MicroEJ Documentation

MicroEJ Corp.

Revision 44d2784c

Aug 30, 2021

Copyright 2008-2020, MicroEJ Corp. Content in this space is free for read and redistribute. Except if otherwise stated,
modification is subject to MicroEJ Corp prior approval. MicroEJ is a trademark of MicroEJ Corp. All other trademarks and
copyrights are the property of their respective owners.

CONTENTS

1 MicroEJ Glossary 2
2 Overview 4
21 MIcroEJEITIONS . . . ¢ o e e e e e e e e e e e e e e e e e 4
211 IntroduCtion « .« . v e e e e e e e e e e e e e e e e e e e 4

2.1.2 Determine the MicroEJ Studio/SDKVersion v v v v i v i i e e e e 5

22 LICENSES '« v v i it e 7
2.2.1 License Manager OVErVIEW . . . v v v v v v e e e e e e e e e e e e e e e e e e e 7

222 Evaluation LiCenses v it i e e e e e e e e e 7
223 Production LiCeNSeS v it e e e e e e e e e e e 10

23 MicroEJRUNtIME . . .« o o o e e e e e e e e e e e e 15
2.3.1 Language e e e e e 15

232 Scheduler o e e e e e e e e e 15

2.3.3 GarbageCollector e e e e e e 15

234 Foundationlibraries« o e e e e e e e e 15

24 MicroEJLibraries e e e e e e e e e e e 16
2.5 MicroEJ Central Repository v v v e e e e e e e e e e e e e e e 16
2.5, Introduction e e e e e e e e e 16

2.5.2 USE . . e 17

2.5.3 ContentOrganization i i i it i e e e e e e e e e e 17

254 JavadoC i e e e e e e e e e e e e e 17

2.6 Embedded Specification Requests e e e e e e e e 17
2.7 MiCrOEJ FIIMWAIE + v v v v e 17
2.7.1 Bootable Binary with Core Services i i it 17

2.7.2 Specification e e e e e e e e e 18

2.8 MICIOEJSDK . v ot o e et e e e e e e e e e e e e e e e e e e 18
281 Release NOtES . . . o v v v vt e e e e e e e e 19

2.8.2 MicroEJ SDK Distribution Changelog 19

2.8.3 MicroEJSDKChangelog e e e 21

2.8.4 Advan In ONNOtes v v e e e e e e e e e e 31

2.85 Migration NOtes i i e e e e e e e e e e e e e e 31

2.9 Introducing MicroEJ Studio and Virtual Devices i e 34
210 Perform Online GettingStarted e e 35
211 GitHUb Repositories o i i e e e e e e e e e e e e e e e 36
212 System ReqUIreMENTS . . . v v v i i e 14
213 GetSUPPOIt . . . o e 42
3 Application Developer Guide 43
1 Intr 0 0 43
3.2 Local Workspacesand Repositories. v v i i i i e s e e e e e e e e e e 43

3.3 Standalone Application e e e e e e e e 44

3.3.1 MicroEJ Platform Import e e e e e e e e 44
3.3.2 Buildand RunanApplication i e e e e 47
3.3.3 BuildOutputFiles i e e e e e e e e 52
334 MicroEJlaunch o o o o i e e e e e e e e e e 53
3.3.5 Application Options e e e e e e e e e e 57
336 SOAR . o i i e e e e e e e e e e e e e e e e e 84

3.4 Sandboxed Application e e e e e e e 85
3.4.1 Sandboxed Application Structure L. e e 85
3.4.2 Application Publication 86
343 SharedlInterfaces e e e e 86

Vir Device e e e e 90
3.5.1 Using a Virtual Device for Simulation, 90
352 RuntimeENVIroNMENt v v v vt i e e e e e e e e e 90

3.6 MicroEJModule Manager o i i i e e e e e e e e 91
3.6. Introduction e e e e e e e e 91
3.6.2 Specification e e e e e e e e 92
3.6.3 Module Project Skeleton e e e e e 92
3.6.4 Module Description File i e e e e e e e 93
3.6.5 MicroEJ Module Manager Configuration 95
3.6.6 Module Build o o e e e e e e e e 99
367 BuildKit. o e e e e e e e e e e e 100
368 Commandlinelnterface e 101
3.6.9 Troubleshooting e e e e e e e 105
3610 MetaBuild e e e e e e 107
3.6.11 Former MicroEJ SDK Versions (lowerthan5.2.0) 108
3.6.12 Former MicroEJ SDK Versions (from 5.2.0t05.3.X) v v v v v i v v i e e e 10
7_M NatUIES & v v v e 10
3.7.1 Add-On Library o e e e e e e e e e e e e e e e e 10
372 AAd-ONPrOCESSOL . v v v v v v e e e i e et e e e e e e e e e e e e e e e e 1
3.7.3 FoundationLibrary APl e e e e e m
3.7.4 Foundation Library Implementation m

7 Meta BUild o o e e e e e e e e e 112
376 MOCK .« v vt et e e e e e e e e e e e e e e e 112
3.7.7 Module REPOSITOrY v i o o e e e e e e e e e e e e e e 112
3.7.8 Sandboxed Application e e e e e e e e e 13
3.7.9 StandaloneApplication e e e e 14
3700 NaturesPlugins o i i e e e e e e e e e e e e 14

3.8 Module RepoSitory . . . v v v v e e e e e e e e e e e e e e e e 19
3.8.1 Createa Repository Project o o i i e e e e e e 121
3.8.2 Configure Resolver forInputModules 121
3.8.3 ConfigureConsistency Check i e 121
3.8.4 Advanced Options e e e e e e e e e 121
385 IncludeModulest v it e e e e e e e e e e 121
3.8.6 Buildthe Repository o v i i i e e e e e e e e 123
3.8.7 Usethe Offline Repository i i i i i e e e e e e e e e e 123

3.9 MicroEJClasspath o i i i e e e e e e e e e 123
3.9.1 ApplicationClasspath 124
3.9.2 ClasspathLoad Model e e e 124
3.9.3 ClasspathElements 0 i i i e e e e e e e e 125
310 Application RESOUICES . . . v v v i it e 128
3000 IMAGES & v v v e e e e e e e e e e 128
3J0.2 FONtS o e 129
3.10.3 Native Language SUPPOrt . . . v v i i it e e e e e e e e e e e e e e e e 130

11__Platform 0 2 131
312 DevelopmentTools o v i i i e e e e e e e e e e e e e e 132
3121 TestSuitewithJURNIt o o o e e 133
3122 StackTraceReader o v v i it e e e e e e e e e 137
3.12.3 CodeCoverage Analyzer i i i e e e e e e e 150
312.4 HeapUsage Monitoring i i v v i i e e e e e e e e e e e e e e 153

3.12.5 HeapDumper&HeapAnalyzer e e e 155
3.12.6 ELFtoMapFileGenerator i i i e e e e e 166
3.12.7 Serialto Socket TransmItter« v v v v v v v i e e e e e e e e 168
312.8 Memory Map Analyzer e e e e e e e e e e e 169

312.9 EVentTraCing . . ¢ v v v v v e 172
31200 NullAnalysis . . . o o o e e e e e e e e e e e e e e 174

313 Advanced ToOlS o e e e e e e e e e e e e e e e e e 181
3131 MicroEJLinker o i i e e e e e e e e e e 181
313.2 MicroEJ TestSuiteEngine e 193

3.14 Graphical UseriInterface i e e e e 199
3140 MICroUL . . v v v e 200

3.14.2 MWT (MicroWidget Toolkit) et e e e e e e e 231

3.14.3 Widgetsand Examples e e e e e e e e 247

305 JavaScript e e e 249
3.15.1 GettingStarted e e e e e e 250

3.105.2 SourcesManagement L e e e e e e e e e e e e e e e e e e e 251

3153 EXamples . . . e e e e e e e e e e e e e e e e 253
3154 Communication Between JavaandJS 256
3055 TeSES . o v i e e e e e e e e e e e e e e 257
3156 Limitations v v i e 258

3.15.7 Built-inObjects e e e e e e e 259

3.15.8 Troubleshooting e e e e e e e 263
3159 Internals e e e e e e e e e e e e 264

316 LiMItations« o o o e e e e e e e e e e e e e e e 266
4 Platform Developer Guide 267
41 Introduction oo e e e e e e e e e e e e e e e e 267
4.1.1 SCOPE e e e e e 267

412 IntendedAudience e e e e 267

42 MicroEJPlatform e e e e e e e e e e e e e 267
4.2.1 Introduction e e e e e e 267

422 BUIlAPIrOCESS .« v v v v v ot e e e e e e e e e e e e e e e e e 268

4.2.3 CONCEPES & v v v it e 269

43 MicroEJArchitecture. o o L e e e e 274
4.3.1 Naming Convention i i i i i i i e e e e e e e e e e e e 275

4.3.2 MicroEJ ArchitecturesChangelog 276

44 MIcroEJPacks . . . o o i i e e e e e e e e e e e e 297
441 OVEIVIEW v v v v o e 297

442 NamingConvention i i i i ittt e e e e e e 298

45 Platform Creation o e e e e e e e e e e e e 299
451 Architecture Selection o i i e e e e e e e e 299

452 Platform Configuration e e e e e e e e 299

453 PackImport e e e e e e e e e e e e 300

454 PlatformBuild e e e e e 301

4.5.5 Platform Module Configuration e 303

4,5.6 _ Platform Customization i i i e e e e e e 306

457 BSPCONNECHiON . & v v v vt e 306

4.6 Platform Qualification e e e e e e 312

4.6.1 Introduction e e e e e e e 312

4.6.2 Platform Qualification Tools Overview i i i it e e 313
463 PlatformTestSuite o o e e e e e 314
4.6.4 TestSuiteVersioning o i i i i i e e e e e 315
47 MicroEJCore Engine i e e e e e e e e e e e e e e e 316
4.7.1 Functional Description v i e e e e e e e e e 316
472 ArchitectUre. . . . o oo vt e 317
473 Capabilities e e e e e e e e e e 318
474 Implementation L e e e e e e e e e e e e e 318
475 GenericOUtPUL i e e e e e e e e e e e e e e e 323
476 LinK . . o e e e e e e e e e e e e e e e e e e 323
477 DependencCies i e e e e e e e e e e e e e e e e 323
478 Installationo o e e e e e e e e 324
479 USE o i it e e e e e e e e e 324
4.8 Multi-SandboX i e e e e e e 324
4.81 Principle e e e e e e e 324
4.8.2 Functional Description e e e e e e e e e e 324
483 Firmwarelinker i e e e e e e e e e 325
4.8.4 MemoryConsiderations i e e e e e e e e e 326
4.8.5 Dependenciest e 326
486 Installation e e e e e e e e e e e e e 326
48T USE . o i i e e e e e e e e e e e e e e 326
4.9 Tiny Application e e e e e e e e e e e e e e e e 326
4.9.1 Principle e e e e e e e e e 326
492 Installation o oo e e e e e e e 326
49,3 Limitations . . . v v e 327
410 Native Interface Mechanisms« v v v vt it e e e 327
410.1 Simple Native Interface (SNI) e e e e 327
410.2 Shielded PlUug (SP) o o i i i i e i e e e e e 330
4103 MicroEJJavaH o oo e e e e e e e e 333
411 ExternalResourcesLoader v v vttt i e e e e e e e e e e 334
4110 Principle . . . e e e e e e e e e 334
411.2 Functional Description e e e e e e e e e 335
411.3 Implementations o L e e e e e e e e e e e e e 335
4114 ExternalResourcesFolder o e 335
411.5 Dependencies i i i e 336
411.6 Installation o . . e e e e e e e e e e e e e e 336
AT1T USE & o v e 336
412 Serjal CommUNICAtIONS '« « v v v v v v e e e 336
4020 ECOM . . v ottt e 336
4122 ECOMCOMM « v v v v vt e 338
413 GraphicalUserinterface e e e e e e e e 345
4131 Principle e e e e e e e e e e e e 345
4132 MICrOUL . v v vt e 347
4133 Staticlnitialization 350
4134 lowlevelAPL o o i e e e e e e e 354
4035 LED o ot e e e e e e e e e e 355
413.6 Input e e e e e e e 357
4137 Display e 363
413.8 IMages i i e e e e e e e 386
4039 FONES . . v v it e e e e e e e e e e e e e e 406
41310 Simulation e e e e e e e e 414
413, Release NOteS v v v et e e e e e e e e e e e e e e e e 420
41312 Changelog e e e e e e e e e e e 424

iv

41313 Migration GUIde o i i e e e e e e e e e e e e e e e e e 447

404 Networking o i i e e e e e e e e e e e e e e e 465
4141 Principle e e e e e e e e e e e 465
4142 NetworkCoreEngine o i i i i e e e e e e 465
4143 SSL o ot e 466

415 File System e e e e e e e e e e e e e e e 467
4151 Principle . . . e e e e e e e e e e e e e e 467
415.2 Functional Description i e e e e e e e e e e e 467
415.3 Dependencies e 467
4154 Installation o . . e e e e e e e e e e e e e e 468
4155 USE . o i i e e e e e e e e e e e e e e e e 469

416 Hardware Abstraction Layer. e e e e e e e e 470
4161 Principle e e e e e e e e e e e 470
416.2 Functional Description i i i e e e e e e e e e e e 470
416.3 lIdentifier e e e e 470
416.4 Configuration L e e e e e e e e e e e e e 47
416.5 Dependencies e e e e e e e e e e e e e e e e e e 47
4166 Installation e e e 47
A16T USE o v v v e 41

417 Devicelnformationo e e e e e e 472
4171 Principle . . . o e e e e e e e e e 472
4172 DependencCies i i i e e e e e e e e e e e e e e e e e e e 472
4173 Installationo e 472
U744 USE . o ot i e 472

408 SyStemMVieW . . o . e 472
418.1 Principle e e e e e e e 472
4182 References e e e e e e 473
4.] In 1 473
418.4 MicroEJ CoreEngine OSTask i i i i i i i e e e e e e e 476
4185 OSTasksand JavaThreadsNames o v v vt vt vt it ittt et et e 476
4.18.6 OSTasksand Java Threads Priorities oo it ittt 477
4087 USE & o i e 478
418.8 Troubleshooting e e e e e e 478
4.18.9 RTT block found by SystemView but no tracesdisplayed 480
4.18.10 Bus hardfault when running SystemView without Java Virtual Machine (JVM) 480
41811 SystemView for STM32 ST-LinkProbe 480

419 Simulation i e e e e e e e e e e e e 481
419.1 Principle e e e e e e e e e e e 481
4.19.2 Functional Description e e e e e e e e e e 481
419.3 Dependencies it e e e e e e e e e e e e e e e e e e e 482
4194 Installation o oo e e e e e e e e e 482
4095 USE . o it e e e e e e e e e e e e e e e 482
419.6 MOCK . . . i i i e e e e e e e e e 483
419.7 Shielded PlugMock e e e e e e 488
419.8 FrontPanelMock« o o i i e e e e e e e e 488
4199 Bluetooth LEMOCK . . . v v v v o e e e e e e e e e e 496

420 APPENdiCeS . v v v i i e 502
4201 LlowlevelAPl . . . o vt e e e e e e e e e e 502
4.20.2 MicroEJ Foundation Libraries« o 0 i i e e e e e e e e 5N
4.20.3 ToolsOptionsand ErrorCodes. i i i i i v i i it e e e e e e 520
4.20.4 Architectures MCU /Compiler i i i e e e e e e e e 531
4.20.5 FormerPlatform Migration e e 535

5 Kernel Developer Guide 542

S11 Introduction . . v . e e e e e e 542

512 TermsandDefinitions« . v oo e e e e e e e 542
513 OverallArchitecture L e e e e 543

514 Firmware BUIld FIOW o o i e e e e e e e e e e e e e e e 547

515 Virtual Device BUIld FIOW o ot s e e e e e e e e e e e e e 548

5.2 Kernel & Features Specification i e e e e 548
53 GettingStarted e e e e e e e e e e e e e e e e 549
5.3.1 Online Getting Started e 549

5.3.2 Createan Empty FirmwarefromScratch 549

533 MicroEJ DemO VEE FLAVOIS . . v v v v v o e e e e e e e e e e e e e e e e e 552

54 BUild FIrmWare o v vt e s e 553
5.4.1 Workspace Build e e e e e e e e e e 555

542 HeadlessBuild o i i e e e 557
543 RuntimeEnvironmentot ittt e e e e 558

5.4.4 ResidentApplications e e e 558

545 Advanced e e e e e e 559

55 Writing Kernel APIs o i i e e e e e e e e e e e e e e 561
551 DefaultKernel APISDerivation . . « + v v v v v v v e e e e e e e e e e e e e e e e 561
552 BuildaKernelAPIModule i e e e e 561

553 KernelAPIGenerator v v v v i i e e e e e e e e e e e e e e e e 561

5.6 Communication between Features e e e e 563
5.6.1 Kernel Type CONVErtErS . . . v v i i i i e 563

57 Multi-Sandbox Enabled Libraries L 563
ST1 MICroUL . v v v e 564

572 BON . ottt e e e e e e e e e e e e e e e e e e e 564

513 ECOM . . o o e 565

574 ECOM-COMM ittt e e e e et e 565
DD BS o e e e e e e e e e 565

BI6 NET . . o v o e e e e e e e e e e e e e e e e e 565

BIT SSL o ot e e e e e e e e e 565

5.8 SetupaKFTestSuite i i i i it e e e e e e e e e e e e 565
5.8.1 EnabletheTestSuite o o o i e e e e e e 565
582 AddaKFTESt . . o v vttt e e e 565

5.8.3 KFTestSuite OptionS v v v i i i e e e e e e e e e e e e e e e e e e e 568
Tutori 569
6.1 Understand how to build a MicroEJ Firmware and its dependencies 569
6.1.1 The Components i i it e e e e e e e e e e e e e e e e e 569

612 HowtoBuild e e e e 572

6.2 Create a MicroEJ Platform fora Custom Device 574
2.1 Intr o 574

6.2.2 A MicroEJ Platform Project is already available for the same MCU/RTOS/C Compiler 575

6.2.3 A MicroEJ Platform Project is not available for the same MCU/RTOS/C Compiler 576

624 PlatformValidation e e 576
625 FurtherAssistanceNeededo oo e 577

6.3 CreateaMicroEJ FirmwareFromScratch o o 577
631 IntendedAudienceo e 577
632 Introductiono e e e e e e e e e e e e 577

6.3.3 Prerequisites e e e e e e e e e e e e e e e e e e 578
634 OVEIVIEW . o o v vt it e e e e e e e e e e e e e 578

6.3.5 Setup the Development Environment 578

6.3.6 GetRUNNINGBSP e e e e e e e e e e e e e e 579

637 FreeRTOSHelloWorld o i e e 581

vi

6.3.8 CreateaMicroEJPlatform e 582

6.3.9 Create MicroEJ Application HelloWorld, 588
6.3.10 Configure BSP Connection in MicroEJ Application 590

6.3.11 MicroEJ and FreeRTOS Integration o it i i ittt e 592

6.4 Create MicroEJ Platform Build and RunScripts, 603
6.41 IntendedAudience 603

6.4.2 Prerequisites i e 604
643 Introductiono e e e e e e e e e e 604

6.44 OVEIVIEW . v v v v v e e it e e e e e e e e e e e e e e e e e e e 604

6.45 CreateBuildand RunScripts. it e 604

6.4.6 UseBuild Scriptin MicroEJSDK i e e e 608

6.4.7 GoingFurther e e e e e e e e 61

6.5 Setup an Automated Build using Jenkins and Artifactory 612
651 IntendedAudience e e e e e e e e 612
652 Introduction i e e e e e e e e 612

6.5.3 Prerequisites i i e 613

6.54 OVEIVIEW . .« v v i vttt e 613
6,55 InstalltheBuildTools oo oo i 613

6.5.6 GetaModule Repository i e e e e e e e e 615

6.5.7 Setup Artifactory e e e e e e e e e e 616

6.5.8 SetupJenkins e e e e e e 618

6.5.9 BuildanewModuleusingJenkins e 620

6.5.10 APPeNndiX e e e e e e e e e e e e e 623

6.6 ImprovetheQualityofJavaCode i i i i it e e e e e e 624
6.61 IntendedAudience e e e e e e 624
662 ReadableCode e e e e 624

6.6.3 BestPractiCes o i i i i e e e e e e e e e e e 627

4 R T0OIS .« v v v e e e e e e e e e e e 630

6.7 Optimize the Memory Footprintof an Application 630
611 IntendedAudience e e e e e e e 630

672 Introduction o i e e e e e e e e 631

6.7.3 How to Analyze the Footprintof an Application. 631

6.7.4 How to Reduce the Image Size of an Application 632

6.7.5 How to Reduce the Runtime Size of an Application 637

6.8 Explore Data Serialization Formats e e e e e 640
6.81 IntendedAudience e e e e 640

6.82 XML i e 640

6.8.3 JSON . . . i i e 641
684 CBOR . . . o ittt e e e e e e e e e e e e e 644

6.9 InstrumentJavaCodeforLogging i i i i i e e 645
691 IntendedAudience e e e e e e e e e 645
692 Introduction e e e e 645

6.9.3 OVEIVIEW v v v v v e 645

6.9.4 LogwiththeTraceLibrary i i e e e e 646

6.9.5 Logwiththe MessageLibrary i i e e 647

6.9.6 LogwiththeloggingLibrary. e 648

6.9.7 RemoveloggingRelatedCode e 649

610 RunaTestSuiteonabDeVviCe« v v v i v e 651
6.10.1 Intended Audience and SCOPe e e e e e e 651

6.10.2 Prerequisites o o i e 651
6103 Introduction e e e e e e e e e e e e e e 652
6.10.4 ImporttheTestSuite o v i e e e e e e e e e e e e 652
6.10.5 ConfiguretheTestSuite e 652

6.10.6 RuntheTestSuite i i i it e e e e e e e e 654

vii

6.10.7 ConfiguretheTeststoRUN s et e e e 654

6.10.8 Examinethe TestSuite Report i i i i it e e e 655
1 _About MicroEJ 656
Index 657

viii

MicroEJ Documentation, Revision 44d2784c

Welcome to MicroEJ developer documentation. Browse the following chapters to familiarize yourself with MicroEJ
Technology and understand the principles of app and platform development with MicroEJ.

The Glossary chapter describes MicroEJ terminology.
The Overview chapter introduces MicroEJ products and technology.
The Application Developer Guide presents Java applications development and debugging tools.

The Platform Developer Guide teaches you how to integrate a C Board Support as well as simulation config-
urations.

The Kernel Developer Guide introduces you to advanced concepts, such as partial updates and dynamic app
life cycle workflows.

The Tutorials chapter covers a variety of topics related to developing with the MicroEJ ecosystem.

CONTENTS 1

glossary.html
overview/index.html
ApplicationDeveloperGuide/index.html
PlatformDeveloperGuide/index.html
KernelDeveloperGuide/index.html
Tutorials/index.html

CHAPTER

ONE

MICROEJ GLOSSARY

This glossary defines the technical terms upon which the MICROEJ VEE (Virtual Execution Environment) is built.

Add-On Library A MicroEJ Add-On Libraryis a pure managed code (Java) library. It runs over one or more MicroEJ
Foundation Libraries.

Abstraction Layer An Abstraction Layer is the C code that implements a Foundation Library’s low-level APIs over
a board support package (BSP) or a C library.

Application A MicroEJ Application is a software program that runs on a Powered by MicroEJ device.

Standalone Application MicroEJ Standalone Application is a MicroEJ Application that is directly
linked to the C code to produce a MicroEJ Mono-Sandbox Firmware. Itis edited using MicroEJ
SDK.

Sandboxed Application A MicroEJ Sandboxed Application is a MicroEJ Application that can run
over a MicrokEJ Multi-Sandbox Firmware. It can be linked either statically or dynamically.

System Application A MicroEJ System Application is a MicroEJ Sandboxed Application that is
statically linked to a MicroEJ Multi-Sandbox Firmware, as it is part of the initial image and
cannot be removed.

Kernel Application A MicroEJ Kernel Application is a MicroEJ Standalone Application that imple-
ments the ability to be extended to produce a MicroEJ Multi-Sandbox Firmware.

Architecture A MicroEJ Architecture is a software package that includes the MicroEJ Core Engine port to a target
instruction set and a C compiler, core MicroEJ Foundation Libraries (EDC, [BON], [SN/], [KF]) and the MicroEJ
Simulator. MicroEJ Architectures are distributed either as evaluation or production version.

Core Engine, also named “MEJ32” MicroEJ Core Engine, also named MEJ32, is a scalable 32-bit core for
resource-constrained embedded devices. It is delivered in various flavors, mostly as a binary software pack-
age. MicroEJ Core Engine allows applications written in various languages to run in a safe container.

Firmware A MicroEJ Firmware is the result of the binary link of a MicroEJ Standalone Application with a MicroEJ
Platform. The firmware is a binary program that can be programmed into the flash memory of a device.

Mono-Sandbox Firmware A MicroEJ Mono-Sandbox Firmware is a MicroEJ Firmware thatimple-
ments an unmodifiable set of functions. (previously MicroEJ Single-app Firmware)

Multi-Sandbox Firmware A MicroEJ Multi-Sandbox Firmware is a MicroEJ Firmware that imple-
ments the ability to be extended, by exposing a set of APIs and a memory space to link MicroEJ
Sandboxed Applications. (previously MicroEJ Multi-app Firmware)

Foundation Library AMicroEJ Foundation Libraryis a library that provides core or hardware-dependent function-
alities. A Foundation Library combines managed code (Java) and low-level APIs (C) implemented by one or
more Abstraction Layers through a native interface (SNV/).

Mock A MicroEJ Mock is a mockup of a Board Support Package capability that mimics an hardware functionality
for the MicroEJ Simulator.

https://developer.microej.com/microej-vee-virtual-execution-environment
https://en.wikipedia.org/wiki/Managed_code
https://developer.microej.com/mej32-virtual-machine-for-embedded-systems/
https://en.wikipedia.org/wiki/Managed_code

MicroEJ Documentation, Revision 44d2784c

Module Manager MicroEJ Module Manager downloads, installs and controls the consistency of all the dependen-
cies and versions required to build and publish a MicroEJ asset. It is based on Semantic Versioning specifi-
cation.

Platform A MicroEJ Platform integrates a MICROEJ VEE, a MICROEJ Architecture, one or more Foundation Libraries
with their respective Abstraction Layers, and the board support package (BSP) for the target Device. It also
includes associated MICROEJ Mocks for the MICROEJ Simulator.

SDK MicroEJ SDK allows MicroEJ Firmware developers to build a MicroEJ-ready device, by integrating a MicroEJ
Architecture with both Java and C software on their device.

Simulator MicroEJ Simulator allows running MicroEJ Applications on a target hardware simulator on the devel-
oper’s desktop computer. The MicroEJ Simulator runs one or more MicrokEJ mock that mimics the hardware
functionality. It enables developers to develop their MicroEJ Applications without the need of hardware.

Studio MicroEJ Studio allows application developers to write a MicroEJ Sandboxed Application, run it on a Virtual
Device, deploy it on a MicroEJ-ready device, and publish it to a MicroEJ Forge instance.

VEE MICROEJ VEE is an applications container. VEE stands for Virtual Execution Environment, and refers to the first
implementation that embeds a virtual 32-bit processor, hence the term “Virtual”. MICROEJ VEE runs on any
OS/RTOS commonly used in embedded systems (FreeRTOS, QP/C, uc/0S, ThreadX, embOS, Mbed OS, Zephyr
0S, VxWorks, PikeOS, Integrity, Linux, QNX, ...) and can also run without RTOS (bare-metal) or proprietary
RTOS. MICROEJ VEE includes the small MEJ32, along with a wide range of libraries (Add-On Libraries and
Foundation Libraries).

Virtual Device A MicroEJ Virtual Device is a software package that includes the simulation part of a MicroEJ
Firmware: runtime, libraries and application(s). It can be run on any PC without the need of MicroEJ Stu-
dio. In case a MicroEJ Multi-Sandbox Firmware, it is also used for testing a MicroEJ Sandboxed Application
in MicroEJ Studio.

https://semver.org
https://www.microej.com/product/forge/

CHAPTER

TWO

OVERVIEW

2.1 MicroEJ Editions

2.1.1 Introduction
MicroEJ offers a comprehensive toolset to build the embedded software of a device. The toolset covers two levels
in device software development:

+ MicroEJ SDK for device firmware development

+ MicroEJ Studio for application development

The firmware will generally be produced by the device OEM, it includes all device drivers and a specific set of Mi-
croEJ functionalities useful for application developers targeting this device.

QA Platform Firmware @ Application | ;1 ulator
Sources

Sources
MICROEJ. 5DK MICROEJ Studic
Firmware Developer Host Application Developer Host
Import Build
Virtual
Device
Build
I
Target Local Deploy
- MICROEJ
- irmware | ——— APPLICATION
Build Flash — (7) —
L7 Install N Publish

MICROEJ.Forge

Fig. 1: MicroEJ Development Tools Overview

Using the MicroEJ SDK tool, a firmware developer will produce two versions of the MicroEJ binary, each one able
to run applications created with the MicroEJ Studio tool:

+ A MicroEJ Firmware binary to be flashed on OEM devices;

MicroEJ Documentation, Revision 44d2784c

« AVirtual Device which will be used as a device simulator by application developers.
Using the MicroEJ Studio tool, an application developer will be able to:

« Import Virtual Devices matching his target hardware in order to develop and test applications on the Simu-
lator;

« Deploy the application locally on an hardware device equipped with the MicroEJ Firmware;

« Package and publish the application on a MicroEJ Forge Instance, enabling remote end users to install it on
their devices. For more information about MicroEJ Forge, please consult https://www.microej.com/product/
forge.

2.1.2 Determine the MicroEJ Studio/SDK Version

In MicroEJ Studio/SDK, goto Help > About MicroEJ SDK menu.

In case of MicroEJ SDK 4.1 .x, the MicroEJ SDK version is directly displayed, suchas 4.1.5:

A About MicroEl® SDK

MicroEl® SDE

Version 4.1.5

Copyright ©2016-2018 1527 5.4, All Rights Reserved.

Use of this program is subject to MicroE) License Agreement.

MicroE)® SDK is built on Eclipse, licensed under the terms of the Commen Public
License (CPL).

MicroEl ® 50K and the MicroEl logos are trademarks of MicroEl 5.4,

CCROFSIJEwR O

¥ . .
@ Installation Details

In case of MicroEJ SDK 5. x, the value displayed is the MicroEJ SDK distribution, such as 19.05 or 20.07:

2.1. MicroEJ Editions 5

https://www.microej.com/product/forge
https://www.microej.com/product/forge

MicroEJ Documentation, Revision 44d2784c

= About MicroEl

Copyright ©2018-2020 Microb) Corp. All Rights Reserved.

Use of this program is subject to MicroE) License Agreement.

MicroE)® SDK is built on Eclipse, licensed under the terms of the Common
r Public License (CPL).

MicroEl® 5DK and the MicrokE) logos are trademarks of MicroB) Corp.

CSEOFPF O JE WS

® Installation Details

To retrieve the MicroEJ SDK version that is currently installed in this distribution, proceed with the following steps:
o Clickonthe Installation Details button,
o Clickonthe Installed Software tab,

+ Retrieve the version of entry named MicroEJ SDK (or MicroEJ Studio).

K Installation Details

Installed Software |nstallation History Features Plug-ins Coenfiguration

Name Version Id Provider
@= C/C++ Development Tools SDK 9.4.3.201802261533 org.eclipse.cdt.sdk.feature.group Eclipse COT
[k C/C++ GCC Cross Compiler Support 9.4.3.201802261533 org.eclipse.cdt.build.crossgec.feature.group Eclipse COT
[C/C++ GDB Hardware Debugging 9.4.3.201802261533 org.eclipse.cdt.debug.gdbjtag.feature.gro... Eclipse COT
[{f- Eclipse Checkstyle Plug-in 6.8.0.201507251301 net.sf.eclipsecs.feature.group http:/Yeclipse-cs.sfu
@ Eclipse Runner Feature 1.34 com.eclipserunnerfeature feature.group Eclipse Runner Tean
@: Eclipse SDK 4.7.3.M20180330-06... org.eclipse.sdk.ide Eclipse.org
@: Eclipse XML Editors and Tools 3.9.2,:201803221834 erg.eclipse.wstxml_uifeaturefeature.group Eclipse Web Tools P
@: Git integration for Eclipse 4.9.2.201712130930-r org.eclipse.egit.feature.group Eclipse EGit
@: JAutodoc 1.13.0 net.sf,jautodec.feature feature.group Martin Kesting
(= Markdown Editor 0.2.3 markdown.editor.feature.feature.group Winterwell
i i Joldeded?00728-1506 com.is2t.microej.mpp-feature feature.gro... MicroEl
5.2.0 com.is2t.microej.sdk.feature.feature.group MicroEJ
- LLUZ0I00728-1306 com.is2t.microgj.mpp.product.feature.fea.. MicroE)
@ Mylyn WikiText 3.0.792001711172000 erg.eclipse.mylynwikitext_featurefeature.... Eclipse Mylyn
@: PMD Plug-in 4.0.5720141105-1906 net.sourceforge.pmd.eclipsefeature.group PMD Project
@: Sonarlint for Eclipse 4.0.0.201810170711 org.sonarlint.eclipse featurefeature.group SonarSource

2.1. MicroEJ Editions 6

MicroEJ Documentation, Revision 44d2784c

2.2 Licenses

2.2.1 License Manager Overview

MicroEJ Architectures are distributed in two different versions:

« Evaluation Architectures, associated with a software license key. They can be downloaded at https://
repository.microej.com/modules/com/microej/architecture/.

« Production Architectures, associated with a hardware license key stored on a USB dongle. They can be re-
quested to our support team.
The license manager is provided with MicroEJ Architectures and then integrated into Platforms, consequently:

« Evaluation licenses will be shown only if at least one Evaluation Architecture or Platform built from an Eval-
uation Architecture has been imported in MicroEJ SDK.

« Production licenses will be shown only if at least one Production Architecture or Platform built from a Pro-
duction Architecture has been imported in MicroEJ SDK.

The list of installed licenses is available in MicroEJ SDK preferences dialog page in Window > Preferences >
MicroEJ :

& Preferences (S |5
type filter text MicroEJ f=e e
Checkstyl -
£ .st)re General settings for MicroE) development:
Copyright
- Data Management MicroEl repository
EasyantdEclipse - -
Help C:A\PYyruntime-MNew_configurationtrepo Browse... I | Refresh
> IceTea .
> Install/Update = Efeenssy
instantMessaglng License Id Edition License Tags Expiration Date Packs Add...
g J\ar)\‘ra i XFRY5-J2MSN-Y3MAS-RBK46 | S5TD 152T_J8F5C o 2020-12-31 s
4 MicroE)
Architectures
MNaming Convention
Platforms
Platforms in workspace
Updates LB | Restore Defaultsl [Apply]
|/?\| [oK] I Cancel I

Fig. 2: MicroEJ Licenses View

2.2.2 Evaluation Licenses
This section should be considered when using Evaluation Architectures, which use software license keys. Amachine

UID needs to be provided to activate an Evaluation license on the MicroEJ Licenses Server. The machine UID isa 16
hexadecimal digits number.

Get your Machine UID

Retrieving the machine UID depends on the kind of MicroEJ Platform being evaluated.

2.2. Licenses 7

https://repository.microej.com/modules/com/microej/architecture/
https://repository.microej.com/modules/com/microej/architecture/

MicroEJ Documentation, Revision 44d2784c

If your MicroEJ Platform is already imported in Package Explorer and built with MicroEJ Module Manager, the Mi-
croEJ Architecture has been automatically imported. The machine UID will be displayed when building a MicroEJ
Standalone Application on device.

[INFO 1 Launching in Evaluation mode. Your UID is XXXXXXXXXXXXXXXX.
[ERROR] Invalid license check (No license found).

Otherwise, a MicroEJ Architecture or Platform should have been manually imported from the MicroEJ SDK prefer-
ences page. The machine UID can be retrieved as follows:

« Goto Window > Preferences > MicroEJ ,

« Select either Architectures or Platforms ,

« Click on one of the available Architectures or Platforms,

« Pressthe GetUID button to getthe machine UID.

Note: To accessthis GetUID option, at least one Evaluation Architecture or Platform must have been imported
before (see License Manager Overview).

Copy the UID. It will be needed when requesting a license.

& UID successfully generated @

Your UID was successfully generated.

Your UID is: |A856470297673E28

Fig. 3: Machine UID for Evaluation License

Request your Activation Key

« Go to MicroEJ Licenses Server https://license.microej.com.

« Clickon Create a new account link.

« Create your account with a valid email address. You will receive a confirmation email a few minutes after.
Click on the confirmation link in the email and log in with your new account.

+ Click on Activate a License .
« Set Product P/N: to 9PEVNLDBU6IJ.
« Set UID: to the machine UID you copied before.

« Clickon Activate .

« The license is being activated. You should receive your activation by email in less than 5 minutes. If not,
please contact our support team.

2.2. Licenses 8

https://license.microej.com

MicroEJ Documentation, Revision 44d2784c

« Once received by email, save the attached zip file that contains your activation key.

Install the License Key

If your MicroEJ Platform is already imported in Package Explorer and built with MicroEJ Module Manager, the license
key zip file must be simply dropped to the ~/.microej/licenses/ directory (create it if it doesn’t exist).

» ThisPC » Local Disk (C:) » Users » user » .microgj » licenses
MName Date modified Type Size
REW2Z-XSTRL-5ZYUE-K33DCzip 30/08/2020 12:27 Compressed (zipp... 1KB

Fig. 4: MicroEJ Shared Licenses Directory

Note: The MicroEJ SDK Preferences page will be automatically refreshed when building a MicroEJ Standalone
Application on device.

Otherwise, the license key must be installed as follows:
+ Go back to MicroEJ SDK.

« Selectthe Window > Preferences > MicroEJ menu.

« Press Add... .

« Browse the previously downloaded activation key archive file.

« Press OK. A new license is successfully installed.

+ Go to Architectures sub-menu and check that all Architectures are now activated (green check).
« Your MicroEJ SDK is successfully activated.

If an error message appears, the license key could not be installed. (see section Troubleshooting). A license key can
be removed from the key-store by selecting it and by clicking on Remove button.

Troubleshooting
Consider this section when an error message appears while adding the Evaluation license key. Before contacting
our support team, please check the following conditions:

+ Key is corrupted (wrong copy/paste, missing characters, or extra characters)

+ Key has not been generated for the installed environment

+ Key has not been generated with the machine UID

« Machine UID has changed since submitting license request and no longer matches license key

+ Keyhasnotbeen generated for one of the installed Architectures (no license manager able to load this license)

2.2. Licenses 9

MicroEJ Documentation, Revision 44d2784c

= Invalid activation key w

The key could not be installed in this environment. Possible reasons are:

- key is corrupted,

- key is valid but does not match any available license manager(s), (Works for an
other edition),

- key has not been generated for this machine,

- old key version.

Fig. 5: Invalid License Key Error Message

2.2.3 Production Licenses

This section should be considered when using Production Architectures, which use hardware license keys stored
on a USB dongle.

= 12345678

Fig. 6: MicroEJ USB Dongle

Note: If your USB dongle has been provided to you by your sales representative and you don’t have received an
activation certificate by email, it may be a pre-activated dongle. Then you can skip the activation steps and directly
jump to the Check Activation on MicroEJ SDK section.

Request your Activation Key

+ Goto license.microej.com.
« Clickon Create a new account link.

« Create your account with a valid email address. You will receive a confirmation email a few minutes after.
Click on the confirmation link in the email and login with your new account.

« Clickon Activate a License .

« Set Product P/N: to The P/N on the activation certificate.

2.2. Licenses 10

https://license.microej.com/

MicroEJ Documentation, Revision 44d2784c

« Enter your UID: serial number printed on the USB dongle label (8 alphanumeric char.).
+ Clickon Activate and check the confirmation message.

+ Click on Confirm your registration .

+ Enter the Registration Code provided on the activation certificate.

o Clickon Submit .

« Your Activation Key will be sent to you by email as soon as it is available (12 business hours max.).

Note: You can check the My Products page to verify your product registration status, the Activation Key avail-
ability, and download the Activation Key when available.

Once the Activation Key is available, download and save the Activation Key ZIP file to a local directory.

Activate your USB Dongle

This section contains instructions that will allow you to flash your USB dongle with the proper activation key.
You shall ensure that the following prerequisites are met :

« Your operating system is Windows

+ The USB dongle is plugged and recognized by your operating system (see Troubleshooting section)

« No more than one USB dongle is plugged into the computer while running the update tool

« The update tool is not launched from a network drive or a USB key

The activation key you downloaded is the one for the dongle UID on the sticker attached to the dongle (each
activation key is tied to the unique hardware ID of the dongle).

You can then proceed to the USB dongle update:
« Unzip the Activation Key file to a local directory
« Enter the directory just created by your ZIP extraction tool.
« Launch the executable program.

« Accept running the unsigned software if requested (Windows 10)

2.2. Licenses 1

MicroEJ Documentation, Revision 44d2784c

update.exe

Publisher: Unknown
File origin: Hard drive on this computer

Show more details

« Clickonthe - button (no password needed)

[#] Update Tool

F.en[character string)

k.ey

Cancel

Fig. 7: Dongle Update Tool

+ On success, an Update successfully message shall appear. On failure, an Error key or no proper
rockey message may appear.

2.2. Licenses 12

MicroEJ Documentation, Revision 44d2784c

update_E24C0785

l L Update successfully

oK

Fig. 8: Successful Dongle Update

Check Activation on MicroEJ SDK

Note: Production licenses will be shown only if at least one Production Architecture or Platform has been imported

before (see License Manager Overview).

» Go back to MicroEJ SDK,

« Goto Window > Preferences > MicroEJ ,

« Goto Architectures or Platforms sub-menuand checkthatall Production Architectures or Platforms are

now activated (green check).

type filter text Platforms
EasyantdEclipse . Add or remove platforms.
> Help
. lceTea Platforms, Virtual Devices and Architectures:
> Install/Update . MName Version | Lic..
::;ta"tmessag'"g 143 FROM-KL46Z Jakarta Kickstart 135
. lava g LPG_ P\rchi‘tect:.'re:CMD
4 MicroEl [C14F 5TM: Hardware Part Number: Jakarta

14 5TM: Compilation Toolchain: CMO_ARMCC

Architectures mE=ul Name: KickStart

MNaming Conventior | Provider: 152T
Eg gm Version: 1.3.5
Platfarms in worksp 7 Core Engine Architecture: 14
Updates [f= STM:‘ Usage Level:[fev"]
[1€¥ STM: Technology Version: 1.6
-+ bm 143 vicr License Tag{S2T JeF5C]
Planning 63 vicp Build Label: 20TS0407-T647
» Plug-in Development Path: .microgrepositories\Full\1.64sd002
Fig. 9: Platform License Status OK
Troubleshooting

Select All
Deselect All
Import...
Uninstall

Get UID

This section contains instructions to check that your operating system correctly recognizes your USB dongle.

GNU/Linux Troubleshooting

For GNU/Linux Users (Ubuntu at least), by default, the dongle access has not been granted to the user, you have to

modify udev rules. Please create a /etc/udev/rules.d/91-usbhdongle.rules file with the following contents:

2.2. Licenses

MicroEJ Documentation, Revision 44d2784c

ACTION!="add", GOTO="usbdongle_end"
SUBSYSTEM=="usb"”, GOTO="usbdongle_start”
SUBSYSTEMS=="usb", GOTO="usbdongle_start"”
GOTO="usbdongle_end"

LABEL="usbdongle_start"
ATTRS{idVendor}=="096e" , ATTRS{idProduct}=="0006" , MODE="0666"
LABEL="usbdongle_end"

Then, restart udev: /etc/init.d/udev restart

You can check that the device is recognized by running the 1susb command. The output of the command should
contain a line similar to the one below for each dongle: Bus 002 Device 003: ID 096e:0006 Feitian
Technologies, Inc.

Windows Troubleshooting

« If the dongle activation failed with No rockey message, check there is one and only one dongle recognized
with the following hardware ID :

HID\VID_Q96E&PID_0006&REV_0201

Go tothe Device Manager > Human Interface Devices and check amongthe USB InputDevice entries

thatthe Details > Hardwarelds property match the ID mentioned before.

« Ifthe dongle activation was successful with Update successfully message butthe license does not appear
in MicroEJ SDKor is not updated, try to activate again by starting the executable with administrator privileges:

» GF2N-HMLPM-94M55-Te3KG

s

Mame Date modified
Mj licensexml 18/03/2020 14:16

EY update.exe T
Open

m Run as administrator I

« If the following error message is thrown when building a MicroEJ Firmware, either the dongle plugged is a
verbatim dongle or it has not been successfully activated:

Invalid license check (Dongle found is not compatible).

VirtualBox Troubleshooting
In a VirtualBox virtual machine, USB drives must be enabled to be recognized correctly. Make sure to enable the
USB dongle by clicking on it in the VirtualBox menu Devices > USB .

To make this setting persistent, go to Devices > USB > USB Settings... and add the USB dongle in the
USB Devices Filters list.

2.2. Licenses 14

MicroEJ Documentation, Revision 44d2784c

2.3 MicroEJ Runtime

2.3.1 Language

MicroEJ is compatible with the Java language version 7.

Java source code is compiled by the Java compiler' into the binary format specified in the JVM specification’. This
binary code needs to be linked before execution: .class files and some other application-related files (see MicroEJ
Classpath) are compiled to produce the final application that the MicroEJ Runtime can execute.

MicroEJ complies with the deterministic class initialization (<clinit>) order specified in [BON]. The application is
statically analyzed from its entry points in order to generate a clinit dependency graph. The computed clinit se-
quence is the result of the topological sort of the dependency graph. An error is thrown if the clinit dependency
graph contains cycles.

2.3.2 Scheduler
The MicroEJ Architecture features a green thread platform that can interact with the C world [SNI]. The (green)
thread policy is as follows:

« preemptive for different priorities,

« round-robin for same priorities,

« “priority inheritance protocol” when priority inversion occurs.?

MicroEJ stacks (associated with the threads) automatically adapt their sizes according to the thread requirements:
Once the thread has finished, its associated stack is reclaimed, freeing the corresponding RAM memory.

2.3.3 Garbage Collector

The MicroEJ Architecture includes a state-of-the-art memory management system, the Garbage Collector (GC).
It manages a bounded piece of RAM memory, devoted to the Java world. The GC automatically frees dead Java
objects, and defragments the memory in order to optimize RAM usage. This is done transparently while the MicroEJ
Applications keep running.

2.3.4 Foundation Libraries

Embedded Device Configuration (EDC)
The Embedded Device Configuration specification defines the minimal standard runtime environment for embed-
ded devices. It defines all default API packages:

« java.io

« java.lang

+ java.lang.annotation

« java.lang.ref

« java.lang.reflect

! The JDT compiler from the Eclipse IDE.
2 Tim Lindholm & Frank Yellin, The Java™ Virtual Machine Specification, Second Edition, 1999
3 This protocol raises the priority of a thread (that is holding a resource needed by a higher priority task) to the priority of that task.

2.3. MicroEJ Runtime 15

MicroEJ Documentation, Revision 44d2784c

+ java.util

Beyond Profile (BON)

[BON] defines a suitable and flexible way to fully control both memory usage and start-up sequences on devices
with limited memory resources. It does so within the boundaries of Java semantics. More precisely, it allows:

+ Controlling the initialization sequence in a deterministic way.

« Defining persistent, immutable, read-only objects (that may be placed into non-volatile memory areas), and
which do not require copies to be made in RAM to be manipulated.

« Defining immortal, read-write objects that are always alive.

+ Defining and accessing compile-time constants.

2.4 MicroEJ Libraries

A MicroEJ Foundation Library is a MicroEJ Core library that provides core runtime APIs or hardware-dependent
functionality. A Foundation library is divided into an APl and an implementation. A Foundation library APl is com-
posed of a name and a 2 digits version (e.g. EDC-1.3) and follows the semantic versioning (http://semver.org)
specification. A Foundation Library API only contains prototypes without code. Foundation Library implementa-
tions are provided by MicroEJ Platforms. From a MicroEJ Classpath, Foundation Library APIs dependencies are
automatically mapped to the associated implementations provided by the Platform or the Virtual Device on which
the application is being executed.

A MicroEJ Add-On Library is a MicroEJ library that is implemented on top of MicroEJ Foundation Libraries (100%
full Java code). A MicroEJ Add-On Library is distributed in a single JAR file, with a 3 digits version and provides its
associated source code.

Foundation and Add-On Libraries are added to MicroEJ Classpath by the application developer as module depen-
dencies (see MicroEJ Module Manager).

YOUR APPLICATIONS

ADD-ON LIBRARIES
FOUNDATION LIBRARIES

Java code

=

Fig. 10: MicroEJ Foundation Libraries and Add-On Libraries

MicroEJ Corp. provides a large number of libraries through the MicroEJ Central Repository. To consult its libraries
APIs documentation, please visit https://developer.microej.com/microej-apis/.

2.5 MicroEJ Central Repository

2.5.1 Introduction

The MicroEJ Central Repository is the module repository distributed and maintained by MicroEJ Corp. It contains
Foundation Library APls and numerous Add-On Libraries.

2.4. MicroEJ Libraries 16

http://semver.org
https://developer.microej.com/microej-apis/

MicroEJ Documentation, Revision 44d2784c

2.5.2 Use

By default, MicroEJ SDK is configured to connect online MicroEJ Central Repository. The MicroEJ Central Repository
can be downloaded locally for offline use. Please follow the steps described at https://developer.microej.com/

central-repositoryy/.

You can also manually browse the repository at https://repository.microej.com/modules/.

2.5.3 Content Organization

The following table describes how are organized the modules natures within the repository.

Table 1: MicroEJ Central Repository Organization

Organization

Module Nature

ej.api, com.microej.api

Foundation Library API

com.microej.architecture

MicroEJ Architecture

com.microej.pack

MicroEJ Pack

ej.tool, com.microej.tool

Tool or Add-On processor

Any other

Add-On Library

2.5.4 Javadoc

To consult the APIs documentation (Javadoc) of all libraries available in the repository, please visit https://

repository.microej.com/javadoc/microej_5.x/apis/.

2.6 Embedded Specification Requests

MicroEJ implements the following ESR Consortium specifications:

[BON] | http://e-s-r.net/download/specification/ESR-SPE-0001-BON-1.2-F.pdf

2.7 MicroEJ Firmware

2.7.1 Bootable Binary with Core Services

[SNI] http://e-s-r.net/download/specification/ESR-SPE-0012-SNI_GT-1.2-H.pdf
[SP] http://e-s-r.net/download/specification/ESR-SPE-0014-SP-2.0-A.pdf o
[MUI] | http://e-s-r.net/download/specification/ESR-SPE-0002-MICROUI-2.0-B.pdf
[KF] http://e-s-r.net/download/specification/ESR-SPE-0020-KF-1.4-F.pdf N

A MicroEJ Firmware is a binary software program that can be programmed into the flash memory of a device. A
MicroEJ Firmware includes an instance of a MicroEJ runtime linked to:

« underlying native libraries and BSP + RTOS,

« MicroEJ libraries and application code (C and Java code).

2.6. Embedded Specification Requests

17

https://developer.microej.com/central-repository/
https://developer.microej.com/central-repository/
https://repository.microej.com/modules/
https://repository.microej.com/javadoc/microej_5.x/apis/
https://repository.microej.com/javadoc/microej_5.x/apis/
http://www.e-s-r.net
http://e-s-r.net/download/specification/ESR-SPE-0001-BON-1.2-F.pdf
http://e-s-r.net/download/specification/ESR-SPE-0012-SNI_GT-1.2-H.pdf
http://e-s-r.net/download/specification/ESR-SPE-0014-SP-2.0-A.pdf
http://e-s-r.net/download/specification/ESR-SPE-0002-MICROUI-2.0-B.pdf
http://e-s-r.net/download/specification/ESR-SPE-0020-KF-1.4-F.pdf

MicroEJ Documentation, Revision 44d2784c

YOUR APPLICATIONS
ADD-ON LIBRARIES o
Qo =
O g
FOUNDATION LIBRARIES E} @
@ ©
=
=5
o
z MICROEJ,VEE
VIRTUALIZATION
LOW.LEVELAPI LOW.LFVELAPI
e ABSTRACTION LAYERS = g MEJBz = ABSTRACTION LAYERS —
= ngine

File Internet * v —
Tl
: : vz
Drivers BSP Drivers Z Q@
o —
=z <

RTOS/0S

PLATFORM

PROCESSOR

Mass Ethernet CORE Bluetooth

Storage Wi-Fi / LTE Display

HARDWARE

Fig. 11: MicroEJ Firmware Architecture

2.7.2 Specification

The set of libraries included in the firmware and its dimensioning limitations (maximum number of simulta-
neous threads, open connections, ...) are firmware specific. Please refer to https://developer.microej.com/5/
getting-started-studio.html for evaluation firmware release notes.

2.8 MicroEJ SDK

MicroEJ SDK provides tools based on Eclipse to develop software applications for MicroEJ-ready devices. MicroEJ
SDK allows application developers to write MicroEJ Applications and run them on a virtual (simulated) or real de-
vice.

This document is a step-by-step introduction to application development with MicroEJ SDK. The purpose of
MicroEJ SDK is to develop for targeted MCU/MPU computers (loT, wearable, etc.) and it is therefore a cross-
development tool.

Unlike standard low-level cross-development tools, MicroEJ SDK offers unique services like hardware simulation
and local deployment to the target hardware.

Application development is based on the following elements:

« MicroEJ SDK, the integrated development environment for writing applications. It is based on Eclipse and is
relies on the integrated Java compiler (JDT). It also provides a dependency manager for managing MicroEJ
Libraries (see MicroEJ Module Manager). The current distribution of MicroEJ SDK (since 20.10) is built on
top of Eclipse 2020-06.

2.8. MicroEJ SDK 18

https://developer.microej.com/5/getting-started-studio.html
https://developer.microej.com/5/getting-started-studio.html
https://www.eclipse.org/downloads/packages/release/2020-06/r/eclipse-ide-java-developers

MicroEJ Documentation, Revision 44d2784c

+ MicroEJ Platform, a software package including the resources and tools required for building and testing an
application for a specific MicroEJ-ready device. MicroEJ Platforms are imported into MicroEJ SDK within a
local folder called MicroEJ Platforms repository. Once a MicroEJ Platform is imported, an application can be
launched and tested on Simulator. It also provides a mean to locally deploy the application on a MicroEJ-
ready device.

+ MicroEJ-ready device, an hardware device that will be programmed with a MicroEJ Firmware. A MicroEJ
Firmware is a binary instance of MicroEJ runtime for a target hardware board.

Starting from scratch, the steps to go through the whole process are detailed in the following sections of this chapter

« Download and install a MicroEJ Platform

« Build and run your first Application on Simulator

« Build and run your first Application on Device

For further information on the SDK installation and releases, you can check these chapters:

2.8.1 Release Notes
Starting from MicroEJ version 5.0.0 , MicroEJ Architectures are distributed separately from MicroEJ SDK. MicroEJ
Evaluation Architectures can be downloaded from the Architectures Repository.

MicroEJ Studio (resp. SDK) is now packaged into an Eclipse P2 repository (https://repository.microej.com/p2/
studio), allowing partial updates and installation on any compatible Eclipse version. The historical version (5)
of MicroEJ is reused for the P2 repository delivery.

MicroEJ continues to regularly build all-in-one packages, called Distributions, including an Eclipse base version,
various utility plugins, and dedicated OS installers. This distribution has a separate versioning, which follows mod-
ern convention: [YY].[MM].

2.8.2 MicroEJ SDK Distribution Changelog
[21.03] - 2021-03-25

« Included MicroEJ Studio / SDK 5.4.0
KNOWN ISSUES:

o See MicroEJ Studio / SDK 5.4.0 Known Issues section

[20.12] - 2020-12-11

« Included MicroEJ Studio / SDK 5.3.1

+ Disabled Java version check when updating MicroEJ Studio/SDK (see known issues of Studio/SDK Distribution
20.10)

[20.10] - 2020-10-30

« Included MicroEJ Studio / SDK 5.3.0

« Updated to Eclipse version 2020-06
« Fixed low quality MacOS SDK icons

2.8. MicroEJ SDK 19

https://repository.microej.com/modules/com/microej/architecture/
https://repository.microej.com/p2/studio
https://repository.microej.com/p2/studio

MicroEJ Documentation, Revision 44d2784c

NOTE: Starting with this release, only 64bits JRE are supported because 32bits JRE support has been removed
since Eclipse version 2018-12. See this link for more details.

KNOWN ISSUES:

+ Projects configured with Null Analysis must be updated to import EDC AP11.3.3 or higher in order to avoid an
Eclipse JDT builder error (see also this link for more details).

+ The default settings file for connecting MicroEJ Central Repository is not automatically installed. To connect
to the MicroEJ Central Repository, follow the procedure:

- For Windows, create the folder: C:\Users\%USERNAME%\ .microej.

- For Linux, create the folder: /home/$USER/.microej.

- For macos, create the folder: /Users/$USER/.microej.

- Download and save this file microej-ivysettings-5.xml to the previously created .microej folder.

+ By default, a check is done on the JRE version required by the plugins on install/update. Since CDT re-
quires JRE 11, it prevents to install/update a newer MicroEJ SDK version. The CDT documentation ex-

plains that this can be bypassed by disabling the option Windows > Preferences > Install/Update

> Verify provisioning operation is compatible with currently running JRE .

[20.07] - 2020-07-28

« Included MicroEJ Studio / SDK 5.2.0

« Updated the default microejrepository folder name (replaced MicroEJ Studio/SDK version by the distribution
number)

+ Added Dist. prefixininstallername (e.g. MicroEJ SDK Dist. 20.07)to avoid confusion between MicroEJ
SDK distribution vs MicroEJ SDK version

« Updated MicroEJ SDK and MicroEJ Studio End User License Agreement

+ Disabled popup window when installing a MicroEJ SDK update site (allow to install unsigned content by de-
fault)

[19.05] - 2019-05-17

« Included MicroEJ Studio / SDK version 5.1.0

« Updated MicroEJ icons (16x16 and 32x32)
« Updated the publisher of Windows executables (MicroEJ instead of I1S2T SA.)

« Updated the JRE link to download in case the default JRE is not compatible. (https://www.java.com is
deprecated)

[19.02] - 2019-02-22

« Updated to Eclipse Oxygen version 4.7.2
« Included MicroEJ Studio / SDK version 5.0.1

« Included Sonarlint version 4.0.0

2.8. MicroEJ SDK 20

https://www.eclipse.org/eclipse/news/4.10/platform.php#java32-removal
https://repository.microej.com/modules/ej/api/edc/1.3.3/
https://bugs.eclipse.org/bugs/show_bug.cgi?id=566599
https://repository.microej.com/microej-ivysettings-5.xml

MicroEJ Documentation, Revision 44d2784c

2.8.3 MicroEJ SDK Changelog

MicroEJ SDK includes all MicroEJ Studio features.

Aline prefixed by [Studio] isvalid for both MicroEJ Studio and MicroEJ SDK. A line prefixed by [SDK] is only valid
for MicroEJ SDK.

[5.4.1] - 2021-04-16

NOTE: This release is both compatible with Eclipse version 2020-06 and Eclipse Oxygen, so it can still be installed
on a previous MicroEJ Studio / SDK Distribution.

MicroEJ Module Manager

« [Studio] Fixed missing repository configurationin artifact-repository skeleton (this configuration
is required to include modules bundled in an other module repository)

[Studio] Fixed missing some old build types versions that were removed by error. (introduced in MicroEJ
SDK 5.4.0, please refer to the Known Issues section for more details)

[Studio] Fixed wrong version of module built in a meta-build (module was published with the module ver-
sion instead of the snapshot version)

[Studio] Fixed code coverage analysis on source code (besides on bytecode) thanks to the property cc.
src.folders (only for architectures in version 7.16.0 and beyond)

[5.4.0] - 2021-03-25

NOTE: This release is both compatible with Eclipse version 2020-06 and Eclipse Oxygen, so it can still be installed
on a previous MicroEJ Studio / SDK Distribution.

Known Issues

« Some older build types versions have been removed by error. Consequently, using MicroEJ SDK 5.4.0 , it
may be not possible to build modules that have been created with an older MicroEJ SDK version (For example,
MicroEJ GitHub code). The list of missing build types:

[Studio] build-application 7.0.2

[Studio] build-microej-javalib 4.1.1

[SDK] build-firmware-singleapp 1.2.10

[SDK] build-microej-extension 1.3.2

General

« [Studio] Added MicroEJ Module Manager Command Line Interface in Build Kit

« [Studio] Added ignore optional compilation problems in Addon Processor generated source folders

[Studio] Added logs to Standalone Application build indicating the mapping of Foundation Libraries to the
Platform

+ [SDK] Updated End User License Agreement

2.8. MicroEJ SDK 21

https://github.com/MicroEJ/

MicroEJ Documentation, Revision 44d2784c

+ [SDK] Added the latest HIL Engine API to mock-up skeleton (native resources management)

« [SDK] Update the Architecture import wizard to automatically accept Pack licenses when the Architecture
license is accepted

MicroEJ Module Manager
General

+ [Studio] Added JSCH library to execute MicroEJ test suites on Device through ssh

+ [Studio] Added pre-compilation phase before executing Addon Processor to have compiled classes avail-
able

« [Studio] Updated the default settings file to import modules from MicroEJ Developer repository (located
at ${user.dir}\.microej\microej-ivysettings-5.4.xml)

Build Types

« [Studio] Updated all relevant build types to load the Platform using the platform configuration instead
of the test configuration:

- Sandboxed Application (application)

- Foundation Library Implementation (javaimpl)
- Addon Library (javalib)

- MicroEJ Testsuite (testsuite)

[Studio] Updated Module Repository to allow to partially include a MicroEJ Architecture module (eval
and/or prod)

[Studio] Fixed potential Addon Processor error NoClassDefFoundError: ej/tool/addon/util/Message
depending on the resolution order

+ [SDK] Removed javadoc generation for microej-extension

Build Plugins

+ [Studio] Updated Addon Processor to fail the build when an error is detected. Error messages are dumped
to the build logs.

+ [Studio] Updated Platform Loader to handle Platform module (. zip file)

« [Studio] Updated Platform Loader to handle Virtual Device module (. vde file) declared as a dependency.
It worked before only by using the dropins folder.

[Studio] Updated Platform Loader to list the Platforms locations when too many Platform modules are
detected

Skeletons

+ [Studio] Fixed wrong README.md generation for artifact-repository skeleton

« [SDK] Removed useless filesin microej-javaapi, microej-javaimpl and microej-extension skeletons
(intern changelog and . dbk file)

2.8. MicroEJ SDK 22

https://forge.microej.com/artifactory/microej-developer-repository-release/

MicroEJ Documentation, Revision 44d2784c

[5.3.1]- 2020-12-11

NOTE: This release is both compatible with Eclipse version 2020-06 and Eclipse Oxygen, so it can still be installed
on a previous MicroEJ Studio/SDK Distribution.

General

« [Studio] Fixed missing default settings file for connecting MicroEJ Central Repository when starting a fresh
install (introducedin 5.3.0)

MicroEJ Module Manager
Build Plugins

« [Studio] Fixed potential build error when computing Sonar classpath from dependencies (ivy: cachepath
task was sometimes using a wrong cache location)

Skeletons

« [Studio] Fixed skeleton dependency to EDC-1.3.3 to avoid an Eclipse JDT builder error when Null Analysis
is enabled (see known issues of Studio/SDK Distribution 20.10)

[5.3.0]-2020-10-30

NOTE: This release is both compatible with Eclipse version 2020-06 and Eclipse Oxygen, so it can still be installed
on a previous MicroEJ Studio / SDK Distribution.

Known Issues

+ [Studio] Library module build may lead to unexpected Unresolved Dependencies errorin some cases (in
sonar:init target/ ivy:cachepath task). Workaround is to trigger the library build again.

General

[Studio] Fixed various plugins for Eclipse version 2020-06 compatibility (icons, project explorer menu
entries)

[Studio] Fixed closed module.ivy files after an SDK restart that were opened before

[Studio] Removed license check before launching an Application on Device

[Studio] Disabled Activate on new event option of the Error Log view to prevent popup of this view
when an internal error is thrown

« [SDK] Removed license check before Platform build
« [SDK] Updated filter of the Launch Group configuration (exclude the deprecated Eclipse CDT one)
« [SDK] Fixed inclusion of mock project dependencies in launcher mock classpath

« [SDK] Enhance error message in Platform editor (.platform files) when the required Architecture has not
been imported (displays Architecture information)

2.8. MicroEJ SDK 23

https://repository.microej.com/modules/ej/api/edc/1.3.3/

MicroEJ Documentation, Revision 44d2784c

MicroEJ Module Manager
General

» [Studio] Fixed workspace default settings file when clicking on the Default button

« [Studio] First wrong resolved dependency when ChainResolver returnFirst option is enabled and the mod-
ule to resolve is already in the cache

+ [Studio] Fixed potential build module crash (Not comparable issue) when resolving module dependencies
across multiple configurations

Build Types

« [Studio] Exclude packs from artifact checker when building a module repository

« [Studio] Merged Foundation & Add-On Libraries javadoc when building a module repository

+ [Studio] Added Module dependency line for each type in module repository javadoc

« [Studio] Added an option to skip deprecated types, fields, methods in module repository javadoc
+ [Studio] Allow toinclude or exclude Java packages in module repository javadoc

« [Studio] Added an option skip.publish to skip artifacts publication in build-custom build type

« [Studio] Allow to define Application options from build option using the platform-launcher.inject.
prefix

« [Studio] Added generation and publication of code coverage report after a testsuite execution. The report
generation is enabled under the following conditions:

at least one test is executed,

tests are executed on Simulator,

build option s3.cc.activated issetto true (default),

the Platform is based on an Architecture version 7.12.0 or higher

if testing a Foundation Library (using microej-testsuite), build option microej.testsuite.cc.
jars.name.regex must be set to match the simple name of the library being covered (e.g. edc-*. jar
or microui-*.jar)

[Studio] Fixed sonar false negative Null Analysis detection in some cases

[SDK] Added a better error message for Studio rebrand build when izpack.microej.product.location
option is missing

« [SDK] Deprecated build-microej-ri and disabled documentation generation (useless docbook
toolchains have been removed to reduce the bundle size: -150MB)

Skeletons

« [Studio] Fixed microej-mock content script initialization folder name

2.8. MicroEJ SDK 24

https://ant.apache.org/ivy/history/2.5.0/resolver/chain.html

MicroEJ Documentation, Revision 44d2784c

[5.2.0]-2020-07-28

General

o [Studio] Added Dist. prefix in default workspace and repository name to avoid confusion between Mi-
croEJ SDK distribution vs MicroEJ SDK version

+ [Studio] Replaced Version by Dist. in Help > About MicroEJ® SDK | Studio menu. The MicroEJ SDK
or Studio version is available in Installation Details view.

o [Studio] Replaced 1S2T S.A. and MicroEJ S.A. by MicroEJ Corp. in Help =
About MicroEJ® SDK | Studio menu.

« [Studio] Updated Front Panel plugin to version 6.1.1
« [Studio] Removed MicroEJ Copyright in Java class template and skeletons files

+ [Studio] Fixed Stopping a MicroEJ launch in the progress view doesn’t stop the launch

MicroEJ Module Manager

General

+ [Studio] Added a new configuration page (Window > Preferences > Module Manager). This page is

a merge of formerly named Easyant4Eclipse preferences page and Ivy Settings relevant options for
MicroEJ.

+ [Studio] Added Export > MicroEJ > Module Manager Build Kit wizard, to extract the files required for
automating MicroEJ modules builds out of the IDE.

« [Studio] Added New > MicroEJ > Module Project wizard (formerly named New Easyant Project),
with module fields content assist and alphabetical sort of the skeletons list

« [Studio] Added Import > MicroEJ > Module Repository wizard to automatically configure workspace
with a module repository (directory or zip file)

« [Studio] Added New MicroEJ Add-On Library Project wizard to simplify MicroEJ Add-On library skeleton
project creation

« [Studio] Updated the build repository (microej-build-repository.zip) to be self contained with its
owns ivysettings.xml

« [Studio] Updated Virtual Device Player (firmware-singleapp) launcher-windows.bat (use
launcher-windows-verbose.bat to get logs)

« [Studio] Renamed the classpath containerto Module Dependencies instead of Ivy

« [Studio] Fixed Addon Processor src-adpgenerated folder generation when creating orimporting a project
with the same name than a previously deleted one

« [Studio] Fixed implementation of settings ChainResolver returnFirst option

+ [Studio] Fixed vy module resolution being blocked from time to time

2.8. MicroEJ SDK 25

https://ant.apache.org/ivy/history/2.5.0/resolver/chain.html

MicroEJ Documentation, Revision 44d2784c

Build Types

[Studio] Fixed meta build to publish correct snapshot revisions for built dependencies. (Indirectly fixes
ADP resolution issue when an Add-On Library and its associated Addon Processor were built together using
a meta build)

[Studio] Fixed potential infinite loop when building a Modules Repository with MMM semantic enabled

[Studio] Fixed javadoc not being generated in artifactory repository build when skip.javadoc is set to
false

[Studio] Added the capability to build partial modules repository, by using the user provided ivysettings.
xml file to check the repository consistency

[Studio] Added the possibility to partially extend the build repository in a module repository. The build
repository can be referenced by a file system resolver using the property ${microej-build-repository.
repo.dir}

[Studio] Added the possibility to include a module repository into an other module repository (using new
configuration repository->x)

[SDK] Added the possibility to bundle a set of Virtual Devices when building a branded MicroEJ Studio. They
are automatically imported to the MicroEJ repository when booting on a new workspace.

[SDK] Added the possibility to bundle a Module Repository when building a branded MicroEJ Studio. It is
automatically imported and settings file is configured when booting on a new workspace.

Build Plugins

+ [Studio] Added variables @MMM_MODULE_ORGANISATIONE @MMM_MODULE_NAME@ and
@MMM_MODULE_VERSION@ for README.md file

« [SDK] Fixed microej-kf-testsuite repository access issue (introduced in MicrokEJ SDK 5.0.0).

« [Studio] Fixed artifact-checker to accept revisions surrounded by brackets (as specified by https://
keepachangelog.com/en/1.0.0/)

Skeletons

+ [Studio] Updated module.ivy indentation characters with tabs instead of spaces
+ [Studio] Updated CHANGELOG.md formatting

« [Studio] Updated and standardized README . md files

+ [Studio] Updated dependenciesin module.ivy to use the latest versions

« [Studio] Added .gitignore toignorethe target~ and src-adpgenerated folder where the module is
built

« [Studio] Added Sandboxed Application WPK dropins folder (META-INF /wpk)

« [Studio] Removed conf provided in module.ivy forfoundation libraries dependencies

+ [Studio] Remove MicroEJ internal site reference in module.ant file

« [Studio] Fixed corrupted library workbenchExtension-api.jar in microej-extension skeleton
« [Studio] Fixed corrupted library HILEngine. jar in microej-mock skeleton

« [Studio] Fixed javadoc contentissue in Main class firmware-singleapp skeleton

2.8. MicroEJ SDK 26

https://keepachangelog.com/en/1.0.0/
https://keepachangelog.com/en/1.0.0/

MicroEJ Documentation, Revision 44d2784c

Misc

[Studio] Updated End User License Agreement
[SDK] Added support for generating Application Options in reStructured Text format

[5.1.2] - 2020-03-09

MicroEJ Module Manager

[Studio] Fixed potential build error when generating fixed dependenciesfile (fixdeps task was sometimes
using a wrong cache location)

[Studio] Fixed topogical sort of classpath dependencies when building using Build Module (same asin
IvyDE classpath sorted view)

[Studio] Fixed resolution of modules with a version @.m.p when transitively fetched (an error was thrown
with the range [1.m.p-RC,1.m. (p+1)-RC[)

[Studio] Fixed missing classpath dependencies to prevent an error when building a standard JAR with JUnit
tests

[5.1.1] - 2019-09-26

General

[SDK] Fixed files locked in Platform in workspace projects preventing the Platform from being deleted
or rebuilt

[5.1.0] - 2019-05-17

General

[Studio] Updated MicroEJ icons (16x16 and 32x32)

[Studio] Fixed potential long-blocking operation when launching an application on a Virtual Device on Win-
dows 10 (Windows defender performs a slow analysis on a zip file when it is open for the first time since 0OS
startup)

[Studio] Fixed missing ADP resolution on a fresh MicroEJ installation

[Studio] Fixed ADP source folders order generation in .classpath (alphabetical sort of the ADP id)

[Studio] Fixed RunAs... > MicroEJApplication automatic launcher creation: when selecting a
Platform in workspace, an other platform of the repository was used instead

[Studio] Fixed Memory Map Analyzer load of mapping scripts from Virtual Devices
[Studio] Fixed MMM and ADP resolution when importing a zip project in a fresh MicroEJ install
[Studio] Fixed ADP crash when a project declares dependencies without a source folder

[Studio] Fixedinability to debugan application on a Virtual Device if option execution.mode was specified
in firmware build properties (now Studio options cannot be overridden)

[SDK] Updated Front Panel pluginto comply with the new Front Panel engine

2.8. MicroEJ SDK 27

MicroEJ Documentation, Revision 44d2784c

- The Front Panel engine has been refactored and moved from Ul Pack to Architecture (Ul pack 12.0.0
requires Architecture 7.11.0 or higher)

- New Front Panel Project wizard now generates a project skeleton for this new Front Panel engine,
based on MMM

- Legacy Front Panel projects for Ul Pack v11.71.0 or higher are still valid

« [SDK] Updated Virtual Device builder to speed-up Virtual Device boot time (Resident Applications are now
extracted at build time)

+ [SDK] Fixed inability to selecta Platform in workspace ina MicroEJ Tool launch configuration

« [SDK] Fixed broken title in MicroEJ export menu (Platform Export)

MicroEJ Module Manager
Build Plugins

« [Studio] Added a new option application.project.dir passed to launch scripts with the workspace
project directory

+ [Studio] Updated MMM to throw a non ambiguous error message when a module.ivy configured for MMM
declares versions with legacy vy range notation

« [Studio] Updated MicroEJ Central Repository cache directory to ${user.dir}\.
microej\caches\repository.microej.com-[version] instead of ${user.dir}\.ivy2

« [Studio] Updated Update Module Dependencies. .. tobedisabled when module.ivy cannotbe loaded.
The menu entry is now grayed when the project does not declare an IvyDE classpath container

« [Studio] Fixed wrongresolution order when a module is both resolved in the repository and the workspace
(the workspace module must always take precedence to the module resolved in the repository)

« [Studio] Fixed useless unknown resolver trace whencacheisused by multiple lvy settings configurations
with different resolver names.

« [Studio] Fixed slow Add-on Processor generation. The classpath passed to ADP modules could contain the
same entry multiple times, which leads each ADP module to process the same classpath multiple times.

« [Studio] Fixed misspelled recommendation message when a build failed

+ [Studio] Fixed Update Module Dependencies. .. tool:wrong ej:match="perfect” added where it was
expected to be compatible

o [Studio] Fixed Update Module Dependencies. .. tool: parse error when module.ivy contains <artifact
type="rip"/> element

« [Studio] Fixed resolution and publication of a module declared with an Ivy branch

« [Studio] Fixed character '-' rejected in module organisation (according to MMM specification 2.0-B)

« [Studio] Fixed ADP resolution error when the Add-on Processor module was only available in the cache

« [Studio] Fixed potential build crash depending on the build kit classpath order (error was This module
requires easyant [0.9,+])

o [Studio] Fixed product-java broken skeleton

2.8. MicroEJ SDK 28

MicroEJ Documentation, Revision 44d2784c

Build Types

« [Studio] Updated Platform Loader error message when the property platform-loader.target.
platform.dir issetto aninvalid directory

+ [Studio] Fixed meta build property substitution in *.modules.list files
+ [Studio] Fixed missing publications for README.md and CHANGELOG.md files
« [Studio] Update skeletons to fetch latest libraries (Wadapps Framework v1.10.9 and Junit v1.5.0)

+ [Studio] Updated README.md publication to generate MMM usage and the list of Foundation Libraries de-
pendencies

+ [SDK] Added a new build nature for building platform options pages (microej-extension)

« [SDK] Updated Virtual Device builder to speed-up Virtual Device boot time (Resident Applications are now
extracted at build time)

« [SDK] Fixed Virtual Device Player builder (dependencies were not exported into the zip file) and updated
firmware-singleapp skeleton with missing configurations

Skeletons

» [Studio] Updated CHANGELOG.md based on Keep a Changelog specification (https://keepachangelog.
com/en/1.0.0/)

« [Studio] Updated offline module repository skeleton to fetch in a dedicated cache directory under ${user.
dir}/.microej/caches

[5.0.1] - 2019-02-14

General

[Studio] Removed Wadapps Code generation (see migration notes below)

[Studio] Added support for MicroEJ Module Manager semantic (see migration notes below)

[Studio] Added a dedicated view for Virtual Devices in MicroEJ Preferences

[Studio] Removed Platform related views and menus in MicroEJ Studio (Import/Export and Preferences)

[Studio] Added MicroEJ Studio rebranding capability (product name, icons, splash screen and installer for
Windows)

[Studio] Added a new meta build version, with simplified syntax for multi-projects build (see migration
notes below)

[Studio] Added a skeleton for building offline module repositories

[Studio] Added support forimporting extended characters in Fonts Designer

[Studio] Allow to import Virtual Devices with .vde extension (. jpf import still available for backward
compatibility)

[Studio] Removed legacy selection for Types, Resources and Immutables in MicroEJ Launch Configuration
(replaced by =.1ist files since MicroEJ 4.0)

[Studio] Enabled IvyDE workspace dependencies resolution by default

[SDK] Enabled MicroEJ workspace Foundation Libraries resolution by default

2.8. MicroEJ SDK 29

https://keepachangelog.com/en/1.0.0/
https://keepachangelog.com/en/1.0.0/

MicroEJ Documentation, Revision 44d2784c

[SDK] Added possibility for MicroEJ Architectures to check for a minimum required version of MicroEJ SDK
(sdk.min.version property)

« [SDK] Updated New Standalone Application Project wizard to generate a single-app firmware skeleton

« [SDK] Updated Virtual Device Builder to manage Sandboxed Applications (compatible with Architectures
Products *_7.10.0 or newer)

« [SDK] Updated Virtual Device Builder to include kernel options (now options are automatically filled for the
application developer on Simulator)

MicroEJ Module Manager

Build Plugins

« [Studio] Added IvyDE resolution from properties defined in Windows > Preferences > Ant >
Runtime > Properties

« [Studio] Fixed lllegal character in path error that may occur when running an Add-on Processor

« [Studio] Fixed lvyDE crash when defining an Ant property file with Eclipse variables

Build Types

« [Studio] Kept only latest build types versions (skeletons updated)
« [Studio] Updated metabuild to execute tests by default for private module dependencies

« [Studio] Removed remaining build dependencies to JDK (Java code compiler and Javadoc processors). All
MicroEJ code is now compiled using the JDT compiler

+ [Studio] Introduced a new plugin for executing custom testsuite using MicroEJ testsuite engine
« [Studio] Fixed MalformedURLException error in Easyant trace
+ [Studio] Fixed Easyant build crash when an vy settings file contains a cache definitions with a wildcard

« [SDK] Updated Platform Builder to keep track in the Platform of the architecture on which it has been built
(architecture.properties)

+ [SDK] Updated Virtual Device Builder to generate with .vde extension

« [SDK] Updated Multi-app Firmware Builder to embed (Sim/Emb) specific modules (Add-on libraries and
Resident Applications)

+ [SDK] Fixed build-microej-ri v1.2.1 missing dependencies (embedded in SDK 4.1.5)

Skeletons

« [Studio] Updated all skeletons: migrated to latest build types, added more comments, copyright cleanup
and configuration for MicroEJ Module Manager semantic)

+ [SDK] Added the latest HIL Engine APl to mock-up skeleton (Start and Stop listeners hooks)

2.8. MicroEJ SDK 30

MicroEJ Documentation, Revision 44d2784c

2.8.4 Advanced Installation Notes

Windows Specifics
If you are using Windows Defender as your default antivirus software, MicroEJ Studio or SDK may be slow down as
it manipulates lots of JAR files (which are ZIP files) that are regularly analyzed.

To improve MicroEJ Studio or SDK experience, please find below a list of folders that should be excluded from
Windows Defender monitoring:

o %USERPROFILE%\.eclipse
* %USERPROFILE%\.ivy?2
o %USERPROFILE%\.microej

%USERPROFILE%\.p2

%USERPROFILE%\AppData\Local\Temp\microej
e C:\Program Files\MicroEJ
« your workspace(s) folder(s)

The exclusion page is available in the Settings application (Windows Security > Virus & threat protection >

Manage settings > Exclusions > Add or remove exclusions).

Linux Specifics

Starting MicroEJ Studio or SDK on a linux distribution may produce troubles such as missing content pages. This
is related to incomplete Eclipse SWT configuration (see Eclipse GTK wiki page).

One solution is to configure Eclipse as follows:

+ Add the next linesto MicroEK-[SDK|Studio].ini, before -vmargs argument:

--launcher.GTK_Version 2

Ensure GTK is correctly installed (1ibwebkitgtk packet)

Configure the following environment variables

MOZILLA_FIVE_HOME=/usr/lib/mozilla
LD_LIBRARY_PATH=${MOZILLA_FIVE_HOME?}:${LD_LIBRARY_PATH}

« Restart MicroEJ Studio/SDK

« Checkthere is not more SWT/MOZILLA related errors (Window > Show View > Other... > General >
Error Log)
2.8.5 Migration Notes
From 5.2.x to 5.3.x

This section applies if MicroEJ SDK 5. 3. x is started on a workspace that was previously created using MicroEJ SDK
5.2.x%.

2.8. MicroEJ SDK 31

https://wiki.eclipse.org/SWT/Devel/Gtk/GtkVersion

MicroEJ Documentation, Revision 44d2784c

Workspace migration warning

Starting with the MicroEJ SDK Distribution 20.10, when opening a workspace which has been created with an older
MicroEJ Distribution, a message is displayed with the following warning:

The workspace was written with an older version. Continue and update workspace which may make it_
—incompatible with older versions?

This is a generic warning from Eclipse which can be safely ignored as long as you don’t intend to open it back with
an older MicroEJ SDK Distribution then.

From 5.1.x to 5.2.x

This section applies if MicroEJ SDK 5. 2. x is started on a workspace that was previously created using MicroEJ SDK
5.1.x.

Enable New Wizards Shortcuts in MicroEJ Perspective
Eclipse perspective settings are stored in the workspace metadata, so the new wizards shortcuts (
Add-On Library Project and Module Project) are notvisibleinthe File > New menu.
The MicroEJ perspective must be reset to its default settings as following:
« Clickon Windows > Perspective > Open Perspective > Other... menu
+ Select MicroEJ perspective

+ Clickon Windows > Perspective > ResetPerspective... menu

» Clickon Yes button to accept to reset the MicroEJ perspective to its defaults.

The new wizards shortcuts are now visible into File > New menu.

Re-enable the lvy Preferences Pages (Advanced Use)

The original Window > Preferences > Ivy pages can be re-enabled as following:
+ Close all running instances of MicroEJ Studio / SDK
+ Edit MicroEJ-[SDK[Studio].ini and add the property -Dorg.apache.ivy.showAdvancedPrefs=true
« Start MicroEJ Studio / SDK again

« Goto Window > Preferences > Module Manager page

Anew link Ivy settings should appear on the bottom of the page. It opens a popup window with the original Ivy
preferences pages.

From 4.1.x to 5.x

This section applies if MicroEJ SDK 5. x is started on a workspace that was previously created using MicroEJ SDK
4.1.x.

2.8. MicroEJ SDK 32

MicroEJ Documentation, Revision 44d2784c

Wadapps Application Update

The Wadapps code generator has been moved from IDE to an Addon Processor coming with ej.library.wadapps.
framework module (v1.9.0 or higheris required).

A Wadapps Application Project can be updated as follows:

» Right-click on the project, then Configure > Remove Sandboxed Application Nature

+ Right-click on the project, then Configure > Add Sandboxed Application Nature

« Update module.ivy dependency to fetch ej.library.wadapps.framework version 1.9.0 (or perform
MicroEJ Module Manager update as defined below)

+ Delete remaining folder src/.generated~ if any

+ Check that project compiles and folder src-adpgenerated/wadapps is generated

MicroEJ Module Manager Update

It is highly recommended to migrate module.ivy to the MicroEJ Module Manager semantic, since the default Ivy
resolution will be no more maintained in future versions.

The module.ivy can be updated as follows:
+ Right-click on module.ivy,then Update Module Dependencies...

This has for effect to both migrate the module.ivy to the MicroEJ Module Manager semantic and also to update
dependencies version to the latest available in the target repository.

Meta build Project Update

A project using microej-meta-build version 1.x can be updated to version 2.x as follows:
« Edit module.ivy
- Replacethe microej-meta-build versionby 2.0.+

- Update all properties declaration to append the metabuild.inject. prefix (e.g. <ea:property
name="skip.test” value="true"” /> mustbeupdatedto <ea:property name="metabuild.inject.
skip.test” value="true"” />)

- Optionally remove or comment the root folder declaration as it is the default. (<ea:property
name="metabuild.root” value=".." />)

+ Delete module.properties . It only contains the property easyant.fork.build=true . This property is
now automatically set by easyant-build-component sinceversion 1.12.0. Otherwise it must be explicitly
injected by the build system as an Ant property: easyant.inject.easyant.fork.build=true

+ Extract from override.module.ant the projects declarations lines:

- Extract the project declarations of local.submodule.dirs.id into a new file named private.
modules.list (one project per line)

- Extract the project declarations of submodule.dirs.id into a new file names public.modules.list
(one project per line)

« Delete override.module.ant

The new file system structure shall look like:

2.8. MicroEJ SDK 33

MicroEJ Documentation, Revision 44d2784c

metabuild-project
module.ivy
private.modules.list
public.modules.list

2.9 Introducing MicroEJ Studio and Virtual Devices

MicroEJ Studio provides tools based on Eclipse to develop software applications for MicroEJ-ready devices. Mi-
croEJ Studio allows application developers to write MicroEJ Applications, run them on a virtual (simulated) or real
device, and publish them to a MicroEJ Forge instance.

This document is an introduction to application development with MicroEJ Studio. The purpose of MicroEJ Studio
is to develop for targeted MCU/MPU computers (loT, wearable, etc.) and it is therefore a cross-development tool.

Unlike standard low-level cross-development tools, MicroEJ Studio offers unique services like hardware simula-
tion, deployment to the target hardware and final publication to a MicroEJ Forge instance.

Application development is based on the following elements:

+ MicroEJ Studio, the integrated development environment for writing applications. It is based on Eclipse and
relies on the integrated Java compiler (JDT). It also provides a dependency manager for managing MicroEJ
Libraries (see MicroEJ Module Manager). The current distribution of MicroEJ Studio (19.05) is built on top of
Eclipse Oxygen (https://www.eclipse.org/oxygen/).

+ MicroEJ Virtual Device, a software package including the resources and tools required for building and test-
ing an application for a specific MicroEJ-ready device. A Virtual Device will simulate all capabilities of the
corresponding hardware board:

Computation and Memory,

Communication channels (e.g. Network, USB ...),

Display,

User interaction.

Virtual Devices are imported into MicroEJ Studio within a local folder called MicroEJ Repository. Once a Vir-
tual Device is imported, an application can be launched and tested on Simulator. It also provides a mean to
locally deploy the application on a MicroEJ-ready device.

+ MicroEJ-ready device, a hardware device that has been previously programmed with a MicroEJ Firmware. A
MicroEJ Firmware is a binary instance of MicroEJ runtime for a target hardware board. MicroEJ-ready devices
are built using MicroEJ SDK. MicroEJ Virtual Devices and MicroEJ Firmwares share the same version (there is
a1:1 mapping).

The following figure gives an overview of MicroEJ Studio possibilities:

2.9. Introducing MicroEJ Studio and Virtual Devices 34

https://www.eclipse.org/oxygen/

MicroEJ Documentation, Revision 44d2784c

- 9 Simulator
-\ = MICROE} ,‘ g\ .
. - Test
MICROEJ Studio

MICROEJ
APPLICATION

MICROEJ.Forge

Fig. 12: MicroEJ Application Development Overview

2.10 Perform Online Getting Started

MicroEJ Studio Getting Started is available on https://developer.microej.com/5/getting-started-studio.html.
Starting from scratch, the steps to go through the whole process are:
1. Setup a board and test a MicroEJ Firmware:
« Select between one of the available boards;
« Download and install a MicroEJ Firmware on the target hardware;
« Deploy and run a MicroEJ demo on board.
2. Setup and learn to use development tools:
» Download and install MicroEJ Studio;
« Download and install the corresponding Virtual Device for the target hardware;
« Download, build and run your first application on Simulator;

« Build and run your first application on target hardware.

The following figure gives an overview of the MicroEJ software components required for both host computer and

target hardware:

2.10. Perform Online Getting Started

https://developer.microej.com/5/getting-started-studio.html

MicroEJ Documentation, Revision 44d2784c

MicroEJ - MicroEJ
Virtual Device Firmware
(.vde)

Q Software

MICROEJ Studio (-exe) (binary)
l Install I Install I Flash
$
. —
Your Workstation Local Target
with Simulator Deploy
Download
& Install
» | @ MICROEJ forge
Publish [2~

Fig. 13: MicroEJ Studio Development Imported Elements

2.11 GitHub Repositories

Alarge number of examples, libraries, demos and tools are shared on MicroEJ GitHub account: https://github.com/
MicroEJ.

Most of these GitHub repositories contain projects ready to be imported in MicroEJ SDK. This section explains the
steps to import them in MicroEJ SDK, using the MWT Examples repository.

Note: MicroEJ SDK Distribution includes the Eclipse plugin for Git.

First, from the GitHub page, copy the repository URI (HTTP address) from the dedicated field in the right menu
(highlighted in red):

2.11. GitHub Repositories 36

https://github.com/MicroEJ
https://github.com/MicroEJ
https://github.com/MicroEJ/ExampleJava-MWT
https://www.eclipse.org/egit/

MicroEJ Documentation, Revision 44d2784c

O Why GitHub? ~~ Team Enterprise Explore Marketplace Pricing Sign in ‘ Sign up |
& MicroE) / ExampleJava-MWT ®Watch | 2 TrStar | 1 Yok 0
<> Code Issues Pull requests Actions Projects Security Insights

$ master - P 1branch © 2 tags Go to file About

These projects provide examples
Q privron Merge branch ‘develop’ into ‘master’ .. BJ Clone @ for MWT

HTTPS GitHub CLI
: - e e (FF [Readme
com.microej.example.mwt.basic ix api minor version @ignc https://github.con/MicroEl/Exanplela | 7]
com.microej.example.mwtbutt.. Fix api minor version @ignc Use Git or checkout with SVN using the web URL. BB View license
com.microej.example.mwt.hello... Fix api minor version @ignc
Et] Open with GitHub Desktop
. Releases
com.microej.example.mwt.mvc Fix api minor version @ignc
: - o - X B D load ZIP @ 2 tags
com.microej.example.mwtslidi.. Fix api minor version @igne & ownloa
[.gh-copyright.template Move mwt example from foundation libraries @ignore_branc... 3 years ago
N e AT e A 1 e e o e e . Packages

In MicroEJ SDK, to clone and import the project from the remote Git repository into the MicroEJ workspace, select
File > Import > Git > Projectsfrom Git wizard.

2.11. GitHub Repositories 37

MicroEJ Documentation, Revision 44d2784c

® |mport

Select

Import one or more projects from a Git Repository. Iﬁ

Select an import wizard:

type filter text

= General

= C/C++

= CV5
v = Git

S0 Projects from Git

= Install
= MicroEl
= Plug-in Development
[= Run/Debug
= Tasks
= Teamn
= XML

® < Back Finish Cancel

Click Next , select CloneURI ,click Next and paste the remote repository address in the URI field. For
this repository, the address is https://github.com/MicroEJ/ExampleJava-MWT.git. If the HTTP address is a valid
repository, the other fields are filed automatically.

2.11. GitHub Repositories 38

https://github.com/MicroEJ/ExampleJava-MWT.git

MicroEJ Documentation, Revision 44d2784c

® |mport Projects from Git
Source Git Repository GIT
Enter the location of the source repository. :_‘:n‘
Location
URJ: ?| https:.-"fgithul:l.cum.-"MicrDElexampI&lava-M‘."H"T.giﬂ | Lacal File...
Host: | github.com |
Repository path: | /Microbl/Examplelava-MWT.git |
Connection
Protocol: | https
Authentication
User | |
Password: | |
[]5tore in Secure Store
® = Back Finish Cancel

Click Next , selectthe master branch, click Next and acceptthe proposed Local Destination by clicking Next

once again.

2.11. GitHub Repositories

39

MicroEJ Documentation, Revision 44d2784c

® |mport Projects from Git

Local Destination

GIT

Configure the local storage location for Examplelava-MWT. E‘
Destination

Directory: | IC:\Users\user\git\Examplelava-MWT | Browse
Initial branch: K master v

[]Clene submodules

Configuration

Remote name: | crigin

® < Back Finish Cancel

Click Next once more and finally Finish . The Package Explorer view now contains the imported projects.

£ Package Explorer &2 ‘Eg Type Hierarchy % ™

w '[c‘.gl- com.microgj.example.mwt.basic [Examplelava-MWT master]
& src/main/java
B\ Module Dependencies module.ivy [*]
[src
[%} CHANGELOG.md
5 LICEMSE.txt
ke moduleivy
[#} README.md
'[c".gl- com.microgj.example.mwt.button [Examplelava-MWT master]
'_,fé com.microg).example.rmwt.helloworld [Examplelava-MWT master]
'[;_—'é com.microgj.example.mwt.mve [Examplelava-MWT master]

1—.;‘- com.microg).example.mwt.slidingwidget [Examplelava-MWT master]

2.11. GitHub Repositories 40

MicroEJ Documentation, Revision 44d2784c

If you want to import projects from another (GitHub) repository, you simply have to do the same procedure using
the Git URL of the desired repository.

2.12 System Requirements

MicroEJ SDK and MicroEJ Studio

+ Intel x64 PC with minimum :
- Dual-core Core i5 processor
- 4GB RAM
- 2GB Disk

« Operating Systems :

Windows 10, Windows 8.1 or Windows 8

Linux distributions (tested on Ubuntu 18.04 and 20.04) - As of SDK 20.10 (based on Eclipse 2020-06),
Ubuntu 16.04 is not supported.

Mac OS X (tested on version 10.13 High Sierra, 10.14 Mojave)

« Java:

JRE or JDK 8 (Oracle JDK or other OpenJDK build: tested on AdoptOpenJDK/Eclipse Adoptium)

Warning: When installing the AdoptOpenJDK build on Windows, the option JavaSoft (Oracle) registry
keys must be enabled:

2.12. System Requirements 41

MicroEJ Documentation, Revision 44d2784c

ﬁ AdoptOpen)DK JDK with Hotspot 8u282-b08 (x64) Setup

Custom Setup

Select the way you want features to be installed.

Click the icons in the tree below to change the way features will be installed.

--------- Elvl Add to PATH Hotspot
......... gv| Associate .jar

--------- X_~| Set JAVA HOME variable

AdoptOpen]DK Development Kit with

--------- Qvl JavaSoft (Oracle) registry keys

B3 i PleT =R This feature requires 186MB on your

hard drive. It has 3 of 5 subfeatures
selected. The subfeatures require 4KB
on your hard drive.

Location:

FReset

C:\Program Files'\AdoptOpen]DK\jdk-8.0.282.8-hotspot),

Disk Usage Back Mext Cancel

Browse...

Without this option, the SDK installer cannot find the JRE/JDK and the message The application requires
a Java Runtime Environment 1.8.0 isdisplayed.

2.13 Get Support

If any questions, feel free to contact our support team with the following information (the table below is an exam-

ple):
Delivery Name
MicroEJ SDK Distribution 20.07 / Version 5.2.0 (see Determine the MicroEJ Studio/SDK

Version)

MicroEJ Architecture

ARM Cortex-M4 / IAR / Evaluation | Production (see MicroEJ Architecture)

Platform

1.0.0

Application

1.2.4

Module Repository

C compiler

https://repository.microej.com/packages/repository/2.5.0/microej-5_
0-2.5.0.zip (see MicroEJ Central Repository)
IAR 8.40.1

Host Operating System

Windows 10 (see System Requirements)

2.13. Get Support

42

https://www.microej.com/contact/#form_2
https://repository.microej.com/packages/repository/2.5.0/microej-5_0-2.5.0.zip
https://repository.microej.com/packages/repository/2.5.0/microej-5_0-2.5.0.zip

CHAPTER

THREE

APPLICATION DEVELOPER GUIDE

3.1 Introduction

The following sections of this document shall prove useful as a reference when developing applications for MicroEJ.
They cover concepts essential to MicroEJ Applications design.

In addition to these sections, by going to https://developer.microej.com/, you can access a number of helpful re-
sources such as:

« Libraries from the MicroEJ Central Repository (https://developer.microej.com/central-repository/);
« Application Examples as source code from MicroEJ Github Repositories (https://github.com/MicroEJ);
« Documentation (HOWTOs, Reference Manuals, APIs javadoc...).

MicroEJ Applications are developed as standard Java applications on Eclipse JDT, using Foundation Libraries. Mi-
croEJ SDK allows you to run / debug / deploy MicroEJ Applications on a MicroEJ Platform.

Two kinds of applications can be developed on MicroEJ: MicroEJ Standalone Applications and MicroEJ Sanboxed
Applications.

A MicroEJ Standalone Application is a MicroEJ Application that is directly linked to the C code to produce a Mi-
croEJ Firmware. Such application must define a main entry point, i.e. a class containing a public static void
main(String[]) method. MicroEJ Standalone Applications are developed using MicroEJ SDK.

A MicroEJ Sandboxed Application is a MicroEJ Application that can run over a Multi-Sandbox Firmware. It can be
linked either statically or dynamically. If it is statically linked, it is then called a System Application as it is part of
the initial image and cannot be removed. MicroEJ Sandboxed Applications are developed using MicroEJ Studio.

3.2 Local Workspaces and Repositories

When starting MicroEJ SDK, it prompts you to select the last used workspace or a default workspace on the first
run. A workspace is a main folder where to find a set of projects containing MicroEJ source code.

When loading a new workspace, MicroEJ SDK prompts for the location of the MicroEJ repository, where the Mi-
croEJ Architectures, Platforms or Virtual Devices will be imported. By default, MicroEJ SDK suggests to point to
the default MicroEJ repository on your operating system, located at ${user.home}/.microej/repositories/
[version]. You can select an alternative location. Another common practice is to define a local repository relative
to the workspace, so that the workspace is self-contained, without external file system links and can be shared
within a zip file.

43

https://developer.microej.com/
https://developer.microej.com/central-repository/
https://github.com/MicroEJ

MicroEJ Documentation, Revision 44d2784c

3.3 Standalone Application

3.3.1 MicroEJ Platform Import

A MicroEJ Platform is required to run a MicroEJ Standalone Application on the Simulator or build the Firmware
binary for the target device.

The Platform Developer Guide describes how to create a MicroEJ Platform from scratch for any kind of device. In
addition, MicroEJ Corp. provides Platforms for various development boards (see https://repository.microej.com/
index.php?resource=JPF).

MicroEJ Platforms are distributed in two packages:
« Source Platform. The source files are imported into the workspace. This is the default case.

+ Binary Platform. A . jpf fileisimported into the MicroEJ repository. As of MicroEJ SDK 5. 3.0, this package
is deprecated.

Source Platform Import

Import from Folder

This section applies when the Platform files are already available on a local folder. This is likely the case when the
files are checked out from a Version Control System, such as a local git repository clone.

Note: If you are going to import a Platform from MicroEJ Github, you can follow the specific GitHub Repositories
section instead (the projects will be automatically imported).

+ Select File > Import... > General > Existing ProjectsintoWorkspace > Selectrootdirectory =

Browse... .

« Select the root directory. The wizard will automatically discover projects to import.

« Clickonthe Finish button.

Import from Zip File

This section applies when the Platform files are packagedina .zip file.

» Select File > Import... > General > Existing Projectsinto Workspace > Select archive file =
Browse... .

« Select the zip of the project (e.g., x.zip). The wizard will automatically discover projects to import.

« Clickonthe Finish button.

Platform Build

MicroEJ Platforms are usually shared with only the Platform configuration files. Once the projects are imported,
follow the platform-specific documentation to build the Platform.

Once imported or built, a Platform project should be available as follows:

3.3. Standalone Application 44

https://repository.microej.com/index.php?resource=JPF
https://repository.microej.com/index.php?resource=JPF

MicroEJ Documentation, Revision 44d2784c

v 2 myDevice-myPlatform-CMdhardfp_|ARS3-1.0.0
(% build
= =ource
=| .project

Fig. 1: MicroEJ Platform Project
The source folder contains the Platform content which can be set to the target.platform.dir option.

Binary Platform Import

After downloading the MicroEJ Platform . jpf file, launch MicroEJ SDK and follow these steps to import the MicroEJ
Platform:

« Open the Platform view in MicroEJ SDK, select Window > Preferences > MicroEJ > Platforms . The
view should be empty on a fresh install of the tool.

'('} Preferences = n

type filter text Platforms L= A4

» General A
» Ant
y CfC++ Platforms, Virtual Devices and Architectures:
Checkstyle
EasyantdEclipse
» Help Deselect All
» Install/Update
> vy
» Java
4 Microk)
Architectures Get UID
Maming Convention
Platforms in workspace
Updates
» Mylyn

Add or remove platforms.

MName Version Lic... Select All

Import...

Uninstall

> Plug-in Development
- PMD
n Restore Defaults Apph

Fig. 2: MicroEJ Platform Import

« Press Import... button.

« Choose SelectFile... andusethe Browse option to navigate tothe .jpf file containing your MicroEJ
Platform, then read and accept the license agreement to proceed.

3.3. Standalone Application 45

MicroEJ Documentation, Revision 44d2784c

- oS

('} Import Platforms, Virtual Devices and Architectures

Import Platforms, ¥irtual Devices and Architectures

Select a directory/file to search for available platforms, virtual devices and architectures.

(") Select directory: Browse...
(®) Select file: Ch\Usersh, MicroEJPlatform jpof Browse...
Platforms, Yirtual Devices and Architectures:
Mame Yersion Select All
L} MicroE Platform 2.1.1 Deselect Al

MICROE) LICEMSE AGREEMENT

PREAMELE

THIS SOFTWARE LICEMNSE AGREEMENT (THE « AGREEMENT ») APPLIES TO PRODUCTS LICEMSE
On purchase of any Licensed Product from 52T or an 52T Partner or an [52T Distributor, the relz
THE LICEMSEE, AS A USER OF THE LICEMSED PRODUCTS REFERRED TO ABOVE AND OM THE REI

1 DEFIMITIONS

€ >

[+]1 agree and accept the above terms and conditions and | want to install the copyrighted Software

Fig. 3: MicroEJ Platform Selection

+ The MicroEJ Platform should now appear in the Platforms view, with a green valid mark.

3.3. Standalone Application 46

MicroEJ Documentation, Revision 44d2784c

O

ty

Preferences = n

rpe filter text Platforms =1 v w

» General ~
» Ant
s CfC++ Platforms, Virtual Devices and Architectures:

Checkstyle MName Version Lic.. Select All

EasyantdEclipse ;
211 >
. Help L} MicroEJ Piatform o Deselect Al

+ Install/Update
> Iy

. Java

Add or remove platforms.

Import...

Uninstall

4 Microk)

<

Architectures Get UID
Maming Conventicon
Platforms in workspace
Updates

» Mylyn

» Plug-in Development

> PMD

noom Restare Defaults Apply

3.3

Fig. 4: MicroEJ Platform List

.2 Build and Run an Application

Create a MicroEJ Standalone Application

« Create a project in your workspace. Select File > New > Standalone Application Project .

File | Edit Source Refactor Mavigate Search Project Run Window Help
Mew Alt+Shift+N » | (22 MicroE) Standalone Application Project -
Open File... \g MicroE) Standalone Example Project
Cloze Ctrl+W ‘3 ST
Close Al CtrlShift+ W R
£ MicroE) Sandboxed Application Project
Sav |+ 5
Save Ctrl+5 |=<3 T
Save Az
FE¥ MirrnFl Eant
Fig. 5: New MicroEJ Standalone Application Project
« Fillin the application template fields, the Project name field will automatically duplicate in the following
fields. Click on Finish . A template project is automatically created and ready to use, this project already
contains all folders wherein developers need to put content:
- src/main/java: Folder for future sources
- src/main/resources : Folder for future resources (images, fonts, etc.)
3.3. Standalone Application 47

MicroEJ Documentation, Revision 44d2784c

- META-INF : Sandboxed Application configuration and resources

- module.ivy: lvyinput file, dependencies description for the current project

+ Rightclickonthesourcefolder src/main/java andselect New > Package . Giveaname: com.mycompany
. Clickon Finish .

0 Mew Java Package - 0 n
Java Package

Create a new Java package.

Creates folders corresponding to packages.

Source folder: | MyTest/src Browse...

Mame: COM.Mmycompany

[| Create package-info.java

Fig. 6: New Package

+ The package com.mycompany is available under src/main/java folder. Right click on this package and
select New > Class . Give a name: Test and check the box public static void main(String[]

args) . Clickon Finish .

3.3. Standalone Application 48

MicroEJ Documentation, Revision 44d2784c

0 Mew Java Class - B n

Jawva Class —=
Create a8 new Java class, @

Source folder: MyTest/src Browse...

Package: COM.mMycompany Browse...

[Enclosing type: Browse...

Mame: Test

Modifiers: (@) public () package private protected

[]abstract []final ctatic

Superclass: java.lang.Object Browse...

Interfaces: Add...
Bemowve

Which method stubs would you like to create?
[#]ipublic static void main(String[] args);

[] Constructors from superclass
Inherited abstract methods
Do you want to add comments? (Configure templates and default value here

|:| Generate comments

Fig. 7: New Class

+ The new class has been created with an empty main() method. Fill the method body with the following
lines:

System.out.println("hello world!");

3.3. Standalone Application 49

MicroEJ Documentation, Revision 44d2784c

by module.ivy [J] Testjava &3

package com.mycompany;

public class Test {

-
“

public =s=tatic void main(String([] args)
System.out.println("hello world!"™});

Fig. 8: MicroEJ Application Content
The test application is now ready to be executed. See next sections.

Run on the Simulator

{

To run the sample project on Simulator, select it in the left panel then right-click and select Run > Runas >

MicroEJ Application .

3.3. Standalone Application

50

MicroEJ Documentation, Revision 44d2784c

package com.mycompany;

4 Go Into public class Test {

Open in New Window public static void main

Open Type Hierarchy F4 System.out.println/

Show In Alt+Shift+W »

1

le=-

X =l Copy Ctrl+C

}{ 5 Copy Qualified Mame

foyt| [Paste Ctrl+Y
. Delete Delete

Build Path »
Source Alt+Shift+5 ¥
Refactor Alt+Shift+T »

Import...
Export...

EE

wit Refresh F5
Close Project
Close Unrelated Projects

Assign Warking Sets..,

Run As »
Debug As *
Profile As »
Validate

@ Ruild with Faswlnt

1 lava Applet Alt+5hift+X, A
2 Java Application Alt+Shift+X, J
3 Microk) Application Alt+Shift+X, M

MM A

Run Cenfigurations..,

"

Fig. 9: MicroEJ Development Tools Overview

MicroEJ SDK console will display Launch steps messages.

=============== [Initialization Stage) =
=== eI Launchj_ng on Simulator] ===============

SUCCESS

Run on the Hardware Device

Compile an application, connect the hardware device and deploy on it is hardware dependant. These steps are
described in dedicated documentation available inside the MicroEJ Platform. This documentation is accessible
from the MicroEJ Resources Center view.

Note: MicroEJ Resources Center view may have been closed. Click on Help > MicroEJ Resources Center to
reopen it.

3.3. Standalone Application 51

MicroEJ Documentation, Revision 44d2784c

Open the menu Manual and select the documentation [hardware device] MicroEJ Platform, where
[hardware device] is the name of the hardware device. This documentation features a guide to run a built-in
application on MicroEJ Simulator and on hardware device.

MicroE) Resource Center 23
type filter text
. &2 Javadoc

6 Manual

[l Hardware Device MicroE] Platform

Fig. 10: MicroEJ Platform Guide

3.3.3 Build Output Files
When building a MicroEJ Application, multiple files are generated next to the ELF file. These files are generated in a
folder which is named like the main type and which is located in the output folder specified in the run configuration.

The following image shows an example of output folder:

v [com.microg).demo.widget.common.Mavigation
= bon
[= cC
[externalResources
= fonts
= heapDump
= Images
= logs
= platform
= resourceBuffer
w [—- soar
=| com.microgj.demowidget.common.Mavigation.clinitrap
com.micreel.demo.widget.common.MNavigation.o
Ei com.micreel.demo.widget.common.Mavigation.s3infos
|X| com.microg.demowidget.commen.Mavigation.xml
L] sni_intern.h
[SOAR.map

SOAR.o

Fig. 11: Build Output Files

3.3. Standalone Application 52

MicroEJ Documentation, Revision 44d2784c

The SOAR Map File

The SOAR.map file lists every embedded symbol of the application (section, Java class or method, etc.) and its size
in ROM or RAM. This file can be opened using the Memory Map Analyzer.

The embedded symbols are grouped into multiple categories. For example, the Object class and its methods are
grouped inthe LibFoundationEDC category. For each symbol or each category, you can see its size in ROM (Image
Size)and RAM (Runtime Size).

The SOAR groups all the Java strings in the same section, which appearsinthe ApplicationStrings category. The
same appliesto the staticfields (Statics category), thetypes (Types category), and the class names (ClassNames
category).

The SOAR Information File

The soar/<main class>.xml file can be opened using any XML editor.
This file contains the list of the following embedded elements:

« method (in selected_methods tag)

« resource (in selected_resources tag)

« system property (in java_properties tag)

« string (in selected_internStrings tag)

« type (in selected_types tag)

« immutable (in selected_immutables tag)

3.3.4 MicroEJ Launch

The MicroEJ launch configuration sets up the MicroEJ Applications environment (main class, resources, target plat-
form, and platform-specific options), and then launches a MicroEJ launch script for execution.

Execution is done on either the MicroEJ Platform or the MicroEJ Simulator. The launch operation is platform-
specific. It may depend on external tools that the platform requires (such as target memory programming). Refer
to the platform-specific documentation for more information about available launch settings.

Main Tab

The Main tab allows you to setin order:
1. The main project of the application.
2. The main class of the application containing the main method.

3. Types required in your application that are not statically embedded from the main class entry point. Most
required types are those that may be loaded dynamically by the application, using the Class.forName()
method.

4. Binary resources that need to be embedded by the application. These are usually loaded by the application
using the Class.getResourceAsStream() method.

5. Immutable objects’ description files. See the [BON 1.2] ESR documentation for use of immutable objects.

3.3. Standalone Application 53

MicroEJ Documentation, Revision 44d2784c

0 Run Configurations n
Create. manage. and run configurations ;—I
- —*|,
= x| H 5 Name: | HelloWerld
type filter text 3] Main s Execution| 8§ Configuration | g, JRE E Source | [[] Commen
E C/C++ Application Praject ~
Ju JUnit
BI;I La::'1ch Group MyHelloWorld5ample Browse...
4 [7] MicroE) Application Main type, Required types
31 HelloWarld
& MicroE Tool com.is2t.examples.edc.helle. HelloWorld Select Main type...
Add types...
Extra types...
Remove
Resources
Add...
Remove
Immutables v
Revert Apply

Filter matched 6 of 11 items

Fig. 12: MicroEJ Launch Application Main Tab

Execution Tab

The next tab is the Execution tab. Here the target needs to be selected. Choose between execution on a MicroEJ
Platform or on a MicroEJ Simulator. Each of them may provide multiple launch settings. This page also allows you
to keep generated, intermediate files and to print verbose options (advanced debug purpose options).

3.3. Standalone Application 54

MicroEJ Documentation, Revision 44d2784c

G— Run Cenfigurations

Create, manage, and run configurations

)

CEX B3P~

type filter text

] C/C++ Application
Ju JUnit

Name: | Widget Demo (SIM)

3] Main | = Execution

A Configuratioﬂ B JRE} E_/ Source\l i=| Qommoﬂ

Target

Platfarm: | STM32F746G-DISCO SingleApp Production [K1AU3] (4.0.0-RC202007301413) | Browse...
L Launch Group
w [T MicroE) Application Execution
& W!dget Demo (EMB) (®) Execute on Simulator () Execute on Device
[3] Widget Demo (SIM])
» g MicroE! Tool Core Engine Mode: MDefanl ~
Settings: | Default ~ | Seftings: | Build & Deploy w
The Application is simulated
Cptions
Output folder: | S{project_loc:com.microej.demouwidget} Browse...
Clean intermediate files [Verbose
Opticns Files
Y project_loc:com.microe].demo.widget}/build/commeoen.properties Add...
Y project_loc:com.microgj.demo.widgetl/build/sim/sim.properties
Remove
Up
Down
Revert Appl
Filter matched 8 of 21 items = e
@

Configuration Tab

Fig. 13: MicroEJ Launch Application Execution Tab

The next tabis the Configuration tab. Thistab contains all platform-specific options.

3.3. Standalone Application

55

MicroEJ Documentation, Revision 44d2784c

ﬂ Run Configurations n

Create. manage. and run configurations -
w,

S X B2 Name: | HelloWorld

type filter text 37 Main | s Execution | ifif Configuration g, JRE E Source | [[] Commen
[E] C/C++ Application 4 Debug
Ju JUnit Code Coverage
[Launch Group Heap Dumper
4 [7] MicroE) Application 1Dwe
Logs
@ MicroE) Tool 4 Simulator
Com Port
F5
HAL
4 Target
Memory

Specify debug options

4 Libraries
EDC
Shielded Plug
. ECOM
FS
> Microll
Met
MNLS
S5L

. . Revert Apply
Filter matched 6 of 11 items

Fig. 14: Configuration Tab

JRE Tab

The next tabisthe JRE tab. Thistab allows you to configure the Java Runtime Environment used for running the
underlying launch script. It does not configure the MicroEJ Application execution. The VM Arguments text field
allows you to set vm-specific options, which are typically used to increase memory spaces:

« To modify heap space to 1024MB, set the -Xmx1024M option.

« To modify string space (also called PermGen space) to 256MB, set the -XX:PermSize=256M
-XX:MaxPermSize=256M options.

« To set thread stack space to 512MB, set the -Xss512M option.

Other Tabs

The next tabs (Source and Common tabs) are the default Eclipse launch tabs. Refer to Eclipse help for more
details on how to use these launch tabs.

3.3. Standalone Application 56

MicroEJ Documentation, Revision 44d2784c

3.3.5 Application Options
Introduction
To run a MicroEJ Standalone Application on a MicroEJ Platform, a set of options must be defined. Options can be
of different types:
« Memory Allocation options (e.g set the Java Heap size). These options are usually called link-time options.
« Simulator & Debug options (e.g. enable periodic Java Heap dump).
+ Deployment options (e.g. copy microejapp.o to a suitable BSP location).
« Foundation Library specific options (e.g. embed UTF-8 encoding).

The following section describes options provided by MicroEJ Architecture. Please consult the appropriate MicroEJ
Pack documentation for options related to other Foundation Libraries (MicroUl, NET, SSL, FS, ...) integrated to the
Platform.

Notice that some options may not be available, in the following cases:

« Option is specific to the MicroEJ Core Engine capability (tiny/single/multi) which is integrated in the targeted
Platform.

+ Option is specific to the target (MicroEJ Core Engine on Device or Simulator).

« Option has been introduced in a newer version of the MicroEJ Architecture which is integrated in the targeted
Platform.

+ Options related to Board Support Package (BSP) connection.

Defining an Option

A MicroEJ Standalone Application option can be defined either from a launcher or from a properties file. It is also
possible to use both together. Each MicroEJ Architecture and MicroEJ Pack option comes with a default value,
which is used if the option has not been set by the user.

Using a Launcher

To set an option in a launcher, perform the following steps:

1. In MicroEJ Studio/SDK, select Run > Run Configurations... menu,
2. Select the launcher of the application under MicroEJ Application or create a new one,

3. Select the Configuration tab,

4. Find the desired option and set it to the desired value.

It is recommended to index the launcher configuration to your version control system. To export launcher options
to the filesystem, perform the following steps:

1. Selectthe Common tab,
2. Selectthe Shared file: option and browse the desired export folder,

3. Pressthe Apply button. Afile named [launcher_configuration_name].launch is generated in the ex-
port folder.

3.3. Standalone Application 57

MicroEJ Documentation, Revision 44d2784c

Using a Properties File

Options can be also be defined in properties files.

When a MicroEJ Standalone Application is built using the firmware-singleapp skeleton, options are loaded from
properties files located in the build folder at the root of the project.

The properties files are loaded in the following order:

1. Every file matching build/sim/x.properties, for Simulator options only (Virtual Device build). These files
are optional.

2. Every file matching build/emb/x.properties, for Device options only (Firmware build). These files are
optional.

3. Everyfile matching build/*.properties, bothfor Simulatorand Device options. At least one fileis required.
Usually, the build folder contains a single file named common.properties.

In case an option is defined in multiple properties files, the option of the first loaded file is taken into account and
the same option defined in the other files is ignored (a loaded option cannot be overridden).

The figure below shows the expected tree of the build folder:

v [build
v [emb
=| emb.properties
W [sim
=| sim.properties
5 common.properties

Fig. 15: Build Options Folder

Itis recommended to index the properties files to your version control system.

To set an option in a properties file, open the file in a text editor and add a line to set the desired option to the
desired value. For example: soar.generate.classnames=false.

To use the options declared in properties files in a launcher, perform the following steps:
1. In MicroEJ Studio/SDK, select Run > Run Configurations... ,
2. Select the launcher of the application,
3. Selectthe Execution tab,
4. Under Option Files , pressthe Add... button,

5. Browse the sim.properties file for Simulator or the emb.properties file for Device (if any) and press
Open button,

6. Add the common.properties file and pressthe Open button.

Note: An option setin a properties file can not be modified in the Configuration tab. Options are loaded in the
order the properties files are added (you can use Up and Down buttons to change thefile order). In Configuration

3.3. Standalone Application 58

MicroEJ Documentation, Revision 44d2784c

tab, hovering the pointer over an option field will show the location of the properties file that defines the option.

Generating a Properties File

In order to export options defined ina . launch file to a properties file, perform the following steps:

1. Selectthe [launcher_configuration_name].launch file,

2. Select File > Export > MicroEJ > Launcher as Properties File ,
3. Browse the desired output .properties file,
4. Pressthe Finish button.

Category: Runtime

w Device T
es
v CoreEngine P
Kernel [JEmbed all type names
Watchdog
Deploy
v Feature [] Execute assertions on Simulator
Dynamic Download
~ Libraries [] Execute assertions on Device
v ECOM
Comm Connection
EDC [Enable execution traces
External Resources Loader
Shielded Plug [start execution traces automatically

Assertions

Trace

~ Runtime
Memory
Simulator

<

Code Coverage
Com Port
Debug

Device

Heap Dumper
Logs

Group: Types
Option(checkbox): Embed all type names

Option Name: soar.generate.classnames
Default value: true
Description:

Embed the name of all types. When this option is disabled, only names of declared required types are embedded.

3.3. Standalone Application 59

MicroEJ Documentation, Revision 44d2784c

Group: Assertions
Option(checkbox): Execute assertions on Simulator

Option Name: core.assertions.sim.enabled
Default value: false
Description:

When this option is enabled, assert statements are executed. Please note that the executed code may produce
side effects or throw java.lang.AssertionError.

Option(checkbox): Execute assertions on Device

Option Name: core.assertions.emb.enabled
Default value: false
Description:

When this option is enabled, assert statements are executed. Please note that the executed code may produce
side effects or throw java.lang.AssertionError.

Group: Trace
Option(checkbox): Enable execution traces

Option Name: core.trace.enabled

Default value: false

Option(checkbox): Start execution traces automatically

Option Name: core.trace.autostart

Default value: false

3.3. Standalone Application 60

MicroEJ Documentation, Revision 44d2784c

Category: Memory

w Device Heaps

v CoreEngine L
Kernel Java heap size (in bytes) | |
Watchdog
Deploy
w Feature

Immortal heap size (in bytes) | |

Dynamic Download Threads

w Libraries Number of threads | |
v ECOM
Comm Connection Number of blocks in pool | |

EDC
External Resources Loader Block size (in bytes) | |
Shielded Plug

w Runtime Maximum size of thread stack (in blocks) | |
Memory

Simulator

<

Code Coverage
Com Port
Debug

Device

Heap Dumper
Logs

Group: Heaps
Option(text): Java heap size (in bytes)

Option Name: core.memory. javaheap.size
Default value: 65536

Description:

Specifies the Java heap size in bytes.

A Java heap contains live Java objects. An OutOfMemory error can occur if the heap is too small.

Option(text): Immortal heap size (in bytes)

Option Name: core.memory.immortal.size
Default value: 4096

Description:

Specifies the Immortal heap size in bytes.

The Immortal heap contains allocated Immortal objects. An OutOfMemory error can occur if the heap is too small.

Group: Threads

Description:

3.3. Standalone Application 61

MicroEJ Documentation, Revision 44d2784c

This group allows the configuration of application and library thread(s). A thread needs a stack to run. This stack
is allocated from a pool and this pool contains several blocks. Each block has the same size. At thread startup the
thread uses only one block for its stack. When the first block is full it uses another block. The maximum number of
blocks per thread must be specified. When the maximum number of blocks for a thread is reached or when there
is no free block in the pool, a StackOverflow error is thrown. When a thread terminates all associated blocks are
freed. These blocks can then be used by other threads.

Option(text): Number of threads

Option Name: core.memory.threads.size
Default value: 5
Description:

Specifies the number of threads the application will be able to use at the same time.

Option(text): Number of blocks in pool

Option Name: core.memory.threads.pool.size
Default value: 15
Description:

Specifies the number of blocks in the stacks pool.

Option(text): Block size (in bytes)

Option Name: core.memory.thread.block.size
Default value: 512
Description:

Specifies the thread stack block size (in bytes).

Option(text): Maximum size of thread stack (in blocks)

Option Name: core.memory.thread.max.size
Default value: 4
Description:

Specifies the maximum number of blocks a thread can use. If a thread requires more blocks a StackOverflow error
will occur.

3.3. Standalone Application 62

MicroEJ Documentation, Revision 44d2784c

Category: Simulator

w Device Options
~ Core Engine

Kernel |:| Use target characteristics

Watchd
arendeg Slowing factor (0 means disabled): |
Deploy
Feat
v reature . HIL Connection
Dynamic Download
~ Libraries [Specify a port
~ ECOM
Comm Connection Port: | ‘
EDC
External Resources Loader Timeout (s): | ‘
Shielded Plug
+ Runtime Maximum frame size (bytes) : | ‘
Memory
v Simulator Shielded Plug server configuration

Code Coverage
Com Port
Debug

Device

Heap Dumper
Kernel

Server socket port: | ‘

Legs

Group: Options

Description:

This group specifies options for MicroEJ Simulator.

Option(checkbox): Use target characteristics

Option Name: s3.board.compliant
Default value: false
Description:

When selected, this option forces the MicroEJ Simulator to use the MicroEJ Platform exact characteristics. It sets
the MicroEJ Simulator scheduling policy according to the MicroEJ Platform one. It forces resources to be explicitly
specified. It enables log trace and gives information about the RAM memory size the MicroEJ Platform uses.

Option(text): Slowing factor (0 means disabled)

Option Name: s3.slow
Default value: 0
Description:

Format: Positive integer

This option allows the MicroEJ Simulator to be slowed down in order to match the MicroEJ Platform execution
speed. The greater the slowing factor, the slower the MicroEJ Simulator runs.

3.3. Standalone Application 63

MicroEJ Documentation, Revision 44d2784c

Group: HIL Connection

Description:

This group enables the control of HIL (Hardware In the Loop) connection parameters (connection between MicroEJ
Simulator and the Mocks).

Option(checkbox): Specify a port

Option Name: s3.hil.use.port
Default value: false
Description:

When selected allows the use of a specific HIL connection port, otherwise a random free port is used.

Option(text): Port

Option Name: s3.hil.port
Default value: 8001
Description:

Format: Positive integer
Values: [1024-65535]

It specifies the port used by the MicroEJ Simulator to accept HIL connections.

Option(text): Timeout (s)

Option Name: s3.hil.timeout
Default value: 10

Description:

Format: Positive integer

It specifies the time the MicroEJ Simulator should wait before failing when it invokes native methods.

Option(text): Maximum frame size (bytes)

Option Name: com.microej.simulator.hil.frame.size
Default value: 262144
Description:

Maximum frame size in bytes. Must be increased to transfer large arrays to native side.

3.3. Standalone Application 64

MicroEJ Documentation, Revision 44d2784c

Group: Shielded Plug server configuration

Description:

This group allows configuration of the Shielded Plug database.

Option(text): Server socket port

Option Name: sp.server.port
Default value: 10082
Description:

Set the Shielded Plug server socket port.

Category: Code Coverage

~ Device Code Coverage

w CoreEngine _
Kernel [Activate code coverage analysis
Watchdog
Deploy
w Feature
Dynamic Download
~ Libraries
w ECOM
Comm Connection
EDC
External Resources Loader
Shielded Plug
~ Runtime
Memaory
Simulator

<

Code Coverage
Com Port
Debug

Device

Heap Dumper
Logs

Group: Code Coverage

Description:

This group is used to set parameters of the code coverage analysis tool.

Option(checkbox): Activate code coverage analysis

Option Name: s3.cc.activated

Default value: false

3.3. Standalone Application 65

MicroEJ Documentation, Revision 44d2784c

Description:

When selected it enables the code coverage analysis by the MicroEJ Simulator. Resulting files are output in the cc
directory inside the output directory.

Option(text): Saving coverage information period (in sec.)

Option Name: s3.cc.thread.period
Default value: 15
Description:

It specifies the period between the generation of .cc files.

Category: Debug

w Device Remote Debug

w CoreEngine
Kernel Debug port: | 12000

Watchdog
Deploy

~ Feature
Dynamic Download
w Libraries
w ECOM
Comm Cennection
EDC
External Resources Loader
Shielded Plug
w Runtime
Memory
~ Simulator
Code Coverage
Com Port
Debug
Device
Heap Dumper
Logs

Group: Remote Debug
Option(text): Debug port

Option Name: debug.port
Default value: 12000

Description:

Configures the JDWP debug port.
Format: Positive integer

Values: [1024-65535]

3.3. Standalone Application 66

MicroEJ Documentation, Revision 44d2784c

Category: Heap Dumper

~ Device Heap Inspection

v CoreEngine i
Kernel [] Activate heap dumper
Watchdog
Deploy
w Feature
Dynamic Download
~ Libraries
v ECOM
Comm Connection
EDC
External Resources Loader
Shielded Plug
~ Runtime
Memory
Simulator

<

Code Coverage
Com Port
Debug

Device

Heap Dumper
Logs

Group: Heap Inspection

Description:

This group is used to specify heap inspection properties.

Option(checkbox): Activate heap dumper

Option Name: s3.inspect.heap
Default value: false

Description:

When selected, this option enables a dump of the heap each time the System.gc() method is called by the MicroEJ

Application.

3.3. Standalone Application

67

MicroEJ Documentation, Revision 44d2784c

Category: Logs

w Device

Logs
v CoreEngine L
system thread maonitoring
Kernel 2
Watchdog memory schedule monitors
Deploy
w Feature 2

Dynamic Download
~ Libraries
w ECOM
Comm Connection
EDC
External Resources Loader
Shielded Plug
~ Runtime
Memory
Simulator

<

Code Coverage
Com Port
Debug

Device

Heap Dumper
Logs

Group: Logs

Description:

This group defines parameters for MicroEJ Simulator log activity. Note that logs can only be generated if the
Simulator > Use target characteristics optionis selected.

Some logs are sent when the platform executes some specific action (such as start thread, start GC, etc), other logs
are sent periodically (according to defined log level and the log periodicity).

Option(checkbox): system

Option Name: console.logs.level.low

Default value: false

Description:

When selected, System logs are sent when the platform executes the following actions:
start and terminate a thread

start and terminate a GC

exit

Option(checkbox): thread

Option Name: console.logs.level.thread

3.3. Standalone Application 68

MicroEJ Documentation, Revision 44d2784c

Default value: false
Description:

When selected, thread information is sent periodically. It gives information about alive threads (status, memory
allocation, stack size).

Option(checkbox): monitoring

Option Name: console.logs.level .monitoring
Default value: false
Description:

When selected, thread monitoring logs are sent periodically. It gives information about time execution of threads.

Option(checkbox): memory

Option Name: console.logs.level .memory
Default value: false
Description:

When selected, memory allocation logs are sent periodically. This level allows to supervise memory allocation.

Option(checkbox): schedule

Option Name: console.logs.level.schedule
Default value: false
Description:

When selected, a log is sent when the platform schedules a thread.

Option(checkbox): monitors

Option Name: console.logs.level .monitors
Default value: false
Description:

When selected, monitors information is sent periodically. This level permits tracing of all thread state by tracing
monitor operations.

Option(text): period (in sec.)

Option Name: console.logs.period
Default value: 2
Description:

Format: Positive integer

3.3. Standalone Application 69

MicroEJ Documentation, Revision 44d2784c

Values: [0-60]

Defines the periodicity of periodical logs.

Category: Device

w Device Device Architecture
w CoreEngine
Kernel
Watchdog
Deploy

[] Use a custom device architecture

~ Feature
Device Uni D
Dynamic Download evice Lnique

w Libraries [Use a custom device unique ID
w ECOM
Comm Cennection
EDC
External Resources Loader
Shielded Plug
w Runtime
Memory
~ Simulator
Code Coverage
Com Port
Debug
Device
Heap Dumper
Logs

Group: Device Architecture

Option(checkbox): Use a custom device architecture

Option Name: s3.mock.device.architecture.option.use

Default value: false

Option(text): Architecture Name

Option Name: s3.mock.device.architecture.option

Default value: (empty)

Group: Device Unique ID

Option(checkbox): Use a custom device unique ID

Option Name: s3.mock.device.id.option.use

Default value: false

3.3. Standalone Application 70

MicroEJ Documentation, Revision 44d2784c

Option(text): Unique ID (hexadecimal value)

Option Name: s3.mock.device.id.option

Default value: (empty)

Category: Com Port

w Device
w CoreEngine
Kernel
Watchdog
Deploy
w Feature
Dynamic Download
w Libraries
v ECOM
Comm Cennection
EDC
External Resources Loader
Shielded Plug
w Runtime
Memory
~ Simulator
Code Coverage
Com Port
Debug
Device
Heap Dumper
Logs

3.3. Standalone Application

7

MicroEJ Documentation, Revision 44d2784c

Category: Libraries

w Device
w CoreEngine
Kernel
Watchdog
Deploy
w Feature
Dynamic Download
w Libraries
v ECOM
Comm Cennection
EDC
External Resources Loader
Shielded Plug
w Runtime
Memory
~ Simulator
Code Coverage
Com Port
Debug
Device
Heap Dumper
Logs

Category: EDC

w Device Java System.out

v Cor;:rr;gewlne [Use a custom Java output stream
Watchdog
Deploy
w Feature

Runti ti
Dynamic Download B

~ Libraries Embed UTF-8 enceding
v ECOM .
Comm Connection []Enable SecurityManager checks
EDC
External Resources Loader
Shielded Plug

~ Runtime
Memary

w Simulator
Code Coverage
Com Port
Debug
Device
Heap Dumper
Logs

Group: Java System.out

3.3. Standalone Application 72

MicroEJ Documentation, Revision 44d2784c

Option(checkbox): Use a custom Java output stream

Option Name: core.outputstream.disable.uart

Default value: false

Description:

Select this option to specify another Java System.out print stream.

If selected, the default Java output stream is not used by the Java application. the JPF will not use the default Java
output stream at startup.

Option(text): Class

Option Name: core.outputstream.class

Default value: (empty)

Description:

Format: Java class like packageA.packageB.className
Defines the Java class used to manage System.out.

At startup the JPF will try to load this class using the Class.forName() method. If the given class is not available,
the JPF will use the default Java output stream as usual. The specified class must be available in the application
classpath.

Group: Runtime options

Description:

Specifies the additional classes to embed at runtime.

Option(checkbox): Embed UTF-8 encoding

Option Name: cldc.encoding.utf8.included
Default value: true
Description:

Embed UTF-8 encoding.

Option(checkbox): Enable SecurityManager checks

Option Name: com.microej.library.edc.securitymanager.enabled
Default value: false
Description:

Enable the security manager runtime checks.

3.3. Standalone Application 73

MicroEJ Documentation, Revision 44d2784c

Category: Shielded Plug

v Device Shielded Plug configuration
v CoreEngine
Kernel Database definition: Browse...
Watchdog
Deploy
w Feature

Dynamic Download
~ Libraries
w ECOM
Comm Connection
EDC
External Resources Loader
Shielded Plug
~ Runtime
Memory
w Simulator
Code Coverage
Com Port
Debug
Device
Heap Dumper
Logs

Group: Shielded Plug configuration

Description:

Choose the database XML definition.

Option(browse): Database definition

Option Name: sp.database.definition
Default value: (empty)
Description:

Choose the database XML definition.

3.3. Standalone Application 74

MicroEJ Documentation, Revision 44d2784c

Category: ECOM

w Device Device Management

v CoreEngine]) -
Kernel [Enable registration event notifications
Watchdog
Deploy
w Feature
Dynamic Download
~ Libraries
w ECOM
Comm Connection
EDC
External Resources Loader
Shielded Plug
~ Runtime
Memory
w Simulator
Code Coverage
Com Port
Debug
Device
Heap Dumper
Logs

Group: Device Management
Option(checkbox): Enable registration event notifications

Option Name: com.is2t.ecom.eventpump.enabled
Default value: false
Description:

Enables notification of listeners when devices are registered or unregistered. When a device is registered or un-
registered, a new ej.ecom.io.RegistrationEvent isadded to an event queue. Then events are processed by a
dedicated thread that notifies registered listeners.

Option(text): Registration events queue size

Option Name: com.is2t.ecom.eventpump.size
Default value: 5
Description:

Specifies the size (in number of events) of the registration events queue.

3.3. Standalone Application 75

MicroEJ Documentation, Revision 44d2784c

Category: Comm Connection

w Device Comm Connection Options

w CoreEngine

Kernel []Enable comm connections

Watchdog
Deploy Device Management

v Feature Enable dynamic comm ports registration
Dynamic Download
~ Libraries
v ECOM
Comm Connection
EDC
External Resources Loader
Shielded Plug
~ Runtime
Memory
~ Simulator
Code Coverage
Com Port
Debug
Device
Heap Dumper
Logs

Group: Comm Connection Options

Description:

This group allows comm connections to be enabled and application-platform mappings set.

Option(checkbox): Enable comm connections

Option Name: use.comm.connection
Default value: false
Description:

When checked application is able to open a CommConnection.

Group: Device Management
Option(checkbox): Enable dynamic comm ports registration

Option Name: com.is2t.ecom.comm.registryPump.enabled
Default value: false
Description:

Enables registration (or unregistration) of ports dynamically added (or removed) by the platform. A dedicated
thread listens for ports dynamically added (or removed) by the platform and adds (or removes) their CommPort
representation to the ECOM DeviceManager .

3.3. Standalone Application 76

MicroEJ Documentation, Revision 44d2784c

Category: External Resources Loader

<

Device External Resources Loader

v CoreEngine

Kernel Folder where are stored the resources which will be pregrammed outside CPU address
space range (storage media like SD card, serial NOR flash, EEPROM).
Watchdog The resources which will be linked into the CPU address space range (internal
Deploy device memeories, external parallel memories) must be listed in the Resources box
w Feature of Main tab.

Dynamic Download

~ Libraries
v ECOM
Comm Connection
EDC
External Resources Loader
Shielded Plug
~ Runtime

Browse...

Memory

w Simulator
Code Coverage
Com Port
Debug
Device
Heap Dumper
Logs

Group: External Resources Loader

Description:

This group allows to specify the external resources input folder. The content of this folder will be copied in an
application output folder and used by SOAR and the Simulator. If empty, the default location will be [output
folder]/externalResources, where [output folder] is the location defined in Execution tab.

Option(browse):

Option Name: ej.externalResources.input.dir
Default value: (empty)
Description:

Browse to specify the external resources folder..

3.3. Standalone Application 7

MicroEJ Documentation, Revision 44d2784c

Category: Device

Device

<

« CoreEngine Specify target options

Kernel
Watchdog
Deploy
~ Feature
Dynamic Download
w Libraries
w ECOM
Comm Connection
EDC
External Resources Loader
Shielded Plug
w Runtime
Memory
w Simulator
Code Coverage
Com Port
Debug
Device
Heap Dumper
Logs

Category: Core Engine

~ Device Memory

~ Core Engine

Kernel
Watchdog
Deploy
~ Feature

Maximum number of menitors per thread | ‘

Maximum number of frames dumped on OutOfMemoryError | ‘

Dynamic Download [[] Enable Java heap usage monitering

~ Libraries Java heap initial size (in bytes) |
v ECOM

Comm Connection
EDC
External Resources Loader [Enable Bytecode Verifier
Shielded Plug
~ Runtime

SOAR

Memory

~ Simulator
Code Coverage
Corn Port
Debug
Device
Heap Dumper
Kernel
Logs

Group: Memory

3.3. Standalone Application 78

MicroEJ Documentation, Revision 44d2784c

Option(text):

Option Name: core.memory.thread.max.nb.monitors
Default value: 8
Description:

Specifies the maximum number of monitors a thread can own at the same time.

Option(text):

Option Name: core.memory.oome.nb.frames
Default value: 5
Description:

Specifies the maximum number of stack frames that can be dumped to the standard output when Core Engine
throws an OutOfMemoryError.

Option(checkbox): Enable Java heap usage monitoring

Option Name: com.microej.runtime.debug.heap.monitoring.enabled

Default value: false

Option(text):

Option Name: com.microej.runtime.debug.heap.monitoring.init.size
Default value: 0
Description:

Specify the initial size (in bytes) of the Java Heap.

Group: SOAR
Option(checkbox): Enable Bytecode Verifier

Option Name: soar.bytecode.verifier

Default value: false

3.3. Standalone Application 79

MicroEJ Documentation, Revision 44d2784c

Category: Kernel

Devi
v e [] Check APIs allowed by Kernel
w CoreEngine
Kernel Threads
Watchdog Mazximum number of threads per Feature | |
Deploy
w Feature

Installed Features
Dynamic Download

~ Libraries Mazximum number of installed Features | |
w ECOM
Comm Connection Code Size (in bytes) | |
EDC
External Resources Loader Runtime Size (in bytes) | |
Shielded Plug

~ Runtime
Memary

w Simulator
Code Coverage
Com Port
Debug
Device
Heap Dumper
Logs

Option(checkbox): Check APIs allowed by Kernel

Option Name: apis.check.enable

Default value: true

Group: Threads
Option(text):

Option Name: core.memory.feature.max.threads
Default value: 5
Description:

Specifies the maximum number of threads a Feature is allowed to use at the same time.

Group: Installed Features
Option(text):

Option Name: core.memory.installed.features.max
Default value: ©
Description:

Specifies the maximum number of installed Features that can be added to this Kernel.

3.3. Standalone Application 80

MicroEJ Documentation, Revision 44d2784c

Option(text):

Option Name: core.memory.installed.features.text.size

Default value: 0

Description:

Specifies the size in bytes reserved for installed Features code.

Option(text):

Option Name: core.memory.installed.features.bss.size

Default value: 0

Description:

Specifies the size in bytes reserved for installed Features runtime memory.

Category: Watchdog

~ Device
« CoreEngine [[]1Enable watchdeg support

Kernel Watchdog
Watchdog Maximum number of active watchdogs
Deploy

~ Feature
Dynamic Download
w Libraries
w ECOM
Comm Connection
EDC
External Resources Loader
Shielded Plug
w Runtime
Memory
w Simulator
Code Coverage
Com Port
Debug
Device
Heap Dumper
Logs

Option(checkbox): Enable watchdog support

Option Name: enable.watchdog.support

Default value: true

3.3. Standalone Application

81

MicroEJ Documentation, Revision 44d2784c

Group: Watchdog
Option(text):

Option Name: maximum.active.watchdogs
Default value: 4
Description:

Specifies the maximum number of active watchdogs at the same time.

Category: Deploy

v Device Configuration
v CoreEngine I o o : i :
Kernel [] Deploy the compiled MicroEJ application in a folder in MicroEJ application main class project
Watchdog
Output file: | Browse...
Deploy
~ Feature

Dynamic Download
w Libraries
w ECOM
Comm Connection
EDC
External Resources Loader
Shielded Plug
w Runtime
Memory
w Simulator
Code Coverage
Com Port
Debug
Device
Heap Dumper
Logs

Description:

Configures the output location where store the MicroEJ Application, the MicroEJ platform libraries and header files.

Group: Configuration

Option(checkbox): Deploy the compiled MicroEJ Application in a folder in MicroEJ Application main class
project

Default value: true
Description:

Deploy the compiled MicroEJ Application in a folder in MicroEJ Application’s main class project.

3.3. Standalone Application 82

MicroEJ Documentation, Revision 44d2784c

Option(browse): Output file

Option Name: deploy.copy.filename

Default value: (empty)

Description:

Choose an output file location where copy the compiled MicroEJ Application.

Category: Feature

w Device
w CoreEngine
Kernel
Watchdog
Deploy
~ Feature
Dynamic Download
w Libraries
v ECOM
Comm Connection
EDC
External Resources Loader
Shielded Plug
w Runtime
Memory
~ Simulator
Code Coverage
Com Port
Debug
Device
Heap Dumper
Logs

Description:

Specify Feature options

Specify Feature options

3.3. Standalone Application

83

MicroEJ Documentation, Revision 44d2784c

Category: Dynamic Download

v Device Dynamic Download
v CoreEngine
Kernel Output Name: |
Watchdog
Deploy Kernel: | F—
w Feature

Dynamic Download
~ Libraries
w ECOM
Comm Connection
EDC
External Resources Loader
Shielded Plug
~ Runtime
Memory
w Simulator
Code Coverage
Com Port
Debug
Device
Heap Dumper
Logs

Group: Dynamic Download
Option(text): Output Name

Option Name: feature.output.basename

Default value: application

Option(browse): Kernel

Option Name: kernel.filename

Default value: (empty)

3.3.6 SOAR

Class Initialization Code

SOAR complies with the deterministic class initialization (<clinit>) order specified in /[BON]. The application is
statically analyzed from its entry points in order to generate a clinit dependency graph. The computed clinit se-
quence is the result of the topological sort of the dependency graph. An error is thrown if the clinit dependency
graph contains cycles.

Aclinit map file (ending with extension .clinitmap)is generated beside the SOAR object file. It describes for each
clinit dependency:

« the typesinvolved

3.3. Standalone Application 84

MicroEJ Documentation, Revision 44d2784c

« the kind of dependency
« the stack calls between the two types

In case of complex clinit code with too many runtime dependencies, the statically computed clinit order may be
wrong.

Itisthen possible to help SOAR by manually declaring explicit clinit dependencies. Such dependencies are declared
in XML files with the .clinitdesc extension in the application classpath.

The file has the following format:

<?xml version='1.0' encoding='UTF-8'7?>
<clinit>

<type name="T1" depends="T2"/>
</clinit>

where T1 and T2 are fully qualified names on the form a.b.C. This explicitly forces SOAR to create a dependency
from T1 to T2, and therefore cuts a potentially detected dependency from T2 to T1.

3.4 Sandboxed Application

3.4.1 Sandboxed Application Structure

Application Skeleton Creation

The first step to explore a Sandboxed Application structure is to create a new project.

Firstselect File > New > Sandboxed Application Project :

Fillin the application template fields, the Project name field will automatically duplicate in the following fields.

A template project is automatically created and ready to use, this project already contains all folders wherein de-
velopers need to put content:

src/main/java Folder for future sources;
src/main/resources Folder for future resources (images, fonts, etc.);
META-INF Sandboxed Application configuration and resources;

module.ivy Ivyinput file, dependencies description for the current project.

Sources Folder

The project source folder (src/main) contains two subfolders: java and resources. java folder will contain all
*. java files of the project, whereas resources folder will contain elements that the application needs at runtime
like raw resources, images or character fonts.

META-INF Folder

The META-INF folder contains several folders and a manifest file. They are described hereafter.
certificate (folder) Contains certificate information used during the application deployment.

libraries (folder) Contains a list of additional libraries useful to the application and not resolved through the
regular transitive dependency check.

3.4. Sandboxed Application 85

MicroEJ Documentation, Revision 44d2784c

properties (folder) Containsan application.properties file which contains application specific properties
that can be accessed at runtime.

services (folder) Contains a list of files that describe local services provided by the application. Each file name
represents a service class fully qualified name, and each file contains the fully qualified name of the provided
service implementation.

wpk (folder) Contains a set of applications (.wpk files) that will be started when the application is executed on
the Simulator.

MANIFEST.MF (file) Containsthe information given at project creation, extra information can be added to this file
to declare the entry points of the application.

module. ivy File

The module.ivy file describes all the libraries required by the application at runtime. The lvy classpath container
lists all the modules that have been automatically resolved from the content of module.ivy . See MicroEJ Module
Manager for more informations about MicroEJ Module Manager.

3.4.2 Application Publication

Build the WPK

When the application is ready for deployment, the last step in MicroEJ Studio is to create the WPK (Wadapps Pack-
age) file that is intended to be published on a MicroEJ Forge instance for end users.

In MicroEJ Studio, right-click on the Sandboxed Application project name and select Build Module.

The WPK build process will display messages in MicroEJ console, ending up the following message:

[echo] project hello published locally with version 0.1.0-RC201907091602
BUILD SUCCESSFUL

Total time: 1 minute 6 seconds

The WPK file produced by the build process is located in a dedicated target~/artifacts folderinthe projectand
is published to the target module repository declared in MicroEJ Module Manager settings file.

The module repository can be a MicroEJ Forge instance.

3.4.3 Shared Interfaces

Principle

The Shared Interface mechanism provided by MicroEJ Core Engine is an object communication bus based on plain
Java interfaces where method calls are allowed to cross MicroEJ Sandboxed Applications boundaries. The Shared
Interface mechanism is the cornerstone for designing reliable Service Oriented Architectures on top of MicroEJ.
Communication is based on the sharing of interfaces defining APIs (Contract Oriented Programming).

The basic schema:
« Aprovider application publishes an implementation for a shared interface into a system registry.

+ Auser application retrieves the implementation from the system registry and directly calls the methods de-
fined by the shared interface.

3.4. Sandboxed Application 86

https://www.microej.com/product/forge/

MicroEJ Documentation, Revision 44d2784c

USER APPLICATION PROVIDER APPLICATION

Shared Interface Call

AA.mm() > mm() {
//code

}

MICROEJ CORE ENGINE

Fig. 16: Shared Interface Call Mechanism

Shared Interface Creation

Creation of a shared interface follows three steps:
« Interface definition,
« Proxy implementation,

+ Interface registration.

Interface Definition

The definition of a shared interface starts by defining a standard Java interface.

package mypackage;

public interface MyInterface(
void foo();

3

To declare an interface as a shared interface, it must be registered in a shared interfaces identification file. A shared
interface identification file is an XML file with the .si suffix with the following format:

<sharedInterfaces>
<sharedInterface name="mypackage.MyInterface"/>
</sharedInterfaces>

Shared interface identification files must be placed at the root of a path of the application classpath. For a MicroEJ
Sandboxed Application project, it is typically placed in src/main/resources folder.
Some restrictions apply to shared interface compared to standard java interfaces:

+ Types for parameters and return values must be transferable types;

« Thrown exceptions must be classes owned by the MicroEJ Firmware.

Transferable Types

In the process of a cross-application method call, parameters and return value of methods declared in a shared
interface must be transferred back and forth between application boundaries.

3.4. Sandboxed Application 87

MicroEJ Documentation, Revision 44d2784c

USER APPLICATION Shared Interface Transfer [FHMSALCSS AR IREL.

R = AA.mm(P1, P2)

Fig. 17: Shared Interface Parameters Transfer

Shared Interface Types Transfer Rules describes the rules applied depending on the element to be transferred.

Table 1: Shared Interface Types Transfer Rules

Type Owner Instance Rule
Owner

Base type N/A N/A Passing by value. (boolean, byte, short
, char, int, long, double, float)

Any Class, Array or Inter- | Kernel Kernel Passing by reference

face

Any Class, Array or Inter- | Kernel Application Kernel specific or forbidden

face

Array of base types Any Application Clone by copy

Arrays of references Any Application | Clone and transfer rules applied again on
each element

Shared Interface Application Application Passing by indirect reference (Proxy cre-
ation)

Any Class, Array or Inter- | Application Application Forbidden

face

Objects created by an application which class is owned by the Kernel can be transferred to another application
if this has been authorized by the Kernel. The list of eligible types that can be transferred is Kernel specific, so
you have to consult the firmware specification. MicroEJ Evaluation Firmware Example of Transfer Types lists Kernel
types allowed to be transferred through a shared interface call. When an argument transfer is forbidden, the call is
abruptly stopped and a java.lang.IllegalAccessError isthrown by MicroEJ Core Engine.

Table 2: MicroEJ Evaluation Firmware Example of Transfer Types

Type Rule
Clone by copy

java.lang.String

. . Proxy reference creation
java.io.InputStream

Clone by deep copy

java.util.Map<String,String>

Proxy Class Implementation

The Shared Interface mechanism is based on automatic proxy objects created by the underlying MicroEJ Core En-
gine, so that each application can still be dynamically stopped and uninstalled. This offers a reliable way for users
and providers to handle the relationship in case of a broken link.

Once a Java interface has been declared as Shared Interface, a dedicated implementation is required (called the
Proxy class implementation). Its main goal is to perform the remote invocation and provide a reliable implemen-
tation regarding the interface contract even if the remote application fails to fulfill its contract (unexpected excep-

3.4. Sandboxed Application 88

MicroEJ Documentation, Revision 44d2784c

tions, application killed...). The MicroEJ Core Engine will allocate instances of this class when an implementation
owned by another application is being transferred to this application.

USER APPLICATION PROVIDER APPLICATION

R = AA.mm(P1, P2

Proxy Class

MICROEJ CORE ENGINE

Transfer

Shared Interfaces Binding

Fig. 18: Shared Interfaces Proxy Overview

A proxy class is implemented and executed on the client side, each method of the implemented interface must be
defined according to the following pattern:

package mypackage;
public class MyInterfaceProxy extends Proxy<MyInterface> implements MyInterface {

@0verride
public void foo(){
try {
invoke(); // perform remote invocation
} catch (Throwable e) {
e.printStackTrace();

b
3

Each implemented method of the proxy class is responsible for performing the remote call and catching all errors
from the server side and to provide an appropriate answer to the client application call according to the interface
method specification (contract). Remote invocation methods are defined in the super class ej.kf.Proxy and are
named invokeXXX() where XXX is the kind of return type. As this class is part of the application, the application
developer has the full control on the Proxy implementation and is free to insert additional code such as logging
calls and errors for example.

Table 3: Proxy Remote Invocation Built-in Methods

Invocation Method Usage
void invoke() Remote invocation for a proxy method that returns void
Object invokeRef() Remote invocation for a proxy method that returns a reference

boolean invokeBoolean(), byte invokeByte(), | Remote invocation for a proxy method that returns a base type
char invokeChar(), short invokeShort(), int in-
vokelnt(), long invokeLong(), double invoke-
Double(), float invokeFloat()

3.4. Sandboxed Application 89

MicroEJ Documentation, Revision 44d2784c

3.5 Virtual Device

3.5.1 Using a Virtual Device for Simulation

The Virtual Device includes the same custom MicroEJ Core, libraries and System Applications as the real device.
The Virtual Device allows developers to run their applications either on the Simulator, or directly on the real device
through local deployment.

The Simulator runs a mockup board support package (BSP Mock) that mimics the hardware functionality. An ap-
plication on the Simulator is run as a Standalone Application.

Before an application is locally deployed on device, MicroEJ Studio ensures that it does not depend on any API that
is unavailable on the device.

YOUR APPLICATIONS

ADD-ON LIBRARIES
Web /REST servers | MQTT /LWM2M clients | JSON | CBOR | Crypto | Widgets | Components | Eclasspath | ...

FOUNDATION LIBRARIES

IS ST

7 MICROEJ.VEE

VIRTUALIZATION
Graphics MEJ 32 p—
Engine Simulator

Linux / Windows [macOS

PLATFORM

PROCESSOR
Ethernet D CORE Serial Bluetooth

Wi-Fi / LTE Display

WORKSTATION

Fig. 19: MicroEJ Virtual Device Architecture

3.5.2 Runtime Environment

The set of MicroEJ APIs exposed by a Virtual Device (and therefore provided by its associated firwmare) is docu-
mented in Javadoc format in the MicroEJ Resource Center (Window > Show View > MicroEJ Resource Center

).

3.5. Virtual Device 90

MicroEJ Documentation, Revision 44d2784c

i® MicroE) Resource Center 53
type filter text

4 | 2] Javadoc
[MICROEJ-DEVELOPER-RUNTIME 1.0

- @2 Online Resources

Fig. 20: MicroEJ Resource Center APIs

3.6 MicroEJ Module Manager

3.6.1 Introduction

Modern electronic device design involves many parts and teams to collaborate to finally obtain a product to be sold
on its market. MicroEJ encourages modular design which involves various stake holders: hardware engineers, UX
designers, graphic designers, drivers/BSP engineers, software engineers, etc.

Modular design is a design technique that emphasizes separating the functionality of an application into inde-
pendent, interchangeable modules. Each module contains everything necessary to execute only one aspect of
the desired functionality. In order to have team members collaborate internally within their team and with other
teams, MicroEJ provides a powerful modular design concept, with smart module dependencies, controlled by the
MicroEJ Module Manager (MMM). MMM frees engineers from the difficult task of computing module dependencies.
Engineers specify the bare minimum description of the module requirements.

The following schema introduces the main concepts detailed in this chapter.

3.6. MicroEJ Module Manager 91

MicroEJ Documentation, Revision 44d2784c

73 . Settings
A OptlonsJ File J

MICROEJ.SDK

Configuration

MMM
v ',_:ﬁ- module
(® src/main/java
4@ src/main/resources Import
v =)\ Module Dependencies module.ivy "}« =
» (w8 edc-1.3.0,jar - C:\Users\user\.micre Module Dependenues
(= internal
= src
[#) CHANGELOG.md
Module 5 LICENSE txt Build & Publish Module
Description fy moduleivy >
File README.md
I 4

Module Project Skeleton

Fig. 21: MMM Overview

MMM is based on the following tools:

3.6.2 Specification

3.6.3 Module Project Skeleton

In MicroEJ SDK, a new MicroEJ module project is created as follows:

+ Select File > New > Project... ,

« Select MicroEJ > Module Project ',

« Clickon Finish .

11f using MicroEJ SDK versions lower than 5.2.0, please refer to the following section.

Module Repository

« Apache lvy (http://ant.apache.org/ivy) for dependencies resolution and module publication;

« Apache EasyAnt (https://ant.apache.org/easyant/history/trunk/reference.html) for module build from
source code.

MMM provides a non ambiguous semantic for dependencies resolution. Please consult the MMM specification
available on https://developer.microej.com/packages/documentation/TLT-0831-SPE-MicroEJModuleManager-2.

« Fill the module information (project name, module organization, name and revision),

+ Select one of the suggested skeletons depending on the desired module nature,

3.6. MicroEJ Module Manager

92

http://ant.apache.org/ivy
https://ant.apache.org/easyant/history/trunk/reference.html
https://developer.microej.com/packages/documentation/TLT-0831-SPE-MicroEJModuleManager-2.0-E.pdf
https://developer.microej.com/packages/documentation/TLT-0831-SPE-MicroEJModuleManager-2.0-E.pdf

MicroEJ Documentation, Revision 44d2784c

The project is created and a set of files and directories are generated from the selected skeleton.

Note: When an empty Eclipse project already exists or when the skeleton has to be created within an existing
directory, the MicroEJ module is created as follows:

« In the Package Explorer, click on the parent project or directory,

« Select File > New > Other... ,

+ Select EasyAnt > EasyAnt Skeleton .

3.6.4 Module Description File

Amodule descriptionfileis an Ivy configuration file named module. ivy, located at the root of each MicroEJ module
project. It describes the module nature (also called build type) and dependencies to other modules.

<ivy-module version="2.0" xmlns:ea="http://www.easyant.org” xmlns:m="http://ant.apache.org/ivy/extra”
xmlns:ej="https://developer.microej.com” ej:version="2.0.0">
<info organisation="[organisation]” module="[name]" status="integration” revision="[version]">
<ea:build organisation="com.is2t.easyant.buildtypes” module="[buildtype_name]” revision=
—"[buildtype_version]">
<ea:property name="[buildoption_name]"” value="[buildoption_value]"/>
</ea:build>
</info>

<configurations defaultconfmapping="default->default;provided->provided">
<conf name="default” visibility="public"/>
<conf name="provided" visibility="public"/>
<conf name="documentation” visibility="public"/>
<conf name="source" visibility="public"/>
<conf name="dist"” visibility="public"/>
<conf name="test"” visibility="private"/>
</configurations>

<publications>
</publications>

<dependencies>
<dependency org="[dep_organisation]” name="[dep_name]” rev="[dep_version]"/>

</dependencies>
</ivy-module>

Enable MMM Semantic

The MMM semantic is enabled in a module by adding the MicroEJ XML namespace and the ej:version attribute
inthe ivy-module node:

<ivy-module xmlns:ej="https://developer.microej.com” ej:version="2.0.0">

Note: Multiple namespaces can be declared in the ivy-module node.

MMM semantic is enabled in the module created with the Module Project Skeleton.

3.6. MicroEJ Module Manager 93

MicroEJ Documentation, Revision 44d2784c

Module Dependencies

Module dependencies are added to the dependencies node as follow:

<dependencies>
<dependency org="[dep_organisation]” name="[dep_name]"” rev="[dep_version]"/>
</dependencies>

When no matching rule is specified, the default matching rule is compatible.

Dependency Matching Rule

The following matching rules are specified by MMM:

Name Range Notation Semantic

compatible [M.m.p-RC, (M+1).0.0-RC][Equal or up to next major version. Default if
not set.

equivalent [M.m.p-RC, M.(m+1).0-RC [Equal or up to next minor version

greaterOrEqual [M.m.p-RC, oo Equal or greater versions

perfect [M.m.p-RC, M.m.(p+1)-RC[Exact match (strong dependency)

Set the matching rule of a given dependency with ej:match="matching rule”.Forexample:

<dependency org="[dep_organisation]” name="[dep_name]” rev="[dep_version]" ej:match="perfect” />

Dependency Visibility

« Adependency declared public is transitively resolved by upper modules. The default when not set.
« Adependency declared private isonly used by the module itself, typically for:

- Bundling the content into the module

- Testing the module

The visibility is set by the configurations declared in the configurations node. For example:

<configurations defaultconfmapping="default->default;provided->provided">
<conf name="[conf_name]” visibility="private"/>
</configurations>

The configuration of a dependency is specified by setting the conf attribute, for example:

<dependency org="[dep_organisation]” name="[dep_name]"” rev="[dep_version]"” conf="[conf_name]->x" />

Automatic Update Before Resolution

The Easyant plugin ivy-update can be used to automatically update the version (attribute rev) of every module
dependencies declared.

<info organisation="[organisation]” module="[name]"” status="integration” revision="[version]">
<ea:plugin org="com.is2t.easyant.plugins” name="ivy-update"” revision="1.+" />
</info>

3.6. MicroEJ Module Manager 94

MicroEJ Documentation, Revision 44d2784c

When the plugin is enabled, for each module dependency, MMM will check the version declared in the module file
and update it to the highest version available which satisfies the matching rule of the dependency.

Build Options

MMM build options can be set with:

<ea:property name="[buildoption_name]” value="[buildoption_value]"/>
The following build options are globally available:

Table 4: Build Options

Property | Description Default Value
Name

Path of the build directory target~.
target ${basedir}/target~

Refer to the documentation of Module Natures for specific build options.

3.6.5 MicroEJ Module Manager Configuration

By default, when starting an empty workspace, MicroEJ SDK is configured to import dependencies from
MicroEJ Central Repository and to publish built modules to a local directory. The repository configura-
tion is stored in a settings file (ivysettings.xml), and the default one is located at $USER_HOME\.
microej\microej-ivysettings-[VERSION].xml

Preferences Page

The MMM preferences page in the MicroEJ SDK is available at Window > Preferences > MicroEJ >

Module Manager .

3.6. MicroEJ Module Manager 95

MicroEJ Documentation, Revision 44d2784c

& Preferences

type filter text Module Manager - r v
General
Ant Module Repository
C/Ces (1) Settings File: | C\Users\user\.microgj\microej-ivysettings-3.ml ‘
Checkstyle
Help Default | Workspace... | | File System...
Install/Update
Java Import Repository
w Microk) Options
Architectures
Module Manager (2) propery fes: Edit...
Maming Convention Pt
Platforms
Platforms in workspace Remove
Settings
Updates Up
Wirtual Devices D
Mybyn own
Plug-in Development Build Repoci
PMD uild Repaository
Run/Debug 3 [Use Module repository as Build repository
Senarlint (4) Settings File: | C:\Program Files\MicroEl\MicroE)-SDK-20.0T\rcpl\configuration'org.eclipse.osgi\9\data\repositories\microej-build-repositony\ivysettings.xml Browse...
Team
Termi Export Build Kit
erminal
Validation Launch
XML
(5) [5et verbose mode
() Runtime JRE: jre1.8.0_221 v
(7) Max build history size: | 5
< 5 Restore Defaults Apply
® Apply and Close Cancel

Fig. 22: MMM Preferences Page

This page allows to configure the following elements:

1.
2.
3.

Settings File: the file describing how to connect module repositories. See the settings file section.

Options: files declaring MMM options. See the Options section.

Use Module repository as Build repository:thesettings file for connecting the build repositoryin place
of the one bundled in MicroEJ SDK. This option shall not be enabled by default and is reserved for advanced
configuration.

Build repository Settings File:the settings file for connecting the build repository in place of the one
bundled in MicroEJ SDK. This option is automatically initialized the first time MicroEJ SDK is launched. It
shall not be modified by default and is reserved for advanced configuration.

Set verbose mode : to enable advanced debug traces when building a module.
Runtime JRE :the Java Runtime Environment that executes the build process.
Max build history size:the maximum number of previous builds available in Build Module shortcut

list:

3

File Refactor Mavigate Search Project Run
cruoiv[@]Jeis-0-a-i@e-

4 Package Explorer 33 |) Build Selected Module (Ctrl+Alt-C, E)

workspaceRepository -

Edit Source

3.6.

MicroEJ Module Manager 96

MicroEJ Documentation, Revision 44d2784c

Settings File

The settings file is an XML file that describes how MMM connects local or online module repositories. The file format
is described in Apache lvy documentation.

To configure MMM to a custom settings file (usually from an offline repository):

1. Set Settings file toacustom ivysettings.xml settings file',

2. Clickon Apply and Close button

If the workspace is not empty, it is recommended to trigger a full resolution and rebuild all the projects using this
new repository configuration:

1. Clean caches

« In the Package Explorer, right-click on a project;
« Select Ivy > Cleanallcaches .
2. Resolve projects using the new repository

To resolve all the workspace projects, click on the Resolve All button in the toolbar:

'® workspaceRepository -

File Edit Source Refactor Mavigate Searc

A | B4~ (

To only resolve a subset of the workspace projects:

« In the Package Explorer, select the desired projects,
+ Right-click on a project and select lvy > Clean all caches .
3. Trigger Add-On Library processors for automatically generated source code

+ Select Project > Clean... ,
+ Select Clean all projects |,

o Clickon Clean button.

Options

Options can be used to parameterize a module description file or a settings file. Options are declared as key/value
pairsin a standard Java properties file, and are expanded using the ${my_property} notation.

Atypical usage in a settings file is for extracting repository server credentials, such as HTTP Basic access authenti-
cation:

1. Declare options in a properties file

3.6. MicroEJ Module Manager 97

https://ant.apache.org/ivy/history/2.5.0/settings.html
https://en.wikipedia.org/wiki/.properties

MicroEJ Documentation, Revision 44d2784c

[E| credentials.properties &

1# User specific credentials
2 artifactory.username=myusername
3 artifactory.password=AKCKLzp2JHRLDyFvmTPMXocXiiU1Cnad7eidUcCO1ERSUdgIrIu24ZTYieXaCwuMaIWykjCD9

4

2. Register this property file to MMM options

Options

Property files: | Sfworkspace_loctest/credentials.properties}

3. Usethis option in a settings file

38
39 <credentials host="artifactory.corp” realm="Artifactory Realm” username="${artifactory.username}” passwd="$§{artifactory.password}” />
4/

Atypical usage in a module description file is for factorizing dependency versions across multiple modules projects:

1. Declare an option in a properties file

=| versions.properties &3

=l
14# Specify the EDC wersion used in this workspace
2 edc.version=1.3.8

pu

2. Register this property file to MMM options

Options

Property files: | S{workspace_loc:test/versions.properties)

3. Use this option in a module description file

22 <dependencies:

23 ol--

24 Use the EDC version defined by MMM configuration

25 -

26 <dependency org="ej.api" name="edc" rev="%{edc.version}" /»
27 </dependencies:

28 ¢/ivy-module:

3.6. MicroEJ Module Manager 98

MicroEJ Documentation, Revision 44d2784c

3.6.6 Module Build

In MicroEJ SDK, the build of a MicroEJ module project can be started as follows:

« In the Package Explorer, right-click on the project,
+ Select Build Module .

Awilh B BR-PDHF-O0-QU-FOE- BB
[% Package Explorer 51 T¢ Type Hierarchy s § = E
v'_,ff- module ,
= src/r W
B sre/ Go Into
i f . .
o> srcit Open in New Window
B sroft _
v B\ Moc Open Type Hierarchy F4
e Show In Alt+Shift+ W > broej com-5g).
= STC | =y
- = Co Ctrl+C
) CHa ' CoPY
= Lcg 52 Copy Qualified Name
by moc [Paste Ctrl+W
REAl 3¢ Delete Delete
Build Path H
Source Alt+Shift+5 »
Refactor Alt+5hift+T >
fxy Import..
iy Export.
i Refresh F5
Close Project
Assign Working Sets...
) PRunAs »
%3 Debug As »
Profile As *
& Build Module
restare trom Local History...
@ JAutodoc ¥

Fig. 23: Module Build

The build of a module can take time depending on

« the module nature to build,

3.6. MicroEJ Module Manager 929

MicroEJ Documentation, Revision 44d2784c

« the number and the size of module dependencies to download,
« the repository connection bandwidth, ...
The module build logs are redirected to the integrated console.

Alternatively, the build of a MicroEJ module project can be started from the build history:

Hmi DG P H-Q-Q

[Package Explorer @ module3

4 module E modulel
'_,_'—,‘f- moduled [Tﬂ maodule
'_,:"f- madule3

Fig. 24: Module Build History

3.6.7 Build Kit

The Module Manager Build Kit is a consistent set of tools, scripts, configuration and artifacts required for building
modulesin command-line mode. Starting from MicroEJSDK 5.4 .0, italso containsa Command Line Interface (CLI).
The Build Kit allows to work in headless mode (e.g. in a terminal) and to build your modules using a Continuous
Integration tool.

The Build Kit is bundled with MicroEJ SDK and can be exported using the following steps:*

+ Select File > Export > MicroEJ > Module Manager Build Kit ,
« Choose an empty Target directory ,

« Clickonthe Finish button.

Once the Build Kit is fully exported, the directory content shall look like:

/

— bin
}»7 mmm
L mmm.bat

— conf

— lib

— microej-build-repository
}— ant-contrib
}»7 com
t ivysettings.xml

— microej-module-repository
L ivysettings.xml

— release.properties

« Add the bin directory of the Build Kit directory to the PATH environment variable of your machine.

2 If using MicroEJ SDK versions lower than 5.4.0, please refer to the following section.

3.6. MicroEJ Module Manager 100

MicroEJ Documentation, Revision 44d2784c

« Make sure the JAVA_HOME environment variable is set and points to a JRE/JDK installation or that java
executable isin the PATH environment variable (Java 8 is required)

« Confirm that the installation works fine by executing the command mmm --version. The result should
display the MMM CLI version.

The mmm tool can run on any supported Operating Systems:

+ on Windows, either in the command prompt using the Windows batch script mmm.bat orin MinGW environ-
ments such as Git BASH using the bash script mmm .

« on Mac OS X and Linux distributions using the bash script mmm.

The build repository (microej-build-repository directory) contains scripts and tools for building modules. Itis
specific to a MicroEJ SDK version and shall not be modified by default.

The module repository (microej-module-repository directory) contains a default Settings File for importing
modules from MicroEJ Central Repository and this local repository (modules that are locally built will be published
to this directory). You can override with custom settings or by extracting an offline repository.

To go further with headless builds, please consult the next chapter for command line builds, and this tutorial to
setup MicrokJ modules build in continuous integration environments.

3.6.8 Command Line Interface
Starting from version 5.4.0 , MicroEJ SDK provides a Command Line Interface (CLI). Please refer to the Build Kit
section for installation details.
The following operations are supported by the MMM CLI:
« creating a module project
+ cleaning a module project
+ building a module project
« running a MicroEJ Application project on the Simulator

+ publishing a module in a module repository

Usage

In order to use the MMM CLI for your project:
« go to the root directory of your project

« run the following command

mmm [OPTION]... [COMMAND]

where COMMAND is the command to execute (for example mmm build). The available commands are:
+ help: display help information about the specified command
« init:create a new project
« clean: clean the project
+ build: build the project
« publish: build the project and publish the module

« run:run the MicroEJ Application project on the Simulator

3.6. MicroEJ Module Manager 101

https://en.wikipedia.org/wiki/MinGW
https://en.wikipedia.org/wiki/MinGW
https://gitforwindows.org/

MicroEJ Documentation, Revision 44d2784c

The available options are:
« ——help (-h): show the help message and exit
« —-version (-V): print version information and exit

o ——build-repository-settings-file (-b): path of the Ivy settings file for build scripts and tools. Defaults
to ${CLI_HOME}/microej-build-repository/ivysettings.xml.

« —-module-repository-settings-file (-r): path of the Ivy settings file for modules. Defaults to
${CLI_HOME}/microej-module-repository/ivysettings.xml.

« ——ivy-file (-f): path of the project’s Ivy file. Defaults to ./module.ivy.
« --verbose (-v): verbose mode. Disabled by default. Add this option to enable verbose mode.
« -Dxxx=yyy : any additional option passed as system properties.

When no command is specified, MMM CLI executes Easyant with custom targets using the --targets (-t) option
(defaults to clean,package).

Shared configuration

In order to share configuration across several projects, these parameters can be defined in the file ${user.home}/
.microej/.mmmconfig . This file uses the TOML format. Parameters names are the same than the ones passed
as system properties, except the character _ is used as a separator instead of - . The parameters defined in the
[options] section are passed as system properties. Here is an example:

build_repository_settings_file = "/home/johndoe/ivy-configuration/ivysettings.xml"
module_repository_settings_file = "/home/johndoe/ivy-configuration/ivysettings.xml”
ivy_file = "ivy.xml”
[options]
my.first.property = "valuel”
my.second.property = "value2”

Warning:

« TOML values must be surrounded with double quotes

« Backslash characters (\) must be doubled (for example a Windows path
C:\\Users\\johndoe\\ivysettings.xml)

Command line options take precedence over those defined in the configuration file. So if the same option is defined
in both locations, the value defined in the command line is used.

Commands
init
Thecommand init creates a new project (executes Easyant with skeleton:generate target). The skeleton and
project information must be passed with the following system properties:
« skeleton.org: organisation of the skeleton module. Defaults to com.is2t.easyant.skeletons.
« skeleton.module : name of the skeleton module. Mandatory, defaults to microej-javalib.

+ skeleton.rev : revision of the skeleton module. Mandatory, defaults to + (meaning the latest released
version).

3.6. MicroEJ Module Manager 102

https://toml.io

MicroEJ Documentation, Revision 44d2784c

« project.org: organisation of the project module. Mandatory, defaults to com.mycompany .
« project.module : name of the project module. Mandatory, defaults to myproject.
+ project.rev: revision of the project module. Defaultsto 0.1.0.

« skeleton.target.dir: relative path of the project directory (created if it does not exist). Mandatory, defaults
to the current directory.

For example

mmm init -Dskeleton.org=com.is2t.easyant.skeletons -Dskeleton.module=microej-javalib -Dskeleton.rev=4.2.
—8 -Dproject.org=com.mycompany -Dproject.module=myproject -Dproject.rev=1.0.0 -Dskeleton.target.
—dir=myproject

If one of these properties is missing, it will be asked in interactive mode:

$ mmm init -Dskeleton.org=com.is2t.easyant.skeletons -Dskeleton.module=microej-javalib -Dskeleton.rev=4.
2.8 -Dproject.org=com.mycompany -Dproject.module=myproject -Dproject.rev=1.0.0

-skeleton:check-generate:

[input] skipping input as property skeleton.org has already been set.

[input] skipping input as property skeleton.module has already been set.

[input] skipping input as property skeleton.rev has already been set.

[input] The path where the skeleton project will be unzipped [/home/tdelhomenie/microej/working/
—skeleton]

To force the non-interactive mode, the property skeleton.interactive.mode must be setto false. In non-
interactive mode the default values are used for missing non-mandatory properties, and the creation fails if manda-
tory properties are missing.

$ mmm init -Dskeleton.org=com.is2t.easyant.skeletons -Dskeleton.module=microej-javalib -Dskeleton.rev=4.
—2.8 -Dproject.org=com.mycompany -Dskeleton.target.dir=myproject -Dskeleton.interactive.mode=false

* Problem Report:

expected property 'project.module': Module name of YOUR project

clean

The command clean cleans the project (executes Easyant with clean target). For example

mmm clean

cleans the project.
build

The command build builds the project (executes Easyant with clean,package targets). For example

mmm build -f ivy.xml -v

builds the project with the Ivy file ivy.xml and in verbose mode.

publish

The command publish buildsthe project and publishes the module. This command accepts the publication target
as a parameter, amongst these values:

3.6. MicroEJ Module Manager 103

MicroEJ Documentation, Revision 44d2784c

+ local (defaultvalue): executesthe clean,publish-local Easyanttarget, which publishes the project with
the resolver referenced by the property local.resolver inthe Settings File.

« shared: executesthe clean,publish-shared Easyant target, which publishes the project with the resolver
referenced by the property shared.resolver inthe Settings File.

« release: executes the clean,release Easyant target, which publishes the project with the resolver refer-
enced by the property release.resolver the Settings File.

For example

mmm publish local

builds the project and publishes the module using the local resolver.
run

The command run runs the application on the Simulator (executes Easyant with compile,simulator:run tar-
gets). It has the following requirements:

« to run on the Simulator, the project must be configured with one of the following Module Natures:

- Sandboxed Application

- Standalone Application

- Add-On Library

the property application.main.class must be set to the Fully Qualified Name of the application main
class (for example com.mycompany.Main)

a MicroEJ Platform must be provided (see Platform Selection section)

Application Options must be defined using properties file underin the build directory (see Using a Properties
File section)

the module must have been built once before running the Simulator. So the mmm build command must be
executed before running the Simulator the first time or after a project clean (mmm clean command).

Note: The next times, it is not required to rebuild the module if source code files have been modified. The
contentof src/main/java and src/main/resources folders are automatically compiled by mmm run com-
mand before running the Simulator.

For example

mmm run -D"platform-loader.target.platform.file"="/path/to/the/platform.zip”

runs the application on the given platform.

The Simulator can be launched in debug mode by setting the property execution.mode of the application file
build/commons.properties to debug:

execution.mode=debug

The debug port can be defined with the property debug.port. Go to Simulator Debug options section for more
details.

help

The command help displays the help for acommand. For example

3.6. MicroEJ Module Manager 104

MicroEJ Documentation, Revision 44d2784c

mmm help run

displays the help of the command run.

3.6.9 Troubleshooting

Unresolved Dependency

If the following message appears when resolving module dependencies:

: problems summary ::
: WARNINGS
module not found: com.mycompany#mymodule;[M.m.p-RC,M.m. (p+1)-RC[

First, check that either a released module com.mycompany/mymodule/M.m.p or a snapshot module com.
mycompany/mymodule/M.m.p-RCYYYYMMDD-HHMM exists in your module repository.

« If the module does not exist,

- ifitis declared as a direct dependency, the module repository is not compatible with your source code.
You can either check if an other module version is available in the repository or add the missing module
to the repository.

- otherwise, this is likely a missing transitive module dependency. The module repository is not consis-
tent. Check the module repository settings file and that consistency check has been enabled during the
module repository build (see Configure Consistency Check).

« If the module exists, this may be either a configuration issue or a network connection error. We have to find
the cause in the resolution logs with the verbose mode option enabled:

For URL repositories, find:

trying https://[MY_REPOSITORY_URL]/[MY_REPOSITORY_NAME]/com.mycompany/mymodule/
tried https://[MY_REPOSITORY_URL]/[MY_REPOSITORY_NAME]/com.mycompany/mymodule/
For filesystem repository, find:

trying [MY_REPOSITORY_PATH]/com.mycompany/mymodule/
tried [MY_REPOSITORY_PATH]/com.mycompany/mymodule/

If your module repository URL or filesystem path does not appear, check your settings file. This is likely a
missing resolver.

Otherwise, if your module repository is an URL, this may be a network connection error between MMM (the
client) and the module repository (the server). First, check for Invalid Certificate issue.

Otherwise, the next step is to debug at the HTTP level:

3.6. MicroEJ Module Manager 105

MicroEJ Documentation, Revision 44d2784c

HTTP response status: [RESPONSE_CODE] url=https://[MY_REPOSITORY_URL]/com.mycompany/mymodule/
CLIENT ERROR: Not Found url=https://[MY_REPOSITORY_URL]/com.mycompany/mymodule/

Depending on the HTTP error code:
- 4071 Unauthorized: check your settings file credentials configuration.

- 404 Not Found:add the following options to log raw HTTP traffic:

-Dorg. apache.commons.logging.Log=org.apache.commons.logging.impl.SimplelLog -Dorg.apache.
—commons. logging.simplelog.showdatetime=true -Dorg.apache.commons.logging.simplelog.log.org.
—apache.http=DEBUG -Dorg.apache.commons.logging.simplelog.log.org.apache.http.wire=ERROR

Particularly, lvy requires the HTTP HEAD request which may be disabled by some servers.

Invalid Certificate

If the following message appears when resolving module dependencies:

HttpClientHandler: sun.security.validator.ValidatorException: PKIX path building failed: sun.security.
—provider.certpath.SunCertPathBuilderException: unable to find valid certification path to requested.
—target url=[artifactory address]

The server may use a self-signed certificate that has to be added to the JRE trust store that is running MicroEJ
Module Manager. Here is a way to do it:
1. Install Keystore Explorer,

2. Start Keystore Explorer, and open file [JRE_HOME]/lib/security/cacerts or [JDK_HOME]/jre/lib/
security/cacerts with the password changeit.You may not have the right to modify this file. Edit rights
if needed before opening it,

3. Clickon Tools ,then Import Trusted Certificate ,

4. Select your certificate,
5. Savethe cacerts file.

If the problem still occurs, add the following option to enable SSL protocol traces:

-Djavax.net.debug=all

This is useful to detect advanced errors such as:
« invalid certificate chain: one of root or intermediate certificate may be missing in the JRE/JDK truststore.

« TLS protocol negotiation issues.

Target “simulator:run” does not exist

If the following message appears when executing the mmm run command:

* Problem Report:

Target "simulator:run” does not exist in the project "my-app”.

it means that the command run is not supported by the build type declared by your module project. Make sure it
is one of the following ones:

3.6. MicroEJ Module Manager 106

https://ant.apache.org/ivy/history/2.5.0/settings/credentials.html
http://keystore-explorer.org/downloads.html

MicroEJ Documentation, Revision 44d2784c

+ build-application, with version 7.1.0 or higher
+ build-microej-javalib, with version 4.2.0 or higher

o build-firmware-singleapp, with version 1.3.0 or higher

3.6.10 Meta Build

A Meta Build is a module allowing to build other modules. Itis typically used in a project containing multiple mod-
ules. The Meta Build module serves as an entry point to build all the modules of the project.

Meta Build creation

+ Inthe MicroeEJ SDK, select File > New > Module Project .

File Edit Navigate Search Project Run Window Help

New Alt+Shift+N > 2% Sandboxed Application Project
Open File.. % Standalone Application Project L
. Open Projects from File System... 2 Add-On Library Project
Recent Files > ¥ Module Project
) I8 Platform Project
hszEdr = @ Front Panel Project [
Close All Editors Ctrl+Shift+W =i Project...

Fig. 25: New Meta Build Project

« Fillin the fields Project name, Organization, Module and Revision,then selectthe Skeleton named
microej-meta-build

« Clickon Finish .Atemplate project is automatically created and ready to use.

Meta Build configuration
The main element to configure in a meta build is the list of modules to build. This is done in 2 files, located at the
root folder:

« public.modules.list which contains the list of the modules relative paths to build and publish.

« private.modules.list which contains the list of the modules relative paths to build. These modules are
not published but only stored in a private and local repository in order to be fetched by the public modules.

The format of these files is a plain text file with one module path by line, for example:

modulel
module2
module3

These paths are relative to the meta build root folder, which is set by default to the parent folder of the meta build
module (..). For this reason, a meta build module is generally created at the same level of the other modules to
build. Here is a typical structure of a meta build:

3.6. MicroEJ Module Manager 107

MicroEJ Documentation, Revision 44d2784c

— modulel

': module.ivy

— module?

': module.ivy

— module3

': module.ivy

. metabuild

E private.modules.list

public.modules.list
module.ivy

The modules build order is calculated based on the dependency information. If a module is a dependency of an-
other module, it is built first.

For a complete list of configuration options, please refer to Meta Build Module Nature section.

3.6.11 Former MicroEJ SDK Versions (lower than 5.2.0)

This section describes MMM configuration elements for MicroEJ SDK versions lower than 5.2.0.

New MicroEJ Module Project

The New MicroEJ Module Project wizard is availableat File > New > Project... , EasyAnt > EasyAnt Project

Preferences Pages

MMM Preferences Pages are located in two dedicated pages. The following pictures show the options mapping
using the same options numbers declared in Preferences Page.

lvy Preferences Page

The Ivy Preferences Page is available at Window > Preferences > Ivy > Settings .

3.6. MicroEJ Module Manager 108

MicroEJ Documentation, Revision 44d2784c

® preferences

type filter text Settings le=T 4 - -
General A
Ant [reload the settings only on demand
C/C++
Checkstyle
Copyright Default | Workspace... | | File System... | Variables...
EasyantdEclipse

(l) Ivy settings path: | CA\Users\user\. microgj\microej-ivysettings-3xml |

Help Ivy user dir: ‘ |
lceTea
Install/Update

Workspace... | | File System... | Variables...

Instant Messaging .
v vy (2) Property files: | S{workspace_loc:easyant-build-component/ivy/ivyDE.properties} Edit
Ad d S{workspace_loc:easyant-build-component/ivy/ivyDE_windows.properties}
vancet
Add
Classpath Container
Security Remove
Settings
Source/Javadoc Map Up
Workspace Resolver
D
XML Editor o
Java
JavaScript
< i > v Restore Defaults Apply

@ Apply and Close Cancel

Easyant Preferences Page

The Easyant Preferences Page is available at Window > Preferences > EasyAnt4Eclipse .

® Preferences

type filter text EasyantdEclipse &~ .-
f\:: erel Set preferences for EasyAnt4Eclipse.
C/Crr (5) [Set verbose mode
Checkstyle (3) |:| Use lvyDE preferences for lvy settings path
Copyright (4) Ivy settings path: | C:\Program Files\MicroENMicroEJ-SDK-19.05\rcp\configuration\org.eclipse.osgi\ 54610\ cp\repositorieshivysettings.xml Browse...
Easyant4Eclipse
Help (7) Max build history size: I 5
IceTea (6) Runtime JRE jre1.8.0_221 .

Install/Update
Instant Messaging

v vy
Advanced
Classpath Container
Security
Settings
< 2 > ’ Restore Defaults Apply

@ Apply and Close Cancel

Build Kit

+ Create an empty directory (e.g. mmm_sdk_[version]_build_kit),

+ Locate your SDK installation plugins directory (by default, C:\Program Files\MicroEJ\MicroEJ
SDK-[version]\rcp\plugins on Windows OS),

» Openthefile com.is2t.eclipse.plugin.easyant4e_[version]. jar with an archive manager,
« Extract the directory 1ib to the target directory,

« Openthefile com.is2t.eclipse.plugin.easyant4e.offlinerepo_[version].jar with an archive man-
ager,

+ Navigate to directory repositories,

3.6. MicroEJ Module Manager 109

MicroEJ Documentation, Revision 44d2784c

« Extractthefilenamed microej-build-repository.zip forMicroEJSDK 5.x or is2t_repo.zip for MicroEJ
SDK 4.1.x to the target directory.

3.6.12 Former MicroEJ SDK Versions (from 5.2.0 to 5.3.x)
Build Kit

The Build Kit is bundled with MicroEJ SDK and can be exported using the following steps:

+ Select File > Export > MicroEJ > Module Manager Build Kit ,
+ Choose an empty Target directory ,

+ Clickonthe Finish button.
Once the Build Kit is fully exported, the directory content shall look like:
w = sdk_5.2.0 build_kit
w [~ ant

= lib
microej-build-repository.zip

3.7 Module Natures

This page describes the most common module natures as follows:
+ Skeleton Name: the project skeleton name.

« Build Type Name: the build type name, derived from the module nature name: com.is2t.easyant.
buildtypes#build-[NATURE_NAME].

« Documentation: a link to the documentation.

« SDK Menu: the menu to the direct wizard in MicroEJ SDK (if available). Any module nature can be created
with the default wizard from File > New > Module Project .

+ Configuration: properties that can be defined to configure the module. Properties are defined inside the
ea:build tag of the module.ivy file, using ea:property tag as described in the section Build Options. A
module nature also inherits the configuration properties from the listed Natures Plugins.

3.7.1 Add-On Library

Skeleton Name: microej-javalib

Build Type Name: com.is2t.easyant.buildtypes#build-microej-javalib
Documentation: MicroEJ Libraries

SDKMenu: File > New > Add-On Library Project

Configuration:

This module nature inherits the configuration properties of the following plugins:

« Java Compilation

3.7. Module Natures 110

MicroEJ Documentation, Revision 44d2784c

« Platform Loader
« Javadoc
o Jest Suite

o Artifact Checker

3.7.2 Add-On Processor

Skeleton Name: addon-processor

Build Type Name: com.is2t.easyant.buildtypes#build-addon-processor
Configuration:

This module nature inherits the configuration properties of the following plugins:

« Java Compilation

o J2SE Unit Tests
o Artifact Checker

3.7.3 Foundation Library API

Skeleton Name: microej-javaapi

Build Type Name: com.is2t.easyant.buildtypes#build-microej-javaapi
Documentation: VicroEJ Libraries

Configuration:

This module nature inherits the configuration properties of the following plugins:

« Java Compilation

« Javadoc
« Artifact Checker

This module nature defines the following dedicated configuration properties:

Name Description Default
microej.lib.name Platform library name on the form: [NAME]-[VERSION]-api . - | Notset
[NAME] : name of the implemented Foundation Library APl module.
- [VERSION] : version of the implemented Foundation Library API
module without patch (Major.minor).

rip.printableName Printable name for the Platform Editor. Not set

3.7.4 Foundation Library Implementation

Skeleton Name: microej-javaimpl
Build Type Name: com.is2t.easyant.buildtypes#build-microej-javaimpl
Documentation: MicroEJ Libraries

Configuration:

3.7. Module Natures m

MicroEJ Documentation, Revision 44d2784c

This module nature inherits the configuration properties of the following plugins:

« Java Compilation

o Jest Suite

This module nature defines the following dedicated configuration properties:

Name Description Default
microej.lib.implfor Execution target. Possible values are emb (only on Device), sim (only
Simulator) and common (both). common
3.7.5 Meta Build
Skeleton Name: microej-meta-build
Build Type Name: com.is2t.easyant.buildtypes#microej-meta-build
Documentation: Meta Build
Configuration:
This module nature defines the following dedicated configuration properties:
Name Description Default
metabuild.root Path of the root folder containing the modules to build.
${basedir}/
private.modules.file Name of the file listing the private modules to build. _
private.
modules.
list
public.modules.file Name of the file listing the public modules to build. oL
public.
modules.
list
3.7.6 Mock

Skeleton Name: microej-mock
Build Type Name: com.is2t.easyant.buildtypes#build-microej-mock

Documentation: Mock

Configuration:
This module nature inherits the configuration properties of the following plugins:

« Java Compilation

o J2SE Unit Tests

3.7.7 Module Repository

Skeleton Name: artifact-repository

Build Type Name: com.is2t.easyant.buildtypes#build-artifact-repository

3.7. Module Natures

112

MicroEJ Documentation, Revision 44d2784c

Documentation: Vodule Repository

Configuration:

This module nature inherits the configuration properties of the following plugins:

o Artifact Checker

This module nature defines the following dedicated configuration properties:

Name Description Default
bar.check.as.v2.module | When this property is set to true, the artifact checker uses the Mi-
croEJ Module Manager semantic. false
bar.javadoc.dir Path of the folder containing the generated javadoc.
${target}/
javadoc
bar.notification.email.fromThe email address used as the from address when sending the noti- | Not set
fication emails.
bar.notification.email.host The hostname of the mail service used to send the notification | Not set
emails.
bar.notification.email.pagsWoedassword used to authenticate on the mail service. Not set
bar.notification.email.port The port of the mail service used to send the notification emails Not set
bar.notification.email.ssl| When this property is set to true, SSL/TLS is used to send the notifi- | Not set
cation emails.
bar.notification.email.to | The notification email address destination. Not set
bar.notification.email.user The username used to authenticate on the mail service. Not set
bar.populate.from.resolverName of the resolver used to fetch the modules to populate the
repository. fetchRelease
bar.populate.ivy.settings.fileath of the lvy settings file used to fetch the modules to populate the)
repository. ${pr03ect.
ivy.
settings.
file}
bar.populate.repository.confy configuration of included repositories. The modules of the)
repositories declared as dependency with this configuration are in- | "€POS1tory
cluded in the built repository.
bar.test.haltonerror When this property is set to true, the artifact checker stops at the
first error. false
javadoc.excludes Comma-separated list of packages to exclude from the javadoc. Empty string
javadoc.includes Comma-separated list of packages to include in the javadoc.
x% (all pack-
ages)
skip.artifact.checker When this property is set to true, all artifact checkers are skipped. Not set
skip.email When this property is set (any value), the notification email is not | Not set
sent. Otherwise the bar.notification.* properties are required.
skip.javadoc.deprecated | Prevents the generation of any deprecated API at all in the javadoc. .
rue

3.7.8 Sandboxed Application

Skeleton Name: application

Build Type Name: com.is

2t.easyant.buildtypes#build-application

Documentation: Sandboxed Application

3.7. Module Natures

13

MicroEJ Documentation, Revision 44d2784c

SDKMenu: File > New > Sandboxed Application Project
Configuration:
This module nature inherits the configuration properties of the following plugins:

« Java Compilation

« Platform Loader
« Javadoc

o Test Suite

o Artifact Checker

3.7.9 Standalone Application

Skeleton Name: firmware-singleapp
Build Type Name: com.is2t.easyant.buildtypes#build-firmware-singleapp

Documentation: Standalone Application

SDKMenu: File > New > Standalone Application Project
Configuration:
This module nature inherits the configuration properties of the following plugins:

« Java Compilation

« Platform Loader
o Jest Suite

« Artifact Checker

This module nature defines the following dedicated configuration properties:

Name Description Default

application.main.class Full Qualified Name of the main class of the application. This option | Not set
is required.

skip.build.virtual.device | When this property is set (any value), the virtual device is not built. | Not set

virtual.device.sim.only | When this property is set (any value), the firmware is not built. Not set

3.7.10 Natures Plugins

This page describes the most common module nature plugins as follows:
+ Documentation: link to documentation.

+ Module Natures: list of Module Natures using this plugin.

+ Configuration: properties that can be defined to configure the module. Properties are defined inside the

ea:build tagof the module.ivy file, using ea:property tag as described in the section Build Options.

3.7. Module Natures

14

MicroEJ Documentation, Revision 44d2784c

Java Compilation

Module Natures:

This plugin is used by the following module natures:
« Add-On Library
« Foundation Library API

« Foundation Library Implementation

« Standalone Application

« Sandboxed Application

Configuration:

This plugin defines the following configuration properties:

Name Description Default
javac.debug.level Comma-separated list of levels for the Java compiler debug mode. y
ines,
source,
vars
javac.debug.mode When this property is set to true, the Java compiler is set in debug
mode. false
src.main.java Path of the folder containing the Java sources.
${basedir}/
src/main/
java

Platform Loader

Documentation: Platform Selection

Module Natures:

This plugin is used by the following module natures:
« Add-On Library

« Standalone Application

« Sandboxed Application

Configuration:

This plugin defines the following configuration properties:

3.7. Module Natures 115

MicroEJ Documentation, Revision 44d2784c

Name Description Default
platform- Path of the folder to unzip the loaded platform to.
loader.platform.dir ${target}/
platform

platform.loader.skip.load.plétfarrthis property is set to true, the platform is not loaded. It

must be already available in the directory defined by the property | f21se

platform-loader.platform.dir . Use with caution: the platform

content may be modified during the build (e.g. in case of Testsuite

or Virtual Device build).
platform- The vy configuration used to retrieved the platform if fetched via
loader.target.platform.confdependencies. platform
platform- Path of the root folder of the platform to use in the build. See Plat- | Not set
loader.target.platform.din form Selection section for Platform Selection rules.
platform- Absolute or relative (to the project root folder) path of the folder)
loader.target.platform.dropireere the platform can be found (see Platform Selection). dropins
platform- Path of the platform file to use in the build. See Platform Selection | Not set
loader.target.platform.file section for Platform Selection rules.

Javadoc

Module Natures:

This plugin is used by the following module natures:
« Add-On Library
« Foundation Library API

« Sandboxed Application

Configuration:

This plugin defines the following configuration properties:

3.7. Module Natures

116

MicroEJ Documentation, Revision 44d2784c

(stored in folder target.artifacts).

Name Description Default
src.main.java Path of the folder containing the Java sources.
${basedir}/
src/main/
java
javadoc.file.encoding Encoding used for the generated Javadoc. UTE-g
javadoc.failonerror When this property is set to true, the build is stopped if an error is
raised during the Javadoc generation. true
javadoc.failonwarning When this property is set to true, the build is stopped if a warning is
raised during the Javadoc generation. false
target.reports Path of the base folder for reports.
${target}/
reports
target.javadoc Path of the base folder where the Javadoc is generated.
${target.
reports}/
javadoc
target.javadoc.main Path of the folder where the Javadoc is generated.
${target.
javadoc}/
main
javadoc- Path of the HTML template file used for the Javadoc overview page.
microej.overview.html ${§rc'
main.
java}/
overview.
html if
exists, oth-
erwise a
default
template.
target.artifacts Path of the packaged artifacts.
${target}/
artifacts
target.artifacts.main.javaddajaenemehe packaged JAR containing the generated Javadoc ${modul
moadule.

name}-javado
jar

(@)

javadoc.publish.conf

Ivy configuration used to publish the Javadoc artifact.

documentatio

Test Suite

Documentation: Jest Suite with JUnit

Module Natures:

This plugin is used by the following module natures:

« Add-On Library

« Foundation Library API

« Foundation Library Implementation

« Standalone Application

3.7. Module Natures

n7

MicroEJ Documentation, Revision 44d2784c

« Sandboxed Application

Configuration:

This plugin defines the following configuration properties:

Name Description Default
microej.testsuite.cc.exclud@atiassexf classes excluded from the code coverage analysis. Not set
microej.testsuite.properties\#3eccthitipabexbrty is set to true, the code coverage analysis is en-
abled. true
microej.testsuite.verbose| When this property is set to true, the verbose trace level is enabled. -
alse
test.run.excludes.pattern| Pattern of classes excluded from the test suite execution. Empty string
(no test)
test.run.failonerror When this property is set to true, the build fails if an error is raised.
true
test.run.includes.pattern| Pattern of classes included in the test suite execution. , Gl
*% /% a
tests)
skip.test When this property is set (any value), the tests are not executed. Not set
J2SE Unit Tests

Warning: This plugin is reserved for tools written in Java Standard Edition. Tests classes must be created in
the folder src/test/java of the project. See Test Suite section for MicroEJ tests.

Module Natures:

This plugin is used by the following module natures:

« Add-On Processor
« Mock

Configuration:

This plugin defines the following configuration properties:

Name Description Default
test.run.excludes.pattern| Pattern of classes excluded from the test suite execution. Empty string
(no test)
test.run.failonerror When this property is set to true, the build fails if an error is raised.
true
test.run.includes.pattern| Pattern of classes included in the test suite execution. , (all
*x /% a
tests)
skip.test When this property is set (any value), the tests are not executed. Not set
Artifact Checker
Module Natures:
This plugin is used by the following module natures:
« Add-On Library
3.7. Module Natures 118

MicroEJ Documentation, Revision 44d2784c

« Foundation Library API

« Standalone Application

« Sandboxed Application

» Module Repository

Configuration:

This plugin defines the following configuration properties:

cuted.

Name Description Default

run.artifact.checker When this property is set (any value), the artifact checker is exe- | Not set
cuted.

skip.addonconf.checker | When this property is set to true, the addon configurations checker | Not set
is not executed.

skip.changelog.checker | When this property is set to true, the changelog checker is not exe- | Not set
cuted.

skip.foundationconf.check&hen this property is set to true, the foundation configurations | Not set
checker is not executed.

skip.license.checker When this property is set to true, the license checker is not executed. | Not set

skip.publicconf.checker | When this property is set to true, the public configurations checker | Not set
is not executed.

skip.readme.checker When this property is set to true, the readme checker is not exe- | Not set
cuted.

skip.retrieve.checker When this property is set to true, the retrieve checker is not exe- | Not set

3.8 Module Repository

A module repository is a module that bundles a set of modules in a portable ZIP file. It is a tree structure where
modules organizations and names are mapped to folders.

3.8. Module Repository

119

MicroEJ Documentation, Revision 44d2784c

» = com
v (=g
v [= api

» = bon

v = ecom

» [= ecom=-comm

v (= edc

y =123
~ = 130

CHANGELOG-1.3.0.md
CHAMNGELOG-1.3.0.md.md5
CHAMNGELOG-1.3.0.md.shal
edec-1.3.0,jar
edc-1.3.0.jarmd3
edc-1.3.0.jar.shal
vy-1.3.0xml
ivy-1.3.0xml.md5
ivy-1.3.0.xml.shal
LICEMSE-1.3.0.txt
LICENSE-1.3.0.tct. md5
LICEMNSE-1.3.0.4xt.shal
README-1.3.0.md
README-1.3.0.md.md5
README-1.3.0.md.shal

— «— Modules Tree

(W) () [=) i) [e f e ‘.f [Tl e [IIE e [=)

v = fs
s = kf
» (= microui
» [net
» (= security
» [= sni
» = sp
v = ssl
% [= trace
y = library
> = tool -) .]
%) ivysettingsaml «———— LoOcCal (offline) settings file

Fig. 26: Example of MicroEJ Module Repository Tree

A module repository takes its input modules from other repositories, usually the MicroEJ Central Repository which
is itself built by MicroEJ Corp. as a module repository.

3.8. Module Repository 120

MicroEJ Documentation, Revision 44d2784c

A module repository is often called an offline repository as it includes the settings file for a local configuration in
MicroEJ SDK. It can also be imported in MicroEJ Forge.

3.8.1 Create a Repository Project

In MicroEJ SDK, first create a new module project using the artifact-repository skeleton.

« The ivysettings.xml settings file describes how to import the modules of this repository when it is ex-
tracted locally on file system. This file will be packaged at the root of the zip file and does not need to be
modified.

« The module.ivy file describes how to build repository and lists the module dependencies that will be in-
cluded in this repository.

3.8.2 Configure Resolver for Input Modules

MicroEJ Module Manager (MMM) needs to import dependencies to build the module repository. The location
fetched by MMM is defined by a resolver. The resolver is configured with the parameter bar.populate.from.
resolver . The preset value is the resolver provided by default in MicroEJ SDK configuration, which is connected
to MicroEJ Central Repository.

<ea:property name="bar.populate.from.resolver” value="MicroEJChainResolver"/>

The MicroEJChainResolver is a URL resolver defined in $USER_HOME\ .
microej\microej-ivysettings-[VERSION].xml that pointsto MicroEJ Central Repository.

3.8.3 Configure Consistency Check

The module repository consistency check consists in verifying that each declared module can be imported using
the settings file provided by the repository. Especially, it ensures that all module transitive dependencies are also
available.

Itis enabled by default to avoid further issues for repository users such as Unresolved Dependency. This is done by
the following option:

<ea:property name="skip.retrieve.checker" value="false"/>

Moreover, to ensure the repository will be compliant with the MMM specification, add the following option:

<ea:property name="bar.check.as.v2.module” value="true"/>

3.8.4 Advanced Options

There are other advanced options that do not need to be modified by default. These options are described in the
module.ivy generated by the skeleton.

3.8.5 Include Modules

Modules bundled into the module repository must be declared in the dependencies element of the module.ivy
file.

3.8. Module Repository 121

https://www.microej.com/product/forge/

MicroEJ Documentation, Revision 44d2784c

Include a Single Module

To add a module, declare the module dependency using the artifacts configuration:

<dependencies>
<dependency conf="artifacts->*" transitive="false"” org="[module_org]" name="[module_name]"” rev=
—"[module_version]"” />

<!-- ... other dependencies ... -->
</dependencies>

For example, to add the ej.api.edc library version 1.2.3, write the following line:

<dependency conf="artifacts->*" transitive="false"” org="ej.api"” name="edc" rev="1.2.3" />

Note: We recommended to manually describe each dependency of the module repository, in order to keep full
controloftheincluded modules as well asincluded modules versions. Module dependencies can still be transitively
included by setting the dependency attribute transitive to true. In this case, the included module versions are
those that have been resolved when the module was built.

Multiple versions of the same module can be included by declaring each dependency using a different configura-
tion. The artifacts configuration has to be derived with a new name as many times as there are different versions
toinclude.

<configurations defaultconfmapping="default->default;provided->provided">
<conf name="artifacts” visibility="private"/>
<conf name="artifacts_1" visibility="private"/>
<conf name="artifacts_2" visibility="private"/>

<!-- ... other configurations ... -->
</configurations>

<dependencies>

<dependency conf="artifacts->*" transitive="false"” org="[module_org]" name="[module_name]"” rev=
—"[module_version_11" />

<dependency conf="artifacts_1->*" transitive="false"” org="[module_org]l” name="[module_name]” rev=
—"[module_version_2]" />

<dependency conf="artifacts_2->x" transitive="false"” org="[module_org]"” name="[module_namel" rev=
—"[module_version_3]1" />

<!-- ... other dependencies ... -->
</dependencies>

Include a Module Repository

To add all the modules already included in an other module repository, add the configuration repository ifit
does not exist:

<configurations defaultconfmapping="default->default;provided->provided">

<!-- ... other configurations ... -->

<conf name="repository” visibility="private"” description="Repository to be embedded in the repository
=" />

</configurations>

3.8. Module Repository 122

MicroEJ Documentation, Revision 44d2784c

Then declare the module repository dependency using the repository configuration:

<dependencies>
<dependency conf="repository->*" transitive="false"” org="[repository_org]"” name="[repository_name]”_
—rev="[repository_version]"” />

<!-- ... other dependencies ... -->
</dependencies>

3.8.6 Build the Repository

In the Package Explorer, right-click on the repository project and select Build Module.
The build consists of two steps:

1. Gathers all module dependencies. The whole repository content is created under target~/
mergedArtifactsRepository folder.

2. Checks the repository consistency. For each module, it tries to import it from this repository and fails the
build if at least one of the dependencies cannot be resolved.

The module repository .zip fileis builtinthe target~/artifacts/ folder. This file may be published along with
a CHANGELOG.md, LICENSE. txt and README.md .

3.8.7 Use the Offline Repository

By default, when starting an empty workspace, MicroEJ SDK is configured to import dependencies from MicroEJ
Central Repository.

To configure MicroEJ SDK to import dependencies from a local module repository:
1. Unzip the module repository .zip file to the folder of your choice,

2. Configure MMM settings file using the ivysettings.xml file located at the root of the folder where the repos-
itory has been extracted.

3.9 MicroEJ Classpath

MicroEJ Applications run on a target device and their footprint is optimized to fulfill embedded constraints. The
final execution context is an embedded device that may not even have a file system. Files required by the appli-
cation at runtime are not directly copied to the target device, they are compiled to produce the application binary
code which will be executed by MicroEJ Core Engine.

As a part of the compile-time trimming process, all types not required by the embedded application are eliminated
from the final binary.

MicroEJ Classpath is a developer defined list of all places containing files to be embedded in the final application
binary. MicroEJ Classpath is made up of an ordered list of paths. A path is either a folder or a zip file, called a JAR
file (JAR stands for Java ARchive).

« Application Classpath explains how the MicroEJ Classpath is built from a MicroEJ Application project.

« Classpath Load Model explains how the application contents is loaded from MicroEJ Classpath.

» Classpath Elements specifies the different elements that can be declared in MicroEJ Classpath to describe
the application contents.

3.9. MicroEJ Classpath 123

MicroEJ Documentation, Revision 44d2784c

3.9.1 Application Classpath

The following schema shows the classpath mapping from a MicroEJ Application project to the MicroEJ Classpath
ordered list of folders and JAR files. The classpath resolution order (left to right) follows the project appearance
order (top to bottom).

v _f‘p" MyApplication
(® src/main/java Compiled code and copied resources
\;’?} src/main/resources located in folder MyAppllcatlon/bln
v B vy module.ivy [*]
> @9 framework-1.10.0jar - C:\cache\ej.library.wadapps\framework\jars I
{w property-loader-3.1.0ar - C:\cache\gj.library.runtime\property-loader\jars
{5 observable-1.0.2jar - C:\caché\ej library.util\observable\jars
@ progress-1.0.3jar - C:\cache\ej.library.util\progress\jars
% components-3.3.0,jar - C:\cache\gj.library.runtime\components\jars .
= Ivy transitive
__d‘ependencie‘s JAR
files located in the
Ivy cache folder

8

(y¥ properties-1.1.0,ar - C:\cache\ejlibrary.eclasspath\properties\jars
8 io-1.1.0jar - C:\cache\ej.library.eclasspath\io\jars

@A logging-1.1.0.jar - C:\caché\gj.library.eclasspath\logging\jars
basictool-1.2.2,jar - C:\cache\egj.library.runtime\basictool\jars

)

@4 annotation-1.0.0jar - C:\cache\gj.library.runtime\annotation\jars
@3 bon-1.3.0jar - C:\cache\ej.api\bon\jars

1

g kf-1.4.4,jar - C:\cache\ej.api\kf\jars

il

VWV VY VYV VYV VYV VY
B8

ma edc-1.2.3jar - C\cache\gj.api\edc\jars]
v B Referenced Libraries Additionnal JAR file located in

> extrajar —_— }MyApplication/META—INF/libraries/extra.jar
(*# src-adpgenerated/wadapps/java
v (= META-INF

» [= certificate

v (= libraries

| extrajar
> [properties
& MANIFEST.MF

v [src

= main
(= src-adpgenerated
[%] CHANGELOG.md
=] LICENSE.tct
ke module.ivy
[%] README.md

v

o
wn
(7]
>
|
= =
P
[]
73
=
[
=
-]
=
(=]
-
o
o
=

v

Fig. 27: MicroEJ Application Classpath Mapping

3.9.2 Classpath Load Model

A MicroEJ Application classpath is created via the loading of :
+ an entry point type,
« all =.[extension].list files declared in a MicroEJ Classpath.

The different elements that constitute an application are described in Classpath Elements. They are searched within
MicroEJ Classpath from left to right (the first file found is loaded). Types referenced by previously loaded MicroEJ
Classpath elements are loaded transitively.

3.9. MicroEJ Classpath 124

MicroEJ Documentation, Revision 44d2784c

| l Folder 1 | l Folder 2 I Jar1l l Folder 3 I Jar2
S | S— J

Q—| &
- l a/D.class a/E.class java/lang/Object.class
a/A.class atypes.list _
foo() {}
main { a.B
D.£ ;
oo () Img2.png Imgl.png
! 7 4
p—
S
a/B.class) Imgl.png a.images.list
h Img3.png
7 Img2.png g
a.resources.list a/B.class

Imgl.png

~— Selected Elements —

[Folder1]/a/A.class
[Jarl]/a/D.class
[Jar2]/java/lang/Object.class
[Folder1]/a/B.class

CLASSPATH Resolution Order

[Folder2]/Imgl.png
@ Entry Point m—P Resolution [Folder3]/Img2.png

Fig. 28: Classpath Load Principle

3.9.3 Classpath Elements

The MicroEJ Classpath contains the following elements:

« An entrypoint described in section Application Entry Points;

« Typesin .class files, described in section Types;
« Raw resources, described in section Raw Resources;

« Immutables Object data files, described in Section Immutable Objects;

+ Images, Fonts and Native Language Support (NLS) resources, described in Application Resources;

« x.[extension].list files, declaring contents to load. Supported list file extensions and format is specific
to declared application contents and is described in the appropriate section.

At source level, Java types are stored in src/main/java folder of the module project, any other kind of resources
and list files are stored in the src/main/resources folder.

Application Entry Points

MicroEJ Application entry point declaration differs depending on the application kind:

« In case of a MicroEJ Standalone Application, it is a class that contains a public static void
main(String[]) method, declared using the option application.main.class.

3.9. MicroEJ Classpath 125

MicroEJ Documentation, Revision 44d2784c

« In case of a MicroEJ Sandboxed Application, it is a class that implements ej.kf.FeatureEntryPoint , de-
clared inthe Application-EntryPoint entryin META-INF/MANIFEST.MF file.

Types
MicroEJ types (classes, interfaces) are compiled from source code (. java) to classfiles (.class). When a type is
loaded, all types dependencies found in the classfile are loaded (transitively).
Atype can be declared as a Required type in order to enable the following usages:
+ to be dynamically loaded from its name (with a call to Class.forName(String));
« to retrieve its fully qualified name (with a call to Class.getName()).

A type that is not declared as a Required type may not have its fully qualified name (FQN) embedded. Its FQN can
be retrieved using the stack trace reader tool (see Stack Trace Reader).

Required Types are declared in MicroEJ Classpath using *.types.list files. The file format is a standard Java
properties file, each line listing the fully qualified name of a type. Example:

The following types are marked as MicroEJ Required Types
com.mycompany .MyImplementation
java.util.Vector

Raw Resources

Raw resources are binary files that need to be embedded by the application so that they may be dynamically re-
trieved with a call to Class.getResourceAsStream(java.io.InputStream) . Raw Resources are declared in Mi-
croEJ Classpath using *.resources.list files. The file format is a standard Java properties file, each line is a
relative / separated name of a file in MicroEJ Classpath to be embedded as a resource. Example:

The following resource is embedded as a raw resource
com/mycompany/MyResource. txt

Others resources types are supported in MicrokJ Classpath, see Application Resources for more details.

Immutable Objects

Immutables objects are regular read-only objects that can be retrieved with a call to ej.bon.Immutables.
get(String) . Immutables objects are declared in files called immutable objects data files, which format is de-
scribed in the [BON] specification. Immutables objects data files are declared in MicroEJ Classpath using *.
immutables.list files. The file format is a standard Java properties file, each lineis a / separated name of a
relative file in MicroEJ Classpath to be loaded as an Immutable objects data file. Example:

The following file is loaded as an Immutable objects data files
com/mycompany/MyImmutables.data

System Properties

System Properties are key/value string pairs that can be accessed with a call to System.getProperty(String).

System Properties are defined when building a Standalone Application, by declaring *.properties.list filesin
MicroEJ Classpath.

The file format is a standard Java properties file. Example:

3.9. MicroEJ Classpath 126

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#getProperty-java.lang.String-

MicroEJ Documentation, Revision 44d2784c

Listing 1: Example of Contents of a MicroEJ Properties File

The following property is embedded as a System property
com.mycompany . key=com.mycompany . value
microedition.encoding=I1S0-8859-1

System Properties are resolved at runtime, and all declared keys and values are embedded as intern Strings.

System Properties can also be defined using Application Options. This can be done by setting the option with a
specific prefix in their name:

« Properties for both the MicroEJ Core Engine and the MicroEJ Simulator : name starts with microej. java.
property.x*

« Properties for the MicroEJ Simulator: name starts with sim. java.property.*
« Properties for the MicroEJ Core Engine: name starts with emb. java.property.*

For example, to define the property myProp with the value theValue, set the following option :
Listing 2: Example of MicroEJ System Property Definition as Applica-
tion Option

microej.java.property.myProp=theValue

Option can also be setinthe VM arguments field of the JRE tab of the launch using the -D option (e.g. -Dmicroej.
java.property.myProp=theValue).

Note: When building a Sandboxed Application, *.properties.list files found in MicroEJ Classpath are silently
skipped.

Constants

Note: This feature require [BON] version 1.4 which is available in MicroEJ Runtime starting from MicroEJ Archi-
tecture version 7.11.0.

Constants are key/value string pairs that can be accessed with a call to ej.bon.Constants.get[Type](String),
where Type if one of:

« Boolean,
» Byte,

« Char,

« Class,

« Double,
« Float,

o Int,
 Long,

« Short,

« String.

3.9. MicroEJ Classpath 127

MicroEJ Documentation, Revision 44d2784c

Constants are declared in MicroEJ Classpath *.constants.list files. Thefile formatis a standard Java properties
file. Example:
Listing 3: Example of Contents of a BON constants File

The following property is embedded as a constant
com.mycompany .myconstantkey=com.mycompany.myconstantvalue
Constants are resolved at binary level without having to recompile the sources.
At link time, constants are directly inlined at the place of Constants.get[Type] method calls with no cost.
The String key parameter must be resolved as an inlined String:

« either a String literal "com.mycompany.myconstantkey"”

« ora static final String field resolved as a String constant
The String value is converted to the desired type using conversion rules described by the [BON] API.

A boolean constant declared in an if statement condition can be used to fully remove portions of code. This
feature is similar to C pre-processors #ifdef directive with the difference that this optimization is performed at
binary level without having to recompile the sources.

Listing 4: Example of if code removal using a BON boolean constant

if (Constants.getBoolean("com.mycompany.myconstantkey”)) {
System.out.println(”"this code and the constant string will be fully removed when the constant is.
—resolved to 'false'"”)

}

Note: In Multi-Sandbox environment, constants are processed locally within each context. In particular, constants
defined in the Kernel are not propagated to Sandboxed Applications.

3.10 Application Resources

Application resources are the following Classpath Elements:

» Images
 Fonts

 Native Lanqguage Support

3.10.1 Images

Overview

Images are graphical resources that can be accessed with a call to ej.microui.display.Image.getimage() or
ej.microui.display.Resourcelmage.loadlmage() . To be displayed, these images have to be converted from their
source format to the display raw format. The conversion can either be done at:

« build-time (using the image generator tool),

« run-time (using the relevant decoder library).

3.10. Application Resources 128

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Image.html#getImage-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/ResourceImage.html#loadImage-java.lang.String-

MicroEJ Documentation, Revision 44d2784c

Images that must be processed by theimage generator tool are declared in MicroEJ Classpath *. images. list files.
Thefile formatis a standard Java properties file, each line representing a / separated resource path relative to the
MicroEJ classpath root referring to a standard image file (e.g. .png, .jpg). The resource may be followed by an
optional parameter (separated by a :) which defines and/or describes the image output file format (raw format).
When no option is specified, the image is embedded as-is and will be decoded at run-time (although listing files
without format specifier has no impact on the image generator processing, it is advised to specify them in the *.
images.list files anyway, as it makes the run-time processing behavior explicit). Example:

The following image is embedded
as a PNG resource (decoded at run-time)
com/mycompany/MyImagel.png

The following image is embedded
as a 16 bits format without transparency (decoded at build-time)
com/mycompany/MyImage?2.png:RGB565

The following image is embedded
as a 16 bits format with transparency (decoded at build-time)
com/mycompany/MyImage3.png:ARGB1555

Please refer to Images for more information.

3.10.2 Fonts

Overview

Fonts are graphical resources that can be accessed with a call to ej.microui.display.Font.getFont(). To be displayed,
these fonts have to be converted at build-time from their source format to the display raw format by the font gener-
atortool. Fonts that must be processed by the font generator tool are declared in MicroEJ Classpath *. fonts.list
files. The file format is a standard Java properties file, each line representing a / separated resource path relative
to the MicroEJ classpath root referring to a MicroEJ font file (usually with a .ejf file extension). The resource may
be followed by optional parameters which define :

« some ranges of characters to embed in the final raw file;
« the required pixel depth for transparency.

By default, all characters available in the input font file are embedded, and the pixel depthiis 1 (i.e 1 bit-per-pixel).
Example:

The following font is embedded with all characters
without transparency
com/mycompany/MyFont1.ejf

The following font is embedded with only the latin
unicode range without transparency
com/mycompany/MyFont2.ejf:latin

The following font is embedded with all characters
with 2 levels of transparency
com/mycompany/MyFont2.ejf::2

MicroEJ font files conventionally end with the .ejf suffix and are created using the Font Designer (see Font De-
signer).

3.10. Application Resources 129

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Font.html#getFont-java.lang.String-

MicroEJ Documentation, Revision 44d2784c

Font Range
The first parameter is for specifying the font ranges to embed. Selecting only a specific set of characters to embed
reduces the memory footprint. If unspecified, all characters of the font are embedded.

Several ranges can be specified, separated by ; . There are two ways to specify a character range: the custom range
and the known range.

Custom Range

Allows the selection of raw Unicode character ranges.
Examples:
« myfont:0x21-0x49 : Defines one range: embed all characters from 0x21 to 0x49 (included);

« myfont:0x21-0x49,0x55-0x75 : Defines a set of two ranges: embed all characters from 0x21 to 0x49 and
from 0x55 to 0x75.

« myfont:0x21-0x49,0x55 : Defines a set of one range and one character: embed all characters from 0x21 to
0x49 and character 0x55.

Known Range

A known range is a range available in the following table.
Examples:
« myfont:basic_latin:Embed all Basic Latin characters;

« myfont:basic_latin;arabic: Embed all Basic Latin characters, and all Arabic characters.

Transparency

The second parameter is for specifying the font transparency level (1, 2, 4 or 8). If unspecified, the encoded
transparency levelis 1 (does not depend on transparency level encoded in EJF file).

Examples:
« myfont:latin:4:Embed all latin characters with 16 levels of transparency

« myfont::2:Embed all characters with 4 levels of transparency

3.10.3 Native Language Support

Native Language Support (NLS) allows the application to facilitate internationalization. It provides support to ma-
nipulate messages and translate them in different languages. Each message to be internationalized is referenced
by a key, which can be used in the application code instead of using the message directly.

Messages must be defined in PO files in the MicroEJ Classpath of the application. Here is an example:

msgid ""

msgstr "

"Language: en_US\n"

"Language-Team: English\n"

"MIME-Version: 1.0\n"

"Content-Type: text/plain; charset=UTF-8\n"

(continues on next page)

3.10. Application Resources 130

https://www.gnu.org/software/gettext/manual/gettext.html#PO-Files

MicroEJ Documentation, Revision 44d2784c

(continued from previous page)

msgid "Labell”
msgstr "My label 1"

msgid "Label2”
msgstr "My label 2"

These PO files have to be converted to be usable by the application. In order to let the build system know which PO
files to process, they must be referenced in MicroEJ Classpath *.nls.list files. The file format of these *.nls.
list files is a standard Java properties file. Each line represents the Full Qualified Name of a Java interface that
will be generated and used in the application. Here is an example, let’s call it i18n.nls.list:

com.mycompany .myapp.Labels
com.mycompany . myapp . Messages

For each line, PO files whose name starts with the interface name (Messages and Labels in the example) are
retrieved from the MicroEJ Classpath and used to generate:

+ aJava interface with the given FQN, containing a field for each msgid of the PO files

+ a NLS binary file containing the translations

So, in the example, the generated interface com.mycompany.myapp.Labels will gather all the translations from
files named Labels*.po and located in the MicroEJ Classpath. PO files are generally suffixed by their locale (
Labels_en_US.po) but it is only for convenience since the suffix is not used, the locale is extracted from the PO
file’s metadata.

Once the generation is done, the application can use the Java interfaces to get internationalized messages, for
example:

import com.mycompany.myapp.Labels;
public class MyClass {

String label = Labels.lLabell;

The generation is triggered when building the application or after a change done in any PO or *.nls.1list files.
This allows to always have the Java interfaces up-to-date with the translations and to use them immediately.

The NLS API module must be added to the module.ivy of the MicroEJ Application project to use the NLS library.

<dependency org="ej.library.runtime” name="nls" rev="3.0.1"/>

3.11 Platform Selection

Building or running a Test Suite on an application module requires a MicroEJ Platform.
There are 4 different ways to provide a MicroEJ Platform for a module project:

+ Setthe build option platform-loader.target.platform.file tothe path ofa MicroEJ Platformfile (.zip
, .jpf or .vde).

« Setthebuild option platform-loader.target.platform.dir tothe path ofthe source folderofan already
imported Source Platform.

3.11. Platform Selection 131

https://repository.microej.com/modules/ej/library/runtime/nls/

MicroEJ Documentation, Revision 44d2784c

« Declare a module dependency with the conf platform:

<dependency org="myorg" name="myname" rev="1.0.0" conf="platform->default” transitive="false"/>

« Copy a MicroEJ Platform file to the dropins folder. The default dropins folder location is
[module_project_dir]/dropins . It can be changed using the build option platform-loader.target.
platform.dropins.

At least 1 of these 4 ways is required to build an application with a platform. If several ways are used, the following
rules are applied:

o If platform-loader.target.platform.file or platform-loader.target.platform.dir isset,the other
options are ignored.

« If the the module project defined several platforms, the build fails. For example the following cases are not
allowed:

Setting a platform with the option platform-loader.target.platform.file and another one with
the option platform-loader.target.platform.dir

Declaring a platform as a dependency and adding a platform in the dropins folder

Declaring 2 platforms as Dependencies

Adding 2 platforms in the dropins folder

Refer to the Platform Loader section for a complete list of options.

3.12 Development Tools

MicroEJ provides a number of tools to assist with various aspects of development. Some of these tools are run using
MicroEJ Tool configurations, and created using the Run Configurations dialog of the MicroEJ SDK. A configuration
must be created for the tool before it can be used.

3.12. Development Tools 132

MicroEJ Documentation, Revision 44d2784c

{'} Run Configurations “
Create, manage, and run configurations ;—I
= R | =R Mame: | MyToolConfig
type filter text i Execution 1N} Configuration | =, JRE] Common
[E] C/C++ Application Target
Ju JUnit
b Platform: | 5STM32F746GDI5CO-example- CMThardfp_ARMCCS (2.1.0-RC201604072037) Browse...
@ Launch Group
- 7] MicroE) Application Execution
a [Microkl Tool
Settings: | MicroElavah w

@ MyToolConfig
Generate C headers and implementation skeletons of Java native methods

Options
Output folder: | ${workspace_locl/MyHelloWerldSample Browse...
[#] Clean intermediate files [verbose
. . Revert Apply
Filter matched 7 of 12 items
':?:' Run Close

Fig. 29: MicroEJ Tool Configuration

The above figure shows a tool configuration being created. In the figure, the MicroEJ Platform has been selected,
but the selection of which tool to run has not yet been made. That selection is made in the Execution Settings...
box. The Configuration tab then contains the options relevant to the selected tool.

3.12.1 Test Suite with JUnit

MicroEJ allows to run unit tests using the standard JUnit API during the build process of a MicroEJ library or a
MicroEJ Application. The MicroEJ Test Suite Engine runs tests on a target Platform and outputs a JUnit XML report.

Principle

JUnit testing can be enabled when using the microej-javalib (MicroEJ Add-On Library) or the
microej-application (MicroEJ Applications) build type. JUnit test cases processing is automatically enabled
when the following dependency is declared in the module. ivy file of the project.

<dependency conf="test->*" org="ej.library.test” name="junit" rev="1.5.0"/>

3.12. Development Tools 133

MicroEJ Documentation, Revision 44d2784c

When a new JUnit test case class is created inthe src/test/java folder, a JUnit processor generates MicroEJ com-
pliant classes into a specific source folder named src-adpgenerated/junit/java. These files are automatically
managed and must not be edited manually.

JUnit Compliance

MicroEJ is compliant with a subset of JUnit version 4. MicroEJ JUnit processor supports the following annotations:
@After, @AfterClass, @efore, @BeforeClass, @Ignore, @Test.

Each test case entry point must be declared using the org. junit.Test annotation (@Test before a method dec-
laration). Please refer to JUnit documentation to get details on usage of other annotations.

Setup a Platform for Tests

Before running tests, a target platform must be configured.

Execution in SDK

In order to execute the Test Suite in the SDK, a target platform must be configured in the MicroEJ workspace. The
following steps assume that a platform has been previously imported into the MicroEJ Platform repository (or avail-
able in the Workspace):

« Goto Window > Preferences > MicroEJ > Platforms (or Platformsin workspace).
« Select the desired platform on which to run the tests.
+ Press F2 to expand the details.

« Select the the platform path and copy it to the clipboard.

+ Goto Window > Preferences > Ant > Runtime and selectthe Properties tab.

« Clickon Add Property... button and seta new property named target.platform.dir with the platform
path pasted from the clipboard.

Execution during module build

In orderto execute the Test Suite during the build of the module, a target platform must be configured in the module
project as described in the section Platform Selection.

Setup a Project with a JUnit Test Case

This section describes how to create a new JUnit Test Case starting from a new MicroEJ library project.

« First create a new module project using the microej-javalib skeleton. A new project named mylibrary is
created in the workspace.

+ Right-click onthe src/test/java folderandselect New > Other... menuitem.
« Selectthe Java > JUnit > New JUnit Test Case wizard.

+ Enteratest name and press Finish . A new JUnit test case class is created with a default failing test case.

3.12. Development Tools 134

MicroEJ Documentation, Revision 44d2784c

Build and Run a JUnit Test Suite
+ Right-clickonthe mylibrary projectandselect Build Module . Afterthelibraryis built, the test suite engine
launches available test cases and the build process fails in the console view.

» Onthe mylibrary project, right-click and select Refresh . A target~ folder appears with intermediate
build files. The JUnit report is available at target~\test\xmlI\TEST-test-report.xml.

Double-click on the file to open the JUnit test suite report.

+ Modify the test case by replacing
fail(”"Not yet implemented”);
with

Assert.assertTrue(true);

» Right-click againonthe mylibrary projectand select Build Module . The testis now successfully executed
on the target platform so the MicroEJ Add-On Library is fully built and published without errors.

« Double-click on the JUnit test suite report to see the test has been successfully executed.
Test Suite Reports

Once a test suite is completed, the following test suite reports are generated:

« JUnit HTML report in the module project location target~/test/html/test/junit-noframes.html . This
report contains a summary and the execution trace of every executed test.

Testsuite Results:

Summary
[Tests [Failures [Errors | Ignored [Tried Again [Success rate [Time |
|54 [15 o lo lo [72.22% |3788.653 |
[Assertions [Failures [Success [Success Rate |
963 |35 |928 [96.37% |

Note: failures are anticipated and checked for with assertions while errors are unanticipated.
Note: ignored tests are executed but not counted on the success rate.

Note: fried again tests are executed but not counted on the success rate

Packages

Note: package statistics are not computed recursively, they only sum up all of its testsuites numbers.

Name Tests i Tried | Time(s) | Time Stamp [Host
Again
2 o 0 0 0 134.660 | 1598001204286/ local
4 o 0 0 0 274.761 |1598001330008|local
3 o 1 0 o 194.437 |1598001613793]local
1|0 0 0 0 66171 |1598001808250|local
31 [0 10 0 0 2181.600] 1598001874436 local
1 o 0 0 0 65519 1598004056327 |local
12 |o 4 0 o 871505 | 1598004121855 local

Fig. 30: Example of MicroEJ Test Suite HTML Report

« JUnit XML report in the module project location target~/test/xml/TEST-test-report.xml.

3.12. Development Tools 135

MicroEJ Documentation, Revision 44d2784c

X TEST-test-reportxml &

1 <?xml version="1.0" encoding="UTF-8" standalone="no"?>
1ite errors="0" failures="1" hostname="" ignored="0" name="testsuite-hai
classname=" SingleTest MathTest testFact" name=" SingleTest MathTest
put><! [-’_‘.J_'_'—‘(;'.'%:ﬁnable to locate tooIs.jar. Expected to find it in C:\Prc

© Buildfile: C:\Users\ARM 2016\.ivy2\cache\com.is2t.easyant.plugins\microej-test
10 buildTest:
Fig. 31: Example of MicroEJ Test Suite XML Report

XML report file can also be open in the JUnit View. Right-click on the file> Open With > JUnit View :

& main

dv JUnit &
& platform
‘& test testsuite-harness-demo test
& classes Runs: 2/2 B Errors: 0 o Failures: 1]
& html - . = .
| + @l testsuite-harness-demo test (48.128 s = Failure Trace
4 L= ¥m

e _SingleTest_MathTest_testFact (27.337 s)

& test .
g _SingleTest_MathTest_testFact2 (20.791 s)

.n. TEST—test-report.me:

Fig. 32: Example of MicroEJ Test Suite XML Report in JUnit View

If executed on device, the Firmware binary produced for each test is available in module project location target~/
test/xml/<TIMESTAMP>/bin/<FULLY-QUALIFIED-CLASSNAME>/application.out.

Advanced Configurations

Autogenerated Test Classes

The JUnit processor generates test classes into the src-adpgenerated/junit/java folder. This folder contains:

_AllTestClasses.java file Asingle classwithamainenty pointthatsequentially calls all declared test methods
of all JUnit test case classes.

AllTests[TestCase].java files For each JUnit test case class, a class with a main entry point that sequen-
tially calls all declared test methods.

SingleTest[TestCase]_[TestMethod].java files For each test method of each JUnit test case class, a class
with a main entry point that calls the test method.

JUnit Test Case to MicroEJ Test Case

The MicroEJ Test Suite Engine allows to select the classes that will be executed, by setting the following property in
the project module.ivy file.

<ea:property name="test.run.includes.pattern” value="[MicroEJ Test Case Include Pattern]"/>

Thefollowingline consider all JUnit test methods of the same class as a single MicroEJ test case (default behaviour).
If at least one JUnit test method fails, the whole test case fails in the JUnit report.

3.12. Development Tools 136

MicroEJ Documentation, Revision 44d2784c

<ea:property name="test.run.includes.pattern” value="#x/_AllTests_x.class"/>

The following line consider each JUnit test method as a dedicated MicroEJ test case. Each test method is viewed
independently in the JUnit report, but this may slow down the test suite execution because a new deployment is
done for each test method.

<ea:property name="test.run.includes.pattern” value="#x/_SingleTest_x*.class"/>

Run a Single Test Manually

Each test can be run independently as each class contains a main entry point.

In the src-adpgenerated/junit/java folder, right-click on the desired autogenerated class (
SingleTest[TestCase]_[TestMethod].java)andselect RunAs > MicroEJ Application .

The test is executed on the selected Platform and the output result is dumped into the console.

Test Suite Options

The MicroEJ Test Suite Engine can be configured with specific options which can be added to the module.ivy file
of the project running the test suite, within the <ea:build> XML element.

« Application Option Injection

It is possible to inject an Application Option for all the tests, by adding to the original option the microej.
testsuite.properties. prefix:

<ea:property name="microej.testsuite.properties.[application_option_name]"” value="[application_
—option_valuel]"/>
+ Retry Mechanism

A test execution may not be able to produce the success trace for an external reason, for example an unre-
liable harness script that may lose some trace characters or crop the end of the trace. For all these unlikely
reasons, it is possible to configure the number of retries before a test is considered to have failed:

<ea:property name="microej.testsuite.retry.count” value="[nb_of_retries]”/>

By default, when a test has failed, it is not executed again (option value is set to 0).

Test Specific Options

The MicroEJ Test Suite Engine allows to define Application Options specific to each test case. This can be done by
defining a file with the same name as the generated test case file with the .properties extension instead of the
.java extension. The file must be put in the src/test/resources folder and within the same package than the
test case file.

3.12.2 Stack Trace Reader

3.12. Development Tools 137

MicroEJ Documentation, Revision 44d2784c

Principle

Stack Trace Reader is a MicroEJ tool that reads and decodes the MicroEJ stack traces. When an exception occurs,
the MicroEJ Core Engine prints the stack trace on the standard output System.out . The class names, non-required
types names(see Types), and method names obtained are encoded with a MicroEJ internal format. This internal
format prevents embedding all class names and method names in the executable image to save some memory
space. The Stack Trace Reader tool allows you to decode the stack traces by replacing the internal class names and

method names with their real names. It also retrieves the line numbers in the MicroEJ Application.

Functional Description

The Stack Trace Reader reads the debug information from the fully linked ELF file (the ELF file that contains the
MicroEJ Core Engine, the other libraries, the BSP, the OS, and the compiled MicroEJ Application). It prints the
decoded stack trace.

When Multi-Sandbox capability is enabled, the stack trace reader can simultaneously decode heterogeneous stack
traces with lines owned by different MicroEJ Sandboxed Applications and the firmware. Lines owned by the
firmware can be decoded with the firmware debug information file (optionally made available by your firmware
provider).

Dependencies

No dependency.

Installation

This tool is a built-in platform tool.
Use (Standalone Application)
For example, write the following new line to dump the currently executed stack trace on the standard output.

by module.ivy [J] Testjava &3

package com.mycompany;

[V S I =

public class Test {

puoblic =tatic wvoid main (String[] args) {
Svstem.out.println("hello world!"):;
I new Exceptioni].pIintStackTIacei];[]

Fig. 33: Code to Dump a Stack Trace

To decode an application stack trace, the stack trace reader tool requires the application executable ELF file. In the
case of a platform with full BSP connection (see BSP Connection Cases), the fileis application.out inthe output

3.12. Development Tools 138

MicroEJ Documentation, Revision 44d2784c

folder. In the other cases, the ELF file is generated by the C toolchain when building the BSP project (usually a . out
or .axf file).

vl:‘,J- MyStandalonefpp

src/main/java

’_,\‘f} sro/main/resources

Bl Module Dependencies module vy [*]

= build

v [com.mycompany, Test

= cc
= externalResources
(= fonts
= heapDump
[= images
[= logs
(= platform
= resourceBuffer
[=- soar

E application.cut j
|5 deployHookB5PBuild.properties
[50AR.map
SOAR.0
(5] SOAR.s

(= nvs

1= sIC

= wifi

CHAMGELOG.md

|=| LICEMSE.txt

by moduledvy

[w] README.md

Fig. 34: Application Binary File

On successful deployment, the application is started on the device and the following trace is dumped on standard
output.

Wi START

Hella 'Warld!

Exception in thread "main" javalang Exception
at javalang System @M 0x3407778:0x 34077822
at javalang Throwahle Eh:0x3408030:0x 344080 462
at javalang Throwahle EM:0x34089c0: 0x 34089 ek (2
at corn.rycompany. Test @ 0x3f40762c:0x3 407652 (2
at javalang MainThread @k 0x3f407284:0x3f407 298
at javalang Thread. (@M:0x3f408hE8:0x 3408094
at javalang Thread. (@M:0x3f408c7 4:0x 340873

W EMD (exit code = 0)

Fig. 35: Stack Trace Output

3.12. Development Tools 139

MicroEJ Documentation, Revision 44d2784c

To create a new MicroEJ Tool configuration, right-click on the application project and click on RunAs... >
Run Configurations... .

Create a new MicroEJ Tool configuration. In the Execution tab, select your target platform, then select the
Stack Trace Reader tool. Set an output folder in the Output folder field.

B . =] Rk | B Y~ Name: | Stack Trace Reader
| type filter text | o Execution M Configuration | m), JRE|] Comrmon
[€] C/C++ Application Target
Jur IWUnit Platfarm: | Browse...

L Launch Group
3] Microk) Application
~ O MicroE) Tool Execution
g Stack Trace Reader
Settings: | Stack Trace Reader ~

Reads stack trace generated by MicroEl core engine.

Options
Output folder: | S project_locMyStandalonelpp} Browse...
Clean intermediate files [verbose
Options Files
Add...
Remove
Up
Down

Fig. 36: Stack Trace Reader Tool Configuration (Platform Selection)

In Configuration tab, browse the previously generated application binary file with debug information (
application.out in case of a Standalone Application with full BSP connection)

3.12. Development Tools 140

MicroEJ Documentation, Revision 44d2784c

CEeEXBY-

| type filter text

[E] C/C++ Application
Ju Wnit
& Launch Group
» [T Microb) Application
~ g MicroEl Tool
[ig Stack Trace Reader

Name: | Stack Trace Reader

Stack Trace Reader

o Execution | 1! Configuration ™, JRIﬂ = Commonw

Application

Executable file: | :meApp},-‘com.mycompany.Te{cfappIication.out |] Browse...

Additional object files:

Add
Remaove
“Trace pert" interface for Eclipse
Connection type: | Console
Port: | COMOD Baudrate: 115200
Port: | 5555 Address:
Stack trace file: Browse...

Fig. 37: Stack Trace Reader Tool Configuration (Standalone Application)

Click on Run button and copy/paste the trace into the Eclipse console. The decoded trace is dumped and the
line corresponding to the application hook is now readable.

B Console 32 Lf: Problems & Progress

Stack Trace Reader_ [MicroB) Tool]

[INFO] Paste
Exception in

at
at
at
at
dat
atT
at

[MicroE] Core Engine Trace]
the MicroE] core engine stack trace here.
thread "main" java.lang.Exception

java.lang.System. [@M:@x3T407773 :0x3T407732(

java.lang.Throwable.@M:8x3T483830: 0x3T403045
java.lang.Throwable.@M:8x3T4889cc :Bx3T488%e6
com.mycompany . Test.@M:8x3f48762c: 8x3T407652(F

9

@
@

java.lang.MainThread.@M:@x3T487a84 :0x3T407398[

java.lang.Thread.
java.lang.Thread.

Excepticn in thread “"main
java.lang.System.getStackTrace(Unknown Source)
java.lang.Throwable.fillInStackTrace(Throwable. java:82)
java.lang.Throwable.<init>»(Throwable.java:32)
com.mycompany.Test.main(Test.java:21)
java.lang.MainThread.run{Thread. java:855)
java.lang.Thread.runkrapper(Thread. java: 464)
java.lang.Thread.callWrapper(Thread. java:449)

at
at
at
at
at
at
at

-

i

M:ex3T403bE8 r0x3T403bo4E

M:@x3f4e3cT4 :@x3T408c 7T

aw

java.lang.Exception

Fig. 38: Stack Trace Reader Console

Use (Sandboxed Application)

For example, write the following new line to dump the currently executed stack trace on the standard output.

3.12. Development Tools

4

MicroEJ Documentation, Revision 44d2784c

public class MyBackgroundCode implements BackgroundSerwvice {
@verride

public void onStart() {
ff Auto-generated method stub

System.out.println("MyBackgroundCode: Hello Werld™);
[new Throwable().printStackTrace(); |

¥
Fig. 39: Code to Dump a Stack Trace

To decode an application stack trace, the stack trace reader tool requires the application binary file with debug
information (application.fodbg inthe outputfolder). Note that the file uploaded on the deviceis application.
fo (stripped version without debug information).

W i‘jj- MySandboxedApp
sre/main/java
“_,f"} src/main/resources
B\ Module Dependencies module.ivy [7]
(# crc-adpgenerated/wadapps/java
=, Referenced Libraries
w [= _MySandboxedfpp_.generated. MySandboxedAppEntryPoint
= externalResources
= resourceBuffer
|=| application.fo

E--;E- applicatiun.fndbﬂ
EE application.map
[= .settings
= applications
= com.microgj.firmware.developer.KernelStartup

[filesystem

= META-INF

= sre

[src-adpgenerated
.classpath
.gitignore
Jproject
CHAMGELOG.md
LICEMSE et
module.ivy
README.md

B&mERm=E

Fig. 40: Application Binary File with Debug Information

On successful deployment, the application is started on the device and the following trace is dumped on standard
output.

3.12. Development Tools 142

MicroEJ Documentation, Revision 44d2784c

com microe]wadapps ki abstractfeaturespplicationstorage INFO: Start MySandhoxedipp
tyBackgroundCode: Hello ‘Warld
Exceptionin thread "ejwadapps.app.default” java lang Throwahle
at javalang. Systemn @hl:0x8052497 c:0x805 295 ol
at javalang Throwakle (Bh4:0x807bBe0 0x807 b5t @
at java.lang. Throwakle. @hi0xE076M4 0807 665E
at comumicroe].example MyBackground Code (2F a5dk2a447701 00000375481 2202 24d0b875ch 9689 36 41:0xc0 38000 @M. 0xcl 38007 c:lxc03600h 2402
at Exception in thread "ejwadapps app.default” javallang/Throwakble
at java/lang/System B 10805497 C:0x0805438CE
at javaglan/Throwable @h:0x0807BEED:0x0807BEFE(R
at java/lang Throwahle. @ 0x08076F4C: 00807 EFEEE
at com/microej{example/ftdyBackground Code (@F abdh2a4477010000d37545(1 e20224d0b87Ech 9889 3641 :0xC03800F0 & EM 0xCO380B 7 C:0xCO380BA4 G
at ejpwadappsfapp/BackgroundServdceProxy @Ffa7a45517201000073783c876987bE5bEe3aaabe 1 d407d 1 :0:300AEBCIEE M: Ix300AB508: 0x300AB51 5@
at com/microejwadapps/managementiutil/Backgroundstdanager (@F fa7a4561720100007378 30876987 hEEbE e 3aaabe1 d407fd1 0xA00AEBCOEE@M: I I00AATE0: 0x00AATIZ (@
at com/microejfwadapps/managementiutil{Backgroundstdanager. @F fa7245517201000073783c876987055h e 3Jaanbe1 d407d1 :0x00ABCOE @M (xI00ABFT 4:0x900ABF52E
at ejjobsersahle/Observable (@F fafa45517201000073783c876987b55h88 3aaafel d407d1:0x300 AEB COE@M 030 0ABAT 0:0xI00ABA4DE
at com/microejwadapps/managementiutil/BackgroundServicaslistimpl (2Ffa7a48617 20100007 37830876987 hA6h8edasalel d407id1: 0x8004EBCOE @ 0x300ADEE4: 0x3004DE94(2
at ejpwadapps/managementBackgroundService sListProxy @F.a5dh2a4477 0100000375481 22022 4d0bE75ckh 96893660 41: 0 COIB00FI @ @M 0xCO380A2E: COIB0AIGE
at __MySandboxeddpp_fgenerated/MySandboxe dAppActvator. @F a5db2a4477010000d 3754611 e20224¢0b8 75chI683 364 1:0:C0 3800F 042 (@M. 0xCO380C54.0xC0380CE2 (@
at ejjcomponentsfregistryimpliabstractRegistry, @h.0x08078E48.0:08078E7 22
at ejfcomponents/registry/util/BundleRegistryHelper @h:0x0806EEE 8:0x0B0BE 7020
at__MySandboxedipp_fgenerated/MySandboxedAppEntryPoint (BF a5db2a4477010000¢ 3754811 2202240 0b875ch 96893614 1 0xC0 3800F0E @M. 0:C0380B04:0:C0 380B2EE
at ejfkikemel$ 2. @ 008055558 (0505589002
at javalanc/Thresd (& 00807 C4F0:0«0807 CE0RE
atjava/lang/Thresd (@ 00807 C333:0x0807 C344(E
atjave/lang/Thresd @i 00807 C485:.0x0807C493(2

Fig. 41: Stack Trace Output

To create a new MicroEJ Tool configuration, right-click on the application project and click on RunAs... >

Run Configurations...

Create a new MicroEJ Tool configuration. In the Execution tab, select your target platform, then select the
Stack Trace Reader tool. Set an output folder in the Output folder field.

ERCEER | B Y- MName: | Stack Trace Reader
type filter text | 4 Execution . I Configuration | =, JRE| [C] Commen
[€] C/C++ Application Target
Ju JUnit Platform: | Browse..,

& Launch Group
3] Microk) Application
v [Og MicroEl Toel
[Stack Trace Reader

Execution
Settings: | Stack Trace Reader

Reads stack trace generated by MicroEl core engine.

Options
Output felder | Sproject_loc:MySandboxedApp} Browse...
Clean intermediate files [verbose
Options Files
Add...
Remaove
Up
Down

Fig. 42: Stack Trace Reader Tool Configuration (Virtual Device Selection)

In the Configuration tab, if the Kernel executable file is available to you (usually named firmware.out and

located inyour Virtual Device files), you can browse for itin the Executable file field, and then add your previously
generated application binary file with debuginformation (application. fodbg in case of a Sandboxed Application)

in the Additional object files field.

3.12. Development Tools 143

MicroEJ Documentation, Revision 44d2784c

Mame: | Stack Trace Reader |

i Execution | 33 Configuration . =, JRE|] Commen

Stack Trace Reader Application

Executable file: | Smicrog)_lock 1.6 d00 firmwarefirmware.out Browse...

Additional object files:

1App_.generated MySandboxed AppEntryPoint/application.fodbg Add

Remove

"Trace port" interface for Eclipse

Cennection type: | Conscle ~

COMO 115200

Browse...

Fig. 43: Select the Kernel Executable File

To check where the Kernel executable file of your Virtual Device is located, if you have access to it, goto Window >
Preferences > MicroEJ > Virtual Devices , hoveroveryourVirtual Device in the listand wait untilaninformation

popup appears. Press F2 to get all the informations and the path to the directory of your Virtual Device should
appear in the list.

3.12. Development Tools 144

MicroEJ Documentation, Revision 44d2784c

[G.

| type filter text Virtual Devices v M
C/C++ A
Checkstyle
Help Target:
Install/Update Mame Version Lic... Select All

Java
i
w Microk) Dﬂ d

Architectures

200

Add or remove Virtual Devices.

Deselect All
Module Manager I
MNaming Conventicn Uninstall
Platforms
Platforms in workspa Get UID
Settings
Updates
Virtual Devices
Mylyn
Plug-in Development
PMD
Run/Debug
SonarLint

[Path: C:\Users\ I\ microej\repositories\MicroEJ-SDK-Dist-20.1241.6\d001 |

Teamn
Terminal
Validation

XML
v Restore Defaults Apply

'i?;' I\a‘ (=] Apply and Close Cancel

Fig. 44: Location of the Virtual Device Directory

In this directory, the Kernel executable file should be named firmware.out inthe /firmware sub-directory.

If you do not have access to the Kernel executable file, you can still get some information from the Stack Trace
Reader using the application binary file only. In the Configuration tab, browse the previously generated applica-
tion binary file with debug information (application. fodbg in case of a Sandboxed Application)

3.12. Development Tools 145

MicroEJ Documentation, Revision 44d2784c

O IE 0 [x| = ? M MName: | Stack Trace Reader

| type filter text | i Bxecution |8 Configuration - =), JRﬂ i Common]
[©] C/C++ Application Stack Trace Reader Application
Ju JUnit - —
Launch Group Executable file: | rated.MySandboxedAppEntryPom[appllcatlon.fodbg] Browse...
> O Micro) Application Additional object files:
w B MicroEl Tool
O Stack Trace Reader Add
Remove
"Trace port” interface for Eclipse
Connection type: | Console ~
Port: | COMD Baudrate: 115200
Port: | 5555 Address:
Stack trace file: Browse...

Fig. 45: Stack Trace Reader Tool Configuration (Sandboxed Application)

Click on Run button and copy/paste the trace into the Eclipse console. The decoded trace is dumped and the
line corresponding to the application hook is now readable.

3.12. Development Tools 146

MicroEJ Documentation, Revision 44d2784c

Bl Console 33

Stack Trace Reader_ [MicroE] Tool] C\Program Files\Java'jrel.8.0 ?_21\b|n\Javaw exe (27-lan-2021 15:18:24)
[MicroEl Core Engine Trace]
[INFO] Paste the MicroEl core engine stack trace here.

| Problems =g Prograss 4" Search]

Exception i

thread " wadapps.app.default” java.lang.Throwable

1 085297 c:0x885a98c@

Bx887b3ed: x807b8T6E

Bx3876T4C: @x307 @

ackgroundCode. aSdb2a4477016000d375458T1220224deba75cb968936Th41 : Bxc@3 800 TOMEM : @xc@380b7 C: @xc@3debasd
.madapp: app dafau__ lang/Throwable

lang.Throwable. @
lang.Throwable.

L (e

on in thread “ej

4477010000d3754571e20224d6b375cb968936Tb41 : @xCO3B06F :BxCB33887C :0xCB338BA
y 7201600073783c876987b55b8e3aaade1d487Td1 : 0x90RAGBCEEHEM : Ox9BBABSES : Ox90BABS
Bac<g cund:.anaga' F:fa7a45517201000073753C876987b55b5e3aaadeld4a7dl : @x908A6BCARGE
BackgroundsManager.{F : fa7a4551720100008737533C5876987b55b3e3aaase1d407Td1: @x9@0@AEBCAHE
7281 EEBB?B?SBCS?FDSFE33b8&3aaa35 a4l B?fd : Bx98@AEBCAHEEM : BxI0RABA1A : BxIBBABALGE
Backgroundser 1 7201@008873783c876967h5508 JaaaBeldanT
@00d3754811e20224d0b875cb368936Fbal : @xCR3800F O
L@F: 3db2a 477010000d37545f1220224d8b375cb968936Tb4l : BxC0O3E0GFBEMEM : 0xCB380C54 : 0xCB330C320
>BBB7E:¥8
@

P0AATI2E

9BRABFS2(

b ery ab e/Obser
vadapps
dapps/managems

nanagement/u
/BackgroundSer
ySandboxedAppAct

int.@F:a5db2a447701 eeeeds?s—af 220224deba75ch968936Th41: BxCa3IB0AFAMHEM : @xC@380804: @xCA38082E4

lang/Thread >.BSE7C¢88:E>.8887C¢93£

Exception in thread "ej.wadapps.app.default” java.lang.Throwable
at java.lang.System.getStackTrace(Unknown Source)
at java.lang.Throwable.fillInStackTrace(Throwable.java:82)
at java.lang.Throwable.<init»(Throwahle.{ava:32)
at com.microej.example.MyBackgroundCode.onStart(MyBackgroundCode. java:17)
at Exception in thread "ej.wadapps.app.default” java/lang/Throwable
at java/lang/System.getStackTrace(Unknown Source)
java/lang/Throwable.fillInStackTrace(Throwable.java:82)
at java/lang/Throwable.<init>(Throwable.{ava:32)
at com/microej/example/MyBackgroundCode.onStart(MyBackgroundCede. java:17)
at ej/wadapps/app/BackgroundserviceProxy.8x98BAB5@8 (Unknown Source)
at com/microej/wadapps/management/util/BackgroundsManager.Bx9BBAATER (Unknown Source)
at com/microej/wadapps/management/util/BackgroundsManager.8x98@ABF14(Unknown Source)
at ej/observable/Observable.8x988ABA1B(Unknown Source)
at com/microej/wadapps/management/util/BackgroundServicesListImpl. @x986AD864 (Unknown Source)
ej/wadapps/management/BackgroundservicesListProxy.add(BackgroundservicesiistProxy. fava:39)
at _ _MySandboxedApp__/generated/MySandboxedAppActivator. link(MySandboxedAppActivator. java:21)
at ej/components/registry/impl/AbstractRegistry.link(AbstractRegistry.java:68)
at ej/components/registry/util/BundleRegistryHelper.startup(BundleRegistryHelper.java:52)
at _ MySandboxedApp__/generated/MySandboxedAppEntryPoint.start(MySandboxedAppEntryPoint. java:15)
at ej/kf/Kernel$2.run(Kernel.java:222)
java/lang/Thread.run{Thread. java:3e3)
at java/lang/Thread.runWrapper(Thread.java:454)
at java/lang/Thread.callWrapper(Thread.java:439)

o
=

W
o+

o
=

Fig. 46: Stack Trace Reader Console

Other debug information files can be appended using the 'Additional object files option.

Stack Trace Reader Options

The following section explains MicroEJ tool options.

3.12. Development Tools 147

MicroEJ Documentation, Revision 44d2784c

Category: Stack Trace Reader

Stack Trace Reader Application

Executable file: Browse...

Additional object files:

Add

Remove

"Trace port" interface for Eclipse

Connectien type: | Console ~

COMOD 115200

Browse...

Group: Application
Option(browse): Executable file

Option Name: application.file
Default value: (empty)
Description:

Specify the full path of a full linked elf file.

Option(list): Additional object files

Option Name: additional.application.files

Default value: (empty)

Group: “Trace port” interface for Eclipse

Description:

This group describes the hardware link between the device and the PC.

Option(combo): Connection type

Option Name: proxy.connection.connection.type

3.12. Development Tools 148

MicroEJ Documentation, Revision 44d2784c

Default value: Console
Available values:

Uart (COM)

Socket

File

Console

Description:

Specify the connection type between the device and PC.

Option(text): Port

Option Name: pcboardconnection.usart.pc.port
Default value: COM0

Description:

Format: port name

Specifies the PC COM port:

Windows - COMT, COM2, ..., COM*n*

Linux- /dev/ttySe, /dev/ttyS1, ..., /dev/ttyS*nx

Option(combo): Baudrate

Option Name: pcboardconnection.usart.pc.baudrate
Default value: 115200

Available values:

9600

38400

57600

115200

Description:

Defines the COM baudrate for PC-Device communication.

Option(text): Port

Option Name: pcboardconnection.socket.port
Default value: 5555
Description:

IP port.

3.12. Development Tools

149

MicroEJ Documentation, Revision 44d2784c

Option(text): Address

Option Name: pcboardconnection.socket.address
Default value: (empty)
Description:

IP address, on the form A.B.C.D.

Option(browse): Stack trace file

Option Name: pcboardconnection.file.path

Default value: (empty)

3.12.3 Code Coverage Analyzer
Principle

The MicroEJ Simulator features an option to output .cc (Code Coverage) files that represent the use rate of functions
of an application. It traces how the opcodes are really executed.

Functional Description

The Code Coverage Analyzer scans the output .cc files, and outputs an HTML report to ease the analysis of methods
coverage. The HTML report is available in a folder named htmlReport in the same folder as the .cc files.

3.12. Development Tools 150

MicroEJ Documentation, Revision 44d2784c

Classpath

Code Code
Simulator Coverage Coverage
Files

Analyzer

*

Fig. 47: Code Coverage Analyzer Process

Dependencies
In order to work properly, the Code Coverage Analyzer should input the .cc files. The .cc files relay the classpath

used during the execution of the Simulator to the Code Coverage Analyzer. Therefore the classpath is considered
to be a dependency of the Code Coverage Analyzer.

Installation

This tool is a built-in platform tool.

Use

A MicroEJ tool is available to launch the Code Coverage Analyzer tool. The tool name is Code Coverage Analyzer.

Two levels of code analysis are provided, the Java level and the bytecode level. Also provided is a view of the fully
or partially covered classes and methods. From the HTML report index, just use hyperlinks to navigate into the
report and source / bytecode level code.

3.12. Development Tools 151

MicroEJ Documentation, Revision 44d2784c

Category: Code Coverage

Code Coverage

*.cc files folder: Browse...

Classes filter

Includes:

Add...

Edit...

Remove

Excludes:

Add...

Edit...

Remove

Option(browse): *.cc files folder

Option Name: cc.dir
Default value: (empty)
Description:

Specify a folder which contains the cc files to process (*.cc).

Group: Classes filter
Option(list): Includes

Option Name: cc.includes
Default value: (empty)
Description:

List packages and classes to include to code coverage report. If no package/class is specified, all classes found in
the project classpath will be analyzed.

Examples:
packageA.packageB. * : includes all classes which are in package packageA.packageB

packageA.packageB.className : includes the class packageA.packageB.className

3.12. Development Tools 152

MicroEJ Documentation, Revision 44d2784c

Option(list): Excludes

Option Name: cc.excludes
Default value: (empty)
Description:

List packages and classes to exclude to code coverage report. If no package/class is specified, all classes found in
the project classpath will be analyzed.

Examples:
packageA.packageB. = : excludes all classes which are in package packageA.packageB

packageA.packageB.className : excludes the class packageA.packageB.className

3.12.4 Heap Usage Monitoring
Introduction
When building a Standalone Application, the Java heap size must be specified as an Application Option (see Op-

tion(text): Java heap size (in bytes)). The value to set in this option depends on the maximum heap usage, and the
developer can estimate it by running the application.

The MicroEJ Core Engine provides a Java API to introspect the heap usage at runtime. Additionally, heap usage
monitoring can be enabled to compute the maximum heap usage automatically.

Here are the descriptions of the different notions related to heap usage:
« Heap: memory area used to store the objects allocated by the application.
« Heap Size: current size of the heap.

+ Maximum Heap Size: maximum size of the heap. The heap size cannot exceed this value. See Option(text):
Java heap size (in bytes).

+ Heap Usage: the amount of the heap currently being used to store alive objects.

Garbage Collector (GC): a memory manager in charge of recycling unused objects to increase free memory.

Heap

Alive Objects Unused Objects Unused Memory

Heap Usage

A
v

Heap Size

A
v

Maximum Heap Size

Fig. 48: Heap Structure Summary

The Java class java.lang.Runtime defines the following methods:

3.12. Development Tools 153

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html

MicroEJ Documentation, Revision 44d2784c

+ gc(): Runs the garbage collector. System.gc() is an alternative means of invoking this method.

« freeMemory(): Returns the amount of free memory in the heap. This value does not include unused objects
eligible for garbage collection. Calling the gc() method may result in increasing the value returned by this
method.

« totalMemory(): Returns the current size of the heap. The value returned by this method may vary over time.

« maxMemory(): Returns the maximum size of the heap.

Heap Usage Introspection

The methods provided by the Runtime class allow introspecting the heap usage by comparing the heap size and
the free memory size. A garbage collection must be executed before computing the heap usage to recycle all the
unused objects and count only alive objects.

The application can compute the current heap usage by executing the following code:

Runtime runtime = Runtime.getRuntime(); // get Runtime instance
runtime.gc(); // Ensure unused objects are recycled
long heapUsage = runtime.totalMemory() - runtime.freeMemory();

This example gives the heap usage at a given point but not the maximum heap usage of the application.

Note: When heap usage monitoring is disabled, the heap size is fixed, and so totalMemory() and maxMemory()
return the same value.

Automatic Heap Usage Monitoring

The maximum heap usage of an application’s execution can be computed automatically by enabling heap usage
monitoring.

Note: This feature is available in the MicroEJ Architecture versions 7.16.0 or higher.

When this option is activated, an initial size for the heap must be specified, and the MicroEJ Core Engine increases
the heap size dynamically. The value returned by totalMemory() is the current heap size. maxMemory() returns the
maximum size of the heap. A call to gc() decreases the heap size to the higher value of either the heap usage or the
initial heap size.

Atany moment, totalMemory() returns the maximum heap usage of the current execution (assuming the maximum
heap usage is higher than the initial heap size, and gc() has not been called).

Seethe section Option(checkbox): Enable Java heap usage monitoring to enable this option and configure the initial
heap size.

Even if the heap size can vary during time, a memory section of maxMemory() bytes is allocated at link time or
during the MicroEJ Core Engine startup. No dynamic allocation is performed when increasing the heap size.

Warning: Asmallinitial heap size will impact the performances as the GC will be executed every time the heap
size needs to be increased.

Furthermore, the smaller the heap size is, the more frequent the GC will occur. This feature should be used only
for heap usage benchmarking.

3.12. Development Tools 154

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#gc--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#gc--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#freeMemory--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#gc--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#totalMemory--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#maxMemory--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#totalMemory--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#maxMemory--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#totalMemory--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#maxMemory--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#gc--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#totalMemory--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#gc--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#maxMemory--

MicroEJ Documentation, Revision 44d2784c

Heap Usage Analysis

To analyze heap usage and see what objects are alive in the application, use the Heap Dumper & Heap Analyzer
tools.

3.12.5 Heap Dumper & Heap Analyzer
Introduction

Heap Dumper is a tool that takes a snapshot of the heap. Generated files (with the .heap extension) are available
in the application output folder. Note that it works only on simulations. It is a built-in platform tool and has no
dependencies.

The Heap Analyzer is a set of tools to help developers understand the contents of the Java heap and find problems
such as memory leaks. For its part, the Heap Analyzer plugin is able to open dump files. It helps you analyze their
contents thanks to the following features:

« memory leaks detection
« objects instances browse

+ heap usage optimization (using immortal orimmutable objects)

The Heap

The heap is a memory area used to hold Java objects created at runtime. Objects persist in the heap until they are
garbage collected. An object becomes eligible for garbage collection when there are no longer any references to it
from other objects.

Heap Dump

A heap dump is an XML file that provides a snapshot of the heap contents at the moment the file is created. It
contains a list of all the instances of both class and array types that exist in the heap. For each instance, it records:

« The time at which the instance was created

+ The thread that created it

« The method that created it
For instances of class types, it also records:

« Theclass

« The values in the instance’s non-static fields
For instances of array types, it also records:

+ The type of the contents of the array

+ The contents of the array

For each referenced class type, it records the values in the static fields of the class.

3.12. Development Tools 155

MicroEJ Documentation, Revision 44d2784c

Heap Analyzer Tools

The Heap Analyzer is an Eclipse plugin that adds three tools to the MicroEJ environment.

Tool name Number of | Purpose
input files
Heap Viewer 1 Shows what instances are in the heap, when they were created,
and attempts to identify problem areas
Progressive 10or more Shows how the number of instances in the heap has changed over
Heap Usage time
Compare 2 Compares two heap dumps, showing which objects were created,

or garbage collected, or have changed values

Heap Dumper

When the Heap Dumper option is activated, the garbage collector process ends by performing a dump file that
represents a snapshot of the heap at this moment. Thus, to generate such dump files, you must explicitly call the
System.gc() method in your code, or wait long enough for garbage collector activation.

The heap dump file contains the list of all instances of both class and array types that exist in the heap. For each

instance, it records:

« the time at which the instance was created

« the thread that created it

« the method that created it

For instances of class types, it also records:

« theclass

« the valuesin the instance’s non-static fields

For instances of array types, it also records:

« the type of the contents of the array

« the contents of the array

For each referenced class type, it records the values in the static fields of the class.

3.12. Development Tools

156

MicroEJ Documentation, Revision 44d2784c

Category: Heap Dumper

Heap Dumper Application

Executable file: Browse...

Resident application files:
Add...
Remove

Memary

Heap memaory file: | Browse...

Output

Heap file name: | application.heap

Group: Application

Option(browse): Executable file

Option Name: application.filename
Default value: (empty)
Description:

Specify the full path of a full linked ELF file.

Option(list): Resident application files

Option Name: additional.application.filenames
Default value: (empty)
Description:

Specify the full path of resident applications .out files linked by the Firmware Linker.

Group: Memory
Option(browse): Heap memory file

Option Name: heap.filename

Default value: (empty)

3.12. Development Tools 157

MicroEJ Documentation, Revision 44d2784c

Description:

Specify the full path of heap memory dump, in Intel Hex format.

Group: Output
Option(text): Heap file name

Option Name: output.name

Default value: application.heap

Heap Viewer

To open the Heap Viewer tool, select a heap dump XML file in the Package Explorer , right-click on it and select

Open With > Heap Viewer

Alternatively, right-click on it and select Heap Analyzer > Open heap viewer

This will open a Heap Viewer tool window for the selected heap dump'.
The Heap Viewer works in conjunction with two views:

1. The Outline view

2. The Instance Browser view
These views are described below.

The Heap Viewer tool has three tabs, each described below.

Outline View

The Outline view shows a list of all the types in the heap dump, and for each type shows a list of the instances of
that type. When an instance is selected it also shows a list of the instances that refer to that instance. The Outline
view is opened automatically when an Heap Viewer is opened.

! Although this is an Eclipse ‘editor’, it is not possible to edit the contents of the heap dump.

3.12. Development Tools 158

MicroEJ Documentation, Revision 44d2784c

E Console |[21 Problems [0= Outline &3 @ ¥ =0
33 types - 70 instances (from first to last time stamp)

Type name Instances Referenced instances Method Thread i
. char(] 1 0
@ com.is2t.cldec.s3.DefaultSystemOut 0
» @ com.is2t.test HeapDumpTest 1
PRC) com.isZt.test. HeapDumpTest5TestOhbj 2
<p #99
<p £100
. (@ com.is2t.test.HeapDumpTest$ TestObj2
@ &jbonlmmutables
> @ gj.bonImmutablesFile
. int[]
» L& int(]l]
@ ist.support.lang.Systools

m

@ corm.is2ttest HeapDumpTest.start() : void 3 main
@ com.is2ttest HeapDumpTest.start() : void 5 main

=R = R R R R UV)

D= R -
(=N)

References ’ Type
<&p #98 (C] com.is2ttest. HeapDumpTest

Fig. 49: Outline View

Instance Browser View

The Instance Browser view opens automatically when a type or instance is selected in the Outline view. It has two
modes, selected using the buttons in the top right corner of the view. In ‘Fields’ mode it shows the field values for
the selected type or instance, and where those fields hold references it shows the fields of the referenced instance,
and so on. In ‘Reference’ mode it shows the instances that refer to the selected instance, and the instances that
refer to them, and so on.

El Conzole [3_ Problems EE Cutline LEEE Fields and Reference Hierarchy &2 g]-oe = B
Fields - heap file name: Ch\Users\Jehn\.microgfworkspaces\CM_ARMCC-DEV-1.0.0%HeapDumpT est\ com.isz
Field Type Value
a @ this C com.isZt.test. HeapDumpTest5TestOhbj #100
@ a © int 1
@b O int 0
F I- © int 0

Fig. 50: Instance Browser View - Fields mode

3.12. Development Tools 159

MicroEJ Documentation, Revision 44d2784c

&l Console (21 Problems EE Cutline T;EE Fields and Reference Hierarchy &2 o[:g =08
References - heap file name : ChUsers'John'umicroefweorkspaces\CM_ARMCC-DEV-1.0.00HeapDumpTest\co
Field Type Value
a @ this C com.isZt.test.HeapDumpTest5TestOhj #100
4 @ testObj C) com.is2t.test.HeapDurmpTest #98
<no references> <nonex <none:

Fig. 51: Instance Browser View - References mode

Heap Usage Tab

The Heap usage page of the Heap Viewer displays four bar charts. Each chart divides the total time span of the heap
dump (from the time stamp of the earliest instance creation to the time stamp of the latest instance creation) into a
number of periods along the x axis, and shows, by means of a vertical bar, the number of instances created during
the period.

The top-left chart shows the total number of instances created in each period, and is the only chart displayed
when the Heap Viewer is first opened.

When a type or instance is selected in the Outline view the top-right chart is displayed. This chart shows the
number of instances of the selected type created in each time period.

When an instance is selected in the Outline view the bottom-left chart is displayed. This chart shows the
number of instances created in each time period by the thread that created the selected instance.

When an instance is selected in the Outline view the bottom-right chart is displayed. This chart shows the
number of instances created in each time period by the method that created the selected instance.

3.12.

Development Tools 160

MicroEJ Documentation, Revision 44d2784c

[heap-Oaml 52 =
Instance creation over time, by type, creating thread and creating method Generate graphViz file
Heap usage - Total Instances of type 'com.is2t.test. HeapDumpTest5TestOhy'
Heap usage : 569/569 instance(s) Heap usage: 500/569 instancels)
Instances Instances
489 489
326 326
163 163
0 0
47 94 141 188 235 282 329 376 423 470 47 94 141 188 235 282 329 376 423 470
Time stamp Time stamp
Created by thread 'main’ Created by method 'com.is2t.test HeapDumpTest.start() « void'
Heap usage: 503/589 instance(s) Heap usage : 500/569 instance(s)
Instances Instances
489 489
326 326
163 163
0 0
47 94 141 188 235 282 329 376 423 470 47 94 141 188 235 282 329 376 423 470
Time stamp Time stamp

Heap usage | Dominator tree | Leak suspects

Fig. 52: Heap Viewer - Heap Usage Tab

Clicking on the graph area in a chart restricts the Outline view to just the types and instances that were created
during the selected time period. Clicking on a chart but outside of the graph area restores the Outline view to
showing all types and instances”.

The button Generate graphViz file in the top-right corner of the Heap Usage page generates a file compatible with
graphviz (www.graphviz.org).

The section Heap Usage Monitoring shows how to compute the maximum heap usage.

Dominator Tree Tab

The Dominator tree page of the Heap Viewer allows the user to browse the instance reference tree which contains
the greatest number of instances. This can be useful when investigating a memory leak because this tree is likely
to contain the instances that should have been garbage collected.

The page contains two tree viewers. The top viewer shows the instances that make up the tree, starting with the
root. The left column shows the ids of the instances - initially just the root instance is shown. The Shallow instances

2 The Outline can also be restored by selecting the All types and instances option on the drop-down menu at the top of the Outline view.

3.12. Development Tools 161

MicroEJ Documentation, Revision 44d2784c

column shows the number of instances directly referenced by the instance, and the Referenced instances column
shows the total number of instances below this point in the tree (all descendants).

The bottom viewer groups the instances that make up the tree either according to their type, the thread that created
them, or the method that created them.

Double-clicking an instance in either viewer opens the Instance Browser view (if not already open) and shows de-
tails of the instance in that view.

[heap-Daml 23 =
T;EE Dominator tree : Instance hierarchy that contains greatest number of instances

Dominator tree instances Type

- | com.isttest. HeapDumpTest
'y 298 C] is2t test.HeapDumpT

4 L I

Deminator tree instances grouped by type, thread or method | Types A

Top consumers Instances
& com.is2t.test HeapDumpTestSTestObj 500
| java.lang COhject(] 1
© java.utilVector 1
& com.is2t.test.HeapDumpTest 1

Heap usage | Dominator tree | Leak suspects

Fig. 53: Heap Viewer - Dominator Tree Tab

Leak Suspects Tab

The Leak suspects page of the Heap Viewer shows the result of applying heuristics to the relationships between
instances in the heap to identify possible memory leaks.

The page is in three parts.

« The top part lists the suspected types (classes). Suspected types are classes which, based on numbers of
instances and instance creation frequency, may be implicated in a memory leak.

« The middle part lists accumulation points. An accumulation point is an instance that references a high num-
ber of instances of a type that may be implicated in a memory leak.

3.12. Development Tools 162

MicroEJ Documentation, Revision 44d2784c

« The bottom part lists the instances accumulated at an accumulation point.

[heap-0xml 2 =B

tC Types suspected

® com.is2t.test. HeapDumpTestiTestObj

Accumulation points

Instance Type
Ep #381 java.lang.Object[]
Accumulated instances

Instance Type it

dp#123 C com.isZt.test. HeapDumpTest5TestOhy

dp 2124 C com.isZt.test.HeapDumpTestSTestObj

G #125 (C] com.is2t.test.HeapDumpTestSTestObj

Gy #126 C] com.is2t.test. HeapDumpTestSTestOhbj

<y #130 C com.isZt.test. HeapDumpTest5TestOhy

dp#131 (C] com.is2t.test. HeapDumpTestSTestOhbj

Gy #132 C] com.is2t.test. HeapDumpTestSTestOhbj

dp#133 C com.isZt.test. HeapDumpTest5TestOhy

<y #134 C com.isZt.test.HeapDumpTestSTestObj

G #135 (C] com.is2t.test.HeapDumpTestSTestObj i
. iy fme e - A o

Heap usage | Dominator tree | Leak suspects

Fig. 54: Heap Viewer - Leak Suspects Tab

Progressive Heap Usage

To open the Progressive Heap Usage tool, select one or more heap dump XML filesin the Package Explorer , right-

click and select Heap Analyzer > Show progressive heap usage

This tool is much simpler than the Heap Viewer described above. It comprises three parts.

+ The top-right part is a line graph showing the total number of instances in the heap over time, based on the
creation times of the instances found in the heap dumps.

+ The left part is a pane with three tabs, one showing a list of types in the heap dump, another a list of threads
that created instances in the heap dump, and the third a list of methods that created instances in the heap
dump.

The bottom-left is a line graph showing the number of instances in the heap over time restricted to those
instances that match with the selection in the left pane. If a type is selected, the graph shows only instances
of that type; if a thread is selected the graph shows only instances created by that thread; if a method is
selected the graph shows only instances created by that method.

3.12. Development Tools 163

MicroEJ Documentation, Revision 44d2784c

E”| Progressive Heap Usage %

FProgressive heap usage by type, creating thread and creating method

Types | Threads | Methods|

Mame

char[]

C com.is2t.cldc,s3.DefaultSystem Out
C com.is2t.test.HeapDumpTest

C com.is2t.test. HeapDumpTestSTestObj
C) g.bonImmutables

C) gj.bonImmutablesFile

int[]

int{][]

@ ist.support.lang.Systools

3 ist.support.util EncUS_ASCI

C) ist.suppert.util EncodingConversion
(C] java.io.FileDescriptor

C java.io.FileQutputStream

C java.io.OutputStream

C) java.o. OutputStreamWriter

C) java.ic.Print5stream

C) java.ioWriter

(C] java.lang.Exception

C java.langIndexOutOfBoundsException
@ java.lang.MullPointerException

C) java.lang.Object

m

Type search

Compare Heap Dumps

Heap usage - Total

Instances
570

380

190

39 78 117 156 195 234 273 312 351 390 429 468

Time stamp

Heap usage - Type com.is2t.test HeapDumpTestiTestObj

Instances
501

334

167

3% 78 117 156 195 234 273 312 351 390 429 468
Tirne stamp

Fig. 55: Progressive Heap Usage

The Compare tool compares the contents of two heap dump files. To open the tool select two heap dump XML files
in the Package Explorer, right-click and select Heap Analyzer > Compare

The Compare tool shows the types in the old heap on the left-hand side, and the types in the new heap on the
right-hand side, and marks the differences between them using different colors.

Typesin the old heap dump are colored red if there are one or more instances of this type which are in the old dump
but not in the new dump. The missing instances have been garbage collected.

Types in the new heap dump are colored green if there are one or more instances of this type which are in the new
dump but not in the old dump. These instances were created after the old heap dump was written.

Clicking to the right of the type name unfolds the list to show the instances of the selected type.

3.12. Development Tools

164

MicroEJ Documentation, Revision 44d2784c

£9 Heap Comparator ©% =0
Show ’AII instances v] Array type C] Class type
[0 Oid heap : heap-0.xm 34 types - 570 instances [0 New heap : heap-1.xml 35 types - 471 instances
char|] - char[] -
@ com.is2t.cldc.s3.DefaultSystem Out C] com.ist.clde.s3.DefaultSystem Out
(& com.is2ttest.HeapDumpTest (® com.is2ttest HeapDumpTest
(9 com.is2ttest.HeapDumpTestSTestObj (@ com.is2ttest.HeapDumpTestsTestObj
(@ com.is2ttest.HeapDumpTestSTestObj3 {5 com.is2t.test.HeapDumpTestSTestObj2
@ &j.bonlmmutables (@ com.is2t.test.HeapDumpTestSTestObj3
@ gj.benImmutablesFile @ gjbonImmutables
int[] ® gj.bonImmutablesFile
int[]] = int(] E
C] ist.supportlang. Systools 1 int[1[]
(@ ist.support.util EncUS_ASCT (@ ist.suppertlang.Systools
(@ ist.support.util EncodingConversion @ ist.support.util. EncUS_ASCT
(@ java.io.FileDescriptor (@ ist.support.util. EncodingConversion
(@ java.io FileDutputStream (@ java.ioFileDescriptor
(@ java.ic.OutputStream (@ java.ic.FileOutputStream
@ java.o, OutputStreamWiter @ java.o, QutputStream
(& java.io PrintStream — @ java.io.OutputStreamWriter B
(& java.ioWriter (@ java.io.PrintStream
@ java.lang.Exception C] java.ic Writer
@ javalangIndexOutOfBoundsException (@ javalang.Exception
(@ java.lang.MullPointerException @ javalangIndexOutOfBoundsException
(@ javalang.Object @ java.lang.MullPointerException
java.lang.Object[] @ javalang.Object
@ javalang.OutOfMemoryError i java.lang.Object[] i

Fig. 56: Compare Heap Dumps

The combo box at the top of the tool allows the list to be restricted in various ways:

« Allinstances - no restriction.

Garbage collected and new instances - show only the instances that exist in the old heap dump but notin the
new dump, or which exist in the new heap dump but not in the old dump.

Persistent instances - show only those instances that exist in both the old and new dumps.

Persistentinstances with value changed - show only those instances that exist in both the old and new dumps
and have one or more differences in the values of their fields.

Instance Fields Comparison View

The Compare toolworksin conjunction with the Instance Fields Comparison view, which opens automatically when
an instance is selected in the tool.

The view shows the values of the fields of the instance in both the old and new heap dumps, and highlights any
differences between the values.

3.12. Development Tools 165

MicroEJ Documentation, Revision 44d2784c

£9 Heap Comparator &1

=8
Show ’Persistent instances with value changed vl Array type @ Class type
[0 OId heap : heap-0.xml 34 types - 570 instances [0 New heap : heap-1.xml 35 types - 471 instances
3 com.ist.testHeapDumpTest (@ com.is?t.test.HeapDumpTest
& com.is?ttestHeapDumpTestSTestObj3 (& com.is?t.test. HeapDumpTestSTestObj3
dp #625 <dp #625
java.ang.Object[] java.lang. Object[]
(& javalang.Thread (& javalang.Thread
@ java.utilVector (@ java.util.Vector
Type com.is2t.test. HeapDumpTestSTestObj3 : 0 instances garbage collected, 0 new instances, 1 persistent instances.
El Console (E_L‘ Problems EE Outline (E Fields and Reference Hierarchy (Eﬁ Instance Fields Comparison 2 =
Fields Type Old value New value
a @this © com.is2ttest. HeapDumpTestiTestOhbj3 #5625 #6525
@a int 0 0
Gb int 0 3
@c int 0 0

Fig. 57: Instance Fields Comparison view

3.12.6 ELF to Map File Generator

Principle

The ELF to Map generator takes an ELF executable file and generates a MicroEJ compliant .map file. Thus, any ELF
executable file produced by third party linkers can be analyzed and interpreted using the Memory Map Analyzer.

Functional Description

ELF Executable file

Execute
ELF to Map
Tool

Fig. 58: ELF To Map Process

3.12. Development Tools

166

MicroEJ Documentation, Revision 44d2784c

Installation

This tool is a built-in platform tool.

Use

This chapter explains MicroEJ tool options.

Category: ELF to Map

ELF to Map Input
ELF file: ‘ | Browse...
Output
Map file: ‘ | Browse...

Group: Input

Option(browse): ELF file

Option Name: input.file

Default value: (empty)

Group: Output

Option(browse): Map file

Option Name: output.file

Default value: (empty)

3.12. Development Tools 167

MicroEJ Documentation, Revision 44d2784c

3.12.7 Serial to Socket Transmitter
Principle

The MicroEJ serialToSocketTransmitter is a piece of software which transfers all bytes from a serial port to a tcp
client or tcp server.

Installation

This tool is a built-in platform tool.

Use

This chapter explains MicroEJ tool options.

Category: Serial to Socket

Serial to Socket Serial Options

Port: | COMD Baudrate: | 115200 v

Server Options

Port: | 5555

Group: Serial Options

Option(text): Port

Option Name: serail.to.socket.comm.port
Default value: COM0

Description: Defines the COM port:

Windows - COM1, COM2, ..., COM#n*

Linux- /dev/ttySo, /dev/ttyUSBo, ..., /dev/ttyS*nx, /dev/ttyUSBxnx

3.12. Development Tools 168

MicroEJ Documentation, Revision 44d2784c

Option(combo): Baudrate

Option Name: serail.to.socket.comm.baudrate
Default value: 115200

Available values:

9600

38400

57600

115200

Description: Defines the COM baudrate.

Group: Server Options
Option(text): Port

Option Name: serail.to.socket.server.port
Default value: 5555

Description: Defines the server IP port.

3.12.8 Memory Map Analyzer
Principle
When a MicroEJ Application is linked with the MicroEJ Workbench, a Memory MAP file is generated. The Memory

Map Analyzer (MMA) is an Eclipse plug-in made for exploring the map file. It displays the memory consumption of
different features in the RAM and ROM.

3.12. Development Tools 169

MicroEJ Documentation, Revision 44d2784c

Functional Description

MicroEJ
Application

Platform

1. Build the MicroEJ
Application

Map file Executable file

2. Open Memory
Map Analyzer

Fig. 59: Memory Map Analyzer Process

In addition to the executable file, the MicroEJ Platform generates a map file. Double click on this file to open the
Memory Map Analyzer.

Dependencies

No dependency.

Installation

This tool is a built-in platform tool.

Use

The map file is available in the MicroEJ Application project output directory.

3.12. Development Tools 170

MicroEJ Documentation, Revision 44d2784c

[Pa. i JgMy. EiTe. iTe. = O | [0 HelloWorldjava &3 =g
= & v 2® * Javall .
. 55} MyHelloWorldSample ; package com.microej.example.hello;
4 4% src/main/java 16% import java.io.Filej[]
4 [com.microej.example.hello 24
> 47| HelloWorld.java 258
. (™ src/main/resources 26 * Prints the message "Hello World !" an displays MicroE] splash
. 27 */
g fn“ Refe.ranced Libraries 28 public class HelloWorld extends Displayable implements EventHandler{
» [.settings 29
4 [= commicroej.example.hello.HelloWorld 38 private static final int PADDING TEXT =5;
(&= bon 31 private static final int PADDING BETWEEN IMAGE AND TEXT = 3@;
> B ec ?% . final .
. o fonts ;z private final String[] messages; E -
(= heapDump 35 private Image microejImage;
- (= images L
= logs 378 public static void main(String[] args) {
> (= soar 38 -"?i_crnUI.sturt();
- 39 / new Helloworld().sh H
. (= toolbox -
m 48 try {
SOAR.map & 41 socket s = SSLSocketFactory.getDefoult().createSocket();
SOAR.0 a2 } catch (IOException &) {
> (= filesystem v 43 l Auto-generated catch block
N 44 e.printStackTrace();
[% classpath Z; '
X] project 47 File f = mew File("/s55");

&

Fig. 60: Retrieve Map File

Select an item (or several) to show the memory used by this item(s) on the right. Select “All” to show the memory
used by all items. This special item performs the same action as selecting all items in the list.

[# Pa.. 57 FgMy.. EjTe. = [0 | [0S0ARmap i = B8
< 7 ’ Image 5 Runtime Si
- . ame mage Size untime Size e
“ r" T,,yjrij,:nv:‘o;“;as\fample @ All 1899 KB 51.9 KB =
) L‘“ erc/main/resources . @ ApplicationCode 27KB 0B IMAGE: 49.3 KB /189.9 KB
S @ ApplicationFonts 24.2 KB 0B [26.00%]
» =% Referenced Libraries
. @ Applicationlmages 3.2KB 0B :
g L/ settings > @ Applicationlmmutables 264 B 0B _Ap...l ArplicationSirings l
4= fum.mlcmej.examp\E‘heIIU.HeIIuWurld I 0E 0B
.V,_I/ ben > O ApplicationStrings 189 KB 0B (s
L . @ BSP 600 B 3.7KB
(& fonts . @ ClassesNames 71KB 0B
& heapDump . @ CoreEngine 20KB 7.5KB
© = mages . @ CoreEngineAllocator 08 36.0 KB
£ logs . @ Drivers 56 B 0B
=l ;”Z"bux . @ InstalledFestures 08 64B
E SOARmap > @ LibAddonWadapps 2288 0B
SOARo » & LibFoundationBOMN 856 B 0B
- . @ LibFoundaticnEDC 375KB 486 B
& filesystem . @ LibFoundationFs 01KB 4B
& - . @ LibFoundationkF 100 KB 0B
|%] .classpath . = 5
Project . @ L!hFﬂundat!nanchI 26.7 KB 41KB
- @ LibFoundationNET 26.5 KB 4B
. @ LibFoundationSSL 106 KB 0B

Fig. 61: Consult Full Memory

Select an item in the list, and expand it to see all symbols used by the item. This view is useful in understanding
why a symbol is embedded.

3.12. Development Tools 17

MicroEJ Documentation, Revision 44d2784c

[l ® = O |] HelloWorld,java [H SOAR.map &2 = 4
[l v - : —
L MyHalIoWo;\‘:ﬁSamp\a Na'r;nf . Image Size Runtime Size -
“ @ src/main/java 4@ Al 189.9 KB 519 KB 5
o . » @ _java_AAljava_lang_String 208 0B
“ @ chjm;;::{;:ﬁ:amg @ _java_Alcom_is2t_elflw_nodes_Section_name 168 0B
iy e . @ _java_ALcom_is2t java_io_IFileChannelSOpen 08 0B
[sreimainiresources @ _java_Alcom_is2t_kf_IFeatureloader_nameini 168 0B
=i Referenced Libraries s 5
@ _java_ALcom_is2t_support_net_ss|_AbstractSS 208 0B
[settings @ _java_ALcom_is2t_support_net_ss|_AbstractsS 168 0B
4 (& com.microgj.examplet . @ _java_Alcom_is2t_suppart_net_ssl_xS09_X509 08 0B
£ ben . @ _java_Alcom is2t support_net_ssl x509_X509 168 0B
l_'_: f“ > @ _java_Aljava_ic_FileSPathStatus 208 0B
l_'_: onts > @ _java_Aljava_io_FileSPathStatus_nameinfo 16B [
& heapDump @ _java_ALjava_lang_Thread 08 0B
+ [images @ _java_Aljava_lang_Thread_nameinfo 168 0B
(& logs . @ _java_ClinitMethod 08B 0B
L sear @ _java_features _start 648 0B
= t;;g?;ﬂp © _java_kernel_header start 88 0B
@ SOAR:O @ _java_Lcom_is2t_elflw_input_AbstractElfLoad: 808 0B
. filesystem > @ _java_Lcom_is2t_elflw_input_AbstractElfLoad: 1528 0B
= ¥ > @ _java_Lcom_is2t_elflw_input_ElfLoaderError_n 72B [
';' Z(asspam . @ _java_Lcom_is2t_elflw_input_soar_ELoaderS: 88 0B
% project » @ _java_Lcom_is2t_elflw_input_soar_ElfLoaderSc 12B 0B
, @ _java_Lcom,_is2t_elfhw_nodes_Dynamichlloca 248 0B
, @ _java_Lcom_is2t_elfbw_nodes_EfRelocatablell %68 0B
» @ _java_Lcom_is2t_elflw_nodes_ProgAllocation! 3B 0B T A T DT e S
> @ _java_Lcom_is2t_elflw_nodes RelocationEntry 208 0B o
@ _java_Lcom_is2t_elflw_nodes RelocationSecti 168 [1]:] Browse.. | | Run
> @ _java_Lcom_is2t_elflw_nodes_SymbolTableEn 288 0B _ || Select a Memory Map Script to run
- e wL. o cC._i_riic 130 no
B Console 52 3«"""5';:4':‘3
Memory Map Analyzer Console SOAR map
ALl = 194516 bytes -
APPLICATION: £

ApplicationCode = 278@ bytes

ApplicaticnFents = 24868 bytes

ApplicaticnImages = 3284 bytes

ApplicaticnResources = 28 bytes

ApplicationImmutables = 264 bytes

ApplicationStrings = 19372 bytes i

Fig. 62: Detailed View

3.12.9 Event Tracing
Description

Event Tracing allows to record integer based events for debugging and monitoring purposes without affecting ex-
ecution performance too heavily. Basically, it gives access to Tracer objects that are named and can produce a
limited number of different event types.

Arecord is an event type identified by an eventID and can have a list of values. It can be a single event or a period
of time with a start and an end.

Event Tracing can be accessed from two APIs:

+ A Java API, provided by the Trace APl module. The following dependency must be added to the module.ivy
of the MicroEJ Application project:

<dependency org="ej.api" name="trace" rev="1.1.0"/>

« ACAPI, provided by the Platform header file named LLTRACE_impl.h.

Event Recording

Events are recorded if and only if:
« the MicroEJ Core Engine trace system is enabled,

+ and trace recording is started.

3.12. Development Tools 172

https://repository.microej.com/modules/ej/api/trace/

MicroEJ Documentation, Revision 44d2784c

To enable the MicroEJ Core Engine trace system, set the Application Option named core.trace.enabled to true
(see also launch configuration).

Then, multiple ways are available to start and stop the trace recording:

« by setting the Application Option named core.trace.autostart to true to automatically start at startup
(see also launch configuration),

+ using the Java APl methods ej.trace.Tracer.startTrace() and ej.trace.Tracer.stopTrace(),

« using the C API functions LLTRACE_IMPL_start(void) and LLTRACE_IMPL_stop(void).

Java APl Usage

The detailed Trace APl documentation is available here.

First, you need to instantiate a Tracer object by calling its constructor with two parameters. The first parameter,
name, is a String that will represent the Tracer object group’s name. The second parameter, nbEventTypes,isan
integer representing the maximum number of event types available for the group.

Tracer tracer = new Tracer("MyGroup”, 10);

Then, you can record an event by calling the recordEvent(int eventId) method. The event ID needs to be in
the range 0 to nbEventTypes-1 with nbEventTypes the maximum number of event types set when initializing
the Tracer object. Methods named recordEvent(...) always needs the event ID as the first parameter and can
have up to ten integer parameters as custom values for the event.

To record the end of an event, call the method recordEventEnd(int eventID) . It will trace the duration of an
event previously recorded with one of the recordEvent(int) methods. The recordEventEnd(...) method can
also have another integer parameter for a custom value for the event end. One can use it to trace the returned value
of a method.

The Trace APl also provides a String constant Tracer. TRACE_ENABLED_CONSTANT_PROPERTY representing the Con-
stant value of core.trace.enabled option. This constant can be used to remove at build time portions of code
when the trace system is disabled. To do that, just surround tracer record calls with a if statement that checks the
constant’s state. When the constant is setto false, the code inside the if statement will not be embedded with
the application and thus will not impact the performances.

if(Constants.getBoolean(Tracer.TRACE_ENABLED_CONSTANT_PROPERTY)) {
// This code is not embedded if TRACE_ENABLED_CONSTANT_PROPERTY is set to false.
tracer.recordEventEnd(0);

3

Examples:

« Trace a single event:

private static final Tracer tracer = new Tracer("Application”, 100);

public static void main(String[] args) {
Tracer.startTrace();
tracer.recordEvent(0);

3

Standard Output:

VM START
[TRACE] [1] Declare group "Application”
[TRACE] [1] Event 0x@

3.12. Development Tools 173

https://repository.microej.com/javadoc/microej_5.x/foundation/ej/trace/Tracer.html

MicroEJ Documentation, Revision 44d2784c

+ Trace a method with a start event showing the parameters of the method and an end event showing the
result:

private static final Tracer tracer = new Tracer("Application”, 100);

public static void main(String[] args) {
Tracer.startTrace();

int a = 14;
int b = 54;
add(a, b);

}

public static int add(int a, int b) {
tracer.recordEvent(1, a, b);
int result = a + b;
tracer.recordEventEnd(1, result);
return result;

3

Standard Output:

VM START

[TRACE] [1] Declare group "Application”
[TRACE] [1] Event ox1 (14 [@OxE],54 [0x36])
[TRACE] [1] Event End 0x1 (68 [0x441)

Platform Implementation
By default, when enabled, the Trace API displays a message in the standard output for every recordevent(...)
and recordEventEnd(...) method calls.

It does not print a timestamp when displaying the trace message because it can drastically affect execution perfor-
mances. It only prints the ID of the recorded event followed by the values given in parameters.

A Platform can connect its own implementation by overriding the functions defined in the LLTRACE_impl.h file.

MicroEJ provides an implementation that redirects the events to SystemView tool, the real-time recording and vi-
sualization tool from Segger. It is perfect for a finer understanding of the runtime behavior by showing events
sequence and duration.

A implementation example for the NXP OM13098 development board with SystemView support is available here.
Please contact our support team for more information about how to integrate this Platform module.

3.12.10 Null Analysis

NullPointerException thrown at runtime is one of the most common causes for failure of Java programs. The Null
Analysis tool can detect such programming errors (misuse of potential null Java values) at compile-time.

The following example of code shows a typical Null Analysis error detection in MicroEJ SDK.

3.12. Development Tools 174

https://www.segger.com/
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc54000-cortex-m4-/lpcxpresso54628-development-board:OM13098
https://developer.microej.com/packages/referenceimplementations/U3OER/2.0.1/OM13098-U3OER-fullPackaging-eval-2.0.1.zip
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/NullPointerException.html

MicroEJ Documentation, Revision 44d2784c

& Mainjava 2 = 8

package nullanalysis; ~ N
public class Main {

public static woid example() {
// The following ‘getProperty' method can return a 'null' value
f/ {@Nullable String java.lang.System.getProperty(String key)
Sstring myValue = System.getProperty("APropertyThatMayBeUndefined™);

f/ The following 'println’ method allows Nullable argument
'/ woid java.io.PrintStream.println(@Nullable String x)

E System.out.println(myValue); =

2

4 /{ ERROR: 'Potential null peinter access: The variable myValue may be null at this location’

5 my¥alue. toUpperCase();

6 T v
g Problems &3 r § = O

1 error, 0 warnings, 0 others
Description

w @ Errors (1 item)
43 Potential null pointer access: The variable myValue may be null at this location

Fig. 63: Example of Null Analysis Detection

Principle
The Null Analysis tool is based on Java annotations. Each Java field, method parameter and method return value
must be marked to indicate whether it can be null or not.

Once the Java code is annotated, module projects must be configured to enable Null Analysis detection in MicroEJ
SDK.

Java Code Annotation

MicroEJ defines its own annotations:

« @NonNullByDefault: Indicates that all fields, method return values or parameters can never be null in the
annotated package or type. This rule can be overridden on each element by using the Nullable annotation.

« @Nullable: Indicates that a field, local variable, method return value or parameter can be null.
« @NonNull: Indicates that a field, local variable, method return value or parameter can never be null.
MicroEJ recommends to annotate the Java code as follows:

« In each Java package, create a package-info.java file and annotate the Java package with
@NonNullByDefault . Thisis a common good practice to deal with non null elements by default to avoid
undesired NullPointerException. It enforces the behavior which is already widely outlined in Java coding
rules.

3.12. Development Tools 175

https://repository.microej.com/javadoc/microej_5.x/apis/ej/annotation/NonNullByDefault.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/annotation/Nullable.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/annotation/NonNull.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/NullPointerException.html

MicroEJ Documentation, Revision 44d2784c

[Package Explorer 57 = B [J] package-infojava &3
elsl

v',_'—';',- nullanalysis -

@Ej.annntatiun.ch”ullByDEfaultI
2 package nullanalysis;

L,

~ [sre/main/java

v nullanalysis
)| package-info.java |

B crefmain,resources

« IneachJavatype, annotate allfields, methods return values and parameters that can be null with @Nullable.
Usually, this information is already available as textual information in the field or method Javadoc comment.
The following example of code shows where annotations must be placed:

@Mullable
public Object thisFieldCanBeNull;

@Nullable

public Object thisMethodCanReturnNull() {
return null;
¥

public void thisMethodParameterCanBeNull{@Nullable Object param) {

¥

Note: MicroEJ SDK 5.3.0 or higher requires annotations declared in EDC-1.3.3 or higher. See EDC 1.3.3 Changelog
for more details.

Module Project Configuration

To enable the Null Analysis tool, a module project must be configured as follows:
+ In the Package Explorer, right-click on the module project and select Properties ,

+ Navigate to Java Compiler > Errors/Warnings ,

+ Inthe Nullanalysis section, configure options as follows:

3.12. Development Tools 176

https://repository.microej.com/modules/ej/api/edc/1.3.3/
https://repository.microej.com/modules/ej/api/edc/1.3.3/CHANGELOG-1.3.3.md

MicroEJ Documentation, Revision 44d2784c

® Properties for

| | | Errors/Warnings - -~ 8
Re_snurce Enable project specific settings Configure Workspace Settings...
Builders
Checkstyle Select the severity level for the following optional problems:

Git
hy | type filter text (use ~ to filter on preference values, e.g. ~ignore or ~off) |
JAutedoc ~ Null analysis ~
Java Build Path Mull pointer access: Error w
Java Code Style
~ Java Compiler Potential null pointer access: Error ~
Annotation Processing
- Redundant null check: Error ~
Building
Errors/Warnings [~include 'assert’ in null analysis
Javadoc nable annotation-based null analysis
Task Tags) Violation of null specification: Error ~
Javadoc Location
Java Editor Conflict between null annotations and null inference: Error ~
PMD .
Project Natures Unchecked conversion from non-annotated type to @NonMNull type: Error ~
Project References Unsafe conversion of annotated parameterized type to less-annotated type: Error ~
Run/Debug Settings
SonarLint Problems detected by pessimistic analysis for free type variables: Error w
Task Repositary Unsafe '@MNennull’ interpretation of free type variable from librany: Error ~
WikiText
Redundant null anneotation: Error ~
'@MonMull' parameter not annotated in overriding method: Error ~
Missing '@MNonMullByDefault’ annotation on package: Error w
se default annotations for null specification
nherit null annctations
nable syntactic null analysis for fields
v
Restore Defaults Apply
?\ Apply and Close Cancel
+ Click onthe Configure... link to configure MicroEJ annotations:
- ej.annotation.Nullable
- ej.annotation.NonNull
- ej.annotation.NonNullByDefault
3.12. Development Tools 177

MicroEJ Documentation, Revision 44d2784c

Enter customn annotation names for null specifications.

Primary annctations are for active use in source and class files, whereas secondary annotations are
intended only for interpreting API of third-party libraries,

‘Mullable' annotations:

Elements annotated with the '@Mullable’ annotation can be null,

Primary annotation: lej.annotation.Mullable]

Secondary annotations: | [Add
‘MonMull' annotations:

Elements annctated with '@MNenMull' must never be null,

Primary annotation: lej.annotation.MonMull |

Secondary annotations: | [Add

‘MonMullByDefault’ annotations:

The '@MNonMNullByDefault’ annotation sets ‘'non-null’ as default for all elements in a package, type,
or method. When using Eclipse's default '@MonMullByDefault’ annetation, an optional annotation
argument is evaluated, allowing to cancel or fine-tune the 'non-null’ default.

Primary annotation: |e_i.annu:utatiu:ur1.NDnNuIIB}rEIEfauIt|

Secondary annotations: | | [Add
@' Restore Defaults] [oK] ’ Cancel l

« Inthe Annotations section, check Suppress optional errors with ‘@SuppressWarnings’ option:

3.12. Development Tools 178

MicroEJ Documentation, Revision 44d2784c

®¥ Properties for nullana

[l | | Errors/Warnings MR
Re_snurce ~ Enable project specific settings Configure Workspace Settings...
Builders
Checkstyle Select the severity level for the following optional problems:
hvy . - . .

IAutodoc | type filter text (use ~ to filter on preference values, e.g. ~ignore or ~off) |
Java Build Path ~ Annotations ~
Java Code Style Missing '@Override’ annotation: lgnore

~ Java Compiler

Annatation Processin Include implementations of interface methods (1.6 or higher)

Building Missing '@Deprecated’ annotation: Ignore
Errors/Warnings o . -
Annotation is used as super interface: Warning ~
Javadoc
Task Tags Unhandled teken in '@5uppressWarnings': Warning
Ja\radnr? Location Enable '@5SuppressWarnings' annotations
lava Editor
PMD Unused '@5SuppressWarnings' token: Warning
Pm_!ect Natures ‘Unused’ status is not fully known because a relevant option is set to 'lgnore”: Info ~
Project References
Refactoring History I Suppress optional errors with '@5uppressWamings'| v
Run/Debug Settings
< J J 5 v Restore Defaults Apply

?\ Apply and Close Cancel

This option allows to fully ignore Null Analysis errors in advanced cases using @SuppressWarnings("null")
annotation.

If you have multiple projects to configure, you can then copy the content of the .settings folder to an other
module project.

3.12. Development Tools 179

MicroEJ Documentation, Revision 44d2784c

v '_.'j‘J nullanalysis
w [cro/main/java
B nullanalysis
P src/main/resources
B sroftest/java
8 sroftest/resources
Bl Module Dependencies moduleivy [*]

w [.settings
org.eclipse.jdt.core.prefs

org.eclipse.jdt.ui.prefs

= internal

= src

[= src-adpgenerated
.classpath
.gitignore

.project
[%] CHANGELOG.md
= LICEMSE txt

by module.ivy
[#] README.md

Fig. 64: Null Analysis Settings Folder

Warning: You may lose information if your target module project already has custom parameterization or if it
was created with another MicroEJ SDK version. In case of any doubt, please configure the options manually or
merge with a text file comparator.

MicroEJ Libraries

Many libraries available on MicroEJ Central Repository are annotated with Null Analysis. If you are using a library
which is not yet annotated, please contact our support team.

For the benefit of Null Analysis, some APIs have been slightly constrained compared to the Javadoc description.
Here are some examples to illustrate the philosophy:

« System.getProperty(String key, String def) does not accept a null default value, which allows to ensure the
returned value is always non null.

+ Collections of the Java Collections Framework that can hold null elements (e.g. HashMap) do not accept
null elements. This allows APIs to return null (e.g. HashMap.get(Object)) only when an element is not
contained in the collection.

Implementations are left unchanged and still comply with the Javadoc description whether the Null Analysis is
enabled or not. So if these additional constraints are not acceptable for your project, please disable Null Analysis.

Advanced Use

For more information about Null Analysis and inter-procedural analysis, please visit Eclipse JDT Null Analysis doc-
umentation.

3.12. Development Tools 180

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#getProperty-java.lang.String-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/HashMap.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/HashMap.html#get-java.lang.Object-
https://help.eclipse.org/2020-06/index.jsp?topic=/org.eclipse.jdt.doc.user/tasks/task-using_null_annotations.htm
https://help.eclipse.org/2020-06/index.jsp?topic=/org.eclipse.jdt.doc.user/tasks/task-using_null_annotations.htm

MicroEJ Documentation, Revision 44d2784c

3.13 Advanced Tools

3.13.1 MicroEJ Linker

Overview

MicroEJ Linker is a standard linker that is compliant with the Executable and Linkable File format (ELF).

MicroEJ Linker takes one or several relocatable binary files and generates an image representation using a descrip-
tion file. The process of extracting binary code, positioning blocks and resolving symbols is called linking.

Relocatable object files are generated by SOAR and third-party compilers. An archive file is a container of Relocat-
able object files.

The descriptionfile is called a Linker Specific Configuration file (Isc). It describes what shall be embedded, and how
those things shall be organized in the program image. The linker outputs :

+ An ELF executable file that contains the image and potential debug sections. This file can be directly used by
debuggers or programming tools. It may also be converted into a another format (Intel* hex, Motorola* s19,
rawBinary, etc.) using external tools, such as standard GNU binutils toolchain (objcopy, objdump, etc.).

« Amap file, in XML format, which can be viewed as a database of what has been embedded and resolved by
the linker. It can be easily processed to get a sort of all sizes, call graphs, statistics, etc.

+ The linker is composed with one or more library loaders, according to the platform’s configuration.

ELF Overview

An ELF relocatable file is split into several sections:
« allocation sections representing a part of the program
« control sections describing the binary sections (relocation sections, symbol tables, debug sections, etc.)

An allocation section can hold some image binary bytes (assembler instructions and raw data) or can refer to an
interval of memory which makes sense only at runtime (statics, main stack, heap, etc.). An allocation section is an
atomic block and cannot be split. A section has a name that by convention, represents the kind of data it holds.
For example, .text sections hold binary instructions, .bss sections hold read-write static data, .rodata hold
read-only data, and .data holds read-write data (initialized static data). The nameis used in the.Isc file to organize
sections.

A symbol is an entity made of a name and a value. A symbol may be absolute (link-time constant) or relative to a
section: Its value is unknown until MicroEJ Linker has assigned a definitive position to the target section. A symbol
can be local to the relocatable file or global to the system. All global symbol names should be unique in the system
(the name is the key that connects an unresolved symbol reference to a symbol definition). A section may need the
value of symbols to be fully resolved: the address of a function called, address of a static variable, etc.

Linking Process

The linking process can be divided into three main steps:

1. Symbols and sections resolution. Starting from root symbols and root sections, the linker embeds all sec-
tions targeted by symbols and all symbols referred by sections. This process is transitive while new symbols
and/or sections are found. At the end of this step, the linker may stop and output errors (unresolved symbols,
duplicate symbols, unknown or bad input libraries, etc.)

3.13. Advanced Tools 181

MicroEJ Documentation, Revision 44d2784c

2. Memory positioning. Sections are laid out in memory ranges according to memory layout constraints de-
scribed by the Isc file. Relocations are performed (in other words, symbol values are resolved and section
contents are modified). At the end of this step, the linker may stop and output errors (it could not resolve
constraints, such as not enough memory, etc.)

3. Anoutput ELF executable file and map file are generated.

A partial map file may be generated at the end of step 2. It provides useful information to understand why the link
phase failed. Symbol resolution is the process of connecting a global symbol name to its definition, found in one of
the linker input units. The order the units are passed to the linker may have an impact on symbol resolution. The
rules are:

+ Relocatable object files are loaded without order. Two global symbols defined with the same name result in
an unrecoverable linker error.

« Archive files are loaded on demand. When a global symbol must be resolved, the linker inspects each archive
unit in the order it was passed to the linker. When an archive contains a relocatable object file that declares
the symbol, the object file is extracted and loaded. Then the first rule is applied. It is recommended that you
group object files in archives as much as possible, in order to improve load performances. Moreover, archive
files are the only way to tie with relocatable object files that share the same symbols definitions.

« Asymbol name is resolved to a weak symbol if - and only if - no global symbol is found with the same name.

Linker Specific Configuration File Specification

Description

A Linker Specific Configuration (Lsc) file contains directives to link input library units. An Isc file is written in an XML
dialect, and its contents can be divided into two principal categories:

« Symbols and sections definitions.

+ Memory layout definitions.

Listing 5: Example of Relocation of Runtime Data from FLASH to RAM

<?xml version="1.0" encoding="UTF-8"7>
<l--
An example of linker specific configuration file
-—>
<lsc name="MyAppInFlash">
<include name="subfile.lscf"/>
LY==
Define symbols with arithmetical and logical expressions
-—>
<defSymbol name="FlashStart” value="0"/>
<defSymbol name="FlashSize" value="0x10000"/>
<defSymbol name="FlashEnd" value="FlashStart+FlashSize-1"/>
Kl==
Define FLASH memory interval
-—>
<defSection name="FLASH" start="FlashStart"” size="FlashSize"/>

<l--
Some memory layout directives
-—>
<memorylLayout ranges ="FLASH">
<sectionRef name ="=*.text"/>
(continues on next page)

3.13. Advanced Tools 182

MicroEJ Documentation, Revision 44d2784c

(continued from previous page)
<sectionRef name ="x.data"/>
</memorylLayout>
</1sc>

File Fragments

An lsc file can be physically divided into multiple Isc files, which are called lsc fragments. Lsc fragments may be
loaded directly from the linker path option, or indirectly using the include tagin an Isc file.

Lsc fragments start with the root tag 1scFragment . By convention the lsc fragments file extensionis . 1scf . From
here to the end of the document, the expression “the Isc file” denotes the result of the union of all loaded (directly
and indirectly loaded) Isc fragments files.

Symbols and Sections

A new symbol is defined using defSymbol tag. Asymbol has a name and an expression value. All symbols defined
in the Isc file are global symbols.

A new section is defined using the defSection tag. A section may be used to define a memory interval, or define
a chunk of the final image with the description of the contents of the section.

Memory Layout

A memory layout contains an ordered set of statements describing what shall be embedded. Memory positioning
can be viewed as moving a cursor into intervals, appending referenced sections in the order they appear. A symbol
can be defined as a “floating” item: Its value is the value of the cursor when the symbol definition is encountered.
In the example below, the memory layout sets the FLASH section. First, all sections named .text are embedded.
The matching sections are appended in a undefined order. To reference a specific section, the section shall have a
unique name (for example a reset vector is commonly called .reset or .vector,etc.). Then, the floating symbol
dataStart is set to the absolute address of the virtual cursor right after embedded .text sections. Finally all
sections named .data are embedded.

A memory layout can be relocated to a memory interval. The positioning works in parallel with the layout ranges,
as if there were two cursors. The address of the section (used to resolve symbols) is the address in the relocated
interval. Floating symbols can refer either to the layout cursor (by default), or to the relocated cursor, using the
relocation attribute. A relocation layout is typically used to embed data in a program image that will be used
at runtime in a read-write memory. Assuming the program image is programmed in a read only memory, one of
the first jobs at runtime, before starting the main program, is to copy the data from read-only memory to RAM,
because the symbols targeting the data have been resolved with the address of the sections in the relocated space.
To perform the copy, the program needs both the start address in FLASH where the data has been put, and the
start address in RAM where the data shall be copied.

Listing 6: Example of Relocation of Runtime Data from FLASH to RAM

<memorylLayout ranges="FLASH" relocation="RAM" image="true">
<defSymbol name="DataFlashStart"” value="."/>
<defSymbol name="DataRamStart” value=" ." relocation="true"/>
<sectionRef name=".data"/>
<defSymbol name="DataFlashLimit"” value="."/>

</memoryLayout>

3.13. Advanced Tools 183

MicroEJ Documentation, Revision 44d2784c

Note: the symbol DataRamStart is defined to the start address where .data sections will be inserted in RAM

memory.

Tags Specification

Here is the complete syntactical and semantical description of all available tags of the .1sc file.

Table 5: Linker Specific Configuration Tags

Tags

Attributes

Description

defSection

Defines a new section. A floating section only holds a declared size
attribute. A fixed section declares at least one of the start / end at-
tributes. When this tag is empty, the section is a runtime section, and
must define at least one of the start, end or size attributes. When
this tag is not empty (when it holds a binary description), the section
is an image section.

name

Name of the section. The section name may not be unique. However,
it is recommended that you define a unique name if the section must
be referred separately for memory positioning.

start

Optional. Expression defining the absolute start address of the sec-
tion. Must be resolved to a constant after the full load of the Isc file.

end

Optional. Expression defining the absolute end address of the section.
Must be resolved to a constant after the full load of the Isc file.

size

Optional. Expression defining the size in bytes of the section. Invari-
ant: (end-start)+1=size . Must be resolved to a constant after the
full load of the Isc file.

align

Optional. Expression defining the alignment in bytes of the section.

rootSection

Optional. Boolean value. Sets this section as a root section to be em-
bedded even if it is not targeted by any embedded symbol. See also
rootSection tag.

symbolPrefix

Optional. Used in collaboration with symbolTags . Prefix of symbols
embedded in the auto-generated section. See Auto-generated Sec-
tions.

symbolTags

Optional. Used in collaboration with symbolPrefix . Comma sepa-
rated list of tags of symbols embedded in the auto-generated section.
See Auto-generated Sections.

defSymbol

Defines a new global symbol. Symbol name must be unique in the
linker context

name

Name of the symbol.

type

Optional. Type of symbol usage. This may be necessary to set the type
of a symbol when using third party ELF tools. There are three types: -
none : default. No special type of use. - function: symbol describes
a function. - data: symbol describes some data.

value

The value "." defines a floating symbol that holds the current cur-
sor position in a memory layout. (This is the only form of this tag that
can be used as a memorylLayout directive) Otherwise value is an ex-
pression. A symbol expression must be resolved to a constant after

memory positioning.

relocation

Optional. The only allowed value is true . Indicates that the value
of the symbol takes the address of the current cursor in the memory
layout relocation space. Only allowed on floating symbols.

Continued on next page

3.13. Advanced Tools

184

MicroEJ Documentation, Revision 44d2784c

Table 5 - continued from previous page
Tags Attributes Description
rootSymbol Optional. Boolean value. Sets this symbol as a root symbol that must
be resolved. See also rootSymbol tag.
weak Optional. Boolean value. Sets this symbol as a weak symbol.
memorylLayout directive. Defines a named group of sections. Group
name may be used in expression macros START, END, SIZE.All mem-
oryLayout directives are allowed within this tag (recursively).
name The name of the group.
Includes an lsc fragment file, semantically the same as if the fragment
contents were defined in place of the include tag.
name Name of the file to include. When the name is relative, the file sepa-
rator is /, and the file is relative to the directory where the current
[sc file or fragment is loaded. When absolute, the name describes a
platform-dependent filename.
Root tag for an .Isc file.
name Name of the Isc file. The ELF executable output will be {name}.out,
and the map file will be {name}.map
1scFragment Root tag for an Isc file fragment. Lsc fragments are loaded from the
linker path option, or included from a master file using the include
tag.
Describes the organization of a set of memory intervals. The memory
layouts are processed in the order in which they are declared in the
file. The same interval may be organized in several layouts. Each lay-
out starts at the value of the cursor the previous layout ended. The fol-
lowing tags are allowed within a memoryLayout directive: defSymbol
(under certain conditions), group, memorylLayoutRef, padding,and
sectionRef .
ranges Exclusive with default. Comma-separated ordered list of fixed sections
to which the layout is applied. Sections represent memory segments.
image Optional. Boolean value. false if not set. If true, the layout de-
scribes a part of the binary image: Only image sections can be embed-
ded. If false, only runtime sections can be embedded.
relocation Optional. Name of the section to which this layout is relocated.
name Exclusive with ranges. Defines a named memoryLayout directive in-
stead of specifying a concrete memory location. May be included in a
parent memoryLayout using memoryLayoutRef.
memorylLayout directive. Provides an extension-point mechanism to
include memoryLayout directives defined outside the current one.
name All directives of memoryLayout defined with the same name are in-
cluded in an undefined order.
memorylLayout directive. Append padding bytes to the current cursor.
Either size or align attributes should be provided.
size Optional. Expression must be resolved to a constant after the full load
of the Isc file. Increment the cursor position with the given size.
align Optional. Expression must be resolved to a constant after the full load
ofthe Iscfile. Move the current cursor position to the next address that
matches the given alignment. Warning: when used with relocation,
the relocation cursor is also aligned. Keep in mind this may increase
the cursor position with a different amount of bytes.
address Optional. Expression must be resolved to a constant after the full load
of the Isc file. Move the current cursor position to the given absolute
address.

group

include

1sc

memorylLayout

memorylLayoutRef

padding

Continued on next page

3.13. Advanced Tools 185

MicroEJ Documentation, Revision 44d2784c

Table 5 - continued from previous page
Tags Attributes Description
fill Optional. Expression must be resolved to a constant after the full load
of the Isc file. Fill padding with the given value (32 bits).
References a section name that must be embedded. This tagis not a
definition. It forces the linker to embed all loaded sections matching
the given name.
name Name of the section to be embedded.
References a symbol that must be resolved. This tagis not a definition.
It forces the linker to resolve the value of the symbol.
name Name of the symbol to be resolved.
Memory layout statement. Embeds all sections matching the given
name starting at the current cursor address.
file Select only sections defined in a linker unit matching the given file
name. The file name s the simple name without any file separator, e.g.
bsp.o or mylink.lsc. Link units may be object files within archive
units.
name Name of the sections to embed. When the name ends with *, all sec-
tions starting with the given name are embedded (name completion),
except sections that are embedded in another sectionRef using the ex-
act name (without completion).
symbol Optional. Only embeds the section targeted by the given symbol. This
is the only way at link level to embed a specific section whose name is
not unique.
force Optional. Deprecated. Replaced by the rootSection tag. The only
allowed value is true. By default, for compaction, the linker embeds
only what is needed. Setting this attribute will force the linker to em-
bed all sections that appear in all loaded relocatable files, even sec-
tions that are not targeted by a symbol.
sort Optional. Specifies that the sections must be sorted in memory. The
value can be: - order : the sections will be in the same order as the
input files - name : the sections are sorted by their file names - unit
: the sections declared in an object file are grouped and sorted in the
order they are declared in the object file
Binary section statement. Describes the four next raw bytes of the
section. Bytes are organized in the endianness of the target ELF ex-
ecutable.
value Expression must be resolved to a constant after the full load of the lsc
file (32 bits value).
Binary section statement. Fills the section with the given expression.
Bytes are organized in the endianness of the target ELF executable.
size Expression defining the number of bytes to be filled.
value Expression must be resolved to a constant after the full load of the lsc
file (32 bits value).

rootSection

rootSymbol

sectionRef

u4

fill

Expressions

An attribute expression is a value resulting from the computation of an arithmetical and logical expression. Sup-
ported operators are the same operators supported in the Java language, and follow Java semantics:

« Unaryoperators: + , - , ~ | |

+ Binaryoperators: + , -, x /| %, <<, >>> 0>> <> <= 0 >= == 1= & | 4
&& , |l

3.13. Advanced Tools 186

MicroEJ Documentation, Revision 44d2784c

« Ternary operator: cond ? ifTrue : ifFalse

« Built-in macros:

START (name) : Get the start address of a section or a group of sections

END(name) : Get the end address of a section or a group of sections

SIZE(name) : Get the size of a section or a group of sections. Equivalent to END(name)-START (name)

TSTAMPH() , TSTAMPL () : Get 32 bits linker time stamp (high/low part of system time in milliseconds)

SUM(name, tag) : Get the sum of an auto-generated section (Auto-generated Sections) column. The col-
umn is specified by its tag name.

An operand is either a sub expression, a constant, or a symbol name. Constants may be written in decimal (127) or
hexadecimal form (@x7F). There are no boolean constants. Constant value @ means false, and other constants’
values mean true. Examples of use:

value="symbol+3"
value="((symbol1x4)-(symbol2%3)"

Note: Ternary expressions can be used to define selective linking because they are the only expressions that may
remain partially unresolved without generating an error. Example:

<defSymbol name="myFunction” value="condition ? symbl : symb2"/>

No error will be thrown if the condition is true and symb1 is defined, or the condition is false and symb2 is
defined, even if the other symbol is undefined.

Auto-generated Sections

The MicroEJ Linker allows you to define sections that are automatically generated with symbol values. This is com-
monly used to generate tables whose contents depends on the linked symbols. Symbols eligible to be embedded
in an auto-generated section are of the form: prefix_tag_suffix.An auto-generated section is viewed as a table
composed of lines and columns that organize symbols sharing the same prefix. On the same column appear sym-
bols that share the same tag. On the same line appear symbols that share the same suffix. Lines are sorted in the
lexical order of the symbol name. The next line defines a section which will embed symbols starting with zeroinit
. The first column refers to symbols starting with zeroinit_start_;the second column refers to symbols starting
with zeroinit_end_.

<defSection
name=".zeroinit"
symbolPrefix="zeroInit"
symbolTags="start,end"”
/>

Consider there are four defined symbols named zeroinit_start_xxx , zeroinit_end_xxx ,
zeroinit_start_yyy and zeroinit_end_yyy . The generated section is of the form:

0x00: zeroinit_start_xxx
0x04: zeroinit_end_xxx
0x08: zeroinit_start_yyy
0x0C: zeroinit_end_yyy

If there are missing symbols to fill a line of an auto-generated section, an error is thrown.

3.13. Advanced Tools 187

MicroEJ Documentation, Revision 44d2784c

Execution

MicroEJ Linker can be invoked through an ANT task. The task is installed by inserting the following code in an ANT

script

<taskdef
name="linker"
classname="com.is2t.linker.GenericLinkerTask"
classpath="[LINKER_CLASSPATH]"

/>

[LINKER_CLASSPATH] is a list of path-separated jar files, including the linker and all architecture-specific library

loaders.

The following code shows a linker ANT task invocation and available options.

<linker
doNotLoadAlreadyDefinedSymbol="[true|false]”
endianness="[little|big|none]”
generateMapFile="[true|false]”
ignoreWrongPositioningForEmptySection="[true|false]”
lsc="[filename]"
linkPath="[pathl:...pathN]"
mergeSegmentSections="[true|false]”
noWarning="[true|false]"
outputArchitecture="[tag]"
outputName="[name]"”
stripDebug="[true|false]”
toDir="[outputDir]”
verboselLevel="[0...9]"

>
<!-- ELF object & archives files using ANT paths / filesets -->
<fileset dir="xxx" includes="*.0">
<fileset file="xxx.a">
<fileset file="xxx.a">
<!-- Properties that will be reported into .map file -->
<property name="myProp"” value="myValue"/>

</linker>

3.13. Advanced Tools

188

MicroEJ Documentation, Revision 44d2784c

Table 6: Linker Options Details

Option

Description

doNotLoadAlreadyDefinedSymbol

Silently skip the load of a global symbol if it has already
been loaded before. (false by default. Only the first
loaded symbol is taken into account (in the order input
files are declared). This option only affects the load se-
mantic for global symbols, and does not modify the se-
mantic for loading weak symbols and local symbols.

Explicitly declare linker endianness [little, big] or

endianness [none] for auto-detection. All input files must declare
the same endianness or an error is thrown.
Generate the .map file (true by default).
generateMapFile

ignoreWrongPositioningForEmptySection

Silently ignore wrong section positioning for zero size
sections. (false by default).

Provide a master Iscfile. This optionis mandatory unless

lsc the linkPath option is set.
) Provide a set of directories into which to load link file
linkPath fragments. Directories are separated with a platform-
path separator. This option is mandatory unless the 1sc
option is set.
Silently skip the output of warning messages.
noWarning

mergeSegmentSections

(experimental). Generate a single section per segment.
This may speed up the load of the output executable file
into debuggers or flasher tools. (false by default).

outputArchitecture

Set the architecture tag for the output ELF file (ELF ma-
chineid).

outputName

Specify the output name of the generated files. By de-
fault, take the name provided in the Isc tag. The output
ELF executable filename will be name.out. The map file-
name will be name.map.

stripDebug

Remove all debug information from the output ELF file.
A stripped output ELF executable holds only the binary
image (no remaining symbols, debug sections, etc.).

toDir

Specify the output directory in which to store generated
files. Output filenames are inthe form: od + separator
+ value of the 1lsc name attribute + suffix.
By default, without this option, files are generated in the
directory from which the linker was launched.

verboselLevel

Print additional messages on the standard output about
linking process.

Error Messages

This section lists MicroEJ Linker error messages.

Table 7: Linker-Specific Configuration Tags

Message ID Description
0 The linker has encountered an unexpected internal error. Please contact the support hot-
line.

Continued on next page

3.13. Advanced Tools

189

MicroEJ Documentation, Revision 44d2784c

Table 7 - continued from previous page

1 A library cannot be loaded with this linker. Try verbose to check installed loaders.

2 No sc file provided to the linker.

3 Afile could not be loaded. Check the existence of the file and file access rights.

4 Conflictinginput libraries. Aglobal symbol definition with the same name has already been
loaded from a previous object file.

5 Completion (*) could not be used in association with the force attribute. Must be an exact
name.

6 Arequired section refers to an unknown global symbol. Maybe input libraries are missing.

7 A library loader has encountered an unexpected internal error. Check input library file in-
tegrity.

8 Floating symbols can only be declared inside memorylLayout tags.

9 Invalid value format. For example, the attribute relocation in defSymbol must be a
boolean value.

10 Missing one of the following attributes: address, size, align.

1 Too many attributes that cannot be used in association.

13 Negative padding. Memory layout cursor cannot decrease.

15 Not enough space in the memory layout intervals to append all sections that need to be
embedded. Check the output map file to get more information about what is required as
memory space.

16 A block is referenced but has already been embedded. Most likely a block has been espe-
cially embedded using the force attribute and the symbol attribute.

17 A block that must be embedded has no matching sectionRef statement.

19 An 10 error occurred when trying to dump one of the output files. Check the output direc-
tory option and file access rights.

20 size attribute expected.

21 The computed size does not match the declared size.

22 Sections defined in the Isc file must be unique.

23 One of the memory layout intervals refers to an unknown Isc section.

24 Relocation must be done in one and only one contiguous interval.

25 force and symbol attributes are not allowed together.

26 XML char data not allowed at this position in the Isc file.

27 A section which is a part of the program image must be embedded in an image memory
layout.

28 A section which is not a part of the program image must be embedded in a non-image
memory layout.

29 Expression could not be resolved to a link-time constant. Some symbols are unresolved.

30 Sections used in memory layout ranges must be sections defined in the Isc file.

31 Invalid character encountered when scanning the lsc expression.

32 Arecursive include cycle was detected.

33 An alignment inconsistency was detected in a relocation memory layout. Most likely one
of the start addresses of the memory layout is not aligned on the current alignment.

34 An error occurs in a relocation resolution. In general, the relocation has a value that is out
of range.

35 symbol and sort attributes are not allowed together.

36 Invalid sort attribute value is not one of order, name,or no.

37 Attribute start or end in defSection tagis notallowed when defining a floating section.

38 Autogenerated section can build tables according to symbol names (see Auto-generated
Sections). A symbol is needed to build this section but has not been loaded.

39 Deprecated feature warning. Remains for backward compatibility. It is recommended that
you use the new indicated feature, because this feature may be removed in future linker
releases.

Continued on next page

3.13. Advanced Tools 190

MicroEJ Documentation, Revision 44d2784c

Table 7 - continued from previous page
40 Unknown output architecture. Either the architecture ID is invalid, or the library loader has
not been loaded by the linker. Check loaded library loaders using verbose option.
41...43 Reserved.

44 Duplicate group definition. A group name is unique and cannot be defined twice.

45 Invalid endianness. The endianness mnemonic is not one of the expected mnemonics (
little,big,none).

46 Multiple endiannesses detected within loaded input libraries.

47 Reserved.

48 Invalid type mnemonic passed to a defSymbol tag. Must be one of none, function, or
data.

49 Warning. A directory of link path is invalid (skipped).

50 No linker-specific description file could be loaded from the link path. Check that the link
path directories are valid, and that they contain .1sc or .1scf files.

51 Exclusive options (these options cannot be used simultaneously). For example,

-linkFilename and -linkPath are exclusive; either select a master Isc file or a path from
which to load .1scf files.

52 Name given to a memorylLayoutRef ora memoryLayout isinvalid. It must not be empty.

53 A memorylLayoutRef with the same name has already been processed.

54 A memorylLayout must define ranges orthe name attribute.

55 No memory layout found matching the name of the current memoryLayoutRef .

56 Anamed memorylLayout is declared with a relocation directive, but the relocation interval
is incompatible with the relocation interval of the memoryLayout that referenced it.

57 A named memorylLayout has not been referenced. Every declared memorylLayout must
be processed. Anamed memorylLayout must be referenced by a memorylLayoutRef state-
ment.

58 SUM operator expects an auto-generated section.

59 SUM operator tag is unknown for the targetted auto-generated section.

60 SUM operator auto-generated section name is unknown.

61 An option is set for an unknown extension. Most likely the extension has not been set to
the linker classpath.

62 Reserved.

63 ELF unit flags are inconsistent with flags set using the -forceFlags option.

64 Reserved.

65 Reserved.

66 Found an executable object file as input (expected a relocatable object file).

67 Reserved.

68 Reserved.

69 Reserved.

70 Not enough memory to achieve the linking process. Try to increase JVM heap that is run-

ning the linker (e.g. by adding option -Xmx1024M to the JRE command line).

Map File Interpretor

The map file interpretor is a tool that allows you to read, classify and display memory information dumped by
the linker map file. The map file interpretor is a graph-oriented tool. It supports graphs of symbols and allows
standard operations on them (union, intersection, subtract, etc.). It can also dump graphs, compute graph total
sizes, list graph paths, etc.

The map file interpretor uses the standard Java regular expression syntax.

Itis used internally by the graphical Memory Map Analyzer tool.

Commands:

3.13. Advanced Tools 191

MicroEJ Documentation, Revision 44d2784c

e createGraph graphName symbolRegExp ... section=regexp

createGraph all section=.*

Recursively create a graph of symbols from root symbols and sections described as regular expressions. For
example, to extract the complete graph of the application:

e createGraphNoRec symbolRegExp ... section=regexp

The above line is similar to the previous statement, but embeds only declared symbols and sections (without
recursive connections).

¢ removeGraph graphName

Removes the graph for memory.

¢ listGraphs

Lists all the created graphs in memory.

¢ listSymbols graphName

Lists all graph symbols.

e listPadding

Lists the padding of the application.

* listSections graphName

Lists all sections targeted by all symbols of the graph.

e inter graphResult g1 ... gn
Creates a graph which is the intersection of g1/\ ... /\gn.
e union graphResult g1 ... gn

Creates a graph which is the union of g1\/ ...\/ gn.

e substract graphResult g1 ... gn

Creates a graph which is the substract of g1\ ... \ gn.

* reportConnections graphName

Prints the graph connections.

e totalImageSize graphName

Prints the image size of the graph.

* totalDynamicSize graphName

Prints the dynamic size of the graph.

3.13. Advanced Tools 192

MicroEJ Documentation, Revision 44d2784c

¢ accessPath symbolName

The above line prints one of the paths from a root symbol to this symbol. This is very useful in helping you
understand why a symbol is embedded.

¢ echo arguments

Prints raw text.

¢« exec commandFile

Execute the given commandFile. The path may be absolute or relative from the current command file.

3.13.2 MicroEJ Test Suite Engine

Introduction

The MicroEJ Test Suite Engine is a generic tool made for validating any development project using automatic test-
ing.

This section details advanced configuration for users who wish to integrate custom test suites in their build flow.

The MicroEJ Test Suite Engine allows the user to test any kind of projects within the configuration of a generic Ant
file.

TESTSUITE ENGINE

FOR EACH TEST CASE
-

Test Build & Link
Test Deployment Trace Redirection

13

(5

Trace Analysis

Test Execution

The MicroEJ Test Suite Engine is already pre-configured for running test suites on a MicroEJ Platform (either on
Simulator or on Device).

« For Application and Libraries, refer to Test Suite with JUnit section.

3.13. Advanced Tools 193

MicroEJ Documentation, Revision 44d2784c

« For Foundation Libraries Test Suites, refer to Platform Test Suite section.

Using the MicroEJ Test Suite Ant Tasks

Multiple Ant tasks are available in the testsuite-engine.jar provided inthe Build Kit:

« testsuite allowsthe usertorun a given test suite and to retrieve an XML report document in a JUnit format.

« javaTestsuite is a subtask of the testsuite task, used to run a specialized test suite for Java (will only
run Java classes).

« htmlReport is atask which will generate an HTML report from a list of JUnit report files.

The testsuite Task

The following attributes are mandatory:

Table 8: testsuite task mandatory attributes

Attribute Name | Description

The output folder of the test suite. The final report will be generated at [outputDirl]/
outputDir [label]l/[reportName]l.xml , see the testsuiteReportFileProperty and

testsuiteReportDirProperty attributes.

The harness script must be an Ant script and it is the script which will be called for each test
harnessScript

by the test suite engine. It is called with a basedir located at output location of the current
test.

The test suite engine provides the following properties to the harness script giving all the informations to start the

test:

Table 9: harnessScript properties

Attribute Name | Description

. The output name of the current test in the report. Default value is the relative path of the
testsuite. test. It can be manually set by the user. More details on the output name are available in the
test.name section Specific Custom Properties.

. The current test absolute path in the filesystem.
testsuite.
test.path

_ The absolute path to the custom properties of the current test (see the property
testsuite. customPropertiesExtension)
test.
properties

. The absolute path to the common properties of all the tests (see the property
testsuite. commonProperties)
common.
properties

. The absolute path to the directory of the final report.
testsuite.
report.dir

The following attributes are optional:

3.13. Advanced Tools 194

MicroEJ Documentation, Revision 44d2784c

Table 10: testsuite task optional attributes

Attribute | Description Default value
Name

The time in seconds before any test is considerated as un-

known. Setitto 0 to disable the time-out.

The required level to output messages from the test suite.
n be one of those values: error , warning, info,

verbose, debug.

The final report name (without extension). _
reportName testsuite-report

The extension of the custom properties for each test. For in-
custonPropatidesifieis 48 to options , a test named xxx/Test1. | -Properties
class will be associated with xxx/Test1.options. If afile
exists for a test, the property testsuite.test.properties
is set with its absolute path and given to the harnessScript
If the test path references a directory, then the custom
properties path is the concatenation of the test path and the
customPropertiesExtension value.
The properties to apply to every test of the test suite. Those | no common properties
PYptiéas might be overridden by the custom properties of
each test. If this option is set and the file exists, the prop-
erty testsuite.common.properties is set to the absolute
path of the harnessScript file
The build label. timestamp of when the test suite
was invoked.

timeOut 60

verbosele info

commonPro

label

The name of the current tested product.
productName TestSuite

The location of your Java VM to start the test suite (the

jvm harnessScript is called asis: [jvm] [...] -buildfile | Java.home location.ifthe property
[harnessScript]). is set, java otherwise.
The arguments to pass to the Java VM started for each test. | None.

jvmargs

The name of the Ant property in which the path of the
teStSUitERﬁfﬂ?‘aﬂtlﬁéﬂaSP{‘?QeﬁWed. Path is [outputDirl/[label]/ testsuite.report.file
[reportName].xml

The name of the Ant property in which is store the path of the
testsulteRefpedtoty ortheTial report. Pathis [outputDir]/[label]. | testsuite.report.dir
The name of the Ant property in which you want to have the | None
testsulteRGaul S test suite (true or false), depending if every
tests successfully passed the test suite or not. Ignored tests
do not affect this result.

Finally, you have to give as nested element the path containing the tests.

Table 11: testsuite task nested elements

Element Name | Description
Containing all the file of the tests which will be launched by the test suite.

testPath

Any test in the intersection between testIgnoredPath and testPath will be executed by
testignoredPath the test suite, but will not appear in the JUnit final report. It will still generate a JUnit re-
(optional) port for each test, which will allow the HTML report to let them appears as “ignored” if it is
generated. Mostly used for known bugs which are not considered as failure but still relevant
enough to appears on the HTML report.

3.13. Advanced Tools 195

MicroEJ Documentation, Revision 44d2784c

Listing 7: Example of test suite task invocation

<!-- Launch the testusite engine -->

<testsuite:testsuite
timeOut="${microej.kf.testsuite.timeout}”
outputDir="${target.test.xml}/testkf”
harnessScript="${com.is2t.easyant.plugins#microej-kf-testsuite.microej-kf-testsuite-harness-jpf-emb.

—xml.file}"”
commonProperties="${microej.kf.launch.propertyfile}"
testsuiteResultProperty="testkf.result"
testsuiteReportDirProperty="testkf.testsuite.report.dir”
productName="${module.name} testkf"”
jvmArgs="${microej.kf.testsuite.jvmArgs}"
lockPort="${microej.kf.testsuite.lockPort}"
verboselLevel="${testkf.verbose.level}"

>
<testPath refid="target.testkf.path"/>

</testsuite:testsuite>

The javaTestsuite Task

This task extends the testsuite task, specializing the test suite to only start real Java class. This task retrieves
the classname of the tests from the classfile and provides new properties to the harness script:

Table 12: javaTestsuite task properties

Property Name | Description

) The classname of the current test. The value of the property testsuite.test.name isalso
testsuite. set to the classname of the current test.
test.class

) The classpath of the current test.
testsuite.
test.
classpath

Listing 8: Example of javaTestsuite task invocation
<!-- Launch test suite -->

<testsuite:javaTestsuite
verboselLevel="${microej.testsuite.verboselLevel}”
timeOut="${microej.testsuite.timeout}"
outputDir="${target.test.xml}/@{prefix}"
harnessScript="${harness.file}"
commonProperties="${microej.launch.propertyfile}"
testsuiteResultProperty="@{prefix}.result”
testsuiteReportDirProperty="@{prefix}.testsuite.report.dir”
productName="${module.name} @{prefix}"
jvmArgs="${microej.testsuite.jvmArgs}”
lockPort="${microej.testsuite.lockPort}"
retryCount="${microej.testsuite.retry.count}”
retryIf="${microej.testsuite.retry.if}"
retryUnless="${microej.testsuite.retry.unless}"”

<testPath refid="target.@{prefix}.path"/>

(continues on next page)

3.13. Advanced Tools 196

MicroEJ Documentation, Revision 44d2784c

(continued from previous page)

<testIgnoredPath refid="tests.@{prefix}.ignored.path” />
</testsuite:javaTestsuite>

The htmlReport Task

This task allow the user to transform a given path containing a sample of JUnit reports to an HTML detailed report.
Here is the attributes to fill:

« Anested fileset element containing all the JUnit reports of each test. Take care to exclude the final JUnit
report generated by the test suite.

« Anested element report:

- format : The format of the generated HTML report. Must be noframes or frames. When noframes
format is choosen, a standalone HTML file is generated.

- todir: The output folder of your HTML report.

- The report tagaccepts the nested tag param with name and expression attributes. These tags can
pass XSL parameters to the stylesheet. The built-in stylesheets support the following parameters:

* PRODUCT : the product name that is displayed in the title of the HTML report.
* TITLE :the comment thatis displayed in the title of the HTML report.

Note: It is advised to set the format to noframes if your test suite is not a Java test suite. If the format is set to
frames, with anon-Java MicroEJ Test Suite, the name of the links will not be relevant because of the non-existency
of packages.

Listing 9: Example of htmlReport task invocation

<!-- Generate HTML report -->
<testsuite:htmlReport>
<fileset dir="${@{prefix}.testsuite.report.dir}">
<include name="x*/x.xml"/> <!-- include unary reports -->
<exclude name="*x/bin/*x*/%*.xml"/> <!-- exclude test bin files -->
<exclude name="x.xml"/> <!-- exclude global report -->
</fileset>
<report format="noframes” todir="${target.test.html}/@{prefix}"/>
</testsuite:htmlReport>

Using the Trace Analyzer

This section will shortly explains how to use the Trace Analyzer . The MicroEJ Test Suite comes with an archive
containing the Trace Analyzer which can be used to analyze the output trace of an application. It can be used
from different forms;

« The FileTraceAnalyzer will analyze a file and research for the given tags, failing if the success tag is not
found.

« The SerialTraceAnalyzer will analyze the data from a serial connection.

3.13. Advanced Tools 197

MicroEJ Documentation, Revision 44d2784c

The TraceAnalyzer Tasks Options

Here is the common options to all TraceAnalyzer tasks:
+ successTag: the regular expression which is synonym of success when found (by default . *PASSED. x).
« failureTag: the regular expression which is synonym of failure when found (by default . *FAILED.*).
« verboselLevel :int value between 0 and 9 to define the verbose level.
« waitingTimeAfterSuccess : waiting time (in s) after success before closing the stream (by default 5).

« noActivityTimeout : timeout (in s) with no activity on the stream before closing the stream. Set it to 0 to
disable timeout (default value is 0).

« stopEOFReached: boolean value. Setto true to stop analyzing when input stream EOF is reached. If false
, continue until timeout is reached (by default false).

« onlyPrintableCharacters:booleanvalue. Setto true toonly dump ASCII printable characters (by default
false).

The FileTraceAnalyzer Task Options

Here is the specific options of the FileTraceAnalyzer task:

« traceFile: path to the file to analyze.

The SerialTraceAnalyzer Task Options

Here is the specific options of the SerialTraceAnalyzer task:
+ port:the comm port to open.
« baudrate : serial baudrate (by default 9600).
« databits: databits (5]6|7|8) (by default 8).
+ stopBits: stopbits (0[1|3 for (1_5)) (by default 1).

« parity: none | odd | event (bydefault none).

Appendix

The goal of this section is to explain some tips and tricks that might be useful in your usage of the test suite engine.

Specific Custom Properties

Some custom properties are specifics and retrieved from the test suite engine in the custom properties file of a test.

« The testsuite.test.name property is the output name of the current test. Here are the steps to compute
the output name of a test:

- If the custom properties are enabled and a property named testsuite.test.name isfind on the cor-
responding file, then the output name of the current test will be set to it.

- Otherwise, if the running MicroEJ Test Suite is a Java test suite, the output name is set to the class name
of the test.

3.13. Advanced Tools 198

MicroEJ Documentation, Revision 44d2784c

- Otherwise, from the path containing all the tests, a common prefix will be retrieved. The output name
will be set to the relative path of the current test from this common prefix. If the common prefix equals
the name of the test, then the output name will be set to the name of the test.

- Finally, if multiples tests have the same output name, then the current name will be followed by _XXX
, an underscore and an integer.

« The testsuite.test.timeout property allow the userto redefine the time out for each test. If it is negative
or not an integer, then global timeout defined for the MicroEJ Test Suite is used.

3.14 Graphical User Interface

This section presents libraries relative to the user interface.

The following schema shows the overall architecture and modules:

Widget Examples Applications APP

ADD-ON LIBRARIES

LIBRARIES
VIRTUALIZATION

Graphical Engine

ABSTRACTION LAYERS

BSP Drivers Drivers Drivers

RTOS/OS

PLATFORM

D PROCESSOR
CORE LCD

HARDWARE

Fig. 65: Graphical User Interface Overview

3.14. Graphical User Interface 199

MicroEJ Documentation, Revision 44d2784c

Note: This chapter describes the current Graphical User Interface version 3, provided by Ul Pack version 13.0.0
or higher. If you are using the former Graphical User Interface version 2 (provided by MicroEJ Ul Pack version up
to 12.4.x), please refer to this MicroEJ Documentation Archive.

3.14.1 MicroUl

Introduction

MicroUl Foundation Library provides access to a pixel-based display and inputs.
The aim of this library is to enable the creation of user interface in Java by reifying hardware capabilities.

To use the MicroUl Foundation Library, add MicroUl APl module to a module description file:

<dependency org="ej.api” name="microui” rev="3.1.0"/>

Drawing Foundation Library extends MicroUI drawing APIs' with more complex ones such as:
« thick line, arc, circle and ellipse
+ polygon
+ image deformation and rotation

To use the Drawing Foundation Library, add Drawing AP| module to a module description file:

<dependency org="ej.api"” name="drawing" rev="1.0.3"/>

Images

Overview

Images are graphical resources that can be accessed with a call to ej.microui.display.Image.getimage() or
ej.microui.display.Resourcelmage.loadlmage(). To be displayed, these images have to be converted from their
source format to the display raw format. The conversion can either be done at:

« build-time (using the image generator tool),
« run-time (using the relevant decoder library).

Images that must be processed by the image generator tool are declared in MicroEJ Classpath *.images. list files.
Thefile formatis a standard Java properties file, each line representing a / separated resource path relative to the
MicroEJ classpath root referring to a standard image file (e.g. .png, .Jjpg). The resource may be followed by an
optional parameter (separated by a :) which defines and/or describes the image output file format (raw format).
When no option is specified, the image is embedded as-is and will be decoded at run-time (although listing files
without format specifier has no impact on the image generator processing, it is advised to specify them in the *.
images.list files anyway, as it makes the run-time processing behavior explicit). Example:

The following image is embedded
as a PNG resource (decoded at run-time)
com/mycompany/MyImagel.png

The following image is embedded
(continues on next page)

! These APIs were formerly included in MicroUl 2.x

3.14. Graphical User Interface 200

https://docs.microej.com/_/downloads/en/20201009/pdf/
https://repository.microej.com/modules/ej/api/microui/
https://repository.microej.com/modules/ej/api/microui/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Image.html#getImage-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/ResourceImage.html#loadImage-java.lang.String-

MicroEJ Documentation, Revision 44d2784c

(continued from previous page)

as a 16 bits format without transparency (decoded at build-time)
com/mycompany/MyImage?2.png:RGB565

The following image is embedded
as a 16 bits format with transparency (decoded at build-time)
com/mycompany/MyImage3.png:ARGB1555

Configuration File

Here is the format of the *.images.list files.

ConfigFile ::= Line ['EOL' Line Jx

Line ::= ImagePath [':' ImageOption Jx
ImagePath ::= Identifier ['/' Identifier Jx
ImageOption =N EA

Identifier ::= Letter [LetterOrDigit J*
Letter := 'a-zA-Z_$'

LetterOrDigit ::= 'a-zA-Z_%$0-9'

Images Heap

The images heap is used to allocate the pixel data of:
+ mutable images (i.e. Bufferedimage instances)
« images which are not byte-addressable, such as images opened with an input stream
+ images which are byte-addressable but converted to a different output format
In other words, every image which can not be retrieved using Image.getimage() is saved on the images heap.

The size of the images heap can be configured with the ej.microui.memory.imagesheap.size property.

Output Formats
Without Compression

When no output format is set in the images list file, the image is embedded without any conversion / compression.
This allows you to embed the resource as well, in order to keep the source image characteristics (compression, bpp,
etc.). This option produces the same result as specifiying an image as a resource in the MicroEJ launcher.

Advantages:

+ Preserves the image characteristics;

« Preserves the original image compression.
Disadvantages:

+ Requires an image runtime decoder;

+ Requires some RAM in which to store the decoded image;

+ Requires execution time to decode the image.

3.14. Graphical User Interface 201

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/BufferedImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Image.html#getImage-java.lang.String-

MicroEJ Documentation, Revision 44d2784c

imagel

Standard Output Formats

Depending on the target hardware, several generic output formats are available. Some formats may be directly
managed by the BSP display driver. Refer to the platform specification to retrieve the list of natively supported
formats.

Advantages:
+ The pixels layout and bits format are standard, so it is easy to manipulate these images on the C-side;
« Drawing an image is very fast when the display driver recognizes the format (with or without transparency);
« Supports or not the alpha encoding: select the most suitable format for the image to encode.
Disadvantages:

+ No compression: the image size in bytes is proportional to the number of pixels, the transparency, and the
bits-per-pixel;

+ Slower than display format when the display driver does not recognize the format: a pixel conversion is
required at runtime.

Select one the following format to use a generic format among this list: ARGB8888, RGB888, ARGB4444 , ARGB1555
, RGB565, A8, A4, A2, A1, C4, C2, C1, AC44, AC22 and AC11. The following snippets describe the color
conversion for each format:

« ARGB8888: 32 bits format, 8 bits for transparency, 8 per color.

int convertARGB8888toRAWFormat(int c){
return c;

3

« RGB888: 24 bits format, 8 per color. Image is always fully opaque.

int convertARGB8888toRAWFormat(int c){
return c & Oxffffff;

3

« ARGB4444: 16 bits format, 4 bits for transparency, 4 per color.

int convertARGB8888toRAWFormat(int c){
return 0

| ((c & 0xf000E00) >> 16)

| ((c & 0x00f00000) >> 12)

| ((c & 0x0000f000) >> 8)

| ((c & 0x0000000) >> 4)

3

« ARGBI1555: 16 bits format, 1 bit for transparency, 5 per color.

int convertARGB8888toRAWFormat(int c){
return @
| (((c & 0xff00000R0) == Oxff0O000RR) ? 0x8000 : 0)
| ((c & 0xf80000) >> 9)
| ((c & 0x00f800) >> 6)

(continues on next page)

3.14. Graphical User Interface 202

MicroEJ Documentation, Revision 44d2784c

(continued from previous page)
| ((c & 0x0000f8) >> 3)

’

RGB565: 16 bits format, 5 or 6 per color. Image is always fully opaque.

int convertARGB8888toRAWFormat(int c){
return @
| ((c & 0xf80000) >> 8)
| ((c & 0x00fco0) >> 5)
| ((c & 0x0000f8) >> 3)

’

« A8: 8 bits format, only transparency is encoded. The color to apply when drawing the image, is the current
GraphicsContext color.

int convertARGB8888toRAWFormat(int c){
return oxff - (toGrayscale(c) & 0xff);

}

« A4: 4 bits format, only transparency is encoded. The color to apply when drawing the image, is the current
GraphicsContext color.

int convertARGB8888toRAWFormat(int c){
return (Oxff - (toGrayscale(c) & 0xff)) / ox11;
3

« A2: 2 bits format, only transparency is encoded. The color to apply when drawing the image, is the current
GraphicsContext color.

int convertARGB8888toRAWFormat(int c){
return (Oxff - (toGrayscale(c) & 0xff)) / 0x55;
3

« Al 1 bit format, only transparency is encoded. The color to apply when drawing the image, is the current
GraphicsContext color.

int convertARGB8888toRAWFormat(int c){
return (Oxff - (toGrayscale(c) & 0Oxff)) / oxff;
3

« C4: 4 bits format with grayscale conversion. Image is always fully opaque.

int convertARGB8888toRAWFormat(int c){
return (toGrayscale(c) & 0Oxff) / 0x11;

3

« C2: 2 bits format with grayscale conversion. Image is always fully opaque.

int convertARGB8888toRAWFormat(int c){
return (toGrayscale(c) & 0Oxff) / 0x55;
}

« C1:1bit format with grayscale conversion. Image is always fully opaque.

3.14. Graphical User Interface 203

MicroEJ Documentation, Revision 44d2784c

int convertARGB8888toRAWFormat(int c){
return (toGrayscale(c) & 0Oxff) / 0Oxff;

3

+ AC44: 4 bits for transparency, 4 bits with grayscale conversion.

int convertARGB8888toRAWFormat(int c){
return 0
| ((color >> 24) & 0xf0)
| ((toGrayscale(color) & oxff) / ox11)

’

« AC22: 2 bits for transparency, 2 bits with grayscale conversion.

int convertARGB8888toRAWFormat(int c){
return @
| ((color >> 28) & 0xc0)
| ((toGrayscale(color) & oxff) / 0x55)

’

3

« AC11: 1 bit for transparency, 1 bit with grayscale conversion.

int convertARGB8888toRAWFormat(int c){
return @
| ((c & 0xff000000) == 0xff000000 ? 0x2 : 0x0)
| ((toGrayscale(color) & oxff) / oxff)

’

Examples:

image1:ARGB8888
image2:RGB565
image3:A4

Display Output Format

This format encodes the image into the exact display memory representation. If the image to encode contains
some transparent pixels, the output file will embed the transparency according to the display’s implementation
capacity. When all pixels are fully opaque, no extra information will be stored in the output file in order to free up
some memory space.

Note: When the display memory representation is standard, the display output format is automatically replaced
by a standard format.

Advantages:
« Drawing an image is very fast because no pixel conversion is required at runtime;
« Supports alpha encoding when display pixel format allow it.

Disadvantages:

+ No compression: the image size in bytes is proportional to the number of pixels.

3.14. Graphical User Interface 204

MicroEJ Documentation, Revision 44d2784c

imagel:display

RLE1 Output Format

Theimage engine can display embedded images that are encoded into a compressed format which encodes several
consecutive pixels into one or more 16-bit words. This encoding manages a maximum alpha level of 2 (alpha level
is always assumed to be 2, even if the image is not transparent).

« Several consecutive pixels have the same color (2 words):

- First 16-bit word specifies how many consecutive pixels have the same color (pixels colors converted in
RGB565 format, without opacity data).

- Second 16-bit word is the pixels’ color in RGB565 format.
« Several consecutive pixels have their own color (1 + n words):
- First 16-bit word specifies how many consecutive pixels have their own color;
- Next 16-bit word is the next pixel color.
» Several consecutive pixels are transparent (1 word):
- 16-bit word specifies how many consecutive pixels are transparent.
Advantages:
« Supports fully opaque and fully transparent encoding.
« Good compression when several consecutive pixels respect one of the three previous rules.
Disadvantages:
« Drawing an image is slightly slower than when using Display format.

« Not designed for images with many different pixel colors: in such case, the output file size may be larger than
the original image file.

imagel:RLE1

Image Generator Error Messages

These errors can occur while preprocessing images.

3.14. Graphical User Interface 205

MicroEJ Documentation, Revision 44d2784c

Table 13: Static Image Generator Error Messages

ID | Type Description

0 | Error The image generator has encountered an unexpected internal error.

1 Error The images list file has not been specified.

2 | Error The image generator cannot create the final, raw file.

3 | Error The image generator cannot read the images list file. Make sure the system allows reading of
this file.

4 | Warning The image generator has found no image to generate.

5 | Error The image generator cannot load the images list file.

6 | Warning The specified image path is invalid: The image will be not converted.

7 | Warning There are too many or too few options for the desired format.

8 | Error The display format is not generic; a MicroUIRawImageGeneratorExtension implementation is
required to generate the MicroUl raw image.

9 | Error The image cannot be read.

10 | Error The image generator has encountered an unexpected internal error (invalid endianness).

11 | Error The image generator has encountered an unexpected internal error (invalid bpp).

12 | Error The image generator has encountered an unexpected internal error (invalid display format).

13 | Error The image generator has encountered an unexpected internal error (invalid pixel layout).

14 | Error The image generator has encountered an unexpected internal error (invalid output folder).

15 | Error The image generator has encountered an unexpected internal error (invalid memory
alignment).

16 | Error The input image format and / or the ouput format are not managed by the image generator.

17 | Error The image has been already loaded with another output format.

Fonts
Overview

Fonts are graphical resources that can be accessed with a call to ej.microui.display.Font.getFont(). To be displayed,
these fonts have to be converted at build-time from their source format to the display raw format by the font gener-
ator tool. Fonts that must be processed by the font generator tool are declared in MicroEJ Classpath *. fonts.list
files. The file format is a standard Java properties file, each line representing a / separated resource path relative
to the MicroEJ classpath root referring to a MicroEJ font file (usually witha .ejf file extension). The resource may
be followed by optional parameters which define :

« some ranges of characters to embed in the final raw file;
« the required pixel depth for transparency.

By default, all characters available in the input font file are embedded, and the pixel depthis 1 (i.e 1 bit-per-pixel).
Example:

The following font is embedded with all characters
without transparency
com/mycompany/MyFont1.ejf

The following font is embedded with only the latin
unicode range without transparency
com/mycompany/MyFont2.ejf:1latin

The following font is embedded with all characters
with 2 levels of transparency
com/mycompany/MyFont2.ejf::2

3.14. Graphical User Interface 206

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Font.html#getFont-java.lang.String-

MicroEJ Documentation, Revision 44d2784c

MicroEJ font files conventionally end with the .ejf suffix and are created using the Font Designer (see Font De-
signer).

Configuration File

Here is the format of the *.fonts.list files.

ConfigFile ::= Line ['EOL' Line J*

Line ::= FontPath [':' [Ranges 1 [':' BitsPerPixel]]
FontPath ::= Identifier ['/' Identifier Jx
Ranges ::= Range [';' Range J*

Range ::= CustomRangelList | KnownRange
CustomRangelist ::= CustomRange [',' CustomRange J*
CustomRange ::= Number | Number '-' Number
KnownRange ::= Name [SubRangelList 1?
SubRangeList ::= "(' SubRange [',' SubRange 1* ')'
SubRange ::= Number | Number - Number
Identifier c:= 'a-zA-Z_$' ['a-zA-Z_$0-9' Ix
Number ::= Number16 | Number1@

Number16 ::= 'Ox' [Digitli6e I+

Number10 ::= [Digitle J+

Digit16 ::= 'a-fA-F0-9'

Digitl1o = '0-9'

BitsPerPixel = "1 2t] 4t '8!

Font Range

The first parameter is for specifying the font ranges to embed. Selecting only a specific set of characters to embed
reduces the memory footprint. If unspecified, all characters of the font are embedded.

Several ranges can be specified, separated by ; . There are two ways to specify a character range: the custom range
and the known range.

Custom Range

Allows the selection of raw Unicode character ranges.
Examples:
« myfont:0x21-0x49 : Defines one range: embed all characters from 0x21 to 0x49 (included);

« myfont:0x21-0x49,0x55-0x75 : Defines a set of two ranges: embed all characters from 0x21 to 0x49 and
from 0x55 to 0x75.

« myfont:0x21-0x49,0x55 : Defines a set of one range and one character: embed all characters from 0x21 to
0x49 and character 0x55.

Known Range

A known range is a range available in the following table.
Examples:

« myfont:basic_latin:Embed all Basic Latin characters;

3.14. Graphical User Interface 207

MicroEJ Documentation, Revision 44d2784c

« myfont:basic_latin;arabic: Embed all Basic Latin characters, and all Arabic characters.

The following table describes the available list of ranges and sub-ranges (processed from the “Unicode Character
Database” version 9.0.0 available on the official unicode website https://home.unicode.org/).

Table 14: Ranges

Name Tag Start End
Basic Latin basic_latin 0x0 ox7f
Latin-1 Supplement latin-1_supplement 0x80 Oxff
Latin Extended-A latin_extended-a 0x100 ox17f
Latin Extended-B latin_extended-b 0x180 | Ox24f
IPA Extensions ipa_extensions 0x250 | Ox2af
Spacing Modifier Letters spacing_modifier_letters 0x2b0 | Ox2ff
Combining Diacritical Marks combining_diacritical_marks 0x300 | Ox36f
Greek and Coptic greek_and_coptic 0x370 0x3ff
Cyrillic cyrillic 0x400 | Ox4ff
Cyrillic Supplement cyrillic_supplement 0x500 | Ox52f
Armenian armenian 0x530 | Ox58f
Hebrew hebrew 0x590 | Ox5ff
Arabic arabic 0x600 | Ox6ff
Syriac syriac 0x700 | OxT74f
Arabic Supplement arabic_supplement 0x750 | Ox77f
Thaana thaana 0x780 | Ox7bf
NKo nko 0x7c0 | Ox7ff
Samaritan samaritan 0x800 | 0x83f
Mandaic mandaic 0x840 | 0x85f
Arabic Extended-A arabic_extended-a 0x8a0 | Ox8ff
Devanagari devanagari 0x900 | 0x97f
Bengali bengali 0x980 | Oxoff
Gurmukhi gurmukhi 0xa00 | OxaT7f
Gujarati gujarati 0xa80 | Oxaff
Oriya oriya 0xb00 | Oxb7f
Tamil tamil 0xb80 | Oxbff
Telugu telugu 0xc00 | Oxc7f
Kannada kannada 0xc80 | Oxcff
Malayalam malayalam 0xd00 | Ooxd7f
Sinhala sinhala 0xd80 | Oxdff
Thai thai 0xe00 | OxeT7f
Lao lao 0xe80 | Oxeff
Tibetan tibetan 0xf00 Oxfff
Myanmar myanmar 0x1000 | 0x109f
Georgian georgian 0x10a0 | Ox10ff
Hangul Jamo hangul_jamo 0x1100 | Ooxnff
Ethiopic ethiopic 0x1200 | 0x137f
Ethiopic Supplement ethiopic_supplement 0x1380 | 0x139f
Cherokee cherokee 0x13a0 | Ox13ff
Unified Canadian Aboriginal Syllabics | unified_canadian_aboriginal_syllabics 0x1400 | Ox167f
Ogham ogham 0x1680 | 0x169f
Runic runic 0x16a0 | Ox16ff
Tagalog tagalog 0x1700 | ox171f
Hanunoo hanunoo 0x1720 | 0x173f

Continued on next page

3.14. Graphical User Interface

208

https://home.unicode.org/

MicroEJ Documentation, Revision 44d2784c

Table 14 - continued from previous page

Name Tag Start End
Buhid buhid 0x1740 | 0x175f
Tagbanwa tagbanwa 0x1760 | 0x177f
Khmer khmer 0x1780 | ox17ff
Mongolian mongolian 0x1800 | Ox18af
Unified Canadian Aboriginal Syllabics | unified_canadian_aboriginal_syllabics_extended| 0x18b0 | 0x18ff
Extended

Limbu limbu 0x1900 | 0x194f
Tai Le tai_le 0x1950 | Ox197f
New Tai Lue new_tai_lue 0x1980 | Ox19df
Khmer Symbols khmer_symbols 0x19e0 | Ox19ff
Buginese buginese 0x1a00 | Oxlalf
Tai Tham tai_tham 0x1a20 | Oxlaaf
Combining Diacritical Marks Extended | combining_diacritical_marks_extended Ox1ab0 | Oxlaff
Balinese balinese 0x1b00 | Ox1b7f
Sundanese sundanese 0x1b80 | Ox1bbf
Batak batak 0x1bcO | Ox1bff
Lepcha lepcha 0x1c00 | Ox1c4f
Ol Chiki ol_chiki 0x1c50 | Ox1c7f
Cyrillic Extended-C cyrillic_extended-c 0x1c80 | Ox1c8f
Sundanese Supplement sundanese_supplement 0x1ccO | Oxlccf
Vedic Extensions vedic_extensions 0x1cdO | Oxlcff
Phonetic Extensions phonetic_extensions 0x1d00 | Ox1d7f
Phonetic Extensions Supplement phonetic_extensions_supplement 0x1d80 | Ox1dbf
Combining Diacritical Marks Supple- | combining_diacritical_marks_supplement 0x1dc0 | oxidff
ment

Latin Extended Additional latin_extended_additional 0x1e00 | Oxleff
Greek Extended greek_extended 0x1fo0 | Oxifff
General Punctuation general_punctuation 0x2000 | 0x206f
Superscripts and Subscripts superscripts_and_subscripts 0x2070 | 0x209f
Currency Symbols currency_symbols 0x20a0 | 0x20cf
Combining Diacritical Marks for Sym- | combining_diacritical_marks_for_symbols 0x20d0 | Ox20ff
bols

Letterlike Symbols letterlike_symbols 0x2100 | 0x214f
Number Forms number_forms 0x2150 | 0x218f
Arrows arrows 0x2190 | Ox21ff
Mathematical Operators mathematical_operators 0x2200 | 0x22ff
Miscellaneous Technical miscellaneous_technical 0x2300 | Ox23ff
Control Pictures control_pictures 0x2400 | 0x243f
Optical Character Recognition optical_character_recognition 0x2440 | 0x245f
Enclosed Alphanumerics enclosed_alphanumerics 0x2460 | 0x24ff
Box Drawing box_drawing 0x2500 | 0x257f
Block Elements block_elements 0x2580 | 0x259f
Geometric Shapes geometric_shapes 0x25a0 | 0x25ff
Miscellaneous Symbols miscellaneous_symbols 0x2600 | Ox26ff
Dingbats dingbats 0x2700 | 0x27bf
Miscellaneous Mathematical | miscellaneous_mathematical_symbols-a 0x27c0 | Ox27ef
Symbols-A

Supplemental Arrows-A supplemental_arrows-a 0x27f0 | Ox27ff
Braille Patterns braille_patterns 0x2800 | Ox28ff

Continued on next page

3.14. Graphical User Interface

209

MicroEJ Documentation, Revision 44d2784c

Table 14 - continued from previous page

Name Tag Start End
Supplemental Arrows-B supplemental_arrows-b 0x2900 | 0x297f
Miscellaneous Mathematical | miscellaneous_mathematical_symbols-b 0x2980 | 0Ox29ff
Symbols-B

Supplemental Mathematical Opera- | supplemental_mathematical_operators 0x2a00 | Ox2aff
tors

Miscellaneous Symbols and Arrows miscellaneous_symbols_and_arrows 0x2b00 | Ox2bff
Glagolitic glagolitic 0x2c00 | 0x2c5f
Latin Extended-C latin_extended-c 0x2c60 | Ox2cTf
Coptic coptic 0x2c80 | Ox2cff
Georgian Supplement georgian_supplement 0x2d00 | 0x2d2f
Tifinagh tifinagh 0x2d30 | ox2d7f
Ethiopic Extended ethiopic_extended 0x2d80 | 0x2ddf
Cyrillic Extended-A cyrillic_extended-a 0x2de0 | Ox2dff
Supplemental Punctuation supplemental_punctuation 0x2e00 | Ox2e7f
CJK Radicals Supplement cjk_radicals_supplement 0x2e80 | Ox2eff
Kangxi Radicals kangxi_radicals 0x2f00 | Oox2fdf
Ideographic Description Characters ideographic_description_characters 0x2ff0 | Ox2fff
CJK Symbols and Punctuation cjk_symbols_and_punctuation 0x3000 | 0x303f
Hiragana hiragana 0x3040 | 0x309f
Katakana katakana 0x30a0 | 0x30ff
Bopomofo bopomofo 0x3100 | 0x312f
Hangul Compatibility Jamo hangul_compatibility_jamo 0x3130 | 0x318f
Kanbun kanbun 0x3190 | 0x319f
Bopomofo Extended bopomofo_extended 0x31a0 | 0x31bf
CJK Strokes cjk_strokes 0x31c0 | Ox31ef
Katakana Phonetic Extensions katakana_phonetic_extensions 0x31f0 | Ox31ff
Enclosed CJK Letters and Months enclosed_cjk_letters_and_months 0x3200 | Ox32ff
CJK Compeatibility cjk_compatibility 0x3300 | 0x33ff
CJK Unified Ideographs Extension A cjk_unified_ideographs_extension_a 0x3400 | Ox4dbf
Yijing Hexagram Symbols yijing_hexagram_symbols 0x4dcO | Ox4dff
CJK Unified Ideographs cjk_unified_ideographs 0x4e00 | 0xofff
Yi Syllables yi_syllables 0xa000 | Oxa48f
Yi Radicals yi_radicals 0xa490 | Oxa4cf
Lisu lisu 0xa4d0 | Oxa4ff
Vai vai 0xa500 | Oxa63f
Cyrillic Extended-B cyrillic_extended-b 0xa640 | 0xa69f
Bamum bamum 0xa6a0 | Oxa6ff
Modifier Tone Letters modifier_tone_letters 0xa700 | OxaT71f
Latin Extended-D latin_extended-d 0xa720 | Oxa7ff
Syloti Nagri syloti_nagri 0xa800 | Oxa82f
Common Indic Number Forms common_indic_number_forms 0xa830 | Oxa83f
Phags-pa phags-pa 0xa840 | 0xa87f
Saurashtra saurashtra 0xa880 | Oxa8df
Devanagari Extended devanagari_extended 0xa8e0 | Oxa8ff
Kayah Li kayah_li 0xa900 | Oxa92f
Rejang rejang 0xa930 | 0xa95f
Hangul Jamo Extended-A hangul_jamo_extended-a 0xa960 | 0xa97f
Javanese javanese 0xa980 | 0xa9df
Myanmar Extended-B myanmar_extended-b 0xa9e0 | Oxaoff

Continued on next page

3.14. Graphical User Interface

210

MicroEJ Documentation, Revision 44d2784c

Table 14 - continued from previous page

Name Tag Start End
Cham cham 0xaa00 | Oxaasf
Myanmar Extended-A myanmar_extended-a Oxaa60 | OxaaT7f
Tai Viet tai_viet Oxaa80 | Oxaadf
Meetei Mayek Extensions meetei_mayek_extensions Oxaae0 | Oxaaff
Ethiopic Extended-A ethiopic_extended-a 0xab00 | Oxab2f
Latin Extended-E latin_extended-e Oxab30 | Oxabéf
Cherokee Supplement cherokee_supplement 0xab70 | Oxabbf
Meetei Mayek meetei_mayek OxabcO | Oxabff
Hangul Syllables hangul_syllables 0Oxac00 | Oxd7af
Hangul Jamo Extended-B hangul_jamo_extended-b 0xd7b0 | Oxd7ff
High Surrogates high_surrogates 0xd800 | 0xdb7f
High Private Use Surrogates high_private_use_surrogates 0xdb80 | Oxdbff
Low Surrogates low_surrogates 0xdc00 | oxdfff
Private Use Area private_use_area 0xe000 | Oxf8ff
CJK Compatibility Ideographs cjk_compatibility_ideographs 0xf900 | Oxfaff
Alphabetic Presentation Forms alphabetic_presentation_forms 0xfb00 | Oxfb4f
Arabic Presentation Forms-A arabic_presentation_forms-a 0xfb50 | Oxfdff
Variation Selectors variation_selectors 0xfe00 | OxfeOf
Vertical Forms vertical_forms 0xfe10 | Oxfelf
Combining Half Marks combining_half_marks 0xfe20 | Oxfe2f
CJK Compatibility Forms cjk_compatibility_forms 0xfe30 | Oxfe4f
Small Form Variants small_form_variants 0xfe50 | Oxfe6f
Arabic Presentation Forms-B arabic_presentation_forms-b 0xfe70 | Oxfeff
Halfwidth and Fullwidth Forms halfwidth_and_fullwidth_forms 0xffoo | Oxffef
Specials specials Oxfffo | Oxffff
Transparency

The second parameter is for specifying the font transparency level (1, 2, 4 or 8). If unspecified, the encoded

transparency levelis 1 (does not depend on transparency level encoded in EJF file).

Examples:

« myfont:latin:4:Embed all latin characters with 16 levels of transparency

« myfont::2:Embed all characters with 4 levels of transparency

3.14. Graphical User Interface

2n

MicroEJ Documentation, Revision 44d2784c

Font Generator Error Messages

Table 15: Static Font Generator Error Messages

ID | Type Description

0 Error The font generator has encountered an unexpected internal error.

1 Error The Fonts list file has not been specified.

2 Error The font generator cannot create the final, raw file.

3 Error The font generator cannot read the fonts list file.

4 | Warning The font generator has found no font to generate.

5 Error The font generator cannot load the fonts list file.

6 Warning The specified font path is invalid: The font will be not converted.

7 Warning There are too many arguments on a line: the current entry is ignored.

8 Error The font generator has encountered an unexpected internal error (invalid output format).
9 | Error The font generator has encountered an unexpected internal error (invalid endianness).
10 | Error The specified entry is invalid.

11 | Error The specified entry does not contain a list of characters.

12 | Error The specified entry does not contain a list of identifiers.

13 | Error The specified entry is an invalid width.

14 | Error The specified entry is an invalid height.

15 | Error The specified entry does not contain the characters’ addresses.

16 | Error The specified entry does not contain the characters’ bitmaps.

17 | Error The specified entry bits-per-pixel value is invalid.

18 | Error The specified range is invalid.

19 | Error There are too many identifiers. The output RAW format cannot store all identifiers.

20 | Error The font’s name is too long. The output RAW format cannot store all name characters.
21 | Error There are too many ranges. The output RAW format cannot store all ranges.

22 | Error Output list files cannot be created.

23 | Error Dynamic styles are not supported. Only a PLAIN font can be encoded.

24 | Error Underlined style is not supported. Only a BOLD and ITALIC font can be set.

Font Designer

Principle

The Font Designer module is a graphical tool (Eclipse plugin) that runs within the MicroEJ IDE used to build and
edit MicroUl fonts. It stores fonts in a platform-independent format.

3.14. Graphical User Interface 212

MicroEJ Documentation, Revision 44d2784c

Functional Description

font
* it |

font Fenlt

*

Designer

font
-pnglr

Fig. 66: Font Generation

Font Management
Create a MicroEJ Font

To create a MicroEJ font, follow the steps below:
1. Open the Eclipse wizard: File > New > Other... > MicroEJ > MicroEJ Font .
2. Select a directory and a name.
3. Click Finish.

Once the font is created, a new editor is opened: the MicroEJ Font Designer.

Edit a MicroEJ Font

You can edit your font with the MicroEJ Font Designer (by double-clickingona =.ejf file or after running the new
MicroEJ Font wizard).

This editor is divided into three main parts:
+ The top left part manages the main font properties.
« The top right part manages the character to embed in your font.

« The bottom part allows you to edit a set of characters or an individual character.

Main Properties

The main font properties are:
« fontsize: height and width (in pixels).

« baseline (in pixels).

3.14. Graphical User Interface 213

MicroEJ Documentation, Revision 44d2784c

« space character size (in pixels).
« styles and filters.
« identifiers.

Refer to the following sections for more information about these properties.

Font Height

A font has a fixed height. This height includes the white pixels at the top and at the bottom of each character
simulating line spacing in paragraphs.

HEE

[| [|
Al neight
L] []

] -
HEE|
Fig. 67: Font Height

Font Width: Proportional and Monospace Fonts

A monospace font is a font in which all characters have the same width. For example a ‘!’ representation will be
the same width as a ‘w’ (they will be in the same size rectangle of pixels). In a proportional font, a ‘w’ will be wider
thana I’

A monospace font usually offers a smaller memory footprint than a proportional font because the Font Designer
does not need to store the size of each character. As a result, this option can be useful if the difference between the
size of the smallest character and the biggest one is small.

Baseline

Characters have a baseline: an imaginary line on top of which the characters seem to stand. Note that characters
can be partly under the line, for example, ‘g’ or }.

[T 1] L[] (][] (1] 1 1]
| | - - - L] - -] -] |] L1} L -
.. _EEE L] m _IN LIl N L N (WEE . .

L L1 [LL LI | L] L L] L]
| . _ .] [] | L1l . = N EEEE (111} .
L L] L u L | Ll u L] 1 | L] L]

Fig. 68: The Baseline

Space Character

The Space character (0x20) is a specific character because it has no filled pixels. From the Main Properties Menu
you can fix the space character size in pixels.

Note: When the font is monospace, the space size is equal to the font width.

3.14. Graphical User Interface 214

MicroEJ Documentation, Revision 44d2784c

Styles

Font Designer allows creating a font file that holds several combinations of built-in styles (styles hardcoded in pixels
map) and runtime styles (styles rendered dynamically at runtime). However, since MicroUl 3, a MicroUl font holds
only one style: PLAIN, BOLD, ITALIC or BOLD + ITALIC.

Font Designer features three drop-downs, one for each of BOLD, ITALIC,and UNDERLINED.Each drop-down has
three options: None, Built-in and Dynamic . The font options must be adjusted to be compatible with MicroUl
3:

+ The style option Dynamic (that targets the runtime style) is forbidden; select None instead.
« The syle UNDERLINED is forbidden; select None instead.

The styles options Built-in tagthefontasbold, italic, or bold and italic. This style can be retrieved by the MicroEJ
Application thanks the methods Font.isBold() and Font.isItalic() . Adjust the styles options according to
the font:

« Thefontis a plain font: select None option for each style.
« Thefontis a bold font: select Built-in for the style bold and None for the other styles.
« Thefontis an italic font: select Built-in for the style jtalic and None for the other styles.

« Thefontis a bold and jtalic font: select Built-in forthe styles bold and italic and None for UNDERLINED .

Warning: When a font holds a dynamic style or when the style UNDERLINED is not None , an error at MicroEJ
application compile-time is thrown (incompatible font file).

Identifiers

A number of identifiers can be attached to a MicroUl font. At least one identifier is required to specify the font.
Identifiers are a mechanism for specifying the contents of the font - the set or sets of characters it contains. The
identifier may be a standard identifier (for example, LATIN) or a user-defined identifier. Identifiers are numbers,
but standard identifiers, which are in the range 0 to 80, are typically associated with a handy name. A user-defined
identifier is an identifier with a value of 81 or higher.

Character List

The list of characters can be populated through the import button, which allows you to import characters from
system fonts, images or another MicroEJ font.

Import from System Font

This page allows you to select the system font to use (left part) and the range of characters. There are predefined
ranges of characters below the font selection, as well as a custom selection picker (for example 0x21 to Oxfe for
Latin characters).

The right part displays the selected characters with the selected font. If the background color of a displayed char-
acter is red, it means that the character is too large for the defined height, or in the case of a monospace font, it
means the character is too high or too wide. You can then adjust the font properties (font size and style) to ensure
that characters will not be truncated.

When your selection is done, click the Finish button to import this selection into your font.

3.14. Graphical User Interface 215

MicroEJ Documentation, Revision 44d2784c

Import from Images
This page allows the loading of images from a directory. The images must be named as follows: 0x[UTF-87.
[extension].

When your selection is done, click the Finish button to import the images into your font.

Character Editor

When a single character is selected in the list, the character editor is opened.

Preview Character Pixmap (11 * 20)
& LT
N Em
N NN
N EN
Character Properties H-a
JE° fpaE
Index: (26] 1]
®=__ mamm
Left space:] =
Right space:] 2

Pixel Properties
Bits per pixel for preview and editing
1 2 4 @8

Current alpha

Alpha to use for input

100%]

Fig. 69: Character Editor

You can define specific properties, such as left and right space, or index. You can also draw the character pixel by
pixel - a left-click in the grid draws the pixel, a right-click erases it.

The changes are not saved until you click the Apply button. When changes are applied to a character, the editor
shows that the font has changed, so you can now save it.

The same part of the editor is also used to edit a set of characters selected in the top right list. You can then edit
the common editable properties (left and right space) for all those characters at the same time.

3.14. Graphical User Interface 216

MicroEJ Documentation, Revision 44d2784c

Working With Anti-Aliased Fonts

By default, when characters are imported from a system font, each pixel is either fully opaque or fully transparent.
Fully opaque pixels show as black squares in the character grid in the right-hand part of the character editor; fully
transparent pixels show as white squares.

However, the pixels stored inan ejf file can take one of 256 grayscale values. A fully-transparent pixel has the value
255 (the RGB value for white), and a fully-opaque pixel has the value 0 (the RGB value for black). These grayscale
values are shown in parentheses at the end of the text in the Current alpha field when the mouse cursor hovers over
a pixel in the grid. That field also shows the transparency level of the pixel, as a percentage, where 100% means
fully opaque.

Itis possible to achieve better-looking characters by using a combination of fully-opaque and partially-transparent
pixels. Thistechniqueis called anti-aliasing. Anti-aliased characters can be imported from system fonts by checking
the anti aliasing box in the import dialog. The ‘&’ character shown in the screenshot above was imported using anti
aliasing, and you can see the various gray levels of the pixels.

When the Font Generator converts an ejf file into the raw format used at runtime, it can create fonts with char-
acters that have 1, 2, 4 or 8 bits-per-pixel (bpp). If the raw font has 8 bpp, then no conversion is necessary and the
characters will render with the same quality as seen in the character editor. However, if the raw font has less than
8 bpp (the default is 1 bpp) any gray pixels in the input file are compressed to fit, and the final rendering will be of
lower quality (but less memory will be required to hold the font).

Itis useful to be able to see the effects of this compression, so the character editor provides radio buttons that allow
the user to preview the character at1, 2, 4, or 8 bpp. Furthermore, when 2, 4 or 8 bpp is selected, a slider allows the
user to select the transparency level of the pixels drawn when the left mouse button is clicked in the grid.

Previewing a Font

You can preview your font by pressing the Preview... button, which opens the Preview wizard. In the Preview
wizard, press the Select File button, and select a text file which contains text that you want to see rendered using
your font. Characters that are in the selected text file but not available in the font will be shown as red rectangles.

3.14. Graphical User Interface 217

MicroEJ Documentation, Revision 44d2784c

ro | E EE N
File Preview
Preview a file using the font
Select file | | C:his2thtext. bt
Select file encoeding
@ UTF-8 (7 UTF-18
Missing characters Unused characters
(02c), (0ed1) A -
(0:2e) . (0d2) B
(03] C
(Owdia) F
(0:d7) G
(0edB) H
(0ed9) I
(Ot a) J
(et b) K
(e d) M
Ohede) M
() O
S P o

[7] Delete unused en finish

Preview
Lorern ipsurmn dolar sit armet]consectetur adipisicing elit|sed do -
eiusmod tempor incididunt ut labore et dolore magna aligqual Ut
enitn ad minim veniam|quis nostrud exercitation ullameo laboris
nisi ut aliquip ex ea commodo consequat| Duis aute irure dolor
inreprehenderitin voluptate wvelit esse cillum dolore eu fuziat
nulla pariatur| Excepteur sint occaecat cupidatat non proident|
suntin culpa qui officia deserunt mollit anim id est laborum|

'::?:' Finish] [Cancel

Fig. 70: Font Preview

3.14. Graphical User Interface 218

MicroEJ Documentation, Revision 44d2784c

Removing Unused Characters

In order to reduce the size of a font file, you can reduce the number of characters in your font to be only those char-
acters used by your application. To do this, create a file which contains all the characters used by your application
(for example, concatenating all your NLS files is a good starting point). Then open the Preview wizard as described
above, selecting that file. If you select the check box Delete unused on finish, then those characters that are in the
font but not in the text file will be deleted from the font when you press the Finish button, leaving your font contain-
ing the minimum number of characters. As this font will contain only characters used by a specific application, it is
best to prepare a “complete” font, and then apply this technique to a copy of that font to produce an application
specific cut-down version of the font.

Use a MicroEJ Font

A MicroEJ Font must be converted to a format which is specific to the targeted platform. The Font Generator tool
performs this operation for all fonts specified in the list of fonts configured in the application launch.

Dependencies

No dependency.

Installation

The Font Designer module is already installed in the MicroEJ environment.

Use

Create anew ejf fontfile or open an existing one in order to open the Font Designer plugin.

Application Options

MicroUl libraries and its tools provide a set of options. See Application Options to have more information about the
application options.

Note: MicroUl implementation requires one thread (MicroUl Pump) and at least 100 bytes in the immortals heap.

3.14. Graphical User Interface 219

MicroEJ Documentation, Revision 44d2784c

Category: Libraries

w Libraries
w Micrell
Font
Image

Category: MicroUl

w Libraries Memary
v Microll
Font Pump events (inputs and display) queue size (in number of events): | 100 ‘
Image

Pump events thread priority: |3

Images heap size (in bytes): | 131072

Group: Memory

3.14. Graphical User Interface 220

MicroEJ Documentation, Revision 44d2784c

Option(text): Pump events (inputs and display) queue size (in number of events)

Option Name: ej.microui.memory.queue.size
Default value: 100
Description:

Specifies the size of the pump events queue.

Option(combo): Pump events thread priority

Option Name: com.microej.library.microui.pump.priority
Default value: 5

Available values: 1 to 10

Description:

Specifies the priority of the pump events queue.

Option(text): Images heap size (in bytes)

Option Name: ej.microui.memory.imagesheap.size
Default value: 131072
Description:

Specifies the size of the images heap. This heap is used to store the dynamic user images, the decoded images
and the working buffers of embedded image decoders (for instance the PNG decoder). A too small value can cause
OutOfMemory errors and incomplete drawings.

3.14. Graphical User Interface 221

MicroEJ Documentation, Revision 44d2784c

Category: Font

v Libraries Fonts to Process
~ Micrell X i i i X
Font List the fonts for the font pre-processing tool. This tool will convert them into
an internal memory format at build time,
Image

Activate the font pre-processing step

Fonts list file which will be linked (after pre-processing step) into the CPU
address space range (internal device memories, external parallel memories).

[[] Define an explicit list file

m
a
e

Group: Fonts to Process

Description:

This group allows to select a file describing the font files which need to be converted into a RAW format. At Mi-
croUl runtime, the pre-generated fonts will be read from the flash memory without any modifications (see MicroUl
specification).

Option(checkbox): Activate the font pre-processing step

Option Name: ej.microui.fontConverter.uselt
Default value: true
Description:

When checked, enables the next option Fonts 1list file. When the next option is disabled, there is no check on
the file path validity.

Option(checkbox): Define an explicit list file

Option Name: ej.microui.fontConverter.file.enabled
Default value: false
Description:

By default, list files are loaded from the classpath. When checked, only the next option Fonts list fileis processed.

3.14. Graphical User Interface 222

MicroEJ Documentation, Revision 44d2784c

Option(browse):

Option Name: ej.microui.fontConverter.file
Default value: (empty)
Description:

Browse to select a font list file. Refer to Font Generator chapter for more information about the font list file format.

Category: Image

v Libraries Images to Process
~ Micrall X X X i i i X
Font List the images for the image pre-processing tool. This tool will convert them into
| the display memory format (BPP, layout) at build time.
mage

Activate the image pre-processing step

Images list file which will be linked (after pre-processing step) into the CPU
address space range (internal device memories, external parallel memories).

[] Define an explicit list file

m
a
e

Group: Images to Process

Description:

This group allows to select a file describing the image files which need to be converted into a RAW format. At
MicroUl runtime, the pre-generated images will be read from the flash memory without any modifications (see
MicroUl specification).

Option(checkbox): Activate the image pre-processing step

Option Name: ej.microui.imageConverter.uselt
Default value: true
Description:

When checked, enables the next option Images list file. When the next option is disabled, there is no check on
the file path validity.

3.14. Graphical User Interface 223

MicroEJ Documentation, Revision 44d2784c

Option(checkbox): Define an explicit list file

Option Name: ej.microui.imageConverter.file.enabled
Default value: false
Description:

By default, list files are loaded from the classpath. When checked, only the next option Images list fileis pro-
cessed.

Option(browse):

Option Name: ej.microui.imageConverter.file
Default value: (empty)
Description:

Browse to select an image list file. Refer to Image Generator chapter for more information about the image list file
format.

Debug Traces
MicroUl logs several actions when traces are enabled. This chapter explains the traces identifiers. Some events
data are described in next tables.
[TRACE: MicroUI] Event AA(BBLCC],DDLEE])
where:
« AAis the event identifier. See next table.
+ BBis the first event data.
« CCisthefirst event data number (0x0).
+ DD is the second event data.
« EE isthe second event data number (0x1).

« etc.

3.14. Graphical User Interface 224

MicroEJ Documentation, Revision 44d2784c

Table 16: MicroUl Traces

Event | Description End of event
ID
0x0 Execute EventGenerator event %0% (see Event Type). Generatoridis | End of %0% (see Event Type).
(0) %1% and datais %2%.
0x1(1) | Drop event %0%.
0x2 (2) | Execute native inputevent %0% (see Event Type). Generatoridis %1% | End of %0% (see Event Type).
and datais %2%.
0x3 (3) | Execute display event %0% (see Event Type). Eventis %1%. End of %0% (see Event Type).
0x4 (4) | Execute user event %0%. End of %0%.
0x5 (5) | Create new image using %0% algorithm (see Create Image). Image created, image identi-
fieris %0%.
0x6 (6) | New image characteristics %0% (see Image Type), identifier is %1%
and memory size is %2% .
Oxa Flush back buffer; position (%0%, %1%) size (%2% * %3%).
(10)
Oxb Flush done.
(1)
0xc Start internal drawing operation %0% (see Drawing Type). End of drawing %0% (see
(12) Drawing Type)
0xd Start drawing operation %0% (see Drawing Type). End of drawing %0% (see
(13) Drawing Type)
Oxe Unknown event.
(14)
oxf Asynchronous drawing operation done.
(15)
0x14 Invalid input event %0%.
(20)
0x15 Event queue is full, cannot add event %0%.
(21)
0x16 Add event %0% atindex %1% ; queue length is %2%.
(22)
0x17 Replace event %0% by %1% atindex %2%; queue length is %3%.
(23)
0x18 Read event %0% atindex %1%.
(24)
3.14. Graphical User Interface 225

MicroEJ Documentation, Revision 44d2784c

Table 17: Event Type

Event ID | Description
0x0 (0) Event “Command”
0x1 (1) Event “Button”
0x2 (2) Event “Pointer”
0x3 (3) Event “State”
0x4 (4) Event “Unknwon”
0x5 (5) Event “Call Serially”
0x6 (6) Event “MicroUl Stop”
0x7 (7) Event “Input”
0x8 (8) Event “Show Displayable”
0x9 (9) Event “Hide Displayable”
Oxb (11) Event “Pending Flush”
Oxc (12) | Event “Force Flush”
0xd (13) | Event “Repaint Displayable”
Oxe (14) | Event “Repaint Current Displayable”
0xf (15) Event “KF Stop Feature”
Table 18: Create Image
Event ID | Description
0x0 (0) Create Bufferedlmage
0x1(1) Create Image from path
0x2 (2) Create Image from InputStream
Table 19: Image Type
EventID | Description
0x0 (0) New Bufferedimage
0x1 (1) Load MicroEJ Image from RAW file
0x2 (2) New MicroEJ Image from encoded image
0x3 (3) New MicroEJ Image from RAW image in external memory
0x4 (4) New MicroEJ Image from encoded image in external memory
0x5 (5) New MicroEJ Image from memory InputStream
0x6 (6) New MicroEJ Image from byte array InputStream
Ox7 (7) New MicroEJ Image from generic InputStream
0x8 (8) Link Image

Table 20: Drawing Type

Event ID Description

0x1 (1) Write pixel

0x2 (2) Draw line

0x3 (3) Draw horizontal line
0x4 (4) Draw vertical line

0x5 (5) Draw rectangle

0x6 (6) Fill rectangle

0x7 (7) Unknown

0x8 (8) Draw rounded rectangle
0x9 (9) Fill rounded rectangle

Continued on next page

3.14. Graphical User Interface

226

MicroEJ Documentation, Revision 44d2784c

Table 20 - continued from previous page

EventID Description

Oxa (10) Draw circle arc

Oxb (11) Fill circle arc

0xc (12) Draw ellipse arc

0xd (13) Fill ellipse arc

Oxe (14) Draw ellipse

0xf (15) Fill ellipse

0x10 (16) Draw circle

0x11 (17) Fill circle

0x12 (18) Draw ARGB array

0x13 (19) Draw image

0x32 (50) Draw polygon

0x33 (51) Fill polygon

0x34 (52) Get ARGB image data

0x35 (53) Draw string

0x36 (54) Draw deformed string

0x37 (55) Draw deformed image

0x38 (56) Draw character with rotation (bilinear)
0x39 (57) Draw character with rotation (simple)
0x3a (58) Get string width

0x3b (59) Get pixel

0x64 (100) | Draw thick faded point

0x65 (101) | Draw thick faded line

0x66 (102) | Draw thick faded circle

0x67 (103) | Draw thick faded circle arc

0x68 (104) | Draw thick faded ellipse

0x69 (105) | Draw thick line

0x6a (106) | Draw thick circle

0x6b (107) | Draw thick ellipse

0x6¢ (108) | Draw thick circle arc

0xc8 (200) | Draw image with fli

0xc9 (201) | Draw image with rotation (simple)
Oxca (202) | Draw image with rotation (bilinear)
Oxcb (203) | Draw image with scalling (simple)
Oxcc (204) | Draw image with scalling (bilinear)

The traces are SystemView compatible. The following text can be copied in afile called SYSVIEW_MicroUI.txt and
copied in SystemView installation folder.

NamedType
NamedType
NamedType
NamedType
NamedType
NamedType
NamedType
NamedType
NamedType
NamedType
NamedType
NamedType
NamedType

UIEvent
UIEvent
UIEvent
UIEvent
UIEvent
UIEvent
UIEvent
UIEvent
UIEvent
UIEvent
UIEvent
UIEvent
UIEvent

0=COMMAND

1=BUTTON

2=POINTER

3=STATE

4=UNKNOWN
5=CALLSERIALLY
6=STOP

7=INPUT
8=SHOW_DISPLAYABLE
9=HIDE_DISPLAYABLE
11=PENDING_FLUSH
12=FORCE_FLUSH
13=REPAINT_DISPLAYABLE

(continues on next page)

3.14. Graphical User Interface

227

MicroEJ Documentation, Revision 44d2784c

NamedType UIEvent 14=REPAINT_CURRENT_DISPLAYABLE
NamedType UIEvent 15=KF_STOP_FEATURE

NamedType UINewImage 0=MUTABLE_IMAGE
NamedType UINewImage 1=IMAGE_FROM_PATH
NamedType UINewImage 2=IMAGE_FROM_INPUTSTREAM

NamedType UIImageData O=NEW_IMAGE

NamedType UIImageData 1=LOAD_MICROEJ
NamedType UIImageData 2=NEW_ENCODED

NamedType UIImageData 3=NEW_MICROEJ_EXTERNAL
NamedType UIImageData 4=NEW_ENCODED_EXTERNAL
NamedType UIImageData 5=MEMORY_INPUTSTREAM
NamedType UIImageData 6=BYTEARRAY_INPUTSTREAM
NamedType UIImageData 7=GENERIC_INPUTSTREAM
NamedType UIImageData 8=LINK_IMAGE

NamedType GEDraw 1=WRITE_PIXEL

NamedType GEDraw 2=DRAW_LINE

NamedType GEDraw 3=DRAW_HORIZONTALLINE
NamedType GEDraw 4=DRAW_VERTICALLINE
NamedType GEDraw 5=DRAW_RECTANGLE
NamedType GEDraw 6=FILL_RECTANGLE
NamedType GEDraw 7=UNKNOWN

NamedType GEDraw 8=DRAW_ROUNDEDRECTANGLE
NamedType GEDraw 9=FILL_ROUNDEDRECTANGLE
NamedType GEDraw 10=DRAW_CIRCLEARC
NamedType GEDraw 11=FILL_CIRCLEARC
NamedType GEDraw 12=DRAW_ELLIPSEARC
NamedType GEDraw 13=FILL_ELLIPSEARC
NamedType GEDraw 14=DRAW_ELLIPSE
NamedType GEDraw 15=FILL_ELLIPSE
NamedType GEDraw 16=DRAW_CIRCLE
NamedType GEDraw 17=FILL_CIRCLE
NamedType GEDraw 18=DRAW_ARGB

NamedType GEDraw 19=DRAW_IMAGE

NamedType GEDraw 50=DRAW_POLYGON

NamedType GEDraw 51=FILL_POLYGON

NamedType GEDraw 52=GET_IMAGEARGB

NamedType GEDraw 53=DRAW_STRING

NamedType GEDraw 54=DRAW_DEFORMED_STRING
NamedType GEDraw 55=DRAW_IMAGE_DEFORMED
NamedType GEDraw 56=DRAW_CHAR_ROTATION_BILINEAR
NamedType GEDraw 57=DRAW_CHAR_ROTATION_SIMPLE
NamedType GEDraw 58=STRING_WIDTH

NamedType GEDraw 59=GET_PIXEL

NamedType GEDraw 100=DRAW_THICKFADEDPOINT
NamedType GEDraw 101=DRAW_THICKFADEDLINE
NamedType GEDraw 102=DRAW_THICKFADEDCIRCLE
NamedType GEDraw 103=DRAW_THICKFADEDCIRCLEARC
NamedType GEDraw 104=DRAW_THICKFADEDELLIPSE
NamedType GEDraw 105=DRAW_THICKLINE

NamedType GEDraw 106=DRAW_THICKCIRCLE
NamedType GEDraw 107=DRAW_THICKELLIPSE

(continued from previous page)

(continues on next page)

3.14. Graphical User Interface

228

MicroEJ Documentation, Revision 44d2784c

(continued from previous page)

NamedType GEDraw 108=DRAW_THICKCIRCLEARC

NamedType GEDraw 200=DRAW_FLIPPEDIMAGE

NamedType GEDraw 2071=DRAW_ROTATEDIMAGENEARESTNEIGHBOR
NamedType GEDraw 202=DRAW_ROTATEDIMAGEBILINEAR
NamedType GEDraw 203=DRAW_SCALEDIMAGENEARESTNEIGHBOR
NamedType GEDraw 204=DRAW_SCALEDIMAGEBILINEAR

#

MicroUI

#

0 UI_EGEvent (MicroUI) Execute EventGenerator event %UIEvent (generatorID = %u,.
—data = %p) | (MicroUI) EventGenerator event %UIEvent done

1 UI_DROPEvent (MicroUI) Drop event %p

2 UI_InputEvent (MicroUI) Execute native input event %UIEvent (generatorID = %u, event =
—%p) | (MicroUI) Native input event %UIEvent done

3 UI_DisplayEvent (MicroUI) Execute display event %UIEvent (event = %p) o
< | (MicroUI) Display event %UIEvent done

4 UI_UserEvent (MicroUI) Execute user event %p o
— | (MicroUI) User event %p done

5 UI_OpenImage (MicroUI) Create %UINewImage -
. | (MicroUI) Image created; id = %p

6 UI_ImageData (MicroUI) %UINewImage (%UIImageData): id = %p; size = %d*%d

#

MicroUI Graphics Engine
#

10 GE_FlushStart
11 GE_FlushDone

12 GE_DrawInternal
13 GE_Draw

14 GE_Unknown

15 GE_GPUDrawDone
#

MicroUI Input Engine
#

20 IE_InvalidEvent
21 IE_QueueFull

22 IE_AddEvent

23 IE_ReplaceEvent
<~>%U)

24 IE_ReadEvent

Error Messages

(MicroUI GraphicalEngine) Flush back buffer (%u,%u) (%u*%u)

(MicroUI GraphicalEngine) Flush done

(MicroUI GraphicalEngine) Drawing operation %GEDraw [
—(MicroUI GraphicalEngine) Drawing operation %GEDraw done

(MicroUI GraphicalEngine) Drawing operation %GEDraw [
<»(MicroUI GraphicalEngine) Drawing operation %GEDraw done

(MicroUI GraphicalEngine) Unknown event

(MicroUI GraphicalEngine) Asynchronous drawing operation done

(MicroUl
(MicroUI
(MicroUI
(MicroUl

(MicroUI

Input Engine) Invalid event: %p

Input Engine) Queue full, cannot add event %p

Input Engine) Add event %p (index = %u / queue length = %u)

Input Engine) Replace event %p by %p (index = %u / queue length =

Input Engine) Read event %p (index %u)

When an exception is thrown by the implementation of the MicroUl API, the exception MicroUlException with the
error message MicroUI:E=<messageld> is issued, where the meaning of <messagelId> is defined in following

table:

3.14. Graphical User Interface

229

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/MicroUIException.html

MicroEJ Documentation, Revision 44d2784c

Table 21: MicroUl Error Messages

Message ID Description

1 Another EventGenerator cannot be added into the system pool (max 254).

0 [platform issue] Result of MicroUl static initialization step seems invalid. MicroUl cannot
start. Please fix MicroUl static initialization step (see Static Initialization) and rebuild the
platform.

-1 MicroUl is not started; call MicroUl.start() before using a MicroUl API.

-2 Unknown event generator class name.

-3 Deadlock. Cannot wait for an event in the same thread that runs events. Display.
waitFlushCompleted() must not be called in the MicroUl thread (for example in render
method).

-4 Resource’s path must be relative to the classpath (start with ‘/’) or resource is not available.

-5 The resource data cannot be read for unknown reason.

-6 The resource has been closed and cannot be used anymore.

-7 Out of memory. Not enough memory to allocate the Image ’s buffer. Try to close some
uselessimages and retry opening the new image, orincrease the size of the MicroUl images
heap.

-8 The platform cannot decode this kind of image, because the required runtime image de-
coder is not available in the platform.

-9 This exception is thrown when the FIFO of the internal MicroUl thread is full. In this case,
no more event (such as requestRender , input events, etc.) can be added into it.

Most of time this error occurs when:
« Thereis a user thread which performs too many calls to the method requestRender
without waiting for the end of the previous drawing.
« Too many input events are pushed from an input driver to the MicroUl thread (for
example some touch events).

-10 There is no display on the platform.

-n There is no font (platform and application).

-12 The maximum number of event generators in the pool (254) has been reached.

Migration Guide

The MicroUl implementation is provided by the MicroEJ Ul Pack. According the MicroEJ Ul Pack used to build the
MicroEJ Platform, the application has to be updated.

+ Refer to the table that illustrates the implemented MicroUl API for each MicroEJ Ul Pack.

+ Refer to the latest MicroUl API Changelog.
+ Refer to the latest Drawing API Changelog.

The following chapters describe the changes to perform in the application according the MicroEJ Ul Pack used to
build the MicroEJ Platform.

From 12.x to 13.x

« Update ej.api#microui dependency to the latest available version 3.x.

+ Add ej.api#drawing dependency.

3.14. Graphical User Interface 230

https://repository.microej.com/modules/ej/api/microui
https://repository.microej.com/modules/ej/api/drawing
https://repository.microej.com/modules/ej/api/microui/
https://repository.microej.com/modules/ej/api/drawing/

MicroEJ Documentation, Revision 44d2784c

<dependencies>
<dependency org="ej.api" name="microui"” rev="3.1.0"/>
<dependency org="ej.api” name="drawing" rev="1.0.3"/>
</dependencies>

From 10.x to 12.x

« In MicroEJ application launcher > Configuration tab > MicroUl: check Use Flying Images when the
application is using the flying images (property com.microej.library.microui.flyingimage.enabled).

+ In MicroEJ application launcher, increase the Java heap: it now contains MicroUl images metadata (size,
format, clip etc.). The iceatea heap has been automatically decreased.

From 9.xto 10.x

« In MicroEJ application launcher > Configuration tab > MicroUl: set the image heap size (property
ej.microui.memory.imagesheap.size).

3.14.2 MWT (Micro Widget Toolkit)

Introduction

MWT is a toolkit that simplifies the creation and use of graphical user interface widgets on a pixel-based display.

The aim of this library is to be sufficient to create complex applications with a minimal framework. It provides the
main concepts without managing particular needs. Specific needs can be met by a MWT expert by creating new
widgets, adding more complex concepts, etc. The flexibility of the MWT open framework allows the selection of
only what is necessary for the application in order to guarantee lightweight applications and fast execution.

To use the MWT library, add the following line to a module description file:

<dependency org="ej.library.ui” name="mwt" rev="3.2.1"/>

Concepts

3.14. Graphical User Interface 231

MicroEJ Documentation, Revision 44d2784c

Graphical Elements

C Desktop A Widget

O intx

2 Animator animator Widg t O int
2 EventDispatcher eventDispatcher ; o intf-.ridth

2 RenderPolicy renderPolicy

2 int height
i Styleshest styleshest O Stylestyle
children
C Displayable A Container

Widget

Awidget is an object that is intended to be displayed on a screen. A widget occupies a specific region of the display
and holds a state. A user may interact with a widget (using a touch screen or a button for example).

Widgets are arranged on a desktop. A widget can be part of only one desktop hierarchy, and can appear only once
on that desktop.

Container

A container follows the composite pattern: it is a widget composed of other widgets. It also defines the layout
policy of its children (defining their bounds). The children’s positions are relative to the position of their parent.
Containers can be nested to design elaborate user interfaces.

By default, the children are rendered in the order in which they have been added in the container. And thus if the
container allows overlapping, the widgets added last will be on top of the widgets added first. A container can also
modify how its children are rendered.

Desktop

A desktop is a displayable intended to be shown on a display (cf. MicroUl). At any time, only one desktop can be
displayed per display.

A desktop contains a widget (or a container). When the desktop is shown, its widget (and all its hierarchy for a
container) is drawn on the display.

3.14. Graphical User Interface 232

MicroEJ Documentation, Revision 44d2784c

Rendering

A new rendering of a widget on the display can be requested by calling its requestRender () method. The render-
ing is done asynchronously in the MicroUl thread.

When a container is rendered, all its children are also rendered.

A widget can be transparent, meaning that it does not draw every pixel within its bounds. In this case, when this
widget is asked to be rendered, its parent is asked to be rendered in the area of the widget (recursively if the parent
is also transparent). Usually a widget is transparent when its background (from the style) is transparent.

A widget can also be rendered directly in a specific graphics context by calling its render(GraphicsContext)
method. It can be useful to render a widget (and its children) in an image for example.

Render Policy

Arender policy is a strategy that MWT uses in order to repaint the entire desktop or to repaint a specific widget.

The most naive render policy would be to render the whole hierarchy of the desktop whenever a widget has
changed. However DefaultRenderPolicy is smarter than that: it only repaints the widget, and its ances-
tors if the widget is transparent. The result is correct only if there is no overlapping widget, in which case
OverlapRenderPolicy should be used instead. This policy repaints the widget (or its non-transparent ancestor),
then it repaints all the widgets that overlap it.

When using a partial buffer, these render policies can not be used because they render the entire screen in a single
pass. Instead, a custom render policy which renders the screen in multiple passes has to be used. Refer to the
partial buffer demo for more information on how to implement this render policy and how to use it.

The render policy can be changed by overridding Desktop.createRenderPolicy() .

Lay Out

All widgets are laid out at once during the lay out process. This process can be started by Desktop.
requestLayOut (), Widget.requestLayOut() . The layoutis also automatically done when the desktop is shown (
Desktop.onShown()). This process is composed of two steps, each step browses the hierarchy of widgets following
a depth-first algorithm:

« compute the optimal size for each widget and container (considering the constraints of the lay out),
« set position and size for each widget.

Once the position and size of a widget is set, the widget is notified by a call to onLaidOut() .

Event Dispatch

Events generated in the hardware (touch, buttons, etc.) are sent to the event dispatcher of the desktop. It is then
responsible of sending the event to one or several widgets of the hierarchy. A widget receives the event through
its handleEvent(int) method. This method returns a boolean that indicates whether or not the event has been
consumed by the widget.

Widgets are disabled by default and don’t receive the events.

3.14. Graphical User Interface 233

https://github.com/MicroEJ/Demo-PartialBuffer

MicroEJ Documentation, Revision 44d2784c

Pointer Event Dispatcher

By default, the desktop proposes an event dispatcher that handles only pointer events.

Pointer events are grouped in sessions. A session starts when the pointer is pressed, and ends when the pointer is
released or when it exits the pressed widget.

While no widget consumes the events, they are sent to the widget that is under the pointer (see Desktop.
getWidgetAt(int, int)), then sentto allits parent hierarchy recursively.

Once a widget has consumed an event, it will be the only one to receive the next events during the session.

Pointer released within widget bounds - DRAGGED event

< Pointer dragged or released consumed by another widget - EXITED event | _—
NOT PRESSED STATE g3 PRESSED STATE ___ Pointer dragged within widget bounds - DRAGGED event
< Pointer dragged or released outside widget bounds - EXITED event
~—___ Pointer pressed within widget bounds - PRESSED event R

A widget can redefine its reactive area by subclassing the contains(int x, int y) method. Itis useful when a
widget does not fill fully its bounds.

Style

A style describes how widgets must be rendered on screen. The attributes of the style are strongly inspired from
CSS.

Dimension

The dimension is used to constrain the size of the widget.
MWT provides multiple implementations of dimensions:

« NoDimension does not constrain the dimension of the widget, so the widget will take all the space granted
by its parent container.

« OptimalDimension constrains the dimension of the widget to its optimal size, which is given by the
computeContentOptimalSize() method of the widget.

+ FixedDimension constrains the dimension of the widget to a fixed absolute size.

» RelativeDimension constrains the dimension of the widget to a percentage of the size of its parent con-
tainer.

Alignment

The horizontal and vertical alignments are used to position the content of the widget within its bounds.

The alignment is used by the framework to position the widget within its available space if the size of the widget
has been constrained with a Dimension.

The alignment can also be used in the renderContent() method in order to position the drawings of the widget
(such as a text or an image) within its content bounds.

3.14. Graphical User Interface 234

MicroEJ Documentation, Revision 44d2784c

Outlines

The margin, border and padding are the 3 outlines which wrap the content of the widget. The widget is wrapped
in the following sequence: first the padding, then the border, and finally the margin.

Margin

Border
Padding

Content

MWT provides multiple implementations of invisible outlines which are usually used for margin and padding:
« NoOutline does notwrap the widgetin an outline.
« UniformOutline wraps the widgetin an outline which thickness is equal on all sides.
« FlexibleOutline wraps the widgetin an outline which thickness can be configured for each side.
MWT also provides multiple implementations of visible outlines which are usually used for border:
+ RectangularBorder draws a plain rectangle around the widget.

+ RoundedBorder draws a plain rounded rectangle around the widget.

Background

The background is used to render the background of the widget. The background covers the border, the padding
and the content of the widget, but not its margin.

MWT provides multiple implementations of backgrounds:
« NoBackground leaves a transparent background behind the widget.
+ RectangularBackground draws a plain rectangle behind the widget.
+ RoundedBackground draws a plain rounded rectangle behind the widget.

« ImageBackground draws animage behinds the widget.

Color

The color is not used by the framework itself, but it may be used in the renderContent () to select the color of the
drawings.

3.14. Graphical User Interface 235

MicroEJ Documentation, Revision 44d2784c

Font

The fontis not used by framework itself, but it may be used in the renderContent () to select the fontto use when
drawing strings.

Extra fields

Extra fields are not used by framework itself, but they may be used in the renderContent() to customize the
behavior and the appearance of the widget.

See chapter How to Define an Extra Style Field for more information on extra fields.

Stylesheet

A stylesheet allows to customize the appearance of all the widgets of a desktop without changing the code of the
widget subclasses.

MWT provides multiple implementations of stylesheets:
+ VoidStylesheet assignsthe same default style for every widget.
« CascadingStylesheet assigns styles to widgets using selectors, similarly to CSS.

For example, the following code customizes the style of every Label widget of the desktop:

CascadingStylesheet stylesheet = new CascadingStylesheet();

EditableStyle labelStyle = stylesheet.getSelectorStyle(new TypeSelector(Label.class));
labelStyle.setColor(Colors.RED);
labelStyle.setBackground(new RectangularBackground(Colors.WHITE));

desktop.setStylesheet(stylesheet);

Animations

MWT provides a utility class in order to animate widgets: Animator. When a widget is being animated by an anima-
tor, the widget is notified each time that the display is flushed. The widget can use this interrupt in order to update
its state and request a new rendering.

See chapter How to Animate a Widget for more information on animating a widget.

Partial buffer considerations

Rendering a widget in partial buffer mode may require multiple cycles if the buffer is not big enough to hold all the
pixels to update in a single shot. This means that rendering is slower in partial buffer mode, and this may cause
performance being significantly affected during animations.

Besides, the whole screen is flushed in multiple times instead of a single one, which means that the user may see
the display at a time where every part of the display has not been flushed yet.

Due to these limitations, it is not recommended to repaint big parts of the screen at the same time. For example, a
transition on a small part of the screen will look better than a transition affecting the whole screen. A transition will
look perfect if the partial buffer can hold all the lines to repaint. Since the buffer holds a group of lines, a horizontal
transition may not look the same as a vertical transition.

3.14. Graphical User Interface 236

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/animation/Animator.html

MicroEJ Documentation, Revision 44d2784c

Desktop and widget states

Desktop and widgets pass through different states. Once created, they can be attached, then they can be shown.

Adesktop is attached automatically as soon asiitis shown on the display. It can also be attached manually by calling
Desktop.setAttached() . It could be used to render the desktop (and its widgets) on an image for example.

A widget is considered as attached when it is contained by a desktop that is attached.

In the same way, by default, a widget is shown when its desktop is shown. But for optimization purpose, a container
can control when its children are shown or hidden. A typical use case is when the widgets are moved outside the
display.

Once awidgetis attached, it means that it is ready to be shown (for instance, the necessary resources are allocated).
In other words, once attached a widget is ready to be rendered (on an image or on the display).

Once a widget is shown, it means that it is intended to be rendered on the display. While shown, it may start a
periodic refresh or an animation.

3.14. Graphical User Interface 237

MicroEJ Documentation, Revision 44d2784c

Malin Desl‘(tup Contlamer Wndlgetl Wld‘geﬂ
] i] | i
' i ' i

Create a complete hierarchy
' i ' i
' I ' ' I
tnew : : :
I I I I I
L new 1 ! : :
1 i | 0 i
' new I ' ' !
1 i | ' I
! new ! ' ' I

| addChildWidget 1)

' i ' i
' I ' ' I
! setWidget(Container) } : : }
—_——

I I I I I
! requestShow() } : : }
—_—
1 i 0 0 i
: ! setAttached() : : ;
' ' ' I
I I I I I
. ! onAttached() , . |
—_—
] i]] i
: } : onArttached() : }
0 i 0 I i
\ ! requestLayout(} \ \ |
i i i i i
! | computeOptimalSize() _ | ! i
0 i > 0 i
! i | computeContentOptimalSize() | i
' I ! ' I
] i] i
| | | computeOptimalSize) ! i
0 i T l i
! i ! | computeContentOptimalSize() |
i | i T |
: : layOut(} : : :
0 —_—— 0 i
: } : onShown() : }
' I ' I
| | ; | |
: ; 1 layOutChildren() : ;
i i i i i
: : ! layOQut() 0 :
0 i 1 | i
: ; : ' onShown() ;
' I ' I
I I I] I
0 i i
0 i Add another Widget in the container i
' I I ' I
| addChildWidget2) | i i i
i T] I I
: 1 : onAttached() : 1
] i] T i
| requestLayout() i ! ! i
I T 1 0 i
| | | computeOptimalSize(} | |
| | e | |
i | | — i |
| | i computeOptimalSize() | |
0 i T d i
: } : : computeContentOptimalSize() }
i i i r i
| | | computeOptimalSize() i |
0 i r T]
| | | | i computeContentOptimalSize()
i | i i
0 i 0 0 i
' I ' layOutChildren() ! |
i i b i i
g ; ! layOut() ' ;
0 i 1 i i
! ; ! layOut() !]
' I ' |]
: } : : | onShown()
' I ' '
0 i 0 0 i
' I I
: : Remove this Widget from the container :
I I I I I
, removeChild(Widget2) i i | i
T T d 0 i
: } : onDetached() : }
' I T T d
| | | onHidden() | |
i i i ; i
: : : Detach it from the desktop :
0 i 0 I i
: setWidget(null) 1 : : 1
— = ' ' I
: 1 onDetached() : : 1
I V%I I I
: 1 : onDetached() : 1
] i]] i
! | onHidden() ! ! i
' 7 1 ' I
| | | onHidden() | |
' I i 1 I
I | ' ' i
Main Desktop Container Widgetl Widget2

3.14. Graphical User Interface 238

MicroEJ Documentation, Revision 44d2784c

The following sections will present several ways to customize and extend the framework to better fit your needs.

How to Create a Widget

A widget is the main way to render information on the display. A set of pre-defined widgets is described in the
Widgets and Examples section.

If the needed widget does not already exist, it is possible to create it from scratch (or by derivating another one).

To create a custom widget, a new class should be created, extending the Widget class. Widget subclasses have to
implement two methods and may override optional methods, as explained in the following sections.

Implementing the mandatory methods
Computing the optimal size of the widget

The computeContentOptimalSize() method is called by the MWT framework in order to know the optimal size
of the widget. The optimal size of the widget should be big enough to contain all the drawings of the widget.

The Size parameter of the computeContentOptimalSize() method initially contains the size available for the
widget. An available width or height equal to Widget.NO_CONSTRAINT means that the optimal size should be
computed without considering any restriction on the respective axis. Before the method returns, the size object
should be set to the optimal size of the widget.

When implementing this method, the getStyle() method may be called in orderto retrieve the style of the widget.

For example, the following snippet computes the optimal size of a label:

@0verride

protected void computeContentOptimalSize(Size size) {
Font font = getStyle().getFont();
int width = font.stringWidth(this.text);
int height = font.getHeight();
size.setSize(width, height);

Rendering the content of the widget

The renderContent() method is called by the MWT framework in order to render the content of the widget.
When implementing this method, the getStyle() method may be called in orderto retrieve the style of the widget.

For example, the following snippet renders the content of a label:

@0verride

protected void renderContent(GraphicsContext g, int contentWidth, int contentHeight) {
Style style = getStyle();
g.setColor(style.getColor());
Painter.drawString(g, style.getFont(), this.text, 0, 0);

3.14. Graphical User Interface 239

MicroEJ Documentation, Revision 44d2784c

Handling events

When a widget is created, it is disabled and it will not receive any event. A widget may be enabled or disabled by
calling setEnabled() . Acommon practice is to enable the widget in its constructor.

Enabled widgets can handle events by overriding handleEvent() . MicroUl event APIs may be used in order to
know more information on the event, such as its type. The handleEvent () method should return whether or not
the event was consumed by the widget.

For example, the following snippet prints a message when the widget receives an event:

@0verride

public boolean handleEvent(int event) {
System.out.println(”"Event type:
return false;

"

+ Event.getType(event));

Consuming events

To indicate that an event was consumed by a widget, handleEvent() should return true. Usually, once an event
is consumed, it is not dispatched to other widgets (this behavior is controlled by the event dispatcher). The widget
that consumed the event is the last one to receive it.

The following guidelines are recommended to decide when to consume an event and when not to consume an
event:

« If the widget triggers an action when receiving the event, it consumes the event.

« If the widget does not trigger an action when receiving the event, it does not consume the event.

Note: Iftheeventis Pointer.PRESSED,do notconsumetheeventunlessitisrequired thatthe subsequent widgets
in the hierarchy do not receive it. The Pointer.PRESSED event is special because pressing a widget is usually not
the deciding factor to trigger an action. The user has to release or to drag the widget to trigger an action. If the user
presses a widget and then drags the pointer (e.g. their finger or a stylus) out of the widget before releasing it, the
action is not triggered.

Listening to the life-cycle hooks

Widget subclasses may override the following methods in order to allocate and free the necessary resources:
« onAttached()
» onDetached()
e onLaidOut()
» onShown()
» onHidden()

For example, the onAttached() method may be overridden to load an image:

@Override
protected void onAttached() {
this.image = Resourcelmage.loadImage(this.imagePath);

}

3.14. Graphical User Interface 240

MicroEJ Documentation, Revision 44d2784c

Likewise, the onDetached() method may be overridden to close the image:

@0verride
protected void onDetached() {
this.image.close();

}

For example, the onShown() method may be overridden to start an animation:

@Override

protected void onShown() {
Animator animator = getDesktop().getAnimator();
animator.startAnimation(this);

Likewise, the onHidden() method may be overridden to stop an animation:

@Override

protected void onHidden() {
Animator animator = getDesktop().getAnimator();
animator.stopAnimation(this);

How to Create a Container

To create a custom container, a new class should be created, extending the Container class. This new class may
define a constructor and setter methods in order to provide a way for the user to configure the container, such
as its orientation. Container subclasses have to implement two methods and may override optional methods, as
explained in the following sections.

Implementing the mandatory methods

This section explains how to implement the two mandatory methods of a container subclass.

Computing the optimal size of the container

The computeContentOptimalSize() method is called by the MWT framework in order to know the optimal size
of the container. The optimal size of the container should be big enough so that each child can be laid out with a
size at least as big as its own optimal size.

The container is responsible for computing the optimal size of every child. To do so, the
computeChildOptimalSize() method should be called for every child. After this method is called, the opti-
mal size of the child can be retrieved by calling getWidth() and getHeight() on the child widget.

The Size parameter of the computeContentOptimalSize() method initially contains the size available for the
container. An available width or height equal to Widget.NO_CONSTRAINT means that the optimal size should be
computed without considering any restriction on the respective axis. Before the method returns, the size object
should be set to the optimal size of the container.

For example, the following snippet computes the optimal size of a simple wrapper:

@0verride
protected void computeContentOptimalSize(Size size) {
Widget child = getChild(0);
(continues on next page)

3.14. Graphical User Interface 241

MicroEJ Documentation, Revision 44d2784c

(continued from previous page)

computeChildOptimalSize(child, size.getWidth(), size.getHeight());
size.setSize(child.getWidth(), child.getHeight());

Laying out the children of the container

The layOutChildren() method is called by the MWT framework in order to lay out every child of the container,
i.e. to set the position and size of the children. If a child is laid out outside the bounds of the container (partially or
fully), only the part of the widget which is within the container bounds will be visible.

The container is responsible for laying out each child. To do so, the layOutChild() method should be called for
every child. Before this method is called, the optimal size of the child can be retrieved by calling getWidth() and
getHeight() on the child widget.

When laying out a child, its bounds have to be passed as parameter. The position will be interpreted as relative to
the position of the container content. This means that the position should not include the outlines of the con-
tainer. This means that the (0, ©) coordinates represent the top-left pixel of the container content and the
(contentWidth-1, contentHeight-1) coordinates represent the bottom-right pixel of the container content.

For example, the following snippet lays out the children of a simple wrapper:

@Override

protected void layOutChildren(int contentWidth, int contentHeight) {
Widget child = getChild(0);
layOutChild(child, @, @, contentWidth, contentHeight);

Managing the visibility of the children of the container

By default, when a container is shown, each of its children is shown too. This behavior can be changed by over-
riding the setShownChildren() method of Container.Whenimplementing this method, the setShownChild()
method should be called for each child which should be shown when the container is shown.

At any time while the container is visible, children may be shown or hidden by calling setShownChild() or
setHiddenChild() .

When a container is hidden, each of its children is hidden too (unless it is already hidden). It is not necessary to
override setHiddenChildren() , except for optimization.

Providing APIs to change the children list of the container

The Container classintroduces protected APIlsin order to manipulate the list of children of the container. These
methods may be overridden in the container subclass and set as public in order to make these APIs available for
the user.

Each of the following methods may be overridden individually:
« addChild()
o removeChild()
e removeAllChildren()
e insertChild()

3.14. Graphical User Interface 242

MicroEJ Documentation, Revision 44d2784c

e replaceChild()
» changeChildIndex()

For example, the following snippet allows the user to call the addChild() method on the container:

@Override

public void addChild(Widget child) {
super.addChild(child);

3

How to Animate a Widget

Starting and stopping the animation

To animate a widget, an Animator instance is required. This instance can be retrieved from the desktop of the
widget by calling Desktop.getAnimator() . Make sure that your widget subclass implements the Animation
interface so that it can be used with an Animator .

An animation can be started at any moment, provided that the widget is shown. For example, the animation can
start on a click event. Likewise, an animation can be stopped at any moment, for example a few seconds after the
animation has started. Once the widget is hidden, its animation should always be stopped to avoid memory leaks
and unnecessary operations.

To start the animation of the widget, call the startAnimation() method of the Animator instance. To stop it, call
the stopAnimation() method of the same Animator instance.

Forexample, the following snippet starts the animation as soon as the widget is shown and stops it once the widget
is hidden:

public class MyAnimatedWidget extends Widget implements Animation {

private long startTime;
private long elapsedTime;

@0verride

protected void onShown() {
// start animation
getDesktop().getAnimator().startAnimation(this);
// save start time
this.startTime = System.currentTimeMillis();
// set widget initial state
this.elapsedTime = 0;

}

@Override

protected void onHidden() {
// stop animation
getDesktop().getAnimator().stopAnimation(this);

Performing an animation step

The tick() method is called by the animator in order to update the widget. It is called in the Ul thread once the
display has been flushed. This method should not render the widget but should update its state and request a new

3.14. Graphical User Interface 243

MicroEJ Documentation, Revision 44d2784c

render if necessary. The tick() method should return whether or not the animation should continue after this
increment.

For example, the following snippet updates the state of the widget when it is ticked, requests a new render and
keeps the animation going until 5 seconds have passed:

@Override

public boolean tick(long currentTimeMillis) {
// update widget state
this.elapsedTime = currentTimeMillis - this.startTime;
// request new render
requestRender();
// return whether to continue or to stop the animation
return (this.elapsedTime < 5_000);

3

The renderContent() method should render the widget by using its current state (saved in the fields of the wid-
get). This method should not call methods such as System.currentTimeMillis() because the widget could be
rendered in multiple passes, for example if a partial buffer is used.

For example, the following snippet renders the current state of the widget by displaying the time elapsed since the
start of the animation:

@0verride

protected void renderContent(GraphicsContext g, int contentWidth, int contentHeight) {
Style style = getStyle();
g.setColor(style.getColor());
Painter.drawString(g, Long.toString(this.elapsedTime), style.getFont(), 0, 0);

How to Define an Outline or Border

To create a custom outline or border, a new class should be created, extending the Outline class. Outline sub-
classes have to implement two methods, as explained in the following sections.

Applying the outline on an outlineable object

The apply(Outlineable) method is called by the MWT framework in order to subtract the outline from a Size
or Rectangle object.

The Outlineable parameter of the method initially contains the size or bounds of the box, including the outline.
Before the method returns, the outlineable object should be modified by subtracting the outline. In order to remove
the outline from the object, the removeOutline() method of Outlineable should be used, passing as argument
the thickness on each side.

For example, the following snippet applies an outline of 1 pixel on every side:

@Override
public void apply(Outlineable outlineable) {
outlineable.removeOutline(1, 1, 1, 1);

}

3.14. Graphical User Interface 244

MicroEJ Documentation, Revision 44d2784c

Applying the outline on a graphics context

The apply(GraphicsContext, Size) method is called by the MWT framework in order to render the outline (only
relevant if it is a border) and to update the translation and clip of a graphics context.

The Size parameter of the method initially contains the size of the box, including the outline. Before the method
returns, the size object should be modified by subtracting the outline. In order to remove the outline from the
object, the removeOutline() method of Outlineable should be used, passing as argument the thickness on
each side.

For example, the following snippet applies an outline of 1 pixel on every side:

@Override

public void apply(GraphicsContext g, Size size) {
size.removeOutline(1, 1, 1, 1);
g.translate(1, 1);
g.setClip(@, 0, size.getWidth(), size.getHeight());

How to Define a Background

To create a custom background, a new class should be created, extending the Background class. Background
subclasses have to implement two methods, as explained in the following sections.

Informing whether the background is transparent

The isTransparent() method is called by the MWT framework in order to know whether or not the background is
transparent. A background is considered as transparent if it does not draw every pixel with maximal opacity when
itis applied.

For example, the following snippet informs that the background is completely opaque regardless of its size:

@Override
public boolean isTransparent(int width, int height) {
return false;

}

Applying the background on a graphics context

The apply(GraphicsContext g, Size size) method is called by the MWT framework in order to render the
background and to set or remove the background color of subsequent drawings.

For example, the following snippet applies a white background:

@Override

public void apply(GraphicsContext g, Size size) {
g.setColor(Colors.WHITE);
Painter.fillRectangle(g, 0, 0, size.getWidth(), size.getHeight());
g.setBackgroundColor(Colors.WHITE);

3.14. Graphical User Interface 245

MicroEJ Documentation, Revision 44d2784c

How to Create a Desktop Event Dispatcher

Creating a custom event dispatcher can help you address two use cases:

« [Dispatch] Extending an EventDispatcher is used to dispatch the events. For example, the FocusEventDis-
patcher will send the events to the widget owning the focus.

+ [Handle] Overriding the desktop is used to directly trigger a behavior. For example “BACK” command shows
the previous page.

To create a custom event dispatcher, a new class should be created, extending the EventDispatcher class. Event
dispatcher subclasses have to implement a method and may override optional methods, as explained in the fol-
lowing sections.

Dispatching the events to the widgets

The dispatchEvent() method is called by the MWT framework in order to dispatch a MicroUl event to the widgets
of the desktop. The getDesktop() method may be called in order to retrieve the desktop with which the event
dispatcher is associated. This is useful in order to browse the widget hierarchy of the desktop, for example by using
the getWidget() and getWidgetAt() methods of Desktop.

In order to send an event to one of the widgets of the hierarchy, the sendEventToWidget() method should be
used. The dispatchEvent() method should return whether or not the event was dispatched and consumed by a
widget.

For example, the following snippet dispatches every event to the widget of the desktop:

@0verride
public boolean dispatchEvent(int event) {
Widget desktopWidget = getDesktop().getWidget();
if (desktopWidget != null) {
return sendEventToWidget(desktopWidget, event);
} else {
return false;

3
}

In addition to dispatching the provided events, an event dispatcher may generate custom events. This may be done
by using a DesktopEventGenerator . Its buildEvent() method allows to build an event which may be sent to a
widget using the sendEventToWidget() method.

Initializing and disposing the dispatcher

EventDispatcher subclasses may override the initialize() and dispose() methods in order to allocate and
free the necessary resources.

Forexample, the initialize() method maybe overriddento create an event generatorand to add it to the system
pool of MicroUl:

@Override

public void initialize() {
this.eventGenerator = new DesktopEventGenerator();
this.eventGenerator.addToSystemPool();

3

Likewise, the dispose() method may be overridden to remove the event generator from the system pool of Mi-
croUl:

3.14. Graphical User Interface 246

MicroEJ Documentation, Revision 44d2784c

@0verride
public void dispose() {
this.eventGenerator.removeFromSystemPool();

3

How to Define an Extra Style Field

Extra style fields allow to customize a widget by configuring graphical elements of the widget from the stylesheet.
Extra fields are only relevant to a specific widget type and its subtypes. A widget type can support up to 7 extra
fields. The value of an extra field may be represented asan int,a float orany object, and it can not be inherited
from parent widgets.

Defining an extra field ID

The recommended practice is to add a public constant for the ID of the new extra field in the widget subtype. This
ID should be an integer with a value between ¢ and 6.

Every extra field ID has to be unique within the widget type. However, two unrelated widget types may define an
extra field with the same ID.

For example, the following snippet defines an extra field for a secondary color:

public static final int SECONDARY_COLOR_FIELD = 0;

Setting an extra field in the stylesheet
The value of an extra field may be set in the stylesheet in a similar fashion to built-in style fields, using one of the

setExtraXxxX() methodsof EditableStyle.

For example, the following snippet sets the value of an extra field for all the instances of a widget subtype:

EditableStyle style = stylesheet.getSelectorStyle(new TypeSelector(MyWidget.class));
style.setExtraInt(MyWidget.SECONDARY_COLOR_FIELD, Colors.RED);

Getting an extra field during rendering

The value of an extra field may be retrieved from the style of a widget in a similar fashion to built-in style fields,
using one of the getExtraxxX() methodsof Style.When calling one of these methods, a default value has to be
given in case the extra field is not set for this widget.

For example, the following snippet gets the value of an extra field of the widget:

Style style = getStyle();
int secondaryColor = style.getExtralnt(SECONDARY_COLOR_FIELD, Colors.BLACK);

3.14.3 Widgets and Examples

3.14. Graphical User Interface 247

MicroEJ Documentation, Revision 44d2784c

Widget library

The widget library provides very common widgets with basic implementations. These simple widgets may not
provide every desired feature, but they can easily be forked since their implementation is very simple.

The widget library does not provide any example. However, the widget demo provides examples for these widgets.

Source

To use the widgets provided by the widget library, add the following line to a module description file:

<dependency org="ej.library.ui” name="widget"” rev="4.0.0"/>

To fork one of the provided widgets, duplicate the associated Java class from the widget library JAR into the source
code of your application. It is recommended to move the duplicated class to an other package and to rename the
class in order to avoid confusion between your forked class and the original class.

Provided widgets

Widgets:

« Label : displays a text.

« ImageWidget : displays an image which is loaded from a resource.

« Button: displays a text and reacts to click events.

» ImageButton: displays an image which is loaded from a resource and reacts to click events.
Containers:

« List:lays out any number of children horizontally or vertically.

« Flow: lays out any number of children horizontally or vertically, using multiple rows if necessary.

« Grid: lays out any number of children in a grid.

+ Dock : lays out any number of children by docking each child one by one on a side.

« SimpleDock : lays out three children horizontally or vertically.

» OverlapContainer: lays out any number of children by stacking them.

« Canvas: lays out any number of children freely.
Widget demo
The widget demo provides some widget implementations as well as usage examples for these widgets and for the

widgets of the Widget library. The widgets and usage examples are intended to be duplicated by the developersin
order to be adapted to their use-case.

Source

To use the widgets provided by the widget demo, clone the following GitHub repository: https://github.com/
MicroEJ/Demo-Widget. You can then import the com.microej.demo.widget projectinto your workspace to see
the source of the widgets and their associated examples.

3.14. Graphical User Interface 248

https://github.com/MicroEJ/Demo-Widget
https://github.com/MicroEJ/Demo-Widget

MicroEJ Documentation, Revision 44d2784c

Each subpackage contains the source code for a specific widget and for a page which showcases the widget. For ex-
ample, the com.microej.demo.widget.checkbox package containsthe Checkbox widgetand the CheckboxPage

Provided widgets

Widgets:
« Checkbox : displays a text and a square which can be checked or unchecked.
« RadioButton: displays a text and a circle which can be checked or unchecked.

+ ProgressBar : displays an animated bar indicating that the user should wait for an estimated amount of
time.

« IndeterminateProgressBar : displays an animated bar indicating that the user should wait for an indeter-
minate amount of time.

« Toggle: displays a text and a switch that can be checked or unchecked.
Containers:
« Split:laysouttwo children horizontally or vertically, by giving each child a portion of the available space.

« Scrollablelist : lays out its widgets the same way as a regular list, but provides an optimization when
added to a scroll.

MWT examples

The MWT Examples repository provides various examples which extend or customize the MWT framework.

Source

To run the examples and read the source code of these examples, clone the following GitHub repository: https:
//github.com/MicroEJ/ExampleJava-MWT. You can then import the multiple project into your workspace to see
the source of each example and to run it on Simulator or on your board.

Provided examples

« com.microej.example.mwt.attribute: showshow to customize the style of widgets using attributes selec-
tors, similar to CSS.

« com.microej.example.mwt.focus: shows how to introduce focus management in your project.

« com.microej.example.mwt.lazystylesheet : shows how to use a lazy stylesheet rather than the default
stylesheet implementation.

« com.microej.example.mwt.mvc: shows how to develop responsive widgets using a MVC design pattern and
how to display a cursor image representing the pointer.

3.15 JavaScript

MicroEJ allows to develop parts of an application in JavaScript. Basically, a MicroEJ Application boots in Java, then
itinitializes the JavaScript runtime to run a mix of Java and JavaScript code.

3.15. JavaScript 249

https://github.com/MicroEJ/ExampleJava-MWT
https://github.com/MicroEJ/ExampleJava-MWT

MicroEJ Documentation, Revision 44d2784c

SANDBOXED
APPLICATIONS

@ MICROEJ Vi ['\\l’/'

)

o
5f
=)
O Rl ' WR|:TYV | 39 JavaScript Runtime gﬂg
© -
Sg
FOUNDATION LIBRARIES 3

VIRTUALIZATION

ABSTRACTION
LAYERS
L~
S i
58S
RTOS/0S
PLATFORM

[:] PROCESSOR
CORE

HARDWARE

Fig. 71: MicroEJ JavaScript Overview

It supports the ECMAScript 5.1 specification, with some limitations. You can start playing with it by following the
Getting Started page.

3.15.1 Getting Started

Note: The JavaScript runtime is currently in preview and is available as a demonstration bundle on demand.
Please contact our support team.

Before going further with this getting started, follow the steps described in the README . rst of the demonstration
bundle.

Let’s walk through the steps required to use Javascript in your MicroEJ application:

« install the MMM CLI (Command Line Interface)

« create your Standalone Application project with the init command:

mmm init -Dskeleton.org=com.is2t.easyant.skeletons -Dskeleton.module=firmware-singleapp -Dskeleton.
—rev=1.1.12 -Dproject.org=com.mycompany -Dproject.module=myproject -Dproject.rev=1.0.0 -Dskeleton.
—target.dir=myproject

Adapt the properties values to your need. See the MMM CLI init command documentation for more details.

Javascript is supported in the following Module Natures page: - Add-On Library, - Standalone Application, - Sand-
boxed Application.

3.15. JavaScript 250

https://262.ecma-international.org/5.1

MicroEJ Documentation, Revision 44d2784c

+ add the js dependency in the module.ivy file:

<dependency org="com.microej.library.runtime” name="js" rev="0.10.0"/>

+ add the following lines in your application main class:

import com.microej.js.JsErrorWrapper;
import com.microej.js.JsCode;
import com.microej.js.JsRuntime;

JsCode.initJs();
JsRuntime.ENGINE. runOneJob();
JsRuntime.stop();

« create afile named hello. js inthe folder src/main/js with the following content:

function hello() {
var message = "MicroEJ Javascript application!”;
print("My first”, message);

}

hello()

« follow the steps described in the run command documentation

« in aterminal, go to the folder containing the module.ivy file and build the project with the command:

mmm build

You should see the following message at the end of the build:
BUILD SUCCESSFUL
Total time: 20 seconds

» now that your application is built, you can run it in the simulator with the command:

mmm run

You should see the following output:

My first MicroEJ Javascript application!

You can now go further by exploring the capabilities of the MicroEJ Javascript engine and discovering the commands
available in the CLI.

3.15.2 Sources Management

JavaScript Sources Location

The JavaScript sources of an application must be located in the project folder src/main/js. All JavaScript files (
%.js) found in this folder, at any level, are processed.

3.15. JavaScript 251

MicroEJ Documentation, Revision 44d2784c

JavaScript Sources Load Order

When several JavaScript files are found in the sources folder, they are loaded in alphabetical order of their relative
path. For example, the following source files:

src
L— main

L is
— components

|: componentl.js

component2.js

— ui

L widgets. js
— app.js
— featurel.js
L— feature2.js

are loaded in this order:

1. app.js
components/componentl.js
components/component2.js
featurel.js

feature2.js

o v M w N

ui/widgets.js

JavaScript Sources Load Scope

All the code of the JavaScript source files are loaded in the same scope. It means a variable or function defined in
a source file can be used in another one if it has been loaded first. In this example:
Listing 10: src/main/js/lib.js

function sum(a, b) {
return a + b;

}

Listing 11: src/main/js/main.js
print("5 + 3 = " + sum(5, 3));

the file src/main/js/1ib.js isloaded before src/main/js/main.js so the function sum can be usedin src/
main/js/main.js.

JavasScript Sources Processing

JavaScript sources need to be processed before being executed. This processing is done in the following cases:
« when building the project with MMM.

« when developing the project in MicroEJ SDK. The MicroEJ SDK detects any change in JavaScript sources
folder (addition/update/deletion) to trigger the processing.

3.15. JavaScript 252

MicroEJ Documentation, Revision 44d2784c

3.15.3 Examples

This section is intended to provide a set of examples to cover most of the use cases when developing JavaScript
applications with MicroEJ:

Simple Application

Note: Before trying this example, make sure you have the MMM CLI (Command Line Interface) installed.

This example shows the minimal code for a MicroEJ JavaScript application:

« create an Add-On Library project or a Sandboxed Application project

+ add the MicroEJ JavaScript dependency in the module.ivy file of your project:

<dependency org="com.microej.library.runtime” name="3js" rev="0.10.0"/>

« init the JavaScript code in your Java application with:

import com.microej.js.JsCode;

JsCode.init();

Theclass com.microej. js.JsCode isthe Java class generated from the JavaScript sources.

+ ask the MicroEJ JavaScript engine to start processing the job queue with:

import com.microej.js.JsRuntime;

JsRuntime.ENGINE. run();

This makes the JavaScript engine process the job queue forever until the program is stopped.

+ create a file with the js extension in the src/main/js folder (for example app.js) with the following
content:

print(”"My Simple Application”);

« build and execute the application with the MMM CLI:

$ mmm build
$ mmm run

The message My Simple Application should be displayed.

Use a Java APl in JavaScript

Note: Before trying this example, make sure you have the MMM CLI (Command Line Interface) installed.

It is also recommended to follow the Getting Started page and/or the Simple Application example before.

3.15. JavaScript 253

MicroEJ Documentation, Revision 44d2784c

In this example the JavaScript code calls a Java API. The Java APl can come from the application or from any library
used by the application. Let’s create it in the project for this example, in a class Calculator (src/main/java/com/
mycompany/Calculator. java):

public class Calculator {
public int sum(int x, int y) {
return x + y;

3

public int mul(int x, int y) {
return x x y;
}
3

Then in the Java Main class of the application, add the glue to expose the Calculator Java API to the JavaScript
code and init the JavaScript engine:

public static void main(String[] args) throws Exception {
// Add the "getCalculator” function in the JavaScript global object
JsRuntime.JS_GLOBAL_OBJECT.put("getCalculator”, JsRuntime.createFunction(new JsClosure() {
@verride
@Nullable
public Object invoke(Object thisBinding, int argslLength, Object... arguments) {
return new Calculator();

3
}), false);

// Init the JavaScript code
JsCode.initJs();
// Start the JavaScript engine
JsRuntime.ENGINE. run();

3

You can now call the API from the JavaScript code:

var calc = getCalculator();

print(calc.sum(1, 2));

print(calc.mul(5, 3));

As you can see, the methods of the Java API Calculator can be used directly from the JavaScript code.

Finally, build and execute the application with the MMM CLI:

$ mmm build
$ mmm run
The sum and multiply results should be displayed.

For more information about communication between Java and JavaScript please refer to the Communication Be-
tween Java and JS page.

Create a JavaScript API from Java

Note: Before trying this example, make sure you have the MMM CLI (Command Line Interface) installed.

Itis also recommended to follow the Getting Started page and/or the Simple Application example before.

3.15. JavaScript 254

MicroEJ Documentation, Revision 44d2784c

In this example a JavaScript API is exposed from Java. This can be useful when a specific APl must be defined in
JavaScript or when adapting an existing Java API to a JavaScript API.

Create a class MyApiHostObject (src/main/java/com/mycompany/MyApiHostObject.java)

public class MyApiHostObject extends JsObject {
public MyApiHostObject(Object thisBinding) {

this.put(”count”, new DataPropertyDescriptor(JsRuntime.createFunction(new JsClosure() {
@0verride
@Nullable
public Object invoke(@Nullable Object thisBinding, int argslLength, Object..._
—arguments) {
String data = (String) arguments[0];
return Integer.valueOf(data.length());

DN;

This class defines a JavaScript object using the MicroEJ JavaScript API by extending the class JsObject . It also
definesa count method which accepts a String parameter and returns its length.

Then in the Java Main class of the application, add the glue to expose the MyApi object to the JavaScript code and
init the JavaScript engine:

public static void main(String[] args) throws Exception {
// Add the "MyApi” function in the JavaScript global object
JsRuntime.JS_GLOBAL_OBJECT.put("MyApi”, JsRuntime.createFunction(new JsClosure() {
@0verride
@Nullable
public Object invoke(Object thisBinding, int argsLength, Object... arguments) {
return new MyApiHostObject(thisBinding);

3
}), false);

// Init the JavaScript code
JsCode.initJs();

// Start the JavaScript engine
JsRuntime.ENGINE.run();

You can now call the new API from the JavaScript code:

var myApi = new MyApi();
print(myApi.count(”"Hello World!"));

Finally, build and execute the application with the MMM CLI:

$ mmm build
$ mmm run

The length of the string Hello World! (12) should be displayed.

For more information about communication between Java and JavaScript please refer to the Communication Be-
tween Java and JS page.

3.15. JavaScript 255

MicroEJ Documentation, Revision 44d2784c

3.15.4 Communication Between Java and JS

The MicroEJ engine allows to communicate between Java and JavaScript: Java API can be used from JavaScript
code and vice-versa.

JavaScript Engine

The JavaScript code is executed in a single-threaded engine, which means only one JavaScript statement is exe-
cuted at a given time. Each piece of JavaScript code that must be executed is pushed in a job queue. Itis up to the
engine to manage the job queue and execute the jobs.

One consequence of this design is that Java code called from a JavaScript code must not be blocker. When calling
a Java API from a Javascript code, in order to avoid blocking the JavaScript engine, the Java code must return as
quick as possible. Otherwise the JavaScript engine is stuck and cannot execute other JavaScript jobs. It is espe-
cially harmfull when the Java operation takes time, for example for network or 10 operations. In such a case, it is
therefore recommended to execute it in a new thread and return immediately.

Another consequence of the JavaScript engine design is that JavaScript code must always be executed by the en-
gine, by the single thread. Therefore, any call to a JavaScript code from a Java code must create a job and add it to
the job queue.

Calling Java from JavaScript

The MicroEJ engine allows to expose Java objects or methods to the JavaScript code by using the engine APl and
creating the adequate JavaScript object.

For example, here is the code to create a JavaScript function named javaPrint in the global scope:

JsRuntime.JS_GLOBAL_OBJECT.put("javaPrint”, JsRuntime.createFunction(new JsClosure() {
@Override
public Object invoke(Object thisBinding, Object... arguments) {
System.out.println("Print from Java: " + arguments[0]);
return null;

}
}), false);

The function is created with a com.microej.js.objects.JsObjectFunction object created with the API
JsRuntime.createFunction(JsClosure jsClosure),andinjected inthe object JsRuntime.JS_GLOBAL_OBJECT
which maps to the JavaScript global scope.

The function javaPrint canthen be usedin JS:

javaPrint("foo")

This technique can also be used to share any Java object to JavaScript. It is achieved by returning the Java object
in the invoke method of the JsClosure object. For example, a Java Date object can be exposed as follows:

JsRuntime.JS_GLOBAL_OBJECT.put("getCurrentDate”, JsRuntime.createFunction(new JsClosure() {
@Override
public Object invoke(Object thisBinding, Object... arguments) {
return Calendar.getInstance().getTime();

3
}), false);

When a Java object is exposed in JavaScript, allits public methods can be called, therefore the JavaScript code can
then use this Date object and get the time:

3.15. JavaScript 256

MicroEJ Documentation, Revision 44d2784c

var date = getCurrentDate()
var time = date.getTime()
print("Current time: ", time)

for more information on how these called are managed by the MicroEJ JavaScript engine, please go to the Foreign

Function Interface section.

Java objects can also be shared using one of the other Java JS adapter objects. With this solution, the code of the
Java object is executed at engine initialisation, contrary to the previous solution where it is executed only when the
JavaScript code is called. For example, here is the code to expose a Java string named javaString in the JavaScript
global scope:

JsRuntime.JS_GLOBAL_OBJECT.put("javaString”, "Hello World!", false);

The string javaString canthen be used in JS:

var myString = javaString;

The available Java JS adapter objects are:
« com.microej.js.objects.JsObject : exposes a Java object as a JavaScript object

« com.microej.js.objects.JsObjectFunction : exposes a Java “process” as a JavaScript function (using a
JsClosure object)

e com.microej.js.objects.JsObjectString : exposes a Java String as a JavaScript String
« com.microej.js.objects.JsObjectArray : exposes a Java items collection as a JavaScript Array
o com.microej.js.objects.JsObjectBoolean : exposes a Java Boolean as a JavaScript Boolean

« com.microej.js.objects.JsObjectNumber : exposes a Java Number as a JavaScript Number

Calling JavaScript from Java

The MicroEJ JavaScript engine APl allows to call JavaScript code from Java code. For example, given the following
JavaScript functionin afilein src/main/js:

function sum(a, b) {
print(a + " + " + b+ " =" + (ath));

}

it can be called from a Java piece of code with:

JsObjectFunction functionObject = (JsObjectFunction) JsRuntime.JS_GLOBAL_OBJECT.get("sum");
JsRuntime.ENGINE.addJob(new Job(functionObject, JsRuntime.JS_GLOBAL_OBJECT, new Integer(5), new_
—Integer(3)));

The first line gets the JavaScript function from the global scope. The second line adds a job in the JavaScript engine
queue to execute the function, in the global scope, with the arguments 5 and 3.

3.15.5 Tests

JavaScript applications can be tested with tests written in JavaScript. The JavaScript test files must be located in
the project folder src/test/js. All JavaScript files (*. js) found in this folder, at any level, are considered as test
files.

In order to setup JavaScript tests for your application, follow these steps:

3.15. JavaScript 257

MicroEJ Documentation, Revision 44d2784c

« create an Add-On Library project or a Standalone Application project

+ define the following properties in the module.ivy file of the project inside the ea:build tag (if the properties
already exist, replace them):

<ea:property name="test.run.includes.pattern” value="**/_JsTest_*Code.class"/>
<ea:property name="target.main.classes” value="${basedir}/target~/test/classes”"/>

+ add the MicroEJ JavaScript dependency in the module.ivy file of the project:

<dependency org="com.microej.library.runtime” name="js" rev="0.10.0"/>

« define the platform to use to run the tests with one of the options described in Platform Selection section

+ create afile assert. js inthefolder src/test/resources with the following content:

var assertionCount = 0;

function assert(value) {

assertionCount++;
if (value == 0) {

print(”assert " + assertionCount + " - FAILED");
} else {

print(”assert " + assertionCount + " - PASSED");
}

This method assert will be available in all tests to do assertions.

« create afile test.js inthefolder src/test/js and write your first test:
var a = 5;
var b = 3;
var sum = a + b;
assert(sum === 8);

« build the application in the SDK or in command line with the MMM CL/

The execution of the tests produces a report available in the folder target~/test/html for the project.

3.15.6 Limitations

The MicroEJ engine supports the version 5.1 of the ECMAScript specification, with the limitations described in this
page.

Unsupported Directives

Directives, such as 'use strict',are notsupported and are considered as literal statements. Literal statements
are justignored.

Unsupported Statements

The following syntaxes are not supported by the MicroEJ JavaScript engine:

« with (x) { } :the with statementis not supported in MicroEJ since its usage is not recommended. See
the reference documentation for more information.

3.15. JavaScript 258

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/with#ambiguity_contra

MicroEJ Documentation, Revision 44d2784c

Unsupported Built-in Objects

The unsupported built-in objects are listed in the Built-in objects section.

3.15.7 Built-in Objects

This section lists all the JavaScript built-in objects and their support status. For the complete reference about these
built-in objects, consult the ECMA 5.1 specification.

For a description and usage examples of each method or property, consult a JavaScript documentation such as
Mozilla Developer Reference.

Array

Array (len)

isArray (arg)

toString ()

[excluded] toLocaleString ()
concat ([item1[,item2[,...111)
join (separator)

pop ()

push ([item1[,item2[,...]1])
reverse ()

shift ()

slice (start, end)

sort (comparefn)

[excluded] splice (start, deleteCount [, item1 [, item2 [, ...

unshift ([item1[,item2[,...1]11)

indexOf (searchElement [, fromindex])
lastindexOf (searchElement [, fromindex])
every (callbackfn [, thisArg])

some (callbackfn [, thisArg])

forEach (callbackfn [, thisArg])

map (callbackfn [, thisArg])

filter (callbackfn [, thisArg])

[excluded] reduce (callbackfn [, initialvalue])
[excluded] reduceRight (callbackfn [, initialValue])
length

1171)

3.15.

JavaScript

259

https://www.ecma-international.org/ecma-262/5.1/#sec-15
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects

MicroEJ Documentation, Revision 44d2784c

Boolean

« Boolean (value)
+ Boolean.prototype.toString ()

+ Boolean.prototype.valueOf ()

Date

o [excluded]

Error

o [excluded]

Function

+ [excluded] Function (p1, p2, ... , pn, body)
+ length

+ [excluded] toString ()

« apply (thisArg, argArray)

« call (thisArg [, argl[,arg2,...]])

+ [excluded] bind (thisArg [, argl [, arg2,...]])
« [[Call]]

« [[Construct]]

Global

« NaN
« Infinity

undefined

[excluded] eval (x)

parselnt (string , radix)

parseFloat (string)

« isNaN (number)

isFinite (number)

[excluded] escape (string)

[excluded] unescape (string)

[excluded] decodeURI (encodedURI)

[excluded] decodeURIComponent (encodedURIComponent)

[excluded] encodeURI (uri)

3.15. JavaScript 260

MicroEJ Documentation, Revision 44d2784c

Jso

+ [excluded] encodeURIComponent (uriComponent)

« parse (text[, reviver])

« stringify (value, [replacer [, space]])

Math

 E

« LN10

« LN2

« LOG2E

« LOGI10E
« PI

« SQRTI_2
« SQRT2

« abs (x)

* acos (x)
« asin (x)
« atan (x)
« atan2 (y, x)
o ceil (x)

o €OS (x)

* exp (x)

« floor (x)

+ log (x)

« max ([valuel[,value2[,...

« min([valuel[,value2[,...

* pow (x,)
« random ()
« round (x)
« sin (x)

« sqrt (x)

« tan (x)

3.15.

JavaScript

261

MicroEJ Documentation, Revision 44d2784c

Number

« Number (value)

« MAX_VALUE

« MIN_VALUE

« NaN

« NEGATIVE_INFINITY

« POSITIVE_INFINITY

+ [excluded] toString ([radix])

+ [excluded] toLocaleString()

« valueOf ()

+ [excluded] toFixed (fractionDigits)
+ [excluded] toExponential (fractionDigits)

+ [excluded] toPrecision (precision)

Object

« Object ([value])

Object.getPrototypeOf (O)

Object.getOwnPropertyDescriptor (O, P)

Object.getOwnPropertyNames (O)

Object.create (O [, Properties])

Object.defineProperty (O, P, Attributes)

Object.defineProperties (O, Properties)
[excluded] Object.seal (O)
[excluded] Object.freeze (O)

Object.isSealed (O)
Object.isFrozen (0)

Object.isExtensible (O)
Object.keys (O)
toString ()

[excluded] toLocaleString ()
« valueOf ()
« hasOwnProperty (V)

isPrototypeOf (V)

propertylsEnumerable (V)

[excluded] Object.preventExtensions (O)

3.15.

JavaScript

262

MicroEJ Documentation, Revision 44d2784c

Regex

RegExp (pattern, flags)
exec (string)

test (string)

toString ()

String

String (value)

fromCharCode ([charO [, char1[,...1]1])
toString ()

valueOf ()

charAt (pos)

charCodeAt (pos)

concat ([stringl [, string2 [,...111])
indexOf (searchString, position)
lastIndexOf (searchString, position)
[excluded] localeCompare (that)
match (regexp)

replace (searchValue, replaceValue)
[excluded] search (regexp)

slice (start, end)

split (separator, limit)

[excluded] substr (start [, length)
substring (start, end)

toLowerCase ()

[excluded] toLocaleLowerCase ()
toUpperCase ()

[excluded] toLocaleUpperCase ()
trim ()

length

[[GetOwnProperty]] (P)

3.15.8 Troubleshooting

Compilation error cannot be resolved to a type inFFlclass

A compilation error can be raised when the classpath contains unexpected classes, for example:

3.15.

JavaScript

263

MicroEJ Documentation, Revision 44d2784c

Exception in thread "main"” java.lang.Error: Unresolved compilation problems:
ArrayComparisonFailure cannot be resolved to a type
ArrayComparisonFailure cannot be resolved to a type

at java.lang.Throwable.fillInStackTrace(Throwable. java:82)
at java.lang.Throwable.<init>(Throwable.java:37)

at java.lang.Error.<init>(Error.java:18)

at com.microej.js.JsFfi.ffi_toString_0(JsFfi.java:54)

at com.microej.js.JsCode$1$1.invoke(JsCode. java:50)

As described in the FFl section, in order to call Java methods from JavaScript code, all the methods with the given
names are searched in the classpath. Since the classpath can contain test dependencies which are not available
at compile time, the generated FFI can contain classes from these dependencies and therefore fail to compile. The
following classes are excluded by default:

e ej.junit.*

e Oorg.junit.*

e junit.x

» org.hamcrest.*

» java.lang.String
e java.lang.Number

This list can be changed by setting the system property js.ffi.excludes.classes toacomma-separated list of
FQN patterns. For example:

js.ffi.excludes.classes=ej.junit.*,org.junit.*,junit.*, org.hamcrest.*, java.lang.String, java.lang.Number,
—com.mycompany.test.x*

Warning: Defining this property overwrites the default value, so do not forget to keep the default excluded
classes (unless you know what you are doing).

3.15.9 Internals

JavaScript Sources Processing

The JavaScript code is not executed directly, it is first translated in Java code and compiled with the Java appli-
cation code. This transpilation is done by the JavaScript Add-on Processor. This processor uses the Java Nashorn
library (extracted from jrel.8.0_92) to parse the Javascript files.

The operations performed by this processor are summarized in this diagram:

E_—B - - . . - Java AST - Java E_‘——5
s Parsing Ly y) _JS . fyy) LO""E'“'_Dn fryi Cleanup / vy Sources =]
JavaScript I Validation Yt preparation J ava Optim Java o - Java
sources AST AST sources

« Parsing: all JavaScript source files located in the folder src/main/js and src/test/js are parsed by the
Nashorn library to provide a JavaScript AST.

« JS Validation: validation on the JavaScript AST to detect unsupported language features (for example eval

).

3.15. JavaScript 264

https://openjdk.java.net/projects/nashorn/
https://openjdk.java.net/projects/nashorn/

MicroEJ Documentation, Revision 44d2784c

+ Conversion preparation: before actually converting the JavaScript AST to a Java AST, a preparation opera-
tion is done to initialize all the lexical environments (done by JsIrVisitor).

« Conversion: conversion of the JavaScript AST to a Java AST.

« Java AST cleanup/optim: post-conversion step to cleanup and optimize the Java AST. The following opera-
tions are done: - fiximports - remove dead code - remove literal statements

+ Java sources generation: generation of the Java sources from the Java AST.
Foreign Function Interface

As said inthe section Calling Java from JavaScript, a JavaScript code can manipulate Java objects and call methods
on Java objects. This chapter describes how does the call to methods on Java objets work.

Let getValue() a Java method called from JavaScript on a Java object. As long as the type of the object is not
known at compile-time in the JavaScript code, all the types containing a method with the same signature are
searched in the classpath. Then the JavaScript pre-processor generates a JsFfi class and a method that dy-
namically tries to find the type of the receiver object. So, when the getValue() method is called from JavaScript,
this generated method is called.

Warning: Calling a method whose name is very common could result in a delay while calling it, and some
useless methods embedded.

This example shares a Java Date of the current time:

JsRuntime.JS_GLOBAL_OBJECT.put("getCurrentDate”, JsRuntime.createFunction(new JsClosure() {
@Override
public Object invoke(Object thisBinding, Object... arguments) {
return Calendar.getInstance().getTime();

}
}), false);

The JavaScript can then use this Date to print the current time:

var date = getCurrentDate()
var time = date.getTime()
print("Current time: ", time)

In this case, the generated method in JsFfi looks like:

public static Object ffi_getTime_0(Object function, @ej.annotation.Nullable Object this_) {

try {
if (this_ instanceof JsObject || this_ instanceof String)
return JsRuntime.functionCall(((Reference) function).getValue(), this_);
if (this_ instanceof Calendar) {
return ((Calendar) this_).getTime();
3
if (this_ instanceof Date) {
return new Double(((Date) this_).getTime());
3
} catch (JsErrorWrapper e) {
throw e;

} catch (Throwable t) {
throw new JsErrorWrapper(new JsObjectError.TypeError("”A Java exception has been thrown.
—1in generated FFI code of getTime"), t);

(continues on next page)

3.15. JavaScript 265

MicroEJ Documentation, Revision 44d2784c

(continued from previous page)

3

throw new JsErrorWrapper(new JsObjectError.TypeError(“getTime"”));

3.16 Limitations

The following table lists the limitations of MicroEJ Architectures version 7.14.0 or higher, for both Evaluation and
Production usage. Please consult MicroEJ Architectures Changelog for limitations changes on former versions.

Note: The term unlimited means there is no Architecture specific limitation. However, there may be limitations
driven by device memory layout. Please refer to Platform specific documentation to get the memory mapping of
MicroEJ Core Engine sections.

Table 22: Architecture Limitations

Item EVAL PROD
[Mono-Sandbox] Number of concrete types' 8192 8192
[Multi-Sandbox] Number of concrete types per context! 4096 4096
Number of abstract classes and interfaces unlimited unlimited
Class or Interface hierarchy depth 127 127
Number of methods unlimited unlimited
Method size in bytes 65536 65536
Numbers of exception handlers per method 63 63
Number of instance fields” (Base type) 4096 4096
Number of instance fields? (References) 31 31
Number of static fields (boolean + byte) 65536 65536
Number of static fields (short + char) 65536 65536
Number of static fields (int + float) 65536 65536
Number of static fields (long + double) 65536 65536
Number of static fields (References) 65536 65536
Number of threads 63 63
Number of held monitors® 63 63

Time limit 60 minutes unlimited
Number of methods and constructors calls 500000000 unlimited
Number of Java heap Garbage Collection 3000° unlimited

! Concrete types are classes and arrays that can be instantiated.

2 All instance fields declared in the class and its super classes.

3 The maximum number of different monitors that can be held by one thread at any time is defined by the maximum number of monitors per
thread Application option.

% The Java heap Garbage Collection limit may throw unexpected cascading java.lang.OutOfMemoryError exceptions before the MicroEJ Core
Engine exits.

3.16. Limitations 266

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/OutOfMemoryError.html

CHAPTER

FOUR

PLATFORM DEVELOPER GUIDE

4.1 Introduction

4.1.1 Scope

This document explains how the core features of MicroEJ Architecture are accessed, configured and used by the
MicroEJ Platform builder. It describes the process for creating and augmenting a MicroEJ Architecture. This doc-
ument is concise, but attempts to be exact and complete. Semantics of implemented Foundation Libraries are
described in their respective specifications. This document includes an outline of the required low level drivers
(LLAPI) for porting the MicroEJ Architectures to different real-time operating systems (RTOS).

MicroEJ Architecture is state-of-the-art, with embedded MicroEJ runtimes for MCUs. They also provide simulated
runtimes that execute on workstations to allow software development on “virtual hardware.”

4.1.2 Intended Audience

The audience for this document is software engineers who need to understand how to create and configure a Mi-
croEJ Platform using the MicroEJ Platform builder. This document also explains how a MicroEJ Application can
interoperate with C code on the target, and the details of the MicroEJ Architecture modules, including their APIs,
error codes and options.

4.2 MicroEJ Platform

4.2.1 Introduction

A MicroEJ Platform includes development tools and a runtime environment.
The runtime environment consists of:

« A MicroEJ Core Engine.

« Some Foundation Libraries.

« Some C libraries.
The development tools are composed of:

« Java APIs to compile MicroEJ Application code.

« Documentation: this guide, library specifications, etc.

+ Tools for development and compilation.

267

MicroEJ Documentation, Revision 44d2784c

« Launch scripts to run the simulation or build the binary file.

« Eclipse plugins.

4.2.2 Build Process
This section summarizes the steps required to build a MicroEJ Platform and obtain a binary file to deploy on a
board.

The following figure shows the overall process. The first three steps are performed within the MicroEJ Platform
builder. The remaining steps are performed within the C IDE.

1. Create a new MicroEJ Platform [N
= MicroEJ Platform =TTl E1ile]y!
configuration project project

l

3. Build the MicroEJ
Platform

2. Select and configure
— additional modules

MicroElJ

Architecture

MicroEJ MicroEJ Platform

Application code

}

4. Build the MicroEJ
Application

|

Application
library file

MicroEJ Workbench

CIDE

Architecture

C application
code and Board
Support Package

library file
(microejruntime.a)

(microejapp.o)

|

5. Build and link the full
application

|

Executable

application

}

6. Program and test the
application on the
board

Fig. 1: Overall Process

4.2. MicroEJ Platform 268

MicroEJ Documentation, Revision 44d2784c

The steps are as follow:

1.

Create a new MicroEJ Platform configuration project. This project describes the MicroEJ Platform to build
(MicroEJ Architecture, metadata, etc.).

Select which modules provided by the MicroEJ Architecture will be installed in the MicrokJ Platform.
Build the MicroEJ Platform according to the choices made in steps 1and 2.

Compile a MicroEJ Application against the MicroEJ Platform in order to obtain an application file to link in
the BSP.

Compile the BSP and link it with the MicroEJ Application that was built previously in step 4 to produce a
MicroEJ Firmware.

Final step: Deploy MicroEJ Firmware (i.e. the binary application) onto a board.

4.2.3 Concepts

MicroEJ Platform Configuration

A MicroEJ Platform is described by a .platform file. This file is usually called [name].platform,and is stored at
the root of a MicroEJ Platform configuration project called [name]-configuration.

The configuration file is recognized by the MicroEJ Platform builder. The MicroEJ Platform builder offers a visual-
ization with two tabs:

4.2. MicroEJ Platform 269

MicroEJ Documentation, Revision 44d2784c

¥ STM32FT46GDISCO-example-CMThardfp_ARMCCS 23

= O

0 Overview

Platform Properties Platform Content

[General information about this platform., The content of the platform is composed of two parts:

Device: STM3IZFTA6GDISCO €2 Environment: select the architecture,

Name: example ‘¥ Modules: select modules to import in the platform.

fersion: - 72057

Version: 2.1,0-RC201604072057 Platform Configuration

Provider : Microk) Once the content of the platform is chosen, it can be configured.
Vendor URL:

#2| Configuration

Each module can be configured creating a folder with its name along
the .platform file. It could contain:

* an optional [module]. properties file,
* opticnal module specific files and folders.

Meodifying one these files requires to build the platform again,

Build
Generate and test the platform.

X Build Plstform: The new platform is now available and visible in
Available Platforms

Owverview | Content
Fig. 2: MicroEJ Platform Configuration Overview Tab

This tab groups the basic platform information used to identify it: its name, its version, etc. These tags can be
updated at any time.

4.2. MicroEJ Platform 270

MicroEJ Documentation, Revision 44d2784c

X STM32F746GDISCO-example-CMThardfp ARMCCS &3 = 8

£ Content

Environment

Architecture: | ARM Cortex-M7 ARMCC (8.1.0) Browsze...

Modules = Details

Medules included in the Platform.

type filter text Description
Add MicrolUl user interface library.
MName Cl
Configuration
7 [] Standalone = Requires “microui/microuixml” file
a Ul
Display References

Font Designer » Embedded Ul extension reference manual

Font Generator

Front Panel

[] Image BMP Maonochrome Decader
Image Generator

Image PMNG Decader Content
Inputs
[LEDs
Java APls:
mwt « MICROUI-2.0
hd Java Implementations:
= PUMP
« MICROUI-2.0

Owerview | Content

Fig. 3: MicroEJ Platform Configuration Content Tab

This tab shows all additional modules (see Modules) which can be installed into the platform in order to augment
its features. The modules are sorted by groups and by functionality. When a module is checked, it will be installed
into the platform during the platform creation.

Modules

The primary mechanism for augmenting the capabilities of a Concepts is to add modules to it.

A MicroEJ module is a group of related files (Foundation Libraries, scripts, link files, C libraries, Simulator, tools,
etc.) that together provide all or part of a platform capability. Generally, these files serve a common purpose. For
example, providing an API, or providing a library implementation with its associated tools.

The list of modules is in the second tab of the platform configuration tab. A module may require a configuration
step to be installed into the platform. The Modules Detail view indicates if a configuration file is required.

Low Level API Pattern
Principle

Each time the user must supply C code that connects a platform component to the target, a Low Level APl is defined.
There is a standard pattern for the implementation of these APIs. Each interface has a name and is specified by two

4.2. MicroEJ Platform 271

MicroEJ Documentation, Revision 44d2784c

header files:

« [INTERFACE_NAMET.h specifies the functions that make up the public API of the implementation. In some
cases the user code will never act as a client of the API, and so will never use this file.

o [INTERFACE_NAME]_impl.h specifies the functions that must be coded by the user in the implementation.

The user creates implementations of the interfaces, each captured in a separate C source file. In the simplest form
of this pattern, only one implementation is permitted, as shown in the illustration below.

Low Level API

LLXXX.h LLXXX_implL.h
void LLXXX init(); void LLXXX _TMPL init();
application.c MYIMPL.c
#tinclude "LLXXX.h" #include "LLXXX_impl.h"
Main() { Void LLXXX IMPL init() {

LLXXX_init(); // implementation code
¥ }

Fig. 4: Low Level API Pattern (single implementation)

The following figure shows a concrete example of an LLAPI. The C world (the board support package) has to imple-
ment a send function and must notify the library usinga receive function.

4.2. MicroEJ Platform 272

MicroEJ Documentation, Revision 44d2784c

MicroEJ Application

Java communication library (ECOM Comm)

MicroEJ world call LLAPI
LLAPI notify library
LLCOM.h LLCOM_impl.h
void LLCOM dataReceived(..); void LLCOM IMPL sendData(..);
LLAPI
C world call LLAP! implement LLAPI
driver_interrupt.c driver.c
#include "LLCOM.h™ #include "LLCOM_IMPL.h"
IRQ data received(..) { void LLCOM IMPL sendData(..) {
LLCOM_dataReceived(..); // implementation code
1 1
J J

Fig. 5: Low Level API Example

Multiple Implementations and Instances

When a Low Level API allows multiple implementations, each implementation must have a unique name. At run-
time there may be one or more instances of each implementation, and each instance is represented by a data struc-
ture that holds information about the instance. The address of this structure is the handle to the instance, and that
address is passed as the first parameter of every call to the implementation.

The illustration below shows this form of the pattern, but with only a single instance of a single implementation.

4.2. MicroEJ Platform 273

MicroEJ Documentation, Revision 44d2784c

Low Level API

LLXXX.h

void LLXXX init(LLXXX* env);

4

LLXXX_implL.h

void LLXXX TMPL init(LLXXX* env);

4

#include

MYIMPL.h
"LLXXX.h"

typedef struct MYIMPL {
struct LLXXX header;
//specific fields defined here
} MYIMPL;
void MYIMPL_new(MYIMP* env);

application.c

Main() {

MYIMPL instance;

#include "MYIMPL.h"

MYIMPL_new(&instance);
LLXXX init(&instance);

4

MYIMPL.c

#include "MYIMPL.h"
#define LLXXX_ IMPL MYIMPL
#include "LLXXX impl.h"

Void LLXXX_IMPL_init(LLXXX* env) {
// implementation code

} v

Fig. 6: Low Level API Pattern (multiple implementations/instances)

The #define statementin MYIMPL.c specifies the name given to this implementation.

4.3 MicroEJ Architecture

MicroEJ Architecture features the MicroEJ Core Engine built for a specific instructions set (ISA) and compiler.

The MicroEJ Core Engine is a tiny and fast runtime associated with a Scheduler and a Garbage Collector.

MicroEJ Architecture provides implementations of the following Foundation Libraries :

« EDC: Embedded Device Configuration.

« BON Beyond Profile (see [BON]).

« SNI Simple Native Interface (/SN/]).

« SP Shielded Plug (/SP]).

« KF Kernel & Features (/KF]).

The following figure shows the components involved.

4.3. MicroEJ Architecture

274

https://repository.microej.com/modules/ej/api/edc/
https://repository.microej.com/modules/ej/api/bon/
https://repository.microej.com/modules/ej/api/sni/
https://repository.microej.com/modules/ej/api/sni/
https://repository.microej.com/modules/ej/api/sni/

MicroEJ Documentation, Revision 44d2784c

YOUR APPLICATIONS

ADD-ON LIBRARIES

LIBRARIES

VIRTUALIZATION

Garbage Collector

Scheduler
LLMJVM LLKERNEL LLSP

w——ABSTRACTION LAYERS

Timer BSP

RTOS/0S

PLATFORM

D PROCESSOR]
CORE CPUFPU Memory Peripherals

HARDWARE

Fig. 7: MicroEJ Architecture Modules

Three Low Level APIs allow the MicroEJ Architecture to link with (and port to) external code, such as any kind of
RTOS or legacy C libraries:

« Simple Native Interface (see [SNI])
+ Low Level MicroEJ Core Engine (see LLMJVM)
« Low Level Shielded Plug (see LLSP)

For further information on Architecture installation and releases, you can check these chapters:

4.3.1 Naming Convention

MicroEJ Architecture files ends with the . xpf extension, and are classified using the following naming convention:

com/microej/architecture/[ISA]/[TOOLCHAIN]/[UID]/[VERSION]/[UID]-[VERSION]-[USAGE]. xpf

« ISA:instruction set architecture (e.g. CM4 for Arm® Cortex®-M4, ESP32 for Espressif ESP32,...).
+ TOOLCHAIN : C compilation toolchain (e.g. CM4hardfp_GCC48).

+ UID:Architecture unique ID (e.g. flopi4G25).

« VERSION: module version (e.g. 7.12.0).

« USAGE = eval forevaluation Architectures, prod for production Architectures.

For example, MicroEJ Architecture versions for Arm® Cortex®-M4 microcontrollers compiled with GNU CC
toolchain are available at https://repository.microej.com/modules/com/microej/architecture/CM4/CM4hardfp_
GCC48/flopi4G25/.

4.3. MicroEJ Architecture 275

https://repository.microej.com/modules/com/microej/architecture/CM4/CM4hardfp_GCC48/flopi4G25/
https://repository.microej.com/modules/com/microej/architecture/CM4/CM4hardfp_GCC48/flopi4G25/

MicroEJ Documentation, Revision 44d2784c

See Platform Configuration for usage.

4.3.2 MicroEJ Architectures Changelog
Notation
Aline prefixed by [describes a change that only applies on a specific configuration: [Core Engine Capability/
Instruction Set/C Compiler]:
«+ Core Engine Capability
- Single: Single Application (default)
- Tiny:Tiny Application
- Multi: Multi Applications
« Instruction Set
- ARM9 : ARM ARM9
- Cortex-A:ARM Cortex-A
- Cortex-M:ARM Cortex-M
- ESP32: Espressif ESP32
- RX:Renesas RX
- x86: Intel x86
« C Compiler

ARMCC5 : Keil ARMCC uVision v5
IAR74 : IAR Embedded Workbench for ARM v7.4
QNX65 : BlackBerry QNX 6.5

ONX70 : BlackBerry QNX 7.0

[7.16.0] - 2021-06-24

Notes

The Device module provided by the MicroEJ Architecture is deprecated and will be removed in a future version.
It has been moved to the Device Pack. Please update your Platforms.

Core Engine

« Added a dedicated error code LLMJVM_E_INITIALIZE_ERROR (-23) when LLMJVM_IMPL_initialize()
, LLMJVM_IMPL_vmTaskStarted() , or LLMJVM_IMPL_shutdown() fails. Previously the generic error code
LLMJVM_E_MAIN_THREAD_ALLOC (-5) was returned.

+ Added automatic heap consumption monitoring when option com.microej.runtime.debug.heap.
monitoring.enabled issetto true

« Fixed some parts of LLMJVM_checkIntegrity() code were embedded even if not called

4.3. MicroEJ Architecture 276

https://repository.microej.com/modules/com/microej/pack/device/device-pack/

MicroEJ Documentation, Revision 44d2784c

+ [Multi] Fixed potential crash during the call of LLMJVM_checkIntegrity when analyzing a corrupted Java
stack (make this function robust to object references with an invalid memory address)

Foundation Libraries

« Added source code for KF, SCHEDCONTROL , SNI, SP implementations
+ Updated KF APl with annotations for Null analysis

« Updated SNI APl with annotations for Null analysis

« Updated SP API with annotations for Null analysis

Updated ResourceManager implementation with annotations for Null analysis

Updated KF implementation:

Added missing Kernel.getAllFeatureStatelisteners() method

Updated code for correct Null analysis detection

Fixed Feature.getCriticality() tothrow IllegalStateException ifitisin state UNINSTALLED
(instead of returning NORM_CRITICALITY)

Fixed potential race condition between Kernel.addResourceControlListener() and Kernel.

removeResourceControlListener() . Adding a new listener may not register it if another one is re-
moved at the same time.

Integration

+ Added a new task in ELF Utils library allowing to update the content of an ELF section:

- Declaration:

<taskdef classpath="${platform.dir}/tools/elfutils.jar"” classname="com.is2t.elf.utils.
—AddSectionTask” name="addSection” />

- Usage:

<addSection file="${executable.file}" sectionFile="${section.file}" sectionName="${section.

—name}"” sectionAlignment="${section.alignment}" outputDir="${output.dir}"” outputName="$
—{output.name}" />

« Updated Architecture End User License Agreement to version SDK 3.0-C
+ Updated copyright notice of Low Level APIs header files to latest MicroEJ SDK default license

+ Updated Architecture module with required files and configurations for correct publication in a module
repository (README .md , LICENSE. txt,and CHANGELOG.md)

Simulator

+ Added an option (com.microej.simulator.hil.frame.size) to configure the HIL engine max frame size

« Fixed load of an immutable byte field (sign extension)

«+ Fixed java.lang.String constructors String(byte[] bytes, ...) when passing charactersin the range
[0x80,0xFF] usingdefault 150-8859-1 encoding

4.3. MicroEJ Architecture 277

MicroEJ Documentation, Revision 44d2784c

« Fixed potential crash in debug mode when a breakpoint is set on a field access (introduced in version 7.13.0

)

« Fixed wrong garbage collection of an object only referenced by an immortal object

SOAR

» Fixed the following compilation issuesin if statement with BON constant:
- too many code may be removed when the block contains a while loop

- potential Stacks merging coherence error may be thrown when the block contains a nested
try-catch statement

- potential Stacks merging coherence error when declaring a ternary expression with Constants.
getBoolean() in condition expression

« Fixed assert statement removal when it is located at the end of a then block: the else block may be
executed instead of jumping over

Removed names of arrays of basetype unless soar.generate.classnames optionissetto true

[Multi] Fixed potential link exception when a Feature use one of the ej_bon_ByteArray methods (e.g. ej.
kf.InvalidFormatException: code=51:0N_ej_bon_ByteArray_method_readUnsignedByte_AB_I_I)

[Multi] Fixed SOAR error (Invalid SNI method) when one of the ej.bon.Constants.getXxX() methods
isdeclaredina kernel.api file. This issue was preventing from using BON Constants in Feature code.

Tools

+ Updated Code Coverage Analyzer report generation:
- Automatically configure src/main/java source directory besidea /bin directory if available

- Added an option (cc.src.folders) to specify the source directory (require MicroEJ SDK 5.4.1 or
higher)

- Removed the analysis of generated code for synchronized statements
- Fixed crash when loading source code with annotations
+ Fixed Memory Map scripts: ClassNames group may contain duplicate sections with Types group

« Fixed load of an ELF executable when a section overlaps a segment (updated ELF Utils, Kernel Packager and
Firmware Linker)

« Fixed Firmware Linker to generate output executable file at the same location than the input executable file

[7.15.1] - 2021-02-19

SOAR

+ [Multi] Fixed potential VM crash when declaring a Proxy class whichis abstract.

4.3. MicroEJ Architecture 278

MicroEJ Documentation, Revision 44d2784c

[7.15.0] - 2020-12-17

Core Engine

+ Added support for applying Feature relocations

Foundation Libraries

« Updated KF implementation to apply Feature relocations using the Core Engine. The former Java im-
plementation is deprecated but can still be enabled using the option com.microej.runtime.kf.link.
relocations. java.enabled.

Integration

« Updated the Architecture naming convention: the usage level is prod instead of dev .

« Fixed generation of temporary properties file with a .properties.list extension instead of deprecated
.system.properties extension.

SOAR

« Fixed crash when declaring a clinit dependency rule on a class that is loaded but not embedded.

Tools

+ Fixed Memory Map Script A1l graph creation to prevent slow opening of large .map file in Memory Map
Analyzer.

[7.14.1] - 2020-11-30
Core Engine

+ [Multi/x86/QNXT] Fixed missing multi-sandbox version

Tools

« Fixed categories for class names and SNI library in Memory Map Scripts

[7.14.0] - 2020-09-25

Notes

The following set of Architecture properties are automatically provided as BON constants:
e com.microej.architecture.capability=[tiny|single|multi]
e com.microej.architecture.name=[architecture_uid]

e com.microej.architecture.level=[eval|prod]

4.3. MicroEJ Architecture 279

MicroEJ Documentation, Revision 44d2784c

o com.microej.architecture.toolchain=[toolchain_uid]
e com.microej.architecture.version=7.14.0
The following set of Platform properties (customer defined) are automatically provided as BON constants:
o com.microej.platform.hardwarePartNumber
e com.microej.platform.name
e com.microej.platform.provider
o com.microej.platform.version

o com.microej.platform.buildLabel

Foundation Libraries
« Updated EDC UTF-8 encoder to support Unicode code points as supplementary characters

« Fixed java.lang.NullPointerException thrownwhen java.util.WeakHashMap.put() method is called
with a null key (introduced in version 7.71.0)

Integration

Added all options starting with com.microej. prefixas BON constants

Added all properties defined in architecture.properties as options prefixed by com.microej.
architecture.

Added all properties defined in release.properties as options prefixed by com.microej.platform.

Added all properties defined in script/mjvm.properties as options prefixed by com.microej.
architecture.

« Added an option (com.microej.library.edc.supplementarycharacter.enabled) to enable support for
supplementary characters (enabled by default)

« Updated Memory Map Scripts to extract Java static fields in a dedicated group named Statics
« Updated Memory Map Scripts to extract Java types in a dedicated group named Types

+ Fixed generated Feature filename (unexpanded ${feature.output.basename} variable, introduced in ver-
sion 7.13.0)

« Fixed definition of missing default values for memory options (same values than launcher default ones)

[Tiny,Multi] - Added display of the Core Engine capability when launching SOAR

SOAR

+ [Multi] - Added a new attribute named api in Kernel soar.xml file indicating which types, methods and
static fields are exposed as Kernel APIs

+ [Multi] - Fixed potential link error when calling java.lang.Object.clone method on an array in Feature
mode

4.3. MicroEJ Architecture 280

MicroEJ Documentation, Revision 44d2784c

Tools

+ Updated serial PC connector to JSSC 2.9.2 (COM port could not be open on Windows 10 using a JRE 8u261
or higher)

[7.13.3]-2020-09-18
Core Engine

« [QNX70] - Embed method names and line numbers information in the application

+ [Cortex-A/QNXT70] - Fixed wrong float/double arguments passed to the SNI natives (introduced in version
7.12.0)

Simulator

« Fixed unnecessary stacktrace dump on Long.parselLong() error

+ Fixed UTF-8 encoded Strings not correctly printed

Tools

+ Updated Memory Map Scripts for ej.library.runtime.basictool library
[7.13.2] - 2020-08-14
Core Engine

« [ARM9/QNX65] - Fixed custom convention call
« [x86/QNXT70] - Fixed SIGFPE raised when overflow occurs on division

+ [x86/QNXT70] - Fixed issue with NaN conversion to int or long

Tools

« Fixed Feature build script for MicroEJ SDK 5.x (introduced in version 7.13.0)

« Updated Memory Map Scripts for MicroUl 3 and Service libraries

[7.13.1] - 2020-07-20

Core Engine

+ [ESP32] - Fixed potential PSRAM access faults by rebuilding using esp-idf v3.3.0 toolchain (simikou2)

4.3. MicroEJ Architecture 281

https://github.com/espressif/esp-idf/commit/ff29e3e7a24a715bc7f5ba453c83d694ba0ec1e2

MicroEJ Documentation, Revision 44d2784c

[7.13.0] - 2020-07-03

Core Engine

+ Added SNI-1.4 support, with the following new LLSNI.h Low Level APIs:
- Added function SNI_registerResource()
- Added function SNI_unregisterResource()
- Added function SNI_registerScopedResource()
- Added function SNI_unregisterScopedResource()
- Added function SNI_getScopedResource()
- Added function SNI_retrieveArrayElements()
- Added function SNI_flushArrayElements()
- Added function SNI_isResumePending()
- Added function SNI_clearCurrentJavaThreadPendingResumeFlag()
- Added define SNI_VERSION
- Added define SNI_IGNORED_RETURNED_VALUE
- Added define SNI_TLLEGAL_ARGUMENT
- Updated the documentation of some functions to clarify the behavior

+ Added amessageto IllegalArgumentException thrown inan SNIcall when passing a non-immortal array
in SNI (only in case the Platform is configured to disallow the use of non-immortal arrays in SNI native calls)

« Added function LLMJVM_CheckIntegrity() to LLMJVM.h Low Level APIto perform heap and internal struc-
tures integrity check

« Updated KF implementation to use SNI-1.4 to close native resources when the Feature is stopped (ej.
lang.ResourceManager is now deprecated)

« Updated LLMJVM_dump() output with the following new information related to SNI-1.4 native resource
management:

- Last native method called (per thread)
- Current native method being invoked (per thread)
- Last native resource close hook called (per thread)
- Current native resource close hook being invoked (per thread)
- Pending Native Exception (per thread)
- Pending SNI Scoped Resource to close (per thread)
- Current Garbage Collector state: (running or not, last scanned object address, last scanned object class)
- LLMJVM schedule request (global and per thread)
« Updated non-immortal object access from SNI default behavior (now allowed by default)
« Fixed thread state displayed by LLMIVM_dump for threadsin SLEEP state
+ Fixed sni.h headerfile function prototypes using the SNI_callback typedef

« Fixed crash when an OutOfMemoryError isthrown while creating a native exception in SNI

4.3. MicroEJ Architecture 282

MicroEJ Documentation, Revision 44d2784c

« [Multi] - Fixed runtime exceptions that can be implicitly thrown (such as NullPointerException) which
were not automatically exposed by the Kernel

« [Multi] - Fixed passing Kernel array parameters through a shared interface method call. These parameters
were passed by copy instead of by reference as specified by KF specification

+ [Multi] - Fixed execution context when jumping in a catch block of a ej.kf.Proxy method (the catch block
was executed in the Kernel context instead of the Feature context)

« [ARMCC5] - Fixed link error Undefined symbol _java_lLjava_lang_OutOfMemoryError_field_OOMEMethodAddr_I
with ARM Compiler 5 linker (introduced in version 7.72.0)

Foundation Libraries

« Updated SNI to version 1.4
« Updated internal library Resource-Manager-1.0 as deprecated. Use SNI-1.4 native resources instead

« Updated java.lang.Thread.getId() method implementation to return the same value than
SNI_getCurrentJavaThreadID() function

« Optimized ej.sni.SNI.toCString() method by removing a useless temporary buffer copy

+ Fixed EDC implementation of String(byte[],int,int) constructor which could allocate a too large tem-
porary buffer

« Fixed EDC implementation of Thread.interrupt() method to throw a java.lang.SecurityException
when the interrupted thread cannot be modified by the the current thread

+ Fixed EDC implementation to remove remaining references to java.util.SecurityManager class when it
is disabled

« Fixed EDC implementation of java.lang.Thread.interrupt() method that was declared final
« Fixed EDC APl of java.lang.Thread.interrupt() to clarify the behavior of the method
+ Fixed EDC APl of java.util.Calendar method to specify that non-lenient mode is not supported

« Fixed EDC APl of java.io.FilterInputStream.in field to be marked @\Nullable

Integration

 Updated Architecture End User License Agreement to version SDK 3.0-B

Simulator

+ Added SNI-1.4 support, with the following new HIL APIs:

- Added methods NativelInterface.suspendStart() and NativeInterface.suspendStop() tonotify
the simulator that a native is suspended so that it can schedule a thread with a lower priority

« Added KF support to dynamically install Features (. fs3 files)

« Added the capability to specify the Kernel UID from an option (see optionsin Simulator > Kernel > Kernel
uID)

« Added object size in generated .heap dump files

+ Optimized file accesses from the Application

4.3. MicroEJ Architecture 283

MicroEJ Documentation, Revision 44d2784c

Fixed crash in debug mode when paused on a breakpoint in MicroEJ SDK and hovering a Java variable with
the mouse

« Fixed potential crash in debug mode when putting a breakpoint in MicroEJ SDK on a line of code declared in
aninner class

« Fixed potential crash in debug mode (java.lang.NullPointerException)when abreakpoint set on a field
access is hit

« Fixed potential crash in debug mode (ArrayIndexOutOfBoundsException)

Added support for JDWP commands DisableCollection / EnableCollection inthe debugger

Fixed invalid heap dump generation in debug mode.

Fixed crash when a Mockup implements com.is2t.hil.StartListener and this implementation throws
an uncaught exception in the clinit

Fixed verbose of missing resource only when a resource is available in the classpath but not declared in a
.resources.list file

Fixed heap consumption simulation for objects instances of classes declaring fields of type float or double

« Fixed Device UID not displayed in the Front Panel window title (introduced in version 7.71.0)

Fixed loading of a resource from a JAR when the path starts with /
« Fixed potential deadlock on Front Panel startup in some cases

+ Fixed Thread.getState() returning TERMINATED whereas the thread is running

Fixed Simulator which may not stop properly when closing the Front Panel window

Fixed Front Panel which stops sending widget events when dragging out of a widget

[Multi] - Fixed monitor that may not be released when an exception occurs in a synchronized block (intro-
duced in version 7.10.0)

[Multi] - Fixed invalid heap dump generation that causes heap analyzer crash

[Multi] - Fixed potential crash (java.lang.NullPointerException)in debug mode when debugging an Ap-
plication (introduced in version 7.70.0)

[Multi] - Fixed error when using KF library without defining a kernel.kf file in the Kernel (introduced in
version 7.10.0)

SOAR

« Added anoption (soar.bytecode.verifier)toenable ordisable the bytecode verifier (disabled by default)

« Removed size related limits in Architecture Evaluation version

Tools

+ Added SNI-1.4 supportto HIL Engine

« Updated Heap Dumper to verbose information about the memory section when an overlap is detected in the
HEX file

+ Updated Memory Map Scripts (Security, DTLS, Device)

« Fixed License Manager (Evaluation) random crash on Windows 10 when a Platform is built using Build
Module button

4.3. MicroEJ Architecture 284

MicroEJ Documentation, Revision 44d2784c

+ Fixed License Manager (Evaluation) wrong UID computation after reboot when Windows 10 Hyper-V feature
is enabled

« Fixed HIL Engine to exit as soon as the Simulator is disconnected (avoid remaining detached processes)

« Fixed ELF to Map generating symbol addresses different from the ELF symbol addresses (introduice in version
7.11.0)

+ Fixed Heap Dumper crash when a wrong object header is encountered

« Fixed Heap Dumper failure when a memory dump is larger than the heap section

+ Fixed Heap Dumper crash when loading an Intel HEX file that contains lines of type 02

[7.12.0] - 2019-10-16

Core Engine

« Updated implementation of internal java.lang.OutOfMemoryError thrown with the maximum number of
frames that can be dumped

« Updated LLMIVM_dump() output with the following new information:
- Maximum number of alive threads

Total number of created threads

Maximum number of stack blocks used

Current number of stack blocks used

Objects referenced by each stack frame: address, type, length (in case of arrays), string content (in case
of String objects)

[Multi] Kernel stale references with the name of the Feature stopped

Foundation Libraries

« Fixed EDC implementation of Throwable.getStackTrace() when called on a java.lang.
OutOfMemoryError thrown by Core Engine or Simulator (either the returned stack trace array was
emptyora java.lang.NullPointerException was thrown)

« [Tiny] Fixed EDC implementation of StackTraceElement.toString() (removed the character . before the
type)

o [Multi] Fixed KF implementation of Feature.start() to throw a java.lang.
ExceptionInInitializerError when an exception isthrown in a Feature clinit method

Simulator

« Updated implementation of internal java.lang.OutOfMemoryError thrown with more than one frames
dumped per thread

- By default the 20 top frames per thread are dumped. This can be modified using S3.
OutOfMemoryErrorNbFrames system property

+ Fixed wrong parsing of an array of long when an element is declared with only 2 digits (e.g. 25 was parsed
as 2)

4.3. MicroEJ Architecture 285

MicroEJ Documentation, Revision 44d2784c

« Fixed error parsing of an array of byte when an element is declared with the unsigned hexadecimal notation
(e.g. 0xFF) (introduced in version 7.10.0)

« Fixed crash when ej.bon.ResourceBuffer.readString() is called on a String greater than 63 characters
(introduced in version 7.70.0)

« Fixed code coverage .cc generation of classpath directories

« Fixed crash during a GC when computing the references map of a complex method (an error message is
dumped with the involved method name and suggest to increase the internal stack using S3. JavaMemory .
ThreadStackSize system property)

[Multi] Added validity check of Shared Interface declaration files (. si) according to KF specification

+ [Multi] Fixed processing of Resource Buffers declared in Feature classpath

SOAR

+ Added a new option core.memory.oome.nb.frames to configure the maximum number of stack frames that
can be dumped when an internal java.lang.OutOfMemoryError isthrown by Core Engine

Tools

« Updated Heap Dumper to verbose detected object references that are outside the heap

« Updated Heap Dumper to throw a dedicated error when an object reference does not target the beginning of
an object (most likely a corrupted heap)

+ Updated Heap Dumper to dump .heap.error partial file when a crash occurred during heap processing

+ Fixed Heap Dumper crash when processing an object owned by a Feature which type is also owned by the
Feature (was working before only when the type is owned by the Kernel)

« Fixed Firmware Linker potential negative offset generation when some sections do not appear in the same
order in the ELF file than in their associated LOAD segment

« Fixed Code Coverage Analyzer potential generated empty report (wrong load of classfiles from JAR files)

[7.11.0] - 2019-06-24

Important Notes

«+ Java assertions execution is now disabled by default. If you experience any runtime trouble when migrat-
ing from a previous Architecture, please enable Java assertions execution both on Simulator and on Device
(maybe the application code requires Java assertions to be executed).

« Calls to Security Manager are now disabled by default. If you are using the Security Manager, it must be
explicitly enabled using the option described below (likely the case when building a Multi-Sandbox Firmware
and its associated Virtual Device).

« Front Panel framework is now provided by the Architecture instead of the Ul Pack. This allow to build a Plat-
form with a Front Panel (splash screen, basic I/0, ...), even if it does not provide a MicroUl port. Moreover,
the Front Panel framework API has been redesigned and is now distributed using the ej.tool.frontpanel.
framework module instead of the legacy Eclipse classpath variable.

4.3. MicroEJ Architecture 286

MicroEJ Documentation, Revision 44d2784c

Core Engine

« Added EDC-1.3 support for daemon threads
« Added BON supportfor ej.bon.Util.newArray(T[],int)
« [Multi/ARMCC5] Fixed unused undefined symbol that prevent Keil MDK-ARM to link properly

Foundation Libraries

+ Updated EDC to version 1.3 (see EDC-1.3 APl Changelog)

- Updated the implementation code for correct Null analysis detection (added assertions, extracted mul-
tiple field accesses into a local)

- Fixed java.io.PrintStream.PrintStream(OutputStream, boolean) writer initialization

- Removed useless String literalsin java.lang.Throwable

Updated UTF-8 decoder to support Unicode code points

« Updated BON to version 1.4 (see BON-1.4 AP| Changelog)

« Updated TRACE toversion 1.1

- Added ej.trace.Tracer.getGroupID()

- Added a BON Constant (core.trace.enabled) to remove trace related code when tracing is disabled

+ Fixed KF to call the registered Thread.UncaughtExceptionHandler when an exception is thrown by the
first Feature thread

Integration

+ Added new options for Java assertions execution in category Runtime (core.assertions.sim.enabled
and core.assertions.emb.enabled). By default, Java assertions execution is disabled both on Simulator
and on Device.

+ Updated options categories (options property names left unchanged)

Added a new category named Runtime

Renamed Target to Device

Moved Embed All type names option from Core Engine to Runtime

Moved Core Engine under Device

Removed category Target > Debug and moved Trace optionsto Runtime

Removed category Debug and moved all sub categories under Simulator

Renamed category JDWP to Debug

+ Added anoption(com.microej.library.edc.securitymanager.enabled)toenable Security Manager run-
time checks (disabled by default)

4.3. MicroEJ Architecture 287

https://repository.microej.com/5/artifacts/ej/api/edc/1.3.0/CHANGELOG-1.3.0.md
https://repository.microej.com/5/artifacts/ej/api/bon/1.4.0/CHANGELOG-1.4.0.md

MicroEJ Documentation, Revision 44d2784c

Simulator

+ Added a cache to speed-up classfile loading in JARs

« Added EDC-1.3 support for daemon threads

+ Added BON-1.4 support for compile-time constants (load of .constants.list resources)

« Added BON-1.4 supportfor ej.bon.Util.newArray()

+ Added Front Panel framework

+ Updated error message when reaching S3 simulator limits

« Removed the Bootstrapping a Smart Software Simulator message when verbose mode in enabled

+ Fixed Object.clone() onanimmutable object to return a new (mutable) object instead of an immutable
one

« Fixed Object.clone() crash when an OutOfMemory occurs

« Fixed potential crash when calling an abstract method (some interfaces of the hierarchy were not taken into
account - introduced in version 7.70.0)

« Fixed OutOfMemory errors even if the heap is not full (resources loaded from Class.getResourceAsStream
and ResourceBuffer.open() were taken into account in simulated heap memory - introduced in version
7.10.0)

« Fixed potential crash when a GC occurs while a ResourceBuffer is open (introduced in version 7.70.0)
« Fixed potential debugger hangs when an exception was thrown but not caught in the same method
+ [Multi] Fixed wrong class loading in some cases

+ [Multi] Fixed wrong immutable loading in some cases

SOAR

+ Added BON-1.4 support for compile-time constants (load of .constants.list resources)
+ Added bytecode removal for Java assertions (when option is disabled)
+ Added bytecode removal for if(ej.bon.Constants.getBoolean()) pattern

- then or else blockis removed depending on the boolean condition

- WARNING: Current limitation: the “if statement cannot wrap or be nested in a “try-catch-finally* state-
ment

+ Added an option for grouping all the methods by type in a single ELF section
- com.microej.soar.groupMethodsByType.enabled (false by default)

- WARNING: this option avoids to reach the maximum number of ELF sections (65536) when building a large
application, but affects the application code size (especially inline methods are embedded even ifthey are
not used)

+ Added an error message when microejapp.o cannot be generated because the maximum number of ELF
sections (65536) is reached

4.3. MicroEJ Architecture 288

MicroEJ Documentation, Revision 44d2784c

Tools

« Updated License Manager (Production) to debug dongle recognition issues. (usage is java -Djava.
library.path=resources/os/[0S_NAME] -jar licenseManager/licenseManagerUsbDongle.jar in an
Architecture or Platform folder)

« Updated License Manager (Production) to support dongle recognition on Mac OS 10.14 (Mojave)

Fixed ELF To Map to produce correct sizes from an executable generated by IAR Embedded Workbench for
ARM

« Fixed Firmware Linker .ARM.exidx section generation (missing section link content)

Updated deployment files policy for Platforms in Worskpace, in order to be more flexible depending on the
C project layout. This also allows to deploy to the same C project different Applications built with different
Platforms

- Platform configuration: in bsp/bsp.properties, anew option output.dir indicates where the files
are deployed by default

* Application (microejapp.o) and Platform library (microejruntime.a) are deployed to
${output.dir}/1lib. Platform header files (*.h) are deployed to ${output.dir}/inc/

* When this option is not set, the legacy behavior is left unchanged (project. file option in collab-
oration with augmentCProject scripts)

- Launch configuration: Device > Deploy options allow to override the default Platform configuration
in order to deploy each MicroEJ file into a separate folder.

Fixed wrong ELF file generation when a section included in a LOAD segment was generated before one of
the sections included in a LOAD segment declared before the first one (integrated in ELF Utils and Firmware
Linker)

Fixed wrong ELF file generation when a section included in a LOAD segment had an address which was outside
its LOAD segment virtual address space (integrated in ELF Utils and Firmware Linker)

[7.10.1] - 2019-04-03

Simulator

« Fixed Object.getClass() may return a Class instance owned by a Feature for type owned by the Kernel

[7.10.0] - 2019-03-29

Core Engine

« Added internal memories checks at startup: heaps and statics memories are not allowed to overlap with
LLBSP_IMPL_isInReadOnlyMemory ()

+ [Multi] - Updated Feature Killimplementation to prepare future RAM Control (fully managed by Core Engine)

+ [Multi] - Updated implementation of ej.kf.Kernel : all APIs taking a Feature argument now will throw a
java.lang.IllegalStateException when the Feature is not started

4.3. MicroEJ Architecture 289

MicroEJ Documentation, Revision 44d2784c

Foundation Libraries

« Updated KF library in sync with Core Engine Kill related fixes and Simulator with Kernel & Features semantic

+ Updated BON library on Simulator (now uses the same implementation than the one used by the Core Engine)

Integration

« Added generation of architecture.properties file when building a Platform. (Used by MicroEJ
SDK/Studio 5 when manipulating Platforms & Virtual Devices)

Simulator

« Added Embed all types names option for Simulation

» Added memory size simulation for Java Heap and Immortal Heap (Enabling Use target characteristics
option is no more required)

+ Added Kernel & Features semantic, as defined in the KF-1.4 specification

- Fully implemented:
* Ownership for types, object and thread execution context
* Kernel mode
* Context Local Static Field References

- Partially implemented:
* Kernel API (Type grained only)
* Shared Interfaces are binded using direct reference links (no Proxy execution)

* Feature.stop() does not perform the safe kill. The application cannot be stopped unless it has
correctly removed all its shared references.

- Notimplemented:
* Dynamic Feature installation from Kernel.install(java.io.InputStream)

* Execution Rules Runtime checks

Tools

« Updated Memory Map Scripts (Bluetooth, MWT, NLS, Rcommand and AllJoyn libraries)

« Fixed Kernel Packager internal limits error when the ELF executable does not contains a .debug. soar
section

Fixed wrong ELF file generation when segmentfile size is different than the mem size (integrated in ELF Utils
and Firmware Linker)

Fixed Simulator COM port mapping default value (setto disabled instead of UART<->UART in order to avoid
an error when launch configuration is just created)

Fix ELF To Map: the total sections size were not equal to the segments size

4.3. MicroEJ Architecture 290

MicroEJ Documentation, Revision 44d2784c

[7.9.1] - 2019-01-08

Tools

« Fixed ELF objcopy generation when ELF executable file contains 0 size segments

+ Fixed Stack Trace Reader error when ELF executable file contains relocation sections
[7.9.0] - 2018-09-20
SOAR

+ Optimized SOAR processing (up to 50% faster on applications with tens of classpath entries)
[7.8.0] - 2018-08-01
Tools

+ [ARMCC5] - Updated SOAR Debug Infos Post Linker tool to generate the full ELF executable file
[7.7.0] - 2018-07-19
Core Engine

« Added a permanent hook LLMJVM_on_Runtime_gc_done called after an explicit java.lang.Runtime.gc()

+ Updated internal heap header for memory dump

SOAR

+ Added check for the maximum number of allowed concrete types (avoids a Core Engine link error)

Tools
« Added Heap Dumper tool
[7.6.0] - 2018-06-29
Foundation Libraries
« [Multi] Updated BON library: a Timer owned by the Kernel can execute a TimerTask owned by a Feature

[7.5.0] - 2018-06-15

Internal Release - COTS Architecture left unchanged.

4.3. MicroEJ Architecture 291

MicroEJ Documentation, Revision 44d2784c

[7.4.0] - 2018-06-13

Core Engine

« Removed partial support of ej.bon.Util.throwExceptionInThread() (deprecated)
+ [Multi/Linux] - Updated default configuration to always embed method names

« [Multi/Cortex-M] - Optimized KF checks execution for array & field accesses

Foundation Libraries

« Updated ej.bon.Timer toschedule ej.bon.TimerTask owned by multiple Features

Simulator

« Fixed implementation of java.lang.Class.getResourceAsStream() tothrow a java.io.IOException
when the stream is closed

SOAR

« [GCC] - Fixed microejapp.o link with GCC 6.3

Tools

+ Added a retry mechanism in the Testsuite Engine

« Added a message to suggest increasing the JVM heap when an OutOfMemoryError occursinthe Firmware
Linker tool

« Fixed generation of LL header files for all cross compilation toolchains (file separator for included paths is /

)
« [Cortex-A/ARMCC5] - Fixed SNI convention call issue

« [ESP32,RX] - Fixed Firmware Linker toolinternal limit
[7.3.0] - 2018-03-07
Simulator

« Added an option for the IDE to customize the mockups classpath

+ Fixed Deadlock in Shielded Plug remote client when interrupting a thread that waits for block modification
[7.2.0] - 2018-03-02
Core Engine

« [Multi] - Enabled quantum counter computation only when Feature quota is set

+ [Cortex-M/IAR74] - Updated compilation flags to -0Oh

4.3. MicroEJ Architecture 292

MicroEJ Documentation, Revision 44d2784c

Simulator

+ Added a hook in the mockup that is automatically called during the HIL Engine startup
« Added dump of loaded classes when verbose option is enabled

« Fixed java.lang.Runtime.freeMemory() call freeze when Emb Characteristics option is enabled

Fixed ShieldedPlug server error after interrupting a thread that is waiting for a database block

Fixed crash Access to a wrong reference in some cases

+ Fixed java.lang.NullPointerException when interrupting a thread that has not been started

Fixed crash when closing an HIL connection in some cases
« [Multi] - Fixed KF & Watchdog library link when Emb Characteristics option is enabled

+ [Multi] - Fixed XML Parsing error when Emb Characteristics optionisenabled
[7.1.2] - 2018-02-02
SOAR

« Fixed SNI library was added in the classpath in some cases
[maintenance/6.18.0] - 2017-12-15
Core Engine

« [Multi] - Enabled quantum counter computation only when Feature quota is set

+ [Cortex-M/IART4] - Updated compilation flags to -0Oh

Simulator

« Fixed java.lang.Runtime.freeMemory() call freeze when Emb Characteristics option is enabled
+ [Multi] - Fixed KF & Watchdog library link when Emb Characteristics option is enabled

« [Multi] - Fixed XML Parsing error when Emb Characteristics optionisenabled

Tools

+ Updated Kernel API Generator tool with classes filtering
[7.1.1] - 2017-12-08
Tools

o [Multi/RX] - Fixed Firmware Linker tool

4.3. MicroEJ Architecture 293

MicroEJ Documentation, Revision 44d2784c

[7.1.0] - 2017-12-08

Core Engine

« [Multi/RX] - Added KF support

Integration

+ Fixed SNI-1.3 library name

SOAR

+ [RX] - Added support for ELF symbol prefix _

Tools

+ Updated Kernel API generator tool with classes filtering
[7.0.0] - 2017-11-07
Core Engine

« Added SNI-1.3 support

« SNI_suspendCurrentJavaThread() isnotinterruptiblevia java.lang.Thread.interrupt() anymore

Foundation Libraries
« Updatedto SNI-1.3
[6.17.2] - 2017-10-26
Simulator
« Fixed deadlock during bootstrap in some cases
[6.17.1] - 2017-10-25
Core Engine

« Fixed conversion of -0.0 into a positive value

4.3. MicroEJ Architecture 294

MicroEJ Documentation, Revision 44d2784c

[6.17.0) - 2017-10-10

Tools
« Updated Memory Map Scripts for TRACE library
[6.16.0] - 2017-09-27
Core Engine
« Fixed External Resource Loader link error (introduced in version 6.73.0)
[6.15.0] - 2017-09-12
Core Engine

+ Added a new option to configure the maximum number of monitors that can be owned per thread (8 per
thread by default, as it was fixed before)

Foundation Libraries

+ Fixed ECOM-COMM internal heap calibration

SOAR

+ Added log of the class loading cause
[6.14.2] - 2017-08-24
Tools

« Fixed Firmware Linker toolscript(load activity.xml from the wrong folder)

« Fixed load of symbol _java_l java_io_EOFException thatcan be required by some linkers even if this sym-
bol is not touched

[6.14.1] - 2017-08-02

Simulator

+ Fixed Device Mockup too long initialization that may block the Front Panel Mockup

Foundation Libraries

« Fixed BON .types.list potential conflicts with KF

4.3. MicroEJ Architecture 295

MicroEJ Documentation, Revision 44d2784c

Tools

« Modified Firmware Linker internalscripts structure for new Virtual Devices tools
[6.13.0] - 2017-07-21
Core Engine

+ Added support for ej.bon.ResourceBuffer

Foundation Libraries

« Updated to BON-1.3

SOAR

+ Added support for *.resourcesext.list (resources excluded from the firmware)

Tools

+ Added BON Resource Buffer generator
[6.12.0] - 2017-07-07
Core Engine

« Added atrace when java.lang.IllegalMonitorStateException isthrownona monitorexit

Tools

« Added property skip.mergelLibraries for Platform Builder.
« Updated serial PC connectorto JSSC v2.8.0

Simulator

« Fixed unexpexted java.lang.NullPointerException in some cases
[6.11.0] - 2017-06-13
Integration

+ Fixed useless watchdog library copied in root folder

4.3. MicroEJ Architecture 296

MicroEJ Documentation, Revision 44d2784c

[6.11.0-betal] - 2017-06-02

Core Engine

« Added an option to enable execution traces
« Added Low Level APl LLMJVM_MONITOR_impl.h
o Added Low Level API LLTRACE_impl.h

Foundation Libraries
« Added TRACE-1.0
[6.10.0] - 2017-06-02
Core Engine
« Optimized java.lang.Runtime.gc() (removed useless heap compaction in some cases)
[6.9.2] - 2017-06-02
Integration

« Fixed missing propertiesin release.properties (introduced in version v6.9.1)

« Fixed artifacts build dependencies to private dependencies

[6.9.1] - 2017-05-29
SOAR
« [Multi] - Fixed selected methods list in report generation (removed Kernel related method)

[6.9.0] - 2017-03-15

Base version, included into MicroEJ SDK 4.1.

4.4 MicroEJ Packs

4.4.1 Overview

On top of a MicroEJ Architecture can be imported MicroEJ Packs which provide additional features such as:

« Serial Communications,

 Graphical User Interface,

« Networking,

4.4. MicroEJ Packs 297

MicroEJ Documentation, Revision 44d2784c

« File System,
. etc.

Each MicroEJ Pack is optional and can be selected on demand during the MicroEJ Platform configuration step.

4.4.2 Naming Convention

MicroEJ Packs are distributed in two packages:
+ MicroEJ Architecture Specific Pack under the com/microej/architecture/* organization.
« MicroEJ Generic Pack under the com/microej/pack/* organization.

See Pack Import for usage.

Architecture Specific Pack
MicroEJ Architecture Specific Packs contain compiled libraries archives and are thus dependent on the MicroEJ
Architecture and toolchain used in the MicroEJ Platform.

MicroEJ Architecture Specific Packs files ends with the .xpfp extension and are classified using the following
naming convention:

com/microej/architecture/[ISA]/[TOOLCHAIN]/[UID]-[NAME]-pack/[VERSION]/[UID]-[NAME]-pack-[VERSION].xpfp

+ ISA:instruction set architecture (e.g. CM4 for Arm® Cortex®-M4, ESP32 for Espressif ESP32,...).
« TOOLCHAIN: C compilation toolchain (e.g. CM4hardfp_GCC48).

« UID: Architecture unique ID (e.g. flopi4G25).

+ NAME : pack name (e.g. ui).

+ VERSION: packversion (e.g. 13.0.4).

For example, MicroEJ Architecture Specific Pack Ul versions for Arm® Cortex®-M4 microcontrollers compiled
with GNU CC toolchain are available at https://repository.microej.com/modules/com/microej/architecture/CM4/
CM4hardfp_GCC48/flopi4G25-ui-pack/.

Generic Pack

MicroEJ Generic Packs can be imported on top of any MicroEJ Architecture.

They are classified using the following naming convention:

com/microej/pack/[NAME]/[NAME]-pack/[VERSION]/

« NAME : pack name (e.g. bluetooth).
+ VERSION: packversion (e.g. 2.1.0).

For example, MicroEJ Generic Pack Bluetooth versions are available at https://repository.microej.com/modules/
com/microej/pack/bluetooth/bluetooth-pack/.

4.4. MicroEJ Packs 298

https://repository.microej.com/modules/com/microej/architecture
https://repository.microej.com/modules/com/microej/pack/
https://repository.microej.com/modules/com/microej/architecture/CM4/CM4hardfp_GCC48/flopi4G25-ui-pack/
https://repository.microej.com/modules/com/microej/architecture/CM4/CM4hardfp_GCC48/flopi4G25-ui-pack/
https://repository.microej.com/modules/com/microej/pack/bluetooth/bluetooth-pack/
https://repository.microej.com/modules/com/microej/pack/bluetooth/bluetooth-pack/

MicroEJ Documentation, Revision 44d2784c

Legacy Generic Pack

Legacy MicroEJ Generic Packs files end with the .xpfp extension. These Packs contain one or more Platform
modules. See Platform Module Configuration for their configuration. They are classified using the following naming
convention:

com/microej/pack/[NAME]/[VERSION]/[NAME]-[VERSION]. xpfp

« NAME : pack name (e.g. net).
« VERSION: pack version (e.g. 9.2.3).

For example, the Legacy MicroEJ Generic Pack NET version 9.2.3 is available at https://repository.microej.com/
modules/com/microej/pack/net/9.2.3/net-9.2.3.xpfp.

4.5 Platform Creation

This section describes the steps to create a new MicroEJ Platform in MicroEJ SDK, and options to connect it to an
external Board Support Package (BSP) as well as a third-party C toolchain.

Note: If you own a legacy Platform, you can either create your Platform again from scratch, or follow the Former
Platform Migration chapter.

4.5.1 Architecture Selection

The first step is to select a MicroEJ Architecture compatible with your device instructions set and C compiler.

MicroEJ Corp. provides MicroEJ Evaluation Architectures for most common instructions sets and compilers at
https://repository.microej.com/modules/com/microej/architecture.

Please refer to the chapter Architectures MCU / Compiler for the details of ABl and compiler options.

If the requested MicroEJ Architecture is not available for evaluation or to get a MicroEJ Production Architecture,
please contact your MicroEJ sales representative or our support team.

4.5.2 Platform Configuration

The next step is to create a MicroEJ Platform configuration project:
+ Select File > New > Project... > General > Project ,
« Enter a Projectname . The name is arbitrary and can be changed later. The usual convention is
[PLATFORM_NAME]-configuration,

+ Clickon Finish button. A new empty project is created,

« Install the latest Platform Configuration Additions. Files within the content folder have to be copied
to the configuration project folder, by following instructions described at https://github.com/MicroEJ/
PlatformQualificationTools/blob/master/framework/platform/README.rst.

You should get a MicroEJ Platform configuration project that looks like:

4.5. Platform Creation 299

https://repository.microej.com/modules/com/microej/pack/net/9.2.3/net-9.2.3.xpfp
https://repository.microej.com/modules/com/microej/pack/net/9.2.3/net-9.2.3.xpfp
https://repository.microej.com/modules/com/microej/architecture
https://github.com/MicroEJ/PlatformQualificationTools/blob/master/framework/platform/
https://github.com/MicroEJ/PlatformQualificationTools/blob/master/framework/platform/README.rst
https://github.com/MicroEJ/PlatformQualificationTools/blob/master/framework/platform/README.rst

MicroEJ Documentation, Revision 44d2784c

w =% myplatform-cenfiguration
w = bsp
|=| bsp.properties
w [build
= module
= platform
CHAMNGELOG.md
README.md
|X] project
@ configuration.xml
X default.platform
£ module.ant

by moduledvy

= module.properties

=

& override.module.ant

Fig. 8: MicroEJ Platform Configuration Project Skeleton

Note: The version of installed Platform Configuration Additions is indicated in the CHANGELOG file.

Edit the Module Description File module.ivy to declare the MicroEJ Architecture dependency:

<dependencies>

<dependency org="com.microej.architecture.[ISA].[TOOLCHAIN]" name="[UID]" rev="[VERSION]">
<artifact name="[UID]" m:classifier="[USAGE]" ext="xpf"/>
</dependency>

</dependencies>

For example, to declare the MicroEJ Evaluation Architecture version 7.14.0 for Arm® Cortex®-M4 microcon-
trollers compiled with GNU CC toolchain:

<dependencies>

<dependency org="com.microej.architecture.CM4.CM4hardfp_GCC48" name="flopi4G25" rev="7.14.0">
<artifact name="flopi4G25" m:classifier="eval" ext="xpf"/>
</dependency>

</dependencies>

4.5.3 Pack Import

MicroEJ Pack provides additional features on top of the MicroEJ Architecture such as Graphical User Interface or
Networking.

Note: MicroEJ Packs are optional. You can skip this section if you intend to integrate MicroEJ runtime only with
custom libraries.

4.5. Platform Creation 300

https://github.com/MicroEJ/PlatformQualificationTools/blob/master/framework/platform/content/build/CHANGELOG.md

MicroEJ Documentation, Revision 44d2784c

To declare a MicroEJ Pack dependency, edit the Module Description File module.ivy as follows:

<dependencies>
<!-- MicroEJ Architecture Specific Pack -->
<dependency org="com.microej.architecture.[ISA].[TOOLCHAIN]" name="[UID]-[NAME]-pack"” rev="[VERSION]
<"/>

<!-- MicroEJ Generic Pack -->
<dependency org="com.microej.pack.[NAME]" name="[NAME]-pack"” rev="[VERSION]"/>

<!-- Legacy MicroEJ Generic Pack -->
<dependency org="com.microej.pack” name="[NAME]" rev="[VERSION]"/>

</dependencies>

For example, to declare the MicroEJ Architecture Specific Pack Ul version 13.0.4 for MicroEJ Architecture
flopi4G25 on Arm® Cortex®-M4 microcontrollers compiled with GNU CC toolchain:

<dependencies>
<!-- MicroEJ Architecture Specific Pack -->

<dependency org="com.microej.architecture.CM4.CM4hardfp_GCC48" name="flopi4G25-ui-pack” rev="13.0.4
Ly

</dependencies>

To declare the MicroEJ Generic Pack Bluetooth version 2.1.0:

<dependencies>
<!-- MicroEJ Generic Pack -->
<dependency org="com.microej.pack.bluetooth” name="bluetooth-pack” rev="2.1.0"/>

</dependencies>

And to declare the Legacy MicroEJ Generic Pack Net version 9.2.3:

<dependencies>
<!-- Legacy MicroEJ Generic Pack -->
<dependency org="com.microej.pack” name="net"” rev="9.2.3"/>

</dependencies>

Warning: MicroEJ Architecture Specific Packs and Legacy MicroEJ Generic Packs provide Platform modules that
are not installed by default. See Platform Module Configuration section for more details.

4.5.4 Platform Build

To build the MicroEJ Platform, perform as a regular Module Build:
« Right-click on the Platform Configuration project,
« Select Build Module .

« The build starts and the build logs are redirected to the integrated console. Once the build is terminated, you
should get the following message:

4.5. Platform Creation 301

MicroEJ Documentation, Revision 44d2784c

module-platform:report:

[echo] -
—

[echo] Platform has been built in this directory 'C:\tmp\mydevice-Platform-[TOOLCHAIN]-0.1.0
<—>' .

[echo] To import this project in your MicroEJ SDK workspace (if not already available):

[echo] - Select 'File' > 'Import...' > 'General' > 'Existing Projects into Workspace' >
— 'Next'

[echo] - Check 'Select root directory' and browse 'C:\tmp\mydevice-Platform-[TOOLCHAIN]-0Q.
—1.0' > 'Finish'

[echo] -

—
BUILD SUCCESSFUL

Total time: 43 seconds

Then, import the Platform directory to your MicroEJ SDK workspace as mentioned in the report. You should
get a ready-to-use MicroEJ Platform project in the workspace available for the MicroEJ Application project to
run on. You can also check the MicroEJ Platform availability in: Window > Preferences > MicroEJ >

Platforms in workspace .

4.5. Platform Creation 302

MicroEJ Documentation, Revision 44d2784c

v 2 mydevice-Platferm-myteolchain-0.0,1
v [build
|=| release.properties
w = source

= docurmentation

= include

= javaAPls

[= javalibs

= lib

[= licenseManager

= link

= linker

= MICROVM

= mocks

[= plugins

[resources

= 53

[= scripts

= tools

|=| architecture.properties
readme.md
release.properties
workbenchExtension_edc.jar

i) =

5

| £ workbenchExtension_launchScriptFramework,jar
| £ workbenchExtension_microjvm,jar

| £ workbenchExtension_nlsjar

| £ workbenchExtension jar

| £ workbenchExtensiond.jar

Fig. 9: MicroEJ Platform Project

This step is only required the first time the Platform is built, or if the Platform properties have changed (i.e, name,
version). When the same Platform is built again, the Platform project should be automatically refreshed after few

seconds. In case of any doubt, right-click on the Platform project and select Refresh to getthe new content.

4.5.5 Platform Module Configuration

A Platform module is the minimal unit that can extend a MicroEJ Architecture with additional features such as:

+ Runtime Capability (e.g. Multi-Sandbox, External Resources Loader) ,

« Foundation Library Implementation (e.g. MicroUl, NET),
« Simulator (e.g. Front Panel Mock),
+ Tool (e.g. MicroEJ Java H).

Platform modules provided by MicroEJ Generic Packs are automatically installed during the Platform build and do
not require extra configuration. They are not displayed in the Platform Editor.

4.5. Platform Creation 303

MicroEJ Documentation, Revision 44d2784c

Platform modules provided by MicroEJ Architectures, MicroEJ Architecture Specific Packs and Legacy MicroEJ Generic
Packs following list are not installed by default. They must be enabled and configured using the Platform Editor.

Before opening the Platform Editor, the Platform must have been built once to let MicroEJ Module Manager resolve
and download MicroEJ Architecture and Packs locally. Then import them in MicroEJ SDK as follows:

« Select File > Import > MicroEJ > Architectures ,
+ Browse myplatform-configuration/target~/dependencies folder (contains .xpf and .xpfp files once the
Platform is built),

» Check the |agree and accept the above terms and conditions... box to accept the license,

« Clickon Finish button. This may take some time.

Once imported, double-click on the default.platform file to open the Platform Editor.

From the Platform Editor, select the Content tab to access the modules selection. Platform modules can be
selected/deselected from the Modules frame.

Platform modules are organized into groups. When a group is selected, by default, all its modules are selected. To
view all the modules making up a group, click on the Expand Allicon on the top-right of the frame. This will let you
select/deselect on a per module basis. Note that individual module selection is not recommended and that it is
only available when the module have been imported.

The description and contents of an item (group or module) are displayed beside the list on item selection.

All the selected Platform modules will be installed in the Platform.

4.5. Platform Creation 304

MicroEJ Documentation, Revision 44d2784c

I mydevice-myplatform-mytoolchain b

{¥ Content

Environment

Architecture Browse...

Modules 1 Details
Modules included in the Platform.

type filter text Description
Multi Applications modules group.
Mame

[] Device Information

[] External Resources Loader
[] Front Panel

[]Fs

[] HAL

[] Javato C Interface

[] Multi Applications

] NET

[] Serial Communication

[ssL
Ul

Fig. 10: MicroEJ Platform Configuration Modules Selection

Each selected Platform module can be customized by creatinga [module] folder named after the module beside

the .platform file definition. It may contain:

« A [module].properties file named after the module name. These properties will be injected in the execu-

tion context prefixed by the module name. Some properties might be needed for the configuration of some
modules. Please refer to the modules documentation for more information.

+ A bsp.xml file which provides additional information about the BSP implementation of Low Level APIs.

This file must start with the node <bsp> . It can contain several lines like this one:
<nativeName="A_LLAPI_NAME" nativelImplementation name="AN_IMPLEMENTATION_NAME"/>

where:

- A_LLAPI_NAME referstoalLow Level APl native name. Itis specific to the MicroEJ C library which provides
the Low Level API.

- AN_IMPLEMENTATION_NAME refersto the implementation name of the Low Level API. It is specific to the
BSP; and more specifically, to the C file which does the link between the MicroEJ C library and the C
driver.

These files will be converted into an internal format during the MicroEJ Platform build.

« Optional module specific files and folders

4.5. Platform Creation 305

MicroEJ Documentation, Revision 44d2784c

Modifying one of these files requires to build the Platform again.

Note: Itis possible to quickly rebuild the Platform from the Platform Editor if only Platform module configuration
has changed. Click on the Build Platform link on the Platform configuration Overview tab.

4.5.6 Platform Customization

The configuration project (the project which contains the .platform file) can containan optional dropins folder.

The contents of this folder will be copied integrally into the final Platform. This feature allows to add some addi-
tional libraries, tools etc. into the Platform.

The dropins folder organization should respect the final Platform files and folders organization. For instance, the

tools are located in the sub-folder tools . Launch a Platform build without the dropins folder to see how the
Platform files and folders organization is. Then fill the dropins folder with additional features and build again the
Platform to obtain an advanced Platform.

The dropins folder files are kept in priority. If one file has the same path and name as another file already installed
into the Platform, the dropins folder file will be kept.

Platform build can also be customized by updating the configuration.xml file beside the .platform file. This

Ant script can extend one or several of the extension points available. By default, you should not have to change
the default configuration script.

Modifying one of these files requires to build the Platform again.

4.5.7 BSP Connection
Principle
Using a MicroEJ Platform, the user can compile a MicroEJ Application on that Platform. The result of this compila-

tionisa microejapp.o file.

This file has to be linked with the MicroEJ Platform runtime file (microejruntime.a) and a third-party C project,
called the Board Support Package (BSP), to obtain the final binary file (MicroEJ Firmware). For more information,
please consult the MicroEJ build process overview.

The BSP connection can be configured by defining 4 folders where the following files are located:
+ MicroEJ Application file (microejapp.o).
« MicroEJ Platform runtime file (microejruntime. a, also available in the Platform 1ib folder).
« MicroEJ Platform header files (. h, also available in the Platform include folder).
« BSP project build script file (build.bat or build.sh).

Once the MicroEJ Application file (microejapp.o) is built, the files are then copied to these locations and the
build.bat or build.sh fileis executed to produce the final executable file (application.out).

Note: The final build stage to produce the executable file can be done outside of MicroEJ SDK, and thus the BSP
connection configuration is optional.

BSP connection configuration is only required in the following cases:

+ Use MicroEJ SDK to produce the final executable file of a Mono-Sandbox Firmware (recommended).

4.5. Platform Creation 306

MicroEJ Documentation, Revision 44d2784c

« Use MicroEJ SDK to run a MicroEJ Test Suite on device.

« Build a Multi-Sandbox Firmware.

MicroEJ provides a flexible way to configure the BSP connection to target any kind of projects, teams organizations
and company build flows. To achieve this, the BSP connection can be configured either at MicroEJ Platform level
or at MicroEJ Application level (or a mix of both).

The 3 most common integration cases are:
« Case 1: No BSP connection
The MicroEJ Platform does not know the BSP at all.

BSP connection can be configured when building the MicroEJ Application (absolute locations).

C application

MicroEJ code and Board

. MicroEJ Platform
Application code S

BSP absolute locations

MicroEJ Firmware

Fig. 11: MicroEJ Platform with no BSP connection

This case is recommended when:
- the MicroEJ Firmware is built outside MicroEJ SDK.

- the same MicroEJ Platform is intended to be reused on multiple BSP projects which do not share the
same structure.

« Case 2: Partial BSP connection
The MicroEJ Platform knows how the BSP is structured.

BSP connection is configured when building the MicroEJ Platform (relative locations within the BSP), and the
BSP root location is configured when building the MicroEJ Application (absolute directory).

C application

MicroElJ code and Board

MicroEJ Platform

Application code

Support Package

BSP relativie locations
BSP roof{directory

MicroEJ Firmware

Fig. 12: MicroEJ Platform with partial BSP connection

This case is recommended when:

4.5. Platform Creation 307

MicroEJ Documentation, Revision 44d2784c

- the MicroEJ Platform is used to build one MicroEJ Application on top of one BSP.

- the Application and BSP are slightly coupled, thus making a change in the BSP just requires to build the
firmware again.

« Case 3: Full BSP connection
The MicroEJ Platform includes the BSP.

BSP connection is configured when building MicroEJ Platform (relative locations within the BSP), as well as
the BSP root location (absolute directory). No BSP connection configuration is required when building the
MicroEJ Application.

C application
code and Board
Support Package

MicroEJ

e onEed MicroEJ Platform

BSP relative locations
BSP root directory

MicroEJ Firmware

Fig. 13: MicroEJ Platform with full BSP connection

This case is recommended when:
- the MicroEJ Platform is used to build various MicroEJ Applications.
- the MicroEJ Platform is validated using MicroEJ test suites.

- the MicroEJ Platform and BSP are delivered as a single standalone module (same versioning), perhaps
subcontracted to a team or a company outside the application project(s).

Options

BSP connection options can be specified as Platform options or as Application options or a mix of both.

The following table describes the Platform options, which can be set in the bsp/bsp.properties file of the Plat-
form configuration project.

4.5. Platform Creation 308

MicroEJ Documentation, Revision 44d2784c

Table 1: MicroEJ Platform Options for BSP Connection

Option Description Example
Name
) | The path relative to BSP root.dir where to deploy the Mi-))
M1Croejapp croEJ Application file (microejapp.o). MicroEJ/1lib
relative.
dir
The path relative to BSP root.dir where to deploy the Mi-
microejlib eroE Platform runtime file (microejruntime. a). MicroEJ/1lib
relative.
dir
The path relative to BSP root.dir where to deploy the Mi-
microejint ¢roE) Platform headerfiles (*.h). MicrokJ/inc
relative.
dir
] | Thepathrelativeto BSP root.dir whereto execute the BSP .]
microejsciyiitd script file (build.bat or build.sh). Project/MicrotJ
relative.
dir
The 3rd-party BSP project absolute directory, to be included)
root. to the Platform. c:\\Users\\user\\mybsp onWin-
dir dows systems or /home/user/bsp
on Unix systems.

The following table describes the Application options, which can be set as regular MicroEJ Application Options.

Table 2: MicroEJ Application Options for BSP Connection

Option Name Description

Deploy the MicroEJ Application file (microejapp. o) to the location defined by the Platform
deploy.bsp. (defaults to true when Platform option microejapp.relative.dir isset).
microejapp

Deploy the MicroEJ Platform runtime file (microejruntime.a) to the location defined by
deploy.bsp. the Platform (defaults to true when Platform option microejlib.relative.dir is set).
microejlib

Deploy the MicroEJ Platform header files (*.h) to the location defined by the Platform (de-
deploy.bsp. faults to true when Platform option microejinc.relative.dir isset).
microejinc

Execute the BSP build script file (build.bat or build.sh) at the location specified by the
deploy.bsp. Platform. (defaults to false and requires microejscript.relative.dir Platform option
microejscript to be set).

The 3rd-party BSP project absolute directory. This option is required if at least one the 4
deploé’ -bsp. options described above is set to true and the Platform does not include the BSP.
root.dir

) Absolute path to the directory where to deploy the MicroEJ Application file (microejapp.o
dgploy '.d”'). An empty value means no deployment.
microejapp

) Absolute path to the directory where to deploy the MicroEJ Platform runtime file (
deploy.dir. microejruntime.a) to this absolute directory. An empty value means no deployment.
microejlib

) Absolute path to the directory where to deploy the MicroEJ Platform header files (*.h) to
dgploy -.9'”- this absolute directory. An empty value means no deployment.
microejinc

) Absolute path to the directory that contains the BSP build script file (build.bat or build.sh
deploy.dir.). An empty value means no build script execution.
microejscript

4.5. Platform Creation 309

MicroEJ Documentation, Revision 44d2784c

Note: It is also possible to configure the BSP root directory by setting the build option toolchain.dir, instead
of the application option deploy.bsp.root.dir. This allows to configure a MicroEJ Firmware by specifying both
the Platform (using the target.platform.dir option) and the BSP at build level, without having to modify the
application options files.

For each Platform BSP connection case, here is a summary of the options to set:

« No BSP connection, executable file built outside MicroEJ SDK

Platform Options:
[NONE]

Application Options:
[NONE]

« No BSP connection, executable file built using MicroEJ SDK

Platform Options:
[NONE]

Application Options:
deploy.dir.microejapp=[absolute_path]
deploy.dir.microejlib=[absolute_path]
deploy.dir.microejinc=[absolute_path]
deploy.bsp.microejscript=[absolute_path]

Partial BSP connection, executable file built outside MicroEJ SDK

Platform Options:
microejapp.relative.dir=[relative_path]
microejlib.relative.dir=[relative_path]
microejinc.relative.dir=[relative_path]

Application Options:
deploy.bsp.root.dir=[absolute_path]

Partial BSP connection, executable file built using MicroEJ SDK

Platform Options:
microejapp.relative.dir=[relative_path]
microejlib.relative.dir=[relative_path]
microejinc.relative.dir=[relative_path]
microejscript.relative.dir=[relative_path]

Application Options:
deploy.bsp.root.dir=[absolute_path]
deploy.bsp.microejscript=true

« Full BSP connection, executable file built using MicroEJ SDK

Platform Options:
microejapp.relative.dir=[relative_path]
microejlib.relative.dir=[relative_path]
microejinc.relative.dir=[relative_path]
microejscript.relative.dir=[relative_path]
root.dir=[absolute_path]
(continues on next page)

4.5. Platform Creation 310

MicroEJ Documentation, Revision 44d2784c

(continued from previous page)

Application Options:
deploy.bsp.microejscript=true

Build Script File
The BSP build script file is used to invoke the third-party C toolchain (compiler and linker) to produce the final
executable file (application.out).
The build script must comply with the following specification:
+ On Windows operating system, it is a Windows batch file named build.bat.

« On Mac OS X or Linux operating systems, it is a shell script named build.sh, with execution permission
enabled.

« On error, the script must end with a non zero exit code.
« Onsuccess

- The executable must be copied to afile named application.out inthe directory from where the script
has been executed.

- The script must end with zero exit code.

Many build script templates are available for most commonly used C toolchains in the Platform Qualification Tools
repository.

Note: The final executable file must be an ELF executable file. On Unix, the command file(1) can be use to
check the format of a file. For example:

~$ file application.out
ELF 32-bit LSB executable

Run Script File

This script is required only for Platforms intended to run a MicroEJ Testsuite on device.
The BSP run script is used to invoke a third-party tool to upload and start the executable file on device.
The run script must comply with the following specification:

« On Windows operating system, it is a Windows batch file named run.bat.

« On Mac OS X or Linux operating systems, it is a shell script named run.sh , with execution permission en-
abled.

The executable file is passed as first script parameter if there is one, otherwise itis the application.out file
located in the directory from where the script has been executed.

On error, the script must end with a non zero exit code.
« On success:
- The executable file (application.out) has been uploaded and started on the device

- The script must end with zero exit code.

4.5. Platform Creation 31

https://github.com/MicroEJ/PlatformQualificationTools/tree/master/framework/platform/scripts
https://github.com/MicroEJ/PlatformQualificationTools/tree/master/framework/platform/scripts

MicroEJ Documentation, Revision 44d2784c

The run script can optionally redirect execution traces. If it does not implement execution traces redirection, the
testsuite must be configured with the following Application Options in order to take its input from a TCP/IP socket
server, such as Serial to Socket Transmitter.

testsuite.trace.ip=localhost
testsuite.trace.port=5555

4.6 Platform Qualification

4.6.1 Introduction

A MicroEJ Platform integrates one or more Foundation Libraries with their respective Abstraction Layers.

Platform Qualification is the process of validating the conformance of the Abstraction Layer that implements the
Low Level APIs of a Foundation Library.

PLATFORM QUALIFICATION
TEST SUITES

FOUNDATION
LIBRARIES

VIRTUALIZATION

LLNET LLLED LLSSL

LLDISPLAY LLKERNEL

—ABSTRACTION LAYERS _ LLMJVM LLBLE LLFS

RTOS/0OS

C Runtime

PLATFORM

CPU FPU Memory Peripherals

HARDWARE

Fig. 14: Platform Qualification Overwiew

4.6. Platform Qualification 312

MicroEJ Documentation, Revision 44d2784c

For each Low Level API, an Abstraction Layer implementation is required. The validation of the Abstraction Layer
implementation is performed by running tests at two-levels:

« In C, by calling Low Level APIs (usually manually).

« In Java, by calling Foundation Library APIs (usually automatically using Platform Test Suite).

The following figure depicts an example for the FS Pack:

TEST
SUITEFS

FOUNDATION
LIBRARIES

VIRTUALIZATION

=ABSTRACTION LAYERS _ LLFS

fatfs

RTOS/0OS

C Runtime

PLATFORM

CPU FPU Memory Peripherals

HARDWARE

Fig. 15: Platform Qualification Example for FS Pack

MicroEJ provides a set of tools and pre-defined projects aimed at simplifying the steps for validating Platforms in
the form of the Platform Qualification Tools (PQT).

4.6.2 Platform Qualification Tools Overview

The Platform Qualification Tools provide the following components:
+ Platform Configuration Additions (PCA):
- Used to:

* Manage MicroEJ Architecture, MicroEJ Packs and the Platform build with the MicroEJ Module Man-
ager.

4.6. Platform Qualification 313

https://github.com/MicroEJ/PlatformQualificationTools

MicroEJ Documentation, Revision 44d2784c

* Configure the BSP connection to call the build and run scripts.

- Added when creating a Platform (see Platform Creation or check the tutorial Create a MicroEJ Firmware
From Scratch).

« Build and Run Scripts examples:

- Used to generate and deploy a MicroEJ Firmware on a device by invoking a third-party toolchain for the
BSP

- Added when integrating the BSP to the Platform (see Build Script File and Run Script File or check the
tutorial Create MicroEJ Platform Build and Run Scripts).

+ Cand Java Test Suites:
- Used to validate the Low Level APIs implementations

- Validated during the BSP development and whenever an Abstraction Layer implementation is added or
changed (see Platform Test Suite or check the tutorial Run a Test Suite on a Device).

Please refer to the Platform Qualification Tools README for more details and the location of the components.

4.6.3 Platform Test Suite

The purpose of a MicroEJ Platform Test Suite is to validate the Abstraction Layer that implements the Low Level
APIs of a Foundation Libraries by automatically running Java tests on the device.

The MicroEJ Test Suite Engine is used for building, running a Test Suite, and providing a report.

A Platform Test Suite contains one or more tests. For each test, the Test Suite Engine will:
1. Build a MicroEJ Firmware for the test.
. Program the MicroEJ Firmware onto the device.

. Retrieve the execution traces.

2
3
4. Analyze the traces to determine whether the test has PASSED or FAILED.
5. Append the result to the Test Report.

6

. Repeat until all tests of the Test Suite have been executed.

4.6. Platform Qualification 314

https://github.com/MicroEJ/PlatformQualificationTools

MicroEJ Documentation, Revision 44d2784c

Test Suite

Test Suite Engine
Test Report

Testsuite Results:
<& —
MicroEJ Platform n -
: e —— —
Build A
7
BSP Code @ SS—

@ Collect results

Serial To Socket
Transmitter

¢

Fig. 16: Platform Test Suite on Device Overview

4.6.4 Test Suite Versioning

Foundation Libraries are integrated in a MicroEJ Platform by MicroEJ Packs (see Pack Import). Use the Test Suite
version compliant with the Foundation Library version to validate the Abstraction Layer implementation. For ex-
ample, the Test Suite FS module 3.0.3 should be used to validate the Abstraction Layer implementation of the Low
Level API FS provided by the FS Pack 5.1.2.

Note: A MicroEJ Pack can provide several Foundation Libraries.

Core Engine

Table 3: Core Engine Validation

Architecture Test Suite
7.0.0 or higher Core Engine Test Suite
Ul Pack

Table 4: Ul Validation

Ul Pack C Test Suite
13.0.0 or higher (UI3) On demand'
[6.0.0-12.1.5] (U12) Graphical User Interface Test Suite

4.6. Platform Qualification 315

https://repository.microej.com/modules/com/microej/pack/fs/fs-testsuite/3.0.3/
https://repository.microej.com/modules/com/microej/pack/fs/5.1.2/
https://github.com/MicroEJ/PlatformQualificationTools/tree/master/tests/core
https://github.com/MicroEJ/PlatformQualificationTools/tree/master/tests/ui

MicroEJ Documentation, Revision 44d2784c

FS Pack
Table 5: FS APl Implementation and Validation
FS Pack FS API Java Test Suite
[5.1.2-5.2.0[2.0.6 3.0.3
[4.0.0-4.1.0[2.0.6 On demand’

BLUETOOTH Pack

Table 6: BLUETOOTH API Implementation and Validation

BLUETOOTH Pack BLUETOOTH API Java Test Suite
2.1.0 2.1.0 2.0.0
2.01 2.0.0 2.0.0

NET/SSL Pack

On demand'.

4.7 MicroEJ Core Engine

The MicroEJ Core Engine (also called the platform engine) and its components represent the core of the platform.
Itis used to compile and execute at runtime the MicroEJ Application code.

4.7.1 Functional Description

The following diagram shows the overall process. The first two steps are performed within the MicroEJ Workbench.
The remaining steps are performed within the C IDE.

! Test Suite available on demand, please contact MicroEJ Support.

4.7. MicroEJ Core Engine 316

https://repository.microej.com/modules/ej/api/fs/2.0.6/
https://repository.microej.com/modules/com/microej/pack/fs/fs-testsuite/3.0.3/
https://repository.microej.com/modules/ej/api/fs/2.0.6/
https://repository.microej.com/modules/ej/api/bluetooth/2.1.0/
https://repository.microej.com/modules/com/microej/pack/bluetooth/bluetooth-testsuite/2.0.0/
https://repository.microej.com/modules/ej/api/bluetooth/2.0.0/
https://repository.microej.com/modules/com/microej/pack/bluetooth/bluetooth-testsuite/2.0.0/

MicroEJ Documentation, Revision 44d2784c

MicroEJ
Application code

MicroEJ Platform

Build the MicroEJ
Applicaticn
MicroEJ Workbench

CIDE

C application Application Architecture
code and Board library file library file
Support Package {microejapp.o) (microejruntime.a)

Build and link the full
application

Executable

application

Program and test the
application on the board

Fig. 17: MicroEJ Core Engine Flow

1. Step1consists in writing a MicroEJ Application against a set of Foundation Libraries available in the platform.

2. Step 2 consists in compiling the MicroEJ Application code and the required libraries in an ELF library, using
the SOAR.

3. Step 3 consistsin linking the previous ELF file with the MicroEJ Core Engine library and a third-party BSP (OS,
drivers, etc.). This step may require a third-party linker provided by a C toolchain.

4.7.2 Architecture

The MicroEJ Core Engine and its components have been compiled for one specific CPU architecture and for use
with a specific C compiler.

The architecture of the platform engine is called green thread architecture, it runs in a single RTOS task. Its be-
havior consists in scheduling MicroEJ threads. The scheduler implements a priority preemptive scheduling policy
with round robin for the MicroEJ threads with the same priority. In the following explanations the term “RTOS
task” refers to the tasks scheduled by the underlying OS; and the term “MicroEJ thread” refers to the Java threads
scheduled by the MicroEJ Core Engine.

4.7. MicroEJ Core Engine 317

MicroEJ Documentation, Revision 44d2784c

T peaiy usalio
7 peaiy | usalg
€ peaiy| usslig

RTOS Task 1 RTOS Task 2 RTOS Task 3 RTOS Task 4

Fig. 18: A Green Threads Architecture Example

The activity of the platform is defined by the MicroEJ Application. When the MicroEJ Application is blocked (when
all MicroEJ threads are sleeping), the platform sleeps entirely: The RTOS task that runs the platform sleeps.

The platform is responsible for providing the time to the MicroEJ world: the precision is 1 millisecond.

4.7.3 Capabilities

MicroEJ Core Engine defines 3 exclusive capabilities:
+ Mono-sandbox: capability to produce a monolithic firmware (default one).

« Multi-Sandbox: capability to produce a extensible firmware on which new applications can be dynamically
installed. See section Multi-Sandbox.

« Tiny application: capability to produce a compacted firmware (optimized for size). See section Tiny Applica-
tion.
All MicroEJ Core Engine capabilities may not be available on all architectures. Refer to section Supported MicroEJ
Core Engine Capabilities by Architecture Matrix for more details.

4.7.4 Implementation

The MicroEJ Core Engine implements the [SNI] specification. It is created and initialized with the C function
SNI_createVM. Then it is started and executed in the current RTOS task by calling SNI_startVM. The function
SNI_startVM returns when the MicroEJ Application exits or if an error occurs (see section Error Codes). The func-
tion SNI_destroyVM handles the platform termination.

The file LLMJVM_impl.h that comes with the platform defines the API to be implemented. See section LLMJVM:
MicroEJ Core Engine.

4.7. MicroEJ Core Engine 318

MicroEJ Documentation, Revision 44d2784c

Initialization

The Low Level MicroEJ Core Engine API deals with two objects: the structure that represents the platform, and the

RTOS task that runs the platform. Two callbacks allow engineers to interact with the initialization of both objects:
o LLMJVM_IMPL_initialize: Called once the structure representing the platform is initialized.

o LLMJVM_IMPL_vmTaskStarted : Called when the platform starts its execution. This function is called within
the RTOS task of the platform.

Scheduling

To support the green thread round-robin policy, the platform assumes thereisan RTOS timer or some other mecha-
nism that counts (down) and fires a call-back when it reaches a specified value. The platforminitializes the timer us-
ing the LLMJVM_IMPL_scheduleRequest function with one argument: the absolute time at which the timer should
fire. When the timer fires, it must call the LLMJVM_schedule function, which tells the platform to execute a green
thread context switch (which gives another MicroEJ thread a chance to run).

Idle Mode

When the platform has no activity to execute, it calls the LLMJVM_IMPL_idleVM function, which is assumed to put
the RTOS task of the platform into a sleep state. LLMJVM_IMPL_wakeupVM is called to wake up the platform task.
When the platform task really starts to execute again, it calls the LLMJVM_IMPL _ackWakeup function to acknowledge
the restart of its activity.

Time

The platform defines two times:

+ the application time: The difference, measured in milliseconds, between the current time and midnight, Jan-
uary 1,1970, UTC.

+ the system time: The time since the start of the device. This time is independent of any user considerations,
and cannot be set.

The platform relies on the following C functions to provide those times to the MicroEJ world:

o LLMJVM_IMPL_getCurrentTime : Depending on the parameter (true / false) must return the application
time or the system time. This function is called by the MicroEJ method System.currentTimeMillis(). Itis
also used by the platform scheduler, and should be implemented efficiently.

« LLMJVM_IMPL _getTimeNanos : must return the system time in nanoseconds.

o LLMJVM_IMPL_setApplicationTime : must set the difference between the current time and midnight, Jan-
uary 1,1970, UTC.

Error Codes

The C function SNI_createVM returns a negative value if an error occurred during the MicroEJ Core Engine ini-
tialization or execution. The file LLMIVM. h defines the platform-specific error code constants. The following table
describes these error codes.

4.7. MicroEJ Core Engine 319

MicroEJ Documentation, Revision 44d2784c

Table 7: MicroEJ Core Engine Error Codes

Error Code

Meaning

0

The MicroEJ Application ended normally (i.e., all the
non-daemon threads are terminated or System.
exit(exitCode) has been called). See section Exit
Codes.

The microejapp.o produced by SOARis not compati-
ble with the MicroEJ Core Engine (microejruntime.a
). The object file has been built from another MicroEJ
Platform.

Internal error. Invalid link configuration in the MicroEJ
Architecture or the MicroEJ Platform.

Evaluation version limitations reached: termination of
the application. See section Limitations.

Not enough resources to start the very first MicroEJ
thread that executes main method. See section Op-
tion(text): Java heap size (in bytes).

Number of threads limitation reached. See sections
Limitations and Option(text): Number of threads.

-13

Fail to start the MicroEJ Application because the speci-
fied MicroEJ heap is too large or too small. See section
Option(text): Java heap size (in bytes).

14

Invalid MicroEJ Application stack configuration. The
stack start or end is not eight-byte aligned, or stack
block size is too small. See section Option(text): Num-
ber of blocks in pool.

-16

The MicroEJ Core Engine cannot be restarted.

-7

The MicroEJ Core Engine is not in a valid state because
of one of the following situations:
+ SNI_startVM called before SNI_createVM.
+ SNI_startVM called while the MicroEJ Apppli-
cation is running.
» SNI_createVM called several times.

The memory used for the MicroEJ heap or immor-
tal heap does not work properly. Read/Write mem-
ory checks failed. This may be caused by an invalid
external RAM configuration. Verify _java_heap and
_java_immortals sections locations.

The memory used for the MicroEJ Application static
fields does not work properly. Read/Write memory
checks failed. This may be caused by an invalid exter-
nal RAM configuration. Verify .bss.soar section lo-
cation.

KF configuration internal error. Invalid link configura-
tion in the MicroEJ Architecture or the MicroEJ Plat-
form.

Number of monitors per thread limitation reached.
See sections Limitations and Options .

Internal error. Invalid FPU configuration in the MicroEJ
Architecture.

-23

The function LLMJVM_IMPL_initialize defined in
the Abstraction Layer implementation returns an er-
ror.

4:7*MicroEJ Core Engine

The function LLMJVM_IMPL_vmTaskStarted defingtio
in the Abstraction Layerimplementation returns an er-
ror.

-25

The function LLMJVM_IMPL_shutdown defined in the

Ahctraction | aver imnlemeaeantatinn ratiirne an arrar

MicroEJ Documentation, Revision 44d2784c

Example

The following example shows how to create and launch the MicroEJ Core Engine from the C world. This function (
microej_main) should be called from a dedicated RTOS task.

#include <stdio.h>
#include "microej_main.h"
#include "LLMJVM.h"
#include "sni.h"

#ifdef __cplusplus
extern "C" {
#endif

/**
* @brief Creates and starts a MicroEJ instance. This function returns when the MicroEJ execution ends.
*/
void microej_main(int argc, char *xargv)
{
voidx vm;
int32_t err;
int32_t exitcode;

// create VM
vm = SNI_createVM();

if(vm == NULL)
{
printf("MicroEJ initialization error.\n");
}
else

{
printf("MicroEJ START\n");

// Error codes documentation is available in LLMJVM.h
err = SNI_startVM(vm, argc, argv);

if(err < 0)
{
// Error occurred
if(err == LLMJVM_E_EVAL_LIMIT)

{
printf("Evaluation limits reached.\n");
3
else
{
printf("MicroEJ execution error (err = %d).\n", err);
3
}
else
{
// VM execution ends normally
exitcode = SNI_getExitCode(vm);
printf("MicroEJ END (exit code = %d)\n", exitcode);
}

// delete VM
SNI_destroyVM(vm);
(continues on next page)

4.7. MicroEJ Core Engine 321

MicroEJ Documentation, Revision 44d2784c

(continued from previous page)

}

3

#ifdef __cplusplus
}

#endif

Debugging

Theinternal MicroEJ Core Engine function called LLMJVM_dump allows you to dump the state of all MicroEJ threads:
name, priority, stack trace, etc. This function can be called at any time and from an interrupt routine (for instance
from a button interrupt).

This is an example of a dump:

e e=——===-A\/M Dump SESSSSSSSSSS

Java Thread[3]
name="SYSINpmp" prio=5 state=WAITING

java/lang/Thread:
at com/is2t/microbsp/microui/natives/NSystemInputPump.@134261800
[0x0800AC32]
at com/is2t/microbsp/microui/io/SystemInputPump.@134265968
[0x0800BC80]
at ej/microui/Pump.@134261696
[0x0800ABCC]
at ej/microui/Pump.@134265872
[0x0800BC241]
at java/lang/Thread.@134273964
[0x0800DBC4]
at java/lang/Thread.@134273784
[0x0800DB04]
at java/lang/Thread.@134273892
[0x0800DB6F]
Java Thread[2]
name="DISPLpmp” prio=5 state=WAITING

java/lang/Thread:

at java/lang/Object.@134256392
[0x08009719]

at ej/microui/FIFOPump.@134259824
[0x0800A48E]

at ej/microui/io/DisplayPump. 134263016
[0x0800B0OF8]

at ej/microui/Pump.@134261696
[0x@800ABCC]

at ej/microui/Pump.@134265872
[0x0800BC24]

at ej/microui/io/DisplayPump.@134262868
[0x0800B064]

at java/lang/Thread.@134273964
[0x0@800DBC4]

(continues on next page)

4.7. MicroEJ Core Engine 322

MicroEJ Documentation, Revision 44d2784c

(continued from previous page)

at java/lang/Thread.@134273784
[0x0800DB04]

at java/lang/Thread.@134273892
[0x0800DB6F]

See Stack Trace Reader for additional info related to working with VM dumps.

4.7.5 Generic Output

The System.err stream is connected to the System.out print stream. See below for how to configure the desti-
nation of these streams.

4.7.6 Link

Several sections are defined by the MicroEJ Core Engine. Each section must be linked by the third-party linker.

Table 8: Linker Sections

Section name Aim Location Alignment (in bytes)
Residen ication i RW 4
.bss.features.installed esident applications statics
Application static RW 8
.bss.soar pplicat !
) Application threads stack blocks RW 8
.bss.vm.stacks. java
ICETEA_HEAP MicroEJ Core Engine internal heap Internal RW | 8
Application hea RW 4
_java_heap pplicatt P
Application immortal hea RW 4
_java_immortals PP P
Application resources RO 16
.rodata.resources
Resident applications code and resources | RO 4
.rodata.soar.features
hi P R 4
_shieldedplug Shielded Plug data o
text soar Application and library code RO 16

Note: Sections ICETEA_HEAP, _java_heap and _java_immortals are zero-initialized at MicroEJ Core Engine
startup.

4.7.7 Dependencies

The MicroEJ Core Engine requires an implementation of its low level APIs in order to run. Refer to the chapter
Implementation for more information.

4.7. MicroEJ Core Engine 323

MicroEJ Documentation, Revision 44d2784c

4.7.8 Installation

The MicroEJ Core Engine and its components are mandatory. In the platform configuration file, check
Multi Applications to install the MicroEJ Core Engine in “Multi-Sandbox” mode. Otherwise, the “Single appli-
cation” mode is installed.

4.7.9 Use

The EDC API Module must be added to the module.ivy of the MicroEJ Application Project. This MicroEJ module is
always required in the build path of a MicroEJ project; and all others libraries depend on it. This library provides a
set of options. Refer to the chapter Application Options which lists all available options.

<dependency org="ej.api” name="edc" rev="1.3.3"/>

The BON API Module must also be added to the module.ivy of the MicroEJ Application project in order to access the
[BON] library.

<dependency org="ej.api” name="bon" rev="1.4.0"/>

4.8 Multi-Sandbox

4.8.1 Principle
The Multi-Sandbox capability of the MicroEJ Core Engine allows a main application (called Standalone Application)
to install and execute at runtime additional applications (called sandboxed applications).

The MicroEJ Core Engine implements the [KF] specification. A Kernel is a Standalone Application generated on a
Multi-Sandbox-enabled platform. A Feature is a sandboxed application generated against a Kernel.

A sandboxed application may be dynamically downloaded at runtime or integrated at build-time within the exe-
cutable application.

Note that the Multi-Sandbox is a capability of the MicroEJ Core Engine. The MicroEJ Simulator always runs an
application as a Standalone Application.

4.8.2 Functional Description

The Multi-Sandbox process extends the overall process described in the overview of the platform process.

4.8. Multi-Sandbox 324

https://repository.microej.com/modules/ej/api/edc/
https://repository.microej.com/modules/ej/api/bon/

MicroEJ Documentation, Revision 44d2784c

MicroEJ

Application code

4. Build the MicroEJ
Application

MicroEJ Platform

Binary

application
(application fo)

6. Program and test the
application on the
beoard

5. Build and link the full
application

Fig. 19: Multi-Sandbox Process

Once a Kernel has been generated, additional MicroEJ Application code (Feature) can be built against the Kernel
by :

« Creating one launch configuration per feature.

« Setting the Settings field in the Execution tab of each feature launch configuration to

Build Dynamic Feature .

« Settingthe Kernel fieldinthe Configuration tab of each feature launch configuration to the

using the MicroEJ Application launch named Build Dynamic Feature. The binary application file produced (
application.fo)is compatible only for the Kernel on which it was generated. Generating a new Kernel requires
that you generate the Features again on this Kernel.

The Features built can be deployed in the following ways:

« Downloaded and installed at runtime by software. Refer to the [KF] specification for ej.kf.Kernel install
APls.

« Linked at build-time into the executable application. Features linked this way are then called Installed Fea-
tures. The Kernel should have been generated with options for dimensioning the maximum size (code, data)
for such Installed Features. Features are linked within the Kernel using the Firmware linker tool.

4.8.3 Firmware Linker

A MicroEJ tool is available to link Features as Installed Features within the executable application. The tool name
is Firmware Linker. It takes as input the executable application file and the Feature binary code into which to be
linked. It outputs a new executable application file, including the Installed Feature. This tool can be used to append
multiple Features, by setting as the input file the output file of the previous pass.

4.8. Multi-Sandbox 325

MicroEJ Documentation, Revision 44d2784c

4.8.4 Memory Considerations

Multi-Sandbox memory overhead of MicroEJ Core Engine runtime elements are described in the table below.

Table 9: Multi-Sandbox Memory Overhead

Runtime element | Memory | Description
Object RW 4 bytes
Thread RW 24 bytes
Stack Frame RW 8 bytes
Class Type RO 4 bytes
Interface Type RO 8 bytes

4.8.5 Dependencies

o LLKERNEL_impl.h implementation (see LLKERNEL: Multi-Sandbox).

4.8.6 Installation

Multi-Sandbox is an additional module, disabled by default.

To enable Multi-Sandbox of the MicroEJ Core Engine, in the platform configuration file, check Multi Applications

4.8.7 Use

The KF API Module must be added to the module.ivy of the MicroEJ Application project to use [KF] library.

<dependency org="ej.api” name="kf" rev="1.4.4"/>

This library provides a set of options. Refer to the chapter Application Options which lists all available options.

4.9 Tiny Application

4.9.1 Principle

The Tiny application capability of the MicroEJ Core Engine allows to build a main application optimized for size.
This capability is suitable for environments requiring a small memory footprint.

4.9.2 Installation

Tiny application is an option disabled by default. To enable Tiny application of the MicroEJ Core Engine, set the
property mjvm.standalone.configuration in configuration.xml file as follows:

<property name="mjvm.standalone.configuration” value="tiny"/>

See section Platform Customization for more info on the configuration.xml file.

4.9. Tiny Application 326

https://repository.microej.com/modules/ej/api/kf/

MicroEJ Documentation, Revision 44d2784c

4.9.3 Limitations

In addition to general Limitations:

« The maximum application code size (classes and methods) cannot exceed 256KB . This does not include
application resources, immutable objects and internal strings which are not limited.

+ The option SOAR > Debug > Embed alltype names has no effect. Only the fully qualified names of
types marked as required types are embedded.

4.10 Native Interface Mechanisms

The MicroEJ Core Engine provides two ways to link MicroEJ Application code with native C code. The two ways are
fully complementary, and can be used at the same time.

4.10.1 Simple Native Interface (SNI)
Principle

[SNI] provides a simple mechanism for implementing native Java methods in the C language.
[SNI] allows you to:
« Call a C function from a Java method.

« Access an Immortal array in a C function (see the [BON] specification to learn about immortal objects).

[SNI] does not allow you to:
+ Access or create a Java object in a C function.
« Access Java static variables in a C function.
« Call Java methods from a C function.

[SNI] provides some Java APIs to manipulate some data arrays between Java and the native (C) world.

Functional Description

[SNI] defines how to cross the barrier between the Java world and the native world:
« Call a C function from Java.
« Pass parameters to the C function.
+ Return avalue from the C world to the Java world.

« Manipulate (read & write) shared memory both in Java and C: the immortal space.

4.10. Native Interface Mechanisms 327

MicroEJ Documentation, Revision 44d2784c

Java World Java methods C functions Cwo r[d
Java C
objects structs
access access

Java Object ey w
Java Object S

Java memory C memory

x HEEEE.

Array of basetypes

Immortal memory
Fig. 20: [SNI] Processing

The above illustration shows both Java and C code accesses to shared objects in the immortal space, while also
accessing their respective memory.

Example

package example;
import java.io.IOException;

/**

* Abstract class providing a native method to access sensor value.
* This method will be executed out of virtual machine.

*/

public abstract class Sensor {

public static final int ERROR = -1;

public int getValue() throws IOException {
(continues on next page)

4.10. Native Interface Mechanisms 328

MicroEJ Documentation, Revision 44d2784c

}

3

(continued from previous page)
int sensorID = getSensorID();
int value = getSensorValue(sensorlID);
if (value == ERROR) {
throw new IOException(”Unsupported sensor”);

b

return value;

protected abstract int getSensorID();

public static native int getSensorValue(int sensorID);

class Potentiometer extends Sensor {

protected int getSensorID() {

}

return Constants.POTENTIOMETER_ID; // POTENTIOMETER_ID is a static final

// File providing an implementation of native method using a C function

#include <sni.h>
#include <potentiometer.h>

#define SENSOR_ERROR (-1)
#define POTENTIOMETER_ID (3)

jint Java_example_Sensor_getSensorValue(jint sensor_id){

if (sensor_id == POTENTIOMETER_ID)
{

return get_potentiometer_value();

}
return SENSOR_ERROR;

Synchronization

A call to a native function uses the same RTOS task as the RTOS task used to run all Java green threads. So during
this call, the MicroEJ Core Engine cannot schedule other Java threads.

[SNI] defines C functions that provide controls for the green threads’ activities:

int32_t SNI_suspendCurrentJavaThread(int64_t timeout) : Suspends the execution of the Java thread
thatinitiated the current C call. This function does not block the C execution. The suspension is effective only
at the end of the native method call (when the C call returns). The green thread is suspended until either an
RTOS task calls SNI_resumeJavaThread, or the specified number of milliseconds has elapsed.

int32_t SNI_getCurrentJavaThreadID(void) : Permits retrieval of the ID of the current Java thread within
the C function (assuming it is a “native Java to C call”). This ID must be given to the SNI_resumeJavaThread
function in order to resume execution of the green thread.

int32_t SNI_resumeJavaThread(int32_t id) : Resumes the green thread with the given ID. If the thread
is not suspended, the resume stays pending.

4.10

Native Interface Mechanisms 329

MicroEJ Documentation, Revision 44d2784c

T pealy} usalig
7 peaiy} usain
€ pealy3 usalg

SNI_getCurrentJavaThreadID() : 3

awil

SNI_suspendCurrentJavaThread(..)

SNI_resumeJavaThread(3)

The Java Another C
RTOS task RTOS task

Fig. 21: Green Threads and RTOS Task Synchronization

The above illustration shows a green thread (GT3) which has called a native method that executes in C. The C code

suspends the thread after having provisioned its ID (e.g. 3). Another RTOS task may later resume the Java green
thread.

Dependencies

No dependency.

Installation

The [SN/] library is a built-in feature of the platform, so there is no additional dependency to call native code from

Java. In the platform configuration file, check Javato C Interface > SNIAPI to install the additional Java APIs
in order to manipulate the data arrays.

Use

The SNI APl module must be added to the module.ivy of the MicroEJ Application project to use the [SN/] library.

<dependency org="ej.api” name="sni" rev="1.3.1"/>

4.10.2 Shielded Plug (SP)
Principle

The Shielded Plug /SP] provides data segregation with a clear publish-subscribe API. The data-sharing between

modules uses the concept of shared memory blocks, with introspection. The database is made of blocks: chunks
of RAM.

4.10. Native Interface Mechanisms 330

https://repository.microej.com/modules/ej/api/sni/

MicroEJ Documentation, Revision 44d2784c

Module 1) Module 2
ShieldedPlug {written in

Database Java or C)

(written in
Javaor C)

Fig. 22: A Shielded Plug Between Two Application (Java/C) Modules.

Functional Description

The usage of the Shielded Plug (SP) starts with the definition of a database. The implementation of the [SP] for the
MicroEJ Platform uses an XML file description to describe the database; the syntax follows the one proposed by the

[SP] specification.

Once this database is defined, it can be accessed within the MicroEJ Application or the C application. The [SP/
Foundation Library is accessible from the [SP] APl Module. This library contains the classes and methods to read
and write data in the database. See also the Java documentation from the MicroEJ Workbench resources center
(“Javadoc” menu). The C header file sp.h available in the MicroEJ Platform source/MICROJVM/include folder
contains the C functions for accessing the database.

To embed the [SP] database in your binary file, the XML file description must be processed by the [SP] compiler. This
compiler generates a binary file (.o) that will be linked to the overall application by the linker. It also generates
two descriptions of the block ID constants, one in Java and one in C. These constants can be used by either the Java
or the C application modules.

Shielded Plug Compiler

A MicroEJ tool is available to launch the [SP] compiler tool. The tool name is Shielded Plug Compiler. It outputs:

« Adescription of the requested resources of the database as a binary file (. 0) that will be linked to the over-
all application by the linker. It is an ELF format description that reserves both the necessary RAM and the
necessary Flash memory for the Shielded Plug database.

« Twodescriptions,onein Javaandonein C, of the block ID constants to be used by either Java or C application

modules.
LN
SPfile SP ShieldedPlug
(-xml) Compiler Database
MicroEJ User
classpath Application
(*.class)
Fig. 23: Shielded Plug Compiler Process Overview
Example

Below is an example of using a database /SP]. The code that publishes the data is written in C, and the code that
receives the data is written in Java. The data is transferred using two memory blocks. TEMP is a scalar value,

4.10. Native Interface Mechanisms 331

MicroEJ Documentation, Revision 44d2784c

THERMOSTAT is a boolean.

Database Description

The database is described as follows:

<shieldedPlug>
<database name="Forecast” id="0" immutable="true" version="1.0.0">
<block id="1" name="TEMP" length="4" maxTasks="1"/>
<block id="2" name="THERMOSTAT" length="4" maxTasks="1"/>
</database>
</shieldedPlug>

Java Code

From the database description we can create an interface.

public interface Forecast {
public static final int ID = 0;
public static final int TEMP = 1;
public static final int THERMOSTAT = 2;

Below is the task that reads the published temperature and controls the thermostat.

public void run(){
ShieldedPlug database = ShieldedPlug.getDatabase(Forecast.ID);
while (isRunning) {
//reading the temperature every 30 seconds
//and update thermostat status
try {
int temp = database.readInt(Forecast.TEMP);
print(temp);
//update the thermostat status
database.writeInt(Forecast.THERMOSTAT, temp>tempLimit ? @ : 1);
3
catch(EmptyBlockException e){
print("Temperature not available");
3
sleep(30000);

C Code

Here is a C header that declares the constants defined in the XML description of the database.

#define Forecast_ID @
#define Forecast_TEMP 1
#define Forecast_THERMOSTAT 2

Below, the code shows the publication of the temperature and thermostat controller task.

4.10. Native Interface Mechanisms 332

MicroEJ Documentation, Revision 44d2784c

void temperaturePublication() {
ShieldedPlug database = SP_getDatabase(Forecast_ID);
int32_t temp = temperature();
SP_write(database, Forecast_TEMP, &temp);

}

void thermostatTask(){
int32_t thermostatOrder;
ShieldedPlug database = SP_getDatabase(Forecast_ID);
while(1){
SP_waitFor(database, Forecast_THERMOSTAT);
SP_read(database, Forecast_THERMOSTAT, &thermostatOrder);
if(thermostatOrder == 0) {
thermostatOFF();
3
else {
thermostatON();
3

Dependencies

o LLSP_impl.h implementation (see LLSP: Shielded Plug).

Installation

The [SP] library and its relative tools are an optional feature of the platform. In the platform configuration file, check
Java to CInterface > Shielded Plug to install the library and its relative tools.

Use

The Shielded Plug APl Module must be added to the module.ivy of the MicroEJ Application project to use the [SP]
library.

<dependency org="ej.api"” name="sp" rev="2.0.2"/>

This library provides a set of options. Refer to the chapter Application Options which lists all available options.

4.10.3 MicroEJ Java H

Principle
This MicroEJ tool is useful for creating the skeleton of a C file, to which some Java native implementation func-

tions will later be written. This tool helps prevent misses of some #include files, and helps ensure that function
signatures are correct.

Functional Description

MicroEJ Java H tool takes as input one or several Java class files (*.class) from directories and / or JAR files. It looks
for Java native methods declared in these class files, and generates a skeleton(s) of the C file(s).

4.10. Native Interface Mechanisms 333

https://repository.microej.com/modules/ej/api/sp/

MicroEJ Documentation, Revision 44d2784c

* class

Fig. 24: MicroEJ Java H Process

Dependencies

No dependency.

Installation

This is an additional tool. In the platform configuration file, check Javato CInterface > MicroEJJavaH to
install the tool.

Use

This chapter explains the MicroEJ tool options.

4.11 External Resources Loader

4.11.1 Principle

A resource is, for a MicroEJ Application, the contents of a file. This file is known by its path (its relative path from
the MicroEJ Application classpath) and its name. The file may be stored in RAM, flash, or external flash; and it is the
responsibility of the MicroEJ Core Engine and/or the BSP to retrieve and load it.

MicroEJ Platform makes the distinction between two kinds of resources:

« Internal resource: The resource is taken into consideration during the MicroEJ Application build. The SOAR
step loads the resource and copies itinto the same C library as the MicroEJ Application. Like the MicroEJ Ap-
plication, the resourceis linked into the CPU address space range (internal device memories, external parallel
memories, etc.).

The available list of internal resources to embed must be specified in the MicroEJ Application launcher (Mi-
croEJ launch). Under the “Resources” tab, select all internal resources to embed in the final binary file.

« External resource: The resource is not taken into consideration by MicroEJ. It is the responsibility of the BSP
project to manage this kind of resource. The resource is often programmed outside the CPU address space
range (storage media like SD card, serial NOR flash, EEPROM, etc.).

The BSP must implement some specific Low Level API (LLAPI) C functions: LLEXT_RES_impl.h. These func-
tions allow the MicroEJ Application to load some external resources.

4.11. External Resources Loader 334

MicroEJ Documentation, Revision 44d2784c

4.11.2 Functional Description

The External Resources Loader is an optional module. When not installed, only internal resources are available
for the MicroEJ Application. When the External Resources Loader is installed, the MicroEJ Core Engine tries first to
retrieve the expected resource from its available list of internal resources, before asking the BSP to load it (using
LLEXT_RES_impl.h functions).

4.11.3 Implementations

External Resources Loader module provides some Low Level API (LLEXT_RES) to let the BSP manage the external
resources.

Open a Resource

The LLAPI to implement in the BSP are listed in the header file LLEXT_RES_impl.h. First, the framework tries to
open an external resource using the open function. This function receives the resources path as a parameter. This
path is the absolute path of the resource from the MicroEJ Application classpath (the MicroEJ Application source
base directory). For example, when the resource is located here: com.mycompany.myapplication.resource.
MyResource. txt , the given path is: com/mycompany/myapplication/resource/MyResource. txt.

Resource Identifier

This open function has to return a unique ID (positive value) for the external resource, or returns an error code
(negative value). This ID will be used by the framework to manipulate the resource (read, seek, close, etc.).

Several resources can be opened at the same time. The BSP does not have to return the same identifier for two
resources living at the same time. However, it can return this ID for a new resource as soon as the old resource is
closed.

Resource Offset

The BSP must hold an offset for each opened resource. This offset must be updated after each call to read and
seek.

Resource Inside the CPU Address Space Range

An external resource can be programmed inside the CPU address space range. This memory (or a part of memory)
is not managed by the SOAR and so the resources inside are considered as external.

Most of time the content of an external resource must be copied in a memory inside the CPU address space range
in order to be accessible by the MicroEJ algorithms (draw an image etc.). However, when the resource is already
inside the CPU address space range, this copy is useless. The function LLEXT_RES_getBaseAddress must return
a valid CPU memory address in order to avoid this copy. The MicroEJ algorithms are able to target the external
resource bytes without using the other LLEXT_RES APIs such as read, mark etc.

4.11.4 External Resources Folder

The External Resource Loader module provides an option (MicroEJ launcher option) to specify a folder for the ex-
ternal resources. This folder has two roles:

4.11. External Resources Loader 335

MicroEJ Documentation, Revision 44d2784c

« Itis the output folder used by some extra generators during the MicroEJ Application build. All output files
generated by these tools will be copied into this folder. This makes it easier to retrieve the exhaustive list of
resources to program on the board.

« Thisfolderistakeninto consideration by the Simulatorin order to simulate the availability of these resources.
When the resources are located in another computer folder, the Simulator is not able to load them.

If not specified, this folder is created (if it does not already exist) in the MicroEJ project specified in the MicroEJ
launcher. Its name is externalResources.

4.11.5 Dependencies

o LLEXT_RES_impl.h implementation (see LLEXT_RES: External Resources Loader).

4.11.6 Installation

The External Resources Loader is an additional module. In the platform configuration file, check
External Resources Loader to install this module.

4.11.7 Use

The External Resources Loader is automatically used when the MicroEJ Application tries to open an external re-
source.

4.12 Serial Communications

MicroEJ provides some Foundation Libraries to instantiate some communications with external devices. Each com-
munication method has its own library. A global library called ECOM provides support for abstract communication
streams (communication framework only), and a generic devices manager.

4.12.1 ECOM
Principle

The Embedded COMmunication Foundation Library (ECOM) is a generic communication library with abstract com-
munication stream support (a communication framework only). It allows you to open and use streams on commu-
nication devices such as a COMM port.

Thislibrary also provides a device manager, including a generic device registry and a notification mechanism, which
allows plug&play-based applications.

This library does not provide APIs to manipulate some specific options for each communication method, but it
does provide some generic APIs which abstract the communication method. After the opening step, the MicroEJ
Application can use every communications method (COMM, USB etc.) as generic communication in order to easily
change the communication method if needed.

4.12. Serial Communications 336

MicroEJ Documentation, Revision 44d2784c

Functional Description

The diagram below shows the overall process to open a connection on a hardware device.

1. Open a new
connection using the Connection
connection string

Connection

String

2.Open a new input 4. Open a new output
stream on the stream on the
connection connection

InputStream OutputStream

3. Read some data from 5. Write some data to
hardware device hardware device

Fig. 25: ECOM Flow

1. Step 1 consists of opening a connection on a hardware device. The connection kind and its configuration are
fixed by the parameter String connectionString of the method Connection.open.

2. Step 2 consists of opening an InputStream on the connection. This stream allows the MicroEJ Application
to access the “RX” feature of the hardware device.

3. Step 3 consists of using the InputStream APIs to receive in the MicroEJ Application all hardware device data.

4. Step 4 consists of opening an OutputStream on the connection. This stream allows the MicroEJ Application
to access the “TX” feature of the hardware device.

5. Step 5 consists of using the OutputStream APIs to transmit some data from the MicroEJ Application to the
hardware device.

Note that steps 2 and 4 may be performed in parallel, and do not depend on each other.

Device Management API

A device is defined by implementing ej.ecom.Device . It is identified by a name and a descriptor (ej.ecom.
HardwareDescriptor), which is composed of a set of MicroEJ properties. A device can be registered/unregistered
inthe ej.ecom.DeviceManager.

A device registration listener is defined by implementing ej.ecom.RegistrationListener.When a device is reg-
istered to or unregistered from the device manager, listeners registered for the device type are notified. The notifi-
cation mechanism is done in a dedicated Java thread. The mechanism can be enabled or disabled (see Application
Options).

4.12. Serial Communications 337

MicroEJ Documentation, Revision 44d2784c

Dependencies

No dependency.

Installation

ECOM Foundation Library is an additional library. In the platform configuration file, check ' Serial Communication
> ECOM toinstall the library.

Use

The ECOM API Module must be added to the module.ivy of the MicroEJ Application project to use the ECOM library.

<dependency org="ej.api” name="ecom” rev="1.1.4"/>

This foundation library is always required when developing a MicroEJ Application which communicates with some
external devices. It is automatically embedded as soon as a sub communication library is added in the classpath.

4.12.2 ECOM Comm
Principle

The ECOM Comm Java library provides support for serial communication. ECOM Comm extends ECOM to al-
low stream communication via serial communication ports (typically UARTs). In the MicroEJ Application, the
connection is established using the Connector.open() method. The returned connection is a ej.ecom.io.
CommConnection, and the input and output streams can be used for full duplex communication.

The use of ECOM Comm in a custom platform requires the implementation of an UART driver. There are two differ-
ent modes of communication:

+ In Buffered mode, ECOM Comm manages software FIFO buffers for transmission and reception of data. The
driver copies data between the buffers and the UART device.

« In Custom mode, the buffering of characters is not managed by ECOM Comm. The driver has to manage its
own buffers to make sure no data is lost in serial communications because of buffer overruns.

This ECOM Comm implementation also allows dynamic add or remove of a connection to the pool of available
connections (typically hot-plug of a USB Comm port).

Functional Description

The ECOM Comm process respects the ECOM process. Please refer to the illustration “£COM flow”.

Component Architecture

The ECOM Comm C module relies on a native driver to perform actual communication on the serial ports. Each port
can be bound to a different driver implementation, but most of the time, it is possible to use the same implemen-
tation (i.e. same code) for multiple ports. Exceptions are the use of different hardware UART types, or the need for
different behaviors.

Five C header files are provided:

4.12. Serial Communications 338

https://repository.microej.com/modules/ej/api/ecom/

MicroEJ Documentation, Revision 44d2784c

« LLCOMM_impl.h

Defines the set of functions that the driver must implement for the global ECOM comm stack, such as syn-
chronization of accesses to the connections pool.

o LLCOMM_BUFFERED_CONNECTION_impl.h
Defines the set of functions that the driver must implement to provide a Buffered connection
o LLCOMM_BUFFERED_CONNECTION.h

Defines the set of functions provided by ECOM Comm that can be called by the driver (or other C code) when
using a Buffered connection

o LLCOMM_CUSTOM_CONNECTION_impl.h
Defines the set of functions that the driver must implement to provide a Custom connection
o LLCOMM_CUSTOM_CONNECTION. h

Defines the set of functions provided by ECOM Comm that can be called by the driver (or other C code) when
using a Custom connection

The ECOM Comm drivers are implemented using standard LLAPI features. The diagram below shows an example
of the objects (both Java and C) that exist to support a Buffered connection.

:e].ecom.io.CommConnection
Driver Connection

LLCOMM_BUFFERED_CONNECTION_impl.h

.
-

LLCOMM_BUFFERED_CONNECTION.h

Fig. 26: ECOM Comm components

The connection is implemented with three objects' :
« The Java object used by the application; an instance of ej.ecom.io.CommConnection
+ The connection object within the ECOM Comm C module
« The connection object within the driver

Each driver implementation provides one or more connections. Each connection typically corresponds to a physi-
cal UART.

Comm Port Identifier

Each serial port available for use in ECOM Comm can be identified in three ways:

« An application port number. This identifier is specific to the application, and should be used to identify the
data stream that the port will carry (for example, “debug traces” or “GPS data”).

« Aplatform port number. This is specific to the platform, and may directly identify an hardware device’.

! Thisis a conceptual description to aid understanding - the reality is somewhat different, although that is largely invisible to the implementor
of the driver.

2 Some drivers may reuse the same UART device for different ECOM ports with a hardware multiplexer. Drivers can even treat the platform
port number as a logical id and map the ids to various I/O channels.

4.12. Serial Communications 339

MicroEJ Documentation, Revision 44d2784c

+ A platform port name. This is mostly used for dynamic connections or on platforms having a file-system
based device mapping.

When the Comm Port is identified by a number, its string identifier is the concatenation of “com” and the number
(e.g. com1l).

Application Port Mapping

The mapping from application port numbers to platform ports is done in the application launch configuration.
This way, the application can refer only to the application port number, and the data stream can be directed to the
matching 1/O port on different versions of the hardware.

Ultimately, the application port number is only visible to the application. The platform identifier will be sent to the
driver.

Opening Sequence

The following flow chart explains Comm Port opening sequence according to the given Comm Port identifier.

Comm Part Identifier yes Application id yes Open from mapped
is com[id] e 9= 19 id
platform id
no no
error
Open from name Open from id
success

success success

Connection opened

error error

Connection Error

Unknown Comm Port

Fig. 27: Comm Port Open Sequence

Dynamic Connections

The ECOM Comm stack allows to dynamically add and remove connections from the Driver APl. When a connection
is added, it can be immediately open by the application. When a connection is removed, the connection cannot be
open anymore and java.io.IOException isthrown in threads that are usingit.

In addition, a dynamic connection can be registered and unregistered in ECOM device manager (see Device Manage-
ment API). The registration mechanism is done in dedicated thread. It can be enabled or disabled, see Application
Options.

A removed connection is alive until it is closed by the application and, if enabled, unregistered from ECOM device
manager. A connection is effectively uninstalled (and thus eligible to be reused) only when it is released by the
stack.

4.12. Serial Communications 340

MicroEJ Documentation, Revision 44d2784c

The following sequence diagram shows the lifecycle of a dynamic connection with ECOM registration mechanism
enabled.

‘ Hotplug: Task | ‘ Connection | ‘ ECCOM Comm Stackl ‘ Comm Pump:Thread | ‘ DeviceManagerl ‘ Application
I

add

1
|
T
|
add connection !
)
|
|

|

L L.
= -

|

|

|

notify Connection added

Y

use !
' _ open()

_ configureDevice() ‘ ‘

a— §

dataReceived() J

L

register Comm Port

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
e

1 1 1 1 1
remow s | | | | |
| | | read() l) |
| remove Connect|on - \ X
X X java.io.IOException) X
| [||).
! ! notify Connection removed ! !
! ! ' close() ! !
! ! ! ' unregister Cormnm Port_ ! !
! ! ' _ Comm Port unregistered ! !
| :- released() | | |
T :-‘ : T T T
Hotplug: Task | ‘ Connection | ‘ ECCOM Comm Stackl ‘ Comm Pump: Thread | ‘ DeviceManagerl ‘ Application |

Fig. 28: Dynamic Connection Lifecycle

Java API

Opening a connection is done using ej.ecom.io.Connector.open(String name) . The connection string (the
name parameter) must start with “comm:”, followed by the Comm port identifier, and a semicolon-separated list of
options. Options are the baudrate, the parity, the number of bits per character, and the number of stop bits:

« baudrate=n (9600 by default)

« bitsperchar=n where n is in the range 5 to 9 (8 by default)
« stopbits=n where nis 1,2, or 1.5 (1 by default)

« parity=x where x is odd, even or none (none by default)

All of these are optional. Illegal or unrecognized parameters cause an I1legalArgumentException.

4.12. Serial Communications 34

MicroEJ Documentation, Revision 44d2784c

Driver API

The ECOM Comm Low Level APl is designed to allow multiple implementations (e.g. drivers that support different
UART hardware) and connection instances (see Low Level API Pattern chapter). Each ECOM Comm driver defines a
data structure that holds information about a connection, and functions take an instance of this data structure as
the first parameter.

The name of the implementation must be set at the top of the driver C file, for example®:

#define LLCOMM_BUFFERED_CONNECTION MY_LLCOMM

This defines the name of this implementation of the LLCOMM_BUFFERED_CONNECTION interface to be MY_LLCOMM.

The data structure managed by the implementation must look like this:

typedef struct MY_LLCOMM{
struct LLCOMM_BUFFERED_CONNECTION header;
// extra data goes here

} MY_LLCOMM;

void MY_LLCOMM_new(MY_LLCOMM* env);

In this example the structure contains only the default data, in the header field. Note that the header must be the
first field in the structure. The name of this structure must be the same as the implementation name (MY_LLCOMM
in this example).

The driver must also declare the “new” function used to initialize connection instances. The name of this function
must be the implementation name with _new appended, and it takes as its sole argument a pointer to an instance
of the connection data structure, as shown above.

The driver needs to implement the functions specified in the LLCOMM_imp1.h file and for each kind of connection,
the LLCOMM_BUFFERED_CONNECTION_impl.h (or LLCOMM_CUSTOM_CONNECTION_impl.h) file.

The driver defines the connections it provides by adding connection objects using LLCOMM_addConnection
Connections can be added to the stack as soon as the LLCOMM_initialize function is called. Connec-
tions added during the call of the LLCOMM_impl_initialize function are static connections. A static con-
nection is registered to the ECOM registry and cannot be removed. When a connection is dynamically added
outside the MicroJVM task context, a suitable reentrant synchronization mechanism must be implemented (see
LLCOMM_IMPL_syncConnectionsEnter and LLCOMM_IMPL_syncConnectionsExit).

When opening a port from the MicroEJ Application, each connection declared in the connections pool will be asked
about its platform port number (using the getPlatformId method) or its name (using the getName method)
depending on the requested port identifier. The first matching connection is used.

The life of a connection starts with the call to getPlatformId() or getName() method. If the the connection
matches the port identifier, the connection will be initialized, configured and enabled. Notifications and interrupts
are then used to keep the stream of data going. When the connection is closed by the application, interrupts are
disabled and the driver will not receive any more notifications. It is important to remember that the transmit and
receive sides of the connection are separate Java stream objects, thus, they may have a different life cycle and one
side may be closed long before the other.

The Buffered Comm Stream

In Buffered mode, two buffers are allocated by the driver for sending and receiving data. The ECOM Comm C module
will fill the transmit buffer, and get bytes from the receive buffer. There is no flow control.

3 The following examples use Buffered connections, but Custom connections follow the same pattern.

4.12. Serial Communications 342

MicroEJ Documentation, Revision 44d2784c

When the transmit buffer is full, an attempt to write more bytes from the MicroEJ Application will block the Java
thread trying to write, until some characters are sent on the serial line and space in the buffer is available again.

When the receive buffer is full, characters coming from the serial line will be discarded. The driver must allocate a
buffer big enough to avoid this, according to the UART baudrate, the expected amount of data to receive, and the
speed at which the application can handle it.

The Buffered C module manages the characters sent by the application and stores them in the transmit buffer. On
notification of available space in the hardware transmit buffer, it handles removing characters from this buffer and
putting them in the hardware buffer. On the other side, the driver notifies the C module of data availability, and
the C module will get the incoming character. This character is added to the receive buffer and stays there until the
application reads it.

The driver should take care of the following:

« Setting up interrupt handlers on reception of a character, and availability of space in the transmit buffer. The
C module may mask these interrupts when it needs exclusive access to the buffers. If no interrupt is available
from the hardware or underlying software layers, it may be faked using a polling thread that will notify the C
module.

Initialization of the 1/0 pins, clocks, and other things needed to get the UART working.

Configuration of the UART baudrate, character size, flow control and stop bits according to the settings given
by the C module.

Allocation of memory for the transmit and receive buffers.

Getting the state of the hardware: is it running, is there space left in the TX and RX hardware buffers, is it busy
sending or receiving bytes?

The driver is notified on the following events:
+ Opening and closing a connection: the driver must activate the UART and enable interrupts for it.

+ Anew byte is waiting in the transmit buffer and should be copied immediately to the hardware transmit unit.
The C module makes sure the transmit unit is not busy before sending the notification, so it is not needed to
check for that again.

The driver must notify the C module on the following events:

+ Data has arrived that should be added to the receive buffer (using the
LLCOMM_BUFFERED_CONNECTION_dataReceived function)

+ Space available in the transmit buffer (using the LLCOMM_BUFFERED_CONNECTION_transmitBufferReady
function)

The Custom Comm Stream

In custom mode, the ECOM Comm C module will not do any buffering. Read and write requests from the application
are immediately forwarded to the driver.

Since there is no buffer on the C module side when using this mode, the driver has to define a strategy to store
received bytes that were not handed to the C module yet. This could be a fixed or variable side FIFO, the older
received but unread bytes may be dropped, or a more complex priority arbitration could be set up. On the transmit
side, if the driver does not do any buffering, the Java thread waiting to send something will be blocked and wait
for the UART to send all the data.

In Custom mode flow control (eg. RTS/CTS or XON/XOFF) can be used to notify the device connected to the serial
line and so avoid losing characters.

4.12. Serial Communications 343

MicroEJ Documentation, Revision 44d2784c

BSP File

The ECOM Comm C module needs to know, when the MicroEJ Application is built, the name of the implementation.
This mapping is defined in a BSP definition file. The name of this file must be bsp.xml and must be written in the
ECOM comm module configuration folder (near the ecom-comm.xml file). In previous example the bsp.xml file
would contain:

Listing 1: ECOM Comm Driver Declaration (bsp.xml)

<bsp>
<nativeImplementation
name="MY_LLCOMM"
nativeName="LLCOMM_BUFFERED_CONNECTION"
/>
</bsp>

where nativeName isthe name of the interface, and name is the name of the implementation.

XML File

The Java platform has to know the maximum number of Comm ports that can be managed by the ECOM Comm
stack. It also has to know each Comm port that can be mapped from an application port number. Such Comm port
is identified by its platform port number and by an optional nickname (The port and its nickname will be visible in
the MicroEJ launcher options, see Application Options).

A XML file is so required to configure the Java platform. The name of this file must be ecom-comm. xml . It has to be
stored in the module configuration folder (see Installation).

This file must start with the node <ecom> and the sub node <comms>. It can contain several time this kind of line:
<comm platformId="A_COMM_PORT_NUMBER" nickname="A_NICKNAME"/> where:

+ A_COMM_PORT_NUMBER refers the Comm port the Java platform user will be able to use (see Application Port
Mapping).

« A_NICKNAME is optional. It allows to fix a printable name of the Comm port.

The maxConnections attribute indicates the maximum number of connections allowed, including static and dy-
namic connections. This attribute is optional. By default, it is the number of declared Comm Ports.

Example:

Listing 2: ECOM Comm Module Configuration (ecom-comm.xml)

<ecom>
<comms maxConnections="20">
<comm platformId="2"/>
<comm platformId="3" nickname="DB9"/>
<comm platformId="5"/>
</comms>
</ecom>

First Comm port holds the port 2, second “3” and last “5”. Only the second Comm port holds a nickname “DB9”.

ECOM Comm Mock

In the simulation environment, no driver is required. The ECOM Comm mock handles communication for all the
serial ports and can redirect each port to one of the following:

4.12. Serial Communications 344

MicroEJ Documentation, Revision 44d2784c

+ An actual serial port on the host computer: any serial port identified by your operating system can be used.
The baudrate and flow control settings are forwarded to the actual port.

« ATCP socket. You can connect to a socket on the local machine and use netcat or telnet to see the output, or
you can forward the data to a remote device.

« Files. You can redirect the input and output each to a different file. This is useful for sending precomputed
data and looking at the output later on for offline analysis.

When using the socket and file modes, there is no simulation of an UART baudrate or flow control. On a file, data
will always be available for reading and will be written without any delay. On a socket, you can reach the maximal
speed allowed by the network interface.

Dependencies

« ECOM (see Serial Communications).

o LLCOMM_impl.h and LLCOMM_xxx_CONNECTION_impl.h implmentations (see LLCOMM: Serial Communica-
tions).

Installation

ECOM-Comm Java library is an additional library. In the platform configuration file, check 'Serial Communication

> ECOM-COMM to installit. When checked, the xml file ecom-comm/ecom-comm.xml is required during platform
creation to configure the module (see XML File).

Use

The ECOM Comm APl Module must be added to the module.ivy of the MicroEJ Application project to use the ECOM
Comm library.

<dependency org="ej.api” name="ecom-comm” rev="1.1.4"/>

This Foundation Library is always required when developing a MicroEJ Application which communicates with some
external devices using the serial communication mode.

This library provides a set of options. Refer to the chapter Application Options which lists all available options.

4.13 Graphical User Interface

Note: This chapter describes the current Graphical User Interface version 3, provided by Ul Pack version 13.0.0
or higher. The Ul Pack Changelog and a Migration Guide are provided at the end of this chapter. If you are using the
former Graphical User Interface version 2 (provided by MicroEJ Ul Pack versionupto 12.1.x), please refer to this
MicroEJ Documentation Archive.

4.13.1 Principle

The User Interface Extension features one of the fastest graphics engines, associated with a unique int-based event
management system.

4.13. Graphical User Interface 345

https://repository.microej.com/modules/ej/api/ecom-comm/
https://docs.microej.com/_/downloads/en/20201009/pdf/

MicroEJ Documentation, Revision 44d2784c

This chapter describes the UI3 notions, available since MicroEJ Architecture Ul pack 13.0.0 and higher: MicroUl 3.0,
Front Panel v6, Low Level APIs LLUI_xxx, etc.

The diagram below shows a simplified view of the components involved in the provisioning of User Interface Ex-
tension.

MicroEJ Application

MicroUl and Drawing Libraries

Platform l Simulator I

Front Panel

!

. . Front Panel
Drivers (Board SupportPackage) Front Panel Widgets

HARDWARE

. Provided by user . Provided by platform

Fig. 29: Overview

The modules responsible to manage the Display, the Input and the LED are respectively called Display module,
Input module and LED module. These three Low Level parts connect MicroUl library to the user-supplied drivers
code (coded in C). The drivers can use hardware accelerators like DMA and GPU to perform specific actions (buffers
copy, drawings, etc.).

The MicroEJ Simulator provides all features of MicroUl library. The three modules are grouped togetherin a module
called Front Panel. The Front Panel is supplied with a set of software widgets that generically support a range of
input devices such as buttons, joysticks and touchscreens, and output devices such as displays and LEDs. With the
help of the Front Panel Designer tool that forms part of the MicroEJ Workbench the user must define a Front Panel
mock-up using these widgets.

The Display module also manages fonts and images. The fonts and images are pre-processed before compiling the
MicroEJ application. The following diagram depicts the components involved in its design, along with the provided
tools:

4.13. Graphical User Interface 346

MicroEJ Documentation, Revision 44d2784c

Font
Designer

Java class Java class
file resource
3 E
*.class .

l

Font Image
(smart linker) Generator Generator
[MicrokJ Application executable file]

MicroEJ platform Ul engines (C modules)

(runtime) Display /Input /LED

Fig. 30: The User Interface Extension Components along with a Platform

4.13.2 MicroUl
Principle

MicroUl library defines a Low Level Ul framework for embedded devices. This module allows the creation of basic
Human-Machine-Interfaces (HMI), with output on a pixel-based screen.

Architecture

MicroUl library is the entry point to perform some drawings on a display and to interact with user input events. This
library contains only a minimal set of basic APIs. High-level libraries can be used to have more expressive power,
such as MWT (Micro Widget Toolkit). In addition to this restricted set of APIs, the MicroUl implementation has been
designed so that the EDC and BON footprint is minimal.

4.13. Graphical User Interface 347

MicroEJ Documentation, Revision 44d2784c

At MicroEJ application startup all MicroUl objects relative to the I/0 devices are created and accessible. The follow-
ing MicroUl methods allow you to access these objects:

« Display.getDisplay() : returns the instance of the display which drives the main display screen.
« Leds.getNumberOfLeds(): returns the numbers of available LEDs.

MicroUl is not a standalone library. It requires a configuration step and several extensions to drive I/O devices
(display, inputs, LEDs).

First, MicroUl requires a configuration step in order to create these internal objects before the call to the main()
method. The chapter Static Initialization explains how to perform the configuration step.

Note: This configuration step is the same for both embedded and smulated platforms.

The embedded platform requires some additional C libraries to drive the I/O devices. Each C library is dedicated to
a specific kind of I/0O device. A specific chapter is available to explain each kind of /0 device.

Table 10: MicroUl C libraries

I/O devices Extension Name | Chapter
Graphical / pixel-based display Display Display
Inputs (buttons, joystick, touch, pointers, etc.) | Input Input
LEDs LED LED

The simulation platform uses a mock which simulates all I/O devices. Refer to the chapter Simulation.

Thread

Principle

The MicroUl implementation for MicroEJ uses one internal thread. This thread is created during the MicroUl initial-
ization step, and is started by a call to MicroUl.start().

Role

This thread has several roles:
« It manages all display events (requestRender(), requestShow(), etc.).

« It reads the I/O devices inputs and dispatches them into the event generators’ listeners. See input section:
Input.

« It allows to run some piece of code using the callSerially() method.

Memory

The thread is always running. The user has to count it to determine the number of concurrent threads the MicroEJ
Core Engine can run (see Memory options in Application Options).

4.13. Graphical User Interface 348

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#getDisplay--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/led/Leds.html#getNumberOfLeds--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/MicroUI.html#start--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#requestRender--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#requestShow-ej.microui.display.Displayable-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/MicroUI.html#callSerially-java.lang.Runnable-

MicroEJ Documentation, Revision 44d2784c

Exceptions

The thread cannot be stopped with a Java exception: the exceptions are always checked by the framework.

When an exception occurs in a user method called by the internal thread (for instance render()), the current
UncaughtExceptionHandler receives the exception. When no exception handler is set, a default handler prints
the stack trace.

Native Calls

The MicroUl implementation for MicroEJ uses native methods to perform some actions (read input devices events,
perform drawings, turn on LEDs, etc.). The library implementation has been designed to not use blocking native
methods (wait input devices, wait end of drawing, etc.) which can lock the full MicroEJ Core Engine execution.

The specification of the native methods is to perform the action as fast as possible. The action execution may be
sequential or parallel because an action is able to use a third-party device (software or hardware). In this case,
some callbacks are available to notify the end of this kind of parallel actions.

However some actions have to wait the end of a previous parallel action. By consequence the caller thread is
blocked until the previous action is done; in other words, until the previous parallel action has called its callback.
In this case, only the current Java thread is locked (because it cannot continue its execution until both actions are
performed). All other Java threads can run, even a thread with a lower priority than current thread. If no thread
has to be run, MicroEJ Core Engine goes in sleep mode until the native callback is called.

Transparency

MicroUl provides several policies to use the transparency. These policies depend on several factors, including the
kind of drawing and the display pixel rendering format. The main concept is that MicroUl does not allow you to
draw something with a transparency level different from 255 (fully opaque). There are two exceptions: the images
and the fonts.

Images

Drawing an image (a pre-generated image or an image decoded at runtime) which contains some transparency
levels does not depend on the display pixel rendering format. During the image drawing, each pixel is converted
into 32 bits by pixel format.

This pixel format contains 8 bits to store the transparency level (alpha). This byte is used to merge the foreground
pixel (image transparent pixel) with the background pixel (buffer opaque pixel). The formula to obtain the pixel is:

aMult = (aFG * aBG) /255

aOut = aFG + aBG — aMult
COut = (CFG * aFG 4+ CBG x aBG — CBG x aMult)/aOut
The destination buffer is always opaque, so:

COut = (CFG aFG + CBG * (255 — aMult))/255

where:
+ aFGisthe alpha level of the foreground pixel (layer pixel),

+ aBGis the alpha level of the background pixel (working buffer pixel),

4.13. Graphical User Interface 349

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Displayable.html#render-ej.microui.display.GraphicsContext-

MicroEJ Documentation, Revision 44d2784c

« Cxxis acolor component of a pixel (Red, Green or Blue),

« aOutis the alpha level of the final pixel.

Fonts

Afont holds only a transparency level (alpha). This fixed alpha level is defined during the pre-generation of a font
(see Fonts).

+ 1 means 2 levels are managed: fully opaque and fully transparent.

+ 2 means 4 levels are managed: fully opaque, fully transparent and 2 intermediate levels.

+ 4 means 16 levels are managed: fully opaque, fully transparent and 14 intermediate levels.

« 8 means 256 levels are managed: fully opaque, fully transparent and 254 intermediate levels.

Installation

The MicroUl library is an additional module. In the platform configuration file, check Ul > MicroUl to install
the library. When checked, the XML file microui/microui.xml is required during platform creation in order to
configure the module. This configuration step is used to extend the MicroUl library. Refer to the chapter Static
Initialization for more information about the MicroUl Initialization step.

Use

See MicroUl chapter in Application Developer Guide.

4.13.3 Static Initialization
Principle

The MicroUl implementation for MicroEJ requires a configuration step (also called extension step) to customize
itself before MicroEJ application startup (see Architecture). This configuration step uses an XML file. In order to save
both runtime execution time and flash memory, the file is processed by the Static MicroUl Initializer tool, avoiding
the need to process the XML configuration file at runtime. The tool generates appropriate initialized objects directly
within the MicroUl library, as well as Java and C constants files for sharing MicroUl event generator IDs.

This XML file (also called the initialization file) defines:

+ The MicroUl event generators that will exist in the application in relation to Low Level drivers that provide
data to these event generators (see Input).

« Whether the application has a display; and if so, it provides its logical name.
« Which fonts will be provided to the application.

The next chapters describe succinctly the XML file. For more information about grammar, please consult appendix
MicroUl Static Initializer.

4.13. Graphical User Interface 350

MicroEJ Documentation, Revision 44d2784c

Functional Description

The Static MicroUl Initializer tool takes as entry point the initialization file which describes the MicroUl library ex-
tension. This tool is automatically launched during the MicroEJ Platform build (see Installation).

The Static MicroUl Initializer tool is able to generate two files:

« A Java library which extends MicroUl library. This library is automatically added to the MicroEJ Application
classpath when MicroUl API library is fetched. This library is used at MicroUl startup to create all instances of
1/0 devices (Display, EventGenerator, etc.) and contains the fonts described into the configuration file (these
fonts are also called “system fonts”).

Warning: This MicroUl extension library is always generated and MicroUl library cannot run without this exten-
sion.

« A C header file (x.h). This header file contains some IDs which are used to make a link between an input
device (buttons, touch) and its MicroUl event generator (see Input).

Note: The Front Panel project does not need a configuration file (like C header file for embedded platform).

system_) . .
microui MicroUl Extension Java library
Jjar

microui

xml

StaticMicroUl

Initializer

microui_

constants BSP Event Generator identifiers

.h

Fig. 31: Static MicroUl Initializer Process

XML File

The XML file must be created in platform configuration project, in folder microui and called microui.xml .

v & platform-configuration

Fig. 32: Static MicroUl Initializer XML File

The XML file grammar is detailed here. The following list gives a short description of each element:

+ Root element: The initialization file root elementis <microui> and contains component-specific elements.

4.13. Graphical User Interface 351

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/EventGenerator.html

MicroEJ Documentation, Revision 44d2784c

<microui>
[component specific elements]
</microui>

+ Display element: The display elementaugments the initialization file with the configuration of the display.
The following snippet is an example of display element:

<display name="DISPLAY"/>

+ Fontselement: The fonts element augments the initialization file with the fonts that are implicitly embed-
ded within the application (also called system fonts). Applications can also embed their own fonts.

Note: The system fonts are optional, in which case application has to provide some fonts to be
able to draw characters.

The following snippet is an example of fonts element:

<fonts>

<range name="LATIN" sections="0-2"/>
<customrange start="0x21" end="0x3f"/>

</fonts>

« Event generators element: The eventgenerators element augments the initialization file with:

- the configuration of the predefined MicroUl Event Generator: Command, Buttons, States,
Pointer and Touch.

- the configuration of the generic MicroUl Event Generator.

The following snippet is an example of eventgenerators element:

<eventgenerators>
<!-- Generic Event Generators -->
<eventgenerator name="GENERIC" class="foo.bar.Zork">
<property name="PROP1" value="3"/>
<property name="PROP2" value="aaa"/>
</eventgenerator>

<!-- Predefined Event Generators -->

<command name="COMMANDS" />

<buttons name="BUTTONS" extended="3"/>

<buttons name="JOYSTICK" extended="5"/>

<pointer name="POINTER" width="1200" height="1200"/>
<touch name="TOUCH" display="DISPLAY"/>

<states name="STATES" numbers="NUMBERS" values="VALUES"/>

</eventgenerators>

<array name="NUMBERS">
<elem value="3"/>
<elem value="2"/>
<elem value="5"/>
</array>
(continues on next page)

4.13. Graphical User Interface 352

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/EventGenerator.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Command.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Buttons.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/States.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Pointer.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/EventGenerator.html

MicroEJ Documentation, Revision 44d2784c

(continued from previous page)

<array name="VALUES">
<elem value="2"/>
<elem value="0"/>
<elem value="1"/>
</array>

XML File Example

This common MicroUl initialization file initializes MicroUl with:
« aDisplay,
« aCommand event generator,
+ a Buttons event generator which targets n buttons (3 first buttons having extended features),
+ a Buttons event generator which targets the buttons of a joystick,
« a Pointer event generator which targets a touch panel,

« a Font whose path is relative to this file.
<microui>
<display name="DISPLAY"/>
<eventgenerators>
<command name="COMMANDS" />
<buttons name="BUTTONS" extended="3"/>
<buttons name="JOYSTICK" extended="5"/>
<touch name="TOUCH" display="DISPLAY"/>
</eventgenerators>
<fonts>

</fonts>

</microui>

Dependencies

No dependency.

Installation
The Static Initialization tool is part of the MicroUl module (see MicroU]). Install the MicroUl module to install the

Static Initialization tool and fill all properties in MicroUl module configuration file (which must specify the name of
the initialization file).

Use

The Static MicroUl Initializer tool is automatically launched during the MicroEJ Platform build.

4.13. Graphical User Interface 353

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Command.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Buttons.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Buttons.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Pointer.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Font.html

MicroEJ Documentation, Revision 44d2784c

4.13.4 Low Level API

Principle

The MicroUl implementation for MicroEJ requires a Low Level implementation. This Low Level implementation
finalizes the MicroUl implementation started with the static initialization step (see Static Initialization) for a given
MicroEJ Platform.

The Low Level implementation consists of a set of headers files to implement in C to target the hardware drivers.
Some functions are mandatory, others are not. Some other headersfiles are also available to call Ul enginesinternal

functions.

For the simulator, some Front Panel interfaces and classes allow to specify the simulated platform characteristics.

Embedded Platform

MICROUI-3.0 DRAWING-1.0

Software Algorithms LLUI_PAINTER_impl.h LLUI_LED_impl.h LLDW_PAINTER_impl.h

LLUI_DISPLAY_impl.h LLUL_INPUT_impl.h

CCO - com.microej.clibrary.llimpl#microui-drawings BSP

LLUI_PAINTER_impl.c LLDW_PAINTER_impl.c LLUI_INPUT _impl.c LLUI_DISPLAY_impl.c LLUI_LED_impl.c

O Foundation library
. C/H file (.c, .h)
. Archive file (.a)

Fig. 33: MicroUl Embedded Low Level API

The specification of header files names is:
+ Name starts with LLUT_.
+ Second part name refers the Ul engine: DISPLAY, INPUT, LED.
« Files whose name ends with _impl list functions to implement over hardware.
+ Files whose name has no suffix list internal Ul engines functions.

There are some exceptions :

o LLUI_PAINTER_impl.h and LLDW_PAINTER_impl.h list a subpart of Ul Graphics Engine functions to imple-
ment (all MicroUl native drawing methods).

« ui_drawing.h and dw_drawing.h list all drawing methods the platform can implement.

« ui_drawing_soft.h and dw_drawing_soft.h list all drawing methods implemented by the Graphics En-
gine.

« microui_constants.h isthe file generated by the MicroUl Static Initializer (see Static Initialization).

All header files and their aims are described in next Ul engines chapters: LED, Input and Display.

4.13. Graphical User Interface 354

MicroEJ Documentation, Revision 44d2784c

Simulator

MICROUI-3.0 DRAWING-1.0

Graphics Engine Software Algorithms LLUIPainter Event Engine LLUILed_impl.h LLDWPainter
LLUDisplay UiDrswing LLUinput oWorawin
LLUIDisplaylmpl

ej.tool.frontpanel#widget Front panel Platform project

Widgets (Display, LED etc.) .fp file and resources Widgets

O Foundation library
. Java file (class & interface)

. Archive file (jar)

Fig. 34: MicroUl Simulator Low Level API

In the simulator the three Ul engines are grouped in a mock called Front Panel. The Front Panel comes with a set
of classes and interfaces which are the equivalent of headers file (*.h) of Embedded Platform.

The specification of class names is:

+ Package are the same than the MicroUl library (ej.microui.display, ej.microui.event, ej.microui.
led).

« Name start with LLUT .
+ Second part name refers the Ul engine: Display, Input, Led.
« Files whose name ends with Impl list methods to implement like embedded platform.
+ Files whose name has no suffix list internal Ul engines functions.
There are some exceptions:

« LLUIPainter.java and LLDWPainter. java lista subpart of Ul Graphics Engine functions (all MicroUl native
drawing methods).

« UIDrawing.java and DWDrawing. java list all drawing methods the platform can implement (and already
implemented by the Graphics Engine).

« EventXxX list methods to create input events compatible with MicroUl implementation.

All files and their aims are described in Simulation.

4.13.5 LED

Principle

The LED module contains the C part of the MicroUl implementation which manages LED devices. This module is
composed of only one element: an implementation of the Low Level APIs for the LEDs which must be provided by
the BSP (see LU/ _LED: LEDs).

4.13. Graphical User Interface 355

MicroEJ Documentation, Revision 44d2784c

Functional Description
The LED module implements the MicroUl Leds framework. LLUI_LED specifies the Low Level APIs that receive
orders from the Java world.

The Low Level APIs are the same for the LED which is connected toa GPIO (@ or 1),toa PWM,toabus (I2C, SPI
), etc. The BSP has the responsibility of interpreting the MicroEJ Application parameter intensity.

Typically, when the LED is connected to a GPI0,the intensity “0” means “OFF” and all other values “ON”. When
the LED is connected viaa PWM, the intensity “0” means “OFF”, and all other values must configure the PWM duty
cycle signal.

The BSP should be able to return the state of an LED. If it is not able to do so (for example GPIO is not accessible
in read mode), the BSP has to save the LED state in a global variable. If not, the returned value may be wrong and
the MicroEJ Application may not be able to know the LEDs states.

Low Level API

The LED module provides Low Level APIs that allow the BSP to manage the LEDs. The BSP has to implement these
Low Level APIs, making the link between the MicroUl library and the BSP LEDs drivers.

The Low Level APIstoimplement are listed in the header file LLUI_LEDS_impl.h. First,intheinitialization function,
the BSP must return the available number of LEDs the board provides. The other functions are used to turn the LEDs
on and off.

Platform

MICROUI-3.0

BSP

LLUI_LED impl.c

hardware

Fig. 35: Led Low Level API

When there is no LED on the board, a stub implementation of C library is available. This C library must be linked
by the third-party C IDE when the MicroUl module is installed in the MicroEJ Platform. This stub library does not
provide any Low Level API files.

4.13. Graphical User Interface 356

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/led/Leds.html

MicroEJ Documentation, Revision 44d2784c

Dependencies

« MicroUl module (see MicroUl).

o LLUI_LED_impl.h implementation if standard implementation is chosen (see Functional Description and
LLUI_LED: LEDs).

Installation

LEDs is a sub-part of MicroUl library. When the MicroUl module is installed, the LED module must be installed in
order to be able to connect physical LEDs with MicroEJ Platform. If not installed, the stub module will be used.

In the platform configuration file, check Ul > LEDs toinstall LEDs.

Use

The MicroUIl LEDs APIs are available in the class ej.microui.led.Leds.

4.13.6 Input

Principle

The Input module contains the C part of the MicroUl implementation which manages input devices. This module
is composed of two elements:

« the C part of MicroUl input API (a built-in C archive) called Input Engine,

« an implementation of a Low Level APIs for the input devices that must be provided by the BSP (see
LLUI_INPUT: Input).

Functional Description

The Input module implements the MicroUl int -based event generators’ framework. LLUI_INPUT specifies the
Low Level APIs that send events to the Java world.

Drivers for input devices must generate events that are sent, via a MicroUl Event Generator, to the MicroEJ Appli-
cation. An event generator accepts notifications from devices, and generates an event in a standard format that
can be handled by the application. Depending on the MicroUl configuration, there can be several different types of
event generator in the system, and one or more instances of each type.

Each MicroUl Event Generator represents one side of a pair of collaborative components that communicate using
a shared buffer:

+ The producer: the C driver connected to the hardware. As a producer, it sends its data into the communica-
tion buffer.

« The consumer: the MicroUl Event Generator. As a consumer, it reads (and removes) the data from the com-
munication buffer.

4.13. Graphical User Interface 357

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/led/Leds.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/EventGenerator.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/EventGenerator.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/EventGenerator.html

MicroEJ Documentation, Revision 44d2784c

E ncodes Reads
/&lvrite\data; & decode data
aDriver /;EtentG enerator
itslD | | | | itslD
Input] buffer
C world | Java world

Fig. 36: Drivers and MicroUl Event Generators Communication

The LLUI_INPUT APlallows multiple pairsof <driver - event generator> to usethe same buffer, and associates
drivers and event generators using an int ID. The ID used is the event generator ID held within the MicroUl global
registry. Apartfrom sharingthe ID used to “connect” one driver’s data to its respective event generator, both entities
are completely decoupled.

The MicroUl thread waits for data to be published by drivers into the “input buffer”, and dispatches to the correct
(according to the ID) event generator to read the received data. This “driver-specific-data” is then transformed into
MicroUl events by event generators and sent to objects that listen for input activity.

. Listeners
Native world I Java world (application objects)
(€, asm,...) |)
. SystemPool
! of event generators
I
P N . C d
¢ Driverl : N by EvanSGI:Jﬁf:;l:or 0
' (joystick) y
« '-D;iv_er 2 ' / Pointer

L%, EventGenerator 1

- e ——— N

N

/" Driver3 =

N o)

\ Na Keypad

\ Buttons

(key} J ’ EventGenerator
—— MicroUl Thread i

Fig. 37: MicroUl Events Framework

Driver Listener

Drivers may either interface directly with event generators, or they can send their notifications to a Listener, also
written in C, and the listener passes the notifications to the event generator. This decoupling has two major bene-

4.13. Graphical User Interface 358

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/MicroUI.html

MicroEJ Documentation, Revision 44d2784c

fits:
+ The drivers are isolated from the MicroEJ libraries - they can even be existing code.

« The listener can translate the notification; so, for example, a joystick could generate pointer events.

Static Initialization

The event generators available on MicroUl startup (after the callto MicroUl.start()) are the event generators listed in
the MicroUl description file (XML file). This file is a part of the MicroUl Static Initialization step (Static Initialization).

The order of event generators defines the unique identifier for each event generator. These identifiers are generated
in a header file called microui_constants.h. Theinputdriver (or its listener) has to use these identifiers to target
a specific event generator.

If an unknown identifier is used or if two identifiers are swapped, the associated event may be never received by
MicroEJ application or may be misinterpreted.

Standard Event Generators

MicroUl provides a set of standard event generators: Command, Buttons, Pointer and States. For each standard
generator, the Input Engine proposes a set of functions to create and send an event to this generator.

Static Initialization proposes an additional event generator: Touch . A touch event generator is a Pointer event
generator whose area size is the display size where the touch panel is placed. Furthermore, contrary to a pointer,
a press action is required to be able to have a move action (and so a drag action). The Input Engine proposes a set
of functions to target a touch event generator (equal to a pointer event generator but with some constraints). The
touch event generator is identified as a standard Pointer event generator, by consequence the Java application has
to use the Pointer API to deal with a touch event generator.

According to the event generator, one or several parameters are required. The parameter format is event generator
dependant. Forinstance a Pointer X-coordinate is encoded on 16 bits (0-65535 pixels).

Generic Event Generators

MicroUl provides an abstract class GenericEventGenerator (package ej.microui.event). The aim of a generic
event generator is to be able to send custom events from native world to MicroEJ application. These events may
be constituted by only one 32-bit word or by several 32-bit words (maximum 255).

Onthe application side, a subclass must be implemented by clients who want to define their own event generators.
Two abstract methods must be implemented by subclasses:

« eventReceived : The event generator received an event from a C driver through the Low Level APIs
sendevent function.

+ eventsReceived: The event generator received an event made of several ints.

The event generator is responsible for converting incoming data into a MicroUl event and sending the event to its
listener. It should be defined during MicroUl Static Initialization step (in the XML file, see Static Initialization). This
allows the MicroUl implementation to instantiate the event generator on startup.

If the event generator is not available in the application classpath, a warning is thrown (with a stack trace) and the
application continues. In this case, all events sent by BSP to this event generator are ignored because no event
generator is able to decode them.

4.13. Graphical User Interface 359

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/MicroUI.html#start--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Command.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Buttons.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Pointer.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/States.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Pointer.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Pointer.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Pointer.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/GenericEventGenerator.html

MicroEJ Documentation, Revision 44d2784c

Low Level API

The implementation of the MicroUl Event Generator APIls provides some Low Level APIs. The BSP has to im-
plement these Low Level APIs, making the link between the MicroUl C library inputs and the BSP input devices
drivers.

The Low Level APIs to implement are listed in the header file LLUT_INPUT_impl.h. It allows events to be sent to the
MicroUl implementation. The input drivers are allowed to add events directly using the event generator’s unique
ID (see Static Initialization). The drivers are fully dependent on the MicroEJ framework (a driver or a driver listener
cannot be developed without MicroEJ because it uses the header file generated during the MicroUl initialization
step).

To send an event to the MicroEJ application, the driver (or its listener) has to call one of the event engine function,
listed in LLUI_INPUT.h . These functions take as parameter the MicroUl EventGenerator to target and the data.
The event generator is represented by a unique ID. The data depends on the type of the event. To run correctly, the
event engine requires an implementation of functions listed in LLUI_INPUT_impl.h.When an eventis added, the
event engine notifies MicroUl library.

MICROUI-3.0 Platform

Event Engine
7/ LLUI_INPU UI_INPUT_impI.h

BSP
Input_listener.c

Input_listener.h

Fig. 38: Input Low Level API

optional

When there is no input device on the board, a stub implementation of C library is available. This C library must be
linked by the third-party C IDE when the MicroUl module is installed in the MicroEJ Platform. This stub library does
not provide any Low Level APl files.

4.13. Graphical User Interface 360

MicroEJ Documentation, Revision 44d2784c

Event Buffer

MicroUl is using a circular buffer to manage the input events. As soon as an event is added, removed, or replaced
in the queue, the event engine calls the associated Low-Level API (LLAPI) LLUI_INPUT_IMPL_log_queue_xxx() .
This LLAPI allows the BSP to log this event to dump it later thanks to a call to LLUT_INPUT_dump() .

Note: When the functions LLUI_INPUT_IMPL_log_queue_xxx() are not implemented, a call to
LLUI_INPUT_dump() has no effect (there is no default logger).

The following steps describe how the logger is called:

1. On startup, MicroUl calls LLUI_INPUT_IMPL_log_queue_init() : it gives the event buffer. The implementa-
tion should prepare its logger.

2. The BSP adds orreplaces an eventin the queue, the event engine calls LLUI_INPUT_IMPL_log_queue_add()
or LLUI_INPUT_IMPL_log_queue_replace() . Theimplementation should store the event metadata: buffer
index, event size, etc.

3. If the event cannot be added because the queue is full, the event engine calls
LLUI_INPUT_IMPL_log_queue_full() . The implementation can print a warning, throw an error, etc.

4. MicroUl reads an event, the event engine calls LLUI_INPUT_IMPL_log_queue_read() . The implementation
has to update its metadata (if required).

The following steps describe how the dump is performed:
1. The BSP calls LLUI_INPUT_dump() : the event engine starts a dump of the event buffer.

2. First, the event engine dumps the older events. It calls LLUI_INPUT_IMPL_log_dump() for each old event.
The log type valueis 0; it means that all logs are the events or events’ data already consumed (past events),
and the first log is the latest event or data stored in the queue.

3. Then, the event engine dumps the future events (events not consumed yet by MicroUl). It calls
LLUI_INPUT_IMPL_log_dump() for each new event. The log type valueis 1 ; it means that all logs are the
events or data not consumed yet (future events).

4. The future events can target a MicroUl object (a Displayable for a requestRender event, a Runnable for
a callSerially event, etc.). The event engine notifies the logger to print the MicroUl objects by calling
LLUI_INPUT_IMPL_log_dump() with 2 aslogtype value.

5. Finally, the event engine notifies the logger about the end of the dump by calling
LLUI_INPUT_IMPL_log_dump() with 3 aslogtype value.

Warning: The dump of MicroUl objects linked to the future events is only available with the MicroEJ Architec-
tures 7.16 and higher. With older MicroEJ Architectures, nothing is dumped.

An implementation is available on the C module. This logger is constituted with two files:

o LLUI_INPUT_LOG_impl.c : this file holds some metadata for each event. When the event en-
gine calls LLUI_INPUT_IMPL_log_dump() , the logger retrieves the event metadata and calls
microui_event_decoder.c functions. To enable this logger, set the define MICROUIEVENTDECODER_ENABLED
in microui_event_decoder_conf.h.

« microui_event_decoder.c: this file describes the MicroUl events. It has to be customized with the MicroUl
event generators identifiers. See microui_event_decoder_conf.h.

Example of a dump:

4.13. Graphical User Interface 361

MicroEJ Documentation, Revision 44d2784c

MicroUI FIFO Dump

—————————————————————————————————— 0ld Events -———---------——------ooo—mooo oo

[27:
[28:
L..
[99:
[00:
[01:
[02:
[03:
[04:
[05:
[06:
[07:
[08:
[09:
[10:
[11:
[12:
[13:
[14:
[15¢
[16:
[17:
[18:
[19:
[20:
[21:
[22:
[23:

0x00000000] garbage
0x00000000] garbage

0x00000000] garbage

0x08000000] Display SHOW Displayable (Displayable index = 0)
0x00000008] Command HELP (event generator 0)

0x0d000000] Display REPAINT Displayable (Displayable index = 0)
0x07030000] Input event: Pointer pressed (event generator 3)
0x009f0063] at 159,99 (absolute)

0x07030600] Input event: Pointer moved (event generator 3)
0x00aa0064] at 170,100 (absolute)

0x02030700] Pointer dragged (event generator 3)

0x0d000000] Display REPAINT Displayable (Displayable index = 0)
0x07030600] Input event: Pointer moved (event generator 3)
0x00b30066] at 179,102 (absolute)

0x02030700] Pointer dragged (event generator 3)

0x0d000000] Display REPAINT Displayable (Displayable index = 0)
0x07030600] Input event: Pointer moved (event generator 3)
0x00c50067] at 197,103 (absolute)

0x02030700] Pointer dragged (event generator 3)

0x0d000000] Display REPAINT Displayable (Displayable index = 0)
0x07030600] Input event: Pointer moved (event generator 3)
0x00d00066] at 208,102 (absolute)

0x02030700] Pointer dragged (event generator 3)

0x0d000000] Display REPAINT Displayable (Displayable index = 0)
0x07030100] Input event: Pointer released (event generator 3)
0x00000000] at 0,0 (absolute)

0x00000008] Command HELP (event generator 0)

—————————————————————————————————— N W B M S I

: 0x0d0o00000] Display REPAINT Displayable (Displayable index = 0)
: 0x07030000] Input event: Pointer pressed (event generator 3)
1 0x002a0029] at 42,41 (absolute)

——————————————————————————— New Events' Java objects --—————-----------————-———-
[java/lang/0Object[2]1@oxC00OOFD1C

[0] com/microej/examples/microui/mvc/MVCDisplayable@dxC0Q0BACO
[1] null

Notes:

The event 24 holds an object in the events objects array (a Displayable);its object indexis 0.

An object is null when the memory slot has been used during the application execution but freed at the
dump time.

The object array’ size is the maximum of non-null objects reached during application execution.
The indices of old events are out-of-date: the memory slot is now null or reused by a newer event.

The event 25 targets the event generator 3 ; the identifier is available in microui_constants.h (created
during the MicroEJ Platform build, see Static Initialization).

The events 27 to 99 cannot be identified (no metadata or partial event content due to circular queue man-
agement).

Refers to the implementation on the C module to have more information about the format of the event; this
implementation is always up-to-date with the MicroUl implementation.

413

Graphical User Interface 362

MicroEJ Documentation, Revision 44d2784c

Dependencies

« MicroUl module (see MicroUl)

« Static MicroUl initialization step (see Static Initialization). This step generates a header file which contains
some unique event generator IDs. These IDs must be used in the BSP to make the link between the input
devices drivers and the MicroUl Event Generators.

o LLUI_INPUT_impl.h implementation (see LLUI_INPUT: Input).

Installation

Input module is a sub-part of the MicroUl library. The Input module is installed at same time than MicroUl module.

Use

The MicroUl Input APIs are available in the classes of packages ej.microui.event and ej.microui.event.
generator.

4.13.7 Display

Principle

The Display module contains the C part of the MicroUl implementation which manages graphical displays. This
module is composed of three elements:

« the C part of MicroUl Display API (a built-in C archive) called Graphics Engine,

« an implementation of a Low Level APIs for the displays (LLUI_DISPLAY) that the BSP must provide (see
LLUI_DISPLAY: Display),

+ animplementation of a Low Level APIs for MicroUl drawings.

Functional Description

The Display module implements the MicroUl graphics framework. This framework is constituted of several notions:
the display characteristics (size, format, backlight, contrast, etc.), the drawing state machine (render, flush, wait
flush completed), the images life cycle, the fonts and drawings. The main part of the Display module is provided by
a built-in Carchive called Graphics Engine. This library manages the drawing state machine mechanism, theimages
and fonts. The display characteristics and the drawings are managed by the LLUI_DISPLAY implementation.

The Graphics Engine is designed to let the BSP use an optional graphics processor unit (GPU) or an optional third-
party drawing library. Each drawing can be implemented independently. If no extra framework is available, the
Graphics Engine performs all drawings in software. In this case, the BSP has to perform a very simple implementa-
tion (four functions) of the Graphics Engine low-level APIs.

MicroUl library also gives the possibility to perform some additional drawings which are not available as APl in
MicroUl library. The Graphics Engine gives a set of functions to synchronize the drawings between them, to get the
destination (and sometimes source) characteristics, to call internal software drawings, etc.

Front Panel (simulator Graphics Engine part) gives the same possibilities. Same constraints can be applied, same
drawings can be overridden or added, same software drawing rendering is performed (down to the pixel).

4.13. Graphical User Interface 363

MicroEJ Documentation, Revision 44d2784c

Display Configurations
The Graphics Engine provides a number of different configurations. The appropriate configuration should be se-
lected depending on the capabilities of the screen and other related hardware, such as display controllers.
The modes can vary in three ways:
« the buffer mode: double-buffer, simple buffer (also known as direct),
« the memory layout of the pixels,

« pixel format or depth.

Buffer Modes

Overview

When using the double buffering technique, the memory into which the application draws (called graphics buffer
or back buffer) is not the memory used by the screen to refresh it (called frame buffer or display buffer). When
everything has been drawn consistently from the application point of view, the back buffer contents are synchro-
nized with the display buffer. Double buffering avoids flickering and inconsistent rendering: it is well suited to high
quality animations.

For more static display-based applications, and/or to save memory, an alternative configuration is to use only one
buffer, shared by both the application and the screen.

Displays addressed by one of the standard configurations are called generic displays. For these generic displays,
there are three buffer modes: switch, copy and direct. The following flow chart provides a handy guide to selecting
the appropriate buffer mode according to the hardware configuration.

4.13. Graphical User Interface 364

MicroEJ Documentation, Revision 44d2784c

Display has HO
its own buffer

b4

Available RAM NO
for 2 buffers

NO YES

Available RAM
for 1 buffer

buffer is mapped
o byte addressable

isplay is able
to change its source
huffer addres

NO

A

Direct or

Switch Copy Partial

Fig. 39: Buffer Modes

Implementation

The Graphics Engine does not depend on the type of buffer mode. The implementation of Display.flush() calls
the Low Level APl LLUI_DISPLAY_IMPL_flush to let the BSP to update the display data. This function should be
atomic and the implementation has to return the new graphics buffer address (back buffer address). In direct and
copy modes, this address never changes and the implementation has always to return the back buffer address. In
switch mode, the implementation has to return the old display frame buffer address.

The next sections describe the work to do for each mode.

4.13. Graphical User Interface 365

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#flush--

MicroEJ Documentation, Revision 44d2784c

Switch

The switch mode is a double-buffered mode where two buffers in RAM alternately play the role of the back buffer
and the display buffer. The display source is alternatively changed from one buffer to the other. Switching the
source address may be done asynchronously. The synchronize function is called before starting the next set of
draw operations, and must wait until the driver has switched to the new buffer.

Synchronization steps are described below.

« Step 1: Drawing
MicroUl is drawing in buffer 0 (back buffer) and the display is reading its contents from buffer 1 (display
buffer).

MicroUl

U
d aw

read

Display

« Step 2: Switch
The drawing is done. Set that the next read will be done from buffer 0.
Note that the display “hardware component” asynchronously continues to read data from buffer 1.

MicroUl

read

Display

» Step 3: Copy
A copy from the buffer 0 (new display buffer) to the buffer 1 (new back buffer) must be done to keep the

contents of the current drawing. The copy routine must wait until the display has finished the switch, and
start asynchronously by comparison with the MicroUl drawing routine (see next step).

This copy routine can be done in a dedicated RTOS task or in an interrupt routine. The copy should start
after the display “hardware component” has finished a full buffer read to avoid flickering.

Usually a tearing signal from the display at the end of the read of the previous buffer (buffer 1) or at the

4.13. Graphical User Interface 366

MicroEJ Documentation, Revision 44d2784c

beginning of the read of the new buffer (buffer 0) throws an interrupt. The interrupt routine starts the copy
using a DMA.

If it is not possible to start an asynchronous copy, the copy must be performed in the MicroUl drawing
routine, at the beginning of the next step.

Note that the copy is partial: only the parts that have changed need to be copied, lowering the CPU load.

MicroUl

copy

read

Display

« Step 4: Synchronisation
Waits until the copy routine has finished the full copy.

If the copy has not been done asynchronously, the copy must start after the display has finished the switch.
Itis a blocking copy because the next drawing operation has to wait until this copy is done.

« Step 5: Next draw operation
Same behavior as step 1 with buffers reversed.

MicroUl

d raw

read

Display

Copy

The copy mode is a double-buffered mode where the back buffer is in RAM and has a fixed address. To update the
display, data is sent to the display buffer. This can be done either by a memory copy or by sending bytes using a
bus, such as SPl or I12C.

Synchronization steps are described below.

« Step 1: Drawing
MicroUl is drawing in the back buffer and the display is reading its content from the display buffer.

4.13. Graphical User Interface 367

MicroEJ Documentation, Revision 44d2784c

MicroUl
draw

Back Buffer Display Buffer

read
Display

« Step 2: Copy
The drawing is done. A copy from the back buffer to the display buffer is triggered.

Note that the implementation of the copy operation may be done asynchronously - it is recommended to
wait until the display “hardware component” has finished a full buffer read to avoid flickering. At the
implementation level, the copy may be done by a DMA, a dedicated RTOS task, interrupt, etc.

MicroUl

Back Buffer Display Buffer

read
Display

« Step 3: Synchronization
The next drawing operation waits until the copy is complete.

MicroUl

Back Buffer Display Buffer

read
Display

4.13. Graphical User Interface 368

MicroEJ Documentation, Revision 44d2784c

Direct

The direct mode is a single-buffered mode where the same memory area is used for the back buffer and the display
buffer (See illustration below). Use of the direct mode is likely to result in “noisy” rendering and flickering, but saves
one buffer in runtime memory.

MicroUl
draw

read
Display

Partial Buffer

In the case where RAM usage is not a constraint, the graphics buffer is sized to store all the pixel data of the screen.
However, when the RAM available on the device is very limited, a partial buffer can be used instead. In that case,
the buffer is smaller and can only store a part of the screen (one third for example).

When this technique is used, the application draws in the partial buffer. To flush the drawings, the content of the
partial buffer is copied to the display (to its internal memory or to a complete buffer from which the display reads).

If the display does not have its own internal memory and if the device does not have enough RAM to allocate a
complete buffer, then it is not possible to use a partial buffer. In that case, only the Direct buffer mode can be used.

Workflow

A partial buffer of the desired size has to be allocated in RAM. If the display does not have its own internal memory,
a complete buffer also has to be allocated in RAM, and the display has to be configured to read from the complete
buffer.

The implementation should follow these steps:
1. First, the application draws in the partial buffer.

2. Then, to flush the drawings on the screen, the data of the partial buffer is sent to the display (either copied
to its internal memory or to the complete buffer in RAM).

3. Finally, a synchronization is required before starting the next drawing operation.

Dual Partial Buffer

A second partial buffer can be used to avoid the synchronization delay before between two drawing cycles. While
one of the two partial buffers is being copied to the display, the application can start drawing in the second partial
buffer.

4.13. Graphical User Interface 369

MicroEJ Documentation, Revision 44d2784c

This technique is interesting when the copy time is long. The downside is that it requires more RAM or to reduce
the size of the partial buffers.

Using a dual partial buffer has no impact on the application code.

Application Limitations

Using a partial buffer rather than a complete buffer may require adapting the code of the application, since render-
ing a graphical element may require multiple passes. If the application uses MWT, a custom render policy has to be
used.

Besides, the GraphicsContext.readPixel() and the GraphicsContext.readPixels() APIs can not be used on the graph-
ics context of the display in partial buffer mode. Indeed, we cannot rely on the current content of the back buffer
as it doesn’t contain what is seen on the screen.

Likewise, the Painter.drawDisplayRegion() APl can not be used in partial buffer mode. Indeed, this API reads the
content of the back buffer in order to draw a region of the display. Instead of relying on the drawings which were
performed previously, this APl should be avoided and the drawings should be performed again.

Using a partial buffer can have a significant impact on animation performance. Refer to Animations for more infor-
mation on the development of animations in an application.

Implementation Example

The partial buffer demo provides an example of partial buffer implementation. This example explains how to im-
plement partial buffer support in the BSP and how to use it in an application.

Byte Layout

This chapter concerns only display with a number of bits-per-pixel (BPP) smaller than 8. For this kind of display, a
byte contains several pixels and the Graphics Engine allows to customize how to organize the pixels in a byte.
Two layouts are available:

« line: The byte contains several consecutive pixels on same line. When the end of line is reached, a padding is
added in order to start a new line with a new byte.

« column: The byte contains several consecutive pixels on same column. When the end of column is reached,
a padding is added in order to start a new column with a new byte.

When installing the Display module, a property bytelLayout is required to specify the kind of pixels representation
(see Installation).

Table 11: Byte Layout: line

BPP | MSB | \ \ \ \ | LsB
4 pixel 1 pixel 0

2 pixel 3 pixel 2 pixel1 pixel 0

1 pixel 7 | pixel 6 | pixel5 [pixel4 | pixel3 | pixel2 | pixel1 | pixel0

4.13. Graphical User Interface 370

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html#readPixel-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html#readPixels-int:A-int-int-int-int-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Painter.html
https://github.com/MicroEJ/Demo-PartialBuffer

MicroEJ Documentation, Revision 44d2784c

Memory Layout

Table 12: Byte Layout: column

BPP | 4 2 1
MSB | pixel1 | pixel3 | pixel7
pixel 6
pixel2 | pixel 5
pixel 4
pixel 0 | pixel1 | pixel3
pixel 2
pixel 0 | pixel1
LSB pixel 0

For the display with a number of bits-per-pixel (BPP) higher or equal to 8, the Graphics Engine supports the line-by-
line memory organization: pixels are laid out from left to right within a line, starting with the top line. For a display
with 16 bits-per-pixel, the pixel at (0,0) is stored at memory address 0, the pixel at (1,0) is stored at address 2, the
pixel at (2,0) is stored at address 4, and so on.

Table 13: Memory Layout for BPP >=8

BPP [@+0 @+1 @+2 @+3 @+4

32 pixel 0 [7:0] | pixel 0[15:8] | pixel 0[23:16] | pixel 0 [31:24] | pixel1[7:0]
24 pixel 0 [7:0] | pixel 0 [15:8] | pixel 0[23:16] | pixel1[7:0] pixel 1[15:8]
16 pixel 0 [7:0] | pixel 0[15:8] | pixel1[7:0] pixel1[15:8] pixel 2 [7:0]
8 pixel 0 [7:0] | pixel1[7:0] pixel 2 [7:0] pixel 3 [7:0] pixel 4 [7:0]

For the display with a number of bits-per-pixel (BPP) lower than 8, the Graphics Engine supports the both memory
organizations: line by line (pixels are laid out from left to right within a line, starting with the top line) and column
by column (pixels are laid out from top to bottom within a line, starting with the left line). These byte organizations
concern until 8 consecutive pixels (see Byte Layout). When installing the Display module, a property memoryLayout
is required to specify the kind of pixels representation (see Installation).

Table 14: Memory Layout ‘line’ for BPP < 8 and byte layout ‘line’

BPP [@+0 @+1 @+2 @+3 @+4
4 (0,0)to (1,0) | (2,0)to (3,0) | (4,0)to (5,0) (6,0) to (7,0) (8,0) to (9,0)

2 (0,0)to (3,0) | (4,0)to (7,0) | (8,0)to (11,0) (12,0) to (15,0) | (16,0) to (19,0)
1 (0,0)to (7,0) | (8,0)to (15,0) | (16,0 to (23,0) | (24,0) to (31,0) | (32,0) to (39,0)
Table 15: Memory Layout ‘line’ for BPP < 8 and byte layout ‘column’

BPP | @+0 @+1 @+2 @+3 @+4

4 (0,0)to (0,1) | (1,0)to (1,1) | (2,0)to(2,1) | (3,0) to(3,1) | (4,0)to (4,1)

2 (0,0) to (0,3) | (1,0)to (1,3) | (2,0)to (2,3) | (3,0) to (3,3) | (4,0) to (4,3)

1 (0,0)to (0,7) | (1,0) to (1,7) | (2,0)to (2,7) | (3,0)to (3,7) | (4,0)to (4,7)
Table 16: Memory Layout ‘column’ for BPP < 8 and byte layout ‘line’

BPP [@+0 @+1 @+2 @+3 @+4

4 (0,0) to (1,0) | (0,1)to (1,1) | (0,2)to (1,2) | (0,3)to (1,3) | (0,4)to (1,4)

2 (0,0)to (3,0) | (0,1)to(3,1) | (0,2)to(3,2) | (0,3)to(3,3) | (0,4)to (3,4)

1 (0,0)to (7,0) | (0,1)to (7,1) | (0,2)to(7,2) | (0,3)to(7,3) | (0,4)to(7,4)

4.13. Graphical User Interface

37N

MicroEJ Documentation, Revision 44d2784c

Table 17: Memory Layout ‘column’ for BPP < 8 and byte layout ‘column’

BPP | @+0 @+1 @+2 @+3 @+4
4 (0,0)t0 (0,1) | (0,2)t0 (0,3) | (0,4)t0 (0,5) | (0,6)t0 (0,7) | (0,8)to (0,9)

2 (0,0) to (0,3) | (0,4) to (0,7) (0,8) to (0,11) (0,12) to (0,15) | (0,16) to (0,19)
1 (0,0)t0 (0,7) | (0,8)to (0,15) | (0,16) to (0,23) | (0,24)to (0,31) | (0,32) to (0,39)

Pixel Structure

Principle

The Display module provides pre-built display configurations with standard pixel memory layout. The layout of
the bits within the pixel may be standard or driver-specific. When installing the Display module, a property bpp is
required to specify the kind of pixel representation (see Installation).

Standard

When the value is one among this list: ARGB8888 | RGB888 | RGB565 | ARGB1555 | ARGB4444 | C4 | C2 | C1
, the Display module considers the pixels representation as standard. All standard representations are internally
managed by the Display module, by the Front Panel and by the Image Generator. No specific support is required as
soon as a MicroEJ Platform is using a standard representation. It can:

+ generate at compile-time RAW images in the same format than display pixel format,
« convert at runtime MicroUl 32-bit colors in display pixel format,

« simulate at runtime the display pixel format.

Note: The custom implementations of the image generator, low-level APIs, and Front Panel APIs are ignored by
the Display module when a standard pixel representation is selected.

According to the chosen format, some color data can be lost or cropped.

+ ARGB8888: the pixel uses 32 bits-per-pixel (alpha[8], red[8], green[8] and blue[8]).

u32 convertARGB8888tolLCDPixel(u32 c){
return c;

}

u32 convertLCDPixeltoARGB8888(u32 c){
return c;

3

+ RGB888: the pixel uses 24 bits-per-pixel (alpha[0], red[8], green[8] and blue[8]).

u32 convertARGB8888tolLCDPixel(u32 c){
return c & Oxffffff;

}

u32 convertLCDPixeltoARGB8888(u32 c){
return 0
| Oxff000000
| ¢
(continues on next page)

4.13. Graphical User Interface 372

MicroEJ Documentation, Revision 44d2784c

(continued from previous page)

3

+ RGB565: the pixel uses 16 bits-per-pixel (alpha[0], red[5], green[6] and blue[5]).

u32 convertARGB8888toLCDPixel(u32 c){
return 0
| ((c & 0xf80000) >> 8)
| ((c & 0x00fce0) >> 5)
| ((c & 0x0000f8) >> 3)

3

u32 convertLCDPixeltoARGB8888(u32 c){
return 0
| oxff000000
| ((c & 0xf800) << 8)
| ((c & 0x07e0@) << 5)
| ((c & 0x001f) << 3)

’

}

« ARGBI1555: the pixel uses 16 bits-per-pixel (alpha[1], red[5], green[5] and blue[5]).

u32 convertARGB8888toLCDPixel(u32 c){
return @
| (((c & 0xff00000R0) == Oxff0O000RQ) ? 0x8000 : 0)
| ((c & 0xf80000) >> 9)
| ((c & 0x00f800) >> 6)
| ((c & 0x0000f8) >> 3)

)

3

u32 convertLCDPixeltoARGB8888(u32 c){
return @
| ((c & 0x8000) == 0x8000 ? 0xff00V0V00 : 0x00000000)
| ((c & @x7c00) << 9)
| ((c & 0x03e0@) << 6)
| ((c & 0x001f) << 3)

)

3

« ARGB4444: the pixel uses 16 bits-per-pixel (alpha[4], red[4], green[4] and blue[4]).

u32 convertARGB8888toLCDPixel(u32 c){
return 0

| ((c & 0xf000000Q) >> 16)

| ((c & 0x00f00000) >> 12)

| ((c & 0x0000f000) >> 8)

| ((c & 0x000000f0) >> 4)

’

3

u32 convertLCDPixeltoARGB8888(u32 c){
return 0
| ((c & 0xf00R) << 16)

(continues on next page)

4.13. Graphical User Interface 373

MicroEJ Documentation, Revision 44d2784c

(continued from previous page)

| ((c & 0xf00Q) << 12)
| ((c & 0x0f00) << 12)
| ((c & 0x0f00) << 8)
| ((c & 0x00f0) << 8)
| ((c & 0x00f0) << 4)
| ((c & 0x000f) << 4)
| ((c & 0x000f) << Q)

}

« C4: the pixel uses 4 bits-per-pixel (grayscale[4]).

u32 convertARGB8888toLCDPixel(u32 c){
return (toGrayscale(c) & 0Oxff) / 0x11;
3

u32 convertLCDPixeltoARGB8888(u32 c){
return 0xff000000 | (c * Ox111111);

}

+ C2: the pixel uses 2 bits-per-pixel (grayscale[2]).

u32 convertARGB8888toLCDPixel(u32 c){
return (toGrayscale(c) & 0Oxff) / 0x55;
3

u32 convertLCDPixeltoARGB8888(u32 c){
return 0xff000000 | (c * 0x555555);

}

+ C1: the pixel uses 1 bit-per-pixel (grayscale[1]).

u32 convertARGB8888tolLCDPixel(u32 c){
return (toGrayscale(c) & 0xff) / oxff;
3

u32 convertLCDPixeltoARGB8888(u32 c){
return 0xffo00000 | (c * Oxffffff);

3

Driver-Specific

The Display module considers the pixel representation as driver-specific when the value is one among this list: 1
| 214181 16 | 24 | 32.Thismodeis often used when the pixel representation is not ARGB or RGB but BGRA
or BGR instead. This mode can also be used when the number of bits for a color component (alpha, red, green, or
blue) is not standard or when the value does not represent a color but anindex in a CLUT. This mode requires some
specific support in the MicrokJ Platform:

« An extension of the image generator is mandatory: see Extended Mode to convert MicroUl’s standard 32-bit
ARGB colors to display pixel format.

The Front Panel widget Display requires an extension to convert the MicroUl 32-bit colors in display pixel
format and vice-versa, see Widget Display.

« The driver must implement functions that convert MicroUlI’s standard 32-bit ARGB colors to display pixel for-
mat and vice-versa: see Color Conversions.

4.13. Graphical User Interface 374

MicroEJ Documentation, Revision 44d2784c

Thefollowingexampleillustrates the use of specific format BGR565 (the pixel uses 16 bits-per-pixel (alpha[0], red[5],
green[6] and blue[5]):

1. Configure the MicroEJ Platform:

« Create or open the Platform configuration project file display/display.properties:

bpp=16

2. Image Generator:
+ Create a project as described here.

o Create the class com.microej.graphicalengine.generator.MicroUIGeneratorExtension
that extends the class com.microej.tool.ui.generator.BufferedImageloader .

« Fill the method convertARGBColorToDisplayColor() :

public class MicroUIGeneratorExtension extends BufferedImagelLoader {

@0verride
public int convertARGBColorToDisplayColor(int color) {
return ((color & 0xf80000) >> 19) | ((color & 0x00fce@) >> 5) | ((color & 0x0Q000f8) <<_

3
}

« Configure the Image Generator’ service loader: add the file /META-INF/services/com.microej.
tool.ui.generator.MicroUIRawImageGeneratorExtension:

com.microej.graphicalengine.generator.MicroUIGeneratorExtension

« Build the module (click on the blue button).

«+ Copy the generated jar file (imageGeneratorMyPlatform. jar) in the MicroEJ Platform configu-
ration project: /dropins/tools/.

2. Simulator (Front Panel):

« Create the class com.microej.fp.MyDisplayExtension that implements the interface ej.fp.
widget.Display.DisplayExtension:

public class MyDisplayExtension implements DisplayExtension {

@Override
public int convertARGBColorToDisplayColor(Display display, int color) {
return ((color & 0xf80000) >> 19) | ((color & 0x00fce@) >> 5) | ((color & 0x0000f8) << 8);

3

@Override
public int convertDisplayColorToARGBColor(Display display, int color) {
return ((color & 0x001f) << 19) | ((color & 0x7e00) << 5) | ((color & 0xf800) >> 8) |.
—0xff000000;

3

@Override
public boolean isColor(Display display) {
return true;

}

@Override
(continues on next page)

4.13. Graphical User Interface 375

MicroEJ Documentation, Revision 44d2784c

(continued from previous page)

public int getNumberOfColors(Display display) {
return 1 << 16;

}

« Configure the widget Display inthe .fp file by referencing the display extension:

<ej.fp.widget.Display x="41" y="33" width="320" height="240" extensionClass="com.microej.fp.
—MyDisplayExtension"/>

3. Build the MicroEJ Platform as usual
4. Update the LLUI_DISPLAY implementation by adding the following functions:
uint32_t LLUI_DISPLAY_IMPL_convertARGBColorToDisplayColor(uint32_t color)
{
return ((color & 0xf80000) >> 19) | ((color & 0x00fc@@) >> 5) | ((color & 0x0000f8) << 8);
3
uint32_t LLUI_DISPLAY_IMPL_convertDisplayColorToARGBColor(uint32_t color)
{
return ((color & 0x001f) << 19) | ((color & 0x7e00) << 5) | ((color & 0xf800) >> 8) |._
—0xff000000;
3
Low Level API
Overview

MICROUI-3.0 DRAWING-1.0
CCO - com.microej.clibrary.llimpl#microui BSP
O Foundation library
. C/Hfile (., .h)
. Archive file (.a)

Fig. 40: Display Low Level API

MicroUl library calls the BSP functions through the Graphics Engine and header file LLUI_DISPLAY_impl.h.
Implementation of LLUI_DISPLAY_impl.h can call Graphics Engine functions through LLUI_DISPLAY.h.
To perform some drawings, MicroUl uses LLUI_PAINTER_impl.h functions.

The C module provides a default implementation of the drawing native functions of LLUI_PAINTER_impl.h
and LLDW_PAINTER_impl.h:™* Itimplements the synchronization layer, then redirects drawings implemen-
tationsto ui_drawing.h and dw_drawing.h

ui_drawing.h and dw_drawing.h arealreadyimplemented by built-in software algorithms (library provided
by the Ul Pack).

4.13.

Graphical User Interface 376

MicroEJ Documentation, Revision 44d2784c

« Itis possible to implement some of the ui_drawing.h and dw_drawing.h functions in the BSP to provide
a custom implementation (for instance, a GPU). * Custom implementation is still allowed to call software
algorithms declared in ui_drawing_soft.h and dw_drawing_soft.h.

Required Low Level API

Some four Low Level APIs are required to connect the Graphics Engine on the display driver. The functions are listed
in LLUI_DISPLAY_impl.h.

o LLUI_DISPLAY_IMPL_initialize : The initialization function is called when MicroEJ application is calling
MicroUI.start() . Before this call, the display is useless and don’t need to be initialized. This function con-
sists in initializing the LCD driver and in filling the given structure LLUI_DISPLAY_SInitData. This structure
has to contain pointers on two binary semaphores (see after), the back buffer address (see Display Configu-
rations), the display virtual size in pixels and optionally the display physical size in pixels. The display virtual
size is the size of the area where the drawings are visible. The display physical size is the required memory
size where the area is located. Virtual memory sizeis: display_width = display_height * bpp / 8.
On some devices the memory width (in pixels) is higher than virtual width. In this way, the graphics buffer
memory sizeis: memory_width * memory_height * bpp / 8.

LLUI_DISPLAY_IMPL_binarySemaphoreTake and LLUI_DISPLAY_IMPL_binarySemaphoreGive: The Graph-
ics Engine requires two binary semaphores to synchronize its internal states. The binary semaphores must
be configured in a state such that the semaphore must first be given before it can be taken (this initializa-
tion must be performed in LLUI_DISPLAY_IMPL_initialize function). Two distinct functions have to be
implemented to take and give a binary semaphore.

LLUI_DISPLAY_IMPL_flush:Accordingthedisplay buffer mode (see Display Configurations),the flush func-
tion has to be implemented. This function must not be blocking and not performing the copy directly. An-
other OS task or a dedicated hardware must be configured to perform the buffer copy.

Optional Low Level API

Several optional Low Level APl are available in LLUI_DISPLAY_impl.h . They are already implemented as weak
functions in the Graphics Engine and return no error. These optional features concern the display backlight and
constrast, display characteristics (is colored display, double buffer), colors conversions (see Pixel Structure and
CLUT), etc. Refer to each function comment to have more information about the default behavior.

Painter Low Level API

AllMicroUl drawings (availablein Painter class) are calling a native function. The MicroUl native drawing functions
arelistedin LLUI_PAINTER_impl.h. Theimplementation must take care about a lot of constraints: synchronization
between drawings, Graphics Engine notification, MicroUl GraphicsContext clip and colors, flush dirty area, etc.
The principle of implementing a MicroUl drawing function is described in the chapter Drawing Native.

An implementation of LLUI_PAINTER_impl.h is already available on the C module. This implementation re-
spects the synchronization between drawings, the Graphics Engine notification, reduce (when possible) the Mi-
croUl GraphicsContext clip constraints and update (when possible) the flush dirty area. This implementation
does not perform the drawings. It only calls the equivalent of drawing available in ui_drawing.h. This allows to
simplify how to use a GPU (or a third-party library) to perform a drawing: the ui_drawing.h implementation has
just to take in consideration the MicroUl GraphicsContext clip and colors and flush dirty area. Synchronization
with the Graphics Engine is already performed.

In addition to the implementation of LLUI_PAINTER_impl.h, an implementation of ui_drawing.h is already
available in Graphics Engine (in weak mode). This allows to implement only the functions the GPU is able to per-

4.13. Graphical User Interface 377

MicroEJ Documentation, Revision 44d2784c

form. For a given drawing, the weak function implementation is calling the equivalent of drawing available in
ui_drawing_soft.h. Thisfile lists all drawing functions implemented by the Graphics Engine.

The Graphics Engine implementation of ui_drawing_soft.h is performing the drawings in software. However
some drawings can call another ui_drawing.h function. For instance UI_DRAWING_SOFT_drawHorizontalline
is calling UI_DRAWING_fillRectangle inordertouse a GPU if available. If not available, the weak implementation
of UI_DRAWING_fillRectangle is calling UI_DRAWING_SOFT_fillRectangle and so on.

The BSP implementation is also allowed to call ui_drawing_soft.h algorithms, one or several times per function
to implement. For instance, a GPU may be able to draw an image whose format is RGB565. But if the image format
is ARGB1555, BSP implementation can call UT_DRAWING_SOFT_drawImage function.

Graphics Engine API

The Graphics Engine provides a set of functions to interact with the C archive. The functions allow to retrieve some
drawing characteristics, synchronize drawings between them, notify the end of flush and drawings, etc.

The functions are available in LLUI_DISPLAY.h.

Drawing Native

As explained before, MicroUl implementation provides a dedicated header file which lists all MicroUl Painter draw-
ings native function. The implementation of these functions has to respect several rules to not corrupt the MicroUl
execution (flickering, memory corruption, unknown behavior, etc.). These rules are already respected in the default
Abstraction Layer implementation modules available on the C module. In addition, MicroUl allows to add some cus-
tom drawings. The implementation of MicroUl Painter native drawings should be used as model to implement the
custom drawings.

All native functions must have a MICROUI_GraphicsContext* as parameter (often first parameter). This identi-
fies the destination target: the MicroUl GraphicsContext. This target is retrieved in MicroEJ application calling the
method GraphicsContext.getSNIContext() . This method returns a byte array which is directly mapped on the
MICROUI_GraphicsContext structurein MicroUl native drawing function declaration.

A graphics context holds a clip and the drawer is not allowed to perform a drawing outside this clip (otherwise the
behavior is unknown). Note the bottom-right coordinates might be smaller than top-left (in x and/or y) when the
clip width and/or height is null. The clip may be disabled (when the current drawing fits the clip); this allows to
reduce runtime. See LLUT_DISPLAY_isClipEnabled().

Note: Several clip functions are available in LLUI_DISPLAY.h to check if a drawing fits the clip.

The Graphics Engine requires the synchronization between the drawings. To do that, it requires a call to
LLUI_DISPLAY_requestDrawing at the beginning of native function implementation. This function takes as pa-
rameter the graphics context and the pointer on the native function itself. This pointer must be casted in a
SNI_callback.

The drawing function must update the next Display.flush() area (dirty area). If not performed, the next call to Dis-
play.flush() will not call LLUT_DISPLAY_IMPL_flush() function.

The native function implementation pattern is:

void Java_com_mycompany_MyPainterClass_myDrawingNative (MICROUI_GraphicsContext* gc, ...)
{
// tell to the Graphics Engine if drawing can be performed
if (LLUI_DISPLAY_requestDrawing(gc, (SNI_callback)&Java_com_mycompany_MyPainterClass_
—myDrawingNative))
(continues on next page)

4.13. Graphical User Interface 378

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#flush--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#flush--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#flush--

MicroEJ Documentation, Revision 44d2784c

(continued from previous page)

DRAWING_Status status;

// perform the drawings (respecting clip if not disabled)
[...]

// update new flush dirty area
LLUI_DISPLAY_setDrawinglLimits(gc, ...);

// set drawing status
LLUI_DISPLAY_setDrawingStatus(DRAWING_DONE); // or DRAWING_RUNNING;

}

// else: refused drawing

Display Synchronization

Overview

The Graphics Engine is designed to be synchronized with the display refresh rate by defining some pointsin the ren-
dering timeline. It is optional; however it is mainly recommanded. This chapter explains why to use display tearing
signal and its consequences. Some chronograms describe several use cases: with and without display tearing sig-
nal, long drawings, long flush time, etc. Times are in milliseconds. To simplify chronograms views, the display
refresh rate is every 16ms (62.5Hz).

Captions definition:

« Ul: Itis the Ul task which performs the drawings in the back buffer. At the end of the drawings, the examples
consider that the Ul thread calls Display.flush() 1 millisecond after the end of the drawings. At this moment,
a flush can start (the call to Display.flush() is symbolized by a simple peak in chronograms).

« Flush: In copy mode, it is the time to transfer the content of back buffer to display buffer. In switch mode, it
is the time to swap back and display buffers (often instantaneous) and the time to recopy the content of new
display buffer to new back buffer. During this time, the back buffer is in use and Ul task has to wait the end of
copy before starting a new drawing.

« Tearing: The peaks show the tearing signals.

« Rendering frequency: the frequency between the start of a drawing to the end of flush.

Tearing Signal

In this example, the drawing time is 7ms, the time between the end of drawing and the call to Display.flush() is
1ms and the flush time is 6ms. So the expected rendering frequency is 7 + 1+ 6 = 14ms (71.4Hz). Flush starts just
after the call to Display.flush() and the next drawing starts just after the end of flush. Tearing signal is not taken in
consideration. By consequence the display content is refreshed during the display refresh time. The content can
be corrupted: flickering, glitches, etc. The rendering frequency is faster than display refresh rate.

ol L | L | L | L | L | L
Fust | | | | | | | | | |

Tearg I I I | I
L A A S N L L L B LN LA N N AL LR I

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

4.13. Graphical User Interface 379

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#flush--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#flush--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#flush--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#flush--

MicroEJ Documentation, Revision 44d2784c

Inthisexample, thetimes are identical to previous example. The tearing signalis used to start the flushin respecting
the display refreshing time. The rendering frequency becomes smaller: it is cadenced on the tearing signal, every
16ms (62.5Hz). During 2ms, the CPU can schedule other tasks or goes in idle mode. The rendering frequency is
equal to display refresh rate.

Ui LI I L I L | L I L
| | I I I | |

|
TearIngI I I I I I
N I R I R R R I R I N I

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

In this example, the drawing time is 14ms, the time between the end of drawing and the call to Display.flush() is
Tms and the flush time is 6ms. So the expected rendering frequency is 14 + 1+ 6 = 21ms (47.6Hz). Flush starts just
after the call to Display.flush() and the next drawing starts just after the end of flush. Tearing signal is not taken in
consideration.

ol L | L | L | L
FIushI I I I I I I

TearIngI I I I I I
[N I R A A R A LR TR T R I A I R I

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Inthis example, the times are identical to previous example. The tearing signalis used to start the flushin respecting
the display refreshing time. The drawing time + flush time is higher than display tearing signal period. So the flush
cannot start at every tearing peak: it is cadenced on two tearing signals, every 32ms (31.2Hz). During 11ms, the CPU
can schedule other tasks or goes in idle mode. The rendering frequency is equal to display refresh rate divided by
two.

ol L I i |
FIushI | | | I
TearIngI I I I I I
glIII;“IIlIl)lIII1I5IIII2I0IIII2I5IIIISIOIIII35IIIIllI()IIII4I5IIIISOIIIISISIIIIGIOIII 65 70 7I5 - SIO
Additional Buffer

Some devices take a lot of time to send back buffer content to display buffer. The following examples demonstrate
the consequence on rendering frequency. The use of an additional buffer optimizes this frequency, however it uses
a lot of RAM memory.

In this example, the drawing time is 7Tms, the time between the end of drawing and the call to Display.flush() is
Ims and the flush time is 12ms. So the expected rendering frequency is 7 + 1+ 12 = 20ms (50Hz). Flush starts just
after the call to Display.flush() and the next drawing starts just after the end of flush. Tearing signal is not taken in
consideration. The rendering frequency is cadenced on drawing time + flush time.

! L I L | L I L
FIushI I I I I I | I
Tear\ngI I I I I I

IIIIlrllIIIIIIIIIIIIIIIIIrIIIIIIIII |||||||||r
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

4.13. Graphical User Interface 380

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#flush--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#flush--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#flush--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#flush--

MicroEJ Documentation, Revision 44d2784c

As mentionned above, the idea is to use two back buffers. First, Ul task is drawing in back buffer A. Just after the
call to Display.flush(), the flush can start. At same moment, the content of back buffer A is copied in back buffer
B (use a DMA, copy time is Ims). During the flush time (copy of back buffer A to display buffer), the back buffer
B can be used by Ul task to continue the drawings. When the drawings in back buffer B are done (and after call
to Display.flush()), the DMA copy of back buffer B to back buffer A cannot start: the copy can only start when the
flush is fully done because the flush is using the back buffer A . As soon as the flush is done, a new flush (and DMA
copy) can start. The rendering frequency is cadenced on flush time, ie 12ms (83.3Hz).

ol L i - i [I - i L
o [[[[1 [[
P | I | I I I
TearIngI I I I I I
(I)IIIILIIIIlI()IIIIlISIIIIZIOIIIIZIBIIIISIOIIII35IIII4I()IIII4I5IIIISOIIII5I5IIII6I()IIII65IIII70IIII7I5IIII8I0

The previous example doesn’t take in consideration the display tearing signal. With tearing signal and only one
back buffer, the frequency is cadenced on two tearing signals (see previous chapter). With two back buffers, the
frequency is now cadenced on only one tearing signal, despite the long flush time.

! [L I L I L | L | |
DMAI I_I I_I I_I I_I I_I
rus) | L LI L L
rearng I I I I I
I T T I T T I T T I T T I T T I T T I T T T T T I T T I L T T I T T I I T I
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Time Sum-up

The following table resumes the previous examples times:
« It consider the display frequency is 62.5Hz (16ms).

+ Drawing time is the time let to the application to perform its drawings and call Display.flush(). In our exam-
ples, the time between the last drawing and the call to Display.flush() is Ims.

« FPS and CPU load are calculated from examples times.

+ Max drawing time is the maximum time let to the application to perform its drawings, without overlapping
next display tearing signal (when tearing is enabled).

Tear- | Nb Drawing time | Flush time | DMA copy time | FPS CPU load | Maxdrawingtime
ing buffers | (ms) (ms) (ms) (Hz) (%) (ms)

no 1 T+1 6 7.4 57.1

yes 1 T+1 6 62.5 50 10

no 1 14+1 6 47.6 7.4

yes 1 14+1 6 31.2 46.9 20

no 1 T+1 12 50 40

yes 1 7+ 12 31.2 25 8

no 2 T7+1 12 1 83.3 66.7

yes 2 T+1 12 1 62.5 50 n

4.13. Graphical User Interface 381

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#flush--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#flush--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#flush--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#flush--

MicroEJ Documentation, Revision 44d2784c

GPU Synchronization

When a GPU is used to perform a drawing, the caller (MicroUl painter native method) returns immediately. This
allows the MicroEJ application to perform other operations during the GPU rendering. However, as soon as the
MicroEJ application is trying to perform another drawing, the previous drawing made by the GPU must be done.
The Graphics Engine is designed to be synchronized with the GPU asynchronous drawings by defining some points
in the rendering timeline. It is not optional: MicroUl considers a drawing is fully done when it starts a new one. The
end of GPU drawing must notify the Graphics Engine calling LLUI_DISPLAY_drawingDone() .

Antialiasing

Fonts

The antialiasing mode for the fonts concerns only the fonts with more than 1 bit per pixel (see Font Generator).

Background Color

For each pixel to draw, the antialiasing process blends the foreground color with a background color. This back-
ground color can be specified or not by the application:

« specified: The background color is fixed by the MicroEJ Application (GraphicsContext.setBackgroundColor()).

« not specified: The background color is the original color of the destination pixel (a “read pixel” operation is
performed for each pixel).

CLUT

The Display module allows to target display which uses a pixel indirection table (CLUT). This kind of display are
considered as generic but not standard (see Pixel Structure). It consists to store color indices in image memory
buffer instead of colors themselves.

Color Conversion

The driver must implement functions that convert MicroUl’s standard 32-bit ARGB colors (see LLU/_DISPLAY: Dis-
play) to display color representation. For each application ARGB8888 color, the display driver has to find the cor-
responding color in the table. The Graphics Engine will store the index of the color in the table instead of using the
color itself.

When an application color is not available in the display driver table (CLUT), the display driver can try to find the
closest color or return a default color. First solution is often quite difficult to write and can cost a lot of time at
runtime. That’s why the second solution is preferred. However, a consequence is that the application has only to
use a range of colors provided by the display driver.

Alpha Blending

MicroUl and the Graphics Engine use blending when drawing some texts or anti-aliased shapes. For each pixel to
draw, the display stack blends the current application foreground color with the targeted pixel current color or with
the current application background color (when enabled). This blending creates some intermediate colors which
are managed by the display driver.

4.13. Graphical User Interface 382

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html#setBackgroundColor-int-

MicroEJ Documentation, Revision 44d2784c

Most of time the intermediate colors do not match with the palette. The default color is so returned and
the rendering becomes wrong. To prevent this use case, the Graphics Engine offers a specific Low Level API
LLUI_DISPLAY_IMPL_prepareBlendingOfIndexedColors(void* foreground, void* background) .

This APl is only used when a blending is required and when the background color is enabled. The Graphics Engine
calls the API just before the blending and gives as parameter the pointers on the both ARGB colors. The display
driver should replace the ARGB colors by the CLUT indices. Then the Graphics Engine will only use between both
indices.

For instance, when the returned indices are 20 and 27, the display stack will use the indices 20 to 27, where all
indices between 20 and 27 target some intermediate colors between both the original ARGB colors.

This solution requires several conditions:
« Background color is enabled and it is an available color in the CLUT.

« Application can only use foreground colors provided by the CLUT. The platform designer should give to the
application developer the available list of colors the CLUT manages.

« The CLUT must provide a set of blending ranges the application can use. Each range can have its own size
(different number of colors between two colors). Each range is independent. For instance if the foreground
color RED (0xFFFF0000) can be blended with two background colors WHITE (0xFFFFFFFF) and BLACK (
0xFF000000), two ranges must be provided. Both the ranges have to contain the same index for the color
RED.

Application can only use blending ranges provided by the CLUT. Otherwise the display driver is not able to
find the range and the default color will be used to perform the blending.

Rendering of dynamic images (images decoded at runtime) may be wrong because the ARGB colors may be
out of CLUT range.

Image Pixel Conversion

Overview

The Graphics Engine is built for a dedicated display pixel format (see Pixel Structure). For this pixel format, the
Graphics Engine must be able to draw images with or without alpha blending and with or without transformation.
In addition, it must be able to read all image formats.

The MicroEJ application may not use all MicroUl image drawings options and may not use all images formats. It is
not possible to detect what the application needs, so no optimization can be performed at application compiletime.
However, for a given application, the platform can be built with a reduced set of pixel support.

All pixel format manipulations (read, write, copy) are using dedicated functions. It is possible to remove some
functions or to use generic functions. The advantage is to reduce the memory footprint. The inconvenient is that
some features are removed (the application should not use them) or some features are slower (generic functions
are slower than the dedicated functions).

Functions

There are five pixel conversion modes:

+ Draw an image without transformation and without global alpha blending: copy a pixel from a format to the
destination format (display format).

« Draw animage without transformation and with global alpha blending: copy a pixel with alpha blending from
a format to the destination format (display format).

4.13. Graphical User Interface 383

MicroEJ Documentation, Revision 44d2784c

+ Draw an image with transformation and with or without alpha blending: draw an ARGB8888 pixel in destina-
tion format (display format).

» Load a Resourcelmage with an output format: convert an ARGB8888 pixel to the output format.

+ Read a pixel from an image (Image.readPixel() or to draw an image with transformation or to convert an
image): read any pixel formats and convert it in ARGB8888.

Table 18: Pixel Conversion

Nb input formats | Nb output formats | Number of combinations
Draw image without global alpha | 22 1 22
Draw image with global alpha 22 1 22
Draw image with transformation | 2 1 2
Load a Resourcelmage 1 6 6
Read an image 22 1 22

There are 22x1 + 22x1 + 2x1 + 1x6 + 22x1 = 74 functions. Each function takes between 50 and 200 bytes
depending on its complexity and the C compiler.

Linker File

All pixel functions are listed in a platform linker file. It is possible to edit this file to remove some features or to share
some functions (using generic function).

How to get the file:
1. Build platform as usual.

2. Copy platform file [platform]/source/link/display_image_x.lscf in platform configuration project:
[platform configuration project]/dropins/link/. x is a number which characterizes the display
pixel format (see Pixel Structure). See next warning.

3. Perform some changes into the copied file (see after).

4. Rebuild the platform: the dropins file is copied in the platform instead of the original one.

Warning: When the display formatin [platform configuration project]/display/display.properties
changes, the linker file suffix changes too. Perform again all operations in new file with new suffix.

The linker file holds five tables, one for each use case, respectively IMAGE_UTILS_TABLE_COPY ,
IMAGE_UTILS_TABLE_COPY_WITH_ALPHA , IMAGE_UTILS_TABLE_DRAW , IMAGE_UTILS_TABLE_SET and
IMAGE_UTILS_TABLE_READ . For each table, a comment describes how to remove an option (when possible)
or how to replace an option by a generic function (if available).

Library ej.api.Drawing

This Foundation Library provides additional drawing APIs. This library is fully integrated in Display module. It
requires an implementation of its Low Level API: LLDW_PAINTER_impl.h. These functions are implemented in the
Abstraction Layer implementation module com.microej.clibrary.llimpl#microui. Like MicroUl painter’s natives, the
functions are redirected to dw_drawing.h . A default implementation of these functions is available in Software
Algorithms module (in weak). This allows the BSP to override one or several APIs.

4.13. Graphical User Interface 384

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/ResourceImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Image.html#readPixel-int-int-
https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui

MicroEJ Documentation, Revision 44d2784c

Dependencies

« MicroUl module (see MicroUl)

o LLUI_DISPLAY_impl.h implementation if standard or custom implementation is chosen (see Dependencies
and LLUI_DISPLAY: Display).

Installation

The Display module is a sub-part of the MicroUl library. When the MicroUl module is installed, the Display module
must be installed in order to be able to connect the physical display with the MicroEJ Platform. If not installed, the
stub module will be used.

In the platform configuration file, check Ul > Display to install the Display module. When checked, the prop-
ertiesfile display/display.properties isrequired during platform creation to configure the module. This con-
figuration step is used to choose the kind of implementation (see Dependencies).

The properties file must / can contain the following properties:

« bpp [mandatory]: Defines the number of bits per pixels the display device is using to render a pixel. Expected
value is one among these both list:

Standard formats:
- ARGB8888 : Alpha 8 bits; Red 8 bits; Green 8 bits; Blue 8 bits,
- RGB888 : Alpha 0 bit; Red 8 bits; Green 8 bits; Blue 8 bits (fully opaque),
- RGB565 : Alpha 0 bit; Red 5 bits; Green 6 bits; Blue 5 bits (fully opaque),
- ARGB1555 : Alpha 1 bit; Red 5 bits; Green 5 bits; Blue 5 bits (fully opaque or fully transparent),
- ARGB4444 : Alpha 4 bits; Red 4 bits; Green 4 bits; Blue 4 bits,
- C4:4bits to encode linear grayscale colors between 0xff000000 and Oxffffffff (fully opaque),
- (C2:2 bits to encode linear grayscale colors between 0xff000000 and Oxffffffff (fully opaque),
- C1:1bitto encode grayscale colors 0xff000000 and Oxffffffff (fully opaque).

Custom formats:

32 : up to 32 bits to encode Alpha, Red, Green and Blue (in any custom arrangement),

24 : up to 24 bits to encode Alpha, Red, Green and Blue (in any custom arrangement),

16 : up to 16 bits to encode Alpha, Red, Green and Blue (in any custom arrangement),

8 : up to 8 bits to encode Alpha, Red, Green and Blue (in any custom arrangement),

4: up to 4 bits to encode Alpha, Red, Green and Blue (in any custom arrangement),

2 : up to 2 bits to encode Alpha, Red, Green and Blue (in any custom arrangement),
- 1:1bitto encode Alpha, Red, Green or Blue.
All other values are forbidden (throw a generation error).

« bytelLayout [optional, default value is “line”]: Defines the pixels data order in a byte the display device is
using. A byte can contain several pixels when the number of bits-per-pixels (see ‘bpp’ property) is lower than
8. Otherwise this property is useless. Two modes are available: the next bit(s) on the same byte can target
the next pixel on the same line or on the same column. In first case, when the end of line is reached, the next
byte contains the first pixels of next line. In second case, when the end of column is reached, the next byte
contains the first pixels of next column. In both cases, a new line or a new column restarts with a new byte,
even if it remains some free bits in previous byte.

4.13. Graphical User Interface 385

MicroEJ Documentation, Revision 44d2784c

- line:the next bit(s) on current byte contains the next pixel on same line (x increment),

- column: the next bit(s) on current byte contains the next pixel on same column (y increment).

Note:
- Default value is ‘line’.
- All other modes are forbidden (throw a generation error).

- Whenthe number of bits-per-pixels (see ‘bpp’ property) is higher or equal than 8, this property is useless
and ignored.

« memorylLayout [optional, default value is “line”]: Defines the pixels data order in memory the display device
is using. This option concerns only the display with a bpp lower than 8 (see ‘bpp’ property). Two modes are
available: when the byte memory address is incremented, the next targeted group of pixels is the next group
on the same line or the next group on same column. In first case, when the end of line is reached, the next
group of pixels is the first group of next line. In second case, when the end of column is reached, the next
group of pixels is the first group of next column.

- line:the next memory address targets the next group of pixels on same line (x increment),

- column: the next memory address targets the next group of pixels on same column (y increment).

Note:
- Default valueis ‘line’.
- All other modes are forbidden (throw a generation error).

- When the number of bits-per-pixels (see ‘bpp’ property) is higher or equal than 8, this property is useless
and ignored.

« imageBuffer.memoryAlignment [optional, default value is “4”]: Defines the image memory alignment to
respect when creating an image. This notion is useful when images drawings are performed by a third party
hardware accelerator (GPU): it can require some constraints on the image to draw. This value is used by the
Graphics Engine when creating a dynamic image and by the image generator to encode a RAW image. See
MicroEJ Format: GPU and Custom MicroEJ Format. Allowed values are 1, 2, 4, 8, 16, 32, 64, 128 and 256.

« imageHeap.size [optional, default value is “not set”]: Defines the images heap size. Useful to fix a platform
heap size when building a firmware in command line. When using a MicroEJ launcher, the size set in this
launcher is priority to the platform value.

Use

The MicroUl Display APIs are available in the class ej.microui.display.Display.

4.13.8 Images
Overview

Principle

The Image Engine is designed to make the distinction between three kinds of MicroUl images:

4.13. Graphical User Interface 386

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html

MicroEJ Documentation, Revision 44d2784c

+ the images which can be used by the application without a loading step: class Image,
« the images which requires a loading step before being usable by the application: class Resourcelmage,
« the buffered images where the application can draw into: class Bufferedlmage.

The first kind of image requires the Image Engine to be able to use (get, read and draw) an image referenced by
its path without any loading step. The open step should be very fast: just have to find the image in the application
resources list and create an Image object which targets the resource. No RAM memory to store the image pixels is
required: the Image Engine directly uses the resource address (often in FLASH memory). And finally, closing step is
useless because there is nothing to free (except Image object itself, via the garbage collector).

The second kind of image requires the Image Engine to be able to use (load, read and draw) an image referenced
by its path with or without any loading step. When the image is understandable by the Image Engine without any
loading step, the image is considered like the first kind of image (fast open step, no RAM memory, useless closing
step). When a loading step is required (dynamic decoding, external resource loading, image format conversion),
the open state becomes longer and a buffer in RAM is required to store the image pixels. By consequence a closing
step is required to free the buffer when image becomes useless.

The third kind of image requires, by definition, a buffer to store the image pixels. Image Engine must be able to use
(create, read and draw) this kind of image. The open state consists in creating a buffer. By consequence a closing
step is required to free the buffer when the image becomes useless. Contrary to the other kinds of images, the
application will be able to draw into this image.

Functional Description

The Image Engine is composed of:

+ An “Image Generator” module, for converting images into a MicroEJ format (known by the Image Engine
Renderer) or into a platform binary format (cannot be used by the Image Engine Renderer), before runtime
(pre-generated images).

+ The “Image Loader” module, for loading, converting and closing the images.

+ Aset of “Image Decoder” modules, for converting standard image formats into a MicroEJ format (known by
the Image Renderer) at runtime. Each Image Decoder is an additional module of the main module “Image
Loader”.

The “Image Renderer” module, for reading and drawing the images in MicroEJ format.

4.13. Graphical User Interface 387

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Image.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/ResourceImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/BufferedImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Image.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Image.html

MicroEJ Documentation, Revision 44d2784c

Input Files
(png, xxx)

lpng | xxx

png | xxx Image Generator

png | xxx

png | xxx | mej | bin \png | xxx | mej | bin

External Flash Flash
(SDCard etc.) (internal ROM, NOR)

png | xxx | mej ﬁ\g | xxx | mej (to convert)

Image Loader
XXX Imej png
mej (byte @) XXX Decoder ME) Converter PNG Decoder mej
bin mej lmej mej bin
RAM

lmej

Image Renderer

lmej

BSP
’%ej \fj | bin
Software
Algorithms SRy

N/

Memory Buffer

« Colors:

blue: off-board elements (tools, files).

green: hardware elements (memory, processor).

orange: on-board Graphics Engine elements.

gray: BSP.

« Line labels:

4.13. Graphical User Interface 388

MicroEJ Documentation, Revision 44d2784c

- png: symbolizes all standard image input formats (PNG, JPG, etc.).
- xxx : symbolizes a non-standard input format.

- mej : symbolizes the MicroEJ output format (MicroEJ Format: Standard).

- bin:symbolizes a platform binary format (Binary Format).
Process overview:

1. The user specifies the pre-generated images to embed (see Image Generator) and / or the images to embed
as regular resources (see Encoded Image).

2. The files are embedded as resources with the MicroEJ Application. The files’ data are linked into the FLASH
memory.

3. When the MicroEJ Application creates a MicroUl Image object, the Image Loader loads the image, calling the
right sub Image Engine module (see Image Generator and Encoded Image) to decode the specified image.

4. When the MicroEJ Application draws this MicroUl Image on the display (or on buffered image), the decoded
image data is used, and no more decoding is required, so the decoding is done only once.

5. When the MicroUl Image is no longer needed, it must be closed explicitly by the application. The Image
Engine Core asks the right sub Image Engine module (see Image Generator and Encoded Image) to free the
image working area.

Image Format

The Image Engine makes the distinction between the input formats (how an image is encoded) and the output
formats (how the image is used by the platform and/or the Image Renderer).The Image Engine manages several
standard formats in input: PNG, JPEG, BMP, etc. In addition, an input format may be custom (platform dependant,
unsupported image format by default). It manages two formats in output: the MicroEJ format (known by the Image
Renderer) and the binary format.

Each Image Engine can manage one or several input formats. However the Image Renderer manages only the
MicroEJ format (MicroEJ Format: Standard, MicroEJ Format: Display and MicroEJ Format: GPU). The binary output
format (Binary Format)is fully platform dependant and can be used to encode some images which are not usable
by MicroUl standard API.

MicroEJ Format: Standard

Several MicroEJ format encodings are available. Some encodings may be directly managed by the display driver.
Refers to the platform specification to retrieve the list of better formats.

Advantages:
+ The pixels layout and bits format are standard, so it is easy to manipulate these images on the C-side.
+ Drawing an image is very fast when the display driver recognizes the format (with or without transparency).
+ Supports or not the alpha encoding: select the better format according to the image to encode.
Disadvantages:

« No compression: the image size in bytes is proportional to the number of pixels, the transparency, and the
number of bits-per-pixel.

« Slower than display format when the display driver does not recognize the format: a pixel conversion is
required at runtime.

4.13. Graphical User Interface 389

MicroEJ Documentation, Revision 44d2784c

This format requires a small header (around 20 bytes) to store the image size (width, height), format, flags
(is_transparent etc.), row stride etc. The required memory also depends on number of bits-per-pixels of MicroEJ
format:

required_memory = header + (image_width * image_height) * bpp / 8;

The pixels array is stored after the MicroEJ image file header. A padding between the header and the pixels array is
added to force to start the pixels array at a memory address aligned on number of bits-per-pixels.

I

Select one the following format to use a generic format among this list: ARGB8888, RGB888, ARGB4444 , ARGB1555
, RGB565, A8, A4, A2, A1, C4, C2, C1, AC44, AC22 and AC11. The following snippets describe the color
conversion for each format:

« ARGB8888: 32 bits format, 8 bits for transparency, 8 per color.

u32 convertARGB8888toRAWFormat (u32 c){
return c;

3

+ RGB888: 24 bits format, 8 per color. Image is always fully opaque.

u32 convertARGB8888toRAWFormat (u32 c){
return c & Oxffffff;
}

« ARGB4444: 16 bits format, 4 bits for transparency, 4 per color.

u32 convertARGB8888toRAWFormat (u32 c){
return @
| ((c & 0xf0000000) >> 16)
| ((c & 0x00f00000) >> 12)
| ((c & 0x0000f000) >> 8)
| ((c & 0x000000f0) >> 4)

’

3

« ARGBI1555: 16 bits format, 1 bit for transparency, 5 per color.

u32 convertARGB8888toRAWFormat (u32 c){
return 0
| (((c & Oxff000000) == Oxff00000Q) ? 0x8000 : 0)
| ((c & 0xf80000) >> 9)
| ((c & 0x00f800) >> 6)
| ((c & 0x0000f8) >> 3)

)

3

+ RGB565: 16 bits format, 5 or 6 per color. Image is always fully opaque.

u32 convertARGB8888toRAWFormat (u32 c){
return 0
| ((c & 0xf80000) >> 8)
| ((c & 0x00fce0) >> 5)
| ((c & 0x0000f8) >> 3)

(continues on next page)

4.13. Graphical User Interface 390

MicroEJ Documentation, Revision 44d2784c

(continued from previous page)

3

A8: 8 bits format, only transparency is encoded. The color to apply when drawing the image, is the current
GraphicsContext color.

u32 convertARGB8888toRAWFormat (u32 c){
return Oxff - (toGrayscale(c) & 0xff);
}

A4: 4 bits format, only transparency is encoded. The color to apply when drawing the image, is the current
GraphicsContext color.

u32 convertARGB8888toRAWFormat (u32 c){
return (Oxff - (toGrayscale(c) & 0Oxff)) / ox11;

3

A2: 2 bits format, only transparency is encoded. The color to apply when drawing the image, is the current
GraphicsContext color.

u32 convertARGB8888toRAWFormat (u32 c){
return (Oxff - (toGrayscale(c) & 0Oxff)) / 0x55;

3

Al: 1 bit format, only transparency is encoded. The color to apply when drawing the image, is the current
GraphicsContext color.

u32 convertARGB8888toRAWFormat (u32 c){
return (Oxff - (toGrayscale(c) & 0Oxff)) / oxff;

3

C4: 4 bits format with grayscale conversion. Image is always fully opaque.

u32 convertARGB8888toRAWFormat (u32 c){
return (toGrayscale(c) & 0xff) / 0x11;

}

C2: 2 bits format with grayscale conversion. Image is always fully opaque.

u32 convertARGB8888toRAWFormat (u32 c){
return (toGrayscale(c) & 0xff) / 0x55;
}

C1: 1 bit format with grayscale conversion. Image is always fully opaque.

u32 convertARGB8888toRAWFormat (u32 c){
return (toGrayscale(c) & Oxff) / Oxff;

3

AC44: 4 bits for transparency, 4 bits with grayscale conversion.

u32 convertARGB8888toRAWFormat (u32 c){
return 0
| ((color >> 24) & 0xf0)
| ((toGrayscale(color) & oxff) / ox11)

(continues on next page)

413

Graphical User Interface 391

MicroEJ Documentation, Revision 44d2784c

(continued from previous page)

3

« AC22: 2 bits for transparency, 2 bits with grayscale conversion.

u32 convertARGB8888toRAWFormat (u32 c){
return 0
| ((color >> 28) & 0xc0)
| ((toGrayscale(color) & oxff) / 0x55)

’

3

« AC11: 1 bit for transparency, 1 bit with grayscale conversion.

u32 convertARGB8888toRAWFormat (u32 c){
return @
| ((c & 0xff000000) == Oxff000R0d ? 0x2 : 0x0)
| ((toGrayscale(color) & Oxff) / Oxff)

’

3

The pixels order in MicroEJ file follows this rule:

pixel_offset = (pixel_Y * image_width + pixel_X) = bpp / 8;

MicroEJ Format: Display

The display can hold a pixel encoding which is not standard (see Pixel Structure). The MicroEJ format can be cus-
tomized to encode the pixelin same encoding than display. The number of bits-per-pixels and the pixel bits organi-
sation is asked during the MicroEJ format generation and when the drawImage algorithmsare running. Iftheimage
to encode contains some transparent pixels, the output file will embed the transparency according to the display’s
implementation capacity. When all pixels are fully opaque, no extra information will be stored in the output file in
order to free up some memory space.

Note: From Image Engine point of view, the format stays a MicroEJ format, readable by the Image Renderer.

Advantages:
« Encoding is identical to display encoding.

+ Drawing an image is often very fast (simple memory copy when the display pixel encoding does not hold the
opacity level).

Disadvantages:

« No compression: the image size in bytes is proportional to the number of pixels. The required memory is
similar to MicroEJ Format: Standard.

MicroEJ Format: GPU

The MicroEJ format may be customized to be platform’s GPU compatible. It can be extanded by one or several
restrictions on the pixels array:

« Its start address has to be aligned on a higher value than the number of bits-per-pixels.

4.13. Graphical User Interface 392

MicroEJ Documentation, Revision 44d2784c

+ Apadding has to be added after each line (row stride).

« The MicroEJ format can hold a platform dependant header, located between MicroEJ format header (start of
file) and pixels array. The MicroEJ format is designed to let the platform encodes and decodes this additional
header. For Image Engine software algorithms, this header is useless and never used.

Note: From Image Engine point of view, the format stays a MicroEJ format, readable by the Image Engine Renderer.

Advantages:
+ Encoding is recognized by the GPU.
+ Drawing an image is often very fast.
« Supports opacity encoding.
Disadvantages:

« No compression: the image size in bytes is proportional to the number of pixels. The required memory is
similar to MicroEJ Format: Standard when there is no custom header.

When MicroEJ format holds another header (called custom_header), the required memory depends is:

required_memory = header + custom_header + (image_width * image_height) * bpp / 8;

The row stride allows to add some padding at the end of each line in order to start next line at an address with a
specific memory alignment; it is often required by hardware accelerators (GPU). The row stride is by default a value
in relation with theimage width: row_stride_in_bytes = image_width * bpp / 8.ltcanbe customized atimage
buffer creation thanks to the Low Level API LLUT_DISPLAY_IMPL_getNewImageStrideInBytes. The required RAM
memory becomes:

required_memory = header + custom_header + row_stride * image_height;
Custom .

MicroEJ Format: RLE1

Thelmage Engine can display embedded images that are encoded into a compressed format which encodes several
consecutive pixels into one or more 16-bit words. This encoding only manages fully opaque and fully transparent
pixels.

« Several consecutive pixels have the same color (2 words).

- First 16-bit word specifies how many consecutive pixels have the same color (pixels colors converted in
RGB565 format, without opacity data).

- Second 16-bit word is the pixels’ color in RGB565 format.

« Several consecutive pixels have their own color (1+n words).
- First 16-bit word specifies how many consecutive pixels have their own color.
- Next 16-bit word is the next pixel color.

« Several consecutive pixels are transparent (1 word).

- 16-bit word specifies how many consecutive pixels are transparent.

4.13. Graphical User Interface 393

MicroEJ Documentation, Revision 44d2784c

- Notdesigned forimages with many different pixel colors: in such case, the output file size may be larger
than the original image file.

Advantages:

« Supports fully opaque and fully transparent encoding.

« Good compression when several consecutive pixels respect one of the three previous rules.
Disadvantages:

« Drawing an image is slightly slower than when using Display format.

The file format is quite similar to MicroEJ Format: Standard.

Binary Format

This format is not compatible with the Image Renderer and by MicroUl. It is can be used by MicroUl addon libraries
which provide their own images managements.

Advantages:

« Encoding is known by platform.

« Compression is inherent to the format itself.
Disadvantages:

« This format cannot be used to target a MicroUl Image (unsupported format).

Without Compression

An image can be embedded without any conversion / compression. This allows to embed the resource as it is, in
order to keep the source image characteristics (compression, bpp, etc.). This option produces the same result as
specifying an image as a resource in the MicroEJ launcher.

Advantages:

« Conserves the image characteristics.
Disadvantages:

+ Requires an image runtime decoder.

+ Requires some RAM in which to store the decoded image in MicroEJ format.

Image Generator

Principle

The Image Generator module is an off-board tool that generates image data that is ready to be displayed without
needing additional runtime memory. The two main advantages of this module are:

+ A pre-generated image is already encoded in the format known by the Image Renderer (MicroEJ format) or
by the platform (custom binary format). The time to create an image is very fast and does not require any
RAM (Image Loader is not used).

+ No extra support is needed (no runtime Image Decoder).

4.13. Graphical User Interface 394

MicroEJ Documentation, Revision 44d2784c

Functional Description

=

image
*.png

J |

raw ||| RAW images stored
image|l| - jn FLASH memory

image
*.Jpg

=
image
*.bmp

Fig. 41: Image Generator Principle

Process overview (see too Functional Description)

1. The user defines, in a text file, the images to load.
2. The Image Generator outputs a binary file for each image to convert.

3. The raw files are embedded as (hidden) resources within the MicroEJ Application. The binary files’ data are
linked into the FLASH memory.

4. When the MicroEJ Application creates a MicroUl Image object which targets a pre-generated image, the Image
Engine has only to create a link from the MicroUl image object to the data in the FLASH memory. Therefore,
the loading is very fast; only the image data from the FLASH memory is used: no copy of the image data is
sent to the RAM first.

5. When the MicroUl Image is no longer needed, it is garbage-collected by the platform, which just deletes the
useless link to the FLASH memory.

The image generator can run in two modes:

« Standalone mode: the image to convert (input files) are standard (PNG, JPEG, etc.), the generated binary
files are in MicroEJ format and do not depend on platform characteristics or restrictions (see MicroEJ Format:
Standard).

+ Extended mode: the image to convert (input files) may be custom, the generated binary files can be encoded
in customized MicroEJ format (can depend on several platform characteristics and restrictions, see MicroEJ
Format: Display and MicroEJ Format: GPU) or the generated files are encoded in another format than MicroEJ
format (binary format, see Binary Format).

Structure

The Image Generator module is constituted from several parts, the core part and services parts:

« “Core” part: it takes an images list file as entry point and generates a binary file (no specific format) for each
file. Toread afile, it redirects the reading to the available service loaders. To generate a binary file, it redirects
the encoding to the available service encoders.

4.13. Graphical User Interface 395

MicroEJ Documentation, Revision 44d2784c

« “Service API” part: it provides some APIs used by the core part to load input files and to encode binary files.
It also provides some APIs to customize the MicroEJ format.

« “Standard input format loader” part: this service loads standard image files (PNG, JPEG, etc.).

+ “MicroEJ format generator” part: this service encodes an image in MicroEJ format.

Standalone Mode

The standalone Image Generator embeds all parts described above. By consequence, once installed in a platform,
the standalone image generator does not need any extended module to generate MicroEJ files from standard im-
ages files.

Extended Mode

Toincrease the capabilities of Image Generator, the extension must be builtand added in the platform. As described
above this extension will be able to:

+ read more input image file formats,
« extand the MicroEJ format with platform characteristics,
+ encode images in a third-party binary format.

To do that the Image Generator provides some services to implement. This chapter explain how to create and
include this extension in the platform. Next chapters explain the aim of each service.

1. Createa std-javalib project. The module name must start with the prefix imageGenerator (forinstance
imageGeneratorMyPlatform).

2. Addthe dependency:

<dependency org="com.microej.pack.ui” name="ui-pack” rev="x.y.z">
<artifact name="imageGenerator" type="jar"/>
</dependency>

Where x.y.z isthe Ul pack version used to build the platform (minimum 13.0.0). The module.ivy should
look like:

<ivy-module version="2.0" xmlns:ea="http://www.easyant.org” xmlns:m="http://www.easyant.org/ivy/
—maven” xmlns:ej="https://developer.microej.com” ej:version="2.0.0">

<info organisation="com.microej.microui” module="imageGeneratorMyPlatform” status="integration
—" revision="1.0.0">
<ea:build organisation="com.is2t.easyant.buildtypes” module="build-std-javalib"” revision="2.
o+ />

</info>

<configurations defaultconfmapping="default->default;provided->provided”>

<conf name="default” visibility="public"” description="Runtime dependencies to other_
—artifacts"/>

<conf name="provided” visibility="public" description="Compile-time dependencies to APIs_
—provided by the platform”/>

<conf name="documentation” visibility="public"” description="Documentation related to the.
—artifact (javadoc, PDF)"/>

<conf name="source"” visibility="public” description="Source code"/>

<conf name="dist"” visibility="public"” description="Contains extra files like README.md, .

—licenses”/>
(continues on next page)

4.13. Graphical User Interface 396

MicroEJ Documentation, Revision 44d2784c

(continued from previous page)
<conf name="test"” visibility="private"” description="Dependencies for test execution. It is_
—not required for normal use of the application, and is only available for the test compilation.
—and execution phases."/>
</configurations>

<publications/>

<dependencies>
<dependency org="com.microej.pack.ui” name="ui-pack” rev="[UI Pack version]">
<artifact name="imageGenerator"” type="jar"/>
</dependency>
</dependencies>
</ivy-module>

Create the folder META-INF/services in source folder src/main/resources (this folder will be filled in
later).
When a service is added (see next chapters), build the easyant project.

Copy the generated jar: target~/artifacts/imageGeneratorMyPlatform.jar in the platform configura-
tion project folder: MyPlatform-configuration/dropins/tools/

Rebuild the platform.

Warning: The dropins folder must be updated (and platform built again) after any changes in the image gen-
erator extension project.

Service Image Loader

The standalone Image Generator is not able to load all images formats, for instance SVG format. The service loader
can be used to add this feature in order to generate an image file in MicroEJ format.

1.
2.

Open image generator extension project.

Create an implementation of interface com.microej.tool.ui.generator.
MicroUIRawImageGeneratorExtension.

Create the file META-INF/services/com.microej.tool.ui.generator.
MicroUIRawImageGeneratorExtension and open it.

Note down the name of created class, with its package and classname.

Rebuild the image generator extension, copy it in platform configuration project and rebuild the platform
(see above).

Note: The class com.microej.tool.ui.generator.BufferedImagelLoader already implements the interface
This implementation is used to load standard images. It can be sub-classed to add some behavior.

Custom MicroEJ Format

As mentionned above (MicroEJ Format: Display and MicroEJ Format: GPU), the MicroEJ format can be extanded by
notions specific to the platform (and often to the GPU the platform is using). The generated file stays a MicroEJ file
format, usable by the Image Renderer. Additionally, the file becomes compatible with the platform constraints.

4.13. Graphical User Interface 397

MicroEJ Documentation, Revision 44d2784c

—_

. Openimage generator extension project.

2. Create a subclass of com.microej.tool.ui.generator.BufferedImagelLoader (to be able to load
standard images) or create an implementation of interface com.microej.tool.ui.generator.
MicroUIRawImageGeneratorExtension (to load customimages).

3. Override method convertARGBColorToDisplayColor(int) if the platform’s display pixel encoding is not
standard (see Pixel Structure).

N

. Override method getStride(int) if a padding must be added after each line.

Ul

. Override method getOptionalHeader() if an additional header must be added between the MicroEJ file
header and pixels array. The header size is also used to align image memory address (custom header is
aligned on its size).

6. Create the file META-INF/services/com.microej.tool.ui.generator.
MicroUIRawImageGeneratorExtension and openit.

7. Note down the name of created class, with its package and classname.

8. Rebuild the image generator extension, copy it in platform configuration project and rebuild the platform
(see above).

If the only constraint is the pixels array aligment, the Image Generator extension is not useful:
1. Open platform configuration file display/display.properties.
2. Addthe property imageBuffer.memoryAlignment .
3. Build again the platform.

This alignment will be used by the Image Generator and also by the Image Loader.

Platform Binary Format

As mentionned above (Binary Format), the Image Generator is able to generate a binary file compatible with plat-
form (and not compatible with Image Renderer). This is very useful when a platform library offers the possibility
to use other kinds of images than MicroUl library. The binary file can be encoded according to the options the user
gives in the images list file.

1. Open image generator extension project.

2. Create an implementation of the interface com.microej.tool.ui.generator.ImageConverter.

3. Create the file META-INF/services/com.microej.tool.ui.generator.ImageConverter and openit.
4. Note down the name of created class, with its package and classname.
5

. Rebuild the image generator extension, copy it in platform configuration project and rebuild the platform
(see above).

Configuration File

The Image Generator uses a configuration file (also called the “list file”) for describing images that need to be pro-
cessed. The list file is a text file in which each line describes an image to convert. The image is described as a
resource path, and should be available from the application classpath.

Note: The list file must be specified in the MicroEJ Application launcher (see Application Options). However, all the
filesin the application classpath with suffix .images.list are automatically parsed by the Image Generator tool.

4.13. Graphical User Interface 398

MicroEJ Documentation, Revision 44d2784c

Each line can add optional parameters (separated by a ‘:’) which define and/or describe the output file format (raw
format). When no option is specified, the image is not converted and embedded as well.

Note: See Configuration File to understand the list file grammar.

+ MicroEJ standard output format: to encode the image in a standard MicroEJ format, specify the MicroEJ
format:
Listing 3: Standard Output Format Examples

image1:ARGB8888
image2:RGB565
image3:A4

+ MicroEJ “Display” output format: to encode the image in the same format as the display (generic display or
custom display, see Pixel Structure), specify display as output format:

Listing 4: Display Output Format Example

imagel:display

MicroEJ “GPU” output format: this format declaration is identical to standard format. It is a format that is
also supported by the GPU.

Listing 5: GPU Output Format Examples

image1:ARGB8888
image2:RGB565
image3:A4

MicroEJ RLET output format: to encode the image in RLE1 format, specify RLE1 as output format:

Listing 6: RLE1 Output Format Example

imagel:RLE1
« Without Compression: to keep original file, do not specify any format:

Listing 7: Unchanged Image Example

image1l

+ Binary format: to encode the image in a format only known by the platform, refer to the platform documen-
tation to know which format are available.

Listing 8: Binary Output Format Example

image1 : XXX

Linker File

In addition to images binary files, the Image Generator module generates a linker file (x.1scf). This linker file
declares an image section called .rodata.images. This section follows the next rules:

« Thefiles are always listed in same order between two MicroEJ application builds.

4.13. Graphical User Interface 399

MicroEJ Documentation, Revision 44d2784c

« The section is aligned on the value specified by the Display module property imageBuffer.
memoryAlignment (32 bits by default).

+ Eachfileis aligned on section alignment value.

External Resources

Thelmage Generator manages two configuration files when the External Resources Loader is enabled. The first con-
figuration file lists the images which will be stored as internal resources with the MicroEJ Application. The second
file lists the images the Image Generator must convert and store in the External Resource Loader output directory.
It is the BSP’s responsibility to load the converted images into an external memory.

Dependencies

+ Image Renderer module (see Image Renderer).

+ Display module (see Display): This module gives the characteristics of the graphical display that are useful to
configure the Image Generator.

Installation

The Image Generator is an additional module for the MicroUl library. When the MicroUl module is installed, also
install this module in order to be able to target pre-generated images.

In the platform configuration file, check Ul > Image Generator to install the Image Generator module. When

checked, the properties file imageGenerator/imageGenerator.properties isrequired to specify the Image Gen-
erator extension project. When no extension is required (standalone mode only), this property is useless.

Use

The MicroUl Image APIs are available in the class ej.microui.display.Image ant its subclasses. There are no specific
APIs that use a pre-generated image. When an image has been pre-processed, the MicroUl Image APIs getImage
and loadImage will get/load the images.

Refer to the chapter Application Options (Libraries > MicroUl > Image)for more information about specifying
the image configuration file.

Image Loader

Principle

The Image Loader module is an on-board engine that
« retrieves image data that is ready to be displayed without needing additional runtime memory,

« retrieves image data that is required to be converted into the format known by the Image Renderer (MicroEJ
format),

retrieves image in external memories (external memory loader),
« converts images in MicroEJ format,

« creates a runtime buffer to manage MicroUl Bufferedimage,

4.13. Graphical User Interface 400

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Image.html

MicroEJ Documentation, Revision 44d2784c

« manages dynamic images life cycle.

Note: The Image Loader is managing images to be compatible with Image Renderer. It does manage image in
custom format (see Binary Format)

Functional Description

1. The application is using one of three ways to create a MicroUl Image object.

2. The Image Loader creates the image according the MicroUl API, image location, image input format and im-
age output format to be compatible with Image Renderer.

3. When the application closes the image, the Image Loader frees the RAM memory.

Memory

There are several ways to create a MicroUl Image. Except few specific cases, the Image Loader requires some RAM
memory to store the image content in MicroEJ format. This format requires a small header as explained here:
MicroEJ Format: Standard. 1t can be GPU compatible as explained here: MicroEJ Format: GPU.

The heap size is application dependant. In MicroEJ application launcher, set its size in ' Libraries > MicroUl >
Images heap size (in bytes) . It will declare a section whose nameis .bss.microui.display.imagesHeap.

By default, the Image Loader uses an internal best fit allocator to allocate the image buffers (internal Graphics
Engine’s allocator). Some specific Low Level API (LLAPI) are available to override this defaultimplementation. These
LLAPIs may be helpful to control the buffers allocation, retrieve the remaining space, etc. When not implemented
by the BSP, the default internal Graphics Engine’s allocator is used.

Bufferedimage

MicroUl application is able to create an image where it is allowed to draw into: the MicroUl BufferedImage . The
image format is the same than the display format; in other words, its number of bits-per-pixel and its pixel bits
organization are the same. The display pixel format can be standard or custom (see Pixel Structure). To create this
kind ofimage, the Image Loader hasjust to create a bufferin RAM whose size depends on the image size (see MicroEJ
Format: Display).

External Resource
Principle

An image is retrieved by its path (except for Bufferedimage). The path describes a location in the application class-
path. The resource may be generated at the same time as the application (internal resource) or be external (external
resource). The Image Loader can load some images located outside the CPU addresses’ space range. It uses the
External Resource Loader.

When an image is located in such memory, the Image Loader copies it into RAM (into the CPU addresses’ space
range). Then it considers the image as an internal resource: it can continue to load the image (see following chap-
ters). The RAM section used to load the external image is automatically freed when the Image Loader does not need
it again.

4.13. Graphical User Interface 401

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/BufferedImage.html

MicroEJ Documentation, Revision 44d2784c

Theimage may be located in external memory but be available in CPU addresses’ space ranges (byte-addressable).
In this case, the Image Loader considers the image as internal and does not need to copy its content in RAM.

Configuration File

Like internal resources, the Image Generator uses a configuration file (also called the “list file”) for describing im-
ages that need to be processed. The list file must be specified in the MicroEJ Application launcher (see Application
Options). However, all the files in the application classpath with the suffix .imagesext.list are automatically
parsed by the Image Generator tool.

Process

This chapter describes the steps to open an external resource from the application:

1. Add the image in the application project (usually in the source folder src/main/resources and in the pack-
age images).

2. Create / open the configuration file (usually application.imagesext.list).

3. Add the relative path of the image: see Images.

>

Launch the application: the Image Generator converts the image in RAW format in the external resources
folder ([application_output_folder]/externalResources).

Deploy the external resources in the external memory (SDCard, flash, etc.).

(optional) Update the implementation of the External Resources Loader.

Build and link the application with the BSP.

The application loads the external resource using Image.loadimage(String).

© ® N o o«

The image loader looks for the image and copies it in the images heap (no copy if the external memory is
byte-addressable).

10. (optional) The image may be decoded (for instance: PNG), and the source image is removed from the images
heap.

11. The external resource is immediately closed: the image’s bytes have been copied in the images heap, or the
image’s bytes are always available (byte-addressable memory).

12. The application can use the image.

13. The application closes the image: the image is removed from the image heap.

Note: The simulator (Front Panel) does not manage the external resources. All images listed in . imagesext.list
files are generated in the external resources folder, and this folder is added to the simulator’s classpath.

Image in MicroEJ Format

An image may be pre-processed (/mage Generator) and so already in the format compatible with Image Renderer:
MicroEJ format.

« When application is loading an image which is in such format and without specifiying another output format,
the Image Loader has just to make a link between the MicroUl Image object and the resource location. No
more runtime decoder or converter is required, and so no more RAM memory.

4.13. Graphical User Interface 402

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/ResourceImage.html#loadImage-java.lang.String-

MicroEJ Documentation, Revision 44d2784c

« When application specifies another output format than MicroEJ format encoded in the image, Image Loader
has to allocate a buffer in RAM. It will convert the image in the expected MicroEJ format.

» When application is loading an image in MicroEJ format located in external memory, the Image Loader has
to copy the image into RAM memory to be usable by Image Renderer.

Encoded Image

An image can be encoded (PNG, JPEG, etc.). In this case Image Loader asks to its Image Decoders module if a
decoderis able to decode theimage. The sourceimageis not copied in RAM (expect forimages located in an external
memory). Image Decoder allocates the decoded image buffer in RAM first and then inflates the image. The image is
encoded in MicroEJ format specified by the application, when specified. When not specified, the image in encoded
in the default MicroEJ format specified by the Image Decoder itself.

The Ul extension provides two internal Image Decoders modules:

« PNG Decoder: a full PNG decoder that implements the PNG format (https://www.w3.org/Graphics/PNG).
Regular, interlaced, indexed (palette) compressions are handled.

« BMP Monochrome Decoder: .bmp format files that embed only 1 bit per pixel can be decoded by this decoder.

Some additional decoders can be added. Implement the function LLUI_DISPLAY_IMPL_decodeImage to add a
new decoder. The implementation must respect the following rules:

« Fills the MICROUI_Image structure with the image characteristics: width, height and format.

Note: The output image format might be different than the expected format (given as argument). In this
way, the Display module will perform a conversion after the decoding step. During this conversion, an out of
memory error can occur because the final RAW image cannot be allocated.

+ Allocates the RAW image data calling the function LLUI_DISPLAY_allocateImageBuffer . Thisfunction will
allocates the RAW image data space in the display working buffer according the RAW image format and size.

+ Decodes the image in the allocated buffer.

+ Waiting the end of decoding step before returning.

Dependencies

+ Image Renderer module (see Image Renderer)

Installation
The Image Decoders modules are some additional modules to the Display module. The decoders belong to distinct
modules, and either or several may be installed.

In the platform configuration file, check Ul > Image PNG Decoder to install the runtime PNG decoder. Check

Ul > Image BMP Monochrome Decoder to install the runtime BMP monochrom decoder.

4.13. Graphical User Interface 403

MicroEJ Documentation, Revision 44d2784c

Use

The MicroUl Image APIs are available in the class ej.microui.display.Image . There is no specific APl that uses
a runtime image. When an image has not been pre-processed (see /mage Generator), the MicroUl Image APIs
createImage* will load thisimage.

Image Renderer

Principle

The Image Renderer is an on-board engine that reads and draws the image encoded in MicroEJ format (see Image
Format). It calls Low LevelLow Level APIs to draw and transform the images (rotation, scaling, deformation, etc.).
It also includes software algorithms to perform the rendering.

Functional Description

The engine redirects all MicroUl images drawings to a set of Low Level API. All Low Level API are implemented by
weak functions which call software algorithms. The BSP has the possibility to override this default behavior for each
Low Level APl independently. Furthermore, the BSP can override a Low Level API for a specific MicroEJ format (for
instance ARGB8888) and call the software algorithms for all other formats.

4.13. Graphical User Interface 404

MicroEJ Documentation, Revision 44d2784c

Painter API

l

LLUI_PAINTER_impl.h

l

LLUI_PAINTER_impl.c

l

ui_drawing.h

weak ui_drawing.c

P~

GPU Software Algorithms

~

hardware

Dependencies

« MicroUl module (see MicroUl),

+ Display module (see Display).

4.13. Graphical User Interface

405

MicroEJ Documentation, Revision 44d2784c

Installation

Image Renderer module is part of the MicroUl module and Display module. Install them in order to be able to use
some images.

Use

The MicroUl image APIs are available in the class ej.microui.display.Image.

4.13.9 Fonts

Overview

Principle

The Font Engine is composed of:

« A“Font Designer” module: a graphical tool which runs within the MicroEJ IDE used to build and edit MicroUl
fonts; it stores fonts in a platform-independent format. See Font Designer.

« A “Font Generator” module, for converting fonts from the platform-independent format into a platform-
dependent format.

« The “Font Renderer” module which decodes and renders at application runtime the platform-dependent
fonts files generated by the “Font Generator”.

The three modules are complementary: a MicroUl font must be created and edited with the Font Designer before
beingintegrated as a resource by the Font Generator. Finally the Font Renderer uses the generated fonts at runtime.

Functional Description

=3

font
* ttf

J

font -
*eff

font — —_ RAW
*.ejf fonts

/ RAW fonts stored
font in FLASH memory

-PNg

i

Fig. 42: Font Generation

Process overview:

1. User uses the Font Designer module to create a new font, and imports characters from system fonts (x. ttf
files) and / or userimages (*.png, *.jpg, *.bmp, etc.).

2. Font Designer module saves the font as a MicroEJ Font (x.ejf file).

4.13. Graphical User Interface 406

MicroEJ Documentation, Revision 44d2784c

3. The user defines, in a text file, the fonts to load.
4. The Font Generator outputs a raw file for each font to convert (the raw format is display device-dependent).

5. The raw files are embedded as (hidden) resources within the MicroEJ Application. The raw files’ data are
linked into the FLASH memory.

6. When the MicroEJ Application creates a MicroUl Font object which targets a pre-generated image, the Font
Engine Core only has to link from the MicroUl Font object to the data in the FLASH memory. Therefore, the
loading is very fast; only the font data from the FLASH memory is used: no copy of the font data is sent to
RAM memory first.

Font Characteristics

Font Format

The Font Engine provides fonts that conform to the Unicode Standard. The .ejf files hold font properties:

« Identifiers: Fonts hold at least one identifier that can be one of the predefined Unicode scripts (see official
Unicode website) or a user-specified identifier. The intention is that an identifier indicates that the font con-
tains a specific set of character codes, but this is not enforced.

+ Fontheight and width, in pixels. A font has a fixed height. This height includes the white pixels at the top and
bottom of each character, simulating line spacing in paragraphs. A monospace font is a font where all char-
acters have the same width; for example, a ‘!’ representation has the same width as a ‘w’. In a proportional
font, ‘w’ will be wider than a ‘. No width is specified for a proportional font.

hei ght

Fig. 43: Font Height

+ Baseline, in pixels. All characters have the same baseline, which is an imaginary line on top of which the
characters seem to stand. Characters can be partly under the line, for example ‘g’ or }. The number of pixels
specified is the number of pixels above the baseline.

Fig. 44: Font baseline

« Space character size, in pixels. For proportional fonts, the Space character (0x20) is a specific character
because it has no filled pixels, and so its width must be specified. For monospace, the space size is equal to
the font width (and hence the same as all other characters).

« Styles: Afont holds either a combination of these styles: BOLD, ITALIC, or is said to be PLAIN.

+ When the selected font does not have a graphical representation of the required character, the first character
in font is drawn instead.

Multiple filters may apply at the same time, combining their transformations on the displayed characters.

4.13. Graphical User Interface 407

MicroEJ Documentation, Revision 44d2784c

Pixel Transparency

The Font Renderer renders the font according the the value stored for each pixel. If the value is 0, the pixel is not
rendered. If the value is the maximum value (for example the value 3 for 2 bits-per-pixel), the pixel is rendered using
the current foreground color, completely overwriting the current value of the destination pixel. For other values,
the pixel is rendered by blending the selected foreground color with the current color of the destination.

If n is the number of bits-per-pixel, then the maximum value of a pixel (pmax) is 2*n 1. The value of each color
component of the final pixel is equal to:

foreground x pizelValue/pmaz + background x (pmax — pizelValue) /pmax

Language
Supported Languages

The Font Renderer manages the Unicode basic multilingual languages, whose characters are encoded on 16-bit, i.e.
Unicodes from 0x0000 to OxFFFF. It allows to render left-to-right or right-to-left writing systems: Latin (English, etc.),
Arabic, Chinese, etc. are some supported languages. Note that the rendering is always performed left-to-right, even
if the string are written right-to-left. There is no support for top-to-bottom writing systems. Some languages require
diacritics and contextual letters; the Font Renderer manages simple rules in order to combine several characters.

Arabic Support

The Font Renderer manages the ARABIC font specificities: the diacritics and contextual letters.
To render an Arabic text, the Font Renderer requires several points:

+ To determinate if a character has to overlap the previous character, the Font Renderer uses a specific range
of ARABIC characters: from 0xfe70 to 0xfefc. All other characters (ARABIC or not) outside this range are
considered classic and no overlap is performed. Note that several ARABIC characters are available outside
this range, but the same characters (same representation) are available inside this range.

+ The application strings must use the UTF-8 encoding. Furthermore, in order to force the use of char-
acters in the range 0xfe70 to 0xfefc , the string must be filled with the following syntax: °
\ufee2\ufedc\ufe91\u0020\ufede\ufed2\ufea3d\ufeae\ufee3’;where \uxxxx isthe UTF-8 characteren-
coding.

« The application string and its rendering are always performed from left to right. However the string contents
are managed by the application itself, and so can be filled from right to left. To write the text:

3
pdl e
the string characters must be: ‘ \ufee2\ufedc\ufe91\u0020\ufe8e\ufe92\ufea3\ufeae\ufee3’. The Font

Renderer will first render the character ¢ \ufee2’, then ‘ \ufedc ; and so on.

« Each character in the font (in the ejf file) must have a rendering compatible with the character position.
The character will be rendered by the Font Renderer as-is. No support is performed by the Font Renderer to
obtain a linear text.

Font Generator

4.13. Graphical User Interface 408

MicroEJ Documentation, Revision 44d2784c

Principle

The Font Generator module is an off-board tool that generates fonts ready to be displayed without the need for
additional runtime memory. It outputs a raw file for each converted font.

Functional Description

font > > RAW
*.ejf fonts

RAW fonts stored
in FLASH memory

Fig. 45: Font Generator Principle

Process overview:
1. The user defines, in a text file, the fonts to load.
2. The Font Generator outputs a raw file for each font to convert.

3. Theraw files are embedded as (hidden) resources within the MicroEJ Application. The raw file’s data is linked
into the FLASH memory.

4. When the MicroEJ Application draws text on the display (or on an image), the font data comes directly from
the FLASH memory (the font data is not copied to the RAM memory first).

Pixel Transparency

As mentioned above, each pixel of each characterinan .ejf file has one of 256 different gray-scale values. However
RAW files can have1, 2, 4 or 8 bits-per-pixel (respectively 2, 4,16 or 256 gray-scale values). The required pixel depthiis
defined in the configuration file (see next chapter). The Font Generator compresses the input pixels to the required
depth.

Thefollowing tables illustrates the conversion “grayscale to transparency level”. The grayscale value ‘0x00’ is black
whereas value ‘Oxff’ is white. The transparency level ‘0x0’ is fully transparent whereas level ‘0x1’ (bpp ==1), ‘0x3’
(bpp ==2) or ‘Oxf’ (bpp == 4) is fully opaque.

Table 19: Font 1-BPP RAW Conversion
Grayscale Ranges | Transparency Levels
0x00 to Ox7f 0x1
0x80 to Oxff 0x0

Table 20: Font 2-BPP RAW Conversion

Grayscale Ranges | Transparency Levels
0x00 to Ox1f 0x3
0x20 to Ox7f 0x2
0x80 to Oxdf 0x1
0xe0 to Oxff 0x0

4.13. Graphical User Interface 409

MicroEJ Documentation, Revision 44d2784c

Table 21: Font 4-BPP RAW Conversion

Grayscale Ranges | Transparency Levels
0x00 to 0x07 Oxf
0x08 to 0x18 Oxe
0x19 to 0x29 oxd
Ox2a to 0x3a Oxc
0x3b to 0x4b Oxb
Ox4c to Ox5¢ Oxa
0x5d to Ox6d 0x9
Ox6e to Ox7e 0x8
0x7f to Ox8f ox7
0x90 to Oxa0 0x6
0xal to Oxb1 0x5
0xb2 to Oxc2 0x4
0xc3 to 0xd3 0x3
0xd4 to Oxe4 0x2
0xe5 to 0xf5 0x1
0xf6 to Oxff 0x0

For 8-BPP RAW font, a transparency level is equal to 255 - grayscale value.

Configuration File

The Font Generator uses a configuration file (called the “list file”) for describing fonts that must be processed. The
list file is a basic text file where each line describes a font to convert. The font file is described as a resource path,
and should be available from the application classpath.

Note: The list file must be specified in the MicroEJ Application launcher (see Application Options). However, all
files in application classpath with suffix .fonts.list are automatically parsed by the Font Generator tool.

Each line can have optional parameters (separated by a :’) which define some ranges of characters to embed in the
final raw file, and the required pixel depth. By default, all characters available in the input font file are embedded,
and the pixel depthis 1 (i.e 1 bit-per-pixel).

Note: See Configuration File to understand the list file grammar.

Selecting only a specific set of characters to embed reduces the memory footprint. There are two ways to specify
a character range: the custom range and the known range. Several ranges can be specified, separated by “;”.

Below is an example of a list file for the Font Generator:

Listing 9: Fonts Configuration File Example

myfont
myfontl:latin
myfont2:1latin:8
myfont3::4

4.13. Graphical User Interface 410

MicroEJ Documentation, Revision 44d2784c

External Resources

The Font Generator manages two configuration files when the External Resources Loader is enabled. The first con-
figuration file lists the fonts which will be stored as internal resources with the MicroEJ Application. The second file
lists the fonts the Font Generator must convert and store in the External Resource Loader output directory. It is the
BSP’s responsibility to load the converted fonts into an external memory.

Dependencies

« Font Renderer module (see Font Renderer)

Installation

The Font Generator module is an additional tool for MicroUl library. When the MicroUl module is installed, install
this module in order to be able to embed some additional fonts with the MicroEJ Application.

If the module is not installed, the platform user will not be able to embed a new font with his/her MicroEJ Appli-
cation. He/she will be only able to use the system fonts specified during the MicroUl initialization step (see Static
Initialization).

In the platform configuration file, check Ul > Font Generator to install the Font Generator module.

Use
In order to be able to embed ready-to-be-displayed fonts, you must activate the fonts conversion feature and spec-
ify the fonts configuration file.

Refer to the chapter Application Options (Libraries > MicroUl > Font) for more information about specifying
the fonts configuration file.

Font Renderer

Principle

The Font Renderer is included in the MicroUl module (see MicroUl) for the application side; and is included in the
Display module (see Display) for the C side.

Functional Description

The Graphics Engine redirects all MicroUl font drawings to the internal software algorithms. There is no indirection
to a set of Low Level API.

4.13. Graphical User Interface 41

MicroEJ Documentation, Revision 44d2784c

Painter API

Graphics Engine

Software Algorithms

hardware

External Resources
Memory Management

The Font Renderer is able to load some fonts located outside the CPU addresses’ space range. It uses the External
Resource Loader.

When afontis located in such memory, the Font Renderer copies a very short part of the resource (the font file) into
a RAM memory (into CPU addresses space range): the font header. This header stays located in RAM until MicroEJ
Application is using the font. As soon as the MicroEJ Application uses another external font, new font replaces the
old one. Then, on MicroEJ Application demand, the Font Renderer loads some extra information from the fontinto
the RAM memory (the font meta data, the font pixels, etc.). This extra information is automatically unloaded from
RAM when the Font Renderer no longer needs them.

This extra information is stored into a RAM section called .bss.microui.display.externalFontsHeap. Itssizeis
automatically calculated according to the external fonts used by the firmware. However it is possible to change this
value by setting the MicroEJ application property ej.microui.memory.externalfontsheap.size. Thisoption is
very useful when building a kernel: the kernel may anticipate the section size required by the features.

Warning: When this size is smaller than the size required by an external font, some characters may be not
drawn.

4.13. Graphical User Interface 412

MicroEJ Documentation, Revision 44d2784c

Configuration File

Like internal resources, the Font Generator uses a configuration file (also called the “list file”) for describing fonts
that need to be processed. The list file must be specified in the MicroEJ Application launcher (see Application Op-
tions). However, all the files in the application classpath with the suffix . fontsext.list are automatically parsed
by the Font Generator tool.

Process

This chapter describes the steps to open an external resource from the application:

1. Add the font in the application project (most of the time in the source folder src/main/resources andin
the package fonts).

2. Create / open the configuration file (usually application.fontsext.list).
3. Add the relative path of the font: see Fonts.

4, Launch the application: the Font Generator converts the font in RAW format in the external resources folder
(Lapplication_output_folder]/externalResources).

. Deploy the external resources in the external memory (SDCard, flash, etc.).

. (optional) Update the implementation of the External Resources Loader.

5

6

7. Build and link the application with the BSP.
8. The application loads the external resource using Font.getFont(String).

9. The font loader looks for the font and only reads the font header.

0. (optional) The external resource is closed if the external resource is inside the CPU addresses’ space range.
11. The application can use the font.

12. The external resource is never closed: the font’s bytes are copied in RAM on demand (drawString, etc.).

Note: The simulator (Front Panel) does not manage the external resources. All fonts listed in . fontsext.list
files are generated in the external resources folder, and this folder is added to the simulator’s classpath.

Backward Compatibility

As explained here, the notion of Dynamic styles and the style UNDERLINED are not supported anymore by MicroUl
3. However, an external font may have been generated with an older version of the Font Generator; consequently,
the generated file can hold the Dynamic style. The Font Renderer can load these old versions of fonts. However,
there are some runtime limitations:

« The Dynamic styles are ignored. The font is drawn without any dynamic algorithm.

« The font style (the style returned by Font.isBold() and Font.isItalic())isthe Dynamic style. For
instance, when a font holds the style bold as dynamic style and the style italic as built-in style, the font is
considered as bold + italic; even if the style bold is not rendered.

4.13. Graphical User Interface 413

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Font.html#getFont-java.lang.String-

MicroEJ Documentation, Revision 44d2784c

Dependencies

« MicroUl module (see MicroUl),

« Display module (see Display).

Installation

The Font Renderer is part of the MicroUl module and Display module. You must install them in order to be able to
use some fonts.

Use

The MicroUl font APIs are available in the class ej.microui.display.Font.

4.13.10 Simulation
Principle

The graphical user interface uses the Front Panel mock (see Front Panel Mock) and some extensions (widgets) to
simulate the user interactions. It is the equivalent of the three embedded modules (Display, Input and LED) of the
MicroEJ Platform (see MicroUl).

The Front Panel enhances the development environment by allowing User Interface applications to be designed
and tested on the computer rather than on the target device (which may not yet be built). The mock interacts with
the user’s computer in two ways:

« output: LEDs, graphical displays

« input: buttons, joystick, touch, haptic sensors

Note: This chapter completes the notions described in Front Panel Mock chapter.

Module Dependencies

The Front Panel project is a regular MicroEJ Module project. Its module.ivy file should look like this example:

<ivy-module version="2.0" xmlns:ea="http://www.easyant.org"” xmlns:ej="https://developer.microej.com”_
—ej:version="2.0.0">
<info organisation="com.mycompany"” module="examplePanel” status="integration” revision="1.0.0"/>

<configurations defaultconfmapping="default->default;provided->provided">
<conf name="default” visibility="public” description="Runtime dependencies to other artifacts"/>
<conf name="provided” visibility="public" description="Compile-time dependencies to APIs provided.
—by the platform”/>
</configurations>

<dependencies>
<dependency org="ej.tool.frontpanel” name="widget” rev="1.0.0"/>
</dependencies>
</ivy-module>

4.13. Graphical User Interface 414

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Font.html

MicroEJ Documentation, Revision 44d2784c

It depends at least on the Front Panel framework. This framework contains the Front Panel core classes. The de-
pendencies can be reduced to:

<dependencies>
<dependency org="ej.tool.frontpanel” name="framework” rev="1.1.0"/>
</dependencies>

To be compatible with Display module’s Graphics Engine, the project must depend on an extension of Front Panel
framework. This extension provides some interfaces and classes the Front Panelis using to target simulated display
and input devices. The extension does not provide any widgets. Itis the equivalent of the embedded Low Level API.
It fetches by transitivity the Front Panel framework, so the Front Panel framework dependency does not need to
be specified explicitly:

<dependencies>
<dependency org="com.microej.pack.ui” name="ui-pack” rev="[UI Pack version]">
<artifact name="frontpanel” type="jar"/>
</dependency>
</dependencies>

Warning: This extension is built for each Ul pack version. By consequence, a Front Panel project is done for
a platform built with the same Ul pack. When the Ul pack mismatch, some errors may occur during the Front
Panel project export step, during the platform build, and/or during the application runtime. The current pack
version is 13.1.0.

The Front Panel extension does not provide any widgets. Some compatible widgets are available in a third library.
The life cycle of this library is different than the Ul pack’s one. New widgets can be added to simulate new kind
of displays, input devices, etc. This extension fetches by transitivity the Front Panel extension, so this extension
dependency does not need to be specified explicitly:

<dependencies>
<dependency org="ej.tool.frontpanel” name="widget"” rev="2.0.0"/>
</dependencies>

Warning: The minimal version 2.0.0 is required to be compatible with Ul pack 13.0.0 and higher. By default,
when creating a new Front Panel project, the widget dependency versionis 1.0.0.

MicroUl Implementation

As described here, the Front Panel uses an equivalent of embedded side’s header files that implement MicroUl
native methods.

4.13. Graphical User Interface 415

MicroEJ Documentation, Revision 44d2784c

MICROUI-3.0 DRAWING-1.0

Graphics Engine Software Algorithms LLUIPainter Event Engine LLUILed_impl.h LLDWPainter
LLUIDisplay UlDrawingDefault UlDrawing LLUlInput DWDrawing

LLUIDisplaylmpl

ej.tool.frontpanel#widget Front panel Platform project

Widgets (Display, LED etc.) .fp file and resources Widgets

O Foundation library
. Java file (class & interface)

. Archive file (.jar)

This set of classes and interfaces is available in the module com.microej.pack.ui#ui-pack . It offers the same
capacity to override some built-in drawing algorithms (internal Graphics Engine drawing algorithms), to add some
custom drawing algorithms, to manipulate the MicroUl concepts (GraphicsContext, Image, etc.) in the Front Panel
project, etc.

+ Theinterface ej.microui.display.LLUIDisplay represents the MicroUl Graphics Engine (MicroUl frame-
work). It provides some methods to map MicroUl byte arrays in MicroUl Graphics Context objects, manipulate
MicroUl colors, etc. An instance of this framework is available via the field Instance.

The interface ej.microui.display.LLUIDisplayImpl all methods required by MicroUl implementation to
be compatible with the MicroUl Display class implementation. See Widget Display.

Theclass ej.microui.display.LLUIPainter implements all MicroUl drawing natives. It defines some in-
terfaces and classes to manipulate the MicroUl concepts (GraphicsContext, Image, etc.) in the Front Panel
project. Like the embedded side, this class manages the synchronization with the Graphics Engine and del-
egates the drawing to the interface ej.microui.display.UIDrawing.

Like the embedded side, the defaultimplementation of the interface ej.microui.display.UIDrawing: ej.
microui.display.UIDrawing.UIDrawingDefault calls the internal Graphics Engine algorithms (software
algorithms). Each algorithm can be overridden independently.

+ The classes in the package ej.drawing implement the native of the MicroUl extended library: Drawing
+ The classes in the package ej.microui.event manage the input events, see Inputs Extensions.

+ Theclasses in the package ej.microui.led manage the LEDs.

Widget Display
The widget Display implements the interface ej.microui.display.LLUIDisplayImpl to be compatible with the
implementation of the MicroUl class Display.
This widget manages:
» The simple or double buffering (default value): doubleBufferFeature=true|false.
« The backlight (enabled by default): backlightFeature=true|false.

+ The non-rectangular displays: filter="xxx.png” . Some displays can have another appearance (for in-
stance: circular); the Front Panel can simulate using a filter (see Widget). This filter defines the pixels inside
and outside the whole display area. The filterimage must have the same size as the rectangular display area.
A display pixel at a given position will not be rendered if the pixel at the same position in the mask is fully
transparent.

The standard pixel formats.

4.13. Graphical User Interface 416

https://repository.microej.com/modules/ej/api/drawing/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html

MicroEJ Documentation, Revision 44d2784c

« The driver-specific pixel formats: extensionClass="xxx" . This class must be added in the Front Panel
project and implement the interface ej.fp.widget.Display.DisplayExtension.

Custom Drawings

Custom algorithms like the embedded side can replace the Graphics Engine drawing algorithms. This chapter de-
scribes how to override the method fillRectangle().

1. Create an implementation of the interface ej.microui.display.UIDrawing.UiDrawingDefault
MyDrawer .

2. Create an empty widget to invoke the new implementation:

@WidgetDescription(attributes = { })
public class Init extends Widget{
@Override
public void start() {
super.start();
LLUIPainter.setDrawer(new MyDrawer());

3. Invokes this widget in the . fp file:

<frontpanel xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance” xmlns="https://developer.microej.com"_
— Xsi:schemalLocation="https://developer.microej.com .widget.xsd">
<device name="STM32429IEVAL" skin="Board-480-272.png">
<com.is2t.microej.fp.Init/>
[...]
</device>
</frontpanel>

4. Implements the fillRectangle method like this:

@0verride
public void fillRectangle(MicroUIGraphicsContext gc, int x1, int y1, int x2, int y2) {

// manage the clip
if (gc.isClipEnabled() && !gc.isRectangleInClip(x1, y1, x2, y2)) {
x1 = Math.max(x1, gc.getClipX1());

x2 = Math.min(x2, gc.getClipX2());
y1 = Math.max(y1, gc.getClipY1(Q));
y2 = Math.min(y2, gc.getClipY2());

if (x2 <x1 || y2 <yl) {
// nothing to render
return;

}

3
// clip disabled, or rectangle entirely fits the clip

// get/create AWT objects
Graphics2D src = (Graphics2D) ((BufferedImage) gc.getImage().getRAWImage()).getGraphics();
Color color = new Color(gc.getRenderingColor());

// fill rectangle
src.setColor(color);

(continues on next page)

4.13. Graphical User Interface 417

MicroEJ Documentation, Revision 44d2784c

(continued from previous page)
src.fillRect(x1, y1, x2 - x1 + 1, y2 -yl + 1);

// update Graphics Engine's dirty area
gc.setDrawinglLimits(x1, y1, x2, y2);
3

Explanations:

+ The Front Panel framework is running over AWT.

« The method gc.getImage() returnsa ej.fp.Image. Itisthe representation of a MicroUl Image in the Front
Panel framework. The method gc.getImage().getRAWImage() returns the implementation of the Front
Panel image on the J2SE framework: a AWT BufferedImage . From this image, retrieve the AWT graphics.

The MicroUl color (gc. getRenderingColor()) is converted in an AWT color.

+ Before drawing, the MicroUl clip is checked (the MicroUl drawing can be outside the clip and/or the image
itself).

« After drawing, the implementation updates the Graphics Engine dirty area by calling gc.
setDrawinglLimits() .

Note: More details are available in LLUIPainter, UIDrawing, LLUIDisplay, and LLUIDisplaylmpl classes.

New Drawings

The Front Panel framework allows the addition of custom drawing algorithms. This chapter describes how to im-
plement the method drawSomething() .

Note: To add a custom drawing algorithm, it is strongly recommended to follow the same rules as the MicroUl
drawings: a class that synchronizes the drawings with the Graphics Engine and another class that performs the
drawing itself (like Custom Drawings).

1. In the MicroEJ application, write the new native:

private static void drawSomething(byte[] gc, int x, int y);

2. Call this function from a render method:

@Override

public void render(GraphicsContext gc) {
[...]
drawSomething(gc.getSNIContext(), 15, 36);
[...]

3

3. Inthe Front Panel project, write the equivalent of LLUIPainter class:

public static void drawSomething(byte[] target, int x, int y) {
LLUIDisplay graphicalEngine = LLUIDisplay.Instance;
synchronized (graphicalEngine) {
MicroUIGraphicsContext gc = graphicalEngine.mapMicroUIGraphicsContext(target);
if (gc.requestDrawing()) {

(continues on next page)

4.13. Graphical User Interface 418

MicroEJ Documentation, Revision 44d2784c

(continued from previous page)

MyDrawer.Instance.drawSomething(gc, x, y);

4. Inthe Front Panel project, write the equivalent of UIDrawing interface, see Custom Drawings:

public static void drawSomething(MicroUIGraphicsContext gc, int x, int y) {
// 1- manage clip
// 2- draw
// 3- update Graphics Engine's dirty area

Note: More details are available in LLUIPainter, UIDrawing, LLUIDisplay, and LLUIDisplaylmpl classes.

Inputs Extensions

The input device widgets (button, joystick, touch, etc.) require a listener to know how to react on input events
(press, release, move, etc.). The aim of this listener is to generate an event compatible with MicroUl Event Gener-
ator. Thereby, a button press action can become a MicroUl Buttons press event or a Command event or anything
else.

AMicroUl Event Generator is known by its name. This name is fixed during the MicroUl static initialization (see Static
Initialization). To generate an event to a specific event generator, the widget has to use the event generator name
as identifier.

A Front Panel widget can:

+ Force the behavior of an input action: the associated MicroUl Event Generator type is hardcoded (Buttons,
Pointer, etc.), the event is hardcoded (for instance: widget button press action may be hardcoded on event
generator Buttons and on the event pressed). Only the event generator name (identifier) should be editable
by the Front Panel extension project.

« Propose a default behavior of an input action: contrary to first point, the Front Panel extension projectis able
to change the default behavior. For instance a joystick can simulate a MicroUl Pointer.

« Do nothing: the widget requires the Front Panel extension project to give a listener. This listener will receive
all widgets action (press, release, etc.) and will have to react on it. The action should be converted on a
MicroUl Event Generator event or might be dropped.

This choice of behavior is widget dependant. Please refer to the widget documentation to have more information
about the chosen behavior.

Heap Simulation

Graphics Engine is using two dedicated heaps: for the images (see Memory) and the external fonts (see External
Resources). Front Panel partly simulates the heaps usage.

+ Images heap: Front Panel simulates the heap usage when the application is creating a Bufferedimage, when
it loads and decodes an image (PNG, BMP, etc.) which is not a raw resource and when it converts an image
in MicroEJ format in another MicroEJ format. However it does not simulate the external image copy in heap
(see External Resource).

4.13. Graphical User Interface 419

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/EventGenerator.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/EventGenerator.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Buttons.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Command.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/EventGenerator.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/EventGenerator.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Buttons.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Pointer.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Buttons.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Pointer.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/EventGenerator.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/BufferedImage.html

MicroEJ Documentation, Revision 44d2784c

« External fonts heap: Front Panel does not simulate this heap (see External Resources). There is no rendering
limitation when application is using a font which is located outside CPU addresses ranges.

Image Decoders

Front Panel uses its own internal image decoders when the associated modules have been selected (see internal
image decoders). Front Panel can add some additional decoders like the C-side for the embedded platform (see
external image decoders). However, the exhaustive list of additional decoders is limited (Front Panel is using the
Java AWT ImageIO API). To add an additional decoder, specify the property hardwareImageDecoders.list in
Front Panel configuration properties file (see Installation) with one or several property values:

Table 22: Front Panel Additional Image Decoders

Type Property value
Graphics Interchange Format (GIF) gif

Joint Photographic Experts Group (JPEG) | jpegor jpg
Portable Network Graphics (PNG) png

Windows bitmap (BMP) bmp

The decoders list is comma (,) separated. Example:

hardwareImageDecoders.list=jpg,bmp

Dependencies

« MicroUl module (see MicroUl),

+ Display module (see Display): This module gives the characteristics of the graphical display that are useful
for configuring the Front Panel.

Installation

Front Panel is an additional module for MicroUl library. When the MicroUl module is installed, install this module
in order to be able to simulate Ul drawings on the Simulator. See Installation to install the module.
The properties file can additional properties:

1732

« hardwareImageDecoders.list [optional, defaultvalueis “” (empty)]: Defines the available list of additional
image decoders provided by the hardware (see Image Decoders). Use comma () to specify several decoders
among this list: bmp, jpg, jpeg, gif, png. If empty or unspecified, no image decoder is added.

Use

Launch a MicroUl application on the Simulator to run the Front Panel.

4.13.11 Release Notes

MicroEJ Architecture Compatibility Version

The current Ul Pack version is 13.1.0. The following tables describe the compatibility ranges between MicroEJ Ul
Packs and MicroEJ Architectures.

4.13. Graphical User Interface 420

MicroEJ Documentation, Revision 44d2784c

Standard Versions

Ul Pack Range | Architecture Range | Comment
[13.0.0-13.1.0] [7.13.0-8.0.0[SNI1.3
[12.0.0-12.1.5] [7.11.0-8.0.0[Move Front Panel in MicroEJ Architecture
[11.0.0-11.2.0] [7.0.0-8.0.0[SNI Callback feature
[9:31-10.0.2] [6.13.0-7.0.00 LLEXT link error with Architecture 6.13+ and Ul 9+
[9.2.0-9.3.0] [6.12.0-6.13.0[SOAR can exclude some resources
[9.1.0-9.1.2] [6.8.0-6.12.0[Internal scripts
[8.0.0-9.0.2] [6.4.0-6.12.0[Manage external memories like byte addressable memories
[6.0.0-7.4.7] [6.1.0-6.12.0]
Maintenance Versions

Ul Pack Version

Ul Pack Base Version

Architecture Range

Comment

(maint) 8.0.0

7.4.7

[7.0.0-8.0.0[

SNI Callback feature

Foundation Libraries

The following table describes Foundation Libraries APl versions implemented in MicroEJ Ul Packs.

Table 23: MicroUl APl Implementation

Ul Pack Range MicroUl Drawing
13.1.0 3.1.0 1.0.3
[13.0.4-13.0.7] 3.0.3 1.0.2
13.0.3 3.0.2 1.0.1
[13.0.1-13.0.2] 3.0.1 1.0.0
13.0.0 3.0.0 1.0.0
[12.1.0-12.1.5] 2.4.0

[11.1.0-11.2.0] 2.3.0

[9.2.0-11.0.1] 2.2.0

[9.1.1-9.1.2] 2.1.3

9.1.0 2.1.2

[9.0.0-9.0.2] 2.0.6

[6.0.0-8.1.0] 2.0.0

Abstraction Layer Interface

The following sections briefly describes Abstraction Layer interface changes. For more details, refer to the Migration

Guide.

4.13. Graphical User Interface

421

https://repository.microej.com/modules/ej/api/microui/3.1.0/
https://repository.microej.com/modules/ej/api/drawing/1.0.3/
https://repository.microej.com/modules/ej/api/microui/3.0.3/
https://repository.microej.com/modules/ej/api/drawing/1.0.2/
https://repository.microej.com/modules/ej/api/microui/3.0.1/
https://repository.microej.com/modules/ej/api/drawing/1.0.0/
https://repository.microej.com/modules/ej/api/microui/3.0.0/
https://repository.microej.com/modules/ej/api/drawing/1.0.0/
https://repository.microej.com/modules/ej/api/microui/2.4.0/
https://repository.microej.com/modules/ej/api/microui/2.3.0/
https://repository.microej.com/modules/ej/api/microui/2.2.0/
https://repository.microej.com/modules/ej/api/microui/2.0.6/

MicroEJ Documentation, Revision 44d2784c

Display

Ul Pack Range

Changes

[13.0.0-13.1.0]

U3 format: implement LLUI_DISPLAY_impl.h:
e void LLUI_DISPLAY_IMPL_initialize([...

D;

e void LLUI_DISPLAY_IMPL_binarySemaphoreTakie([.

e int32_t LLDISPLAY_IMPL_getWorkingBufferStiartAddress([.

1D,

e int32_t LLDISPLAY_IMPL_getWorkingBufferEndAddress([.

DD

[8.0.0-9.4.1]

Mergein LLDISPLAY _impl.h:
¢ LLDISPLAY_SWITCH_impl.h
o LLDISPLAY_COPY_impl.h
e LLDISPLAY_DIRECT_impl.h

[6.0.0-7.4.7]

UI2 format: implement one of header file:
o LLDISPLAY_SWITCH_impl.h
o LLDISPLAY_COPY_impl.h
o LLDISPLAY_DIRECT_impl.h

Input

Ul Pack Range

Changes

[13.0.0-13.1.0]

UI3 format: implement LLUI_INPUT_impl.h:

e void LLUI_INPUT_IMPL_initialize([...1);

e jint LLUI_INPUT_IMPL_getInitialStateValue
1)

» void LLUI_INPUT_IMPL_enterCriticalSection
1)

e void LLUI_INPUT_IMPL_leaveCriticalSection
1D

[6.0.0-12.1.5]

U2 format: implement LLINPUT _impl.h

e void LLINPUT_IMPL_initialize([...1);

e int32_t LLINPUT_IMPL_getInitialStateValue
1D

o void LLINPUT_IMPL_enterCriticalSection([.
1D

e void LLINPUT_IMPL_leaveCriticalSection([.
1)

D
e void LLUI_DISPLAY_IMPL_binarySemaphoreGive([.
1)
e uint8_tx LLUI_DISPLAY_IMPL_flush([...
D
[10.0.0-12.1.5] Remove:

(L.
(L.
(L.

(L.

4.13. Graphical User Interface

422

MicroEJ Documentation, Revision 44d2784c

LED
Ul Pack Range Changes
[13.0.0-13.1.0] U3 format: implement LLUI_LED_impl.h:
e jint LLUI_LED_IMPL_initialize([...1);
+ jint LLUI_LED_IMPL_getIntensity([...1);
+ void LLUI_LED_IMPL_setIntensity([...1);
[6.0.0-12.1.5] Ul2 format: implement LLLEDS _impl.h
e int32_t LLLEDS_IMPL_initialize([...]);
« int32_t LLLEDS_IMPL_getIntensity([...
1;
o void LLLEDS_IMPL_setIntensity([...1);
Front Panel API

Since MicroEJ Ul Pack 13.0.0 , the Front Panel project must depend on module com.microej.pack.ui.ui-
pack(frontpanel). The module version is the MicroEJ Generic Ul Pack version, that is always aligned with the Mi-
croEJ Ul Packs specific for MCUs.

Ul Pack Range | Module Version
13.0.0-13.1.0 13.1.0

[] com.microej.pack.ui.ui-pack(frontpanel)
12.0.0-12.1.5 1.0.0

[] ej.tool.frontpanel.widget-microui

Note: Before MicroEJ Ul Pack 12.0.0 , the Front Panel project must depend on classpath variable
FRONTPANEL _WIDGETS_HOME .

Image Generator API

Since MicroEJ Ul Pack 13.0.0 , the Image Generator extension project must depend on module
com.microej.pack.ui.ui-pack(imagegenerator). The module version is the MicroEJ Generic Ul Pack version,
that is always aligned with the MicroEJ Ul Packs specific for MCUs.

Ul Pack Range | Module Version

[13.0.0-13.1.0] 13.1.0
com.microej.pack.ui.ui-pack(imagegenerator)

Note: Before MicroEJ Ul Pack 13.0.0, the Image Generator extension project must depend on classpath variable
IMAGE-GENERATOR-x.x .

C Module

A C module https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui is available on MicroEJ
Central Repository. This C module provides default implementations for:

4.13. Graphical User Interface 423

https://repository.microej.com/modules/com/microej/pack/ui/ui-pack/
https://repository.microej.com/modules/com/microej/pack/ui/ui-pack/
https://repository.microej.com/modules/com/microej/pack/ui/ui-pack/
https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui

MicroEJ Documentation, Revision 44d2784c

o LLUI_PAINTER_impl.h and LLDW_PAINTER_impl.h: see Low Level API,
+ Images heap allocator: see Memory,
o LLUI_INPUT_IMPL_log_queue_xxx() : see Event Buffer.

The following table describes the compatibility versions between the C modules and the MicroEJ Ul Packs:

C Module Range | Ul Pack Range
1.1.0 13.1.0
[1.0.0-1.0.3] [13.0.0-13.1.0]

4.13.12 Changelog
[13.1.0] - 2021-08-03

+ Compatible with Architecture 7.13.0 or higher.

MicroUl API

Removed

+ Remove MicroUl and Drawing API from Ul pack.

MicroUl Implementation

Changed
« Compatible with MicroUl API 3.1.0.
« Check Immortals heap minimal size required by MicroUl implementation.
« Change the EventGenerator Pointer event format.
+ Do no systematically use the GPU to draw intermediate steps of a shape.
Fixed
« EventGenerator’s event has not to be sent to the Display’s handler when EventGenerator’s handler is null.
» Fill rounded rectangle: fix rendering when corner radius is higher than rectangle height.
« An external image is closed twice when the application only checks if the image is available.
« RLE1image rendering when platform requires image pixels address alignment.
+ Manage the system fonts when the font generator is not embedded in the platform.

+ Have to wait the end of current drawing before closing an image.

Drawing Implementation

Changed
+ Compatible with Drawing AP11.0.3.

4.13. Graphical User Interface 424

https://repository.microej.com/modules/ej/api/microui/3.1.0/
https://repository.microej.com/modules/ej/api/drawing/1.0.3/

MicroEJ Documentation, Revision 44d2784c

LLAPIs

Added
o Add LLUI_DISPLAY_convertDisplayColorToARGBColor() .

+ Add LLAPI to manage the MicroUl Image heap.

+ Add LLAPI to dump the MicroUl Image queue.

Changed

+ Changesignature of LLUI_DISPLAY_setDrawinglLimits():remove MICROUI_GraphicsContext* tobeable
to call this function from GPU callback method.

Simulator

Added

« Add MicroUIImage.getImage(int) : apply arendering color on Ax images.

« Add LLUIDisplay.convertRegion() : convert a region according image format restrictions.
Changed

« Compatible with new EventGenerator Pointer event format.
Fixed

+ Fix OutputFormat A8 when loading an image (path or stream) or converting a RAW image.

+ Fix OOM (Java heap space) when opening/closing several hundreds of MicroUl Images.

« Simulates the image data alignment.

[13.0.7] -2021-07-30

+ Compatible with Architecture 7.13.0 or higher.

MicroUl Implementation

Fixed
« Allow to open a font in format made with Ul Pack 12.x (but cannot manage Dynamic styles).

« Display.flush() method is called once when MicroUl pump thread has a higher priority than the caller of
Display.requestFlush().

« Display.requestFlush() isonly executed once from a feature (Ul deadlock).

Misc

Fixed
« Fix MMM dependencies: do not fetch the MicroEJ Architecture.

4.13. Graphical User Interface 425

MicroEJ Documentation, Revision 44d2784c

[13.0.6] - 2021-03-29

» Compatible with Architecture 7.13.0 or higher.

LLAPIs

Fixed

« Size of the typedef MICROUI_Image : do not depend on the size of the enumeration MICROUI_ImageFormat
(LLUI_PAINTER_impl.h).

[13.0.5] - 2021-03-08

« Compatible with Architecture 7.13.0 or higher.

MicroUl Implementation

Removed
+ Remove ResourceManager dependency.
Fixed
« Afeature was not able to call Display.callOnFlushCompleted().

« Stop feature: prevent NullPointerException when a kernel’s EventGenerator is removed from event genera-
tors pool.

« Filter DeadFeatureException in MicroUl pump.
« Drawing of thick arcs which represent an almost full circle.

+ Drawing of thick faded arcs which pass by 0° angle.

Simulator

Fixed

+ Front panel memory management: reduce simulation time.

[13.0.4] - 2021-01-15

« Compatible with Architecture 7.13.0 or higher.

MicroUl API

Changed
+ [Changed] Include MicroUl API 3.0.3.
+ [Changed] Include MicroUl Drawing API 1.0.2.

4.13. Graphical User Interface 426

https://repository.microej.com/modules/ej/api/microui/3.0.3/
https://repository.microej.com/modules/ej/api/drawing/1.0.2/

MicroEJ Documentation, Revision 44d2784c

MicroUl Implementation

Fixed
« Fix each circle arc cap being drawn on both sides of an angle.
« Fix drawing of rounded caps of circle arcs when fade is 0.
« Cap thickness and fade in thick drawing algorithms.
« Clip is not checked when filling arcs, circles and ellipsis.

+ Image path when loading an external image (LLEXT).

« InternallLimitsError when calling MicroUI.callSerially() from afeature.

Drawing Implementation

Fixed

+ Draw deformed image is not rendered.

ImageGenerator

Changed

« Compatible with com.microej.pack.ui#ui-pack(imageGenerator)#13.0.4.
Fixed

« NullPointerException when trying to convert an unknown image.

«+ Restore external resources option in MicroEJ launcher.

[13.0.3]-2020-12-03

» Compatible with Architecture 7.13.0 or higher.

MicroUl API

Changed
+ [Changed] Include MicroUl API 3.0.2.
+ [Changed] Include MicroUl Drawing API 1.0.1.

MicroUl Implementation

Fixed
+ Reduce Java heap usage.
+ Fix empty images heap.

+ Draw image algorithm does not respect image stride in certain circumstances.

« Fix flush limits of drawThickFadedLine, drawThickEllipse and drawThickFadedEllipse.

4.13. Graphical User Interface

427

https://repository.microej.com/modules/com/microej/pack/ui/ui-pack/13.0.4/

MicroEJ Documentation, Revision 44d2784c

[13.0.2] - 2020-10-02

» Compatible with Architecture 7.13.0 or higher.

« Use new naming convention: com.microej.architecture.[toolchain].[architecture]-ui-pack.
Fixed

+ [ESP32] - Potential PSRAM access faults by rebuilding using esp-idf v3.3.0 toolchain - simikou2.

[13.0.1] - 2020-09-22

+ Compatible with Architecture 7.13.0 or higher.

MicroUl API

Changed
« Include MicroUl APl 3.0.1.

MicroUl Implementation

Fixed
« Throw an exception when there is no display.
« Antialiased circle may be cropped.
« FillRoundRectangle can give invalid arguments to FillRectangle.
« Flush bounds may be invalid.
+ Reduce memory footprint (java heap and immortal heap).
+ No font is loaded when an external font is not available.

+ A8 color is cropped to display limitation too earlier on simulator.

LLAPIs

Fixed

« Missing a LLAPI to check the overlapping between source and destination areas.

Simulator

Fixed
« Cannot use an external image decoder on front panel.

+ Missing an API to check the overlapping between source and destination areas.

4.13. Graphical User Interface 428

https://repository.microej.com/modules/ej/api/microui/3.0.1/

MicroEJ Documentation, Revision 44d2784c

ImageGenerator

Fixed

« Cannot build a platform with image generator and without front panel.

[13.0.0] - 2020-07-30

« Compatible with Architecture 7.13.0 or higher.
+ Integrate SDK 3.0-B license.

MicroUl API

Changed
+ [Changed] Include MicroUl API 3.0.0.
+ [Changed] Include MicroUl Drawing API1.0.0.

MicroUl Implementation

Added
« Manage image data (pixels) address alignment (not more fixed to 32-bits word alignment).
Changed
+ Reduce EDC dependency.
+ Merge DisplayPump and InputPump :only one thread is required by MicroUl.
« Usea bss section to load characters from an external font instead of using java heap.
Removed
« Dynamic fonts (dynamic bold, italic, underline and ratios).
Fixed
+ Lock only current thread when waiting end of flush or end of drawing (and not all threads).
« Draw anti-aliased ellipse issue (vertical line is sometimes drawn).
« Screenshot on platform whose physical size is higher than virtual size.
Known issue

+ Render of draw/fill arc/circle/ellipse with an even diameter/edge is one pixel too high (center is 1/2 pixel too
high).

LLAPIs

Added
« Some new functions are mandatory: see header files list, tag mandatory.

« Some new functions are optional: see header files list, tag optional.

4.13. Graphical User Interface 429

https://repository.microej.com/modules/ej/api/microui/3.0.0/
https://repository.microej.com/modules/ej/api/drawing/1.0.0/

MicroEJ Documentation, Revision 44d2784c

« Some header files list the libraries ej.api.microui and ej.api.drawing natives. Provided by Abstraction
Layer implementation module com.microej.clibrary.llimpl#microui.

« Some header files list the drawing algorithms the platform can implement; all algorithms are optional.

« Some header files list the internal graphical engine software algorithms the platform can call.
Changed

+ All old header files and functions have been renamed or shared.

« See Migration notes that describe the available changes in LLAPI.

Simulator

Added

+ Able to override MicroUl drawings algorithms like embedded platform.
Changed

« Compatible with com.microej.pack.ui#ui-pack(frontpanel)#13.0.0.

« See Migration notes that describe the available changes in Front Panel API.
Removed

o ej.tool.frontpanel#widget-microui has been replaced by com.microej.pack.
ui#ui-pack(frontpanel).

ImageGenerator

Added

+ Redirects source image reading to the image generator extension project in order to increase the number of
supported image formats in input.

+ Redirects destinationimage generation to theimage generator extension projectin order to be able to encode
an image in a custom RAW format.

+ Generates a linker file in order to always link the resources in same order between two launches.
Changed

« Compatible with com.microej.pack.ui#ui-pack(imageGenerator)#13.0.0.

« See Migration notes that describe the available changes in Image Generator API.

« Uses a service loader to loads the image generator extension classes.

+ Manages image data (pixels) address alignment.
Removed

« Classpath variable IMAGE-GENERATOR-x.x : Image generator extension project has to use ivy dependency
com.microej.pack.ui#ui-pack(imageGenerator) instead.

FontGenerator

Changed

+ Used a dedicated bss section to load characters from an external font instead of using the java heap.

4.13. Graphical User Interface 430

https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui
https://repository.microej.com/modules/com/microej/pack/ui/ui-pack/13.0.0/
https://repository.microej.com/modules/com/microej/pack/ui/ui-pack/13.0.0/

MicroEJ Documentation, Revision 44d2784c

[12.1.5] - 2020-10-02

« Compatible with Architecture 7.11.0 or higher.

« Use new naming convention: com.microej.architecture.[toolchain].[architecture]-ui-pack.
Fixed

+ [ESP32] - Potential PSRAM access faults by rebuilding using esp-idf v3.3.0 toolchain - simikou2.

[12.1.4] - 2020-03-10

+ Compatible with Architecture 7.11.0 or higher.

MicroUl Implementation

Fixed

+ Obsolete references on Java heap are used (since MicroEJ Ul Pack 12.0.0).

[12.1.3] - 2020-02-24

+ Compatible with Architecture 7.11.0 or higher.

MicroUl Implementation

Fixed

+ Caps are not used when drawing an anti-aliased line.

[12.1.2] - 2019-12-09

+ Compatible with Architecture 7.11.0 or higher.

MicroUl Implementation

Fixed
« Fix graphical engine empty clip (empty clip had got a size of 1 pixel).

« Clip not respected when clip is set “just after or before” graphics context drawable area: first (or last) line (or
column) of graphics context was rendered.

[12.1.1] - 2019-10-29

+ Compatible with Architecture 7.11.0 or higher.

4.13. Graphical User Interface 431

MicroEJ Documentation, Revision 44d2784c

MicroUl Implementation

Fixed

« Fix graphical engine clip (cannot be outside graphics context).

[(maint) 8.0.0] - 2019-10-18

« Compatible with Architecture 7.0.0 or higher.
+ Based on 7.4.7.

MicroUl Implementation

Fixed
+ Pending flush cannot be added after an OutOfEventException.

[12.1.0] - 2019-10-16

+ Compatible with Architecture 7.11.0 or higher.

MicroUl API

Changed
« Include MicroUl APl 2.4.0.

MicroUl Implementation

Changed
» Prepare inlining of get X/Y/W/H methods.
+ Reduce number of strings embedded by MicroUl library.

Fixed

+ Pending flush cannot be added after an OutOfEventException.

« Display.isColor() returnsan invalid value.

« Draw/fill circle/ellipse arcis not drawn when angle is negative.

[12.0.2] - 2019-09-23

« Compatible with Architecture 7.11.0 or higher.

4.13. Graphical User Interface

432

https://repository.microej.com/modules/ej/api/microui/2.4.0/

MicroEJ Documentation, Revision 44d2784c

MicroUl Implementation

Changed
+ Change CM4hardfp_IAR83 compiler flags.
+ Remove RAW images from cache as soon as possible to reduce java heap usage.
+ Do not cache RAW images with their paths to reduce java heap usage.

Fixed

« Remove useless exception in SystemInputPump.

[12.0.1] - 2019-07-25

« Compatible with Architecture 7.11.0 or higher.

MicroUl Implementation

Fixed

+ Physical size is not taken in consideration.

Simulator

Fixed

« Increase native implementation execution time.

[12.0.0] - 2019-06-24

+ Compatible with Architecture 7.11.0 or higher.

MicroUl Implementation

Added
« Trace MicroUl events and log them on SystemView.
Changed
« Manage the Graphics Context clip on native side.
+ Use java heap to store images metadata instead of using icetea heap (remove option “max offscreen”).
« Optimize retrieval of all fonts.
+ Ensure user buffer size is larger than LCD size.

+ Use java heap to store flying images metadata instead of using icetea heap (remove option “max flying im-
ages”).

« Use java heap to store fill polygon algorithm’s objects instead of using icetea heap (remove option “max
edges”).

« SecurityManager enabled as a boolean constant option (footprint removal by default).

4.13. Graphical User Interface 433

MicroEJ Documentation, Revision 44d2784c

« Remove FlyingImage feature using BON constants (option to enable it).
Fixed

« Wrong rendering of a fill polygon on emb.

« Wrong rendering of image overlaping on C1/2/4 platforms.

» Wrong rendering of a LUT image with more than 127 colors on emb.

» Wrong rendering of an antialiased arc with 360 angle.

+ Debug option com.is2t.microui.log=true fails when there is a flying image.

+ Gray scale between gray and white makes magenta.

« Minimal size of some buffers set by user is never checked.

» The format of a RAW image using “display” format is wrong.

« Dynamic image width for platform C1/2/4 may be wrong.

+ Wrong pixel address when reading from a C2/4 display.

getDisplayColor() can return a color with transparency (specis 0x00RRGGBB).

Afully opaque image is tagged as transparent (ARGB8888 platform).

Simulator

Added
« Simulate flush time (add JRE property -Dfrontpanel.flush.time=8).
Fixed

« A pixel read on an image is always truncated.

FrontPanel Plugin

Removed

« FrontPanel version 5: Move front panel from MicroEJ Ul Pack to Architecture (not backward compatible); Ar-
chitecture contains now Front Panel version 6.

[11.2.0] - 2019-02-01

« Compatible with Architecture 7.0.0 or higher.

MicroUl Implementation

Added
+ Manage extended UTF16 characters (> Oxffff).
Fixed

« |0Exception thrown instead of an OutOfMemory when using external resource loader.

4.13. Graphical User Interface 434

MicroEJ Documentation, Revision 44d2784c

Tools

Removed

« Remove Font Designer from pack (useless).

[11.1.2] - 2018-08-10

« Compatible with Architecture 7.0.0 or higher.

MicroUl Implementation

Fixed
«+ Fixdrawing bug in thick circle arcs.
[11.1.1] - 2018-08-02
« Compatible with Architecture 7.0.0 or higher.
+ Internal release.
[11.1.0] - 2018-07-27
« Compatible with Architecture 7.0.0 or higher.

+ Merge10.0.2 and 11.0.1.

MicroUl API

Changed
« Include MicroUl AP 2.3.0.

MicroUl Implementation

Added
+ LLDisplay: prepare round LCD.
Fixed

« Fillrect throws a hardfault on 8bpp platform.

+ Rendering of a LUT image is wrong when using software algorithm.

[11.0.1] - 2018-06-05

« Compatible with Architecture 7.0.0 or higher.
+ Based on 11.0.0.

4.13. Graphical User Interface

435

https://repository.microej.com/modules/ej/api/microui/2.3.0/

MicroEJ Documentation, Revision 44d2784c

MicroUl Implementation

Fixed

+ Image rendering may be invalid on custom display.

+ Render a dynamicimage on custom display is too slow.

« LRGB888 image format is always fully opaque.

« Number of colors returned when it is a custom display may be wrong.
[10.0.2] - 2018-02-15

« Compatible with Architecture 6.13.0 or higher.

« Basedon10.0.1.

MicroUl Implementation

Fixed
« Number of colors returned when it is a custom display may be wrong.
« LRGB888 image format is always fully opaque.
+ Render a dynamicimage on custom display is too slow.
+ Image rendering may be invalid on custom display.
[11.0.0] - 2018-02-02
« Compatible with Architecture 7.0.0 or higher.

« Basedon10.0.1.

MicroUl Implementation

Changed
« SNI Callback feature in the VM to remove the SNI retry pattern (not backward compatible).

[10.0.1] - 2018-01-03
« Compatible with Architecture 6.13.0 or higher.
MicroUl Implementation

Fixed

+ Hard fault when using custom display stack.

4.13. Graphical User Interface 436

MicroEJ Documentation, Revision 44d2784c

[10.0.0] - 2017-12-22

« Compatible with Architecture 6.13.0 or higher.

MicroUl Implementation

Changed
« Improve TOP-LEFT anchor checks.
Fixed
+ Subsequent renderings may not be correctly flushed.

+ Rendering of display on display was not optimized.

Simulator

Changed

+ Check the allocated memory when creating a dynamic image (not backward compatible).

Misc
Added

+ Option in platform builder to images heap size.
[9.4.1] - 2017-11-24

« Compatible with Architecture 6.12.0 or higher.

ImageGenerator

Fixed

+ Missing some files in image generator module.
[9.4.0]-2017-11-23
« Compatible with Architecture 6.12.0 or higher.

« Deprecated: use 9.4.1 instead.

MicroUl Implementation

Added
« LUT image management.
Changed

+ Optimize character encoding removing first vertical line when possible.

4.13. Graphical User Interface

437

MicroEJ Documentation, Revision 44d2784c

Fixed
+ Memory leak when an OutOfEvent exception is thrown.
« Anull Java object is not checked when using a font.

[9.3.1] - 2017-09-28

« Compatible with Architecture 6.12.0 or higher.

MicroUl Implementation

Fixed
« Returned X coordinates when drawing a string was considered as an error code.
+ Exception when loading a font from an application.
o LLEXT link error with Architecture 6.13+ and Ul 9+.

[9.3.0] - 2017-08-24

« Compatible with Architecture 6.12.0 or higher.

MicroUl Implementation

Fixed

« Ellipsis must not drawn when text anchor is a “manual” TOP-RIGHT .

Simulator

Fixed
+ Do not create an AWT window for each image.

« Error when trying to play with an unknown led.

[9.2.1] - 2017-08-14

« Compatible with Architecture 6.12.0 or higher.

Simulator

Added
» Provide function to send a Long Button event.
+ “flush” debug option.

Fixed

« Mock startup is too long.

4.13. Graphical User Interface 438

MicroEJ Documentation, Revision 44d2784c

[9.2.0] - 2017-07-21

« Compatible with Architecture 6.12.0 or higher.
+ Merge9.1.2and 9.0.2.

MicroUl API

Changed
« Include MicroUl AP12.2.0.

MicroUl Implementation

Added

« Provide function to send a Long Button event (emb only).
Changed

+ Use font format v5.

+ Asignature on RAW files.

« Allow to open a raw image with Image.createImage(stream) .

« Improve Image.createImage(stream) when stream is a memory input stream.

Fixed

+ Draw region of the display on the display does not support overlap.

+ Unspecified exception while loading an image with an empty name.

« Display.flush() : ymax can be higher than display.height.

ImageGenerator

Fixed

+ Generic displays must be able to generate standard images.

Misc

Changed
+ SOAR can exclude some resources (update llext output folder).
Fixed

« Rl build: reduce frontpanel dependency.

[9.0.2] - 2017-04-21

« Compatible with Architecture 6.4.0 or higher.
+ Based on9.0.1.

4.13. Graphical User Interface

439

https://repository.microej.com/modules/ej/api/microui/2.2.0/

MicroEJ Documentation, Revision 44d2784c

MicroUl Implementation

Fixed

+ Rendering of a RAW image on grayscale display is wrong.

ImageGenerator

Fixed

+ An Aximage may be fully opaque.

[9.1.2] - 2017-03-16

+ Compatible with Architecture 6.8.0 or higher.
+ Basedon9.1.1.

MicroUl API

Changed
« Include MicroUl API 2.1.3.

MicroUl Implementation

Added
+ Renderable strings.
Changed
+ Draw string: improve time to perform it.
« Optimize antialiased circle arc drawing when fade=0.
Fixed
+ ImageScale bugs.
» Draw string: some errors are not thrown.
o Font.getWidth() and getHeight() don’t use ratio factor.
+ Draw antialiased circle arc render issue.

+ Draw antialiased circle arc render bug with 45° angles.

+ MicroUl lib expects the dynamic image decoder default format.

+ Wrong error code is returned when converting an image.

4.13. Graphical User Interface

440

MicroEJ Documentation, Revision 44d2784c

ImageGenerator

Fixed
« Use the application classpath.

+ An Aximage may be fully opaque.
[9.0.1] - 2017-03-13
+ Compatible with Architecture 6.4.0 or higher.

« Based on 9.0.0.

MicroUl Implementation

Fixed
+ Hardfault when filling a rectangle on an odd image.
+ Pixel rendering on non-standard LCD is wrong.
+ RZ hardware accelerator: RAW images have to respect an aligned size.

+ Use the classpath when invoking the fonts and images generators.

Simulator

Fixed

« Wrong rendering of A8 images.

FrontPanel Plugin

Fixed
+ Manage display mask on preview.
+ Respect initial background color set by user on preview.

« Preview does not respect the real size of display.

[9.1.1] - 2017-02-14

« Compatible with Architecture 6.8.0 or higher.
+ Based on 9.1.0.

Misc

Fixed

+ Rl build: Several custom event generators in same microui.xml file are not embedded.

4.13. Graphical User Interface 441

MicroEJ Documentation, Revision 44d2784c

[9.1.0] - 2017-02-13

« Compatible with Architecture 6.8.0 or higher.
« Based on 9.0.0.

MicroUl API

Changed
« Include MicroUl API 2.1.2.

MicroUl Implementation

Added
+ G2D hardware accelerator.
« Hardware accelerator: add flip feature.
Fixed
+ Hardfault when filling a rectangle on an odd image.
« Pixel rendering on non-standard LCD is wrong.
+ RZ hardware accelerator: RAW images have to respect an aligned size.
+ Use the classpath when invoking the fonts and images generators.
+ Exception when flipping an image out of display bounds.

« Flipped image is translated when clip is modified.

Simulator

Fixed

« Wrong rendering of A8 images.

FrontPanel Plugin

Fixed
+ Manage display mask on preview.
+ Respect initial background color set by user on preview.

«+ Preview does not respect the real size of display.

[9.0.0] - 2017-02-02

« Compatible with Architecture 6.4.0 or higher.

4.13. Graphical User Interface 442

MicroEJ Documentation, Revision 44d2784c

MicroUl API

Changed
« Include MicroUl AP 2.0.6.

MicroUl Implementation

Changed
+ Update MicroUl to use watchdogs in KF implementation.
Fixed
« Display linker file is required even if there is no display on platform.
+ MicroUl on KF: NPE when changing app quickly (in several threads).
+ MicroUl on KF: NPE when stopping a Feature and there’s no eventHandler in a generator.

+ MicroUl on KF: Remaining K->F link when there is no default event handler registered by the Kernel.

MWT

Removed

« Remove MWT from MicroEJ Ul Pack (not backward compatible).

Simulator

Added
« Optional mask on display.
Changed

« Display Device UID if available in the window title.

Tools

Changed
+ FrontPanel plugin: Update icons.
« FontDesigner plugin: Update icons.

+ Font Designer and Generator: use Unicode 9.0.0 specification.

Misc

Fixed

+ Remove obsolete documentations from FrontPanel And FontDesigner plugins.

4.13. Graphical User Interface 443

https://repository.microej.com/modules/ej/api/microui/2.0.6/

MicroEJ Documentation, Revision 44d2784c

[8.1.0] - 2016-12-24

» Compatible with Architecture 6.4.0 or higher.

MicroUl Implementation

Changed
« Improve image drawing timings.

+ Runtime decoders can force the output RAW image’s fully opacity.

MWT

Fixed
+ With two panels, the paint is done but the screen is not refreshed.
« Widget show notify method is called before the panel is set.

+ Widget still linked to panel when lostFocus() is called.

Simulator

Added

« Can add an additional screen on simulator.

[8.0.0] - 2016-11-17

« Compatible with Architecture 6.4.0 or higher.

MicroUl Implementation

Added
+ RZ Ul acceleration.
+ Externalimage decoders.
« Manage external memories like internal memories.
« Custom display stacks (hardware acceleration).
Changed
+ Merge stacks DIRECT/COPY/SWITCH (not backward compatible).
Fixed
+ add KF rule: a thread cannot enter in a feature code while it owns a kernel monitor.
« automatic flush is not waiting the end of previous flush.
« Invalid image rotation rendering.

+ Do not embed Images & Fonts.list of kernel API classpath in app mode.

4.13. Graphical User Interface 444

MicroEJ Documentation, Revision 44d2784c

« Invalid icetea heap allocation.

+ microui image: invalid “defaultformat” and “format” fields values.

MWT

Fixed

« possible to create an inconsistent hierarchy.

Simulator

Added
+ Can decode additional image formats.
Fixed

« Cannot set initial value of StateEventGenerator.

[7.4.7] - 2016-06-14

+ Compatible with Architecture 6.1.0 or higher.

MicroUl Implementation

Fixed
+ Do not create all fonts derivations of built-in styles.
« Abold font is not flagged as bold font.

« Wrong A4 image rendering.

Simulator

Fixed

« Cannot convert an image.

[7.4.2] - 2016-05-25
+ Compatible with Architecture 6.1.0 or higher.
MicroUl Implementation

Fixed

« invalid image drawing for column display.

4.13. Graphical User Interface 445

MicroEJ Documentation, Revision 44d2784c

[7.4.1] - 2016-05-10
« Compatible with Architecture 6.1.0 or higher.
MicroUl Implementation

Fixed
+ Restore stack 1,2 and 4 BPP.

[7.4.0] - 2016-04-29
+ Compatible with Architecture 6.1.0 or higher.
MicroUl Implementation

Fixed

« image AT’s width is sometimes invalid.

Simulator

Added
 Restore stack 1,2 and 4 BPP.

[7.3.0] - 2016-04-25
+ Compatible with Architecture 6.1.0 or higher.
MicroUl Implementation

Added
« Stack 8BPP with LUT support.

[7.2.1] - 2016-04-18

+ Compatible with Architecture 6.1.0 or higher.

Misc

Fixed

« Remove java keyword in workbench extension.

[7.2.0] - 2016-04-05

« Compatible with Architecture 6.1.0 or higher.

4.13. Graphical User Interface

446

MicroEJ Documentation, Revision 44d2784c

Tools

Added

+ Preprocess *.xxx.list files.

[7.1.0] - 2016-03-02
« Compatible with Architecture 6.1.0 or higher.
MicroUl Implementation

Added

+ Manage several images RAW formats.

[7.0.0] - 2016-01-20

« Compatible with Architecture 6.1.0 or higher.

Misc

Changed

« Remove jpf property header (not backward compatible).

[6.0.1] - 2015-12-17

MicroUl Implementation

Fixed

«+ A negative clip throws an exception on simulator.
[6.0.0] - 2015-11-12
MicroUl Implementation

Changed
« LLDisplay for Ulv2 (not backward compatible).

4.13.13 Migration Guide

From 13.0.x to 13.1.x

Front Panel

« Set the explicit dependency to the Ul Pack 13.1.0:

4.13. Graphical User Interface

447

MicroEJ Documentation, Revision 44d2784c

BSP

<dependency org="com.microej.pack.ui” name="ui-pack” rev="13.1.0">
<artifact name="frontpanel” type="jar"/>
</dependency>

Add a cast when using MICROUI_Image* object: (MICROUI_ImageFormat)image->format .

+ Remove parameter MICROUI_GraphicsContextx when calling LLUI_DISPLAY_setDrawinglLimits() .

Ensuretocall LLUI_DISPLAY_setDrawinglLimits() before calling LLUI_DISPLAY_setDrawingStatus() or
LLUI_DISPLAY_notifyAsynchronousDrawingEnd() .

(optional) Add an implementation of LLUI_DISPLAY_IMPL_image_heap_xxx to controlthe images heap al-
location; by default the internal Graphics Engine’s allocator is used. Another implementation is also available
on the Cmodule.

From 12.x to 13.x

Platform Configuration Project

« Update Architecture version: 7.13.0 or higher.

+ Add the following module in the module description file:

<dependency org="com.microej.clibrary.1limpl” name="microui” rev="1.0.3"/>

« If not already set, set the ea:property bsp.project.microej.dir inthe module ivy file to configure the
BSP output folder where is extracted the module.

Hardware Accelerator

« Open -configuration project> display > display.properties

Remove optional property hardwareAccelerator. If old value was dma2d, add the following module in the
module description file:

<dependency org="com.microej.clibrary.1llimpl” name="display-dma2d” rev="1.0.6"/>""

« For the hardware accelerator DMA2D, please consult STM32F7Discovery board updates. Add the file
1ldisplay_dma2d.c , the global defines DRAWING_DMA2D_BPP=16 (or another value) and STM32F4XX or
STM32F7XX

For the others hardware accelerators, please contact MicroEJ support.

Front Panel

This chapter resumes the changes to perform. The available changes in Front Panel APl are described in next chap-

ter.

« If not already done, follow the Front Panel version 6 migration procedure detailled in chapter From 11.x to 12.x.

4.13. Graphical User Interface 448

MicroEJ Documentation, Revision 44d2784c

« Update the fp project dependency: <dependency org="ej.tool.frontpanel” name="widget” rev="2.
0.0"/>

« ej.fp.event.MicroUIButtons hasbeenrenamedin ej.microui.event.EventButton,andall others ej.
fp.event.MicroUIxxx in ej.microui.event.Eventxxx

« Displayabstractclass AbstractDisplayExtension (classtoextend widget Display when targetting a custom
display) has been converted on the interface DisplayExtension.Some methods names have changed and
now take in parameter the display widget.

Front Panel API

e ej.drawing.DWDrawing

- [Added] Equivalent of dw_drawing.h and dw_drawing_soft.hxx*: allowstoimplement some drawing
algorithms and/or to use the ones provided by the graphical engine. The drawing methods are related
to the library ej.api.drawing.

- [Added] Interface DWDrawingDefault : defaultimplementation of DWDrawing which calls the graphical
engine algorithms.

e ej.drawing.LLDWPainter

- [Added] Equivalent of module com.microej.clibrary.llimpl#microui (LLDW_PAINTER_impl.c): imple-
ments all ej.api.drawing natives and redirect them to the interface DWDrawing .

- [Added] setDrawer(DWDrawing) : allows to configure the implementation of DWDrawing the
LLDWPainter has to use. When no drawer is configured, LLDWPainter redirects all drawings to the
internal graphical engine software algorithms.

o« ej.fp.event.MicroUIButtons

- [Removed] Replaced by EventButton.
o ej.fp.event.MicroUICommand

- [Removed] Replaced by EventCommand .
o ej.fp.event.MicroUIEventGenerator

- [Removed] Replaced by LLUIInput.
* ej.fp.event.MicroUIGeneric

- [Removed] Replaced by EventGeneric.
« ej.fp.event.MicroUIPointer

- [Removed] Replaced by EventPointer.
* ej.fp.event.MicroUIStates

- [Removed] Replaced by EventState.
« ej.fp.event.MicroUITouch

- [Removed] Replaced by EventTouch.
o ej.fp.widget.MicroUIDisplay

- [Removed] Replaced by LLUIDisplayImpl . Abstract widget display class has been replaced by an in-
terface that a widget (which should simulate a display) has to implement to be compatible with the
graphical engine.

4.13. Graphical User Interface 449

https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui

MicroEJ Documentation, Revision 44d2784c

[Removed] AbstractDisplayExtension , all available implementations and
setExtensionClass(String) : the standard display formats (RGB565, etc.) are internally man-
aged by the graphical engine. For generic formats, some APIs are available in LLUIDisplayImpl

[Removed] finalizeConfiguration() |, getDisplayHeight() , getDisplayWidth() ,
getDrawingBuffer() , setDisplayWidth(int) |, setDisplayHeight(int) , start()
LLUIDisplayImpl is notan abstract widget anymore, these notions are widget dependent.

[Removed] flush().

[Removed] getNbBitsPerPixel ().

[Removed] switchBacklight(boolean).
e ej.fp.widget.MicroUILED

- [Removed] Replaced by LLUILedImpl. Abstract widget LED class has been replaced by an interface that
a widget (which should simulate a LED) has to implement to be compatible with the graphical engine.

- [Removed] finalizeConfiguration(): LLUILedImpl is notan abstract widget anymore, this notion
is widget dependent.

- [Removed] getID() : MicroUl uses the widget (which implements the interface LLUILedImpl)’s label
to retrieve the LED. The LED labels must be integers from 0 to n-1.

e ej.microui.display.LLUIDisplay

Added] Equivalent of LLUI_DISPLAY.h: several functions to interact with the graphical engine.

Added] blend(int,int,int) : blends two ARGB colors and opacity level.

[]
[]
- [Added] convertARGBColorToColorToDraw(int) : crops given color to display capacities.
[Added] getDisplayPixelDepth() : replaces MicroUIDisplay.getNbBitsPerPixel().
[]

Added] getDWDrawerSoftware() : gives the unique instance of graphical engine’s internal software
drawer (instance of DWDrawing).

[Added] getUIDrawerSoftware() : gives the unique instance of graphical engine’s internal software
drawer (instance of UIDrawing).

[Added] mapMicroUIGraphicsContext(byte[]) and newMicroUIGraphicsContext(bytel[]) : maps
the graphics context byte array (GraphicsContext.getSNIContext()) on an object which represents
the graphics context in front panel.

[Added] mapMicroUIImage(byte[]) and newMicroUIImage(byte[]) : maps the image byte array (
Image.getSNIContext()) on an object which represents the image in front panel.

[Added] requestFlush(boolean) :requestsacallto LLUIDisplayImpl.flush().

[Added] requestRender(void) : requests a callto Displayable.render().
e ej.microui.display.LLUIDisplayImpl
- [Added] Replaces MicroUIDisplay,equivalent of LLUI_DISPLAY_impl.h.

- [Added] initialize() : askstoinitialize the widget and to return a front panel image where the graph-
ical engine will perform the MicroUl drawings.

- [Changed] flush(MicroUIGraphicsContext, Image, int, int, int, int):asksto flushthe graph-
ics context drawn by MicroUl in image returned by initialize().

e ej.microui.display.LLUIPainter

4.13. Graphical User Interface 450

MicroEJ Documentation, Revision 44d2784c

[Added] Equivalent of module com.microej.clibrary.llimpl#microui (LLUI_PAINTER_impl.c): imple-
ments all ej.api.microui natives and redirect them to the interface UIDrawing.

- [Added] MicroUIGraphicsContext : representation of a MicroUl GraphicsContext infront panel. This
interface (implemented by the graphical engine) provides several function to get information on graph-
ics context, clip, etc.

- [Added] MicroUIGraphicsContext#requestDrawing() : allowstotake the hand on the drawing buffer.

- [Added] MicroUIImage : representation of a MicroUl Image in front panel. This interface (implemented
by the graphical engine) provides several function to get information on image.

- [Added] setDrawer(UIDrawing) : allows to configure the implementation of UIDrawing the
LLUIPainter has to use. When no drawer is configured, LLUIPainter redirects all drawings to the
internal graphical engine software algorithms.

e ej.microui.display.UIDrawing

- [Added] Equivalent of ui_drawing.h and ui_drawing_soft.hxx*: allowstoimplement some drawing
algorithms and/or to use the ones provided by the graphical engine. The drawing methods are related
to the library ej.api.microui.

- [Added] Interface UIDrawingDefault : defaultimplementation of UIDrawing which calls the graphical
engine algorithms.

e ej.microui.event.EventButton
- [Added] Replaces MicroUIButton.
e ej.microui.event.EventCommand
- [Added] Replaces MicroUICommand.
e ej.microui.event.EventGeneric
- [Added] Replaces MicroUIGeneric.
e ej.microui.event.EventPointer
- [Added] Replaces MicroUIPointer.
e ej.microui.event.EventQueue
- [Added] Dedicated events queue used by MicroUl.
e ej.microui.event.EventState
- [Added] Replaces MicroUIState.
e ej.microui.event.EventTouch
- [Added] Replaces MicroUITouch.
e ej.microui.event.LLUIInput
- [Added] Replaces MicroUIEventGenerator .
e ej.microui.led.LLUILedImpl
- [Added] Replaces MicroUILED.

4.13. Graphical User Interface 451

https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui

MicroEJ Documentation, Revision 44d2784c

Image Generator

This chapter resumes the changes to perform. The available changes in Image Generator APl are described in next
chapter.

This chapter only concerns platform with a custom display. In this case a dedicated image generator extension
project is available. This project must be updated.

+ Reorganize project to use source folders src/main/java and src/main/resources

« Add new module.ivy file:

<ivy-module version="2.0" xmlns:ea="http://www.easyant.org” xmlns:m="http://www.easyant.
—org/ivy/maven” xmlns:ej="https://developer.microej.com” ej:version="2.0.0">

<info organisation="com.is2t.microui” module="imageGenerator-xxx" status="integration
" revision="1.0.0">
<ea:build organisation="com.is2t.easyant.buildtypes” module="build-std-javalib”_
—revision="2.+"/>
</info>

<configurations defaultconfmapping="default->default;provided->provided”>
<conf name="default” visibility="public" description="Runtime dependencies to.
—other artifacts”"/>
<conf name="provided” visibility="public” description="Compile-time dependencies.,
—to APIs provided by the platform"”/>
<conf name="documentation” visibility="public” description="Documentation related.
—to the artifact (javadoc, PDF)"/>
<conf name="source" visibility="public" description="Source code"/>
<conf name="dist"” visibility="public" description="Contains extra files like_
—README.md, licenses"/>
<conf name="test"” visibility="private"” description="Dependencies for test.
—execution. It is not required for normal use of the application, and is only available.
—for the test compilation and execution phases.”/>
</configurations>

<publications/>

<dependencies>
<dependency org="com.microej.pack.ui” name="ui-pack” rev="[UI Pack version]">
<artifact name="imageGenerator" type="jar"/>
</dependency>
</dependencies>
</ivy-module>

The artifact name prefix must be imageGenerator-.

+ Update project classpath: remove classpath variable TMAGE-GENERATOR-x.x and add ivy file dependency

« Instead of implement GenericDisplayExtension,the extension class must extend BufferedImageloader
class; check class methods to override.

« Add the file src/main/resources/META-INF/services/com.microej.tool.ui.generator.
MicroUIRawImageGeneratorExtension ; this file has to specify the class which extends the
BufferedImageloader class, forinstance:

com.microej.generator.MyImageGeneratoExtension

+ Build the easyant project

4.13. Graphical User Interface 452

MicroEJ Documentation, Revision 44d2784c

« Copy thejarinthe platform -configuration project> dropins folder

+ Rebuild the platform after any changes

Image Generator API

e com.is2t.microej.microui.image.CustomDisplayExtension
- [Removed] Replaced by ImageConverter and MicroUIRawImageGeneratorExtension.
e com.is2t.microej.microui.image.DisplayExtension
- [Removed]
e com.is2t.microej.microui.image.GenericDisplayExtension
- [Removed] Replaced by ImageConverter and MicroUIRawImageGeneratorExtension.
o com.microej.tool.ui.generator.BufferedImagelLoader
- [Added] Pixelated image loader (PNG, JPEG etc.).
e com.microej.tool.ui.generator.Image
- [Added] Representation of an image listed ina images.list file.
o com.microej.tool.ui.generator.ImageConverter
- [Added] Generic converter to convert an image in an output stream.
e com.microej.tool.ui.generator.MicroUIRawImageGeneratorExtension

- [Added] Graphical engine RAW image converter: used when the image (listed in images.1list) targets
a RAW format known by the graphical engine.

Font

+ Open optional font(s) in -configuration project> microui/**/*.ejf

Removeall Dynamic styles (select None or Built-in forbold, italicand underline); the number of generated
fonts must be 1 (the feature to render Dynamic styles at runtime have been removed)

Save the file(s)

BSP

This chapter resumes the changes to perform. The available changes in LLAPI are described in next chapter.

+ Delete all platform header files (folder should be setin -con