built with MicroEJ Module Manager, the license
key zip file must be simply dropped to the ~/.microej/licenses/ directory (create it if it doesn’t exist).

» ThisPC » Local Disk (C:) » Users » user » .microgj » licenses
MName Date modified Type Size
REW2Z-XSTRL-5ZYUE-K33DCzip 30/09/2020 12:27 Compressed (zipp... TKB

Fig. 4: MicroEJ Shared Licenses Directory

Note: The SDK Preferences page will be automatically refreshed when building a MicroEJ Standalone Application
n devi

Otherwise, the license key must be installed as follows:

3.5. Licenses 22

https://license.microej.com

MicroEJ Documentation, Revision b25dd891

Go back to the SDK.

Selectthe Window > Preferences > MicroEJ menu.

Press Add... .

Browse the previously downloaded activation key archive file.

Press OK. A new license is successfully installed.

Go to Architectures sub-menu and check that all Architectures are now activated (green check).

Your SDK is successfully activated.

If an error message appears, the license key could not be installed. (see section Troubleshooting). A license key can
be removed from the key-store by selecting it and by clicking on Remove button.

Troubleshooting

Consider this section when an error message appears while adding the Evaluation license key. Before contacting
our support team, please check the following conditions:

Key is corrupted (wrong copy/paste, missing characters, or extra characters)

Key has not been generated for the installed environment

Key has not been generated with the machine UID

Machine UID has changed since submitting license request and no longer matches license key

Key has not been generated for one of the installed Architectures (no license manager able to load this license)

= Invalid activation key &J

| The key could not be installed in this environment. Possible reasons are:

Sl - keyis corrupted,

N - key is valid but does not match any available license manager(s). (Works for an
other edition),

- key has not been generated for this machine,

- old key version,

Fig. 5: Invalid License Key Error Message

3.5.3 Production Licenses

This section should be considered when using Production Architectures, which use hardware license keys stored
on a USB dongle.

3.5. Licenses 23

MicroEJ Documentation, Revision b25dd891

ys\a 12345678

Fig. 6: MicroEJ USB Dongle

Note: If your USB dongle has been provided to you by your sales representative and you don’t have received an
activation certificate by email, it may be a pre-activated dongle. Then you can skip the activation steps and directly
jump to the Check Activation on SDK section.

Request your Activation Key

Go to license.microej.com.
Click on Create a new account link.

Create your account with a valid email address. You will receive a confirmation email a few minutes after.
Click on the confirmation link in the email and login with your new account.

Click on Activate a License .

Set Product P/N: to The P/N on the activation certificate.

Enter your UID: serial number printed on the USB dongle label (8 alphanumeric char.).
Clickon Activate and check the confirmation message.

Click on Confirm your registration .

Enter the Registration Code provided on the activation certificate.

Clickon Submit .

Your Activation Key will be sent to you by email as soon as it is available (12 business hours max.).

Note: You can check the My Products page to verify your product registration status, the Activation Key avail-
ability, and download the Activation Key when available.

Once the Activation Key is available, download and save the Activation Key ZIP file to a local directory.

Activate your USB Dongle

This section contains instructions that will allow you to flash your USB dongle with the proper activation key.

You shall ensure that the following prerequisites are met :

3.5. Licenses 24

https://license.microej.com/

MicroEJ Documentation, Revision b25dd891

« Your operating system is Windows

« The USB dongle is plugged and recognized by your operating system (see Troubleshooting section)
« No more than one USB dongle is plugged into the computer while running the update tool

« The update tool is not launched from a network drive or a USB key

+ The activation key you downloaded is the one for the dongle UID on the sticker attached to the dongle (each
activation key is tied to the unique hardware ID of the dongle).

You can then proceed to the USB dongle update:
« Unzip the Activation Key file to a local directory
« Enter the directory just created by your ZIP extraction tool.
« Launch the executable program.

« Accept running the unsigned software if requested (Windows 10)

User Account Control .

Do you want to allow this app from an
unknown publisher to make changes to your
device?

update.exe

Publisher: Unknown
File origin: Hard drive on this computer

Show more details

Yes Mo

» Clickonthe Update button (no password needed)

3.5. Licenses 25

MicroEJ Documentation, Revision b25dd891

[#] Update Tool

K.en[character string)

E.ey

Cancel

Fig. 7: Dongle Update Tool

+ On success, an Update successfully message shall appear. On failure, an Error key or no proper
rockey message may appear.

update_E24C0785

é Update successfully

QK

Fig. 8: Successful Dongle Update

Check Activation on SDK

Note: Production licenses will be shown only if at least one Production Architecture or Platform has been imported
before (see License Manager Overview).

» Go back to the SDK,

3.5. Licenses 26

MicroEJ Documentation, Revision b25dd891

« Goto Window > Preferences > MicroEJ ,

« Goto Architectures or Platforms sub-menuand checkthat all Production Architectures or Platforms are
now activated (green check).

type filter text Platforms =1 v v
EasyantdEclipse . Add or remove platforms,
> Help
. lceTea Platforms, Virtual Devices and Architectures:
> Install/Update . Name Version Lic.. Select All
:”“a"tmemg'”g []€ FRDM-KL467 Jakarta Kickstart 135 Decelect Al
> vy
LIgr LrC rchitect::re: CM0
> Java]
4 Microfl [1€¥ STM? Hardware Part Number: Jakarta Import...
. [1€¥ STM3 Compilation Toolchain: CMO_ARMCC
Architectures 06 sTv: Name: KickStart Uninstall
MNaming Conventior 143 sTM: Provider: [52T
T Version: 1.3.5 Get UID

g STMf Core Engine Architecture: 14
[E =k Usage Level:

Platforms in worksp

Updates [} STM: Technology Version: 1.6
> Mybym [1€3 VLT License Tag{JS2T JBF5(C]
Planning 163 vicp Build Label: J0TS007-T647
> Plug-in Development Path: .microgfrepositories\Full\1.64sd002
Fig. 9: Platform License Status OK
Troubleshooting

This section contains instructions to check that your operating system correctly recognizes your USB dongle.

GNU/Linux Troubleshooting
For GNU/Linux Users (Ubuntu at least), by default, the dongle access has not been granted to the user, you have to
modify udev rules. Please create a /etc/udev/rules.d/91-usbdongle.rules file with the following contents:

ACTION!="add", GOTO="usbdongle_end"
SUBSYSTEM=="usb", GOTO="usbdongle_start”
SUBSYSTEMS=="usb", GOTO="usbdongle_start”
GOTO="usbdongle_end"

LABEL="usbdongle_start”
ATTRS{idVendor}=="096e"” , ATTRS{idProduct}=="0006" , MODE="0666"

LABEL="usbdongle_end"

Then, restart udev: /etc/init.d/udev restart

You can check that the device is recognized by running the 1susb command. The output of the command should
contain a line similar to the one below for each dongle: Bus 002 Device 003: ID 096e:0006 Feitian
Technologies, Inc.

Windows Troubleshooting

« If the dongle activation failed with No rockey message, check there is one and only one dongle recognized
with the following hardware ID :

3.5. Licenses 27

MicroEJ Documentation, Revision b25dd891

HID\VID_Q96E&PID_0006&REV_0201

Go tothe Device Manager > Human Interface Devices and check amongthe USB Input Device entries
thatthe Details > Hardware lds property match the ID mentioned before.

« Ifthe dongle activation was successful with Update successfully message but the license does not appear
in the SDK or is not updated, try to activate again by starting the executable with administrator privileges:

» GF2N-HMLPM-94M55-Te3KG

Mame Date modified

M:I licensexml 18,/03,/2020 14:16

@update.ﬂe B
Open

m Run as adrinistrator I

« If the following error message is thrown when building a MicroEJ Firmware, either the dongle plugged is a
verbatim dongle or it has not been successfully activated:

Invalid license check (Dongle found is not compatible).

VirtualBox Troubleshooting

In a VirtualBox virtual machine, USB drives must be enabled to be recognized correctly. Make sure to enable the
USB dongle by clicking on it in the VirtualBox menu Devices > USB .

To make this setting persistent, go to Devices > USB > USB Settings... and add the USB dongle in the
USB Devices Filters list.

3.6 MicroEJ Module Manager

3.6.1 Introduction

Modern electronic device design involves many parts and teams to collaborate to finally obtain a product to be sold
on its market. MicroEJ encourages modular design which involves various stake holders: hardware engineers, UX
designers, graphic designers, drivers/BSP engineers, software engineers, etc.

Modular design is a design technique that emphasizes separating the functionality of an application into inde-
pendent, interchangeable modules. Each module contains everything necessary to execute only one aspect of
the desired functionality. In order to have team members collaborate internally within their team and with other
teams, MicroEJ provides a powerful modular design concept, with smart module dependencies, controlled by the
MicroEJ Module Manager (MMM). MMM frees engineers from the difficult task of computing module dependencies.
Engineers specify the bare minimum description of the module requirements.

The following schema introduces the main concepts detailed in this chapter.

3.6. MicroEJ Module Manager 28

MicroEJ Documentation, Revision b25dd891

73 . Settings
A OptlonsJ File J

MICROEJ.SDK

Configuration

MMM
v ',_:ﬁ- module
(® src/main/java
4@ src/main/resources Import
v B\ Module Dependencies module.ivy [*]« = [
» (w8 edc-1.3.0,jar - C:\Users\user\.micre Module Dependenues
(= internal
= src
[#) CHANGELOG.md
Module 5 LICENSE txt Build & Publish Module
Description fy moduleivy * | Module Repository
File README.md
I 4

Module Project Skeleton

Fig. 10: MMM Overview

MMM is based on the following tools:
« Apache lvy (http://ant.apache.org/ivy) for dependencies resolution and module publication;

« Apache EasyAnt (https://ant.apache.org/easyant/history/trunk/reference.html) for module build from
source code.

3.6.2 Specification

MMM provides a non ambiguous semantic for dependencies resolution. Please consult the MMM specification
available on https://developer.microej.com/packages/documentation/TLT-0831-SPE-MicroEJModuleManager-2.
0-E.pdf.

3.6.3 Module Project Skeleton

In the SDK, a new MicroEJ module project is created as follows:

+ Select File > New > Project... ,

« Select MicroEJ > Module Project ',

« Fill the module information (project name, module organization, name and revision),

+ Select one of the suggested skeletons depending on the desired module nature,

« Clickon Finish .

11f using SDK versions lower than 5.2.0, please refer to the following section.

3.6. MicroEJ Module Manager 29

http://ant.apache.org/ivy
https://ant.apache.org/easyant/history/trunk/reference.html
https://developer.microej.com/packages/documentation/TLT-0831-SPE-MicroEJModuleManager-2.0-E.pdf
https://developer.microej.com/packages/documentation/TLT-0831-SPE-MicroEJModuleManager-2.0-E.pdf

MicroEJ Documentation, Revision b25dd891

The project is created and a set of files and directories are generated from the selected skeleton.

Note: When an empty Eclipse project already exists or when the skeleton has to be created within an existing
directory, the MicroEJ module is created as follows:

« In the Package Explorer, click on the parent project or directory,

« Select File > New > Other... ,

+ Select EasyAnt > EasyAnt Skeleton .

3.6.4 Module Description File

Amodule descriptionfileis an Ivy configuration file named module. ivy, located at the root of each MicroEJ module
project. It describes the module nature (also called build type) and dependencies to other modules.

<ivy-module version="2.0" xmlns:ea="http://www.easyant.org” xmlns:m="http://ant.apache.org/ivy/extra”
xmlns:ej="https://developer.microej.com” ej:version="2.0.0">
<info organisation="[organisation]” module="[name]" status="integration” revision="[version]">
<ea:build organisation="com.is2t.easyant.buildtypes” module="[buildtype_name]” revision=
—"[buildtype_version]">
<ea:property name="[buildoption_name]"” value="[buildoption_value]"/>
</ea:build>
</info>

<configurations defaultconfmapping="default->default;provided->provided">
<conf name="default” visibility="public"/>
<conf name="provided" visibility="public"/>
<conf name="documentation” visibility="public"/>
<conf name="source" visibility="public"/>
<conf name="dist"” visibility="public"/>
<conf name="test"” visibility="private"/>
</configurations>

<publications>
</publications>

<dependencies>
<dependency org="[dep_organisation]” name="[dep_name]” rev="[dep_version]"/>

</dependencies>
</ivy-module>

Enable MMM Semantic

The MMM semantic is enabled in a module by adding the MicroEJ XML namespace and the ej:version attribute
inthe ivy-module node:

<ivy-module xmlns:ej="https://developer.microej.com” ej:version="2.0.0">

Note: Multiple namespaces can be declared in the ivy-module node.

MMM semantic is enabled in the module created with the Module Project Skeleton.

3.6. MicroEJ Module Manager 30

MicroEJ Documentation, Revision b25dd891

Module Dependencies

Module dependencies are added to the dependencies node as follow:

<dependencies>
<dependency org="[dep_organisation]” name="[dep_name]"” rev="[dep_version]"/>
</dependencies>

When no matching rule is specified, the default matching rule is compatible.

Dependency Matching Rule

The following matching rules are specified by MMM:

Name Range Notation Semantic

compatible [M.m.p-RC, (M+1).0.0-RC][Equal or up to next major version. Default if
not set.

equivalent [M.m.p-RC, M.(m+1).0-RC [Equal or up to next minor version

greaterOrEqual [M.m.p-RC, oo Equal or greater versions

perfect [M.m.p-RC, M.m.(p+1)-RC[Exact match (strong dependency)

Set the matching rule of a given dependency with ej:match="matching rule”.Forexample:

<dependency org="[dep_organisation]” name="[dep_name]” rev="[dep_version]" ej:match="perfect” />

Dependency Visibility

« Adependency declared public is transitively resolved by upper modules. The default when not set.
« Adependency declared private isonly used by the module itself, typically for:

- Bundling the content into the module

- Testing the module

The visibility is set by the configurations declared in the configurations node. For example:

<configurations defaultconfmapping="default->default;provided->provided">
<conf name="[conf_name]” visibility="private"/>
</configurations>

The configuration of a dependency is specified by setting the conf attribute, for example:

<dependency org="[dep_organisation]” name="[dep_name]"” rev="[dep_version]"” conf="[conf_name]->x" />

Automatic Update Before Resolution

The Easyant plugin ivy-update can be used to automatically update the version (attribute rev) of every module
dependencies declared.

<info organisation="[organisation]” module="[name]"” status="integration” revision="[version]">
<ea:plugin org="com.is2t.easyant.plugins” name="ivy-update"” revision="1.+" />
</info>

3.6. MicroEJ Module Manager 31

MicroEJ Documentation, Revision b25dd891

When the plugin is enabled, for each module dependency, MMM will check the version declared in the module file
and update it to the highest version available which satisfies the matching rule of the dependency.

Build Options

MMM build options can be set with:

<ea:property name="[buildoption_name]” value="[buildoption_value]"/>

The following build options are globally available:

Table 1: Build Options

Property | Description Default Value
Name

Path of the build directory target~.
target ${basedir}/target~

Refer to the documentation of Module Natures for specific build options.

3.6.5 MicroEJ Module Manager Configuration

By default, when starting an empty workspace, the SDK is configured to import dependencies from MicroEJ Central
Repository and to publish built modules to a local directory. The repository configuration is stored in a settings file (
ivysettings.xml), and the default oneis located at $USER_HOME\ .microej\microej-ivysettings-[VERSION].
xml

Preferences Page

The MMM preferences page in the SDK is available at Window > Preferences > MicroEJ > Module Manager
1

3.6. MicroEJ Module Manager 32

MicroEJ Documentation, Revision b25dd891

& Preferences

type filter text Module Manager - r v
General
Ant Module Repository
C/Ces (1) Settings File: | C\Users\user\.microgj\microej-ivysettings-3.ml ‘
Checkstyle
Help Default | Workspace... | | File System...
Install/Update
Java Import Repository
w Microk) Options
Architectures
Module Manager (2) propery fes: Edit...
Maming Convention Pt
Platforms
Platforms in workspace Remove
Settings
Updates Up
Wirtual Devices D
Mybyn own
Plug-in Development Build Repoci
PMD uild Repaository
Run/Debug 3 [Use Module repository as Build repository
Senarlint (4) Settings File: | C:\Program Files\MicroEl\MicroE)-SDK-20.0T\rcpl\configuration'org.eclipse.osgi\9\data\repositories\microej-build-repositony\ivysettings.xml Browse...
Team
Termi Export Build Kit
erminal
Validation Launch
XML
(5) [5et verbose mode
() Runtime JRE: jre1.8.0_221 v
(7) Max build history size: | 5
< 5 Restore Defaults Apply
® Apply and Close Cancel

Fig. 11: MMM Preferences Page

This page allows to configure the following elements:

1.
2.
3.

Settings File: the file describing how to connect module repositories. See the settings file section.

Options: files declaring MMM options. See the Options section.

Use Module repository as Build repository : the settings file for connecting the build repository in
place of the one bundled in the SDK. This option shall not be enabled by default and is reserved for advanced
configuration.

Build repository Settings File:the settings file for connecting the build repository in place of the one
bundled in the SDK. This option is automatically initialized the first time the SDK is launched. It shall not be
modified by default and is reserved for advanced configuration.

Set verbose mode : to enable advanced debug traces when building a module.

Runtime JRE :the Java Runtime Environment that executes the build process.

Max build history size:the maximum number of previous builds available in Build Module shortcut
list:

® workspaceRepository -

File Edit Source Refactor Mavigate Search Project Run

cruoiv[@]Jeis-0-a-i@e-

4 Package Explorer 33 |) Build Selected Module (Ctrl+Alt-C, E)

3.6.

MicroEJ Module Manager 33

MicroEJ Documentation, Revision b25dd891

Settings File

The settings file is an XML file that describes how MMM connects local or online module repositories. The file format
is described in Apache lvy documentation.

To configure MMM to a custom settings file (usually from an offline repository):

1. Set Settings file toacustom ivysettings.xml settings file',

2. Clickon Apply and Close button

If the workspace is not empty, it is recommended to trigger a full resolution and rebuild all the projects using this
new repository configuration:

1. Clean caches

« In the Package Explorer, right-click on a project;
« Select Ivy > Cleanallcaches .
2. Resolve projects using the new repository

To resolve all the workspace projects, click on the Resolve All button in the toolbar:

'® workspaceRepository -

File Edit Source Refactor Mavigate Searc

A | B4~ (

To only resolve a subset of the workspace projects:

« In the Package Explorer, select the desired projects,
+ Right-click on a project and select lvy > Clean all caches .
3. Trigger Add-On Library processors for automatically generated source code

+ Select Project > Clean... ,
+ Select Clean all projects |,

o Clickon Clean button.

Options

Options can be used to parameterize a module description file or a settings file. Options are declared as key/value
pairsin a standard Java properties file, and are expanded using the ${my_property} notation.

Atypical usage in a settings file is for extracting repository server credentials, such as HTTP Basic access authenti-
cation:

1. Declare options in a properties file

3.6. MicroEJ Module Manager 34

https://ant.apache.org/ivy/history/2.5.0/settings.html
https://en.wikipedia.org/wiki/.properties

MicroEJ Documentation, Revision b25dd891

[E| credentials.properties &

1# User specific credentials
2 artifactory.username=myusername
3 artifactory.password=AKCKLzp2JHRLDyFvmTPMXocXiiU1Cnad7eidUcCO1ERSUdgIrIu24ZTYieXaCwuMaIWykjCD9

4

2. Register this property file to MMM options

Options

Property files: | Sfworkspace_loctest/credentials.properties}

3. Usethis option in a settings file

38
39 <credentials host="artifactory.corp” realm="Artifactory Realm” username="${artifactory.username}” passwd="$§{artifactory.password}” />
4/

Atypical usage in a module description file is for factorizing dependency versions across multiple modules projects:

1. Declare an option in a properties file

=| versions.properties &3

=l
14# Specify the EDC wersion used in this workspace
2 edc.version=1.3.8

pu

2. Register this property file to MMM options

Options

Property files: | S{workspace_loc:test/versions.properties)

3. Use this option in a module description file

22 <dependencies:

23 ol--

24 Use the EDC version defined by MMM configuration

25 -

26 <dependency org="ej.api" name="edc" rev="%{edc.version}" /»
27 </dependencies:

28 ¢/ivy-module:

3.6. MicroEJ Module Manager 35

MicroEJ Documentation, Revision b25dd891

Resolution Logs

Resolution logs of module projects imported in the workspace are available from the console view:
« Select Windows > ShowView > Console ,
« In the Console view, click on the console window icon and select vy console :

Bl Consale 532

Mo consoles to display at this time.

4

Omfle © ol
i
0

1 New Console View

2 Addon Processor Console
3 C/C++ Build Console
4 Host 05G1 Console

5 vy Console

b Java Stack Trace Console

7 SenarLint Conscle

'

To enable the verbose mode:

« Inthe Ivyconsole view, click on the debugicon and select debug instead of info (defaults):

& Console i3 ﬂ#;gv| =NE =

vy Error
| found ej.api#edc;1.3.3 in aaaa-ivyde-workspace-chain-resclver (@-server)

[1.3.3] ej.apiftedc;[1.3.3-RC,1.3.4-RC[warning
:: resclution report :: resclve 821ms :: artifacts dl 9ms » info
___ .
[| modules || artifacts | verhosE
| conf | number| search|dwnlded|evicted|| number|dwnlded| | debug
| default | » | e | & | @ || © | @& | IvyDE error
| provided | | e | @ | e || 1 | @ | lvyDE warning
| platform | & | e | & | e || e | e |]
Py + |wyDE info
IvyDE verbose
IvyDE debug

This triggers the full workspace resolution with verbose mode enabled.

3.6.6 Module Build

In the SDK, the build of a MicroEJ module project can be started as follows:

« In the Package Explorer, right-click on the project,

« Select Build Module .

3.6. MicroEJ Module Manager 36

MicroEJ Documentation, Revision b25dd891

A m W BR-PHE-O- QU FHOEO S

[# Package Explorer &1 Type Hierarch S § = E
g P ¥P ¥ =4

(m

v'_.'j‘J module

== src/r L= ’
o oerefy Go Into
:h:gj; z::: Open in New Window
vaﬁ Moc Open Type Hierarchy F4
s & Show In Alt+Shift+W > troej com-5\g).
;:,ﬂ [Copy Ctrl+C
2 LCE E= Copy Qualified Name
by moc [Paste Ctrl+V
[*] REAI $¢ Delete Delete
Build Path 4
Source Alt+5hift+5 >
Refactor Alt+5hift+T »
i=1 Import.
g Export.
v Refresh F3
Close Project
Assign Working Sets...
2 RunAs »
7';‘3; Debug As ¥
Profile As >
& Build Module
restore rrom Local History...
@ JAutodoc -]

Fig. 12: Module Build

The build of a module can take time depending on
« the module nature to build,
« the number and the size of module dependencies to download,
« the repository connection bandwidth, ...

The module build logs are redirected to the integrated console.

Alternatively, the build of a MicroEJ module project can be started from the build history:

3.6. MicroEJ Module Manager 37

MicroEJ Documentation, Revision b25dd891

Hmi g DA - P H-Q-G

{2 Package Explorer @ module3

'_.;—b'- module B module?
1% module2 @& module
"_.:‘,J- maoduled

Fig. 13: Module Build History

3.6.7 Build Kit

The Module Manager Build Kit is a consistent set of tools, scripts, configuration and artifacts required for build-
ing modules in command-line mode. Starting from SDK 5.4.0, it also contains a Command Line Interface (CLI).
The Build Kit allows to work in headless mode (e.g. in a terminal) and to build your modules using a Continuous
Integration tool.

The Build Kit is bundled with the SDK and can be exported using the following steps:*

+ Select File > Export > MicroEJ > Module Manager Build Kit ,
+ Choose an empty Target directory ,

+ Clickonthe Finish button.
Once the Build Kit is fully exported, the directory content shall look like:

/
— bin
F mmm
L mmm.bat
— conf
— lib
— microej-build-repository
F ant-contrib
F com
t ivysettings.xml
— microej-module-repository
L ivysettings.xml
- release.properties

« Add the bin directory of the Build Kit directory to the PATH environment variable of your machine.

« Make sure the JAVA_HOME environment variable is set and points to a JRE/JDK installation or that java
executable isin the PATH environment variable (Java 8 is required)

+ Confirm that the installation works fine by executing the command mmm --version . The result should
display the MMM CLI version.

The mmm tool can run on any supported Operating Systems:

2 |If using SDK versions lower than 5. 4.0, please refer to the following section.

3.6. MicroEJ Module Manager 38

MicroEJ Documentation, Revision b25dd891

+ on Windows, either in the command prompt using the Windows batch script mmm.bat orin MinGW environ-
ments such as Git BASH using the bash script mmm .

+ on Mac OS X and Linux distributions using the bash script mmm .

The build repository (microej-build-repository directory) contains scripts and tools for building modules. It is
specific to a SDK version and shall not be modified by default.

The module repository (microej-module-repository directory) contains a default Settings File for importing
modules from MicroEJ Central Repository and this local repository (modules that are locally built will be published
to this directory). You can override with custom settings or by extracting an offline repository.

To go further with headless builds, please consult the next chapter for command line builds, and this tutorial to
setup MicroEJ modules build in continuous integration environments.

3.6.8 Command Line Interface
Starting from version 5.4.0, the SDK provides a Command Line Interface (CLI). Please refer to the Build Kit section
for installation details.
The following operations are supported by the MMM CLI:
+ creating a module project
+ cleaning a module project
+ building a module project
« running a MicroEJ Application project on the Simulator

+ publishing a module in a module repository

Usage

In order to use the MMM CLI for your project:
+ go to the root directory of your project

+ run the following command

mmm [OPTION]... [COMMAND]

where COMMAND is the command to execute (for example mmm build). The available commands are:
« help:display help information about the specified command
« init:create a new project
« clean: clean the project
« build: build the project
+ publish: build the project and publish the module
« run: run the MicroEJ Application project on the Simulator
The available options are:
+ ——help (-h): show the help message and exit
« —-version (-V): printversion information and exit

o —-build-repository-settings-file (-b): path of the lvy settings file for build scripts and tools. Defaults
to ${CLI_HOME}/microej-build-repository/ivysettings.xml.

3.6. MicroEJ Module Manager 39

https://en.wikipedia.org/wiki/MinGW
https://en.wikipedia.org/wiki/MinGW
https://gitforwindows.org/

MicroEJ Documentation, Revision b25dd891

« ——module-repository-settings-file (-r): path of the Ivy settings file for modules. Defaults to
${CLI_HOME}/microej-module-repository/ivysettings.xml.

« ——ivy-file (-f): path of the project’s vy file. Defaults to ./module.ivy.
« ——verbose (-v): verbose mode. Disabled by default. Add this option to enable verbose mode.
« -Dxxx=yyy : any additional option passed as system properties.

When no command is specified, MMM CLI executes Easyant with custom targets using the --targets (-t) option
(defaults to clean,package).

Shared configuration

In order to share configuration across several projects, these parameters can be defined in the file ${user.home}/
.microej/.mmmconfig . This file uses the TOML format. Parameters names are the same than the ones passed
as system properties, except the character _ is used as a separator instead of - . The parameters defined in the
[options] section are passed as system properties. Here is an example:

build_repository_settings_file = "/home/johndoe/ivy-configuration/ivysettings.xml”
module_repository_settings_file = "/home/johndoe/ivy-configuration/ivysettings.xml”
ivy_file = "ivy.xml”
[options]
my.first.property = "valuel”
my.second.property = "value2”

Warning:

« TOML values must be surrounded with double quotes

« Backslash characters (\) must be doubled (for example a Windows path
C:\\Users\\johndoe\\ivysettings.xml)

Command line options take precedence over those defined in the configuration file. So if the same option is defined
in both locations, the value defined in the command line is used.

Commands
init
Thecommand init creates a new project (executes Easyant with skeleton:generate target). The skeleton and
project information must be passed with the following system properties:
+ skeleton.org: organisation of the skeleton module. Defaults to com.is2t.easyant.skeletons.
« skeleton.module : name of the skeleton module. Mandatory, defaults to microej-javalib.

+ skeleton.rev : revision of the skeleton module. Mandatory, defaults to + (meaning the latest released
version).

« project.org: organisation of the project module. Mandatory, defaults to com.mycompany .
« project.module : name of the project module. Mandatory, defaults to myproject.
« project.rev: revision of the project module. Defaultsto 0.1.0.

« skeleton.target.dir: relative path of the projectdirectory (created ifit does not exist). Mandatory, defaults
to the current directory.

3.6. MicroEJ Module Manager 40

https://toml.io

MicroEJ Documentation, Revision b25dd891

For example

mmm init -Dskeleton.org=com.is2t.easyant.skeletons -Dskeleton.module=microej-javalib -Dskeleton.rev=4.2.
—8 -Dproject.org=com.mycompany -Dproject.module=myproject -Dproject.rev=1.0.0 -Dskeleton.target.
—dir=myproject

If one of these properties is missing, it will be asked in interactive mode:

$ mmm init -Dskeleton.org=com.is2t.easyant.skeletons -Dskeleton.module=microej-javalib -Dskeleton.rev=4.
2.8 -Dproject.org=com.mycompany -Dproject.module=myproject -Dproject.rev=1.0.0

-skeleton:check-generate:

[input] skipping input as property skeleton.org has already been set.

[input] skipping input as property skeleton.module has already been set.

[input] skipping input as property skeleton.rev has already been set.

[input] The path where the skeleton project will be unzipped [/home/tdelhomenie/microej/working/
—skeleton]

To force the non-interactive mode, the property skeleton.interactive.mode must be setto false. In non-
interactive mode the default values are used for missing non-mandatory properties, and the creation fails if manda-
tory properties are missing.

$ mmm init -Dskeleton.org=com.is2t.easyant.skeletons -Dskeleton.module=microej-javalib -Dskeleton.rev=4.
2.8 -Dproject.org=com.mycompany -Dskeleton.target.dir=myproject -Dskeleton.interactive.mode=false

* Problem Report:

expected property 'project.module': Module name of YOUR project

clean

The command clean cleans the project (executes Easyant with clean target). For example

mmm clean

cleans the project.
build

The command build builds the project (executes Easyant with clean,package targets). For example

mmm build -f ivy.xml -v

builds the project with the Ivy file ivy.xml and in verbose mode.
publish

The command publish buildsthe project and publishes the module. This command accepts the publication target
as a parameter, amongst these values:

+ local (defaultvalue): executesthe clean,publish-local Easyanttarget, which publishes the project with
the resolver referenced by the property local.resolver inthe Settings File.

+ shared: executesthe clean,publish-shared Easyant target, which publishes the project with the resolver
referenced by the property shared.resolver inthe Settings File.

3.6. MicroEJ Module Manager 41

MicroEJ Documentation, Revision b25dd891

+ release: executesthe clean,release Easyant target, which publishes the project with the resolver refer-
enced by the property release.resolver the Settings File.

For example

mmm publish local

builds the project and publishes the module using the local resolver.
run

The command run runs the application on the Simulator (executes Easyant with compile,simulator:run tar-
gets). It has the following requirements:

« to run on the Simulator, the project must be configured with one of the following Module Natures:

- Sandboxed Application

- Standalone Application

- Add-On Library

the property application.main.class must be set to the Fully Qualified Name of the application main
class (for example com.mycompany.Main)

a MicroEJ Platform must be provided (see Platform Selection section)

Application Options must be defined using properties file underin the build directory (see Using a Properties
File section)

the module must have been built once before running the Simulator. So the mmm build command must be
executed before running the Simulator the first time or after a project clean (mmm clean command).

Note: The next times, it is not required to rebuild the module if source code files have been modified. The
contentof src/main/java and src/main/resources folders are automatically compiled by mmm run com-
mand before running the Simulator.

For example

mmm run -D"platform-loader.target.platform.file"="/path/to/the/platform.zip”

runs the application on the given platform.

The Simulator can be launched in debug mode by setting the property execution.mode of the application file
build/commons.properties to debug:

execution.mode=debug

The debug port can be defined with the property debug.port. Go to Simulator Debug options section for more
details.

help

The command help displays the help for acommand. For example

mmm help run

displays the help of the command run.

3.6. MicroEJ Module Manager 42

MicroEJ Documentation, Revision b25dd891

3.6.9 Troubleshooting

Unresolved Dependency

If the following message appears when resolving module dependencies:

:: problems summary ::
;. WARNINGS
module not found: com.mycompany#mymodule;[M.m.p-RC,M.m. (p+1)-RC[

First, check that either a released module com.mycompany/mymodule/M.m.p or a snapshot module com.
mycompany/mymodule/M.m.p-RCYYYYMMDD-HHMM exists in your module repository.

« If the module does not exist,

- ifitis declared as a direct dependency, the module repository is not compatible with your source code.
You can either check if an other module version is available in the repository or add the missing module
to the repository.

- otherwise, this is likely a missing transitive module dependency. The module repository is not consis-
tent. Check the module repository settings file and that consistency check has been enabled during the
module repository build (see Configure Consistency Check).

« If the module exists, this may be either a configuration issue or a network connection error. We have to find
the cause in the resolution logs.

Note:
The activation of the verbose mode depends on how the resolution has been launched:
- if the error occurs during workspace resolution, configure the verbose mode of resolution logs,

- if the error occurs while building a module from workspace, check the verbose mode option in prefer-
ences page,

- if the error occurs while building a module from command line, set the verbose mode option in com-
mand line options.

For URL repositories, find:

trying https://[MY_REPOSITORY_URL]/[MY_REPOSITORY_NAME]/com.mycompany/mymodule/
tried https://[MY_REPOSITORY_URL]/[MY_REPOSITORY_NAME]/com.mycompany/mymodule/

For filesystem repository, find:

trying [MY_REPOSITORY_PATHJ]/com.mycompany/mymodule/
tried [MY_REPOSITORY_PATH]/com.mycompany/mymodule/

3.6. MicroEJ Module Manager 43

MicroEJ Documentation, Revision b25dd891

If your module repository URL or filesystem path does not appear, check your settings file. This is likely a
missing resolver.

Otherwise, if your module repository is an URL, this may be a network connection error between MMM (the
client) and the module repository (the server). First, check for Invalid Certificate issue.

Otherwise, the next step is to debug at the HTTP level:

HTTP response status: [RESPONSE_CODE] url=https://[MY_REPOSITORY_URL]/com.mycompany/mymodule/
CLIENT ERROR: Not Found url=https://[MY_REPOSITORY_URL]/com.mycompany/mymodule/
Depending on the HTTP error code:

- 4071 Unauthorized: check your settings file credentials configuration.

- 404 Not Found: add the following options to log raw HTTP traffic:

-Dorg.apache.commons. logging.Log=org.apache.commons.logging.impl.SimplelLog -Dorg.apache.
—commons. logging.simplelog.showdatetime=true -Dorg.apache.commons.logging.simplelog.log.org.
—apache.http=DEBUG -Dorg.apache.commons.logging.simplelog.log.org.apache.http.wire=ERROR

Particularly, vy requires the HTTP HEAD request which may be disabled by some servers.

Invalid Certificate

If the following message appears when resolving module dependencies:

HttpClientHandler: sun.security.validator.ValidatorException: PKIX path building failed: sun.security.
—provider.certpath.SunCertPathBuilderException: unable to find valid certification path to requested.
—target url=[artifactory address]

The server may use a self-signed certificate that has to be added to the JRE trust store that is running MicroEJ
Module Manager. Here is a way to do it:
1. Install Keystore Explorer,

2. Start Keystore Explorer, and open file [JRE_HOME]/lib/security/cacerts or [JDK_HOME]/jre/lib/
security/cacerts with the password changeit . You may not have the right to modify this file. Edit rights
if needed before opening it,

3. Clickon Tools ,then Import Trusted Certificate ,

4. Select your certificate,
5. Savethe cacerts file.

If the problem still occurs, add the following option to enable SSL protocol traces:

-Djavax.net.debug=all

This is useful to detect advanced errors such as:
« invalid certificate chain: one of root or intermediate certificate may be missing in the JRE/JDK truststore.
+ TLS protocol negotiation issues.

Target “simulator:run” does not exist

If the following message appears when executing the mmm run command:

3.6. MicroEJ Module Manager 44

https://ant.apache.org/ivy/history/2.5.0/settings/credentials.html
http://keystore-explorer.org/downloads.html

MicroEJ Documentation, Revision b25dd891

* Problem Report:

Target "simulator:run” does not exist in the project "my-app”.

it means that the command run is not supported by the build type declared by your module project. Make sure it
is one of the following ones:

« build-application,withversion 7.1.0 or higher
« build-microej-javalib, with version 4.2.0 or higher

« build-firmware-singleapp, with version 1.3.0 or higher

3.6.10 Meta Build

A Meta Build is a module allowing to build other modules. It is typically used in a project containing multiple mod-
ules. The Meta Build module serves as an entry point to build all the modules of the project.

Meta Build creation

« Inthe SDK, select File > New > Module Project .

File Edit Mavigate Search Project Run Window Help

MNew Alt+Shift+N > 2% Sandboxed Application Project
Open File.. % Standalone Application Project !
£ Open Projects from File System... £ Add-On Library Project
Recent Files > ™ Module Project
B Platform Project
<llzzz i Sy @ Front Panel Project [
Close All Editors Ctrl+Shift+W =i Project..

Fig. 14: New Meta Build Project

« Fillin the fields Project name, Organization, Module and Revision,then select the Skeleton named
microej-meta-build

« Clickon Finish . Atemplate project is automatically created and ready to use.

Meta Build configuration
The main element to configure in a meta build is the list of modules to build. This is done in 2 files, located at the
root folder:

« public.modules.list which contains the list of the modules relative paths to build and publish.

« private.modules.list which contains the list of the modules relative paths to build. These modules are
not published but only stored in a private and local repository in order to be fetched by the public modules.

The format of these files is a plain text file with one module path by line, for example:

3.6. MicroEJ Module Manager 45

MicroEJ Documentation, Revision b25dd891

modulel
module2
module3

These paths are relative to the meta build root folder, which is set by default to the parent folder of the meta build
module (..). For this reason, a meta build module is generally created at the same level of the other modules to
build. Here is a typical structure of a meta build:

/
— modulel

': module.ivy

— module?

': module.ivy

— module3

': module.ivy

. metabuild

E private.modules.list

public.modules.list
module.ivy

The modaules build order is calculated based on the dependency information. If a module is a dependency of an-
other module, it is built first.

For a complete list of configuration options, please refer to Meta Build Module Nature section.

3.6.11 Former SDK Versions (lower than 5.2.0)

This section describes MMM configuration elements for SDK versions lower than 5.2.0.

New MicroEJ Module Project

The New MicroEJ Module Project wizard is availableat File > New > Project... , EasyAnt > EasyAnt Project

Preferences Pages

MMM Preferences Pages are located in two dedicated pages. The following pictures show the options mapping
using the same options numbers declared in Preferences Page.

lvy Preferences Page

The lvy Preferences Page is available at Window > Preferences > Ivy > Settings .

3.6. MicroEJ Module Manager 46

MicroEJ Documentation, Revision b25dd891

® preferences

type filter text Settings le=T 4 - -
General A
Ant [reload the settings only on demand
C/C++
Checkstyle
Copyright Default | Workspace... | | File System... | Variables...
EasyantdEclipse

(l) Ivy settings path: | CA\Users\user\. microgj\microej-ivysettings-3xml |

Help Ivy user dir: ‘ |
lceTea
Install/Update

Workspace... | | File System... | Variables...

Instant Messaging .
v vy (2) Property files: | S{workspace_loc:easyant-build-component/ivy/ivyDE.properties} Edit
Ad d S{workspace_loc:easyant-build-component/ivy/ivyDE_windows.properties}
vancet
Add
Classpath Container
Security Remove
Settings
Source/Javadoc Map Up
Workspace Resolver
D
XML Editor o
Java
JavaScript
< i > v Restore Defaults Apply

@ Apply and Close Cancel

Easyant Preferences Page

The Easyant Preferences Page is available at Window > Preferences > EasyAnt4Eclipse .

® Preferences

type filter text EasyantdEclipse &~ .-
f\:: erel Set preferences for EasyAnt4Eclipse.
C/Crr (5) [Set verbose mode
Checkstyle (3) |:| Use lvyDE preferences for lvy settings path
Copyright (4) Ivy settings path: | C:\Program Files\MicroENMicroEJ-SDK-19.05\rcp\configuration\org.eclipse.osgi\ 54610\ cp\repositorieshivysettings.xml Browse...
Easyant4Eclipse
Help (7) Max build history size: I 5
IceTea (6) Runtime JRE jre1.8.0_221 .

Install/Update
Instant Messaging

v vy
Advanced
Classpath Container
Security
Settings
< 2 > ’ Restore Defaults Apply

@ Apply and Close Cancel

Build Kit

+ Create an empty directory (e.g. mmm_sdk_[version]_build_kit),

+ Locate your SDK installation plugins directory (by default, C:\Program Files\MicroEJ\MicroEJ
SDK-[version]\rcp\plugins on Windows OS),

» Openthefile com.is2t.eclipse.plugin.easyant4e_[version]. jar with an archive manager,
« Extract the directory 1ib to the target directory,

« Openthefile com.is2t.eclipse.plugin.easyant4e.offlinerepo_[version].jar with an archive man-
ager,

+ Navigate to directory repositories,

3.6. MicroEJ Module Manager 47

MicroEJ Documentation, Revision b25dd891

« Extract the file named microej-build-repository.zip for SDK 5.x or is2t_repo.zip for SDK 4.1.x to
the target directory.

3.6.12 Former SDK Versions (from 5.2.0 to 5.3.x)
Build Kit

The Build Kit is bundled with the SDK and can be exported using the following steps:

+ Select File > Export > MicroEJ > Module Manager Build Kit ,
+ Choose an empty Target directory ,

+ Clickonthe Finish button.
Once the Build Kit is fully exported, the directory content shall look like:
w = sdk_5.2.0 build_kit
w [~ ant

= lib
microej-build-repository.zip

3.7 Release Notes

Starting from SDK version 5.0.0, Architectures are distributed separately from the Integrated Development Envi-
ronment. Evaluation Architectures can be downloaded from the Architectures Repository.

The SDK is now packaged into an Eclipse P2 repository (https://repository.microej.com/p2/sdk), allowing partial
updates and installation on any compatible Eclipse version. The historical version (5) of MicroEJ is reused for the
P2 repository delivery.

MicroEJ Corp. continues to regularly build all-in-one packages, called Distributions, including the SDK and ded-
icated OS installers. This distribution has a separate versioning, which follows modern convention: [YY].[MM]

3.8 SDK Distribution Changelog

3.8.1 [21.11] - 2021-11-15
NOTE: This release prepares for a future JRE 11 support. However, the only officially supported JRE version is still
JRE 8. Please refer to System Requirements for more details.

« Included SDK 5.5.0.

« Updated installer to accept both JRE 8 and JRE 11.

« Fixed error Error while loading manipulator when installing SDK updates on MacOS.

+ Updated End User License Agreement.

3.7. Release Notes 48

https://repository.microej.com/modules/com/microej/architecture/
https://repository.microej.com/p2/sdk

MicroEJ Documentation, Revision b25dd891

3.8.2 [21.03] - 2021-03-25

+ Included SDK 5.4.0.
« Updated End User License Agreement.
KNOWN ISSUES:

+ The following error occurs when installing an SDK update on MacOS:

IMESSAGE Error while loading manipulator.
ISTACK @
java.lang.IllegalStateException: Error while loading manipulator.

at org.eclipse.equinox.internal.p2.touchpoint.eclipse.LazyManipulator.
—loadDelegate(LazyManipulator. java:64)

at org.eclipse.equinox.internal.p2.touchpoint.eclipse.LazyManipulator.
—getConfigData(LazyManipulator. java:117)

at org.eclipse.equinox.internal.p2.touchpoint.eclipse.actions.UninstallBundleAction.
—uninstallBundle(UninstallBundleAction. java:57)

at org.eclipse.equinox.internal.p2.touchpoint.eclipse.actions.UninstallBundleAction.
—execute(UninstallBundleAction. java:33)

at org.eclipse.equinox.internal.p2.engine.ParameterizedProvisioningAction.
—execute(ParameterizedProvisioningAction. java:42)

at org.eclipse.equinox.internal.p2.engine.Phase.mainPerform(Phase. java:186)

at org.eclipse.equinox.internal.p2.engine.Phase.perform(Phase. java:99)

at org.eclipse.equinox.internal.p2.engine.PhaseSet.perform(PhaseSet. java:50)

at org.eclipse.equinox.internal.p2.engine.Engine.perform(Engine.java:80)

at org.eclipse.equinox.internal.p2.engine.Engine.perform(Engine. java:48)

at org.eclipse.equinox.p2.operations.ProvisioningSession.
—performProvisioningPlan(ProvisioningSession. java:181)

at org.eclipse.equinox.p2.operations.ProfileModificationJob.
—runModal (ProfileModificationJob. java:76)

at org.eclipse.equinox.p2.operations.ProvisioningJob.run(ProvisioningJob. java:190)

at org.eclipse.core.internal. jobs.Worker.run(Worker. java:63)

The workaround is to replace /eclipse/plugins/ by /Eclipse/plugins/ (capital E) in
MicroEJ-SDK-21.03.app\Contents\Eclipse\eclipse.ini.

o See SDK 5.4.0 Known Issues section

3.8.3 [20.12] - 2020-12-11

« Included SDK 5.3.1

« Disabled Java version check when updating SDK (see known issues of SDK Distribution 20.10)

3.8.4 [20.10] - 2020-10-30

« Included SDK5.3.0
« Updated to Eclipse version 2020-06
« Fixed low quality MacOS SDK icons

NOTE: Starting with this release, only 64bits JRE are supported because 32bits JRE support has been removed
since Eclipse version 2018-12. See this link for more details.

KNOWN ISSUES:

3.8. SDK Distribution Changelog 49

https://www.eclipse.org/eclipse/news/4.10/platform.php#java32-removal

MicroEJ Documentation, Revision b25dd891

« Projects configured with Null Analysis must be updated to import EDC API1.3.3 or higher in order to avoid an
Eclipse JDT builder error (see also this link for more details).

« The default settings file for connecting MicroEJ Central Repository is not automatically installed. To connect
to the MicroEJ Central Repository, follow the procedure:

For Windows, create the folder: C:\Users\%USERNAME%\ .microej .

For Linux, create the folder: /home/$USER/.microej.

For macos, create the folder: /Users/$USER/.microej.

Download and save this file microej-ivysettings-5.xml to the previously created .microej folder.

+ By default, a check is done on the JRE version required by the plugins on install/update. Since CDT
requires JRE 11, it prevents to install/update a newer SDK version. The CDT documentation explains

that this can be bypassed by disabling the option Windows > Preferences > Install/Update >

Verify provisioning operation is compatible with currently running JRE .

3.8.5 [20.07] - 2020-07-28

« Included MicroEJ SDK5.2.0
« Updated the default microej repository folder name (replaced SDK version by the distribution number)

» Added Dist. prefixininstaller name (e.g. MicroEJ SDK Dist. 20.07)to avoid confusion between SDK
distribution vs SDK version

« Updated SDK End User License Agreement

+ Disabled popup window when installing a SDK update site (allow to install unsigned content by default)

3.8.6 [19.05] - 2019-05-17

« Included SDK version 5.1.0
« Updated MicroEJ icons (16x16 and 32x32)
« Updated the publisher of Windows executables (MicroEJ instead of I1S2T SA.)

« Updated the JRE link to download in case the default JRE is not compatible. (https://www.java.com is
deprecated)

3.8.7 [19.02] - 2019-02-22

« Updated to Eclipse Oxygen version 4.7.2
« Included SDK version 5.0.1

« Included Sonarlint version 4.0.0

3.9 SDK Changelog

3.9.1 [5.5.2] - 2021-12-22

3.9. SDK Changelog 50

https://repository.microej.com/modules/ej/api/edc/1.3.3/
https://bugs.eclipse.org/bugs/show_bug.cgi?id=566599
https://repository.microej.com/microej-ivysettings-5.xml

MicroEJ Documentation, Revision b25dd891

General

« Fixed Addon Processors of a project in a workspace being applied to others projects.
MicroEJ Module Manager
Build Plugins

+ Updated Log4j in Artifact Checker and Cobertura plugins to version 2.17.0.

3.9.2 [5.5.1] -2021-12-02
General

« Fixed wrong category name in New Project wizard.

3.9.3 [5.5.0] - 2021-11-15

NOTE: This release prepares for a future JRE 11 support. However, the only officially supported JRE version is still
JRE 8. Please refer to System Requirements for more details.

General

Added Add-On Processor resolution in workspace.
+ Updated tools for both JRE 8 and JRE 11 compatibility.
« Fixed corrupted font file created by the Font designer when importing large number of glyphs.

+ Updated Architecture version check during Pack import (greaterOrEqual instead of compatible). This
allows to import Architecture Specific Pack and Legacy Generic Pack on future Architecture 8.x versions.

« Updated End User License Agreement.

MicroEJ Module Manager

« Added bin folderto .gitignore file of module natures Java project skeleton.

Added Null Analysis configuration to artifact-checker.When building a module repository, null analysis
configuration is only checked on the highest module version included in the repository.

Added Eclipse Public License v2.0 to the list of default licenses allowed for artifact-checker.

Clarified input messages of mmm init command.

+ Updated artifact-checker plugin bindingto target verify. This allow module checks to be executed on
builds triggered by a pull request (no publication).

+ Fixed missing artifact-checker plugin to some module natures (custom , firmware-multiapp ,
firmware-singleapp, microej-javaimpl, microej-mock, microej-testsuite, product-java).

+ Fixed mmm run executionona firmware-singleapp module (do not trigger the Firmware build).

+ Fixed kf-testsuite plugin test project build.

Added support of branch analysis with Sonar.

3.9. SDK Changelog 51

MicroEJ Documentation, Revision b25dd891

Added ability to package private dependencies to mock module natures (configuration embedded).
+ Added testsuite and javadoc pluginto firmware-singleapp module nature.

« Added ssh deploymentto microej-kf-testsuite plugin.

« Updated firmware-multiapp toremove the bsp directory in Virtual Devices.

+ Updated firmware-multiapp to allow Virtual Devices for launching a specific main class other than the
Kernel main class. This is useful for running JUnit tests using a Virtual Device instead of a Platform.

« Updated firmware-multiapp to allow Virtual Devices for automatically launching a Sandboxed Application
project in the SDK.

« Updated firmware-multiapp to automatically configure the Virtual Device Kernel UID when a Firmware is
built.

 Fixed firmware-multiapp skeleton default dependencies with only modules available in MicroEJ Central
Repository.

« Fixed firmware-multiapp unexpected build error when no declared System Application.

« Fixed firmware-multiapp build which may fail an unexpected Unresolved Dependencies error the first
time, for Kernel APIs module dependencies (configuration kernelapi) or Virtual Device specific modules
dependencies (configuration default-vd).

« Fixed firmware-multiapp unexpected build error when no Application (.wpk file) found in the dropins
folder.

« Fixed firmware-multiapp unexpected build error when no declared System Application.

« Fixed firmware-singleapp and firmware-multiapp skeletons wrong package name generation for the
default Main class.

+ Fixed artifact-repository changelog check for modules with a snapshot version.

3.9.4 [5.4.1] - 2021-04-16

NOTE: This release is both compatible with Eclipse version 2020-06 and Eclipse Oxygen, so it can still be installed
on a previous SDK Distribution.

MicroEJ Module Manager
« Fixed missing repository configurationin artifact-repository skeleton (this configuration is required
to include modules bundled in an other module repository)

+ Fixed missing some old build types versions that were removed by error. (introduced in SDK 5.4.0, please
refer to the Known Issues section for more details)

« Fixed wrong version of module built in a meta-build (module was published with the module version instead
of the snapshot version)

« Fixed code coverage analysis on source code (besides on bytecode) thanks to the property cc.src.folders
(only for architectures in version 7.16.0 and beyond)

3.9.5 [5.4.0] - 2021-03-25

NOTE: This release is both compatible with Eclipse version 2020-06 and Eclipse Oxygen, so it can still be installed
on a previous SDK Distribution.

3.9. SDK Changelog 52

MicroEJ Documentation, Revision b25dd891

Known Issues

« Some older build types versions have been removed by error. Consequently, using SDK 5.4.0 , it may be not
possible to build modules that have been created with an older SDK version (For example, MicroEJ GitHub
code). The list of missing build types:

build-application 7.0.2

build-microej-javalib 4.1.1

build-firmware-singleapp 1.2.10

build-microej-extension 1.3.2

General

+ Added MicroEJ Module Manager Command Line Interface in Build Kit
+ Added ignore optional compilation problems in Addon Processor generated source folders

+ Added logs to Standalone Application build indicating the mapping of Foundation Libraries to the Platform

Updated End User License Agreement

+ Added the latest HIL Engine APl to mock-up skeleton (native resources management)

Updated the Architecture import wizard to automatically accept Pack licenses when the Architecture license
is accepted

MicroEJ Module Manager
General
« Added JSCH library to execute MicroEJ test suites on Device through ssh

+ Added pre-compilation phase before executing Addon Processor to have compiled classes available

+ Updated the default settings file to import modules from MicroEJ Developer repository (located at ${user.
dir}\.microej\microej-ivysettings-5.4.xml)

Build Types

« Updated all relevant build types to load the Platform using the platform configuration instead of the test
configuration:

Sandboxed Application (application)

Foundation Library Implementation (javaimpl)

Addon Library (javalib)

MicroEJ Testsuite (testsuite)
« Updated Module Repository to allow to partially include an Architecture module (eval and/or prod)

+ Fixed potential Addon Processor error NoClassDefFoundError: ej/tool/addon/util/Message depend-
ing on the resolution order

« Removed javadoc generation for microej-extension

3.9. SDK Changelog 53

https://github.com/MicroEJ/
https://forge.microej.com/artifactory/microej-developer-repository-release/

MicroEJ Documentation, Revision b25dd891

Build Plugins

+ Updated Addon Processor to fail the build when an error is detected. Error messages are dumped to the build
logs.

« Updated Platform Loader to handle Platform module (.zip file)

« Updated Platform Loader to handle Virtual Device module (. vde file) declared as a dependency. It worked
before only by using the dropins folder.

« Updated Platform Loader to list the Platforms locations when too many Platform modules are detected

Skeletons

+ Fixed wrong README.md generation for artifact-repository skeleton

« Removed uselessfilesin microej-javaapi, microej-javaimpl and microej-extension skeletons (intern
changelog and . dbk file)

3.9.6 [5.3.1]-2020-12-11

NOTE: This release is both compatible with Eclipse version 2020-06 and Eclipse Oxygen, so it can still be installed
on a previous SDK Distribution.

General

+ Fixed missing default settings file for connecting MicroEJ Central Repository when starting a fresh install
(introducedin 5.3.0)

MicroEJ Module Manager
Build Plugins

« Fixed potential build error when computing Sonar classpath from dependencies (ivy:cachepath task was
sometimes using a wrong cache location)

Skeletons

+ Fixed skeleton dependency to EDC-1.3.3 to avoid an Eclipse JDT builder error when Null Analysis is enabled
(see known issues of SDK Distribution 20.10)

3.9.7 [5.3.0] - 2020-10-30

NOTE: This release is both compatible with Eclipse version 2020-06 and Eclipse Oxygen, so it can still be installed
on a previous SDK Distribution.

Known Issues

« Library module build may lead to unexpected Unresolved Dependencies error in some cases (in
sonar:init target/ ivy:cachepath task). Workaround is to trigger the library build again.

3.9. SDK Changelog 54

https://repository.microej.com/modules/ej/api/edc/1.3.3/

MicroEJ Documentation, Revision b25dd891

General

« Fixed various plugins for Eclipse version 2020-06 compatibility (icons, project explorer menu entries)
« Fixed closed module.ivy files after an SDK restart that were opened before
+ Removed license check before launching an Application on Device

+ Disabled Activate on new event option of the Error Log view to prevent popup of this view when an
internal error is thrown

+ Removed license check before Platform build
+ Updated filter of the Launch Group configuration (exclude the deprecated Eclipse CDT one)
« Fixed inclusion of mock project dependencies in launcher mock classpath

« Enhance error message in Platform editor (.platform files) when the required Architecture has not been
imported (displays Architecture information)

MicroEJ Module Manager

General

« Fixed workspace default settings file when clicking on the Default button

« First wrong resolved dependency when ChainResolver returnFirst option is enabled and the module to re-
solve is already in the cache

« Fixed potential build module crash (Not comparable issue) when resolving module dependencies across
multiple configurations

Build Types

Exclude packs from artifact checker when building a module repository

+ Merged Foundation & Add-On Libraries javadoc when building a module repository

+ Added Module dependency line for each type in module repository javadoc

+ Added an option to skip deprecated types, fields, methods in module repository javadoc
+ Allow to include or exclude Java packages in module repository javadoc

« Added an option skip.publish to skip artifacts publication in build-custom build type

Allow to define Application options from build option using the platform-launcher.inject. prefix

+ Added generation and publication of code coverage report after a testsuite execution. The report generation
is enabled under the following conditions:

at least one test is executed,

tests are executed on Simulator,

build option s3.cc.activated issetto true (default),

the Platform is based on an Architecture version 7.12.0 or higher

if testing a Foundation Library (using microej-testsuite), build option microej.testsuite.cc.
jars.name.regex must be set to match the simple name of the library being covered (e.g. edc-*. jar
or microui-*.jar)

3.9. SDK Changelog 55

https://ant.apache.org/ivy/history/2.5.0/resolver/chain.html

MicroEJ Documentation, Revision b25dd891

« Fixed sonar false negative Null Analysis detection in some cases

+ Added a better error message for Studio rebrand build when izpack.microej.product.location option
is missing

+ Deprecated build-microej-ri and disabled documentation generation (useless docbook toolchains have
been removed to reduce the bundle size: -150MB)

Skeletons

« Fixed microej-mock content scriptinitialization folder name

3.9.8 [5.2.0] - 2020-07-28

General

« Added Dist. prefixin default workspace and repository name to avoid confusion between SDK distribution
vs SDK version

Replaced Version by Dist. in Help > AboutMicroEJ® SDK menu. The SDK version is available in
Installation Details view.

Replaced IS2T S.A. and MicroEJ S.A. by MicroEJ Corp. in Help > AboutMicroEJ® SDK menu.
+ Updated Front Panel plugin to version 6.1.1

« Removed MicroEJ Copyright in Java class template and skeletons files

Fixed Stopping a MicroEJ launch in the progress view doesn’t stop the launch

MicroEJ Module Manager

General

+ Added a new configuration page (Window > Preferences > Module Manager). This page is a merge of
formerly named Easyant4Eclipse preferences pageand Ivy Settings relevant options for MicroEJ.

+ Added Export > MicroEJ > Module Manager Build Kit wizard, to extractthefiles required forautomating
MicroEJ modules builds out of the IDE.

« Added New > MicroEJ > Module Project wizard (formerlynamed New Easyant Project), with module
fields content assist and alphabetical sort of the skeletons list

+ Added Import > MicroEJ > Module Repository wizard to automatically configure workspace with a
module repository (directory or zip file)

+ Added New MicroEJ Add-On Library Project wizard to simplify Add-On Library skeleton project creation

Updated the build repository (microej-build-repository.zip) to be self contained with its owns
ivysettings.xml

« Updated Virtual Device Player (firmware-singleapp) launcher-windows.bat (use
launcher-windows-verbose.bat to get logs)

Renamed the classpath container to Module Dependencies instead of Ivy

3.9. SDK Changelog 56

MicroEJ Documentation, Revision b25dd891

+ Fixed Addon Processor src-adpgenerated folder generation when creating or importing a project with the
same name than a previously deleted one

» Fixed implementation of settings ChainResolver returnFirst option

+ Fixed lvy module resolution being blocked from time to time

Build Types

Fixed meta build to publish correct snapshot revisions for built dependencies. (Indirectly fixes ADP resolution
issue when an Add-On Library and its associated Addon Processor were built together using a meta build)

« Fixed potential infinite loop when building a Modules Repository with MMM semantic enabled

Fixed javadoc not being generated in artifactory repository build when skip. javadoc issetto false

+ Added the capability to build partial modules repository, by using the user provided ivysettings.xml file
to check the repository consistency

« Added the possibility to partially extend the build repository in a module repository. The build repository
can be referenced by a file system resolver using the property ${microej-build-repository.repo.dir}

+ Added the possibility to include a module repository into an other module repository (using new configura-
tion repository->x%)

+ Added the possibility to bundle a set of Virtual Devices when building a branded Studio. They are automati-
cally imported to the MicroEJ repository when booting on a new workspace.

« Added the possibility to bundle a Module Repository when building a branded Studio. It is automatically
imported and settings file is configured when booting on a new workspace.

Build Plugins

+ Added variables @MMM_MODULE_ORGANISATION@ , @MMM_MODULE_NAME@ and @MMM_MODULE_VERSIONG for
README.md file

« Fixed microej-kf-testsuite repository accessissue (introduced in SDK 5.0.0).

» Fixed artifact-checker to accept revisions surrounded by brackets (as specified by https:
//keepachangelog.com/en/1.0.0/)

Skeletons

« Updated module.ivy indentation characters with tabs instead of spaces
+ Updated CHANGELOG.md formatting
« Updated and standardized README.md files

Updated dependenciesin module.ivy to use the latest versions

+ Added .gitignore toignorethe target~ and src-adpgenerated folder where the module is built

Added Sandboxed Application WPK dropins folder (META-INF /wpk)
« Removed conf provided in module.ivy forfoundation libraries dependencies

« Remove MicroEJ internal site reference in module.ant file

Fixed corrupted library workbenchExtension-api.jar in microej-extension skeleton

3.9. SDK Changelog 57

https://ant.apache.org/ivy/history/2.5.0/resolver/chain.html
https://keepachangelog.com/en/1.0.0/
https://keepachangelog.com/en/1.0.0/

MicroEJ Documentation, Revision b25dd891

« Fixed corrupted library HILEngine. jar in microej-mock skeleton

« Fixed javadoc contentissue in Main class firmware-singleapp skeleton
Misc

+ Updated End User License Agreement

+ Added support for generating Application Options in reStructured Text format
3.9.9 [5.1.2]-2020-03-09

MicroEJ Module Manager

« Fixed potential build error when generating fixed dependencies file (fixdeps task was sometimes using a
wrong cache location)

Fixed topogical sort of classpath dependencies when building using Build Module (sameasin IvyDE class-
path sorted view)

Fixed resolution of modules with a version @.m.p when transitively fetched (an error was thrown with the
range [1.m.p-RC,1.m.(p+1)-RC[)

Fixed missing classpath dependencies to prevent an error when building a standard JAR with JUnit tests

3.9.10 [5.1.1] - 2019-09-26

General

« Fixed fileslockedin Platform in workspace projects preventing the Platform from being deleted or rebuilt

3.9.11 [5.1.0] - 2019-05-17
General

+ Updated MicroEJ icons (16x16 and 32x32)

« Fixed potential long-blocking operation when launching an application on a Virtual Device on Windows 10
(Windows defender performs a slow analysis on a zip file when it is open for the first time since OS startup)

« Fixed missing ADP resolution on a fresh MicroEJ installation

« Fixed ADP source folders order generation in .classpath (alphabetical sort of the ADP id)

» Fixed RunAs... > MicroEJ Application automatic launcher creation: when selecting a Platform in
workspace , an other platform of the repository was used instead

» Fixed Memory Map Analyzer load of mapping scripts from Virtual Devices
+ Fixed MMM and ADP resolution when importing a zip project in a fresh MicroEJ install

« Fixed ADP crash when a project declares dependencies without a source folder

Fixed inability to debug an application on a Virtual Device if option execution.mode was specified in
firmware build properties (now SDK options cannot be overridden)

+ Updated Front Panel plugin to comply with the new Front Panel engine

3.9. SDK Changelog 58

MicroEJ Documentation, Revision b25dd891

- The Front Panel engine has been refactored and moved from Ul Pack to Architecture (Ul pack 12.0.0
requires Architecture 7.11.0 or higher)

- New Front Panel Project wizard now generates a project skeleton for this new Front Panel engine,
based on MMM

- Legacy Front Panel projects for Ul Pack v11.71.0 or higher are still valid

« Updated Virtual Device builder to speed-up Virtual Device boot time (System Applications are now extracted
at build time)

« Fixed inability to selecta Platform in workspace ina MicroEJ Tool launch configuration
« Fixed broken title in MicroEJ export menu (Platform Export)

MicroEJ Module Manager

Build Plugins

« Added a new option application.project.dir passed to launch scripts with the workspace project direc-
tory

Updated MMM to throw a non ambiguous error message when a module.ivy configured for MMM declares
versions with legacy lvy range notation

« Updated MicroEJ Central Repository cache directory to ${user.dir}\.microej\caches\repository.
microej.com-[version] instead of ${user.dir}\.ivy2

« Updated Update Module Dependencies. .. tobedisabled when module.ivy cannotbe loaded. The menu
entry is now grayed when the project does not declare an IvyDE classpath container

+ Fixed wrong resolution order when a module is both resolved in the repository and the workspace (the
workspace module must always take precedence to the module resolved in the repository)

Fixed useless unknown resolver trace when cache is used by multiple Ivy settings configurations with
different resolver names.

Fixed slow Add-on Processor generation. The classpath passed to ADP modules could contain the same entry
multiple times, which leads each ADP module to process the same classpath multiple times.

+ Fixed misspelled recommendation message when a build failed

+ Fixed Update Module Dependencies... tool: wrong ej:match="perfect” added where it was expected
to be compatible

« Fixed Update Module Dependencies... tool: parse error when module.ivy contains <artifact
type="rip"/> element

« Fixed resolution and publication of a module declared with an vy branch
« Fixed character '-' rejected in module organisation (according to MMM specification 2.0-B)
« Fixed ADP resolution error when the Add-on Processor module was only available in the cache

« Fixed potential build crash depending on the build kit classpath order (error was This module requires
easyant [0.9,+])

« Fixed product-java broken skeleton

3.9. SDK Changelog 59

MicroEJ Documentation, Revision b25dd891

Build Types

Updated Platform Loader error message when the property platform-loader.target.platform.dir isset
to aninvalid directory

Fixed meta build property substitutionin *.modules.list files

Fixed missing publications for README.md and CHANGELOG.md files

Update skeletons to fetch latest libraries (Wadapps Framework v1.10.0 and Junit v1.5.0)
+ Updated README.md publication to generate MMM usage and the list of Foundation Libraries dependencies
« Added a new build nature for building platform options pages (microej-extension)

« Updated Virtual Device builder to speed-up Virtual Device boot time (System Applications are now extracted
at build time)

Fixed Virtual Device Player builder (dependencies were not exported into the zip file) and updated
firmware-singleapp skeleton with missing configurations

Skeletons

« Updated CHANGELOG.md based on Keep a Changelog specification (https://keepachangelog.com/en/1.0.0/)

« Updated offline module repository skeleton to fetch in a dedicated cache directory under ${user.dir}/.
microej/caches

3.9.12 [5.0.1] - 2019-02-14

General

+ Removed Wadapps Code generation (see migration notes below)

Added support for MicroEJ Module Manager semantic (see migration notes below)

« Added a dedicated view for Virtual Devices in MicroEJ Preferences

Removed Platform related views and menus in the SDK (Import/Export and Preferences)
+ Added Studio rebranding capability (product name, icons, splash screen and installer for Windows)
+ Added a new meta build version, with simplified syntax for multi-projects build (see migration notes below)

+ Added a skeleton for building offline module repositories

Added support for importing extended characters in Fonts Designer

« Allow toimport Virtual Devices with .vde extension (*. jpf importstill available for backward compatibility)

Removed legacy selection for Types, Resources and Immutables in MicroEJ Launch Configuration (replaced
by x.1ist files since MicroEJ 4.0)

Enabled IvyDE workspace dependencies resolution by default
« Enabled MicroEJ workspace Foundation Libraries resolution by default

+ Added possibility for Architectures to check for a minimum required version of SDK (sdk.min.version prop-
erty)

+ Updated New Standalone Application Project wizard to generate a single-app firmware skeleton

3.9. SDK Changelog 60

https://keepachangelog.com/en/1.0.0/

MicroEJ Documentation, Revision b25dd891

+ Updated Virtual Device Builder to manage Sandboxed Applications (compatible with Architectures Products
*_7.10.0 or newer)

» Updated Virtual Device Builder to include kernel options (now options are automatically filled for the appli-
cation developer on Simulator)

MicroEJ Module Manager

Build Plugins

+ Added IvyDE resolution from properties defined in Windows > Preferences > Ant > Runtime >
Properties

« Fixed lllegal character in path error that may occur when running an Add-on Processor

« Fixed IvyDE crash when defining an Ant property file with Eclipse variables

Build Types

Kept only latest build types versions (skeletons updated)
« Updated metabuild to execute tests by default for private module dependencies

« Removed remaining build dependencies to JDK (Java code compiler and Javadoc processors). All MicroEJ
code is now compiled using the JDT compiler

Introduced a new plugin for executing custom testsuite using MicroEJ testsuite engine

Fixed MalformedURLException error in Easyant trace

Fixed Easyant build crash when an vy settings file contains a cache definitions with a wildcard

Updated Platform Builder to keep track in the Platform of the architecture on which it has been built (
architecture.properties)

+ Updated Virtual Device Builder to generate with .vde extension

Updated Multi-app Firmware Builder to embed (Sim/Emb) specific modules (Add-on libraries and System
Applications)

Fixed build-microej-ri v1.2.1 missing dependencies (embedded in SDK 4.1.5)

Skeletons

+ Updated all skeletons: migrated to latest build types, added more comments, copyright cleanup and config-
uration for MicroEJ Module Manager semantic)

+ Added the latest HIL Engine APl to mock-up skeleton (Start and Stop listeners hooks)

3.10 Migration Notes

3.10.1 From 5.2.xt0 5.3.x

This section applies if MicroEJ SDK 5. 3. x is started on a workspace that was previously created using MicroEJ SDK
5.2.X%.

3.10. Migration Notes 61

MicroEJ Documentation, Revision b25dd891

Workspace migration warning

Starting with the MicroEJ SDK Distribution 20.10, when opening a workspace which has been created with an older
MicroEJ Distribution, a message is displayed with the following warning:

The workspace was written with an older version. Continue and update workspace which may make it_
—incompatible with older versions?

This is a generic warning from Eclipse which can be safely ignored as long as you don’t intend to open it back with
an older MicroEJ SDK Distribution then.

3.10.2 From 5.1.xt0 5.2.x

This section applies if MicroEJ SDK 5. 2. x is started on a workspace that was previously created using MicroEJ SDK
5.1.x.

Enable New Wizards Shortcuts in MicroEJ Perspective

Eclipse perspective settings are stored in the workspace metadata, so the new wizards shortcuts (
Add-On Library Project and Module Project) are notvisible inthe File > New menu.

The MicroEJ perspective must be reset to its default settings as following:

« Clickon Windows > Perspective > Open Perspective > Other... menu
« Select MicroEJ perspective

» Clickon Windows > Perspective > ResetPerspective... menu

+ Clickon Yes button to accept to reset the MicroEJ perspective to its defaults.

The new wizards shortcuts are now visible into File > New menu.

Re-enable the Ivy Preferences Pages (Advanced Use)

Theoriginal Window > Preferences > Ivy pages can be re-enabled as following:
+ Close all running instances of the SDK
+ Edit MicroEJ-SDK.ini and add the property -Dorg.apache.ivy.showAdvancedPrefs=true
« Start the SDK again
« Goto Window > Preferences > Module Manager page

Anewlink Ivy settings should appear on the bottom of the page. It opens a popup window with the original Ivy
preferences pages.

3.10.3 From 4.1.xto 5.x

This section applies if MicroEJ SDK 5. x is started on a workspace that was previously created using MicroEJ SDK
4.1.x.

3.10. Migration Notes 62

MicroEJ Documentation, Revision b25dd891

Wadapps Application Update
The Wadapps code generator has been moved from IDE to an Addon Processor coming with ej.library.wadapps.
framework module (v1.9.0 orhigher is required).

A Wadapps Application Project can be updated as follows:

+ Right-click on the project, then Configure > Remove Sandboxed Application Nature

+ Right-click on the project, then Configure > Add Sandboxed Application Nature

« Update module.ivy dependency to fetch ej.library.wadapps.framework version 1.9.0 (or perform
MicroEJ Module Manager update as defined below)

+ Delete remaining folder src/.generated~ ifany

+ Check that project compiles and folder src-adpgenerated/wadapps is generated

MicroEJ Module Manager Update
It is highly recommended to migrate module.ivy to the MicroEJ Module Manager semantic, since the default Ivy
resolution will be no more maintained in future versions.

The module.ivy can be updated as follows:
+ Right-click on module.ivy,then Update Module Dependencies...

This has for effect to both migrate the module.ivy to the MicroEJ Module Manager semantic and also to update
dependencies version to the latest available in the target repository.

Meta build Project Update

A project using microej-meta-build version 1.x can be updated to version 2.x as follows:
o Edit module.ivy
- Replacethe microej-meta-build versionby 2.0.+

- Update all properties declaration to append the metabuild.inject. prefix (e.g. <ea:property
name="skip.test"” value="true"” /> mustbeupdatedto <ea:property name="metabuild.inject.
skip.test” value="true"” />)

- Optionally remove or comment the root folder declaration as it is the default. (<ea:property
name="metabuild.root” value=".." />)

+ Delete module.properties . It only contains the property easyant.fork.build=true . This property is
now automatically set by easyant-build-component since version 1.12.0. Otherwise it must be explicitly
injected by the build system as an Ant property: easyant.inject.easyant.fork.build=true

«+ Extract from override.module.ant the projects declarations lines:

- Extract the project declarations of local.submodule.dirs.id into a new file named private.
modules.list (one project per line)

- Extract the project declarations of submodule.dirs.id into a new file names public.modules.list
(one project per line)

o Delete override.module.ant

The new file system structure shall look like:

3.10. Migration Notes 63

MicroEJ Documentation, Revision b25dd891

metabuild-project
module.ivy
private.modules.list
public.modules.list

3.11 Troubleshooting

3.11.1 Windows Specifics
If you are using Windows Defender as your default antivirus software, The SDK may be slowed down as it manipu-
lates lots of JAR files (which are ZIP files) that are regularly analyzed.

To improve the SDK experience, please find below a list of folders that should be excluded from Windows Defender
monitoring:

o %USERPROFILE%\.eclipse
o %USERPROFILE%\.ivy2
* %USERPROFILE%\.microej
e %USERPROFILE%\.p2
o %USERPROFILE%\AppData\Local\Temp\microej
e C:\Program Files\MicroEJ
« your workspace(s) folder(s)
The exclusion page is available in the Settings application (Windows Security > Virus & threat protection >

Manage settings > Exclusions > Add or remove exclusions).

3.11.2 Linux Specifics

Starting the SDK on a linux distribution may produce troubles such as missing content pages. This is related to
incomplete Eclipse SWT configuration (see Eclipse GTK wiki page).

One solution is to configure Eclipse as follows:

Add the next lines to MicroEJ-SDK.ini , before -vmargs argument:

--launcher.GTK_Version 2

Ensure GTK is correctly installed (1ibwebkitgtk packet)

Configure the following environment variables

MOZILLA_FIVE_HOME=/usr/lib/mozilla
LD_LIBRARY_PATH=${MOZILLA_FIVE_HOME?}:${LD_LIBRARY_PATH}

Restart the SDK

Check there is not more SWT/MOZILLA related errors (Window > Show View > Other... > General >
Error Log)

3.11. Troubleshooting 64

https://wiki.eclipse.org/SWT/Devel/Gtk/GtkVersion

MicroEJ Documentation, Revision b25dd891

3.11.3 MacOS Specifics

When launching the SDK using the .app file, you may encounter the following message:

"MicroEJ-SDK-xx.xx" is damaged and can't be opened. You should move it to the Trash.

This is due to MacOS putting applications in quarantine when downloaded with a browser. Use this command to
remove the SDK application from quarantine:

sudo xattr -rd com.apple.quarantine sdk.app

where sdk.app is the SDK file name.

3.11. Troubleshooting 65

CHAPTER

FOUR

APPLICATION DEVELOPER GUIDE

4.1 Introduction

The following sections of this document shall prove useful as a reference when developing applications for MicroEJ.
They cover concepts essential to MicroEJ Applications design.

In addition to these sections, by going to https://developer.microej.com/, you can access a number of helpful re-
sources such as:

« Libraries from the MicroEJ Central Repository (https://developer.microej.com/central-repository/);
« Application Examples as source code from MicroEJ Github Repositories (https://github.com/MicroEJ);
« Documentation (HOWTOs, Reference Manuals, APIs javadoc...).

MicroEJ Applications are developed as standard Java applications on Eclipse JDT, using Foundation Libraries. Mi-
croEJ SDK allows you to run / debug / deploy MicroEJ Applications on a MicroEJ Platform.

Two kinds of applications can be developed on MicroEJ: MicroEJ Standalone Applications and MicroEJ Sanboxed
Applications.

A MicroEJ Standalone Application is a MicroEJ Application that is directly linked to the C code to produce a Mi-
croEJ Firmware. Such application must define a main entry point, i.e. a class containing a public static void
main(String[]) method.

A MicroEJ Sandboxed Application is a MicroEJ Application that can run over a Multi-Sandbox Firmware. It can be
linked either statically or dynamically. If it is statically linked, it is then called a System Application as it is part of
theinitial image and cannot be removed.

4.2 Standalone Application

4.2.1 MicroEJ Platform Import

A MicroEJ Platform is required to run a MicroEJ Standalone Application on the Simulator or build the Firmware
binary for the target device.

The Platform Developer Guide describes how to create a MicroEJ Platform from scratch for any kind of device. In
addition, MicroEJ Corp. provides Platforms for various development boards (see https://repository.microej.com/
index.php?resource=JPF).

MicroEJ Platforms are distributed in two packages:

« Source Platform. The source files are imported into the workspace. This is the default case.

66

https://developer.microej.com/
https://developer.microej.com/central-repository/
https://github.com/MicroEJ
https://repository.microej.com/index.php?resource=JPF
https://repository.microej.com/index.php?resource=JPF

MicroEJ Documentation, Revision b25dd891

+ Binary Platform. A . jpf fileisimported into the MicroEJ repository. As of MicroEJ SDK 5. 3.0, this package
is deprecated.

Source Platform Import

Import from Folder

This section applies when the Platform files are already available on a local folder. This is likely the case when the
files are checked out from a Version Control System, such as a local git repository clone.

Note: If you are going to import a Platform from MicroEJ Github, you can follow the specific GitHub Repositories
section instead (the projects will be automatically imported).

« Select File > Import... > General > Existing ProjectsintoWorkspace > Selectrootdirectory =
Browse... .

« Select the root directory. The wizard will automatically discover projects to import.

« Clickonthe Finish button.

Import from Zip File

This section applies when the Platform files are packagedina .zip file.

« Select File > Import... > General > Existing Projectsinto Workspace > Select archive file >
Browse... .

+ Select the zip of the project (e.g., x.zip). The wizard will automatically discover projects to import.

« Clickonthe Finish button.

Platform Build

MicroEJ Platforms are usually shared with only the Platform configuration files. Once the projects are imported,
follow the platform-specific documentation to build the Platform.

Once imported or built, a Platform project should be available as follows:
v 2 myDevice-myPlatform-CMdhardfp_|ARS3-1.0.0
% build
= =ource

= .project

Fig. 1: MicroEJ Platform Project

The source folder contains the Platform content which can be set to the target.platform.dir option.

4.2. Standalone Application 67

MicroEJ Documentation, Revision b25dd891

Binary Platform Import

After downloading the MicroEJ Platform . jpf file, launch MicroEJ SDK and follow these steps to import the MicroEJ

Platform:

« Open the Platform view in MicroEJ SDK, select Window > Preferences > MicroEJ > Platforms . The
view should be empty on a fresh install of the tool.

o
type filter text
. General A
- Ant
- CfC++
Checkstyle
EasyantdEclipse
- Help
- Install/Update
vy
. Java
4 Microk)
Architectures
Maming Conventicon
Platforms in workspace
Updates
+ Mylyn
» Plug-in Development
. PMD

n o

£ >

@

« Press Import... button.

+ Choose SelectFile... andusethe Browse option to navigate to the
Platform, then read and accept the license agreement to proceed.

Preferences

Platforms

Add or remove platforms.

Platforms, Virtual Devices and Architectures:

MName

Fig. 2: MicroEJ Platform Import

o IEN
<::,v v

Version Lic... Select All
Deselect All
Import...
Uninstall

Get UID

.jpf file containing your MicroEJ

4.2. Standalone Application

68

MicroEJ Documentation, Revision b25dd891

- oS

('} Import Platforms, Virtual Devices and Architectures

Import Platforms, ¥irtual Devices and Architectures

Select a directory/file to search for available platforms, virtual devices and architectures.

(") Select directory: Browse...
(®) Select file: Ch\Usersh, MicroEJPlatform jpof Browse...
Platforms, Yirtual Devices and Architectures:
Mame Yersion Select All
L} MicroE Platform 2.1.1 Deselect Al

MICROE) LICEMSE AGREEMENT

PREAMELE

THIS SOFTWARE LICEMNSE AGREEMENT (THE « AGREEMENT ») APPLIES TO PRODUCTS LICEMSE
On purchase of any Licensed Product from 52T or an 52T Partner or an [52T Distributor, the relz
THE LICEMSEE, AS A USER OF THE LICEMSED PRODUCTS REFERRED TO ABOVE AND OM THE REI

1 DEFIMITIONS

€ >

[+]1 agree and accept the above terms and conditions and | want to install the copyrighted Software

Fig. 3: MicroEJ Platform Selection

+ The MicroEJ Platform should now appear in the Platforms view, with a green valid mark.

4.2. Standalone Application

69

MicroEJ Documentation, Revision b25dd891

ﬂ Preferences
type filter text Platforms
» G | ~
Eners Add or remove platforms.
At
. CIC++ Platforms, Virtual Devices and Architectures:
Checkstyle Name

EasyantdEclipse L) MicroEJ Platform

+ Help

+ Install/Update

> vy

» Java

4 Microk)
Architectures
Maming Conventicon
Platforms in workspace
Updates

» Mylyn

» Plug-in Development

> PMD

n o

£ >

=
?
\‘;/'

o IEN
<::,v v

Version Lic... Select All
211 v
v Deselect All
Import...

Uninstall

Get UID

Restare Defaults Apply

Fig. 4: MicroEJ Platform List

4.2.2 Build and Run an Application

Create a MicroEJ Standalone Application

« Create a project in your workspace. Select File > New > Standalone Application Project .

File Edit Source Refactor Mavigate Search Project

Mew Alt+Shift+M »
Open File...

[} Open Projects from File System...
Recent Files .
Close Editor Ctrl+W
Close All Editors Ctrl+Shift+W
Save Ctrl+5
Save As

Run Window Help

B

Uz

ks
=

1 Id F

|

Sandboxed Application Project
Standalone Application Project
Add-On Library Project
Module Project

Platform Project

Front Panel Project

Project...

MicroEl Font

Fig. 5: New MicroEJ Standalone Application Project

« Fill in the Application template fields, the project name field will automatically duplicate in the following

fields. For this tutorial, the project nameis hello. Click on Finish . A template project is automatically
created and ready to use, this project already contains all folders wherein developers need to put content:

4.2. Standalone Application

70

MicroEJ Documentation, Revision b25dd891

- src/main/java: Folder for future sources
- src/main/resources : Folder for future resources (images, fonts, etc.)

- module.ivy: Module description file, dependencies description for the current project

« A Main class already exists in the package com.mycompany and prints “Hello World!” :

1] Mainjava i2

2@ Javal]

5 package com.mycompany;

B

70 =+

8 * @Generated by the build-firmware-singleapp-skeleton.<br:
9 * please keep it in sync with the property "application.main.c.
B *

1 public class Main {

2

32 =

14 * Simple main.

15 *

16 * [param args

17 = command line arguments.

18 */

198 public static void main{String[] args) {

2@ system.out.println{"Hello World!™); //SNON-NLS-1%
21 }

22 }

23

Fig. 6: MicroEJ Application Content

The main Application is now ready to be executed. See next sections.

Run on the Simulator

Note: A Platform must have been imported to run the Application. If several Platforms have been imported, the
target Platform can be selected in the Launcher’s Execution tab.

To run the sample project on Simulator, select it in the left panel then right-click and select Run > Runas >
MicroEJ Application .

4.2. Standalone Application n

MicroEJ Documentation, Revision b25dd891

|- RICIN B fPﬁf%-Qv%viﬂﬁ\@v;i&E.jvi - > to o ~| %
New b
= .
& p Go Into B [J] Mainjava 2
b 26 Javal]
o Open in New Window 5 package com.mycompany;
Open Type Hierarchy F4 E_
Show In Alt+Shift+W » 8 * Generated by the build-firmware-singleapp-skeleton.<b
9 * Please keep it in sync with the property 'application
[Copy Ctrl+C 18 */
E= Copy Qualified Name _: public class Main {
ra
[[& Paste Ctrl+V 3 JE*
3 Delete Delete 4 Simple main.
5 "
Build Path] 6 args
. command line arguments.
Source Alt+Shift+5 » Y]
Refactor Alt+Shift+T » public static void main(String[] args) {
System,out.println(“Hello World!™); //BNON-NLS-1!
[z_],\._, Import... 2 ¥
7 Export.. b
" Refresh Fs
Close Project
Close Unrelated Project
Assign Working Sets...
{J PRunAs >[I 1Java Application Alt+Shift+X, J
45 Debug As » 7] 2 Microb) Application Alt+5hift+X, M
Profile As »

_ Run Configurations...
Build Module r

Fig. 7: MicroEJ Launcher Shortcut

MicroEJ SDK console will display Launch steps messages.

SUCCESS

Run on the Device

Build the Application

+ Opentherundialog(Run > Run Configurations...).
+ Select the MicroEJ Application > Hello Main thatis created by the previous chapter.

+ Open Execution tab and select Execute on Device .

« Set Settings checkboxto Build & Deploy .

4.2. Standalone Application 72

MicroEJ Documentation, Revision b25dd891

@ Run Cenfigurations m] X

o

P S =] x' =g Name:|HeHo Main |

[3] Main [Execution i Configuration | mi JRE| % Source| [[] Common

[E] C/C++ Application Target
Ju JUnit Platferm: MicroEl Platform

Create, manage, and run configurations

Browse...
i Launch Group
~ [T] Microk) Application
7] Hello Main Execution
g Microkl Tool
Ha Microst oo () Execute on Simulator (® Execute on Device
Core Engine Mode: | Default ~
Android Settings: | Build & Deploy ~
The application is generated, linked and deployed.
Options

Output folder: | ${project_loc:hello} Browse...

Clean intermediate files [verbose
Options Files
Add...
Remove
Up
Down
Revert Appl
Filter matched 6 of 14 items = PRy

Fig. 8: Execution on Device

« Click Run : The Application is compiled and the Application, the runtime library and the header files are
automatically deployed to the locations defined in your Platform BSP connection settings.

=============== [Deployment] ===============

MicroEJ files for the 3rd-party BSP project are generated to '<application-project>/<fully-qualified-
—name-of-main-class>/platform'.

The MicroEJ application (microejapp.o) has been deployed to: '<path-to-deployment-location>".

The MicroEJ platform library (microejruntime.a) has been deployed to: '<path-to-deployment-location>".
The MicrokEJ platform header files (*.h) have been deployed to: '<path-to-deployment-location>'.
=============== [Completed Successfully] ===============

SUCCESS

Build the Executable File

If your Platform has configured a build script file, the final Application linking can be triggered from the launcher:

» Open Configuration tab and select Device > Deploy . The optionsto deploy the Application, runtime
library and header files have already been set in the previous step.

« Check Execute the MicroEJ build script (build.bat) at a location known by the 3rd-party BSP project .

4.2. Standalone Application 73

MicroEJ Documentation, Revision b25dd891

Q- Run Configurations O b4
Create, manage, and run configurations ;—I
Iﬁ ~ = X | E | Name: | Hello Main |
type filter text 3] Main | mié Execution |} Configuration . =i JRE| % Source | [[] Commen
[€] C/C++ Application ||| v Device Configuration ~
Ju JUnit Core Engine ’ A —_ - -
[-] Deploy the MicroE) application (microejapp.o] at a location known by the 3rd-party BSP project.
& Lounch Group Deploy £ Deploy pp (japp.c) y party BSP proj
w 7] MicroE) Application Libraries
[T Hello Main Runtime
T Microk) Tool
Browse
Deploy the MicroE) platform library (microgjruntime.a) at a location known by the 3rd-party BSP project.
Browse
Deploy the MicroE) platform header files (*.h) at a location known by the 3rd-party BSP project.
Browse
I Execute the MicroE) build script (build.bat) at a location known by the 3rd-party BSP project. I
v
< >
< >
Revert Appl
Filter matched 6 of 13 items PPy
(?) Run Close

Fig. 9: BSP Connection Application Options

Note: The table MicroEJ Application Options for BSP Connection specifies the Application options that can be set
depending on the BSP connection configured by the Platform.

+ Click Apply and Run :thefinalexecutable application.out fileisgenerated inthe directory from where
the script has been executed and can now be deployed on your Device using the appropriate flash tool.

4.2.3 Build Output Files

When building a Standalone Application, multiple files are generated next to the ELF executable file.

Launch Output Folder

Using a MicroEJ Application Launch, the files are generated in a folder which is named like the main type and which
is located in the output folder specified in the run configuration.

4.2. Standalone Application 74

MicroEJ Documentation, Revision b25dd891

v [com.microg).demo.widget.commeon.Mavigation
= bon
= cc
[externalResources
= fonts
= heapDump
== Images
= logs
= platform
= resourceBuffer
v [soar
=| com.microej.demo.widget.common.Mavigation.clinitmap
com.micreej.demo.widget.common.MNavigation.o
E-i com.micreel.demeo.widget.common.Mavigation.s3infos
|¥| com.microej.demo.widget.commen.Mavigation.xml
L] sni_intern.h
0 SOAR.map

SOAR.0

Fig. 10: Build Output Files from MicroEJ Application Launch

Published Module Files

After building the Standalone Application, the published module contains the following main files:
o [name]-[version].out : Firmware (ELF Executable)
o [name]-[version].zip: Virtual Device

« [name]-[version]-workingEnv.zip : Build intermediate files, including the content of the launch output
Folder)

4.2. Standalone Application 75

MicroEJ Documentation, Revision b25dd891

ation-1.0.2.out <—— Firmware (ELF Executable)
& ation-1.0.2-workingEnv.zip <= Build Intermediate Files
] application-1.0.2.zip «— Virtual Device
£ application-build-meta-1.0.2xml <+—— MMM metadata
] CHANGELOG-1.0.2.md <+— Changelog
] i 2.xm <+— MMM metadata
& ivy-fixed-1.0.2.xml <+—— MMM metadata
] README-1.0.2.m <—— README

Fig. 11: Published Standalone Application Module Files

The SOAR Map File

The SOAR.map file lists every embedded symbol of the application (section, Java class or method, etc.) and its size
in ROM or RAM. This file can be opened using the Memory Map Analyzer.

The embedded symbols are grouped into multiple categories. For example, the Object class and its methods are
grouped inthe LibFoundationEDC category. For each symbol or each category, you can see its size in ROM (Image
Size)and RAM (Runtime Size).

The SOAR groups all the Java strings in the same section, which appearsinthe ApplicationStrings category. The
same appliesto the staticfields (Statics category), thetypes (Types category), and the class names (ClassNames
category).

The SOAR Information File

The soar/<main class>.xml file can be opened using any XML editor.
This file contains the list of the following embedded elements:

» method (in selected_methods tag)

« resource (in selected_resources tag)

« system property (in java_properties tag)

+ string (in selected_internStrings tag)

« type (in selected_types tag)

« immutable (in selected_immutables tag)

4.2.4 MicroEJ Launch

The MicroEJ launch configuration sets up the MicroEJ Applications environment (main class, resources, target plat-
form, and platform-specific options), and then launches a MicroEJ launch script for execution.

Execution is done on either the MicroEJ Platform or the MicroEJ Simulator. The launch operation is platform-
specific. It may depend on external tools that the platform requires (such as target memory programming). Refer
to the platform-specific documentation for more information about available launch settings.

4.2. Standalone Application 76

MicroEJ Documentation, Revision b25dd891

Main Tab

The Main tab allows you to setin order:
1. The main project of the application.
2. The main class of the application containing the main method.

3. Types required in your application that are not statically embedded from the main class entry point. Most
required types are those that may be loaded dynamically by the application, using the Class.forName()
method.

4. Binary resources that need to be embedded by the application. These are usually loaded by the application
using the Class.getResourceAsStream() method.

5. Immutable objects’ description files. See the [BON 1.2] ESR documentation for use of immutable objects.

0 Run Configurations n
Create. manage. and run configurations ;—l
- —*,
= x| 8 5 Name: | HelloWerld
type filter text 31 Main s Execution | §fif Configuration | =, JRE E Source | [[] Commen
E C/C++ Application Praject ~
Ju JUnit

Launch Group MyHelloWorld5ample Browse...

4 [7] MicroE) Application Main type, Required types

31 HelloWarld
2 Microkl Tool com.is2t.examples.edc.helle. HelloWorld Select Main type...
Add types...
Extra types...
Remove
Resources
Add...
Remove
Immutables v

. . Revert Apply
Filter matched 6 of 11 items

Fig. 12: MicroEJ Launch Application Main Tab

Execution Tab

The next tab is the Execution tab. Here the target needs to be selected. Choose between execution on a MicroEJ
Platform or on a MicroEJ Simulator. Each of them may provide multiple launch settings. This page also allows you

4.2. Standalone Application 7

MicroEJ Documentation, Revision b25dd891

to keep generated, intermediate files and to print verbose options (advanced debug purpose options).

@ Run Cenfigurations

Create,

manage, and run configurations

»

CRaxXx e-

Name: | Widget Demo (SIM)

type filter text

[©] C/C++ Application
Ju JUnit

7] Main | Execution

i Configuratiorﬂ B JREW 7 Source\l i=| Qommoﬂ

Target

Platform: | STM32F746G-DISCO SingleApp Production [K1AU3] (4.0.0-RC202007301413)

Bi
L Launch Group | ffeclet
v @ I'V'IicrolFJ Application Execution
& Wfdget Demo (EME) (®) Execute on Simulator () Execute on Device
7] Widget Demo (SIM)
» g MicroEl Tool Core Engine Mode: [Eiefaul
Settings: | Default ~ | Settings: | Build 8 Deploy
The Application (s simulated
Options
Output folder: | Y{project_loc:com.microej.demo.widget} Browse...
Clean intermediate files [verbose
Options Files
Y project_loc:com.microgj.demo.widget}/build/common.properties Add...
Y project_loc:com.microe].demo.widget}/build/sim/sim.properties
Remaove
Up
Down
Revert Appl
Filter matched 8 of 21 items — e
@ Bun Close

Configuration Tab

Fig. 13: MicroEJ Launch Application Execution Tab

The next tab is the Configuration tab. This tab contains all platform-specific options.

4.2. Standalone Application

MicroEJ Documentation, Revision b25dd891

ﬂ Run Configurations n

Create. manage. and run configurations ; I

S X B2 Name: | HelloWorld

type filter text 37 Main | s Execution | ifif Configuration g, JRE E Source | [[] Commen
[E] C/C++ Application 4 Debug
Ju JUnit Code Coverage
[Launch Group Heap Dumper
4 [7] MicroE) Application 1Dwe
Logs
@ MicroE) Tool 4 Simulator
Com Port
F5
HAL
4 Target
Memory

Specify debug options

4 Libraries
EDC
Shielded Plug
. ECOM
FS
> Microll
Met
MNLS
S5L

. . Revert Apply
Filter matched 6 of 11 items

Fig. 14: Configuration Tab

JRE Tab

The next tabisthe JRE tab. Thistab allows you to configure the Java Runtime Environment used for running the
underlying launch script. It does not configure the MicroEJ Application execution. The VM Arguments text field
allows you to set vm-specific options, which are typically used to increase memory spaces:

« To modify heap space to 1024MB, set the -Xmx1024M option.

« To modify string space (also called PermGen space) to 256MB, set the -XX:PermSize=256M
-XX:MaxPermSize=256M options.

« To set thread stack space to 512MB, set the -Xss512M option.

Source Tab

Thenexttabisthe Source tab. Bydefault,itisautomatically configured to connect your Add-On Libraries sources
dependencies. To connect your Platform Foundation Library sources, please refer to the section Foundation Library
Sources.

4.2. Standalone Application 79

MicroEJ Documentation, Revision b25dd891

Common Tab

The last tabisthe Common tab. This is a default Eclipse tab that allows to configure your launch. Particularly,
you can configure the console encoding. Refer to Eclipse help for more details on other available options.

4.2.5 Application Options
Introduction
To run a MicroEJ Standalone Application on a MicroEJ Platform, a set of options must be defined. Options can be
of different types:
« Memory Allocation options (e.g set the Java Heap size). These options are usually called link-time options.
« Simulator & Debug options (e.g. enable periodic Java Heap dump).
+ Deployment options (e.g. copy microejapp.o to a suitable BSP location).
« Foundation Library specific options (e.g. embed UTF-8 encoding).

The following section describes options provided by MicroEJ Architecture. Please consult the appropriate MicroEJ
Pack documentation for options related to other Foundation Libraries (MicroUl, NET, SSL, FS, ...) integrated to the
Platform.

Notice that some options may not be available, in the following cases:

« Option is specific to the MicroEJ Core Engine capability (tiny/single/multi) which is integrated in the targeted
Platform.

« Option is specific to the target (MicroEJ Core Engine on Device or Simulator).

+ Option has been introduced in a newer version of the MicroEJ Architecture which is integrated in the targeted
Platform.

« Options related to Board Support Package (BSP) connection.

Defining an Option

A MicroEJ Standalone Application option can be defined either from a launcher or from a properties file. It is also
possible to use both together. Each MicroEJ Architecture and MicroEJ Pack option comes with a default value,
which is used if the option has not been set by the user.

Using a Launcher

To set an option in a launcher, perform the following steps:

1. In MicroEJ SDK, select Run > Run Configurations... menu,
2. Select the launcher of the application under MicroEJ Application or create a new one,

3. Select the Configuration tab,

4. Find the desired option and set it to the desired value.

It is recommended to index the launcher configuration to your version control system. To export launcher options
to the filesystem, perform the following steps:

1. Selectthe Common tab,

4.2. Standalone Application 80

MicroEJ Documentation, Revision b25dd891

2. Selectthe Shared file: option and browse the desired export folder,

3. Pressthe Apply button. Afile named [launcher_configuration_name].launch is generated in the ex-
port folder.

Using a Properties File

Options can be also be defined in properties files.

When a MicroEJ Standalone Application is built using the firmware-singleapp skeleton, options are loaded from
properties files located in the build folder at the root of the project.

The properties files are loaded in the following order:

1. Every file matching build/sim/x.properties, for Simulator options only (Virtual Device build). These files
are optional.

2. Every file matching build/emb/*.properties , for Device options only (Firmware build). These files are
optional.

3. Everyfile matching build/*.properties,both for Simulatorand Device options. At least onefileis required.
Usually, the build folder contains a single file named common.properties.

In case an option is defined in multiple properties files, the option of the first loaded file is taken into account and
the same option defined in the other files is ignored (a loaded option cannot be overridden).

The figure below shows the expected tree of the build folder:

v [build
v [emb
=| emb.properties
w [~ sim
=| sim.properties

& commeon.properties

Fig. 15: Build Options Folder

It is recommended to index the properties files to your version control system.

To set an option in a properties file, open the file in a text editor and add a line to set the desired option to the
desired value. For example: soar.generate.classnames=false.

To use the options declared in properties files in a launcher, perform the following steps:
1. In MicroEJ SDK, select Run > Run Configurations... ,
2. Select the launcher of the application,
3. Selectthe Execution tab,
4. Under Option Files , pressthe Add... button,

5. Browse the sim.properties file for Simulator or the emb.properties file for Device (if any) and press
Open button,

4.2. Standalone Application 81

MicroEJ Documentation, Revision b25dd891

6.

Add the common.properties file and press the Open button.

Note: An option set in a properties file can not be modified in the Configuration tab. Options are loaded in the
order the properties files are added (you can use Up and Down buttons to change the file order). In Configuration
tab, hovering the pointer over an option field will show the location of the properties file that defines the option.

Generating a Properties File

In order to export options defined ina . launch file to a properties file, perform the following steps:

1.

N

> W

Selectthe [launcher_configuration_name].launch file,
Select File > Export > MicroEJ > Launcher as Properties File ,
Browse the desired output .properties file,

Press the Finish button.

Category: Runtime

~ Device

T
w CoreEngine 4P
Kernel [Embed all type names
Watchdog
Deploy Assertions
v Feature [] Execute assertions on Simulator
Dynamic Download
w Libraries [] Execute assertions on Device
v ECOM
Comm Connection Trace
EDC [JEnable execution traces
External Resources Loader
Shielded Plug [Start execution traces automatically
w Runtime
Memory

~ Simulator

Code Coverage
Com Port
Debug

Device

Heap Dumper
Logs

Group: Types

Option(checkbox): Embed all type names

Option Name: soar.generate.classnames

Default value: true

Description:

4.2. Standalone Application 82

MicroEJ Documentation, Revision b25dd891

Embed the name of all types. When this option is disabled, only names of declared required types are embedded.

Group: Assertions
Option(checkbox): Execute assertions on Simulator

Option Name: core.assertions.sim.enabled
Default value: false
Description:

When this option is enabled, assert statements are executed. Please note that the executed code may produce
side effects or throw java.lang.AssertionError.

Option(checkbox): Execute assertions on Device

Option Name: core.assertions.emb.enabled
Default value: false
Description:

When this option is enabled, assert statements are executed. Please note that the executed code may produce
side effects or throw java.lang.AssertionError.

Group: Trace
Option(checkbox): Enable execution traces

Option Name: core.trace.enabled

Default value: false

Option(checkbox): Start execution traces automatically

Option Name: core.trace.autostart

Default value: false

4.2. Standalone Application 83

MicroEJ Documentation, Revision b25dd891

Category: Memory

w Device Heaps

v CoreEngine L
Kernel Java heap size (in bytes) | |
Watchdog
Deploy
w Feature

Immortal heap size (in bytes) | |

Dynamic Download Threads

w Libraries Number of threads | |
v ECOM
Comm Connection Number of blocks in pool | |

EDC
External Resources Loader Block size (in bytes) | |
Shielded Plug

w Runtime Maximum size of thread stack (in blocks) | |
Memory

Simulator

<

Code Coverage
Com Port
Debug

Device

Heap Dumper
Logs

Group: Heaps
Option(text): Java heap size (in bytes)

Option Name: core.memory. javaheap.size
Default value: 65536

Description:

Specifies the Java heap size in bytes.

A Java heap contains live Java objects. An OutOfMemory error can occur if the heap is too small.

Option(text): Immortal heap size (in bytes)

Option Name: core.memory.immortal.size
Default value: 4096

Description:

Specifies the Immortal heap size in bytes.

The Immortal heap contains allocated Immortal objects. An OutOfMemory error can occur if the heap is too small.

Group: Threads

Description:

4.2. Standalone Application 84

MicroEJ Documentation, Revision b25dd891

This group allows the configuration of application and library thread(s). A thread needs a stack to run. This stack
is allocated from a pool and this pool contains several blocks. Each block has the same size. At thread startup the
thread uses only one block for its stack. When the first block is full it uses another block. The maximum number of
blocks per thread must be specified. When the maximum number of blocks for a thread is reached or when there
is no free block in the pool, a StackOverflow error is thrown. When a thread terminates all associated blocks are
freed. These blocks can then be used by other threads.

Option(text): Number of threads

Option Name: core.memory.threads.size
Default value: 5
Description:

Specifies the number of threads the application will be able to use at the same time.

Option(text): Number of blocks in pool

Option Name: core.memory.threads.pool.size
Default value: 15
Description:

Specifies the number of blocks in the stacks pool.

Option(text): Block size (in bytes)

Option Name: core.memory.thread.block.size
Default value: 512
Description:

Specifies the thread stack block size (in bytes).

Option(text): Maximum size of thread stack (in blocks)

Option Name: core.memory.thread.max.size
Default value: 4
Description:

Specifies the maximum number of blocks a thread can use. If a thread requires more blocks a StackOverflow error
will occur.

4.2. Standalone Application 85

MicroEJ Documentation, Revision b25dd891

Category: Simulator

w Device Options
~ Core Engine

Kernel |:| Use target characteristics

Watchd
arendeg Slowing factor (0 means disabled): |
Deploy
Feat
v reature . HIL Connection
Dynamic Download
~ Libraries [Specify a port
~ ECOM
Comm Connection Port: | ‘
EDC
External Resources Loader Timeout (s): | ‘
Shielded Plug
+ Runtime Maximum frame size (bytes) : | ‘
Memory
v Simulator Shielded Plug server configuration

Code Coverage
Com Port
Debug

Device

Heap Dumper
Kernel

Server socket port: | ‘

Legs

Group: Options

Description:

This group specifies options for MicroEJ Simulator.

Option(checkbox): Use target characteristics

Option Name: s3.board.compliant
Default value: false
Description:

When selected, this option forces the MicroEJ Simulator to use the MicroEJ Platform exact characteristics. It sets
the MicroEJ Simulator scheduling policy according to the MicroEJ Platform one. It forces resources to be explicitly
specified. It enables log trace and gives information about the RAM memory size the MicroEJ Platform uses.

Option(text): Slowing factor (0 means disabled)

Option Name: s3.slow
Default value: 0
Description:

Format: Positive integer

This option allows the MicroEJ Simulator to be slowed down in order to match the MicroEJ Platform execution
speed. The greater the slowing factor, the slower the MicroEJ Simulator runs.

4.2. Standalone Application 86

MicroEJ Documentation, Revision b25dd891

Group: HIL Connection

Description:

This group enables the control of HIL (Hardware In the Loop) connection parameters (connection between MicroEJ
Simulator and the Mocks).

Option(checkbox): Specify a port

Option Name: s3.hil.use.port
Default value: false
Description:

When selected allows the use of a specific HIL connection port, otherwise a random free port is used.

Option(text): Port

Option Name: s3.hil.port
Default value: 8001
Description:

Format: Positive integer
Values: [1024-65535]

It specifies the port used by the MicroEJ Simulator to accept HIL connections.

Option(text): Timeout (s)

Option Name: s3.hil.timeout
Default value: 10

Description:

Format: Positive integer

It specifies the time the MicroEJ Simulator should wait before failing when it invokes native methods.

Option(text): Maximum frame size (bytes)

Option Name: com.microej.simulator.hil.frame.size
Default value: 262144
Description:

Maximum frame size in bytes. Must be increased to transfer large arrays to native side.

4.2. Standalone Application 87

MicroEJ Documentation, Revision b25dd891

Group: Shielded Plug server configuration

Description:

This group allows configuration of the Shielded Plug database.

Option(text): Server socket port

Option Name: sp.server.port
Default value: 10082
Description:

Set the Shielded Plug server socket port.

Category: Code Coverage

~ Device Code Coverage

w CoreEngine _
Kernel [Activate code coverage analysis
Watchdog
Deploy
w Feature
Dynamic Download
~ Libraries
w ECOM
Comm Connection
EDC
External Resources Loader
Shielded Plug
~ Runtime
Memaory
Simulator

<

Code Coverage
Com Port
Debug

Device

Heap Dumper
Logs

Group: Code Coverage

Description:

This group is used to set parameters of the code coverage analysis tool.

Option(checkbox): Activate code coverage analysis

Option Name: s3.cc.activated

Default value: false

4.2. Standalone Application 88

MicroEJ Documentation, Revision b25dd891

Description:

When selected it enables the code coverage analysis by the MicroEJ Simulator. Resulting files are output in the cc
directory inside the output directory. You can process these files to an HTML report afterward with the built-in Code
Coverage Analyzer .

Option(text): Saving coverage information period (in sec.)

Option Name: s3.cc.thread.period
Default value: 15
Description:

It specifies the period between the generation of .cc files.

Category: Debug

v Device Remote Debug
w CoreEngine
Kernel Debug port: | 12000
Watchdog
Deploy
~ Feature

Dynamic Download
w Libraries
w ECOM
Comm Connection
EDC
External Resources Loader
Shielded Plug
w Runtime
Memory
w Simulator
Code Coverage
Com Port
Debug
Device
Heap Dumper
Logs

Group: Remote Debug
Option(text): Debug port

Option Name: debug.port
Default value: 12000

Description:

Configures the JDWP debug port.

Format: Positive integer

4.2. Standalone Application 89

MicroEJ Documentation, Revision b25dd891

Values: [1024-65535]

Category: Heap Dumper

w Device Heap Inspection
w CoreEngine
Kernel
Watchdog
Deploy
w Feature

[Activate heap dumper

Dynamic Download
w Libraries
v ECOM
Comm Cennection
EDC
External Resources Loader
Shielded Plug
w Runtime
Memory
Simulator

<

Code Coverage
Com Port
Debug

Device

Heap Dumper
Logs

Group: Heap Inspection

Description:

This group is used to specify heap inspection properties.

Option(checkbox): Activate heap dumper

Option Name: s3.inspect.heap
Default value: false

Description:

When selected, this option enables a dump of the heap each time the System.gc() method is called by the MicroEJ

Application.

4.2. Standalone Application

920

MicroEJ Documentation, Revision b25dd891

Category: Logs

w Device

Logs
v CoreEngine L
system thread maonitoring
Kernel 2
Watchdog memory schedule monitors
Deploy
w Feature 2

Dynamic Download
~ Libraries
w ECOM
Comm Connection
EDC
External Resources Loader
Shielded Plug
~ Runtime
Memory
Simulator

<

Code Coverage
Com Port
Debug

Device

Heap Dumper
Logs

Group: Logs

Description:

This group defines parameters for MicroEJ Simulator log activity. Note that logs can only be generated if the
Simulator > Use target characteristics optionis selected.

Some logs are sent when the platform executes some specific action (such as start thread, start GC, etc), other logs
are sent periodically (according to defined log level and the log periodicity).

Option(checkbox): system

Option Name: console.logs.level.low

Default value: false

Description:

When selected, System logs are sent when the platform executes the following actions:
start and terminate a thread

start and terminate a GC

exit

Option(checkbox): thread

Option Name: console.logs.level.thread

4.2. Standalone Application 91

MicroEJ Documentation, Revision b25dd891

Default value: false
Description:

When selected, thread information is sent periodically. It gives information about alive threads (status, memory
allocation, stack size).

Option(checkbox): monitoring

Option Name: console.logs.level .monitoring
Default value: false
Description:

When selected, thread monitoring logs are sent periodically. It gives information about time execution of threads.

Option(checkbox): memory

Option Name: console.logs.level .memory
Default value: false
Description:

When selected, memory allocation logs are sent periodically. This level allows to supervise memory allocation.

Option(checkbox): schedule

Option Name: console.logs.level.schedule
Default value: false
Description:

When selected, a log is sent when the platform schedules a thread.

Option(checkbox): monitors

Option Name: console.logs.level .monitors
Default value: false
Description:

When selected, monitors information is sent periodically. This level permits tracing of all thread state by tracing
monitor operations.

Option(text): period (in sec.)

Option Name: console.logs.period
Default value: 2
Description:

Format: Positive integer

4.2. Standalone Application 92

MicroEJ Documentation, Revision b25dd891

Values: [0-60]

Defines the periodicity of periodical logs.

Category: Device

w Device Device Architecture
w CoreEngine
Kernel
Watchdog
Deploy

[] Use a custom device architecture

~ Feature
Device Uni D
Dynamic Download evice Lnique

w Libraries [Use a custom device unique ID
w ECOM
Comm Cennection
EDC
External Resources Loader
Shielded Plug
w Runtime
Memory
~ Simulator
Code Coverage
Com Port
Debug
Device
Heap Dumper
Logs

Group: Device Architecture

Option(checkbox): Use a custom device architecture

Option Name: s3.mock.device.architecture.option.use

Default value: false

Option(text): Architecture Name

Option Name: s3.mock.device.architecture.option

Default value: (empty)

Group: Device Unique ID

Option(checkbox): Use a custom device unique ID

Option Name: s3.mock.device.id.option.use

Default value: false

4.2. Standalone Application

93

MicroEJ Documentation, Revision b25dd891

Option(text): Unique ID (hexadecimal value)

Option Name: s3.mock.device.id.option

Default value: (empty)

Category: Com Port

w Device
w CoreEngine
Kernel
Watchdog
Deploy
w Feature
Dynamic Download
w Libraries
v ECOM
Comm Cennection
EDC
External Resources Loader
Shielded Plug
w Runtime
Memory
~ Simulator
Code Coverage
Com Port
Debug
Device
Heap Dumper
Logs

4.2. Standalone Application

94

MicroEJ Documentation, Revision b25dd891

Category: Libraries

w Device
w CoreEngine
Kernel
Watchdog
Deploy
w Feature
Dynamic Download
w Libraries
v ECOM
Comm Cennection
EDC
External Resources Loader
Shielded Plug
w Runtime
Memory
~ Simulator
Code Coverage
Com Port
Debug
Device
Heap Dumper
Logs

Category: EDC

w Device Java System.out

v Cor;:rr;gewlne [Use a custom Java output stream
Watchdog
Deploy
w Feature

Runti ti
Dynamic Download B

~ Libraries Embed UTF-8 enceding
v ECOM .
Comm Connection []Enable SecurityManager checks
EDC
External Resources Loader
Shielded Plug

~ Runtime
Memary

w Simulator
Code Coverage
Com Port
Debug
Device
Heap Dumper
Logs

Group: Java System.out

4.2. Standalone Application

95

MicroEJ Documentation, Revision b25dd891

Option(checkbox): Use a custom Java output stream

Option Name: core.outputstream.disable.uart

Default value: false

Description:

Select this option to specify another Java System.out print stream.

If selected, the default Java output stream is not used by the Java application. the JPF will not use the default Java
output stream at startup.

Option(text): Class

Option Name: core.outputstream.class

Default value: (empty)

Description:

Format: Java class like packageA.packageB.className
Defines the Java class used to manage System.out.

At startup the JPF will try to load this class using the Class.forName() method. If the given class is not available,
the JPF will use the default Java output stream as usual. The specified class must be available in the application
classpath.

Group: Runtime options

Description:

Specifies the additional classes to embed at runtime.

Option(checkbox): Embed UTF-8 encoding

Option Name: cldc.encoding.utf8.included
Default value: true
Description:

Embed UTF-8 encoding.

Option(checkbox): Enable SecurityManager checks

Option Name: com.microej.library.edc.securitymanager.enabled
Default value: false
Description:

Enable the security manager runtime checks.

4.2. Standalone Application 96

MicroEJ Documentation, Revision b25dd891

Category: Shielded Plug

v Device Shielded Plug configuration
v CoreEngine
Kernel Database definition: Browse...
Watchdog
Deploy
w Feature

Dynamic Download
~ Libraries
w ECOM
Comm Connection
EDC
External Resources Loader
Shielded Plug
~ Runtime
Memory
w Simulator
Code Coverage
Com Port
Debug
Device
Heap Dumper
Logs

Group: Shielded Plug configuration

Description:

Choose the database XML definition.

Option(browse): Database definition

Option Name: sp.database.definition
Default value: (empty)
Description:

Choose the database XML definition.

4.2. Standalone Application 97

MicroEJ Documentation, Revision b25dd891

Category: ECOM

w Device Device Management

v CoreEngine]) -
Kernel [Enable registration event notifications
Watchdog
Deploy
w Feature
Dynamic Download
~ Libraries
w ECOM
Comm Connection
EDC
External Resources Loader
Shielded Plug
~ Runtime
Memory
w Simulator
Code Coverage
Com Port
Debug
Device
Heap Dumper
Logs

Group: Device Management
Option(checkbox): Enable registration event notifications

Option Name: com.is2t.ecom.eventpump.enabled
Default value: false
Description:

Enables notification of listeners when devices are registered or unregistered. When a device is registered or un-
registered, a new ej.ecom.io.RegistrationEvent isadded to an event queue. Then events are processed by a
dedicated thread that notifies registered listeners.

Option(text): Registration events queue size

Option Name: com.is2t.ecom.eventpump.size
Default value: 5
Description:

Specifies the size (in number of events) of the registration events queue.

4.2. Standalone Application 98

MicroEJ Documentation, Revision b25dd891

Category: Comm Connection

w Device Comm Connection Options

w CoreEngine

Kernel []Enable comm connections

Watchdog
Deploy Device Management

v Feature Enable dynamic comm ports registration
Dynamic Download
~ Libraries
v ECOM
Comm Connection
EDC
External Resources Loader
Shielded Plug
~ Runtime
Memory
~ Simulator
Code Coverage
Com Port
Debug
Device
Heap Dumper
Logs

Group: Comm Connection Options

Description:

This group allows comm connections to be enabled and application-platform mappings set.

Option(checkbox): Enable comm connections

Option Name: use.comm.connection
Default value: false
Description:

When checked application is able to open a CommConnection.

Group: Device Management
Option(checkbox): Enable dynamic comm ports registration

Option Name: com.is2t.ecom.comm.registryPump.enabled
Default value: false
Description:

Enables registration (or unregistration) of ports dynamically added (or removed) by the platform. A dedicated
thread listens for ports dynamically added (or removed) by the platform and adds (or removes) their CommPort
representation to the ECOM DeviceManager .

4.2. Standalone Application 929

MicroEJ Documentation, Revision b25dd891

Category: External Resources Loader

<

Device External Resources Loader

v CoreEngine

Kernel Folder where are stored the resources which will be pregrammed outside CPU address
space range (storage media like SD card, serial NOR flash, EEPROM).
Watchdog The resources which will be linked into the CPU address space range (internal
Deploy device memeories, external parallel memories) must be listed in the Resources box
w Feature of Main tab.

Dynamic Download

~ Libraries
v ECOM
Comm Connection
EDC
External Resources Loader
Shielded Plug
~ Runtime

Browse...

Memory

w Simulator
Code Coverage
Com Port
Debug
Device
Heap Dumper
Logs

Group: External Resources Loader

Description:

This group allows to specify the external resources input folder. The content of this folder will be copied in an
application output folder and used by SOAR and the Simulator. If empty, the default location will be [output
folder]/externalResources, where [output folder] is the location defined in Execution tab.

Option(browse):

Option Name: ej.externalResources.input.dir
Default value: (empty)
Description:

Browse to specify the external resources folder..

4.2. Standalone Application 100

MicroEJ Documentation, Revision b25dd891

Category: Device

Device

<

« CoreEngine Specify target options

Kernel
Watchdog
Deploy
~ Feature
Dynamic Download
w Libraries
w ECOM
Comm Connection
EDC
External Resources Loader
Shielded Plug
w Runtime
Memory
w Simulator
Code Coverage
Com Port
Debug
Device
Heap Dumper
Logs

Category: Core Engine

~ Device Memory

~ Core Engine

Kernel
Watchdog
Deploy
~ Feature

Maximum number of menitors per thread | ‘

Maximum number of frames dumped on OutOfMemoryError | ‘

Dynamic Download [[] Enable Java heap usage monitering

~ Libraries Java heap initial size (in bytes) |
v ECOM

Comm Connection
EDC
External Resources Loader [Enable Bytecode Verifier
Shielded Plug
~ Runtime

SOAR

Memory

~ Simulator
Code Coverage
Corn Port
Debug
Device
Heap Dumper
Kernel
Logs

Group: Memory

4.2. Standalone Application 101

MicroEJ Documentation, Revision b25dd891

Option(text):

Option Name: core.memory.thread.max.nb.monitors
Default value: 8
Description:

Specifies the maximum number of monitors a thread can own at the same time.

Option(text):

Option Name: core.memory.oome.nb.frames
Default value: 5
Description:

Specifies the maximum number of stack frames that can be dumped to the standard output when Core Engine
throws an OutOfMemoryError.

Option(checkbox): Enable Java heap usage monitoring

Option Name: com.microej.runtime.debug.heap.monitoring.enabled

Default value: false

Option(text):

Option Name: com.microej.runtime.debug.heap.monitoring.init.size
Default value: 0
Description:

Specify the initial size (in bytes) of the Java Heap.

Group: SOAR
Option(checkbox): Enable Bytecode Verifier

Option Name: soar.bytecode.verifier

Default value: false

4.2. Standalone Application 102

MicroEJ Documentation, Revision b25dd891

Category: Kernel

Devi
v e [] Check APIs allowed by Kernel
w CoreEngine
Kernel Threads
Watchdog Mazximum number of threads per Feature | |
Deploy
w Feature

Installed Features
Dynamic Download

~ Libraries Mazximum number of installed Features | |
w ECOM
Comm Connection Code Size (in bytes) | |
EDC
External Resources Loader Runtime Size (in bytes) | |
Shielded Plug

~ Runtime
Memary

w Simulator
Code Coverage
Com Port
Debug
Device
Heap Dumper
Logs

Option(checkbox): Check APIs allowed by Kernel

Option Name: apis.check.enable

Default value: true

Group: Threads
Option(text):

Option Name: core.memory.feature.max.threads
Default value: 5
Description:

Specifies the maximum number of threads a Feature is allowed to use at the same time.

Group: Installed Features
Option(text):

Option Name: core.memory.installed.features.max
Default value: ©
Description:

Specifies the maximum number of installed Features that can be added to this Kernel.

4.2. Standalone Application 103

MicroEJ Documentation, Revision b25dd891

Option(text):

Option Name: core.memory.installed.features.text.size

Default value: 0

Description:

Specifies the size in bytes reserved for installed Features code.

Option(text):

Option Name: core.memory.installed.features.bss.size

Default value: 0

Description:

Specifies the size in bytes reserved for installed Features runtime memory.

Category: Watchdog

~ Device
« CoreEngine [[]1Enable watchdeg support

Kernel Watchdog
Watchdog Maximum number of active watchdogs
Deploy

~ Feature
Dynamic Download
w Libraries
w ECOM
Comm Connection
EDC
External Resources Loader
Shielded Plug
w Runtime
Memory
w Simulator
Code Coverage
Com Port
Debug
Device
Heap Dumper
Logs

Option(checkbox): Enable watchdog support

Option Name: enable.watchdog.support

Default value: true

4.2. Standalone Application

104

MicroEJ Documentation, Revision b25dd891

Group: Watchdog
Option(text):

Option Name: maximum.active.watchdogs
Default value: 4
Description:

Specifies the maximum number of active watchdogs at the same time.

Category: Deploy

v Device Configuration
v CoreEngine I o o : i :
Kernel [] Deploy the compiled MicroEJ application in a folder in MicroEJ application main class project
Watchdog
Output file: | Browse...
Deploy
~ Feature

Dynamic Download
w Libraries
w ECOM
Comm Connection
EDC
External Resources Loader
Shielded Plug
w Runtime
Memory
w Simulator
Code Coverage
Com Port
Debug
Device
Heap Dumper
Logs

Description:

Configures the output location where store the MicroEJ Application, the MicroEJ platform libraries and header files.

Group: Configuration

Option(checkbox): Deploy the compiled MicroEJ Application in a folder in MicroEJ Application main class
project

Default value: true
Description:

Deploy the compiled MicroEJ Application in a folder in MicroEJ Application’s main class project.

4.2. Standalone Application 105

MicroEJ Documentation, Revision b25dd891

Option(browse): Output file

Option Name: deploy.copy.filename

Default value: (empty)

Description:

Choose an output file location where copy the compiled MicroEJ Application.

Category: Feature

w Device
w CoreEngine
Kernel
Watchdog
Deploy
~ Feature
Dynamic Download
w Libraries
v ECOM
Comm Connection
EDC
External Resources Loader
Shielded Plug
w Runtime
Memory
~ Simulator
Code Coverage
Com Port
Debug
Device
Heap Dumper
Logs

Description:

Specify Feature options

Specify Feature options

4.2. Standalone Application

106

MicroEJ Documentation, Revision b25dd891

Category: Dynamic Download

v Device Dynamic Download
v CoreEngine
Kernel Output Name: |
Watchdog
Deploy Kernel: | F—
w Feature

Dynamic Download
~ Libraries
w ECOM
Comm Connection
EDC
External Resources Loader
Shielded Plug
~ Runtime
Memory
Simulator

<

Code Coverage
Com Port
Debug

Device

Heap Dumper
Logs

Group: Dynamic Download
Option(text): Output Name

Option Name: feature.output.basename

Default value: application

Option(browse): Kernel

Option Name: kernel.filename

Default value: (empty)

4.2.6 SOAR

Class Initialization Code

SOAR complies with the deterministic class initialization (<clinit>) order specified in /[BON]. The application is
statically analyzed from its entry points in order to generate a clinit dependency graph. The computed clinit se-
quence is the result of the topological sort of the dependency graph. An error is thrown if the clinit dependency
graph contains cycles.

Aclinit map file (ending with extension .clinitmap)is generated beside the SOAR object file. It describes for each
clinit dependency:

« the typesinvolved

4.2. Standalone Application 107

MicroEJ Documentation, Revision b25dd891

« the kind of dependency
« the stack calls between the two types

In case of complex clinit code with too many runtime dependencies, the statically computed clinit order may be
wrong.

Itisthen possible to help SOAR by manually declaring explicit clinit dependencies. Such dependencies are declared
in XML files with the .clinitdesc extension in the application classpath.

The file has the following format:

<?xml version='1.0' encoding='UTF-8'7?>
<clinit>

<type name="T1" depends="T2"/>
</clinit>

where T1 and T2 are fully qualified names on the form a.b.C. This explicitly forces SOAR to create a dependency
from T1 to T2, and therefore cuts a potentially detected dependency from T2 to T1.

4.3 Sandboxed Application

4.3.1 Sandboxed Application Structure

Application Skeleton Creation

The first step to explore a Sandboxed Application structure is to create a new project.

Firstselect File > New > Sandboxed Application Project :

Fillin the application template fields, the Project name field will automatically duplicate in the following fields.

A template project is automatically created and ready to use, this project already contains all folders wherein de-
velopers need to put content:

src/main/java Folder for future sources;
src/main/resources Folder for future resources (images, fonts, etc.);
META-INF Sandboxed Application configuration and resources;

module.ivy Module description file, dependencies description for the current project.

Sources Folder

The project source folder (src/main) contains two subfolders: java and resources. java folder will contain all
*. java files of the project, whereas resources folder will contain elements that the application needs at runtime
like raw resources, images or character fonts.

META-INF Folder

The META-INF folder contains several folders and a manifest file. They are described hereafter.
certificate (folder) Contains certificate information used during the application deployment.

libraries (folder) Contains a list of additional libraries useful to the application and not resolved through the
regular transitive dependency check.

4.3. Sandboxed Application 108

MicroEJ Documentation, Revision b25dd891

properties (folder) Containsan application.properties file which contains application specific properties
that can be accessed at runtime.

services (folder) Contains a list of files that describe local services provided by the application. Each file name
represents a service class fully qualified name, and each file contains the fully qualified name of the provided
service implementation.

wpk (folder) Contains a set of applications (.wpk files) that will be started when the application is executed on
the Simulator.

MANIFEST.MF (file) Containsthe information given at project creation, extra information can be added to this file
to declare the entry points of the application.

module. ivy File

The module.ivy file describes all the libraries required by the application at runtime. The lvy classpath container
lists all the modules that have been automatically resolved from the content of module.ivy . See MicroEJ Module
Manager for more informations about MicroEJ Module Manager.

4.3.2 Application Publication

Build the WPK

When the application is ready for deployment, the last step is to create the WPK (Wadapps PacKage) file that is
intended to be published on a MicroEJ Forge instance for end users.

In the SDK, right-click on the Sandboxed Application project name and select Build Module.

The WPK build process will display messages in MicroEJ console, ending up the following message:

[echo] project hello published locally with version 0.1.0-RC201907091602
BUILD SUCCESSFUL

Total time: 1 minute 6 seconds

The WPK file produced by the build process is located in a dedicated target~/artifacts folderinthe projectand
is published to the target module repository declared in MicroEJ Module Manager settings file.

The module repository can be a MicroEJ Forge instance.

4.3.3 Shared Interfaces

Principle

The Shared Interface mechanism provided by MicroEJ Core Engine is an object communication bus based on plain
Java interfaces where method calls are allowed to cross MicroEJ Sandboxed Applications boundaries. The Shared
Interface mechanism is the cornerstone for designing reliable Service Oriented Architectures on top of MicroEJ.
Communication is based on the sharing of interfaces defining APIs (Contract Oriented Programming).

The basic schema:
« Aprovider application publishes an implementation for a shared interface into a system registry.

+ Auser application retrieves the implementation from the system registry and directly calls the methods de-
fined by the shared interface.

4.3. Sandboxed Application 109

https://www.microej.com/product/forge/

MicroEJ Documentation, Revision b25dd891

USER APPLICATION PROVIDER APPLICATION

Shared Interface Call

AA.mm() > mm() {
//code

}

MICROEJ CORE ENGINE

Fig. 16: Shared Interface Call Mechanism

Shared Interface Creation

Creation of a shared interface follows three steps:
« Interface definition,
« Proxy implementation,

+ Interface registration.

Interface Definition

The definition of a shared interface starts by defining a standard Java interface.

package mypackage;

public interface MyInterface(
void foo();

3

To declare an interface as a shared interface, it must be registered in a shared interfaces identification file. A shared
interface identification file is an XML file with the .si suffix with the following format:

<sharedInterfaces>
<sharedInterface name="mypackage.MyInterface"/>
</sharedInterfaces>

Shared interface identification files must be placed at the root of a path of the application classpath. For a MicroEJ
Sandboxed Application project, it is typically placed in src/main/resources folder.
Some restrictions apply to shared interface compared to standard java interfaces:

+ Types for parameters and return values must be transferable types;

« Thrown exceptions must be classes owned by the MicroEJ Firmware.

Transferable Types

In the process of a cross-application method call, parameters and return value of methods declared in a shared
interface must be transferred back and forth between application boundaries.

4.3. Sandboxed Application 110

MicroEJ Documentation, Revision b25dd891

USER APPLICATION Shared Interface Transfer [FHMSALCSS AR IREL.

R = AA.mm(P1, P2)

Fig. 17: Shared Interface Parameters Transfer

Shared Interface Types Transfer Rules describes the rules applied depending on the element to be transferred.

Table 1: Shared Interface Types Transfer Rules

Type Owner Instance Rule
Owner

Base type N/A N/A Passing by value. (boolean, byte, short
, char, int, long, double, float)

Any Class, Array or Inter- | Kernel Kernel Passing by reference

face

Any Class, Array or Inter- | Kernel Application Kernel specific or forbidden

face

Array of base types Any Application Clone by copy

Arrays of references Any Application | Clone and transfer rules applied again on
each element

Shared Interface Application Application Passing by indirect reference (Proxy cre-
ation)

Any Class, Array or Inter- | Application Application Forbidden

face

Objects created by an application which class is owned by the Kernel can be transferred to another application
if this has been authorized by the Kernel. The list of eligible types that can be transferred is Kernel specific, so
you have to consult the firmware specification. MicroEJ Evaluation Firmware Example of Transfer Types lists Kernel
types allowed to be transferred through a shared interface call. When an argument transfer is forbidden, the call is
abruptly stopped and a java.lang.IllegalAccessError isthrown by MicroEJ Core Engine.

Table 2: MicroEJ Evaluation Firmware Example of Transfer Types

Type Rule
Clone by copy

java.lang.String

. . Proxy reference creation
java.io.InputStream

Clone by deep copy

java.util.Map<String,String>

Proxy Class Implementation

The Shared Interface mechanism is based on automatic proxy objects created by the underlying MicroEJ Core En-
gine, so that each application can still be dynamically stopped and uninstalled. This offers a reliable way for users
and providers to handle the relationship in case of a broken link.

Once a Java interface has been declared as Shared Interface, a dedicated implementation is required (called the
Proxy class implementation). Its main goal is to perform the remote invocation and provide a reliable implemen-
tation regarding the interface contract even if the remote application fails to fulfill its contract (unexpected excep-

4.3. Sandboxed Application m

MicroEJ Documentation, Revision b25dd891

tions, application killed...). The MicroEJ Core Engine will allocate instances of this class when an implementation
owned by another application is being transferred to this application.

USER APPLICATION PROVIDER APPLICATION

R = AA.mm(P1, P2

Proxy Class

MICROEJ CORE ENGINE

Transfer

Shared Interfaces Binding

Fig. 18: Shared Interfaces Proxy Overview

A proxy class is implemented and executed on the client side, each method of the implemented interface must be
defined according to the following pattern:

package mypackage;
public class MyInterfaceProxy extends Proxy<MyInterface> implements MyInterface {

@0verride
public void foo(){
try {
invoke(); // perform remote invocation
} catch (Throwable e) {
e.printStackTrace();

b
3

Each implemented method of the proxy class is responsible for performing the remote call and catching all errors
from the server side and to provide an appropriate answer to the client application call according to the interface
method specification (contract). Remote invocation methods are defined in the super class ej.kf.Proxy and are
named invokeXXX() where XXX is the kind of return type. As this class is part of the application, the application
developer has the full control on the Proxy implementation and is free to insert additional code such as logging
calls and errors for example.

Table 3: Proxy Remote Invocation Built-in Methods

Invocation Method Usage
void invoke() Remote invocation for a proxy method that returns void
Object invokeRef() Remote invocation for a proxy method that returns a reference

boolean invokeBoolean(), byte invokeByte(), | Remote invocation for a proxy method that returns a base type
char invokeChar(), short invokeShort(), int in-
vokelnt(), long invokeLong(), double invoke-
Double(), float invokeFloat()

4.3. Sandboxed Application 112

MicroEJ Documentation, Revision b25dd891

4.4 Virtual Device

The Virtual Device includes the same custom MicroEJ Core, libraries and System Applications as the real device.
The Virtual Device allows developers to run their applications either on the Simulator, or directly on the real device
through local deployment.

The Simulator runs a mockup board support package (BSP Mock) that mimics the hardware functionality. An ap-
plication on the Simulator is run as a Standalone Application.

Before an application is locally deployed on device, the SDK ensures that it does not depend on any API that is
unavailable on the device.

YOUR APPLICATIONS

ADD-ON LIBRARIES
Web / REST servers | MQTT /LWM2M clients | JSON | CBOR | Crypto | Widgets | Components | Eclasspath | ...

FOUNDATION LIBRARIES

EI GEE

2 MICROEJ.VEE

VIRTUALIZATION

2 -
Engine Simulator

Linux /[Windows [macOS

PLATFORM

ROCESSOR
Ethernet FIREE B2 50l

Wi-Fi / LTE Display CORE Bluetooth

WORKSTATION

Fig. 19: MicroEJ Virtual Device Architecture

4.5 Module Natures

This page describes the most common module natures as follows:
« Skeleton Name: the project skeleton name.

+ Build Type Name: the build type name, derived from the module nature name: com.is2t.easyant.
buildtypes#build-[NATURE_NAME] .

« Documentation: a link to the documentation.

« SDK Menu: the menu to the direct wizard in MicroEJ SDK (if available). Any module nature can be created
with the default wizard from File > New > Module Project .

« Configuration: properties that can be defined to configure the module. Properties are defined inside the
ea:build tag of the module.ivy file, using ea:property tag as described in the section Build Options. A
module nature also inherits the configuration properties from the listed Natures Plugins.

4.4. Virtual Device 113

MicroEJ Documentation, Revision b25dd891

4.5.1 Add-On Library

Skeleton Name: microej-javalib

Build Type Name: com.is2t.easyant.buildtypes#build-microej-javalib
Documentation: MicroEJ Libraries

SDKMenu: File > New > Add-On Library Project

Configuration:

This module nature inherits the configuration properties of the following plugins:

« Java Compilation

« Platform Loader
« Javadoc

o TJest Suite

« Artifact Checker

4.5.2 Add-On Processor

Skeleton Name: addon-processor

Build Type Name: com.is2t.easyant.buildtypes#build-addon-processor
Configuration:

This module nature inherits the configuration properties of the following plugins:

« Java Compilation

o J2SE Unit Tests
« Artifact Checker

4.5.3 Foundation Library API

Skeleton Name: microej-javaapi
Build Type Name: com.is2t.easyant.buildtypes#build-microej-javaapi
Documentation: MicroEJ Libraries
Configuration:
This module nature inherits the configuration properties of the following plugins:
« Java Compilation
« Javadoc
« Artifact Checker

This module nature defines the following dedicated configuration properties:

4.5. Module Natures

14

MicroEJ Documentation, Revision b25dd891

Name Description Default

microej.lib.name Platform library name on the form: [NAME]-[VERSION]-api . - | Notset
[NAME] : name of the implemented Foundation Library APl module.
- [VERSION] : version of the implemented Foundation Library API
module without patch (Major.minor).

rip.printableName Printable name for the Platform Editor. Not set

4.5.4 Foundation Library Implementation

Skeleton Name: microej-javaimpl
Build Type Name: com.is2t.easyant.buildtypes#build-microej-javaimpl
Documentation: MicroEJ Libraries
Configuration:
This module nature inherits the configuration properties of the following plugins:
« Java Compilation
o Jest Sujte
o Artifact Checker!

This module nature defines the following dedicated configuration properties:

Name Description Default
microej.lib.implfor Execution target. Possible values are emb (only on Device), sim (only
Simulator) and common (both).

common

4.5.5 Kernel Application

Skeleton Name: firmware-multiapp
Build Type Name: com.is2t.easyant.buildtypes#build-firmware-multiapp

Documentation: Kernel Developer Guide

Configuration:
This module nature inherits the configuration properties of the following plugins:

« Java Compilation

« Platform Loader
« Javadoc

« Artifact Checker

This module nature defines the following dedicated configuration properties:

! MicroEJ SDK version 5.5.0 or higher.

4.5. Module Natures 115

MicroEJ Documentation, Revision b25dd891

Name Description Default
application.main.class Full Qualified Name of the main class of the kernel. This option is | Not set
required.
runtime.api.name Name of the Runtime API of the kernel. This option is required, un- | Not set
less a Runtime APl is declared in the dependencies.
runtime.api.version Version of the Runtime API of the kernel. This option is required, | Not set
unless a Runtime APl is declared in the dependencies..
skip.build.virtual.device | When this property is set (any value), the virtual device is not built. | Not set
virtual.device.sim.only | When this property is set (any value), the firmware is not built. Not set
4.5.6 Meta Build
Skeleton Name: microej-meta-build
Build Type Name: com.is2t.easyant.buildtypes#fmicroej-meta-build
Documentation: Meta Build
Configuration:
This module nature defines the following dedicated configuration properties:
Name Description Default
metabuild.root Path of the root folder containing the modules to build.
${basedir}/
private.modules.file Name of thefile listing the private modules to build.
private.
modules.
list
public.modules.file Name of thefile listing the public modules to build. L
public.
modules.
list

4.5.7 Mock

Skeleton Name: microej-mock

Build Type Name: com.is2t.easyant.buildtypes#build-microej-mock

Documentation: Mock

Configuration:

This module nature inherits the configuration properties of the following plugins:

« Java Compilation

o J2SE Unit Tests
« Artifact Checker'

4.5.8 Module Repository

Skeleton Name: artifact-repository

4.5. Module Natures

116

MicroEJ Documentation, Revision b25dd891

Build Type Name: com.is

2t.easyant.buildtypes#build-artifact-repository

Documentation: Module Repository

Configuration:

This module nature inherits the configuration properties of the following plugins:

« Artifact Checker

This module nature defines the following dedicated configuration properties:

Name Description Default
bar.check.as.v2.module | When this property is set to true, the artifact checker uses the Mi-
croEJ Module Manager semantic. false
bar.javadoc.dir Path of the folder containing the generated javadoc.
${target}/
javadoc
bar.notification.email.fromThe email address used as the from address when sending the noti- | Not set
fication emails.
bar.notification.email.host The hostname of the mail service used to send the notification | Not set
emails.
bar.notification.email.pagsWoecassword used to authenticate on the mail service. Not set
bar.notification.email.port The port of the mail service used to send the notification emails Not set
bar.notification.email.ssl| When this property is set to true, SSL/TLS is used to send the notifi- | Not set
cation emails.
bar.notification.email.to | The notification email address destination. Not set
bar.notification.email.usgr The username used to authenticate on the mail service. Not set
bar.populate.from.resolverName of the resolver used to fetch the modules to populate the
repository. fetchRelease
bar.populate.ivy.settings.fileath of the Ivy settings file used to fetch the modules to populate the)
repository. ${prOJeCt'
ivy.
settings.
file}
bar.populate.repository.coify configuration of included repositories. The modules of the)
repositories declared as dependency with this configuration are in- | "€POs1tory
cluded in the built repository.
bar.test.haltonerror When this property is set to true, the artifact checker stops at the
first error. false
javadoc.excludes Comma-separated list of packages to exclude from the javadoc. Empty string
javadoc.includes Comma-separated list of packages to include in the javadoc.
x% (all pack-
ages)
skip.artifact.checker When this property is set to true, all artifact checkers are skipped. Not set
skip.email When this property is set (any value), the notification email is not | Not set
sent. Otherwise the bar.notification.* properties are required.
skip.javadoc Prevents the generation of the javadoc. .
alse
skip.javadoc.deprecated | Prevents the generation of any deprecated APl at all in the javadoc. .
rue

4.5.9 Sandboxed Application

Skeleton Name: application

4.5. Module Natures

n7

MicroEJ Documentation, Revision b25dd891

Build Type Name: com.is2t.easyant.buildtypes#build-application

Documentation: Sandboxed Application

SDKMenu: File > New > Sandboxed Application Project
Configuration:
This module nature inherits the configuration properties of the following plugins:

« Java Compilation

« Platform Loader
« Javadoc

o Test Suite

o Artifact Checker

4.5.10 Standalone Application

Skeleton Name: firmware-singleapp
Build Type Name: com.is2t.easyant.buildtypes#build-firmware-singleapp

Documentation: Standalone Application

SDKMenu: File > New > Standalone Application Project
Configuration:
This module nature inherits the configuration properties of the following plugins:

« Java Compilation

« Platform Loader
« Javadoc'

o Jest Suite!

« Artifact Checker!

This module nature defines the following dedicated configuration properties:

Name Description Default

application.main.class Full Qualified Name of the main class of the application. This option | Not set
is required.

skip.build.virtual.device | When this property is set (any value), the virtual device is not built. | Not set

virtual.device.sim.only | When this property is set (any value), the firmware is not built. Not set

4.5.11 Natures Plugins

This page describes the most common module nature plugins as follows:
+ Documentation: link to documentation.

+ Module Natures: list of Module Natures using this plugin.

« Configuration: properties that can be defined to configure the module. Properties are defined inside the

ea:build tagof the module.ivy file, using ea:property tagas described in the section Build Options.

4.5. Module Natures

118

MicroEJ Documentation, Revision b25dd891

Java Compilation

Module Natures:

This plugin is used by the following module natures:

« Add-On Library
« Foundation Library API

« Foundation Library Implementation

« Standalone Application

« Sandboxed Application

Configuration:

This plugin defines the following configuration properties:

Name Description Default
javac.debug.level Comma-separated list of levels for the Java compiler debug mode. y
ines,
source,
vars
javac.debug.mode When this property is set to true, the Java compiler is set in debug
mode. false
src.main.java Path of the folder containing the Java sources.
${basedir}/
src/main/
java

Platform Loader

Documentation: Platform Selection

Module Natures:

This plugin is used by the following module natures:

« Add-On Library

« Standalone Application

« Sandboxed Application

Configuration:

This plugin defines the following configuration properties:

4.5. Module Natures

119

MicroEJ Documentation, Revision b25dd891

Name Description Default
platform- Path of the folder to unzip the loaded platform to.
loader.platform.dir ${target}/
platform

platform.loader.skip.load.plétfarrthis property is set to true, the platform is not loaded. It

must be already available in the directory defined by the property | f21se

platform-loader.platform.dir . Use with caution: the platform

content may be modified during the build (e.g. in case of Testsuite

or Virtual Device build).
platform- The vy configuration used to retrieved the platform if fetched via
loader.target.platform.confdependencies. platform
platform- Path of the root folder of the platform to use in the build. See Plat- | Not set
loader.target.platform.din form Selection section for Platform Selection rules.
platform- Absolute or relative (to the project root folder) path of the folder)
loader.target.platform.dropireere the platform can be found (see Platform Selection). dropins
platform- Path of the platform file to use in the build. See Platform Selection | Not set
loader.target.platform.file section for Platform Selection rules.

Javadoc

Module Natures:

This plugin is used by the following module natures:
« Add-On Library
« Foundation Library API

« Sandboxed Application

Configuration:

This plugin defines the following configuration properties:

4.5. Module Natures

120

MicroEJ Documentation, Revision b25dd891

(stored in folder target.artifacts).

Name Description Default
src.main.java Path of the folder containing the Java sources.
${basedir}/
src/main/
java
javadoc.file.encoding Encoding used for the generated Javadoc. UTE-g
javadoc.failonerror When this property is set to true, the build is stopped if an error is
raised during the Javadoc generation. true
javadoc.failonwarning When this property is set to true, the build is stopped if a warning is
raised during the Javadoc generation. false
target.reports Path of the base folder for reports.
${target}/
reports
target.javadoc Path of the base folder where the Javadoc is generated.
${target.
reports}/
javadoc
target.javadoc.main Path of the folder where the Javadoc is generated.
${target.
javadoc}/
main
javadoc- Path of the HTML template file used for the Javadoc overview page.
microej.overview.html ${§rc'
main.
java}/
overview.
html if
exists, oth-
erwise a
default
template.
target.artifacts Path of the packaged artifacts.
${target}/
artifacts
target.artifacts.main.javaddajaenemehe packaged JAR containing the generated Javadoc ${modul
moadule.

name}-javado
jar

(@)

javadoc.publish.conf

Ivy configuration used to publish the Javadoc artifact.

documentatio

Test Suite

Documentation: Jest Suite with JUnit

Module Natures:

This plugin is used by the following module natures:

« Add-On Library

« Foundation Library API

« Foundation Library Implementation

« Standalone Application

4.5. Module Natures

121

MicroEJ Documentation, Revision b25dd891

« Sandboxed Application

Configuration:

This plugin defines the following configuration properties:

Name Description Default
microej.testsuite.cc.excludatiessexf classes excluded from the code coverage anal- | Not set
ysis.
microej.testsuite.properties\#3eacthitipetperty is set to true, the code coverage anal-
true

ysis is enabled.

cc.src.folders

Path to the folders containing the Java sources used for
code coverage analysis.

Java source folder (
src/main/java) and
Add-On Processor gen-
erated source folders (
src-adpgenerated/x*)?

microej.testsuite.verbose

When this property is set to true, the verbose trace level
is enabled.

false

test.run.excludes.pattern

Pattern of classes excluded from the test suite execution.

Empty string (no test)

test.run.failonerror

When this property is set to true, the build fails if an error
is raised.

true

test.run.includes.pattern

Pattern of classes included in the test suite execution.

x% /% (all tests)

skip.test

When this property is set (any value), the tests are not ex-
ecuted.

Not set

J2SE Unit Tests

Warning: This plugin is reserved for tools written in Java Standard Edition. Tests classes must be created in
the folder src/test/java of the project. See Test Suite section for MicroEJ tests.

Module Natures:

This plugin is used by the following module natures:

« Add-On Processor
o Mock

Configuration:

This plugin defines the following configuration properties:

Name Description Default

test.run.excludes.pattern| Pattern of classes excluded from the test suite execution. Empty string
(no test)

test.run.failonerror When this property is set to true, the build fails if an error is raised.
true

test.run.includes.pattern| Pattern of classes included in the test suite execution. , (all
*x% /% a
tests)

skip.test When this property is set (any value), the tests are not executed. Not set

2 Option cc.src.folders is not set by default for MicroEJ SDK versions lower than 5.5.0.
4.5. Module Natures 122

MicroEJ Documentation, Revision b25dd891

Artifact Checker

Module Natures:

This plugin is used by the following module natures:

« Add-On Library

« Foundation Library API

« Standalone Application

» Sandboxed Application

« Module Repository

Configuration:

This plugin defines the following configuration properties:

cuted.

Name Description Default

run.artifact.checker When this property is set (any value), the artifact checker is exe- | Not set
cuted.

skip.addonconf.checker | When this property is set to true, the addon configurations checker | Not set
is not executed.

skip.changelog.checker | When this property is set to true, the changelog checker is not exe- | Not set
cuted.

skip.foundationconf.check&hen this property is set to true, the foundation configurations | Not set
checker is not executed.

skip.license.checker When this property is set to true, the license checker is not executed. | Not set

skip.publicconf.checker | When this property is set to true, the public configurations checker | Not set
is not executed.

skip.readme.checker When this property is set to true, the readme checker is not exe- | Not set
cuted.

skip.retrieve.checker When this property is set to true, the retrieve checker is not exe- | Not set

4.6 Module Repository

A module repository is a module that bundles a set of modules in a portable ZIP file. It is a tree structure where
modules organizations and names are mapped to folders.

4.6. Module Repository

123

MicroEJ Documentation, Revision b25dd891

» = com
v (=g
v [= api

» = bon

v = ecom

» [= ecom=-comm

v (= edc

y =123
~ = 130

CHANGELOG-1.3.0.md
CHAMNGELOG-1.3.0.md.md5
CHAMNGELOG-1.3.0.md.shal
edec-1.3.0,jar
edc-1.3.0.jarmd3
edc-1.3.0.jar.shal
vy-1.3.0xml
ivy-1.3.0xml.md5
ivy-1.3.0.xml.shal
LICEMSE-1.3.0.txt
LICENSE-1.3.0.tct. md5
LICEMNSE-1.3.0.4xt.shal
README-1.3.0.md
README-1.3.0.md.md5
README-1.3.0.md.shal

— «— Modules Tree

(W) () [=) i) [e f e ‘.f [Tl e [IIE e [=)

v = fs
s = kf
» (= microui
» [net
» (= security
» [= sni
» = sp
v = ssl
% [= trace
y = library
> = tool -) .]
%) ivysettingsaml «———— LoOcCal (offline) settings file

Fig. 20: Example of MicroEJ Module Repository Tree

A module repository takes its input modules from other repositories, usually the MicroEJ Central Repository which
is itself built by MicroEJ Corp. as a module repository.

4.6. Module Repository 124

MicroEJ Documentation, Revision b25dd891

A module repository is often called an offline repository as it includes the settings file for a local configuration in
MicroEJ SDK. It can also be imported in MicroEJ Forge.

4.6.1 Create a Repository Project

In MicroEJ SDK, first create a new module project using the artifact-repository skeleton.

« The ivysettings.xml settings file describes how to import the modules of this repository when it is ex-
tracted locally on file system. This file will be packaged at the root of the zip file and does not need to be
modified.

« The module.ivy file describes how to build repository and lists the module dependencies that will be in-
cluded in this repository.

4.6.2 Configure Resolver for Input Modules

MicroEJ Module Manager (MMM) needs to import dependencies to build the module repository. The location
fetched by MMM is defined by a resolver. The resolver is configured with the parameter bar.populate.from.
resolver . The preset value is the resolver provided by default in MicroEJ SDK configuration, which is connected
to MicroEJ Central Repository.

<ea:property name="bar.populate.from.resolver” value="MicroEJChainResolver"/>

The MicroEJChainResolver is a URL resolver defined in $USER_HOME\ .
microej\microej-ivysettings-[VERSION].xml that pointsto MicroEJ Central Repository.

4.6.3 Configure Consistency Check

The module repository consistency check consists in verifying that each declared module can be imported using
the settings file provided by the repository. Especially, it ensures that all module transitive dependencies are also
available.

Itis enabled by default to avoid further issues for repository users such as Unresolved Dependency. This is done by
the following option:

<ea:property name="skip.retrieve.checker" value="false"/>

Moreover, to ensure the repository will be compliant with the MMM specification, add the following option:

<ea:property name="bar.check.as.v2.module” value="true"/>

4.6.4 Advanced Options

There are other advanced options that do not need to be modified by default. These options are described in the
module.ivy generated by the skeleton.

See also Module Repository for more details.

4.6.5 Include Modules

Modules bundled into the module repository must be declared in the dependencies element of the module.ivy
file.

4.6. Module Repository 125

https://www.microej.com/product/forge/

MicroEJ Documentation, Revision b25dd891

Include a Single Module

To add a module, declare the module dependency using the artifacts configuration:

<dependencies>
<dependency conf="artifacts->*" transitive="false"” org="[module_org]" name="[module_name]"” rev=
—"[module_version]"” />

<!-- ... other dependencies ... -->
</dependencies>

For example, to add the ej.api.edc library version 1.2.3, write the following line:

<dependency conf="artifacts->*" transitive="false"” org="ej.api"” name="edc" rev="1.2.3" />

Note: We recommended to manually describe each dependency of the module repository, in order to keep full
controloftheincluded modules as well asincluded modules versions. Module dependencies can still be transitively
included by setting the dependency attribute transitive to true. In this case, the included module versions are
those that have been resolved when the module was built.

Multiple versions of the same module can be included by declaring each dependency using a different configura-
tion. The artifacts configuration has to be derived with a new name as many times as there are different versions
toinclude.

<configurations defaultconfmapping="default->default;provided->provided">
<conf name="artifacts” visibility="private"/>
<conf name="artifacts_1" visibility="private"/>
<conf name="artifacts_2" visibility="private"/>

<!-- ... other configurations ... -->
</configurations>

<dependencies>

<dependency conf="artifacts->*" transitive="false"” org="[module_org]" name="[module_name]"” rev=
—"[module_version_11" />

<dependency conf="artifacts_1->*" transitive="false"” org="[module_org]l” name="[module_name]” rev=
—"[module_version_2]" />

<dependency conf="artifacts_2->x" transitive="false"” org="[module_org]"” name="[module_namel" rev=
—"[module_version_3]1" />

<!-- ... other dependencies ... -->
</dependencies>

Include a Module Repository

To add all the modules already included in an other module repository, add the configuration repository ifit
does not exist:

<configurations defaultconfmapping="default->default;provided->provided">

<!-- ... other configurations ... -->

<conf name="repository” visibility="private"” description="Repository to be embedded in the repository
=" />

</configurations>

4.6. Module Repository 126

MicroEJ Documentation, Revision b25dd891

Then declare the module repository dependency using the repository configuration:

<dependencies>
<dependency conf="repository->*" transitive="false"” org="[repository_org]"” name="[repository_name]”_
—rev="[repository_version]" />

<!-- ... other dependencies ... -->
</dependencies>

4.6.6 Generate Javadoc
An overall Javadoc can be generated beside the included modules. It is built from of all Java elements of all libraries
included in the module repository.

Javadoc generation is disabled in the module.ivy generated by the skeleton. To enable javadoc generation, re-
move skip. javadoc optionorsetitto false.

There are also javadoc specific options such as Java packages exclusion. Please refer to *javadocx options of
Module Repository reference documentation.

As of SDK 5.3.0, the module dependency line that defines a Java type is shown in the top menu.

All Classes N

Pack OVERVIEW PACKAGE TREE INDEX HELP <dependency org="ej.api" name="edc" rev="1.3.3" /=
ackages

PREVCLASS NEXT CLASS FRAMES NO FRAMES Copy to clipboard

ej.annotation

Java.io SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHCOD
java.lang -

e java.lang

Nullable - .

MullPointerException Class Object

Number
java.lang.Object

C-_‘|[Dﬂ-.1emo"\:E"cr public class Object

OutputStream

OutputStreamWriter Class Object is the root of the class hierarchy. Every class has Object as a superclass. All objects,
Override including arrays, implement the methods of this class.

Package

Deemicrinen e el

Fig. 21: Example of Javadoc Module Dependency

4.6.7 Build the Repository

In the Package Explorer, right-click on the repository project and select Build Module.
The build consists of two steps:

1. Gathers all module dependencies. The whole repository content is created under target~/
mergedArtifactsRepository folder.

2. Checks the repository consistency. For each module, it tries to import it from this repository and fails the
build if at least one of the dependencies cannot be resolved.

The module repository .zip fileis builtinthe target~/artifacts/ folder. This file may be published along with
a CHANGELOG.md, LICENSE. txt and README.md.

4.6. Module Repository 127

MicroEJ Documentation, Revision b25dd891

4.6.8 Use the Offline Repository

By default, when starting an empty workspace, MicroEJ SDK is configured to import dependencies from MicroEJ
Central Repository.

To configure MicroEJ SDK to import dependencies from a local module repository, follow these steps:

1. Open the MMM preferences page: Window > Preferences > MicroEJ > Module Manager .

2. In Module Manager group, clickon Import Repository .

3. Select the module repository .zip file, and then click on Finish .

The import may take some time. The module repository is unzipped in the folder ${user.dir}/.microej/
repositories, and the settings are updated.

4.7 MicroEJ Classpath

MicroEJ Applications run on a target device and their footprint is optimized to fulfill embedded constraints. The
final execution context is an embedded device that may not even have a file system. Files required by the appli-
cation at runtime are not directly copied to the target device, they are compiled to produce the application binary
code which will be executed by MicroEJ Core Engine.

As a part of the compile-time trimming process, all types not required by the embedded application are eliminated
from the final binary.

MicroEJ Classpath is a developer defined list of all places containing files to be embedded in the final application
binary. MicroEJ Classpath is made up of an ordered list of paths. A path is either a folder or a zip file, called a JAR
file (JAR stands for Java ARchive).

« Application Classpath explains how the MicroEJ Classpath is built from a MicroEJ Application project.

o Classpath Load Model explains how the application contents is loaded from MicroEJ Classpath.

« Classpath Elements specifies the different elements that can be declared in MicroEJ Classpath to describe
the application contents.

4.7.1 Application Classpath

The following schema shows the classpath mapping from a MicroEJ Application project to the MicroEJ Classpath
ordered list of folders and JAR files. The classpath resolution order (left to right) follows the project appearance
order (top to bottom).

4.7. MicroEJ Classpath 128

MicroEJ Documentation, Revision b25dd891

v ‘_‘fp" MyApplication

(® src/main/java Compiled code and copied resources
® src/main/resources located in folder MyApplication/bin
v B vy module.ivy [*]
> (9 framework-1.10.0,jar - C:\caché\gj.library.wadapps\framework\jars
> (9 property-loader-3.1.0jar - C:\cache\gj library.runtime\property-loader\jars
> (9 observable-1.0.2jar - C:\caché\gj library.util\observable\jars
> [progress-1.0.3jar - C:\cache\gj.library.util\progress\jars
> [components-3.3.0ar - C:\cache\gj.library.runtime\components\jars .
> A properties-1.1.0,jar - C:\cache\ej.library.eclasspath\properties\jars L\Ily tra rc:ISItIV.e
b é:@n io-1.1.0jar - C:\cache\ej.library.eclasspath\io\jars '_flleeF;elgc::ect;eI?\iﬁs
> g"lj logging-1.1.0,jar - C:\cache\ej.library.eclasspath\logging\jars Ivy cache folder
> (9 basictool-1.2.2,jar - C:\cache\gj.library.runtime\basictool\jars
> (m annotation-1.0.0ar - C:\cache\ejlibrary.runtime\annotation\jars
> (s bon-1.3.0jar - C:\cache\gj.api\bon\jars
> [kf-1.44jar - C\cache\gj.apitkf\jars
> {8 edc-1.23jar - C:\cache\g.apitedcijars _
v B\ Referenced Libraries Additionnal JAR file located in
> (03 extrajar —_— }MyApplication/METAfINF/libraries/extra .jar
> [src-adpgenerated/wadapps/java
v (= META-INF
» [= certificate
v (= libraries
bt extrajar
» [= properties
&' MANIFEST.MF
v [src
&= main
» [src-adpgenerated
[%] CHANGELOG.md
= LICENSE.tdt
ko module.ivy
[¥] README.md

Fig. 22: MicroEJ Application Classpath Mapping

4.7.2 Classpath Load Model

A MicroEJ Application classpath is created via the loading of :

+ an entry point type,

« all . [extension].list files declaredin a MicroEJ Classpath.

o
wn
(2]
=
pr
=
Ey
[}
0
=L
<
=
(-]
=
o
=
o
(]
=

The different elements that constitute an application are described in Classpath Elements. They are searched within
MicroEJ Classpath from left to right (the first file found is loaded). Types referenced by previously loaded MicroEJ
Classpath elements are loaded transitively.

4.7. MicroEJ Classpath

129

MicroEJ Documentation, Revision b25dd891

| l Folder 1 | l Folder 2 I Jar1l l Folder 3 I Jar2
S | S— J

Q—| &
- l a/D.class a/E.class java/lang/Object.class
a/A.class atypes.list _
foo() {}
main { a.B
D.£ ;
oo () Img2.png Imgl.png
! 7 4
p—
S
a/B.class) Imgl.png a.images.list
h Img3.png
7 Img2.png g
a.resources.list a/B.class

Imgl.png

~— Selected Elements —

[Folder1]/a/A.class
[Jarl]/a/D.class
[Jar2]/java/lang/Object.class
[Folder1]/a/B.class

CLASSPATH Resolution Order

[Folder2]/Imgl.png
@ Entry Point m—P Resolution [Folder3]/Img2.png

Fig. 23: Classpath Load Principle

4.7.3 Classpath Elements

The MicroEJ Classpath contains the following elements:

« An entrypoint described in section Application Entry Points;

« Typesin .class files, described in section Types;
« Raw resources, described in section Raw Resources;

« Immutables Object data files, described in Section Immutable Objects;

+ Images, Fonts and Native Language Support (NLS) resources, described in Application Resources;

« x.[extension].list files, declaring contents to load. Supported list file extensions and format is specific
to declared application contents and is described in the appropriate section.

At source level, Java types are stored in src/main/java folder of the module project, any other kind of resources
and list files are stored in the src/main/resources folder.

Application Entry Points

MicroEJ Application entry point declaration differs depending on the application kind:

« In case of a MicroEJ Standalone Application, it is a class that contains a public static void
main(String[]) method, declared using the option application.main.class.

4.7. MicroEJ Classpath 130

MicroEJ Documentation, Revision b25dd891

« In case of a MicroEJ Sandboxed Application, it is a class that implements ej.kf.FeatureEntryPoint , de-
clared inthe Application-EntryPoint entryin META-INF/MANIFEST.MF file.

Types
MicroEJ types (classes, interfaces) are compiled from source code (. java) to classfiles (.class). When a type is
loaded, all types dependencies found in the classfile are loaded (transitively).
Atype can be declared as a Required type in order to enable the following usages:
+ to be dynamically loaded from its name (with a call to Class.forName(String));
« to retrieve its fully qualified name (with a call to Class.getName()).

A type that is not declared as a Required type may not have its fully qualified name (FQN) embedded. Its FQN can
be retrieved using the stack trace reader tool (see Stack Trace Reader).

Required Types are declared in MicroEJ Classpath using *.types.list files. The file format is a standard Java
properties file, each line listing the fully qualified name of a type. Example:

The following types are marked as MicroEJ Required Types
com.mycompany .MyImplementation
java.util.Vector

Raw Resources

Raw resources are binary files that need to be embedded by the application so that they may be dynamically re-
trieved with a call to Class.getResourceAsStream(java.io.InputStream) . Raw Resources are declared in Mi-
croEJ Classpath using *.resources.list files. The file format is a standard Java properties file, each line is a
relative / separated name of a file in MicroEJ Classpath to be embedded as a resource. Example:

The following resource is embedded as a raw resource
com/mycompany/MyResource. txt

Others resources types are supported in MicrokJ Classpath, see Application Resources for more details.

Immutable Objects

Immutables objects are regular read-only objects that can be retrieved with a call to ej.bon.Immutables.
get(String) . Immutables objects are declared in files called immutable objects data files, which format is de-
scribed in the [BON] specification. Immutables objects data files are declared in MicroEJ Classpath using *.
immutables.list files. The file format is a standard Java properties file, each lineis a / separated name of a
relative file in MicroEJ Classpath to be loaded as an Immutable objects data file. Example:

The following file is loaded as an Immutable objects data files
com/mycompany/MyImmutables.data

System Properties

System Properties are key/value string pairs that can be accessed with a call to System.getProperty(String).

System Properties are defined when building a Standalone Application, by declaring *.properties.list filesin
MicroEJ Classpath.

The file format is a standard Java properties file. Example:

4.7. MicroEJ Classpath 131

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#getProperty-java.lang.String-

MicroEJ Documentation, Revision b25dd891

Listing 1: Example of Contents of a MicroEJ Properties File

The following property is embedded as a System property
com.mycompany . key=com.mycompany . value
microedition.encoding=I1S0-8859-1

System Properties are resolved at runtime, and all declared keys and values are embedded as intern Strings.

System Properties can also be defined using Application Options. This can be done by setting the option with a
specific prefix in their name:

« Properties for both the MicroEJ Core Engine and the MicroEJ Simulator : name starts with microej. java.
property.x*

« Properties for the MicroEJ Simulator: name starts with sim. java.property.*
« Properties for the MicroEJ Core Engine: name starts with emb. java.property.*

For example, to define the property myProp with the value theValue, set the following option :
Listing 2: Example of MicroEJ System Property Definition as Applica-
tion Option

microej.java.property.myProp=theValue

Option can also be setinthe VM arguments field of the JRE tab of the launch using the -D option (e.g. -Dmicroej.
java.property.myProp=theValue).

Note: When building a Sandboxed Application, *.properties.list files found in MicroEJ Classpath are silently
skipped.

Constants

Note: This feature require [BON] version 1.4 which is available in MicroEJ Runtime starting from MicroEJ Archi-
tecture version 7.11.0.

Constants are key/value string pairs that can be accessed with a call to ej.bon.Constants.get[Type](String),
where Type if one of:

« Boolean,
» Byte,

« Char,

« Class,

« Double,
« Float,

o Int,
 Long,

« Short,

« String.

4.7. MicroEJ Classpath 132

MicroEJ Documentation, Revision b25dd891

Constants are declared in MicroEJ Classpath *.constants.list files. Thefile formatis a standard Java properties
file. Example:
Listing 3: Example of Contents of a BON constants File

The following property is embedded as a constant
com.mycompany .myconstantkey=com.mycompany.myconstantvalue
Constants are resolved at binary level without having to recompile the sources.
At link time, constants are directly inlined at the place of Constants.get[Type] method calls with no cost.
The String key parameter must be resolved as an inlined String:

« either a String literal "com.mycompany.myconstantkey"”

« ora static final String field resolved as a String constant
The String value is converted to the desired type using conversion rules described by the [BON] API.

A boolean constant declared in an if statement condition can be used to fully remove portions of code. This
feature is similar to C pre-processors #ifdef directive with the difference that this optimization is performed at
binary level without having to recompile the sources.

Listing 4: Example of if code removal using a BON boolean constant

if (Constants.getBoolean("com.mycompany.myconstantkey”)) {
System.out.println(”"this code and the constant string will be fully removed when the constant is.
—resolved to 'false'"”)

}

Please mind that Constants.getXXX must be inlined in the if condition to take effect. The following piece of
code will not remove the code:

static final boolean MY_CONSTANT = Constants.getBoolean("com.mycompany.myconstantkey");

if (MY_CONSTANT){
System.out.println(”this code will not be removed when MY_CONSTANT is resolved to 'false'")
3

Note: In Multi-Sandbox environment, constants are processed locally within each context. In particular, constants
defined in the Kernel are not propagated to Sandboxed Applications.

4.8 Application Resources

Application resources are the following Classpath Elements:

« Images
» Fonts

» Native Language Support

4.8. Application Resources 133

MicroEJ Documentation, Revision b25dd891

4.8.1 Images

Overview

Images are graphical resources that can be accessed with a call to ej.microui.display.Image.getimage() or
ej.microui.display.Resourcelmage.loadlmage() . To be displayed, these images have to be converted from their
source format to the display raw format. The conversion can either be done at :

« build-time (using the image generator tool),
+ run-time (using the relevant decoder library).

Images that must be processed by the image generator tool are declared in MicroEJ Classpath *. images. 1ist files.
The file format is a standard Java properties file, each line representing a / separated resource path relative to the
MicroEJ classpath root referring to a standard image file (e.g. .png, .jpg). The resource may be followed by an
optional parameter (separated by a :) which defines and/or describes the image output file format (raw format).
When no option is specified, the image is embedded as-is and will be decoded at run-time (although listing files
without format specifier has no impact on the image generator processing, it is advised to specify them in the *.
images.list files anyway, as it makes the run-time processing behavior explicit). Example:

The following image is embedded
as a PNG resource (decoded at run-time)
com/mycompany/MyImagel.png

The following image is embedded
as a 16 bits format without transparency (decoded at build-time)
com/mycompany/MyImage2.png:RGB565

The following image is embedded
as a 16 bits format with transparency (decoded at build-time)
com/mycompany/MyImage3.png:ARGB1555

Please refer to /Images for more information.

4.8.2 Fonts

Overview

Fonts are graphical resources that can be accessed with a call to ej.microui.display.Font.getFont(). To be displayed,
these fonts have to be converted at build-time from their source format to the display raw format by the font gener-
ator tool. Fonts that must be processed by the font generator tool are declared in MicroEJ Classpath *. fonts.list
files. The file format is a standard Java properties file, each line representing a / separated resource path relative
to the MicroEJ classpath root referring to a MicroEJ font file (usually witha .ejf file extension). The resource may
be followed by optional parameters which define :

« some ranges of characters to embed in the final raw file;
« the required pixel depth for transparency.

By default, all characters available in the input font file are embedded, and the pixel depthis 1 (i.e 1 bit-per-pixel).
Example:

The following font is embedded with all characters
without transparency
com/mycompany/MyFont1.ejf

The following font is embedded with only the latin
(continues on next page)

4.8. Application Resources 134

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Image.html#getImage-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/ResourceImage.html#loadImage-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Font.html#getFont-java.lang.String-

MicroEJ Documentation, Revision b25dd891

(continued from previous page)

unicode range without transparency
com/mycompany/MyFont2.ejf:latin

The following font is embedded with all characters
with 2 levels of transparency
com/mycompany/MyFont2.ejf::2

MicroEJ font files conventionally end with the .ejf suffix and are created using the Font Designer (see Font De-
signer).

Font Range
The first parameter is for specifying the font ranges to embed. Selecting only a specific set of characters to embed
reduces the memory footprint. If unspecified, all characters of the font are embedded.

Several ranges can be specified, separated by ; . There are two ways to specify a character range: the custom range
and the known range.

Custom Range

Allows the selection of raw Unicode character ranges.
Examples:
« myfont:0x21-0x49 : Defines one range: embed all characters from 0x21 to 0x49 (included);

« myfont:0x21-0x49,0x55-0x75 : Defines a set of two ranges: embed all characters from 0x21 to 0x49 and
from 0x55 to 0x75.

« myfont:0x21-0x49,0x55 : Defines a set of one range and one character: embed all characters from 0x21 to
0x49 and character 0x55.

Known Range

A known range is a range available in the following table.
Examples:
« myfont:basic_latin:Embed all Basic Latin characters;

« myfont:basic_latin;arabic: Embed all Basic Latin characters, and all Arabic characters.

Transparency
The second parameter is for specifying the font transparency level (1, 2, 4 or 8). If unspecified, the encoded
transparency levelis 1 (does not depend on transparency level encoded in EJF file).
Examples:
« myfont:latin:4:Embed all latin characters with 16 levels of transparency

« myfont::2:Embed all characters with 4 levels of transparency

4.8. Application Resources 135

MicroEJ Documentation, Revision b25dd891

4.8.3 Native Language Support

Native Language Support (NLS) allows the application to facilitate internationalization. It provides support to ma-
nipulate messages and translate them in different languages. Each message to be internationalized is referenced
by a key, which can be used in the application code instead of using the message directly.

Messages must be defined in PO files, located in the MicroEJ Classpath of the application (for example in the src/
main/resources folder). Here is an example:

msgid "”

msgstr "

"Language: en_US\n"

"Language-Team: English\n"

"MIME-Version: 1.0\n"

"Content-Type: text/plain; charset=UTF-8\n"

msgid "Labell”
msgstr "My label 1"

msgid "Label2”
msgstr "My label 2"

These PO files have to be converted to be usable by the application. In order to let the build system know which
PO files to process, they must be referenced in files named x.nls.list, located in the MicroEJ Classpath (for
example still in the src/main/resources folder). The file format of these *.nls.list filesis a standard Java
properties file. Each line represents the Full Qualified Name of a Java interface that will be generated and used in
the application. Here is an example, let’s call it i18n.nls.list:

com.mycompany .myapp.Labels
com.mycompany . myapp . Messages

For each line, PO files whose name starts with the interface name (Messages and Labels in the example) are
retrieved from the MicroEJ Classpath and used to generate:

+ aJava interface with the given FQN, containing a field for each msgid of the PO files

+ a NLS binary file containing the translations

So, in the example, the generated interface com.mycompany.myapp.Labels will gather all the translations from
files named Labels*.po and located in the MicroEJ Classpath. PO files are generally suffixed by their locale (
Labels_en_US.po) but it is only for convenience since the suffix is not used, the locale is extracted from the PO
file’s metadata.

Once the generation is done, the application can use the Java interfaces to get internationalized messages, for
example:

import com.mycompany.myapp.Labels;
public class MyClass {

String label = Labels.NLS.getMessage(Labels.lLabell);

The generation is triggered when building the application or after a change done in any PO or *.nls.list files.
This allows to always have the Java interfaces up-to-date with the translations and to use them immediately.

The NLS API module must be added to the module.ivy of the MicroEJ Application project to use the NLS library.

4.8. Application Resources 136

https://www.gnu.org/software/gettext/manual/gettext.html#PO-Files
https://repository.microej.com/modules/ej/library/runtime/nls/

MicroEJ Documentation, Revision b25dd891

<dependency org="com.microej.library.runtime” name="nls-po" rev="2.2.0"/>

4.9 NLS External Loader

The NLS External Loader allows to update the PO files of an application without rebuilding it. PO files can be
dropped in a given location in the Virtual Device folders to dynamically replace the language strings embedded
in the application.

This is typically useful when testing or translating an application in order to have a quick feedback when changing
the PO files. Once the PO files are updated, a simple restart of the Virtual Device allows to immediately see the
result.

4.9.1 Installation

To enable the NLS External Loader in the Virtual Device, add the following dependency to the module.ivy file of
the MicroEJ Firmware project:

<dependency org="com.microej.tool” name="nls-po-external-loader” rev="2.3.0" transitive="false"/>

Then rebuild the MicroEJ Firmware project to produce the Virtual Device.

4.9.2 Usage

Once the project built:
« unzip the Virtual Device and create a folder named translations in the root folder.

« copy all the PO files from the project into the translations folder. All PO files found in this folder are
processed, no matter their folder level.

« start the Virtual Device with the launcher. The following logs should be printed if the NLS External Loader has
been executed and has found the PO files:

externalPoLoaderInit:init:

externalPolLoaderInit:loadPo:
[mkdir] Created dir: <PATH>\tmp\microejlaunch1307817858\resourcebuffer
[po-to-nls] *.nls files found in <PATH>\output\<FIRMWARE>\resourceBuffer :
[po-to-nls] - <CLASSPATH>.<CLASSNAME>
[po-to-nls] - <CLASSPATH>.<CLASSNAME>
[po-to-nls] Loading *.po files for NLS interface f<CLASSPATH>.<CLASSNAME>
[po-to-nls] => loaded locales : fr_DA,fr_ES,fr_NL,fr_FI,fr_RU,fr_SV,fr_DE,fr_NO,fr_IT,fr_FR,fr_
PL,fr_EN
[po-to-nls] Loading *.po files for NLS interface <CLASSPATH>.<CLASSNAME>
[po-to-nls] => loaded locales : fr_DA,fr_ES,fr_NL,fr_FI,fr_RU,fr_SV,fr_DE,fr_NO,fr_IT,fr_FR,fr_
PL,fr_EN

« update the languages strings in the PO files of the Virtual Device (the files in the translations/ folder).
« restart the Virtual Device and check the changes.

It is important to know the following rules about the NLS External Loader:

« the external PO files names must match with the default PO files names of the application to be processed.

4.9. NLS External Loader 137

MicroEJ Documentation, Revision b25dd891

« when PO files with a given name are loaded, the default translations for these PO files are replaced, there is
no merge. It means that:

- if messages are missing in the new PO files, they are not available anymore for the application and may
very probably make it crash.

- iflanguages are missing (the application has 3 PO files for English, French and Spanish, and only PO files
for English and French are available in the translations folder), the messages of the missing languages
are not available anymore for the application and may very probably make it crash.

- if new messages are added in the PO files, it has no impact, they are ignored by the application.

+ External PO files are loaded at Virtual Device startup, so any change requires a restart of the Virtual Device to
be considered

4.9.3 Troubleshooting

java.io.lOException: NLS-PO:S=4

The following error occurs when at least 1 PO file is missing for a language:

[parallel2] NLS-PO:I=6
[parallel2] Exception in thread "main” java.io.IOException: NLS-PO:S=4 323463627 -1948548092

[parallel2] at java.lang.Throwable.fillInStackTrace(Throwable. java:79)
[parallel?] at java.lang.Throwable.<init>(Throwable. java:30)

[parallel2] at java.lang.Exception.<init>(Exception.java:10)

[parallel2] at java.io.IOException.<init>(IOException.java:16)
[parallel2] at com.microej.nls.BinaryNLS.loadBinFile(BinaryNLS. java:310)
[parallel2] at com.microej.nls.BinaryNLS.<init>(BinaryNLS.java:157)
[parallel?] at com.microej.nls.BinaryNLS.newBinaryNLS(BinaryNLS. java:118)

Make sure that all PO files are copied in the translations folder.

4.9.4 Crowdin

Crowdin is a cloud-based localization platform which allows to manage multilingual content. The NLS External
Loader can fetch translations directly from Crowdin to make the translation process even easier. Translators can
then contribute and validate their translations in Crowdin and apply them automatically in the Virtual Device.

A new dependency must be added to the module.ivy file of the MicroEJ Firmware project to enable this integra-
tion:

<dependency org="com.microej.tool"” name="nls-po-crowdin” rev="1.0.0" transitive="false"/>
Once the module has been built, edit the file platform/tools/crowdin/crowdin.properties to configure the
Crowdin connection:

« set crowdin.token to the Crowdin APl token. A token can be generated in the Crowdin in Settings > API

>clickon New Token .

+ set crowdin.projectsIds to the id of the Crowdin project. The project id can be found in the Details
section on a project page. Multiple projects can be set by separating their id with a comma (for example
crowdin.projectsIds=12,586,874)

When the configuration is done, the fetch of the Crowdin translations can be done by executing the script crowdin.
bat or crowdin.sh located in the folder platform/tools/crowdin/ . The PO files retrieved from Crowdin are

4.9. NLS External Loader 138

MicroEJ Documentation, Revision b25dd891

automatically pasted in the folder translations,therefore the new translations are applied after the next Virtual
Device restart.

4.10 Debug an Application

To debug an application on Simulator, select it in the left panel then right-click and select DebugAs >

MicroEJ Application
File Edit Source Refactor Navigate Search Project Run Window Help
H-IRis I BN R RS R -0 - QIS P er D[
Debug 52 [Project Explorer = i+ § = B [MainPagejava I7] Main.java 1] Mainjava 52 43} Thread.class = = B (0=Variables 57 9 Breakpoints " Expressions 5= Qutline
B
v [T TestForDebugger Main [MicroE) Application] 2% Javal] Mame Value
~ &2 Smart Software Simulater [localhest:12000] 5 package com.mycompany; ® args Stringl0] (id=T)
v o Thread [main] (Suspended (breakpoint at line 21 in Main]) o »

] <VM does not provide menitor information>

= 8 Generated by the build-firmware-singleapp-skelston.<brs>

= Main.main(String[]) line: 21 9 Please keep it in sync with the property 'application.main.class'
= MainThread.run() line: 914 1e /

= MainThread(Thread).runWrapper() line: 387 11 public class Main {

5 CAProgram Files\AdoptOpen)DK\jdk-8.0.265.01-hotspot\binl |
* Simple main
args
conmand line arguments.
public static void main(String[] args) {
int i = 42;
System.out.println("Hello World!"); //$HON-NLS-15 =

Fig. 24: MicroEJ Development Tools Overview of the Debugger

All libraries included in MicroEJ SDK are provided with their source code and resources. The way the sources are
retrieved depends on the kind of library (Add-On Library or Foundation Library).

4.10.1 Add-On Library Sources

Add-On Library sources are packaged in a dedicated file named [module_namel-source. jar availableinthe mod-
ule directory:

4.10. Debug an Application 139

MicroEJ Documentation, Revision b25dd891

repository.microej.com/maodules/ej/librany/runtime/basictool/1.6.0/

Parent Directory
CHAMGELOG-1.6.0.md
CHAMGELOG-1.6.0.md.md5
CHANGELOG-1.6.0.md.shal
LICENSE-1.6.0.txt
LICENSE-1.6.0.txt.md5
LICENSE-1.6.0.8xt.shal
README-L.6.0.md
README-1.6.0.md.md5
README-LE.0.md.shal

basictool-1.6.0-javadoc_jar

basictool-1.6.0-javadoc_ jarmd5

basictool-1.6.0-javadoc jarshal

basictool-1.6.0-sources.jar

basictool-1.6.0-sources.jar.mds

basictool-1.6.0-sources.jarshal

basictool-1.6.0 jar
basictool-1.6.0.jarmd5

basictool-1.6.0.jarshal

Fig. 25: Add-On Library Sources Location

In MicroEJ SDK, sources are automatically connected to Eclipse JDT when the new Add-On Library is added as a

module dependency.

On any Java element (type, method, field), press F3 or CTRL-Click to open the implementation:

4.10. Debug an Application

140

MicroEJ Documentation, Revision b25dd891

[J] Mainjava 22
I backage com.mycompany;

import ej.basictool.ArrayTools;

(9, [N WY

public class Main {

= public static ygid foo() {
ArrayTnDlsladd new int[2], @);

Open Declaration

bt 53

WCa

I
[xx]
et

Open Implementation

Fig. 26: Add-On Library Open Implementation

Then the implementation class is open in read-only mode.

[J] Main.java fap ArrayTools.class 52

the input array.
* ([param element
. the element to add.
* @return the output array.
£
public static int[] EEEKint[] array, int element) {
int arraylLength = array.length;
int[] result = grow(array, arraylLength, 1);
result[arrayLength] = element;
return result;

[V, QN WY iy =
1

e 3

ol o e e e e e el
CO 0 CO 00 ©0 CO 0O GO 20 -

]
bt

Fig. 27: Add-On Library Read-Only Source Code

4.10.2 Foundation Library Sources

Foundation Library sources are directly included in the implementation file (JAR file) provided by the Platform.

They are located in the following Platform folders:

+ javalLibs for generic Foundation Libraries (defaults).
+ MICROJVM/javaLibs for Foundation Libraries specific to the MicroEJ Core Engine.

« S3/javalLibs for Foundation Libraries specific to the Simulator.

4.10. Debug an Application 141

MicroEJ Documentation, Revision b25dd891

v & MyPlatform-MyToclchain-1.0.0
(% build
w = source
= bsp
= documentation
= examples
= include
(= javaAPls
I w [javalibs I
[£ bon-14jar
| £ device-1.0,jar
| £ ecom-1.1 jar
|£| ecom-comm-1.1.jar
| £ fs-2.0,jar
| £ kF-1.5ar
| £ microui-2.4.jar
[£) net-1.1jar
[£ nls-2.0,ar
| £ purnp.jar
| £ resourcemanager-1.0.jar
| £ =ni-1.4.0,]ar
[£ ssl-2.0 jar
|=| systemmicroui.properties
| £ systernmicroui-2.4.jar
[£) trace-1.1jar
= lib
= licenseManager
= link
= linker
w == MICROIVM
| ~ (= javalibs |
| £ edc-1.3.jar
= lib
= link
(= soar
= mocks
= plugins
= resources
w [53
(= HIL
[£ edc-1.3.ar
| £ profiles-debug-1.1jar
| £ profiles-fs-1.1.jar
= resources

Fig. 28: Foundation Library Platform Folders

4.10. Debug an Application

142

MicroEJ Documentation, Revision b25dd891

In MicroEJ SDK, sources can be connected while debugging an Application on Simulator. This ensures to get the
exact source code which is executed on your Platform.

Here are the steps to attach Foundation Library sources from a Platform loaded in the workspace:

« Open a MicroEJ Application launch,

« Selectthe Source tab (see also Source Tab),
o Clickon Add... button,

+ Select Archive itemand press OK ,

=)
| Add a container to the source lookup path +E i

A jar or zip in the workspace containing source files

Tz Absolute File Path

I | Archive

L= Compilation Directory
External Archive

(== File System Directory

@ lava Classpath Variable

=\ Java Library

l=FJava Project

[path Mapping

(22 Program Relative File Path

= Project

I Project - Path Relative to Source Folders

[=Workspace Folder

@

Fig. 29: Add Foundation Library Sources to MicroEJ Application Launch

« Select the Foundation Libraries from Platform folders and press OK ,

4.10. Debug an Application 143

MicroEJ Documentation, Revision b25dd891

® Archive Selection

Choose archives to add:

v 2 MyPlatform-MyToolchain-1.0.0
w [source
[= javahAPls
w [= javalibs

=
2
2
2
2
2
2
2
2
2
2
2
2
2
2

bon-1.4.jar
device-1.0,ar
ecam-1.1.jar
ecom-comm-1.1.jar
fs-2.0.jar

kf-1.5.jar
microui-2.4.jar
net-1.1.jar

nls-2.0.jar

purnp.jar
rescurcemanager-1.0,jar
gni-1.4.0,jar

ssl-2.0,jar
systernmicroui-2.4.jar
trace-1.1,jar

[= licenseManager

= linker

= MICROIVM

= mocks

w [= 53
[= HIL

w [= javalibs
[£ edc-1.3jar
| £ profiles-debug-1.1jar
| £ profiles-fs-1.1 jar

Fig. 30: Select Foundation Libraries Implementation files

Warning: You must select the libraries from the Platform project corresponding to the execu-
tion Platform (see Execution Tab).

In the debug session the implementation sources will be now displayed.

4.10. Debug an Application

144

MicroEJ Documentation, Revision b25dd891

i v PIEBNIRIRPIDRG Q- H-0-U- S I PARE T IH -G
%5 Debug 52 [Project Explorer = | i+ § = B [Mainjava PrintStream.java 2%
w [1] hello Main [MicroE) Application] 214

w (B Smart Software Simulator [localhost:12000] 2158 public void println(Object x) {

synchronized(outWriter.out){ // see implementation note
this.print(x) ;
this.println() ;

¥

~ f# Thread [main] (Suspended)
El <VM does not provide monitor information>
= PrintStream.printin(String) line: 224
= Main.main(String[]) line: 20
= MainThread.run{) line: 914
= MainThread(Thread).runWrapper() line: 387
s C\Program Files\Java\jre1.8.0_281\bin\javaw.exe (29 sept. 2021 13:48:21)

}

public void println(@Nullable String x) {
if(CalibrationConstants.ENABLE_FAST_PRINTLN) {
if(x == null) {

x = NULL;
¥
try{
this.outWriter.writeln(x.chars, x.offset, x.length);
9 }
@ catch(IOException e) {
1 errorflag = true;
2 }
3 ¥
4 else {
5 synchronized(outWriter.out) { // see implementatiocn note
6

this.print(x) ;
this.println() ;

1

Fig. 31: Foundation Library Read-Only Source Code

4.11 Platform Selection

Building or running a Test Suite on an application module requires a MicroEJ Platform.
There are 4 different ways to provide a MicroEJ Platform for a module project:

« Setthe build option platform-loader.target.platform.file tothe path ofa MicroEJ Platformfile (.zip
, .jpf or .vde).

« Setthe build option platform-loader.target.platform.dir tothe pathofthe source folderofanalready
imported Source Platform.

+ Declare a module dependency with the conf platform:

<dependency org="myorg" name="myname" rev="1.0.0" conf="platform->default” transitive="false"/>

« Copy a MicroEJ Platform file to the dropins folder. The default dropins folder location is
[module_project_dir]/dropins . It can be changed using the build option platform-loader.target.
platform.dropins.

At least 1 of these 4 ways is required to build an application with a platform. If several ways are used, the following
rules are applied:

o If platform-loader.target.platform.file or platform-loader.target.platform.dir isset,the other
options are ignored.

« If the the module project defined several platforms, the build fails. For example the following cases are not
allowed:

- Setting a platform with the option platform-loader.target.platform.file and another one with
the option platform-loader.target.platform.dir

- Declaring a platform as a dependency and adding a platform in the dropins folder

- Declaring 2 platforms as Dependencies

4.11. Platform Selection 145

MicroEJ Documentation, Revision b25dd891

- Adding 2 platforms in the dropins folder

Refer to the Platform Loader section for a complete list of options.

4.12 Development Tools

MicroEJ provides a number of tools to assist with various aspects of development. Some of these tools are run using
MicroEJ Tool configurations, and created using the Run Configurations dialog of the MicroEJ SDK. A configuration
must be created for the tool before it can be used.

0 Run Configurations n

Create. manage. and run configurations (O

\i/

= R| = 3 Name: | MyToolConfig
type filter text a6 Execution 31} Configuration| g, JRE| [C] Commeon
[€] C/C++ Application Target
Ju WUnit Platform: | STM32F746GDISCO-example- CMThardfp_ARMCCS (2.1.0-RC201604072057) Borres.

= Launch Group
. [3] MicroE) Application
a g Microk) Tool
Fd MyToolConfig

Execution
Settings: | MicroElavah]

Generate C headers and implementation skeletons of Java native methods

Options
Output folder: | S{workspace_locl/MyHelloWerldSample Browse...
[#] Clean intermediate files [Verbose
Filter matched 7 of 12 items e il
'/?:' Bun Close

Fig. 32: MicroEJ Tool Configuration

The above figure shows a tool configuration being created. In the figure, the MicroEJ Platform has been selected,
but the selection of which tool to run has not yet been made. That selection is made in the Execution Settings...
box. The Configuration tab then contains the options relevant to the selected tool.

4.12. Development Tools 146

MicroEJ Documentation, Revision b25dd891

4.12.1 Test Suite with JUnit

MicroEJ allows to run unit tests using the standard JUnit API during the build process of a MicroEJ library or a
MicroEJ Application. The MicroEJ Test Suite Engine runs tests on a target Platform and outputs a JUnit XML report.

Principle

JUnit testing can be enabled when using the microej-javalib (MicroEJ Add-On Library) or the
microej-application (MicroEJ Applications) build type. JUnit test cases processing is automatically enabled
when the following dependency is declared in the module. ivy file of the project.

<dependency conf="test->x" org="ej.library.test” name="junit" rev="1.5.0"/>

When a new JUnit test case classis created inthe src/test/java folder, a JUnit processor generates MicroEJ com-
pliant classes into a specific source folder named src-adpgenerated/junit/java. These files are automatically
managed and must not be edited manually.

JUnit Compliance

MicroEJ is compliant with a subset of JUnit version 4. MicroEJ JUnit processor supports the following annotations:
@After, @AfterClass, @Before, @BeforeClass, @Ignore, @Test.

Each test case entry point must be declared using the org. junit.Test annotation (@Test before a method dec-
laration). Please refer to JUnit documentation to get details on usage of other annotations.

Setup a Platform for Tests

Before running tests, a target platform must be configured.

Execution in SDK

In order to execute the Test Suite in the SDK, a target platform must be configured in the MicroEJ workspace. The
following steps assume that a platform has been previously imported into the MicroEJ Platform repository (or avail-
able in the Workspace):

« Goto Window > Preferences > MicroEJ > Platforms (or Platformsin workspace).
« Select the desired platform on which to run the tests.
« Press F2 to expand the details.

« Select the the platform path and copy it to the clipboard.

« Goto Window > Preferences > Ant > Runtime and selectthe Properties tab.

« Clickon Add Property... button and seta new property named target.platform.dir with the platform
path pasted from the clipboard.

Execution during module build

In order to execute the Test Suite during the build of the module, a target platform must be configured in the module
project as described in the section Platform Selection.

4.12. Development Tools 147

MicroEJ Documentation, Revision b25dd891

Setup a Project with a JUnit Test Case

This section describes how to create a new JUnit Test Case starting from a new MicroEJ library project.

« First create a new module project using the microej-javalib skeleton. Anew project named mylibrary is
created in the workspace.

+ Right-click on the src/test/java folderandselect New > Other... menuitem.
» Selectthe Java > JUnit > New JUnit Test Case wizard.

+ Enteratest name and press Finish . A new JUnit test case class is created with a default failing test case.

Build and Run a JUnit Test Suite
+ Right-clickonthe mylibrary projectandselect Build Module . Afterthelibraryisbuilt, the test suite engine
launches available test cases and the build process fails in the console view.

+ Onthe mylibrary project, right-click and select Refresh . A target~ folder appears with intermediate
build files. The JUnit report is available at target~\test\xmI\TEST-test-report.xml.

« Double-click on the file to open the JUnit test suite report.

+ Modify the test case by replacing

fail("Not yet implemented”);
with
Assert.assertTrue(true);

+ Right-clickagainonthe mylibrary projectand select Build Module . Thetestis now successfully executed
on the target platform so the MicroEJ Add-On Library is fully built and published without errors.

« Double-click on the JUnit test suite report to see the test has been successfully executed.

Test Suite Reports

Once a test suite is completed, the following test suite reports are generated:

« JUnit HTML report in the module project location target~/test/html/test/junit-noframes.html. This
report contains a summary and the execution trace of every executed test.

4.12. Development Tools 148

MicroEJ Documentation, Revision b25dd891

Testsuite Results:

Summary
‘ Tests ‘ Failures ‘ Errors | Ignored ‘ Tried Again ‘ Success rate ‘ Time ‘
|54 [15 lo lo lo [72.22% |3788.653 |
[i [Failures [Success [Success Rate |
|93 |35 |928 [96:37% |

Note: failures are anticipated and checked for with assertions while errors are unanticipated.
Note: ignored tests are executed but not counted on the success rate.

Note: fried again tests are executed but not counted on the success rate.

Packages

Note: package statistics are not computed recursively, they only sum up all of its testsuites numbers.

Tried | Time(s) | Time Stamp |Host|
Again

com.microe;.fs.tests

134660 | 1598001204286 local

com.microej.fs.tests.constructors

274.761 | 1598001339008 local

com.microes.fs.tests.fields

194.437 1598001613793 local

com.microes.fs.tests.integration

66.171 | 1598001808250 local

gom.microej.fs.tests.meshods

2181.600| 1598001874436 local

5

com.microej.fs.tests.properties

65519 | 1598004056327 | local

STo(a[=[e[s[™
EEEEEE
NEREEEE
Siololo|o[olo
CEIEEEEEE

com.microes.fs.tests.scenarios

N

871505 |1598004121855|local

Fig. 33: Example of MicroEJ Test Suite HTML Report

« JUnit XML report in the module project location target~/test/xml/TEST-test-report.xml.

X TEST-test-reportxml &

1 version="1.0" encoding="UTF-8" standalone="no"?>

> errors="0" failures="1" hostname="" ignored="0" name="testsuite-hai
classname=" SingleTest MathTest testFact" name=" SingleTest MathTest
L [Unable to locate tools.jar. Expected to find it in C:\Prc

6 Buildfile: C:\Users‘\ARM 2016\.ivy2\cache\com.is2t.easyant.plugins\microej-test

10 buildTest:

Fig. 34: Example of MicroEJ Test Suite XML Report

XML report file can also be open in the JUnit View. Right-click on the file> Open With > JUnit View :

& main
dv JUnit &
& platform
‘& test testsuite-harness-demo test
& classes Runs: 2/2 B Errors: 0 o Failures: 1]
& html - N . = .
| + @l testsuite-harness-demo test (48.128 5) = Failure Trace
4 = ym
& test e _SingleTest_MathTest_testFact (27.337 s)
& tes

£l TEST—test-report.me|

& _SingleTest_MathTest_testFact2 (20.791 s)

Fig. 35: Example of MicroEJ Test Suite XML Report in JUnit View

If executed on device, the Firmware binary produced for each test is available in module project location target~/
test/xml/<TIMESTAMP>/bin/<FULLY-QUALIFIED-CLASSNAME>/application.out.

Advanced Configurations

4.12. Development Tools

149

MicroEJ Documentation, Revision b25dd891

Autogenerated Test Classes

The JUnit processor generates test classes into the src-adpgenerated/junit/java folder. This folder contains:

_AllTestClasses.java file Asingle classwith a mainenty point that sequentially calls all declared test methods
of all JUnit test case classes.

AllTests[TestCase].java files For each JUnit test case class, a class with a main entry point that sequen-
tially calls all declared test methods.

SingleTest[TestCase]_[TestMethod].java files For each test method of each JUnit test case class, a class
with a main entry point that calls the test method.

JUnit Test Case to MicroEJ Test Case

The MicroEJ Test Suite Engine allows to select the classes that will be executed, by setting the following property in
the project module.ivy file.

<ea:property name="test.run.includes.pattern” value="[MicroEJ Test Case Include Pattern]"/>

Thefollowingline consider all JUnit test methods of the same class as a single MicroEJ test case (default behaviour).
If at least one JUnit test method fails, the whole test case fails in the JUnit report.

<ea:property name="test.run.includes.pattern” value="#x/_AllTests_x.class"/>

The following line consider each JUnit test method as a dedicated MicroEJ test case. Each test method is viewed
independently in the JUnit report, but this may slow down the test suite execution because a new deployment is
done for each test method.

<ea:property name="test.run.includes.pattern” value="**/_SingleTest_x.class"/>

Run a Single Test Manually

Each test can be run independently as each class contains a main entry point.

In the src-adpgenerated/junit/java folder, right-click on the desired autogenerated class (
SingleTest[TestCase]_[TestMethod].java)andselect RunAs > MicroEJ Application .

The test is executed on the selected Platform and the output result is dumped into the console.

Test Suite Options

The MicroEJ Test Suite Engine can be configured with specific options which can be added to the module.ivy file
of the project running the test suite, within the <ea:build> XML element.

« Application Option Injection

It is possible to inject an Application Option for all the tests, by adding to the original option the microej.
testsuite.properties. prefix:

<ea:property name="microej.testsuite.properties.[application_option_name]” value="[application_
—option_value]”/>

4.12. Development Tools 150

MicroEJ Documentation, Revision b25dd891

+ Retry Mechanism

A test execution may not be able to produce the success trace for an external reason, for example an unre-
liable harness script that may lose some trace characters or crop the end of the trace. For all these unlikely
reasons, it is possible to configure the number of retries before a test is considered to have failed:

<ea:property name="microej.testsuite.retry.count” value="[nb_of_retries]"/>

By default, when a test has failed, it is not executed again (option value is set to 0).

Test Specific Options

The MicroEJ Test Suite Engine allows to define Application Options specific to each test case. This can be done by
defining a file with the same name as the generated test case file with the .properties extension instead of the
.java extension. The file must be put in the src/test/resources folder and within the same package than the
test case file.

4.12.2 Stack Trace Reader
Principle

Stack Trace Reader is a MicroEJ tool that reads and decodes the MicroEJ stack traces. When an exception occurs,
the MicroEJ Core Engine prints the stack trace on the standard output System.out . The class names, non-required
types names(see Types), and method names obtained are encoded with a MicroEJ internal format. This internal
format prevents embedding all class names and method names in the executable image to save some memory
space. The Stack Trace Reader tool allows you to decode the stack traces by replacing the internal class names and

method names with their real names. It also retrieves the line numbers in the MicroEJ Application.

Functional Description

The Stack Trace Reader reads the debug information from the fully linked ELF file (the ELF file that contains the
MicroEJ Core Engine, the other libraries, the BSP, the OS, and the compiled MicroEJ Application). It prints the
decoded stack trace.

When Multi-Sandbox capability is enabled, the stack trace reader can simultaneously decode heterogeneous stack
traces with lines owned by different MicroEJ Sandboxed Applications and the firmware. Lines owned by the
firmware can be decoded with the firmware debug information file (optionally made available by your firmware
provider).

Dependencies

No dependency.

Installation

This tool is a built-in platform tool.

4.12. Development Tools 151

MicroEJ Documentation, Revision b25dd891

Use (Standalone Application)

For example, write the following new line to dump the currently executed stack trace on the standard output.

by module.ivy [J] Testjava &2

package com.mycCompany;

-
“
-

public class Test {

poblic static wvoid main (String[] args) {
Svstemn.out.println("hello world!"):;
I new Exception () .printStackIrace () ,:D

Fig. 36: Code to Dump a Stack Trace

To decode an application stack trace, the stack trace reader tool requires the application executable ELF file. In the
case of a platform with full BSP connection (see BSP Connection Cases), the fileis application.out inthe output
folder. In the other cases, the ELF file is generated by the C toolchain when building the BSP project (usually a . out

or .axf file).

4.12. Development Tools 152

MicroEJ Documentation, Revision b25dd891

v'_,ijx MyStandalonelpp

crc/main/java

’_,ﬂ’} src/main/resources

B\ Module Dependencies moduleivy []

[= build

W [com.mycompany. Test

= cc
= externalResources
= fonts
= heapDump
[= images
[= logs
= platform
= resourceBuffer
[= soar

E application.out j
= deployHookB5PBuild.properties
MM SOAR.map
SOAR.o
[S] SOAR.s

= nvs

= src

= wifi

CHAMGELOG.md
LICENSE. txt

foy moduleivy
README.md

Fig. 37: Application Binary File

On successful deployment, the application is started on the device and the following trace is dumped on standard
output.

Wh START

Hella 'Warld!

Exception inthread "main" jawvalang Exception
at javalang System @0 0x3407778:0: 3407 7822
at javalang Throwahle Eh:0x3408030:0x 34080 462
at javalang Throwahle Eh:0x34089 0o 0x 3408 ek @
at corm.mycompany. Test @ 0x3f40762c:0x3 407652 (2
at javalang MainThread @k 0x3407284:0x3f407 2982
at javalang Thread (@MM:0x3f4080E8:0x 3408094
at javalang Thread. (@M:0x3f408c7 4:0x3f4 08713

WA EMD (exit code = 0)

Fig. 38: Stack Trace Output

To create a new MicroEJ Tool configuration, right-click on the application project and click on RunAs... >

4.12. Development Tools 153

MicroEJ Documentation, Revision b25dd891

Run Configurations...

Create a new MicroEJ Tool configuration. In the Execution tab, select your target platform, then select the
Stack Trace Reader tool. Set an output folder in the Output folder field.

Iﬁ 5 = & | = ? T Mame: | Stack Trace Reader
| type filter text | o Execution I Configuration | ®), JRE| (O] Common
[c] C/C++ Application Target
Jur JUnit Platform: | Browse...

L Launch Group
3] MicroE) Application
~ g Microkl Tool Execution
g Stack Trace Reader
Settings: | Stack Trace Reader -

Reads stack trace generated by MicroEl core engine.

Options
Qutput folder: | 5{project_loc:MyStandalonelpp} Browse...
Clean intermediate files [JVerbose
Options Files
Add...
Remove
Up
Down

Fig. 39: Stack Trace Reader Tool Configuration (Platform Selection)

In Configuration tab, browse the previously generated application binary file with debug information (
application.out in case of a Standalone Application with full BSP connection)

4.12. Development Tools 154

MicroEJ Documentation, Revision b25dd891

CEeEXBY-

| type filter text

[E] C/C++ Application
Ju Wnit
& Launch Group
» [T Microb) Application
~ g MicroEl Tool
[ig Stack Trace Reader

Name: | Stack Trace Reader

Stack Trace Reader

o Execution | 1! Configuration ™, JRIﬂ = Commonw

Application

Executable file: | :meApp},-‘com.mycompany.Te{cfappIication.out |] Browse...

Additional object files:

Add
Remaove
“Trace pert" interface for Eclipse
Connection type: | Console
Port: | COMOD Baudrate: 115200
Port: | 5555 Address:
Stack trace file: Browse...

Fig. 40: Stack Trace Reader Tool Configuration (Standalone Application)

Click on Run button and copy/paste the trace into the Eclipse console. The decoded trace is dumped and the
line corresponding to the application hook is now readable.

B Console 32 Lf: Problems & Progress

Stack Trace Reader_ [MicroB) Tool]

[INFO] Paste
Exception in

at
at
at
at
dat
atT
at

[MicroE] Core Engine Trace]
the MicroE] core engine stack trace here.
thread "main" java.lang.Exception

java.lang.System. [@M:@x3T407773 :0x3T407732(

java.lang.Throwable.@M:8x3T483830: 0x3T403045
java.lang.Throwable.@M:8x3T4889cc :Bx3T488%e6
com.mycompany . Test.@M:8x3f48762c: 8x3T407652(F

9

@
@

java.lang.MainThread.@M:@x3T487a84 :0x3T407398[

java.lang.Thread.
java.lang.Thread.

Excepticn in thread “"main
java.lang.System.getStackTrace(Unknown Source)
java.lang.Throwable.fillInStackTrace(Throwable. java:82)
java.lang.Throwable.<init>»(Throwable.java:32)
com.mycompany.Test.main(Test.java:21)
java.lang.MainThread.run{Thread. java:855)
java.lang.Thread.runkrapper(Thread. java: 464)
java.lang.Thread.callWrapper(Thread. java:449)

at
at
at
at
at
at
at

-

i

M:ex3T403bE8 r0x3T403bo4E

M:@x3f4e3cT4 :@x3T408c 7T

aw

java.lang.Exception

Fig. 41: Stack Trace Reader Console

Use (Sandboxed Application)

For example, write the following new line to dump the currently executed stack trace on the standard output.

4.12. Development Tools

155

MicroEJ Documentation, Revision b25dd891

public class MyBackgroundCode implements BackgroundSerwvice {
@verride

public void onStart() {
ff Auto-generated method stub

System.out.println("MyBackgroundCode: Hello Werld™);
[new Throwable().printStackTrace(); |

¥
Fig. 42: Code to Dump a Stack Trace

To decode an application stack trace, the stack trace reader tool requires the application binary file with debug
information (application.fodbg inthe outputfolder). Note that the file uploaded on the deviceis application.
fo (stripped version without debug information).

W i‘jj- MySandboxedApp
sre/main/java
“_,f"} src/main/resources
B\ Module Dependencies module.ivy [7]
(# crc-adpgenerated/wadapps/java
=, Referenced Libraries
w [= _MySandboxedfpp_.generated. MySandboxedAppEntryPoint
= externalResources
= resourceBuffer
|=| application.fo

E--;E- applicatiun.fndbﬂ
EE application.map
[= .settings
= applications
= com.microgj.firmware.developer.KernelStartup

[filesystem

= META-INF

= sre

[src-adpgenerated
.classpath
.gitignore
Jproject
CHAMGELOG.md
LICEMSE et
module.ivy
README.md

B&mERm=E

Fig. 43: Application Binary File with Debug Information

On successful deployment, the application is started on the device and the following trace is dumped on standard
output.

4.12. Development Tools 156

MicroEJ Documentation, Revision b25dd891

com microe]wadapps ki abstractfeaturespplicationstorage INFO: Start MySandhoxedipp
tyBackgroundCode: Hello ‘Warld
Exceptionin thread "ejwadapps.app.default” java lang Throwahle
at javalang. Systemn @hl:0x8052497 c:0x805 295 ol
at javalang Throwakle (Bh4:0x807bBe0 0x807 b5t @
at java.lang. Throwakle. @hi0xE076M4 0807 665E
at comumicroe].example MyBackground Code (2F a5dk2a447701 00000375481 2202 24d0b875ch 9689 36 41:0xc0 38000 @M. 0xcl 38007 c:lxc03600h 2402
at Exception in thread "ejwadapps app.default” javallang/Throwakble
at java/lang/System B 10805497 C:0x0805438CE
at javaglan/Throwable @h:0x0807BEED:0x0807BEFE(R
at java/lang Throwahle. @ 0x08076F4C: 00807 EFEEE
at com/microej{example/ftdyBackground Code (@F abdh2a4477010000d37545(1 e20224d0b87Ech 9889 3641 :0xC03800F0 & EM 0xCO380B 7 C:0xCO380BA4 G
at ejpwadappsfapp/BackgroundServdceProxy @Ffa7a45517201000073783c876987bE5bEe3aaabe 1 d407d 1 :0:300AEBCIEE M: Ix300AB508: 0x300AB51 5@
at com/microejwadapps/managementiutil/Backgroundstdanager (@F fa7a4561720100007378 30876987 hEEbE e 3aaabe1 d407fd1 0xA00AEBCOEE@M: I I00AATE0: 0x00AATIZ (@
at com/microejfwadapps/managementiutil{Backgroundstdanager. @F fa7245517201000073783c876987055h e 3Jaanbe1 d407d1 :0x00ABCOE @M (xI00ABFT 4:0x900ABF52E
at ejjobsersahle/Observable (@F fafa45517201000073783c876987b55h88 3aaafel d407d1:0x300 AEB COE@M 030 0ABAT 0:0xI00ABA4DE
at com/microejwadapps/managementiutil/BackgroundServicaslistimpl (2Ffa7a48617 20100007 37830876987 hA6h8edasalel d407id1: 0x8004EBCOE @ 0x300ADEE4: 0x3004DE94(2
at ejpwadapps/managementBackgroundService sListProxy @F.a5dh2a4477 0100000375481 22022 4d0bE75ckh 96893660 41: 0 COIB00FI @ @M 0xCO380A2E: COIB0AIGE
at __MySandboxeddpp_fgenerated/MySandboxe dAppActvator. @F a5db2a4477010000d 3754611 e20224¢0b8 75chI683 364 1:0:C0 3800F 042 (@M. 0xCO380C54.0xC0380CE2 (@
at ejjcomponentsfregistryimpliabstractRegistry, @h.0x08078E48.0:08078E7 22
at ejfcomponents/registry/util/BundleRegistryHelper @h:0x0806EEE 8:0x0B0BE 7020
at__MySandboxedipp_fgenerated/MySandboxedAppEntryPoint (BF a5db2a4477010000¢ 3754811 2202240 0b875ch 96893614 1 0xC0 3800F0E @M. 0:C0380B04:0:C0 380B2EE
at ejfkikemel$ 2. @ 008055558 (0505589002
at javalanc/Thresd (& 00807 C4F0:0«0807 CE0RE
atjava/lang/Thresd (@ 00807 C333:0x0807 C344(E
atjave/lang/Thresd @i 00807 C485:.0x0807C493(2

Fig. 44: Stack Trace Output

To create a new MicroEJ Tool configuration, right-click on the application project and click on RunAs... >

Run Configurations...

Create a new MicroEJ Tool configuration. In the Execution tab, select your target platform, then select the
Stack Trace Reader tool. Set an output folder in the Output folder field.

ERCEER | B Y- MName: | Stack Trace Reader
type filter text | 4 Execution . I Configuration | =, JRE| [C] Commen
[€] C/C++ Application Target
Ju JUnit Platform: | Browse..,

& Launch Group
3] Microk) Application
v [Og MicroEl Toel
[Stack Trace Reader

Execution
Settings: | Stack Trace Reader

Reads stack trace generated by MicroEl core engine.

Options
Output felder | Sproject_loc:MySandboxedApp} Browse...
Clean intermediate files [verbose
Options Files
Add...
Remaove
Up
Down

Fig. 45: Stack Trace Reader Tool Configuration (Virtual Device Selection)

In the Configuration tab, if the Kernel executable file is available to you (usually named firmware.out and

located inyour Virtual Device files), you can browse for itin the Executable file field, and then add your previously
generated application binary file with debuginformation (application. fodbg in case of a Sandboxed Application)

in the Additional object files field.

4.12. Development Tools 157

MicroEJ Documentation, Revision b25dd891

Mame: | Stack Trace Reader |

i Execution | 33 Configuration . =, JRE|] Commen

Stack Trace Reader Application

Executable file: | Smicrog)_lock 1.6 d00 firmwarefirmware.out Browse...

Additional object files:

1App_.generated MySandboxed AppEntryPoint/application.fodbg Add

Remove

"Trace port" interface for Eclipse

Cennection type: | Conscle ~

COMO 115200

Browse...

Fig. 46: Select the Kernel Executable File

To check where the Kernel executable file of your Virtual Device is located, if you have access to it, goto Window >
Preferences > MicroEJ > Virtual Devices , hoveroveryourVirtual Device in the listand wait untilaninformation

popup appears. Press F2 to get all the informations and the path to the directory of your Virtual Device should
appear in the list.

4.12. Development Tools 158

MicroEJ Documentation, Revision b25dd891

[G.

| type filker text

C/C++ A
Checkstyle
Help
Install/Update
Java
w Microk)
Architectures

Module Manager
MNaming Conventicn
Platforms
Platforms in workspa
Settings
Updates
Virtual Devices

Mylyn

Plug-in Development

PMD

Run/Debug

SonarLint

Team

Terminal

Validation

XML v

Virtual Devices

Add or remove Virtual Devices.

Target:
Mame Version Lic...
OQ o

[Path: C:\Users\ I\ microej\repositories\MicroEJ-SDK-Dist-20.1241.6\d001 |

Restore Defaults
Apply and Close

Fig. 47: Location of the Virtual Device Directory

Select All
Deselect All
Import...
Uninstall

Get UID

Apply

Cancel

In this directory, the Kernel executable file should be named firmware.out inthe /firmware sub-directory.

If you do not have access to the Kernel executable file, you can still get some information from the Stack Trace
Reader using the application binary file only. In the Configuration tab, browse the previously generated applica-
tion binary file with debug information (application. fodbg in case of a Sandboxed Application)

4.12. Development Tools

159

MicroEJ Documentation, Revision b25dd891

O IE 0 [x| = ? M MName: | Stack Trace Reader

| type filter text | i Bxecution |8 Configuration - =), JRﬂ i Common]
[©] C/C++ Application Stack Trace Reader Application
Ju JUnit - —
Launch Group Executable file: | rated.MySandboxedAppEntryPom[appllcatlon.fodbg] Browse...
> O Micro) Application Additional object files:
w B MicroEl Tool
O Stack Trace Reader Add
Remove
"Trace port” interface for Eclipse
Connection type: | Console ~
Port: | COMD Baudrate: 115200
Port: | 5555 Address:
Stack trace file: Browse...

Fig. 48: Stack Trace Reader Tool Configuration (Sandboxed Application)

Click on Run button and copy/paste the trace into the Eclipse console. The decoded trace is dumped and the
line corresponding to the application hook is now readable.

4.12. Development Tools 160

MicroEJ Documentation, Revision b25dd891

Bl Console 33

Stack Trace Reader_ [MicroE] Tool] C\Program Files\Java'jrel.8.0 ?_21\b|n\Javaw exe (27-lan-2021 15:18:24)
[MicroEl Core Engine Trace]
[INFO] Paste the MicroEl core engine stack trace here.

| Problems =g Prograss 4" Search]

Exception i

thread " wadapps.app.default” java.lang.Throwable

1 085297 c:0x885a98c@

Bx887b3ed: x807b8T6E

Bx3876T4C: @x307 @

ackgroundCode. aSdb2a4477016000d375458T1220224deba75cb968936Th41 : Bxc@3 800 TOMEM : @xc@380b7 C: @xc@3debasd
.madapp: app dafau__ lang/Throwable

lang.Throwable. @
lang.Throwable.

L (e

on in thread “ej

4477010000d3754571e20224d6b375cb968936Tb41 : @xCO3B06F :BxCB33887C :0xCB338BA
y 7201600073783c876987b55b8e3aaade1d487Td1 : 0x90RAGBCEEHEM : Ox9BBABSES : Ox90BABS
Bac<g cund:.anaga' F:fa7a45517201000073753C876987b55b5e3aaadeld4a7dl : @x908A6BCARGE
BackgroundsManager.{F : fa7a4551720100008737533C5876987b55b3e3aaase1d407Td1: @x9@0@AEBCAHE
7281 EEBB?B?SBCS?FDSFE33b8&3aaa35 a4l B?fd : Bx98@AEBCAHEEM : BxI0RABA1A : BxIBBABALGE
Backgroundser 1 7201@008873783c876967h5508 JaaaBeldanT
@00d3754811e20224d0b875cb368936Fbal : @xCR3800F O
L@F: 3db2a 477010000d37545f1220224d8b375cb968936Tb4l : BxC0O3E0GFBEMEM : 0xCB380C54 : 0xCB330C320
>BBB7E:¥8
@

P0AATI2E

9BRABFS2(

b ery ab e/Obser
vadapps
dapps/managems

nanagement/u
/BackgroundSer
ySandboxedAppAct

int.@F:a5db2a447701 eeeeds?s—af 220224deba75ch968936Th41: BxCa3IB0AFAMHEM : @xC@380804: @xCA38082E4

lang/Thread >.BSE7C¢88:E>.8887C¢93£

Exception in thread "ej.wadapps.app.default” java.lang.Throwable
at java.lang.System.getStackTrace(Unknown Source)
at java.lang.Throwable.fillInStackTrace(Throwable.java:82)
at java.lang.Throwable.<init»(Throwahle.{ava:32)
at com.microej.example.MyBackgroundCode.onStart(MyBackgroundCode. java:17)
at Exception in thread "ej.wadapps.app.default” java/lang/Throwable
at java/lang/System.getStackTrace(Unknown Source)
java/lang/Throwable.fillInStackTrace(Throwable.java:82)
at java/lang/Throwable.<init>(Throwable.{ava:32)
at com/microej/example/MyBackgroundCode.onStart(MyBackgroundCede. java:17)
at ej/wadapps/app/BackgroundserviceProxy.8x98BAB5@8 (Unknown Source)
at com/microej/wadapps/management/util/BackgroundsManager.Bx9BBAATER (Unknown Source)
at com/microej/wadapps/management/util/BackgroundsManager.8x98@ABF14(Unknown Source)
at ej/observable/Observable.8x988ABA1B(Unknown Source)
at com/microej/wadapps/management/util/BackgroundServicesListImpl. @x986AD864 (Unknown Source)
ej/wadapps/management/BackgroundservicesListProxy.add(BackgroundservicesiistProxy. fava:39)
at _ _MySandboxedApp__/generated/MySandboxedAppActivator. link(MySandboxedAppActivator. java:21)
at ej/components/registry/impl/AbstractRegistry.link(AbstractRegistry.java:68)
at ej/components/registry/util/BundleRegistryHelper.startup(BundleRegistryHelper.java:52)
at _ MySandboxedApp__/generated/MySandboxedAppEntryPoint.start(MySandboxedAppEntryPoint. java:15)
at ej/kf/Kernel$2.run(Kernel.java:222)
java/lang/Thread.run{Thread. java:3e3)
at java/lang/Thread.runWrapper(Thread.java:454)
at java/lang/Thread.callWrapper(Thread.java:439)

o
=

W
o+

o
=

Fig. 49: Stack Trace Reader Console

Other debug information files can be appended using the 'Additional object files option.

Stack Trace Reader Options

The following section explains MicroEJ tool options.

4.12. Development Tools 161

MicroEJ Documentation, Revision b25dd891

Category: Stack Trace Reader

Stack Trace Reader Application

Executable file: Browse...

Additional object files:

Add

Remove

"Trace port" interface for Eclipse

Connectien type: | Console ~

COMOD 115200

Browse...

Group: Application
Option(browse): Executable file

Option Name: application.file
Default value: (empty)
Description:

Specify the full path of a full linked elf file.

Option(list): Additional object files

Option Name: additional.application.files

Default value: (empty)

Group: “Trace port” interface for Eclipse

Description:

This group describes the hardware link between the device and the PC.

Option(combo): Connection type

Option Name: proxy.connection.connection.type

4.12. Development Tools 162

MicroEJ Documentation, Revision b25dd891

Default value: Console
Available values:

Uart (COM)

Socket

File

Console

Description:

Specify the connection type between the device and PC.

Option(text): Port

Option Name: pcboardconnection.usart.pc.port
Default value: COM0

Description:

Format: port name

Specifies the PC COM port:

Windows - COMT, COM2, ..., COM*n*

Linux- /dev/ttySe, /dev/ttyS1, ..., /dev/ttyS*nx

Option(combo): Baudrate

Option Name: pcboardconnection.usart.pc.baudrate
Default value: 115200

Available values:

9600

38400

57600

115200

Description:

Defines the COM baudrate for PC-Device communication.

Option(text): Port

Option Name: pcboardconnection.socket.port
Default value: 5555
Description:

IP port.

4.12. Development Tools

163

MicroEJ Documentation, Revision b25dd891

Option(text): Address

Option Name: pcboardconnection.socket.address
Default value: (empty)
Description:

IP address, on the form A.B.C.D.

Option(browse): Stack trace file

Option Name: pcboardconnection.file.path

Default value: (empty)

4.12.3 Code Coverage Analyzer
Principle

The MicroEJ Simulator features an option to output .cc (Code Coverage) files that represent the use rate of functions
of an application. It traces how the opcodes are really executed.

Functional Description

The Code Coverage Analyzer scans the output .cc files, and outputs an HTML report to ease the analysis of methods
coverage. The HTML report is available in a folder named htmlReport in the same folder as the .cc files generated
by enabling the Code Coverage option .

4.12. Development Tools 164

MicroEJ Documentation, Revision b25dd891

Classpath

Code Code
Simulator Coverage Coverage
Files

Analyzer

*

Fig. 50: Code Coverage Analyzer Process

Dependencies
In order to work properly, the Code Coverage Analyzer should input the .cc files. The .cc files relay the classpath

used during the execution of the Simulator to the Code Coverage Analyzer. Therefore the classpath is considered
to be a dependency of the Code Coverage Analyzer.

Installation

This tool is a built-in platform tool.

Use

A MicroEJ tool is available to launch the Code Coverage Analyzer tool. The tool name is Code Coverage Analyzer.

Two levels of code analysis are provided, the Java level and the bytecode level. Also provided is a view of the fully
or partially covered classes and methods. From the HTML report index, just use hyperlinks to navigate into the
report and source / bytecode level code.

4.12. Development Tools 165

MicroEJ Documentation, Revision b25dd891

Category: Code Coverage

Code Coverage

*.cc files folder: Browse...

Classes filter

Includes:

Add...

Edit...

Remove

Excludes:

Add...

Edit...

Remove

Option(browse): *.cc files folder

Option Name: cc.dir
Default value: (empty)
Description:

Specify a folder which contains the cc files to process (*.cc).

Group: Classes filter
Option(list): Includes

Option Name: cc.includes
Default value: (empty)
Description:

List packages and classes to include to code coverage report. If no package/class is specified, all classes found in
the project classpath will be analyzed.

Examples:
packageA.packageB. * : includes all classes which are in package packageA.packageB

packageA.packageB.className : includes the class packageA.packageB.className

4.12. Development Tools 166

MicroEJ Documentation, Revision b25dd891

Option(list): Excludes

Option Name: cc.excludes
Default value: (empty)
Description:

List packages and classes to exclude to code coverage report. If no package/class is specified, all classes found in
the project classpath will be analyzed.

Examples:
packageA.packageB. = : excludes all classes which are in package packageA.packageB

packageA.packageB.className : excludes the class packageA.packageB.className

4.12.4 Heap Usage Monitoring
Introduction
When building a Standalone Application, the Java heap size must be specified as an Application Option (see Op-

tion(text): Java heap size (in bytes)). The value to set in this option depends on the maximum heap usage, and the
developer can estimate it by running the application.

The Core Engine provides a Java API to introspect the heap usage at runtime. Additionally, heap usage monitoring
can be enabled to compute the maximum heap usage automatically.

Here are the descriptions of the different notions related to heap usage:
« Heap: memory area used to store the objects allocated by the application.
« Heap Size: current size of the heap.

+ Maximum Heap Size: maximum size of the heap. The heap size cannot exceed this value. See Option(text):
Java heap size (in bytes).

+ Heap Usage: the amount of the heap currently being used to store alive objects.

Garbage Collector (GC): a memory manager in charge of recycling unused objects to increase free memory.

Heap

Alive Objects Unused Objects Unused Memory

Heap Usage

A
v

Heap Size

A
v

Maximum Heap Size

Fig. 51: Heap Structure Summary

The Java class java.lang.Runtime defines the following methods:

4.12. Development Tools 167

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html

MicroEJ Documentation, Revision b25dd891

+ gc(): Runs the garbage collector. System.gc() is an alternative means of invoking this method.

« freeMemory(): Returns the amount of free memory in the heap. This value does not include unused objects
eligible for garbage collection. Calling the gc() method may result in increasing the value returned by this
method.

« totalMemory(): Returns the current size of the heap. The value returned by this method may vary over time.

« maxMemory(): Returns the maximum size of the heap.

Heap Usage Introspection

The methods provided by the Runtime class allow introspecting the heap usage by comparing the heap size and
the free memory size. A garbage collection must be executed before computing the heap usage to recycle all the
unused objects and count only alive objects.

The application can compute the current heap usage by executing the following code:

Runtime runtime = Runtime.getRuntime(); // get Runtime instance
runtime.gc(); // Ensure unused objects are recycled
long heapUsage = runtime.totalMemory() - runtime.freeMemory();

This example gives the heap usage at a given point but not the maximum heap usage of the application.

Note: When heap usage monitoring is disabled, the heap size is fixed, and so totalMemory() and maxMemory()
return the same value.

Automatic Heap Usage Monitoring

The maximum heap usage of an application’s execution can be computed automatically by enabling heap usage
monitoring.

Note: This feature is available in the Architecture versions 7.16.0 or higher for the Applications deployed on hard-
ware devices (not on Simulator).

When this option is activated, an initial size for the heap must be specified, and the Core Engine increases the heap
size dynamically. The value returned by totalMemory() is the current heap size. maxMemory() returns the maximum
size of the heap. A call to gc() decreases the heap size to the higher value of either the heap usage or the initial heap
size.

Atany moment, totalMemory() returns the maximum heap usage of the current execution (assuming the maximum
heap usage is higher than the initial heap size, and gc() has not been called).

See the section Option(checkbox): Enable Java heap usage monitoring to enable this option and configure the initial
heap size.

Even if the heap size can vary during time, a memory section of maxMemory() bytes is allocated at link time or
during the Core Engine startup. No dynamic allocation is performed when increasing the heap size.

Warning: Asmallinitial heap size will impact the performances as the GC will be executed every time the heap
size needs to be increased.

4.12. Development Tools 168

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#gc--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#gc--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#freeMemory--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#gc--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#totalMemory--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#maxMemory--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#totalMemory--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#maxMemory--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#totalMemory--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#maxMemory--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#gc--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#totalMemory--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#gc--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#maxMemory--

MicroEJ Documentation, Revision b25dd891

Furthermore, the smaller the heap size is, the more frequent the GC will occur. This feature should be used only
for heap usage benchmarking.

Heap Usage Analysis

To analyze heap usage and see what objects are alive in the application, use the Heap Dumper & Heap Analyzer
tools.

4.12.5 Heap Dumper & Heap Analyzer
Introduction

Heap Dumper is a tool that takes a snapshot of the heap. Generated files (with the .heap extension) are available
in the application output folder. Note that it works only on simulations. It is a built-in platform tool and has no
dependencies.

The Heap Analyzer is a set of tools to help developers understand the contents of the Java heap and find problems
such as memory leaks. For its part, the Heap Analyzer plugin is able to open dump files. It helps you analyze their
contents thanks to the following features:

« memory leaks detection
« objects instances browse

+ heap usage optimization (using immortal or immutable objects)

The Heap

The heap is a memory area used to hold Java objects created at runtime. Objects persist in the heap until they are
garbage collected. An object becomes eligible for garbage collection when there are no longer any references to it
from other objects.

Heap Dump

A heap dump is an XML file that provides a snapshot of the heap contents at the moment the file is created. It
contains a list of all the instances of both class and array types that exist in the heap. For each instance, it records:

+ The time at which the instance was created

+ The thread that created it

« The method that created it
For instances of class types, it also records:

« Theclass

« Thevalues in the instance’s non-static fields
For instances of array types, it also records:

+ The type of the contents of the array

+ The contents of the array

For each referenced class type, it records the values in the static fields of the class.

4.12. Development Tools 169

MicroEJ Documentation, Revision b25dd891

Heap Analyzer Tools

The Heap Analyzer is an Eclipse plugin that adds three tools to the MicroEJ environment.

Tool name Number of | Purpose
input files
Heap Viewer 1 Shows what instances are in the heap, when they were created,
and attempts to identify problem areas
Progressive 10or more Shows how the number of instances in the heap has changed over
Heap Usage time
Compare 2 Compares two heap dumps, showing which objects were created,

or garbage collected, or have changed values

Heap Dumper

When the Heap Dumper option is activated, the garbage collector process ends by performing a dump file that
represents a snapshot of the heap at this moment. Thus, to generate such dump files, you must explicitly call the
System.gc() method in your code, or wait long enough for garbage collector activation.

The heap dump file contains the list of all instances of both class and array types that exist in the heap. For each

instance, it records:

« the time at which the instance was created

« the thread that created it

« the method that created it

For instances of class types, it also records:

« theclass

« the valuesin the instance’s non-static fields

For instances of array types, it also records:

« the type of the contents of the array

« the contents of the array

For each referenced class type, it records the values in the static fields of the class.

4.12. Development Tools

170

MicroEJ Documentation, Revision b25dd891

Category: Heap Dumper

Heap Dumper Application

Executable file: Browse...

Resident application files:
Add...
Remove

Memary

Heap memaory file: | Browse...

Output

Heap file name: | application.heap

Group: Application

Option(browse): Executable file

Option Name: application.filename
Default value: (empty)
Description:

Specify the full path of a full linked ELF file.

Option(list): Resident application files

Option Name: additional.application.filenames
Default value: (empty)
Description:

Specify the full path of System Applications .out files linked by the Firmware Linker.

Group: Memory
Option(browse): Heap memory file

Option Name: heap.filename

Default value: (empty)

4.12. Development Tools 17

MicroEJ Documentation, Revision b25dd891

Description:

Specify the full path of heap memory dump, in Intel Hex format.

Group: Output
Option(text): Heap file name

Option Name: output.name

Default value: application.heap

Heap Viewer

To open the Heap Viewer tool, select a heap dump XML file in the Package Explorer , right-click on it and select

Open With > Heap Viewer

Alternatively, right-click on it and select Heap Analyzer > Open heap viewer

This will open a Heap Viewer tool window for the selected heap dump'.
The Heap Viewer works in conjunction with two views:

1. The Outline view

2. The Instance Browser view
These views are described below.

The Heap Viewer tool has three tabs, each described below.

Outline View

The Outline view shows a list of all the types in the heap dump, and for each type shows a list of the instances of
that type. When an instance is selected it also shows a list of the instances that refer to that instance. The Outline
view is opened automatically when an Heap Viewer is opened.

! Although this is an Eclipse ‘editor’, it is not possible to edit the contents of the heap dump.

4.12. Development Tools 172

MicroEJ Documentation, Revision b25dd891

E Console |[21 Problems [0= Outline &3

33 types - 70 instances (from first to last time stamp)

Type name
. char(]
@ com.is2t.cldec.s3.DefaultSystemOut
» @ com.is2t.test HeapDumpTest
PRC) com.isZt.test. HeapDumpTest5TestOhbj
<p #99
<p £100
. (@ com.is2t.test.HeapDumpTest$ TestObj2
@ &jbonlmmutables
> @ gj.bonImmutablesFile
. int[]
» L& int(]l]
@ ist.support.lang.Systools

L e —

References

<p 208

Type

Instance Browser View

Instances
1

0
1
2

D= R -

Referenced instances
0

=R = R R R R UV)

(=N)

(C] com.is2ttest. HeapDumpTest

Method

@ com.is2t.test. HeapDumpTest.start() : void
@ com.is2t.test.HeapDumpTest.start() : void

Fig. 52: Outline View

Thread

& main
& main

m

The Instance Browser view opens automatically when a type or instance is selected in the Outline view. It has two
modes, selected using the buttons in the top right corner of the view. In ‘Fields’ mode it shows the field values for
the selected type or instance, and where those fields hold references it shows the fields of the referenced instance,
and so on. In ‘Reference’ mode it shows the instances that refer to the selected instance, and the instances that

refer to them, and so on.

El Console | [Z1 Problems | o= Outline LEEE Fields and Reference Hierarchy &2

Field

4 @ this
@ a
Gb
F =

Type Value
® co m.is2t.test.HeapDumpTestiTestObj #100
© int 1
© int 0
© int 0

Fig. 53: Instance Browser View - Fields mode

(R = O

Fields - heap file name: Ch\Users\Jehn\.microgfworkspaces\CM_ARMCC-DEV-1.0.0%HeapDumpT est\ com.isz

4.12. Development Tools

173

MicroEJ Documentation, Revision b25dd891

&l Console (21 Problems EE Cutline T;EE Fields and Reference Hierarchy &2 o[:g =08
References - heap file name : ChUsers'John'umicroefweorkspaces\CM_ARMCC-DEV-1.0.00HeapDumpTest\co
Field Type Value
a @ this C com.isZt.test.HeapDumpTest5TestOhj #100
4 @ testObj C) com.is2t.test.HeapDurmpTest #98
<no references> <nonex <none:

Fig. 54: Instance Browser View - References mode

Heap Usage Tab

The Heap usage page of the Heap Viewer displays four bar charts. Each chart divides the total time span of the heap
dump (from the time stamp of the earliest instance creation to the time stamp of the latest instance creation) into a
number of periods along the x axis, and shows, by means of a vertical bar, the number of instances created during
the period.

The top-left chart shows the total number of instances created in each period, and is the only chart displayed
when the Heap Viewer is first opened.

When a type or instance is selected in the Outline view the top-right chart is displayed. This chart shows the
number of instances of the selected type created in each time period.

When an instance is selected in the Outline view the bottom-left chart is displayed. This chart shows the
number of instances created in each time period by the thread that created the selected instance.

When an instance is selected in the Outline view the bottom-right chart is displayed. This chart shows the
number of instances created in each time period by the method that created the selected instance.

4.12.

Development Tools 174

MicroEJ Documentation, Revision b25dd891

[heap-Oaml 52 =
Instance creation over time, by type, creating thread and creating method Generate graphViz file
Heap usage - Total Instances of type 'com.is2t.test. HeapDumpTest5TestOhy'
Heap usage : 569/569 instance(s) Heap usage: 500/569 instancels)
Instances Instances
489 489
326 326
163 163
0 0
47 94 141 188 235 282 329 376 423 470 47 94 141 188 235 282 329 376 423 470
Time stamp Time stamp
Created by thread 'main’ Created by method 'com.is2t.test HeapDumpTest.start() « void'
Heap usage: 503/589 instance(s) Heap usage : 500/569 instance(s)
Instances Instances
489 489
326 326
163 163
0 0
47 94 141 188 235 282 329 376 423 470 47 94 141 188 235 282 329 376 423 470
Time stamp Time stamp

Heap usage | Dominator tree | Leak suspects

Fig. 55: Heap Viewer - Heap Usage Tab

Clicking on the graph area in a chart restricts the Outline view to just the types and instances that were created
during the selected time period. Clicking on a chart but outside of the graph area restores the Outline view to
showing all types and instances”.

The button Generate graphViz file in the top-right corner of the Heap Usage page generates a file compatible with
graphviz (www.graphviz.org).

The section Heap Usage Monitoring shows how to compute the maximum heap usage.

Dominator Tree Tab

The Dominator tree page of the Heap Viewer allows the user to browse the instance reference tree which contains
the greatest number of instances. This can be useful when investigating a memory leak because this tree is likely
to contain the instances that should have been garbage collected.

The page contains two tree viewers. The top viewer shows the instances that make up the tree, starting with the
root. The left column shows the ids of the instances - initially just the root instance is shown. The Shallow instances

2 The Outline can also be restored by selecting the All types and instances option on the drop-down menu at the top of the Outline view.

4.12. Development Tools 175

MicroEJ Documentation, Revision b25dd891

column shows the number of instances directly referenced by the instance, and the Referenced instances column
shows the total number of instances below this point in the tree (all descendants).

The bottom viewer groups the instances that make up the tree either according to their type, the thread that created
them, or the method that created them.

Double-clicking an instance in either viewer opens the Instance Browser view (if not already open) and shows de-
tails of the instance in that view.

[heap-Daml 23 =
T;EE Dominator tree : Instance hierarchy that contains greatest number of instances

Dominator tree instances Type

- | com.isttest. HeapDumpTest
'y 298 C] is2t test.HeapDumpT

4 L I

Deminator tree instances grouped by type, thread or method | Types A

Top consumers Instances
& com.is2t.test HeapDumpTestSTestObj 500
| java.lang COhject(] 1
© java.utilVector 1
& com.is2t.test.HeapDumpTest 1

Heap usage | Dominator tree | Leak suspects

Fig. 56: Heap Viewer - Dominator Tree Tab

Leak Suspects Tab

The Leak suspects page of the Heap Viewer shows the result of applying heuristics to the relationships between
instances in the heap to identify possible memory leaks.

The page is in three parts.

« The top part lists the suspected types (classes). Suspected types are classes which, based on numbers of
instances and instance creation frequency, may be implicated in a memory leak.

« The middle part lists accumulation points. An accumulation point is an instance that references a high num-
ber of instances of a type that may be implicated in a memory leak.

4.12. Development Tools 176

MicroEJ Documentation, Revision b25dd891

« The bottom part lists the instances accumulated at an accumulation point.

[heap-0xml 2 =B

tC Types suspected

® com.is2t.test. HeapDumpTestiTestObj

Accumulation points

Instance Type
Ep #381 java.lang.Object[]
Accumulated instances

Instance Type it

dp#123 C com.isZt.test. HeapDumpTest5TestOhy

dp 2124 C com.isZt.test.HeapDumpTestSTestObj

G #125 (C] com.is2t.test.HeapDumpTestSTestObj

Gy #126 C] com.is2t.test. HeapDumpTestSTestOhbj

<y #130 C com.isZt.test. HeapDumpTest5TestOhy

dp#131 (C] com.is2t.test. HeapDumpTestSTestOhbj

Gy #132 C] com.is2t.test. HeapDumpTestSTestOhbj

dp#133 C com.isZt.test. HeapDumpTest5TestOhy

<y #134 C com.isZt.test.HeapDumpTestSTestObj

G #135 (C] com.is2t.test.HeapDumpTestSTestObj i
. iy fme e - A o

Heap usage | Dominator tree | Leak suspects

Fig. 57: Heap Viewer - Leak Suspects Tab

Progressive Heap Usage

To open the Progressive Heap Usage tool, select one or more heap dump XML filesin the Package Explorer , right-

click and select Heap Analyzer > Show progressive heap usage

This tool is much simpler than the Heap Viewer described above. It comprises three parts.

+ The top-right part is a line graph showing the total number of instances in the heap over time, based on the
creation times of the instances found in the heap dumps.

+ The left part is a pane with three tabs, one showing a list of types in the heap dump, another a list of threads
that created instances in the heap dump, and the third a list of methods that created instances in the heap
dump.

+ The bottom-left is a line graph showing the number of instances in the heap over time restricted to those
instances that match with the selection in the left pane. If a type is selected, the graph shows only instances
of that type; if a thread is selected the graph shows only instances created by that thread; if a method is
selected the graph shows only instances created by that method.

4.12. Development Tools 177

MicroEJ Documentation, Revision b25dd891

E”| Progressive Heap Usage %

FProgressive heap usage by type, creating thread and creating method

Types | Threads | Methods|

Mame

char[]

C com.is2t.cldc,s3.DefaultSystem Out
C com.is2t.test.HeapDumpTest

C com.is2t.test. HeapDumpTestSTestObj
C) g.bonImmutables

C) gj.bonImmutablesFile

int[]

int{][]

@ ist.support.lang.Systools

3 ist.support.util EncUS_ASCI

C) ist.suppert.util EncodingConversion
(C] java.io.FileDescriptor

C java.io.FileQutputStream

C java.io.OutputStream

C) java.o. OutputStreamWriter

C) java.ic.Print5stream

C) java.ioWriter

(C] java.lang.Exception

C java.langIndexOutOfBoundsException
@ java.lang.MullPointerException

C) java.lang.Object

m

Type search

Compare Heap Dumps

Heap usage - Total

Instances
570

380

190

39 78 117 156 195 234 273 312 351 390 429 468

Time stamp

Heap usage - Type com.is2t.test HeapDumpTestiTestObj

Instances
501

334

167

3% 78 117 156 195 234 273 312 351 390 429 468
Tirne stamp

Fig. 58: Progressive Heap Usage

The Compare tool compares the contents of two heap dump files. To open the tool select two heap dump XML files
in the Package Explorer, right-click and select Heap Analyzer > Compare

The Compare tool shows the types in the old heap on the left-hand side, and the types in the new heap on the
right-hand side, and marks the differences between them using different colors.

Typesin the old heap dump are colored red if there are one or more instances of this type which are in the old dump
but not in the new dump. The missing instances have been garbage collected.

Types in the new heap dump are colored green if there are one or more instances of this type which are in the new
dump but not in the old dump. These instances were created after the old heap dump was written.

Clicking to the right of the type name unfolds the list to show the instances of the selected type.

4.12. Development Tools

178

MicroEJ Documentation, Revision b25dd891

£9 Heap Comparator ©% =0
Show ’AII instances v] Array type C] Class type
[0 Oid heap : heap-0.xm 34 types - 570 instances [0 New heap : heap-1.xml 35 types - 471 instances
char|] - char[] -
@ com.is2t.cldc.s3.DefaultSystem Out C] com.ist.clde.s3.DefaultSystem Out
(& com.is2ttest.HeapDumpTest (® com.is2ttest HeapDumpTest
(9 com.is2ttest.HeapDumpTestSTestObj (@ com.is2ttest.HeapDumpTestsTestObj
(@ com.is2ttest.HeapDumpTestSTestObj3 {5 com.is2t.test.HeapDumpTestSTestObj2
@ &j.bonlmmutables (@ com.is2t.test.HeapDumpTestSTestObj3
@ gj.benImmutablesFile @ gjbonImmutables
int[] ® gj.bonImmutablesFile
int[]] = int(] E
C] ist.supportlang. Systools 1 int[1[]
(@ ist.support.util EncUS_ASCT (@ ist.suppertlang.Systools
(@ ist.support.util EncodingConversion @ ist.support.util. EncUS_ASCT
(@ java.io.FileDescriptor (@ ist.support.util. EncodingConversion
(@ java.io FileDutputStream (@ java.ioFileDescriptor
(@ java.ic.OutputStream (@ java.ic.FileOutputStream
@ java.o, OutputStreamWiter @ java.o, QutputStream
(& java.io PrintStream — @ java.io.OutputStreamWriter B
(& java.ioWriter (@ java.io.PrintStream
@ java.lang.Exception C] java.ic Writer
@ javalangIndexOutOfBoundsException (@ javalang.Exception
(@ java.lang.MullPointerException @ javalangIndexOutOfBoundsException
(@ javalang.Object @ java.lang.MullPointerException
java.lang.Object[] @ javalang.Object
@ javalang.OutOfMemoryError i java.lang.Object[] i

Fig. 59: Compare Heap Dumps

The combo box at the top of the tool allows the list to be restricted in various ways:

« Allinstances - no restriction.

Garbage collected and new instances - show only the instances that exist in the old heap dump but notin the
new dump, or which exist in the new heap dump but not in the old dump.

Persistent instances - show only those instances that exist in both the old and new dumps.

Persistentinstances with value changed - show only those instances that exist in both the old and new dumps
and have one or more differences in the values of their fields.

Instance Fields Comparison View

The Compare toolworksin conjunction with the Instance Fields Comparison view, which opens automatically when
an instance is selected in the tool.

The view shows the values of the fields of the instance in both the old and new heap dumps, and highlights any
differences between the values.

4.12. Development Tools 179

MicroEJ Documentation, Revision b25dd891

£9 Heap Comparator &1

=8
Show ’Persistent instances with value changed vl Array type @ Class type
[0 OId heap : heap-0.xml 34 types - 570 instances [0 New heap : heap-1.xml 35 types - 471 instances
3 com.ist.testHeapDumpTest (@ com.is?t.test.HeapDumpTest
& com.is?ttestHeapDumpTestSTestObj3 (& com.is?t.test. HeapDumpTestSTestObj3
dp #625 <dp #625
java.ang.Object[] java.lang. Object[]
(& javalang.Thread (& javalang.Thread
@ java.utilVector (@ java.util.Vector
Type com.is2t.test. HeapDumpTestSTestObj3 : 0 instances garbage collected, 0 new instances, 1 persistent instances.
El Console (E_L‘ Problems EE Outline (E Fields and Reference Hierarchy (Eﬁ Instance Fields Comparison 2 =
Fields Type Old value New value
a @this © com.is2ttest. HeapDumpTestiTestOhbj3 #5625 #6525
@a int 0 0
Gb int 0 3
@c int 0 0

Fig. 60: Instance Fields Comparison view

4.12.6 ELF to Map File Generator

Principle

The ELF to Map generator takes an ELF executable file and generates a MicroEJ compliant .map file. Thus, any ELF
executable file produced by third party linkers can be analyzed and interpreted using the Memory Map Analyzer.

Functional Description

ELF Executable file

Execute
ELF to Map
Tool

Fig. 61: ELF To Map Process

4.12. Development Tools

180

MicroEJ Documentation, Revision b25dd891

Installation

This tool is a built-in platform tool.

Use

This chapter explains MicroEJ tool options.

Category: ELF to Map

ELF to Map Input
ELF file: ‘ | Browse...
Output
Map file: ‘ | Browse...

Group: Input

Option(browse): ELF file

Option Name: input.file

Default value: (empty)

Group: Output

Option(browse): Map file

Option Name: output.file

Default value: (empty)

4.12. Development Tools 181

MicroEJ Documentation, Revision b25dd891

4.12.7 Serial to Socket Transmitter
Principle

The MicroEJ serialToSocketTransmitter is a piece of software which transfers all bytes from a serial port to a tcp
client or tcp server.

Installation

This tool is a built-in platform tool.

Use

This chapter explains MicroEJ tool options.

Category: Serial to Socket

Serial to Socket Serial Options

Port: | COMD Baudrate: | 115200 v

Server Options

Port: | 5555

Group: Serial Options
Option(text): Port

Option Name: serail.to.socket.comm.port
Default value: COM0

Description: Defines the COM port:

Windows - COM1, COM2, ..., COM#n*

Linux- /dev/ttySo, /dev/ttyUSBo, ..., /dev/ttyS*nx, /dev/ttyUSBxnx

4.12. Development Tools 182

MicroEJ Documentation, Revision b25dd891

Option(combo): Baudrate

Option Name: serail.to.socket.comm.baudrate
Default value: 115200

Available values:

9600

38400

57600

115200

Description: Defines the COM baudrate.

Group: Server Options
Option(text): Port

Option Name: serail.to.socket.server.port
Default value: 5555

Description: Defines the server IP port.

4.12.8 Memory Map Analyzer
Principle
When a MicroEJ Application is linked with the MicroEJ Workbench, a Memory MAP file is generated. The Memory

Map Analyzer (MMA) is an Eclipse plug-in made for exploring the map file. It displays the memory consumption of
different features in the RAM and ROM.

4.12. Development Tools 183

MicroEJ Documentation, Revision b25dd891

Functional Description

MicroEJ
Application

Platform

1. Build the MicroEJ
Application

Map file Executable file

2. Open Memory
Map Analyzer

Fig. 62: Memory Map Analyzer Process

In addition to the executable file, the MicroEJ Platform generates a map file. Double click on this file to open the
Memory Map Analyzer.

Dependencies

No dependency.

Installation

This tool is a built-in platform tool.

Use

The map file is available in the MicroEJ Application project output directory.

4.12. Development Tools 184

MicroEJ Documentation, Revision b25dd891

[Pa. i JgMy. EiTe. iTe. = O | [0 HelloWorldjava &3 =g
= & v 2® * Javall .
. 55} MyHelloWorldSample ; package com.microej.example.hello;
4 4% src/main/java 16% import java.io.Filej[]
4 [com.microej.example.hello 24
> 47| HelloWorld.java 258
. (™ src/main/resources 26 * Prints the message "Hello World !" an displays MicroE] splash
. 27 */
g fn“ Refe.ranced Libraries 28 public class HelloWorld extends Displayable implements EventHandler{
» [.settings 29
4 [= commicroej.example.hello.HelloWorld 38 private static final int PADDING TEXT =5;
(&= bon 31 private static final int PADDING BETWEEN IMAGE AND TEXT = 3@;
> B ec ?% . final .
. o fonts ;z private final String[] messages; E -
(= heapDump 35 private Image microejImage;
- (= images L
= logs 378 public static void main(String[] args) {
> (= soar 38 -"?i_crnUI.sturt();
- 39 / new Helloworld().sh H
. (= toolbox -
m 48 try {
SOAR.map & 41 socket s = SSLSocketFactory.getDefoult().createSocket();
SOAR.0 a2 } catch (IOException &) {
> (= filesystem v 43 l Auto-generated catch block
N 44 e.printStackTrace();
[% classpath Z; '
X] project 47 File f = mew File("/s55");

&

Fig. 63: Retrieve Map File

Select an item (or several) to show the memory used by this item(s) on the right. Select “All” to show the memory
used by all items. This special item performs the same action as selecting all items in the list.

[# Pa.. 57 FgMy.. EjTe. = [0 | [0S0ARmap i = B8
< 7 ’ Image 5 Runtime Si
- . ame mage Size untime Size e
“ r" T,,yjrij,:nv:‘o;“;as\fample @ All 1899 KB 51.9 KB =
) L‘“ erc/main/resources . @ ApplicationCode 27KB 0B IMAGE: 49.3 KB /189.9 KB
S @ ApplicationFonts 24.2 KB 0B [26.00%]
» =% Referenced Libraries
. @ Applicationlmages 3.2KB 0B :
g L/ settings > @ Applicationlmmutables 264 B 0B _Ap...l ArplicationSirings l
4= fum.mlcmej.examp\E‘heIIU.HeIIuWurld I 0E 0B
.V,_I/ ben > O ApplicationStrings 189 KB 0B (s
L . @ BSP 600 B 3.7KB
(& fonts . @ ClassesNames 71KB 0B
& heapDump . @ CoreEngine 20KB 7.5KB
© = mages . @ CoreEngineAllocator 08 36.0 KB
£ logs . @ Drivers 56 B 0B
=l ;”Z"bux . @ InstalledFestures 08 64B
E SOARmap > @ LibAddonWadapps 2288 0B
SOARo » & LibFoundationBOMN 856 B 0B
- . @ LibFoundaticnEDC 375KB 486 B
& filesystem . @ LibFoundationFs 01KB 4B
& - . @ LibFoundationkF 100 KB 0B
|%] .classpath . = 5
Project . @ L!hFﬂundat!nanchI 26.7 KB 41KB
- @ LibFoundationNET 26.5 KB 4B
. @ LibFoundationSSL 106 KB 0B

Fig. 64: Consult Full Memory

Select an item in the list, and expand it to see all symbols used by the item. This view is useful in understanding
why a symbol is embedded.

4.12. Development Tools 185

MicroEJ Documentation, Revision b25dd891

[l ® = O |] HelloWorld,java [H SOAR.map &2 = 4
[l v - : —
L MyHalIoWo;\‘:ﬁSamp\a Na'r;nf . Image Size Runtime Size -
“ @ src/main/java 4@ Al 189.9 KB 519 KB 5
o . » @ _java_AAljava_lang_String 208 0B
“ @ chjm;;::{;:ﬁ:amg @ _java_Alcom_is2t_elflw_nodes_Section_name 168 0B
iy e . @ _java_ALcom_is2t java_io_IFileChannelSOpen 08 0B
[sreimainiresources @ _java_Alcom_is2t_kf_IFeatureloader_nameini 168 0B
=i Referenced Libraries s 5
@ _java_ALcom_is2t_support_net_ss|_AbstractSS 208 0B
[settings @ _java_ALcom_is2t_support_net_ss|_AbstractsS 168 0B
4 (& com.microgj.examplet . @ _java_Alcom_is2t_suppart_net_ssl_xS09_X509 08 0B
£ ben . @ _java_Alcom is2t support_net_ssl x509_X509 168 0B
l_'_: f“ > @ _java_Aljava_ic_FileSPathStatus 208 0B
l_'_: onts > @ _java_Aljava_io_FileSPathStatus_nameinfo 16B [
& heapDump @ _java_ALjava_lang_Thread 08 0B
+ [images @ _java_Aljava_lang_Thread_nameinfo 168 0B
(& logs . @ _java_ClinitMethod 08B 0B
L sear @ _java_features _start 648 0B
= t;;g?;ﬂp © _java_kernel_header start 88 0B
@ SOAR:O @ _java_Lcom_is2t_elflw_input_AbstractElfLoad: 808 0B
. filesystem > @ _java_Lcom_is2t_elflw_input_AbstractElfLoad: 1528 0B
= ¥ > @ _java_Lcom_is2t_elflw_input_ElfLoaderError_n 72B [
';' Z(asspam . @ _java_Lcom_is2t_elflw_input_soar_ELoaderS: 88 0B
% project » @ _java_Lcom_is2t_elflw_input_soar_ElfLoaderSc 12B 0B
, @ _java_Lcom,_is2t_elfhw_nodes_Dynamichlloca 248 0B
, @ _java_Lcom_is2t_elfbw_nodes_EfRelocatablell %68 0B
» @ _java_Lcom_is2t_elflw_nodes_ProgAllocation! 3B 0B T A T DT e S
> @ _java_Lcom_is2t_elflw_nodes RelocationEntry 208 0B o
@ _java_Lcom_is2t_elflw_nodes RelocationSecti 168 [1]:] Browse.. | | Run
> @ _java_Lcom_is2t_elflw_nodes_SymbolTableEn 288 0B _ || Select a Memory Map Script to run
- e wL. o cC._i_riic 130 no
B Console 52 3«"""5';:4':‘3
Memory Map Analyzer Console SOAR map
ALl = 194516 bytes -
APPLICATION: £

ApplicationCode = 278@ bytes

ApplicaticnFents = 24868 bytes

ApplicaticnImages = 3284 bytes

ApplicaticnResources = 28 bytes

ApplicationImmutables = 264 bytes

ApplicationStrings = 19372 bytes i

Fig. 65: Detailed View

4.12.9 Event Tracing
Description

Event Tracing allows to record integer based events for debugging and monitoring purposes without affecting ex-
ecution performance too heavily. Basically, it gives access to Tracer objects that are named and can produce a
limited number of different event types.

Arecord is an event type identified by an eventID and can have a list of values. It can be a single event or a period
of time with a start and an end.

Event Tracing can be accessed from two APIs:

+ A Java API, provided by the Trace APl module. The following dependency must be added to the module.ivy
of the MicroEJ Application project:

<dependency org="ej.api" name="trace" rev="1.1.0"/>

« ACAPI, provided by the Platform header file named LLTRACE_impl.h.

Event Recording

Events are recorded if and only if:
« the MicroEJ Core Engine trace system is enabled,

+ and trace recording is started.

4.12. Development Tools 186

https://repository.microej.com/modules/ej/api/trace/

MicroEJ Documentation, Revision b25dd891

To enable the MicroEJ Core Engine trace system, set the Application Option named core.trace.enabled to true
(see also launch configuration).

Then, multiple ways are available to start and stop the trace recording:

« by setting the Application Option named core.trace.autostart to true to automatically start at startup
(see also launch configuration),

+ using the Java APl methods ej.trace.Tracer.startTrace() and ej.trace.Tracer.stopTrace(),

« using the C API functions LLTRACE_IMPL_start(void) and LLTRACE_IMPL_stop(void).

Java APl Usage

The detailed Trace APl documentation is available here.

First, you need to instantiate a Tracer object by calling its constructor with two parameters. The first parameter,
name, is a String that will represent the Tracer object group’s name. The second parameter, nbEventTypes,isan
integer representing the maximum number of event types available for the group.

Tracer tracer = new Tracer("MyGroup”, 10);

Then, you can record an event by calling the recordEvent(int eventId) method. The event ID needs to be in
the range 0 to nbEventTypes-1 with nbEventTypes the maximum number of event types set when initializing
the Tracer object. Methods named recordEvent(...) always needs the event ID as the first parameter and can
have up to ten integer parameters as custom values for the event.

To record the end of an event, call the method recordEventEnd(int eventID) . It will trace the duration of an
event previously recorded with one of the recordEvent(int) methods. The recordEventEnd(...) method can
also have another integer parameter for a custom value for the event end. One can use it to trace the returned value
of a method.

The Trace APl also provides a String constant Tracer. TRACE_ENABLED_CONSTANT_PROPERTY representing the Con-
stant value of core.trace.enabled option. This constant can be used to remove at build time portions of code
when the trace system is disabled. To do that, just surround tracer record calls with a if statement that checks the
constant’s state. When the constant is setto false, the code inside the if statement will not be embedded with
the application and thus will not impact the performances.

if(Constants.getBoolean(Tracer.TRACE_ENABLED_CONSTANT_PROPERTY)) {
// This code is not embedded if TRACE_ENABLED_CONSTANT_PROPERTY is set to false.
tracer.recordEventEnd(0);

3

Examples:

« Trace a single event:

private static final Tracer tracer = new Tracer("Application”, 100);

public static void main(String[] args) {
Tracer.startTrace();
tracer.recordEvent(0);

3

Standard Output:

VM START
[TRACE] [1] Declare group "Application”
[TRACE] [1] Event 0x@

4.12. Development Tools 187

https://repository.microej.com/javadoc/microej_5.x/foundation/ej/trace/Tracer.html

MicroEJ Documentation, Revision b25dd891

+ Trace a method with a start event showing the parameters of the method and an end event showing the
result:

private static final Tracer tracer = new Tracer("Application”, 100);

public static void main(String[] args) {
Tracer.startTrace();

int a = 14;
int b = 54;
add(a, b);

}

public static int add(int a, int b) {
tracer.recordEvent(1, a, b);
int result = a + b;
tracer.recordEventEnd(1, result);
return result;

3

Standard Output:

VM START

[TRACE] [1] Declare group "Application”
[TRACE] [1] Event ox1 (14 [@OxE],54 [0x36])
[TRACE] [1] Event End 0x1 (68 [0x441)

Platform Implementation
By default, when enabled, the Trace API displays a message in the standard output for every recordevent(...)
and recordEventEnd(...) method calls.

It does not print a timestamp when displaying the trace message because it can drastically affect execution perfor-
mances. It only prints the ID of the recorded event followed by the values given in parameters.

A Platform can connect its own implementation by overriding the functions defined in the LLTRACE_impl.h file.

MicroEJ provides an implementation that redirects the events to SystemView tool, the real-time recording and vi-
sualization tool from Segger. It is perfect for a finer understanding of the runtime behavior by showing events
sequence and duration.

A implementation example for the NXP OM13098 development board with SystemView support is available here.
Please contact our support team for more information about how to integrate this Platform module.

4.12.10 Null Analysis

NullPointerException thrown at runtime is one of the most common causes for failure of Java programs. The Null
Analysis tool can detect such programming errors (misuse of potential null Java values) at compile-time.

The following example of code shows a typical Null Analysis error detection in MicroEJ SDK.

4.12. Development Tools 188

https://www.segger.com/
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc54000-cortex-m4-/lpcxpresso54628-development-board:OM13098
https://developer.microej.com/packages/referenceimplementations/U3OER/2.0.1/OM13098-U3OER-fullPackaging-eval-2.0.1.zip
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/NullPointerException.html

MicroEJ Documentation, Revision b25dd891

& Mainjava 2 = 8

package nullanalysis; ~ N
public class Main {

public static woid example() {
// The following ‘getProperty' method can return a 'null' value
f/ {@Nullable String java.lang.System.getProperty(String key)
Sstring myValue = System.getProperty("APropertyThatMayBeUndefined™);

f/ The following 'println’ method allows Nullable argument
'/ woid java.io.PrintStream.println(@Nullable String x)

E System.out.println(myValue); =

2

4 /{ ERROR: 'Potential null peinter access: The variable myValue may be null at this location’

5 my¥alue. toUpperCase();

6 T v
g Problems &3 r § = O

1 error, 0 warnings, 0 others
Description

w @ Errors (1 item)
43 Potential null pointer access: The variable myValue may be null at this location

Fig. 66: Example of Null Analysis Detection

Principle
The Null Analysis tool is based on Java annotations. Each Java field, method parameter and method return value
must be marked to indicate whether it can be null or not.

Once the Java code is annotated, module projects must be configured to enable Null Analysis detection in MicroEJ
SDK.

Java Code Annotation

MicroEJ defines its own annotations:

« @NonNullByDefault: Indicates that all fields, method return values or parameters can never be null in the
annotated package or type. This rule can be overridden on each element by using the Nullable annotation.

« @Nullable: Indicates that a field, local variable, method return value or parameter can be null.
« @NonNull: Indicates that a field, local variable, method return value or parameter can never be null.
MicroEJ recommends to annotate the Java code as follows:

« In each Java package, create a package-info.java file and annotate the Java package with
@NonNullByDefault . Thisis a common good practice to deal with non null elements by default to avoid
undesired NullPointerException. It enforces the behavior which is already widely outlined in Java coding
rules.

4.12. Development Tools 189

https://repository.microej.com/javadoc/microej_5.x/apis/ej/annotation/NonNullByDefault.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/annotation/Nullable.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/annotation/NonNull.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/NullPointerException.html

MicroEJ Documentation, Revision b25dd891

[Package Explorer 57 = B [J] package-infojava &3
elsl

v',_'—';',- nullanalysis -

@Ej.annntatiun.ch”ullByDEfaultI
2 package nullanalysis;

L,

~ [sre/main/java

v nullanalysis
)| package-info.java |

B crefmain,resources

« IneachJavatype, annotate allfields, methods return values and parameters that can be null with @Nullable.
Usually, this information is already available as textual information in the field or method Javadoc comment.
The following example of code shows where annotations must be placed:

@Mullable
public Object thisFieldCanBeNull;

@Nullable

public Object thisMethodCanReturnNull() {
return null;
¥

public void thisMethodParameterCanBeNull{@Nullable Object param) {

¥

Note: MicroEJ SDK 5.3.0 or higher requires annotations declared in EDC-1.3.3 or higher. See EDC 1.3.3 Changelog
for more details.

Module Project Configuration

To enable the Null Analysis tool, a module project must be configured as follows:
+ In the Package Explorer, right-click on the module project and select Properties ,

+ Navigate to Java Compiler > Errors/Warnings ,

+ Inthe Nullanalysis section, configure options as follows:

4.12. Development Tools 190

https://repository.microej.com/modules/ej/api/edc/1.3.3/
https://repository.microej.com/modules/ej/api/edc/1.3.3/CHANGELOG-1.3.3.md

MicroEJ Documentation, Revision b25dd891

® Properties for

| | | Errors/Warnings =7 -~ §
Re_snurce Enable project specific settings Configure Workspace Settings...
Builders
Checkstyle Select the severity level for the following optional problems:
Git
hy | type filter text (use ~ to filter on preference values, e.g. ~ignore or ~off) |
JAutedoc ~ Null analysis ~
Java Build Path Mull pointer access: Error w
Java Code Style
~ Java Compiler Potential null pointer access: Error ~
Annotation Processing
- Redundant null check: Error ~
Building
Errors/Warnings [Ilinclude ‘assert' in null analysis
Javadoc nable annotation-based null analysis
Task Tags) Violation of null specification: Error ~
Javadoc Location
Java Editor Conflict between null annotations and null inference: Error ~
PMD .
Project Natures Unchecked conversion from non-annotated type to @NonMNull type: Error ~
Project References Unsafe conversion of annotated parameterized type to less-annotated type: Error ~
Run/Debug Settings
SonarLint Problems detected by pessimistic analysis for free type variables: Error w
Task Repositary Unsafe '@MNennull’ interpretation of free type variable from librany: Error ~
WikiText
Redundant null anneotation: Error ~
'@MonMull' parameter not annotated in overriding method: Error ~
Missing '@MNonMullByDefault’ annotation on package: Error w
se default annotations for null specification
nherit null annctations
nable syntactic null analysis for fields
v
Restore Defaults Apply
?\ Apply and Close Cancel
+ Click onthe Configure... link to configure MicroEJ annotations:
- ej.annotation.Nullable
- ej.annotation.NonNull
- ej.annotation.NonNullByDefault
4.12. Development Tools 191

MicroEJ Documentation, Revision b25dd891

Enter customn annotation names for null specifications.

Primary annctations are for active use in source and class files, whereas secondary annotations are
intended only for interpreting API of third-party libraries,

‘Mullable' annotations:

Elements annotated with the '@Mullable’ annotation can be null,

Primary annotation: lej.annotation.Mullable]

Secondary annotations: | [Add
‘MonMull' annotations:

Elements annctated with '@MNenMull' must never be null,

Primary annotation: lej.annotation.MonMull |

Secondary annotations: | [Add

‘MonMullByDefault’ annotations:

The '@MNonMNullByDefault’ annotation sets ‘'non-null’ as default for all elements in a package, type,
or method. When using Eclipse's default '@MonMullByDefault’ annetation, an optional annotation
argument is evaluated, allowing to cancel or fine-tune the 'non-null’ default.

Primary annotation: |e_i.annu:utatiu:ur1.NDnNuIIB}rEIEfauIt|

Secondary annotations: | | [Add
@' Restore Defaults] [oK] ’ Cancel l

« Inthe Annotations section, check Suppress optional errors with ‘@SuppressWarnings’ option:

4.12. Development Tools 192

MicroEJ Documentation, Revision b25dd891

®¥ Properties for nullana

[l | | Errors/Warnings MR
Re_snurce ~ Enable project specific settings Configure Workspace Settings...
Builders
Checkstyle Select the severity level for the following optional problems:
hvy . - . .

IAutodoc | type filter text (use ~ to filter on preference values, e.g. ~ignore or ~off) |
Java Build Path ~ Annotations ~
Java Code Style Missing '@Override’ annotation: lgnore

~ Java Compiler

Annatation Processin Include implementations of interface methods (1.6 or higher)

Building Missing '@Deprecated’ annotation: Ignore
Errors/Warnings o . -
Annotation is used as super interface: Warning ~
Javadoc
Task Tags Unhandled teken in '@5uppressWarnings': Warning
Ja\radnr? Location Enable '@5SuppressWarnings' annotations
lava Editor
PMD Unused '@5SuppressWarnings' token: Warning
Pm_!ect Natures ‘Unused’ status is not fully known because a relevant option is set to 'lgnore”: Info ~
Project References
Refactoring History I Suppress optional errors with '@5uppressWamings'| v
Run/Debug Settings
< J J 5 v Restore Defaults Apply

?\ Apply and Close Cancel

This option allows to fully ignore Null Analysis errors in advanced cases using @SuppressWarnings("null")
annotation.

If you have multiple projects to configure, you can then copy the content of the .settings folder to an other
module project.

4.12. Development Tools 193

MicroEJ Documentation, Revision b25dd891

v '_.'j‘J nullanalysis
w [cro/main/java
B nullanalysis
P src/main/resources
B sroftest/java
8 sroftest/resources
Bl Module Dependencies moduleivy [*]

w [.settings
org.eclipse.jdt.core.prefs

org.eclipse.jdt.ui.prefs
= internal

= src

[= src-adpgenerated
.classpath
.gitignore

.project
[%] CHANGELOG.md
= LICEMSE txt

by module.ivy
[#] README.md

Fig. 67: Null Analysis Settings Folder

Warning: You may lose information if your target module project already has custom parameterization or if it
was created with another MicroEJ SDK version. In case of any doubt, please configure the options manually or
merge with a text file comparator.

MicroEJ Libraries

Many libraries available on MicroEJ Central Repository are annotated with Null Analysis. If you are using a library
which is not yet annotated, please contact our support team.

For the benefit of Null Analysis, some APIs have been slightly constrained compared to the Javadoc description.
Here are some examples to illustrate the philosophy:

« System.getProperty(String key, String def) does not accept a null default value, which allows to ensure the
returned value is always non null.

+ Collections of the Java Collections Framework that can hold null elements (e.g. HashMap) do not accept
null elements. This allows APIs to return null (e.g. HashMap.get(Object)) only when an element is not
contained in the collection.

Implementations are left unchanged and still comply with the Javadoc description whether the Null Analysis is
enabled or not. So if these additional constraints are not acceptable for your project, please disable Null Analysis.

Advanced Use

For more information about Null Analysis and inter-procedural analysis, please visit Eclipse JDT Null Analysis doc-
umentation.

4.12. Development Tools 194

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#getProperty-java.lang.String-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/HashMap.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/HashMap.html#get-java.lang.Object-
https://help.eclipse.org/2020-06/index.jsp?topic=/org.eclipse.jdt.doc.user/tasks/task-using_null_annotations.htm
https://help.eclipse.org/2020-06/index.jsp?topic=/org.eclipse.jdt.doc.user/tasks/task-using_null_annotations.htm

MicroEJ Documentation, Revision b25dd891

4.13 Advanced Tools

4.13.1 MicroEJ Linker

Overview

MicroEJ Linker is a standard linker that is compliant with the Executable and Linkable File format (ELF).

MicroEJ Linker takes one or several relocatable binary files and generates an image representation using a descrip-
tion file. The process of extracting binary code, positioning blocks and resolving symbols is called linking.

Relocatable object files are generated by SOAR and third-party compilers. An archive file is a container of Relocat-
able object files.

The descriptionfile is called a Linker Specific Configuration file (Isc). It describes what shall be embedded, and how
those things shall be organized in the program image. The linker outputs :

+ An ELF executable file that contains the image and potential debug sections. This file can be directly used by
debuggers or programming tools. It may also be converted into a another format (Intel* hex, Motorola* s19,
rawBinary, etc.) using external tools, such as standard GNU binutils toolchain (objcopy, objdump, etc.).

« Amap file, in XML format, which can be viewed as a database of what has been embedded and resolved by
the linker. It can be easily processed to get a sort of all sizes, call graphs, statistics, etc.

+ The linker is composed with one or more library loaders, according to the platform’s configuration.

ELF Overview

An ELF relocatable file is split into several sections:
« allocation sections representing a part of the program
« control sections describing the binary sections (relocation sections, symbol tables, debug sections, etc.)

An allocation section can hold some image binary bytes (assembler instructions and raw data) or can refer to an
interval of memory which makes sense only at runtime (statics, main stack, heap, etc.). An allocation section is an
atomic block and cannot be split. A section has a name that by convention, represents the kind of data it holds.
For example, .text sections hold binary instructions, .bss sections hold read-write static data, .rodata hold
read-only data, and .data holds read-write data (initialized static data). The nameis used in the.Isc file to organize
sections.

A symbol is an entity made of a name and a value. A symbol may be absolute (link-time constant) or relative to a
section: Its value is unknown until MicroEJ Linker has assigned a definitive position to the target section. A symbol
can be local to the relocatable file or global to the system. All global symbol names should be unique in the system
(the name is the key that connects an unresolved symbol reference to a symbol definition). A section may need the
value of symbols to be fully resolved: the address of a function called, address of a static variable, etc.

Linking Process

The linking process can be divided into three main steps:

1. Symbols and sections resolution. Starting from root symbols and root sections, the linker embeds all sec-
tions targeted by symbols and all symbols referred by sections. This process is transitive while new symbols
and/or sections are found. At the end of this step, the linker may stop and output errors (unresolved symbols,
duplicate symbols, unknown or bad input libraries, etc.)

4.13. Advanced Tools 195

MicroEJ Documentation, Revision b25dd891

2. Memory positioning. Sections are laid out in memory ranges according to memory layout constraints de-
scribed by the Isc file. Relocations are performed (in other words, symbol values are resolved and section
contents are modified). At the end of this step, the linker may stop and output errors (it could not resolve

constraints, such as not enough memory, etc.)

3. Anoutput ELF executable file and map file are generated.

A partial map file may be generated at the end of step 2. It provides useful information to understand why the link
phase failed. Symbol resolution is the process of connecting a global symbol name to its definition, found in one of
the linker input units. The order the units are passed to the linker may have an impact on symbol resolution. The
rules are:

+ Relocatable object files are loaded without order. Two global symbols defined with the same name result in

an unrecoverable linker error.

« Archive files are loaded on demand. When a global symbol must be resolved, the linker inspects each archive
unit in the order it was passed to the linker. When an archive contains a relocatable object file that declares
the symbol, the object file is extracted and loaded. Then the first rule is applied. It is recommended that you
group object files in archives as much as possible, in order to improve load performances. Moreover, archive
files are the only way to tie with relocatable object files that share the same symbols definitions.

« Asymbol name is resolved to a weak symbol if - and only if - no global symbol is found with the same name.

Linker Specific Configuration File Specification

Description

« Symbols and sections definitions.

+ Memory layout definitions.

Listing 5: Example of Relocation of Runtime Data from FLASH to RAM

<?xml version="1.0" encoding="UTF-8"7>
<l--

An example of linker specific configuration file

-—>
<lsc name="MyAppInFlash">

<include name="subfile.lscf"/>
Kl==
Define symbols with arithmetical and logical expressions
-—>
<defSymbol name="FlashStart” value="0"/>
<defSymbol name="FlashSize" value="0x10000"/>
<defSymbol name="FlashEnd" value="FlashStart+FlashSize-1"/>
LY==
Define FLASH memory interval
-—>
<defSection name="FLASH" start="FlashStart"” size="FlashSize"/>

<l--
Some memory layout directives

-—>

<memorylLayout ranges ="FLASH">
<sectionRef name ="x.text"/>

A Linker Specific Configuration (Lsc) file contains directives to link input library units. An Isc file is written in an XML
dialect, and its contents can be divided into two principal categories:

(continues on next page)

4.13. Advanced Tools

196

MicroEJ Documentation, Revision b25dd891

(continued from previous page)
<sectionRef name ="x.data"/>
</memorylLayout>
</1sc>

File Fragments

An lsc file can be physically divided into multiple Isc files, which are called lsc fragments. Lsc fragments may be
loaded directly from the linker path option, or indirectly using the include tagin an Isc file.

Lsc fragments start with the root tag 1scFragment . By convention the lsc fragments file extensionis . 1scf . From
here to the end of the document, the expression “the Isc file” denotes the result of the union of all loaded (directly
and indirectly loaded) Isc fragments files.

Symbols and Sections

A new symbol is defined using defSymbol tag. Asymbol has a name and an expression value. All symbols defined
in the Isc file are global symbols.

A new section is defined using the defSection tag. A section may be used to define a memory interval, or define
a chunk of the final image with the description of the contents of the section.

Memory Layout

A memory layout contains an ordered set of statements describing what shall be embedded. Memory positioning
can be viewed as moving a cursor into intervals, appending referenced sections in the order they appear. A symbol
can be defined as a “floating” item: Its value is the value of the cursor when the symbol definition is encountered.
In the example below, the memory layout sets the FLASH section. First, all sections named .text are embedded.
The matching sections are appended in a undefined order. To reference a specific section, the section shall have a
unique name (for example a reset vector is commonly called .reset or .vector,etc.). Then, the floating symbol
dataStart is set to the absolute address of the virtual cursor right after embedded .text sections. Finally all
sections named .data are embedded.

A memory layout can be relocated to a memory interval. The positioning works in parallel with the layout ranges,
as if there were two cursors. The address of the section (used to resolve symbols) is the address in the relocated
interval. Floating symbols can refer either to the layout cursor (by default), or to the relocated cursor, using the
relocation attribute. A relocation layout is typically used to embed data in a program image that will be used
at runtime in a read-write memory. Assuming the program image is programmed in a read only memory, one of
the first jobs at runtime, before starting the main program, is to copy the data from read-only memory to RAM,
because the symbols targeting the data have been resolved with the address of the sections in the relocated space.
To perform the copy, the program needs both the start address in FLASH where the data has been put, and the
start address in RAM where the data shall be copied.

Listing 6: Example of Relocation of Runtime Data from FLASH to RAM

<memorylLayout ranges="FLASH" relocation="RAM" image="true">
<defSymbol name="DataFlashStart"” value="."/>
<defSymbol name="DataRamStart” value=" ." relocation="true"/>
<sectionRef name=".data"/>
<defSymbol name="DataFlashLimit"” value="."/>

</memoryLayout>

4.13. Advanced Tools 197

MicroEJ Documentation, Revision b25dd891

Note: the symbol DataRamStart is defined to the start address where .data sections will be inserted in RAM

memory.

Tags Specification

Here is the complete syntactical and semantical description of all available tags of the .1sc file.

Table 4: Linker Specific Configuration Tags

Tags

Attributes

Description

defSection

Defines a new section. A floating section only holds a declared size
attribute. A fixed section declares at least one of the start / end at-
tributes. When this tag is empty, the section is a runtime section, and
must define at least one of the start, end or size attributes. When
this tag is not empty (when it holds a binary description), the section
is an image section.

name

Name of the section. The section name may not be unique. However,
it is recommended that you define a unique name if the section must
be referred separately for memory positioning.

start

Optional. Expression defining the absolute start address of the sec-
tion. Must be resolved to a constant after the full load of the Isc file.

end

Optional. Expression defining the absolute end address of the section.
Must be resolved to a constant after the full load of the Isc file.

size

Optional. Expression defining the size in bytes of the section. Invari-
ant: (end-start)+1=size . Must be resolved to a constant after the
full load of the Isc file.

align

Optional. Expression defining the alignment in bytes of the section.

rootSection

Optional. Boolean value. Sets this section as a root section to be em-
bedded even if it is not targeted by any embedded symbol. See also
rootSection tag.

symbolPrefix

Optional. Used in collaboration with symbolTags . Prefix of symbols
embedded in the auto-generated section. See Auto-generated Sec-
tions.

symbolTags

Optional. Used in collaboration with symbolPrefix . Comma sepa-
rated list of tags of symbols embedded in the auto-generated section.
See Auto-generated Sections.

defSymbol

Defines a new global symbol. Symbol name must be unique in the
linker context

name

Name of the symbol.

type

Optional. Type of symbol usage. This may be necessary to set the type
of a symbol when using third party ELF tools. There are three types: -
none : default. No special type of use. - function: symbol describes
a function. - data: symbol describes some data.

value

The value "." defines a floating symbol that holds the current cur-
sor position in a memory layout. (This is the only form of this tag that
can be used as a memorylLayout directive) Otherwise value is an ex-
pression. A symbol expression must be resolved to a constant after

memory positioning.

relocation

Optional. The only allowed value is true . Indicates that the value
of the symbol takes the address of the current cursor in the memory
layout relocation space. Only allowed on floating symbols.

Continued on next page

4.13. Advanced Tools

198

MicroEJ Documentation, Revision b25dd891

Table 4 - continued from previous page
Tags Attributes Description
rootSymbol Optional. Boolean value. Sets this symbol as a root symbol that must
be resolved. See also rootSymbol tag.
weak Optional. Boolean value. Sets this symbol as a weak symbol.
memorylLayout directive. Defines a named group of sections. Group
name may be used in expression macros START, END, SIZE.All mem-
oryLayout directives are allowed within this tag (recursively).
name The name of the group.
Includes an lsc fragment file, semantically the same as if the fragment
contents were defined in place of the include tag.
name Name of the file to include. When the name is relative, the file sepa-
rator is /, and the file is relative to the directory where the current
[sc file or fragment is loaded. When absolute, the name describes a
platform-dependent filename.
Root tag for an .Isc file.
name Name of the Isc file. The ELF executable output will be {name}.out,
and the map file will be {name}.map
1scFragment Root tag for an Isc file fragment. Lsc fragments are loaded from the
linker path option, or included from a master file using the include
tag.
Describes the organization of a set of memory intervals. The memory
layouts are processed in the order in which they are declared in the
file. The same interval may be organized in several layouts. Each lay-
out starts at the value of the cursor the previous layout ended. The fol-
lowing tags are allowed within a memoryLayout directive: defSymbol
(under certain conditions), group, memorylLayoutRef, padding,and
sectionRef .
ranges Exclusive with default. Comma-separated ordered list of fixed sections
to which the layout is applied. Sections represent memory segments.
image Optional. Boolean value. false if not set. If true, the layout de-
scribes a part of the binary image: Only image sections can be embed-
ded. If false, only runtime sections can be embedded.
relocation Optional. Name of the section to which this layout is relocated.
name Exclusive with ranges. Defines a named memoryLayout directive in-
stead of specifying a concrete memory location. May be included in a
parent memoryLayout using memoryLayoutRef.
memorylLayout directive. Provides an extension-point mechanism to
include memoryLayout directives defined outside the current one.
name All directives of memoryLayout defined with the same name are in-
cluded in an undefined order.
memorylLayout directive. Append padding bytes to the current cursor.
Either size or align attributes should be provided.
size Optional. Expression must be resolved to a constant after the full load
of the Isc file. Increment the cursor position with the given size.
align Optional. Expression must be resolved to a constant after the full load
ofthe Iscfile. Move the current cursor position to the next address that
matches the given alignment. Warning: when used with relocation,
the relocation cursor is also aligned. Keep in mind this may increase
the cursor position with a different amount of bytes.
address Optional. Expression must be resolved to a constant after the full load
of the Isc file. Move the current cursor position to the given absolute
address.

group

include

1sc

memorylLayout

memorylLayoutRef

padding

Continued on next page

4.13. Advanced Tools 199

MicroEJ Documentation, Revision b25dd891

Table 4 - continued from previous page
Tags Attributes Description
fill Optional. Expression must be resolved to a constant after the full load
of the Isc file. Fill padding with the given value (32 bits).
References a section name that must be embedded. This tagis not a
definition. It forces the linker to embed all loaded sections matching
the given name.
name Name of the section to be embedded.
References a symbol that must be resolved. This tagis not a definition.
It forces the linker to resolve the value of the symbol.
name Name of the symbol to be resolved.
Memory layout statement. Embeds all sections matching the given
name starting at the current cursor address.
file Select only sections defined in a linker unit matching the given file
name. The file name s the simple name without any file separator, e.g.
bsp.o or mylink.lsc. Link units may be object files within archive
units.
name Name of the sections to embed. When the name ends with *, all sec-
tions starting with the given name are embedded (name completion),
except sections that are embedded in another sectionRef using the ex-
act name (without completion).
symbol Optional. Only embeds the section targeted by the given symbol. This
is the only way at link level to embed a specific section whose name is
not unique.
force Optional. Deprecated. Replaced by the rootSection tag. The only
allowed value is true. By default, for compaction, the linker embeds
only what is needed. Setting this attribute will force the linker to em-
bed all sections that appear in all loaded relocatable files, even sec-
tions that are not targeted by a symbol.
sort Optional. Specifies that the sections must be sorted in memory. The
value can be: - order : the sections will be in the same order as the
input files - name : the sections are sorted by their file names - unit
: the sections declared in an object file are grouped and sorted in the
order they are declared in the object file
Binary section statement. Describes the four next raw bytes of the
section. Bytes are organized in the endianness of the target ELF ex-
ecutable.
value Expression must be resolved to a constant after the full load of the lsc
file (32 bits value).
Binary section statement. Fills the section with the given expression.
Bytes are organized in the endianness of the target ELF executable.
size Expression defining the number of bytes to be filled.
value Expression must be resolved to a constant after the full load of the lsc
file (32 bits value).

rootSection

rootSymbol

sectionRef

u4

fill

Expressions

An attribute expression is a value resulting from the computation of an arithmetical and logical expression. Sup-
ported operators are the same operators supported in the Java language, and follow Java semantics:

« Unaryoperators: + , - , ~ | |

+ Binaryoperators: + , -, x /| %, <<, >>> 0>> <> <= 0 >= == 1= & | 4
&& , |l

4.13. Advanced Tools 200

MicroEJ Documentation, Revision b25dd891

« Ternary operator: cond ? ifTrue : ifFalse

« Built-in macros:

START (name) : Get the start address of a section or a group of sections

END(name) : Get the end address of a section or a group of sections

SIZE(name) : Get the size of a section or a group of sections. Equivalent to END(name)-START (name)

TSTAMPH() , TSTAMPL () : Get 32 bits linker time stamp (high/low part of system time in milliseconds)

SUM(name, tag) : Get the sum of an auto-generated section (Auto-generated Sections) column. The col-
umn is specified by its tag name.

An operand is either a sub expression, a constant, or a symbol name. Constants may be written in decimal (127) or
hexadecimal form (@x7F). There are no boolean constants. Constant value @ means false, and other constants’
values mean true. Examples of use:

value="symbol+3"
value="((symbol1x4)-(symbol2%3)"

Note: Ternary expressions can be used to define selective linking because they are the only expressions that may
remain partially unresolved without generating an error. Example:

<defSymbol name="myFunction” value="condition ? symbl : symb2"/>

No error will be thrown if the condition is true and symb1 is defined, or the condition is false and symb2 is
defined, even if the other symbol is undefined.

Auto-generated Sections

The MicroEJ Linker allows you to define sections that are automatically generated with symbol values. This is com-
monly used to generate tables whose contents depends on the linked symbols. Symbols eligible to be embedded
in an auto-generated section are of the form: prefix_tag_suffix.An auto-generated section is viewed as a table
composed of lines and columns that organize symbols sharing the same prefix. On the same column appear sym-
bols that share the same tag. On the same line appear symbols that share the same suffix. Lines are sorted in the
lexical order of the symbol name. The next line defines a section which will embed symbols starting with zeroinit
. The first column refers to symbols starting with zeroinit_start_;the second column refers to symbols starting
with zeroinit_end_.

<defSection
name=".zeroinit"
symbolPrefix="zeroInit"
symbolTags="start,end"”
/>

Consider there are four defined symbols named zeroinit_start_xxx , zeroinit_end_xxx ,
zeroinit_start_yyy and zeroinit_end_yyy . The generated section is of the form:

0x00: zeroinit_start_xxx
0x04: zeroinit_end_xxx
0x08: zeroinit_start_yyy
0x0C: zeroinit_end_yyy

If there are missing symbols to fill a line of an auto-generated section, an error is thrown.

4.13. Advanced Tools 201

MicroEJ Documentation, Revision b25dd891

Execution

MicroEJ Linker can be invoked through an ANT task. The task is installed by inserting the following code in an ANT

script

<taskdef
name="linker"
classname="com.is2t.linker.GenericLinkerTask"
classpath="[LINKER_CLASSPATH]"

/>

[LINKER_CLASSPATH] is a list of path-separated jar files, including the linker and all architecture-specific library

loaders.

The following code shows a linker ANT task invocation and available options.

<linker
doNotLoadAlreadyDefinedSymbol="[true|false]”
endianness="[little|big|none]”
generateMapFile="[true|false]”
ignoreWrongPositioningForEmptySection="[true|false]”
lsc="[filename]"
linkPath="[pathl:...pathN]"
mergeSegmentSections="[true|false]”
noWarning="[true|false]"
outputArchitecture="[tag]"
outputName="[name]"”
stripDebug="[true|false]”
toDir="[outputDir]”
verboselLevel="[0...9]"

>
<!-- ELF object & archives files using ANT paths / filesets -->
<fileset dir="xxx" includes="*.0">
<fileset file="xxx.a">
<fileset file="xxx.a">
<!-- Properties that will be reported into .map file -->
<property name="myProp"” value="myValue"/>

</linker>

4.13. Advanced Tools

202

MicroEJ Documentation, Revision b25dd891

Table 5: Linker Options Details

Option

Description

doNotLoadAlreadyDefinedSymbol

Silently skip the load of a global symbol if it has already
been loaded before. (false by default. Only the first
loaded symbol is taken into account (in the order input
files are declared). This option only affects the load se-
mantic for global symbols, and does not modify the se-
mantic for loading weak symbols and local symbols.

Explicitly declare linker endianness [little, big] or

endianness [none] for auto-detection. All input files must declare
the same endianness or an error is thrown.
Generate the .map file (true by default).
generateMapFile

ignoreWrongPositioningForEmptySection

Silently ignore wrong section positioning for zero size
sections. (false by default).

Provide a master Iscfile. This optionis mandatory unless

lsc the linkPath option is set.
) Provide a set of directories into which to load link file
linkPath fragments. Directories are separated with a platform-
path separator. This option is mandatory unless the 1sc
option is set.
Silently skip the output of warning messages.
noWarning

mergeSegmentSections

(experimental). Generate a single section per segment.
This may speed up the load of the output executable file
into debuggers or flasher tools. (false by default).

outputArchitecture

Set the architecture tag for the output ELF file (ELF ma-
chineid).

outputName

Specify the output name of the generated files. By de-
fault, take the name provided in the Isc tag. The output
ELF executable filename will be name.out. The map file-
name will be name.map.

stripDebug

Remove all debug information from the output ELF file.
A stripped output ELF executable holds only the binary
image (no remaining symbols, debug sections, etc.).

toDir

Specify the output directory in which to store generated
files. Output filenames are inthe form: od + separator
+ value of the 1lsc name attribute + suffix.
By default, without this option, files are generated in the
directory from which the linker was launched.

verboselLevel

Print additional messages on the standard output about
linking process.

Error Messages

This section lists MicroEJ Linker error messages.

Table 6: Linker-Specific Configuration Tags

Message ID Description
0 The linker has encountered an unexpected internal error. Please contact the support hot-
line.

Continued on next page

4.13. Advanced Tools

203

MicroEJ Documentation, Revision b25dd891

Table 6 - continued from previous page

1 A library cannot be loaded with this linker. Try verbose to check installed loaders.

2 No sc file provided to the linker.

3 Afile could not be loaded. Check the existence of the file and file access rights.

4 Conflictinginput libraries. Aglobal symbol definition with the same name has already been
loaded from a previous object file.

5 Completion (*) could not be used in association with the force attribute. Must be an exact
name.

6 Arequired section refers to an unknown global symbol. Maybe input libraries are missing.

7 A library loader has encountered an unexpected internal error. Check input library file in-
tegrity.

8 Floating symbols can only be declared inside memorylLayout tags.

9 Invalid value format. For example, the attribute relocation in defSymbol must be a
boolean value.

10 Missing one of the following attributes: address, size, align.

1 Too many attributes that cannot be used in association.

13 Negative padding. Memory layout cursor cannot decrease.

15 Not enough space in the memory layout intervals to append all sections that need to be
embedded. Check the output map file to get more information about what is required as
memory space.

16 A block is referenced but has already been embedded. Most likely a block has been espe-
cially embedded using the force attribute and the symbol attribute.

17 A block that must be embedded has no matching sectionRef statement.

19 An 10 error occurred when trying to dump one of the output files. Check the output direc-
tory option and file access rights.

20 size attribute expected.

21 The computed size does not match the declared size.

22 Sections defined in the Isc file must be unique.

23 One of the memory layout intervals refers to an unknown Isc section.

24 Relocation must be done in one and only one contiguous interval.

25 force and symbol attributes are not allowed together.

26 XML char data not allowed at this position in the Isc file.

27 A section which is a part of the program image must be embedded in an image memory
layout.

28 A section which is not a part of the program image must be embedded in a non-image
memory layout.

29 Expression could not be resolved to a link-time constant. Some symbols are unresolved.

30 Sections used in memory layout ranges must be sections defined in the Isc file.

31 Invalid character encountered when scanning the lsc expression.

32 Arecursive include cycle was detected.

33 An alignment inconsistency was detected in a relocation memory layout. Most likely one
of the start addresses of the memory layout is not aligned on the current alignment.

34 An error occurs in a relocation resolution. In general, the relocation has a value that is out
of range.

35 symbol and sort attributes are not allowed together.

36 Invalid sort attribute value is not one of order, name,or no.

37 Attribute start or end in defSection tagis notallowed when defining a floating section.

38 Autogenerated section can build tables according to symbol names (see Auto-generated
Sections). A symbol is needed to build this section but has not been loaded.

39 Deprecated feature warning. Remains for backward compatibility. It is recommended that
you use the new indicated feature, because this feature may be removed in future linker
releases.

Continued on next page

4.13. Advanced Tools 204

MicroEJ Documentation, Revision b25dd891

Table 6 - continued from previous page
40 Unknown output architecture. Either the architecture ID is invalid, or the library loader has
not been loaded by the linker. Check loaded library loaders using verbose option.
41...43 Reserved.

44 Duplicate group definition. A group name is unique and cannot be defined twice.

45 Invalid endianness. The endianness mnemonic is not one of the expected mnemonics (
little,big,none).

46 Multiple endiannesses detected within loaded input libraries.

47 Reserved.

48 Invalid type mnemonic passed to a defSymbol tag. Must be one of none, function, or
data.

49 Warning. A directory of link path is invalid (skipped).

50 No linker-specific description file could be loaded from the link path. Check that the link
path directories are valid, and that they contain .1sc or .1scf files.

51 Exclusive options (these options cannot be used simultaneously). For example,

-linkFilename and -linkPath are exclusive; either select a master Isc file or a path from
which to load .1scf files.

52 Name given to a memorylLayoutRef ora memoryLayout isinvalid. It must not be empty.

53 A memorylLayoutRef with the same name has already been processed.

54 A memorylLayout must define ranges orthe name attribute.

55 No memory layout found matching the name of the current memoryLayoutRef .

56 Anamed memorylLayout is declared with a relocation directive, but the relocation interval
is incompatible with the relocation interval of the memoryLayout that referenced it.

57 A named memorylLayout has not been referenced. Every declared memorylLayout must
be processed. Anamed memorylLayout must be referenced by a memorylLayoutRef state-
ment.

58 SUM operator expects an auto-generated section.

59 SUM operator tag is unknown for the targetted auto-generated section.

60 SUM operator auto-generated section name is unknown.

61 An option is set for an unknown extension. Most likely the extension has not been set to
the linker classpath.

62 Reserved.

63 ELF unit flags are inconsistent with flags set using the -forceFlags option.

64 Reserved.

65 Reserved.

66 Found an executable object file as input (expected a relocatable object file).

67 Reserved.

68 Reserved.

69 Reserved.

70 Not enough memory to achieve the linking process. Try to increase JVM heap that is run-

ning the linker (e.g. by adding option -Xmx1024M to the JRE command line).

Map File Interpretor

The map file interpretor is a tool that allows you to read, classify and display memory information dumped by
the linker map file. The map file interpretor is a graph-oriented tool. It supports graphs of symbols and allows
standard operations on them (union, intersection, subtract, etc.). It can also dump graphs, compute graph total
sizes, list graph paths, etc.

The map file interpretor uses the standard Java regular expression syntax.

Itis used internally by the graphical Memory Map Analyzer tool.

Commands:

4.13. Advanced Tools 205

MicroEJ Documentation, Revision b25dd891

e createGraph graphName symbolRegExp ... section=regexp

createGraph all section=.*

Recursively create a graph of symbols from root symbols and sections described as regular expressions. For
example, to extract the complete graph of the application:

e createGraphNoRec symbolRegExp ... section=regexp

The above line is similar to the previous statement, but embeds only declared symbols and sections (without
recursive connections).

¢ removeGraph graphName

Removes the graph for memory.

¢ listGraphs

Lists all the created graphs in memory.

¢ listSymbols graphName

Lists all graph symbols.

e listPadding

Lists the padding of the application.

* listSections graphName

Lists all sections targeted by all symbols of the graph.

e inter graphResult g1 ... gn
Creates a graph which is the intersection of g1/\ ... /\gn.
e union graphResult g1 ... gn

Creates a graph which is the union of g1\/ ...\/ gn.

e substract graphResult g1 ... gn

Creates a graph which is the substract of g1\ ... \ gn.

* reportConnections graphName

Prints the graph connections.

e totalImageSize graphName

Prints the image size of the graph.

* totalDynamicSize graphName

Prints the dynamic size of the graph.

4.13. Advanced Tools 206

MicroEJ Documentation, Revision b25dd891

¢ accessPath symbolName

The above line prints one of the paths from a root symbol to this symbol. This is very useful in helping you
understand why a symbol is embedded.

¢ echo arguments

Prints raw text.

¢« exec commandFile

Execute the given commandFile. The path may be absolute or relative from the current command file.

4.13.2 MicroEJ Test Suite Engine

Introduction

The MicroEJ Test Suite Engin