
MicroEJ Documentation

MicroEJ Corp.

Revision 32bb132e

Feb 29, 2024
Copyright 2008-2024, MicroEJ Corp. Content in this space is free for read and redistribute. Except if otherwise stated,

modification is subject to MicroEJ Corp prior approval. MicroEJ is a trademark of MicroEJ Corp. All other trademarks and
copyrights are the property of their respective owners.

CONTENTS

1 MicroEJ Glossary 2

2 Overview 4
2.1 Getting Started . 4
2.2 MICROEJ VEE . 5
2.3 MICROEJ SDK . 6

3 SDK 5 User Guide 9
3.1 Installation . 10

3.1.1 Install Latest SDK Distribution . 11
3.1.2 Update SDK Version . 16
3.1.3 Install Other SDK Distributions . 18
3.1.4 System Requirements . 26
3.1.5 Troubleshooting . 27

3.2 Licenses . 29
3.2.1 SDK EULA . 29
3.2.2 License Manager Overview . 30
3.2.3 License Check . 30
3.2.4 Evaluation Licenses . 31
3.2.5 Production Licenses . 33

3.3 Standalone Application . 42
3.3.1 Platform Import . 42
3.3.2 Build and Run an Application . 46
3.3.3 MicroEJ Launch . 51

3.4 Sandboxed Application . 56
3.4.1 Create a First Application . 56
3.4.2 Run on the Simulator . 58
3.4.3 Run on the Device . 62

3.5 Module Repository . 65
3.5.1 Create a Repository Project . 67
3.5.2 Configure Resolver for Input Modules . 67
3.5.3 Configure Consistency Check . 67
3.5.4 Advanced Options . 67
3.5.5 Include Modules . 68
3.5.6 Generate Javadoc . 69
3.5.7 Build the Repository . 70
3.5.8 Use the O�line Repository . 70

3.6 Platform Selection . 70
3.7 Module Natures . 71

3.7.1 Add-On Library . 71

i

3.7.2 Add-On Processor . 72
3.7.3 Foundation Library API . 72
3.7.4 Foundation Library Implementation . 73
3.7.5 Kernel Application . 73
3.7.6 Meta Build . 74
3.7.7 Mock . 74
3.7.8 Module Repository . 74
3.7.9 Runtime Environment . 76
3.7.10 Sandboxed Application . 76
3.7.11 Standalone Application . 76
3.7.12 Studio Rebranding . 77
3.7.13 Natures Plugins . 77
3.7.14 Global Build Options . 83

3.8 Debug an Application . 83
3.8.1 Debug on Simulator . 83
3.8.2 Debug on Device . 84
3.8.3 Get Library Sources . 85

3.9 Development Tools . 91
3.9.1 Test Suite with JUnit . 92
3.9.2 Stack Trace Reader . 98
3.9.3 Code Coverage Analyzer . 111
3.9.4 Heap Dumper & Heap Analyzer . 114
3.9.5 Serial to Socket Transmitter . 125
3.9.6 Memory Map Analyzer . 127
3.9.7 Null Analysis . 130

3.10 IDE . 141
3.10.1 Startup . 141
3.10.2 Resolve Dependencies in Workspace . 142
3.10.3 Resolve Foundation Libraries in Workspace . 143
3.10.4 Resolve Front Panel in Workspace . 145

3.11 SDK Version . 145
3.12 MicroEJ Module Manager . 147

3.12.1 Introduction . 147
3.12.2 Specification . 148
3.12.3 Module Project Skeleton . 148
3.12.4 Module Description File . 148
3.12.5 SDK Configuration . 151
3.12.6 Module Build . 155
3.12.7 Build Kit . 156
3.12.8 Command Line Interface . 157
3.12.9 Build System Options . 161
3.12.10 Meta Build . 161
3.12.11 Troubleshooting . 162
3.12.12 Former SDK Versions (lower than 5.2.0) . 166
3.12.13 Former SDK Versions (from 5.2.0 to 5.3.x) . 167

3.13 Release Notes . 168
3.14 SDK Distribution Changelog . 168

3.14.1 [24.01] - 2024-01-31 . 168
3.14.2 [23.07] - 2023-07-03 . 168
3.14.3 [23.02] - 2022-02-28 . 168
3.14.4 [22.06] - 2022-06-29 . 169
3.14.5 [21.11] - 2021-11-15 . 169
3.14.6 [21.03] - 2021-03-25 . 169
3.14.7 [20.12] - 2020-12-11 . 170

ii

3.14.8 [20.10] - 2020-10-30 . 170
3.14.9 [20.07] - 2020-07-28 . 171
3.14.10 [19.05] - 2019-05-17 . 171
3.14.11 [19.02] - 2019-02-22 . 171

3.15 SDK Changelog . 171
3.15.1 [5.8.2] - 2024-01-31 . 171
3.15.2 [5.8.1] - 2023-09-19 . 172
3.15.3 [5.8.0] - 2023-07-03 . 173
3.15.4 [5.7.0] - 2023-02-27 . 173
3.15.5 [5.6.2] - 2022-08-31 . 175
3.15.6 [5.6.1] - 2022-07-08 . 175
3.15.7 [5.6.0] - 2022-06-29 . 175
3.15.8 [5.5.3] - 2022-05-03 . 177
3.15.9 [5.5.2] - 2021-12-22 . 177
3.15.10 [5.5.1] - 2021-12-02 . 177
3.15.11 [5.5.0] - 2021-11-15 . 177
3.15.12 [5.4.1] - 2021-04-16 . 179
3.15.13 [5.4.0] - 2021-03-25 . 180
3.15.14 [5.3.1] - 2020-12-11 . 182
3.15.15 [5.3.0] - 2020-10-30 . 182
3.15.16 [5.2.0] - 2020-07-28 . 184
3.15.17 [5.1.2] - 2020-03-09 . 186
3.15.18 [5.1.1] - 2019-09-26 . 186
3.15.19 [5.1.0] - 2019-05-17 . 187
3.15.20 [5.0.1] - 2019-02-14 . 189

3.16 Build Types per SDK . 190
3.17 Migration Notes . 196

3.17.1 From 5.2.x to 5.3.x or more . 196
3.17.2 From 5.1.x to 5.2.x . 196
3.17.3 From 4.1.x to 5.x . 197

4 SDK 6 User Guide 199
4.1 Getting Started . 200

4.1.1 NXP . 200
4.1.2 STMicroelectronics . 223

4.2 Installation . 233
4.2.1 System Requirements . 233
4.2.2 Check your JDK version . 234
4.2.3 Install Gradle . 234
4.2.4 Configure Repositories . 234
4.2.5 Install the IDE . 235
4.2.6 Install the IDE Plugin . 235

4.3 Licenses . 240
4.3.1 SDK EULA . 240
4.3.2 License Manager Overview . 240
4.3.3 License Check . 240
4.3.4 SDK EULA Acceptation . 241
4.3.5 Evaluation Licenses . 241
4.3.6 Production Licenses . 242

4.4 Scope and Limitations . 249
4.5 Create a Project . 250

4.5.1 Configure a Project . 259
4.5.2 Create a subproject in an existing project . 262
4.5.3 Gradle Wrapper . 267

iii

4.6 Import a Project . 268
4.7 Select a VEE Port . 271

4.7.1 Using a Module Dependency . 271
4.7.2 Using a Local VEE Port Directory . 271
4.7.3 Using a Local VEE Port Archive . 272

4.8 Run on Simulator . 272
4.8.1 Verbose Mode . 274
4.8.2 Debug on Simulator . 274
4.8.3 Generate Code Coverage . 275
4.8.4 Generate Heap Dump . 275

4.9 Build an Executable . 275
4.10 Run on Device . 277
4.11 Select a Kernel . 278

4.11.1 Using a Module Dependency . 278
4.11.2 Using a Local Kernel . 279

4.12 Build a Feature file . 279
4.13 Build a Virtual Device . 281

4.13.1 Add a Pre-Installed Application in a Virtual Device . 282
4.13.2 Add a Kernel API in a Virtual Device . 283

4.14 Add a Dependency . 283
4.14.1 Configurations . 283
4.14.2 Version . 284
4.14.3 Dependencies Repositories . 284

4.15 Test a Project . 284
4.15.1 JUnit Compliance . 285
4.15.2 Gradle Integration . 285
4.15.3 Test on Simulator . 285
4.15.4 Test on Device . 289
4.15.5 Test on J2SE VM . 290
4.15.6 Test Suite Reports . 290
4.15.7 Mixing tests . 291
4.15.8 Configure the Testsuite Engine . 294
4.15.9 Inject Application Options . 295

4.16 Publish a Project . 296
4.17 Development Tools . 297

4.17.1 Stack Trace Reader . 298
4.17.2 Code Coverage Analyzer . 302
4.17.3 Memory Map Analyzer . 304
4.17.4 Heap Dumper & Heap Analyzer . 308
4.17.5 Font Designer . 319
4.17.6 Local Deployment Socket . 327
4.17.7 Null Analysis . 329

4.18 Manage Versioning . 336
4.19 Manage Resolution Conflicts . 336
4.20 Migrate an MMM Project . 338

4.20.1 Project structure . 338
4.20.2 Build Descriptor File . 339
4.20.3 Build Scripts . 343

4.21 Module Natures . 343
4.21.1 Add-On Library . 344
4.21.2 Application . 344
4.21.3 J2SE Library . 345
4.21.4 Tasks . 346
4.21.5 Global Properties . 352

iv

4.22 Troubleshooting . 352
4.22.1 Java Compiler Version Issue . 352
4.22.2 Unresolved Dependency . 354
4.22.3 Invalid SSL Certificate . 355
4.22.4 Failing Resolution in adp Task . 356
4.22.5 Missing Version for Publication . 356
4.22.6 Fail to load a VEE Port as dependency . 357
4.22.7 Slow Build because of File SystemWatching . 357
4.22.8 Missing Tasks in the Gradle view of Android Studio . 358

4.23 Tutorials . 359
4.23.1 Branding an Eclipse IDE . 359
4.23.2 Creating and Using an O�line Repository . 365

4.24 How-to Guides . 368
4.24.1 How To Define a Specific Java Home for Gradle . 368
4.24.2 How To Pass a Property to Project Build Script . 369
4.24.3 How To Skip a Gradle Task . 369
4.24.4 How To Automatically reload a Gradle project . 370
4.24.5 How To Add a Repository . 372
4.24.6 How To Resolve Dependencies in the IDE . 373
4.24.7 How to Install MicroEJ Plugin Snapshot Version on Android Studio or IntelliJ IDEA 375
4.24.8 How To Build a Project . 375
4.24.9 How To Build an Executable With Multiple VEE Ports . 377
4.24.10 How To Create a Custom Configuration in the IDE . 378

4.25 Appendices . 381
4.25.1 Virtual Device . 381
4.25.2 Dependencies Configurations . 383

4.26 Changelog . 384
4.26.1 [0.15.0] - 2024-01-26 . 384
4.26.2 [0.14.0] - 2024-01-03 . 385
4.26.3 [0.13.0] - 2023-11-10 . 386
4.26.4 [0.12.1] - 2023-10-16 . 386
4.26.5 [0.12.0] - 2023-10-13 . 386
4.26.6 [0.11.1] - 2023-09-22 . 387
4.26.7 [0.11.0] - 2023-09-22 . 387
4.26.8 [0.10.0] - 2023-09-13 . 387
4.26.9 [0.9.0] - 2023-09-01 . 388
4.26.10 [0.8.0] - 2023-07-13 . 388
4.26.11 [0.7.0] - 2023-06-26 . 388
4.26.12 [0.6.0] - 2023-05-30 . 389
4.26.13 [0.5.0] - 2023-03-24 . 389
4.26.14 [0.4.0] - 2023-01-27 . 390
4.26.15 [0.3.0] - 2022-12-09 . 390
4.26.16 [0.2.0] - 2022-05-17 . 391
4.26.17 [0.1.0] - 2022-05-03 . 391

4.27 Migration Notes . 392
4.27.1 From 0.14.0 to 0.15.0 . 392
4.27.2 From 0.11.1 to 0.12.0 . 393
4.27.3 From 0.10.0 to 0.11.0 . 393
4.27.4 From 0.8.0 to 0.9.0 . 394

5 Application Developer Guide 395
5.1 Introduction . 395
5.2 MicroEJ Runtime . 395

5.2.1 Language . 395

v

5.2.2 Core Libraries . 396
5.2.3 Scheduler . 398
5.2.4 Garbage Collector . 398
5.2.5 Limitations . 398

5.3 SOAR . 399
5.3.1 Java Symbols Encoding . 399
5.3.2 Class Initialization Code . 399
5.3.3 Method Devirtualization . 400
5.3.4 Method Inlining . 400
5.3.5 Binary Code Verifier . 401

5.4 SOAR Output Files . 402
5.4.1 Launch Output Folder . 402
5.4.2 Published Module Files . 403
5.4.3 The SOAR Map File . 404
5.4.4 The SOAR Information File . 404

5.5 Virtual Device . 406
5.6 MicroEJ Classpath . 407

5.6.1 Application Classpath . 408
5.6.2 Classpath Load Model . 409
5.6.3 Classpath Elements . 409

5.7 Application Resources . 414
5.8 Standalone Application . 415

5.8.1 Introduction . 415
5.8.2 Standalone Application Options . 415
5.8.3 Defining an Option with SDK 6 . 416
5.8.4 Defining an Option with SDK 5 or lower . 416
5.8.5 Category: Runtime . 418
5.8.6 Category: Simulator . 422
5.8.7 Category: Libraries . 433
5.8.8 Category: Device . 437
5.8.9 Category: Feature . 445

5.9 Sandboxed Application . 445
5.9.1 Fundamental Concepts . 445
5.9.2 Shared Interfaces . 446

5.10 Character Encoding . 452
5.10.1 Default Encoding . 452
5.10.2 UTF-8 Encoding . 452
5.10.3 Custom Encoding . 452
5.10.4 Console Output . 452

5.11 Limitations . 453
5.12 GitHub Repositories . 454

5.12.1 Repository Import . 454
5.12.2 MicroEJ GitHub Badges . 459

5.13 Module Repositories . 459
5.13.1 Central Repository . 459
5.13.2 Developer Repository . 460
5.13.3 Content Organization . 461

5.14 Libraries . 461
5.14.1 Graphical User Interface . 462
5.14.2 Native Language Support . 596
5.14.3 Networking . 603
5.14.4 Bluetooth . 620
5.14.5 Date and Time . 626
5.14.6 Event Queue . 637

vi

5.14.7 JavaScript . 645
5.15 Development Tools . 668

5.15.1 Event Tracing . 668
5.15.2 VEE Debugger Proxy . 671
5.15.3 Dependency Discoverer . 678
5.15.4 MicroEJ Linker . 679
5.15.5 MicroEJ Test Suite Engine . 692
5.15.6 Heap Usage Monitoring . 699

6 VEE Porting Guide 702
6.1 Introduction . 702

6.1.1 Scope . 702
6.1.2 Intended Audience . 702

6.2 MicroEJ Platform . 702
6.2.1 Introduction . 702
6.2.2 Build Process . 703
6.2.3 Concepts . 704

6.3 MicroEJ Architecture . 709
6.3.1 Naming Convention . 710
6.3.2 Architectures Changelog . 711
6.3.3 Release Notes . 743

6.4 MicroEJ Packs . 744
6.4.1 Overview . 744
6.4.2 Naming Convention . 744

6.5 Platform Creation . 745
6.5.1 Architecture Selection . 745
6.5.2 Platform Configuration . 746
6.5.3 Pack Import . 747
6.5.4 Platform Build . 748
6.5.5 PlatformModule Configuration . 750
6.5.6 Platform Customization . 752
6.5.7 Platform Publication . 752
6.5.8 BSP Connection . 753
6.5.9 Platform API Documentation . 758
6.5.10 Link-Time Option . 759

6.6 VEE Port Qualification . 760
6.6.1 Introduction . 760
6.6.2 VEE Port Qualification Tools Overview . 762
6.6.3 VEE Port Test Suite . 763
6.6.4 Create a VEE Port Test Suite . 764
6.6.5 Test Suite Versioning . 768

6.7 Core Engine . 769
6.7.1 Block Diagram . 770
6.7.2 Link Flow . 770
6.7.3 Architecture . 771
6.7.4 Capabilities . 772
6.7.5 Implementation . 773
6.7.6 Generic Output . 781
6.7.7 Link . 781
6.7.8 Dependencies . 782
6.7.9 Installation . 782
6.7.10 Abstraction Layer . 782
6.7.11 Memory Considerations . 782
6.7.12 Use . 783

vii

6.8 Advanced Event Tracing . 783
6.8.1 Principle . 783
6.8.2 Platforms using GNU LD linker . 783
6.8.3 Platforms using IAR ILINK linker . 784

6.9 Multi-Sandbox . 784
6.9.1 Principle . 784
6.9.2 Functional Description . 784
6.9.3 Memory Considerations . 785
6.9.4 Dependencies . 785
6.9.5 Installation . 785
6.9.6 Use . 785
6.9.7 Feature Installation . 785
6.9.8 RAM Control . 794

6.10 Tiny-Sandbox . 794
6.10.1 Principle . 794
6.10.2 Installation . 794
6.10.3 Limitations . 795

6.11 Native Interface Mechanisms . 795
6.11.1 Simple Native Interface (SNI) . 795
6.11.2 Shielded Plug (SP) . 799
6.11.3 MicroEJ Java H . 802

6.12 External Resources Loader . 803
6.12.1 Functional Description . 803
6.12.2 Implementations . 803
6.12.3 External Resources Folder . 804
6.12.4 Dependencies . 804
6.12.5 Installation . 805
6.12.6 Use . 805

6.13 Serial Communications . 805
6.13.1 ECOM . 805
6.13.2 ECOM Comm . 807

6.14 Graphical User Interface . 815
6.14.1 Principle . 815
6.14.2 UI Port . 817
6.14.3 MicroUI . 833
6.14.4 Static Initialization . 836
6.14.5 Abstraction Layer API . 840
6.14.6 LED . 842
6.14.7 Input . 844
6.14.8 Display . 857
6.14.9 Bu�er Refresh Strategy . 889
6.14.10 Drawings . 906
6.14.11 Images . 924
6.14.12 Fonts . 977
6.14.13 C Modules . 986
6.14.14 Simulation . 1000
6.14.15 Release Notes . 1006
6.14.16 Changelog . 1012
6.14.17 Migration Guide . 1053

6.15 Vector Graphics . 1082
6.15.1 Principle . 1082
6.15.2 MicroVG . 1083
6.15.3 Abstraction Layer API . 1083
6.15.4 Matrix . 1085

viii

6.15.5 Path . 1086
6.15.6 Gradient . 1088
6.15.7 Image . 1090
6.15.8 Font . 1095
6.15.9 C Modules . 1098
6.15.10 Simulation . 1102
6.15.11 Release Notes . 1102
6.15.12 Changelog . 1103
6.15.13 Migration Guide . 1111

6.16 Networking . 1113
6.16.1 Principle . 1113
6.16.2 Network Core Engine . 1114
6.16.3 SSL . 1115
6.16.4 Network Interfaces Management . 1116
6.16.5 Wi-Fi . 1117

6.17 Bluetooth . 1117
6.17.1 Principle . 1117
6.17.2 Functional Description . 1118
6.17.3 Overview . 1118
6.17.4 Dependencies . 1118
6.17.5 Installation . 1118
6.17.6 Use . 1118

6.18 Event Queue . 1118
6.18.1 Principle . 1118
6.18.2 Dependencies . 1119
6.18.3 Installation . 1119

6.19 File System . 1119
6.19.1 Principle . 1119
6.19.2 Functional Description . 1119
6.19.3 Dependencies . 1119
6.19.4 Installation . 1119
6.19.5 Use . 1121

6.20 Hardware Abstraction Layer . 1121
6.20.1 Principle . 1121
6.20.2 Functional Description . 1122
6.20.3 Identifier . 1122
6.20.4 Configuration . 1123
6.20.5 Dependencies . 1123
6.20.6 Installation . 1123
6.20.7 Use . 1123

6.21 Device Information . 1124
6.21.1 Principle . 1124
6.21.2 Dependencies . 1124
6.21.3 Installation . 1124
6.21.4 Use . 1124

6.22 Security . 1124
6.22.1 Principle . 1124
6.22.2 Dependencies . 1125
6.22.3 Installation . 1125
6.22.4 Use . 1125

6.23 Watchdog Timer . 1125
6.23.1 Overview . 1125
6.23.2 Principle . 1126
6.23.3 Mock Implementation . 1128

ix

6.23.4 Dependencies . 1128
6.23.5 Installation . 1129
6.23.6 Use in an Application . 1129
6.23.7 Code example in Java . 1129
6.23.8 Use in C inside the BSP . 1130
6.23.9 Code example in C . 1131

6.24 SystemView . 1132
6.24.1 Principle . 1132
6.24.2 References . 1133
6.24.3 Installation . 1133
6.24.4 MicroEJ Core Engine OS Task . 1137
6.24.5 OS Tasks and Java Threads Names . 1137
6.24.6 OS Tasks and Java Threads Priorities . 1138
6.24.7 Use . 1139
6.24.8 Troubleshooting . 1139
6.24.9 RTT block found by SystemView but no traces displayed 1141
6.24.10 Bus hardfault when running SystemView without Java Virtual Machine (JVM) 1141
6.24.11 SystemView for STM32 ST-Link Probe . 1141

6.25 Simulation . 1142
6.25.1 Principle . 1142
6.25.2 Functional Description . 1142
6.25.3 Dependencies . 1144
6.25.4 Installation . 1144
6.25.5 Use . 1144
6.25.6 Mock . 1144
6.25.7 Shielded Plug Mock . 1150
6.25.8 Front Panel Mock . 1151
6.25.9 Bluetooth Mock . 1160

6.26 Appendices . 1164
6.26.1 Low Level API . 1164
6.26.2 MicroEJ Foundation Libraries . 1181
6.26.3 Tools Options and Error Codes . 1190
6.26.4 Architectures MCU / Compiler . 1199
6.26.5 Former PlatformMigration . 1206
6.26.6 Architecture 8.0.0 Migration . 1215
6.26.7 Architecture 7.x Migration . 1217

7 Kernel Developer Guide 1224
7.1 Overview . 1224

7.1.1 Introduction . 1224
7.1.2 Terms and Definitions . 1224
7.1.3 Overall Architecture . 1225
7.1.4 Input and Output Artifacts . 1225
7.1.5 Kernel Build Flow . 1225
7.1.6 Kernel Implementation Libraries . 1226

7.2 Kernel & Features Specification . 1227
7.3 Getting Started . 1227
7.4 Kernel Creation . 1227

7.4.1 Create a new Project . 1227
7.4.2 Configure a VEE Port . 1228
7.4.3 Build the Executable and Virtual Device . 1228
7.4.4 Expose APIs . 1230
7.4.5 Implement a Security Policy . 1230
7.4.6 Add Pre-installed Applications . 1231

x

7.4.7 Build the Executable in the Workspace . 1231
7.4.8 Kernel Application Configuration . 1232

7.5 Kernel APIs . 1233
7.5.1 Kernel API Definition . 1233
7.5.2 Writing Kernel APIs . 1234

7.6 Runtime Environment . 1236
7.6.1 Principle . 1236
7.6.2 Create a new Runtime Environment Module . 1237
7.6.3 Use a Runtime Environment in an Application . 1240
7.6.4 Extend a Runtime Environment . 1240

7.7 Kernel UID . 1242
7.8 Sandboxed Application Lifecycle . 1242
7.9 Kernel and Features Communication . 1243

7.9.1 Shared Services . 1244
7.9.2 Communication between Features . 1244
7.9.3 Communication between Kernel and Feature . 1245
7.9.4 Implement a Registry . 1246
7.9.5 Kernel Types Converter . 1248

7.10 Multi-Sandbox Enabled Libraries . 1248
7.10.1 Manage Internal Global State . 1249
7.10.2 Implement a Security Manager Permission Check . 1251
7.10.3 Known Foundation Libraries Behavior . 1251

7.11 Setup a KF Test Suite . 1253
7.11.1 Enable the Test Suite . 1254
7.11.2 Add a KF Test . 1254
7.11.3 KF Test Suite Options . 1256

7.12 Kernel Linking . 1256
7.12.1 Link Flow . 1256
7.12.2 Kernel Metadata Generation . 1257
7.12.3 Feature Portability Control . 1258

7.13 Application Linking . 1259
7.13.1 SOAR Build Phases . 1259
7.13.2 Feature Build O� Board . 1261
7.13.3 Feature Build On Device . 1261
7.13.4 FSO Compatibility . 1264
7.13.5 Feature Portability . 1264

8 VEEWear User Guide 1266
8.1 Android Compatibility Kit . 1267

8.1.1 Overview . 1268
8.1.2 Installation . 1270
8.1.3 Project Setup . 1270
8.1.4 VEE Port . 1276

8.2 iOS Compatibility Kit . 1279
8.2.1 So�ware Architecture . 1279
8.2.2 Workflow . 1280
8.2.3 Evaluation . 1281

8.3 O�loading . 1281
8.3.1 Solution . 1281
8.3.2 Evaluation . 1282

9 Tutorials 1283
9.1 Understand How to Build a Firmware and its Dependencies . 1283

9.1.1 The Components . 1283

xi

9.1.2 How to Build . 1286
9.2 Create a MicroEJ Platform for a Custom Device . 1288

9.2.1 Introduction . 1288
9.2.2 A MicroEJ Platform Project is already available for the same MCU/RTOS/C Compiler 1289
9.2.3 A MicroEJ Platform Project is not available for the same MCU/RTOS/C Compiler 1290
9.2.4 Platform Validation . 1291
9.2.5 Further Assistance Needed . 1291

9.3 Create a MicroEJ Firmware From Scratch . 1291
9.3.1 Intended Audience . 1291
9.3.2 Introduction . 1291
9.3.3 Prerequisites . 1292
9.3.4 Overview . 1292
9.3.5 Setup the Development Environment . 1293
9.3.6 Get Running BSP . 1293
9.3.7 FreeRTOS Hello World . 1295
9.3.8 Create a MicroEJ Platform . 1297
9.3.9 Create MicroEJ Application HelloWorld . 1302
9.3.10 Configure BSP Connection in MicroEJ Application . 1305
9.3.11 MicroEJ and FreeRTOS Integration . 1307

9.4 Add IAR to MicroEJ SDK Docker Image . 1320
9.4.1 Prerequisites . 1320
9.4.2 Create the Dockerfile . 1320

9.5 Create MicroEJ Platform Build and Run Scripts . 1321
9.5.1 Intended Audience . 1321
9.5.2 Prerequisites . 1321
9.5.3 Introduction . 1322
9.5.4 Overview . 1322
9.5.5 Create Build and Run Scripts . 1322
9.5.6 Use Build Script in MicroEJ SDK . 1326
9.5.7 Going Further . 1330

9.6 Setup an Automated Build using Jenkins and Artifactory . 1330
9.6.1 Intended Audience . 1330
9.6.2 Introduction . 1330
9.6.3 Prerequisites . 1331
9.6.4 Overview . 1331
9.6.5 Prepare your Docker environment . 1332
9.6.6 Get a Module Repository . 1333
9.6.7 Setup Artifactory . 1334
9.6.8 Setup Gitea . 1335
9.6.9 Configure Gitea . 1336
9.6.10 Setup Jenkins . 1336
9.6.11 Build a newModule using Jenkins . 1336
9.6.12 Appendix . 1342

9.7 Improve the Quality of Java Code . 1343
9.7.1 Intended Audience . 1343
9.7.2 Readable Code . 1343
9.7.3 Best Practices . 1347
9.7.4 Related Tools . 1350

9.8 Optimize the Memory Footprint of an Application . 1350
9.8.1 Intended Audience . 1351
9.8.2 Introduction . 1351
9.8.3 How to Analyze the Footprint of an Application . 1351
9.8.4 How to Reduce the Image Size of an Application . 1352
9.8.5 How to Reduce the Runtime Size of an Application . 1358

xii

9.9 Explore Data Serialization Formats . 1360
9.9.1 Intended Audience . 1360
9.9.2 XML . 1360
9.9.3 JSON . 1362
9.9.4 CBOR . 1365

9.10 Instrument Java Code for Logging . 1366
9.10.1 Intended Audience . 1366
9.10.2 Introduction . 1366
9.10.3 Overview . 1366
9.10.4 Log with the Trace Library . 1367
9.10.5 Log with the Message Library . 1368
9.10.6 Log with the Logging Library . 1369
9.10.7 Remove Logging Related Code . 1370

9.11 Run a Test Suite on a Device . 1372
9.11.1 Intended Audience and Scope . 1372
9.11.2 Prerequisites . 1372
9.11.3 Introduction . 1373
9.11.4 Import the Test Suite . 1373
9.11.5 Configure the Test Suite . 1374
9.11.6 Run the Test Suite . 1376
9.11.7 Configure the Tests to Run . 1376
9.11.8 Examine the Test Suite Report . 1377

9.12 Implement a Blocking Java Native Method with SNI . 1377
9.12.1 Intended Audience . 1377
9.12.2 Prerequisites . 1377
9.12.3 Overview . 1378
9.12.4 Requirements . 1378
9.12.5 Example Code . 1378
9.12.6 Implement a Non-Blocking Method . 1380

9.13 Discover Embedded Debugging Techniques . 1382
9.13.1 Intended Audience . 1382
9.13.2 Debugging Tools . 1382
9.13.3 Use Case 1: Debugging a GUI Application Freeze . 1391
9.13.4 Use Case 2: Debugging a HardFault . 1396

9.14 Get Started With GUI . 1399
9.14.1 Setup your Environment . 1399
9.14.2 Starting MicroUI . 1402
9.14.3 Basic Drawing on Screen . 1406
9.14.4 Animation . 1410
9.14.5 Creating Widgets . 1412
9.14.6 Using Layouts . 1414
9.14.7 Style . 1417
9.14.8 Images . 1422
9.14.9 Advanced Styling . 1424
9.14.10 Event Handling . 1427
9.14.11 Fonts . 1428
9.14.12 Scroll List . 1435
9.14.13 Creating a Contact List using Scroll List . 1437
9.14.14 Internationalization . 1439

9.15 How to Validate GUIs . 1443
9.15.1 Implementing GUIs E�iciently . 1443
9.15.2 Benchmarking GUIs . 1444
9.15.3 Debugging GUIs . 1445
9.15.4 Testing GUIs . 1448

xiii

9.16 How to Test a GUI Application with a (So�ware) Robot . 1449
9.16.1 Overview . 1449
9.16.2 Record the Scenario . 1449
9.16.3 Set Up the Scenario Player . 1452
9.16.4 Run the Scenario . 1454

9.17 How to Detect Text Overflow . 1455
9.17.1 Instrumenting the Widget . 1455
9.17.2 Overriding the onLaidOut() Method . 1456
9.17.3 Testing . 1456
9.17.4 Improving the Detection . 1457

9.18 How to Add Emojis to a Vector Font . 1459
9.18.1 Intended Audience . 1459
9.18.2 Prerequisites . 1459
9.18.3 Append the Emoji Glyphs . 1460

10 Get Support 1462

11 About MicroEJ 1463

Index 1464

xiv

MicroEJ Documentation, Revision 32bb132e

Welcome to MicroEJ developer documentation. Browse the following chapters to familiarize yourself and under-
stand the principles of development with MicroEJ Technology.

• The Glossary chapter describes MicroEJ terminology.

• The Overview chapter introduces MicroEJ products and technology.

• The SDK User Guide chapter presents MICROEJ SDK (So�ware Development Kit).

• The Application Developer Guide presents how to develop a Java or JavaScript application on MICROEJ VEE
(Virtual Execution Environment).

• The VEE Porting Guide teaches you how to integrate MICROEJ VEE into a C Board Support Package as well as
simulation configurations.

• The Kernel Developer Guide introduces you to advanced concepts, such as partial updates and dynamic app
life cycle workflows.

• TheVEEWearUserGuideaddresses thedevelopmentof smartwatchapplicationsusingVEEWear, specifically
designed for low-power MCU and MPU.

• The Tutorials chapter covers a variety of topics related to developing with the MicroEJ ecosystem.

CONTENTS 1

glossary.html
overview/index.html
SDKUserGuide/index.html
ApplicationDeveloperGuide/index.html
VEEPortingGuide/index.html
KernelDeveloperGuide/index.html
VEEWearUserGuide/index.html
Tutorials/index.html

CHAPTER

ONE

MICROEJ GLOSSARY

Add-On Library
An Add-On Library is a pure Managed Code (Java, Javascript, managed-C, etc.) library. It runs over one or
more Foundation Libraries.

Abstraction Layer
An Abstraction Layer is the code (C, asm, etc.) that implements a Foundation Library’s low-level APIs over a
board support package (BSP) or a C library.

Application
An Application is a so�ware program that runs on a MICROEJ VEE.

Standalone Application
A Standalone Application is themain application that is executed byMICROEJ VEE. It is linked
statically to produce a Mono-Sandbox Executable.

Sandboxed Application
A Sandboxed Application is an Application that can run over a Multi-Sandbox Executable. It is
linked dynamically.

Kernel Application
A Kernel Application is a Standalone Application that implements the ability to be extended
to produce a Multi-Sandbox Executable.

Architecture
An Architecture is a so�ware package that includes the Core Engine port to a target instruction set and a C
compiler, core Foundation Libraries ([EDC], [BON], [SNI], [KF]) and theSimulator. Architectures aredistributed
either as evaluation or production version.

Core Engine, also named “MEJ32”
The Core Engine, also named MEJ32, is a scalable 32-bit core for resource-constrained embedded devices.
It is delivered in various flavors, mostly as a binary so�ware package. The Core Engine allows applications
written in various languages to run in a safe container.

Executable
An Executable is the result of the binary link of a Standalone Application with a VEE Port. It can be pro-
grammed into the flash memory of a device. (formerly called a Firmware)

Mono-Sandbox Executable
A Mono-Sandbox Executable is an Executable that implements an unmodifiable set of func-
tions. (formerly called a Single-app Firmware)

Multi-Sandbox Executable
A Multi-Sandbox Executable is an Executable that implements the ability to be extended, by
exposing a set of APIs and a memory space to link Sandboxed Applications. (formerly called
a Multi-app Firmware)

2

https://developer.microej.com/managed-code/
https://developer.microej.com/mej32-virtual-machine-for-embedded-systems/

MicroEJ Documentation, Revision 32bb132e

Foundation Library
A Foundation Library is a library that provides core or hardware-dependent functionalities. A Foundation
Library combinesManaged Code (Java, Javascript, managed-C, etc.) and low-level APIs (C, asm, etc.) imple-
mented by one or more Abstraction Layers through a native interface (SNI).

MICROEJ SDK
MICROEJ SDK is a comprehensive tools suite for developers to build VEE Ports for their devices, create Appli-
cations, build Executable, and run Virtual Devices.

MICROEJ VEE
MICROEJVEE isanapplicationscontainer. VEEstands forVirtual ExecutionEnvironment, and refers to the first
implementation that embeds a virtual 32-bit processor, hence the term “Virtual”. MICROEJ VEE runs on any
OS/RTOS commonly used in embedded systems (FreeRTOS,QP/C, uc/OS, ThreadX, embOS,MbedOS, Zephyr
OS, VxWorks, PikeOS, Integrity, Linux, QNX, . . .) and can also run without RTOS (bare-metal) or proprietary
RTOS. MICROEJ VEE includes the small MEJ32, along with a wide range of libraries (Add-On Libraries and
Foundation Libraries).

Mock
AMock is amockup of a board support package (BSP) capability thatmimics a hardware functionality for the
Simulator.

Module Manager
MicroEJ Module Manager (MMM) downloads, installs and controls the consistency of all the dependencies
and versions required to build and publish a MicroEJ asset. It is based on Semantic Versioning specification.

Simulator
The Simulator allows running Applications on a target hardware simulator on the developer’s desktop com-
puter. The Simulator runs one or more Mock that mimics the hardware functionality. It enables developers
to develop their Applications without the need of hardware.

VEE Port
AVEEPort is an implementationofMICROEJVEE for a target device. It integrates anArchitecture, oneormore
Foundation Libraries with their respective Abstraction Layers, and the board support package (BSP). It also
includes associated Mocks for the Simulator. (formerly called Platform)

Virtual Device
A Virtual Device is a so�ware package that includes the simulation part of an Executable: runtime, libraries
and application(s). It can be run on any desktop computer without the need of the SDK.

3

https://developer.microej.com/managed-code/
https://semver.org

CHAPTER

TWO

OVERVIEW

The MicroEJ product line o�ers profitable solutions to device manufacturers, application developers and service
providers for:

• Device so�ware development at lower cost and e�ort,

• Application development and deployment for generating extra revenue streams with services and data.

MicroEJ solutions enable delivery of user experience andbusinessmodels similar tomobile Internet (smartphones
and tablets) for embedded devices with strong cost constraints and strict resource limitations (processor perfor-
mance, RAM and flash memory footprint, low-power). It also combines the techniques, methods and tools that
drove the PC andmobile Internet so�ware industry, with the complex technical foundations of embedded systems
(fragmented processor architectures and diverse hardware-dependent so�ware).

With MicroEJ solutions, you will use provenmethods that cut so�ware development time and cost. You will create
so�ware that delivers incredible user experience and adjusts to the needs of your business.

2.1 Getting Started

MicroEJ Getting Started is available on https://developer.microej.com/get-started/.

Starting from scratch, the steps to go through the whole process are:

• Download and install an SDK Distribution;

• Select between one of the available boards;

• Import a demo Application;

• Download and install the corresponding VEE Port for the target hardware;

• Run the Application on Simulator with a Virtual Device;

• Build the Application for the target hardware to produce a Firmware;

• Deploy the Firmware on the board.

The following figure gives an overview of the SDK workflow:

4

https://developer.microej.com/get-started/

MicroEJ Documentation, Revision 32bb132e

Fig. 1: SDKWorkflow Overview

2.2 MICROEJ VEE

MicroEJ VEE (Virtual Execution Environment) is an applications container for resource-constrained embedded de-
vices running on microcontrollers or microprocessors. It allows devices to run multiple and mixed managed code
(Java, JavaScript) and C so�ware applications.

MicroEJ VEE provides a fully configurable set of services that can be expanded, including:

• a secure multi-application framework,

• a GUI framework (includes widgets),

• a network connection with security (SSL/TLS, HTTPS, REST, MQTT, . . .),

• a storage framework (file system)

• a Java Cryptography Architecture (JCA) implementation.

2.2. MICROEJ VEE 5

MicroEJ Documentation, Revision 32bb132e

Fig. 2: MICROEJ VEE Overview

2.3 MICROEJ SDK

MICROEJ SDK o�ers a comprehensive toolset to build the embedded so�ware of a device. The SDK covers two
levels in device so�ware development:

• Device Firmware development

• Application development

The firmware will generally be produced by the device OEM, it includes all device drivers and a specific set of Mi-
croEJ functionalities useful for application developers targeting this device.

2.3. MICROEJ SDK 6

MicroEJ Documentation, Revision 32bb132e

Fig. 3: SDKWorkflow Overview

Using the SDK, a firmware developer will produce two versions of the MicroEJ binary, each one able to run appli-
cations:

• An Executable binary to be flashed on OEM devices;

• A Virtual Device which will be used as a device simulator by application developers.

Using the SDK, an application developer will be able to:

• Import Virtual Devices matching his target hardware in order to develop and test applications on the Simu-
lator;

• Deploy the application locally on a hardware device equipped with the Firmware;

• Package and publish the application on a MicroEJ Forge Instance, enabling remote end users to install it on
their devices. Formore information aboutMicroEJ Forge, please consult https://www.microej.com/product/
forge.

The following diagram outlines the SDK content. Please refer to the SDK 5 User Guide chapter for more details on
the SDK and its usage.

2.3. MICROEJ SDK 7

https://www.microej.com/product/forge
https://www.microej.com/product/forge

MicroEJ Documentation, Revision 32bb132e

Fig. 4: SDK Components Overview

2.3. MICROEJ SDK 8

CHAPTER

THREE

SDK 5 USER GUIDE

MICROEJ SDK is an integrated environment to create so�ware applications for MicroEJ-ready devices. The SDK
provides tools to write applications and run them on a virtual (simulated) or real device. The capability to execute
an application in a simulated environment allows to quickly test changes done in the application code and hence
provides a short development feedback loop.

Since the purpose of the SDK is to develop for targeted MCU/MPU computers (IoT, wearable, etc.), it is a cross-
development tool. But unlike standard low-level cross-development tools, the SDK o�ers unique services like
hardware simulation and local deployment to the target hardware.

Fig. 1: MicroEJ Application Development Overview

The integrated environment is composed of the following main elements:

• SDK Version 5.x, an Integrated Development Environment (IDE) for writing and building Applications. It is
based on Eclipse Java edition and relies on the integrated Java compiler (JDT).

It is also packaged with Eclipse to produce a SDK Distribution.

• MicroEJModuleManager, themodule andbuildmanager used to compile andpackage any kind ofmodules
natures. It provides a Command Line Interface to buildmodules, especially used in a Continuous Integration
environment. SeeMicroEJ Module Manager section for more details.

• Architecture, the so�ware package that includes theMEJ32 port to a target instruction set and a C compiler,
SOAR, core libraries and Simulator. SeeMicroEJ Architecture section for more details.

The SDK allows to connect repositories hosting so�ware modules in source and binary form. By default, it is con-
figured with the repositories provided MicroEJ Corp.:

9

MicroEJ Documentation, Revision 32bb132e

• Central andDeveloperRepository, themodules repositories containing all the libraries required todevelop
an Application. SeeModule Repositories section for more details.

• Github Repositories, source repositories with examples and demos. See GitHub Repositories section for
more details.

The SDK is licensed under the SDK End User License Agreement (EULA). The following figure shows a detailed view
of the elements.

Fig. 2: SDK Detailed View

3.1 Installation

This chapter will guide you through the installation process of the SDK Distribution on your workstation.

If you want to evaluate MicroEJ, we recommend that you refer to the Getting Started chapter, which will guide you
to install an SDK Distribution compatible with the Getting Started tutorials.

Otherwise, follow the instructions of the Install Latest SDK Distribution page to install the latest SDK Distribution
compatible with your needs.

3.1. Installation 10

MicroEJ Documentation, Revision 32bb132e

Fig. 3: SDK Splash Screen

3.1.1 Install Latest SDK Distribution

This sectionwill guide you through the installation process of the latest SDK Distribution 24.01 using the step-by-
step executable installer.

The SDK Distribution 24.01 requires a JDK 11 and thus can only work with an Architecture 7.17.0 or higher. In all
other cases, please jump to Install SDK Distribution 21.11 section. See also the System Requirements page for more
information on the list of supported environments.

Note: Launching the SDK Distribution installer requires administrator privileges and a JDK 11 installed by default
on your workstation. If you don’t have one of them or if you do not want to modify your default settings, please
jump to Install Portable SDK Distribution section.

Download SDK Distribution

Download the SDK Distribution 24.01 installer for your operating system:

• Windows (.exe)

• Linux (.zip)

• macOS x86_64 - Intel chip (.zip)

• macOS aarch64 - M1 chip (.zip) (requires Architecture 7.18.0 or higher)

3.1. Installation 11

https://repository.microej.com/packages/SDK/24.01/MicroEJ-SDK-Installer-Win64-24.01.exe
https://repository.microej.com/packages/SDK/24.01/MicroEJ-SDK-Installer-Linux64-24.01.zip
https://repository.microej.com/packages/SDK/24.01/MicroEJ-SDK-Installer-MacOS-24.01.zip
https://repository.microej.com/packages/SDK/24.01/MicroEJ-SDK-Installer-MacOS-A64-24.01.zip

MicroEJ Documentation, Revision 32bb132e

Check JDK Version

From the version 22.06 , the SDK Distribution installer requires a JDK 11 installed by default on your workstation.
If you don’t have any JDK installed, see the Get JDK section.

Check the default Java version by running the following command in a new terminal:

> java -version

openjdk version "11.0.15" 2022-04-19
OpenJDK Runtime Environment Temurin-11.0.15+10 (build 11.0.15+10)
OpenJDK 64-Bit Server VM Temurin-11.0.15+10 (build 11.0.15+10, mixed mode)

Now you can proceed with the installation steps.

Install SDK Distribution

• Launch the installer executable

– OnWindows, start MicroEJ-SDK-Installer-Win64-24.01.exe .

– On Linux, unzip MicroEJ-SDK-Installer-Linux64-24.01.zip and start
MicroEJ-SDK-Installer-Linux64-1.3.0.sh .

– On macOS, unzip MicroEJ-SDK-Installer-MacOS-24.01.zip and start
MicroEJ-SDK-Installer-MacOS-1.3.0.app .

– Or unzip MicroEJ-SDK-Installer-MacOS-A64-24.01.zip and start
MicroEJ-SDK-Installer-MacOS-A64-1.3.0.app . In case of error, check your app has not been
put in quarantine (seemacOS troubleshooting section)

Fig. 4: Welcome to the installer

• Click on the Next button.

• Select I accept the terms of this license agreement. . Then click on the Next button.

3.1. Installation 12

MicroEJ Documentation, Revision 32bb132e

Fig. 5: Accept the terms of this license agreement

• Select the installation path of your SDK. By default it is C:\Program Files\MicroEJ\MicroEJ-SDK-24.01

for Windows. Then click on the Next button.

Fig. 6: Choose the installation path

• Click on the OK button to confirm the installation path.

3.1. Installation 13

MicroEJ Documentation, Revision 32bb132e

Fig. 7: Confirm your installation path

• Wait until the installation is done. Then click on the Next button.

Fig. 8: Installation in progress

• Select options depending on your own preferences. Then click on the Next button.

3.1. Installation 14

MicroEJ Documentation, Revision 32bb132e

Fig. 9: Select the options

• The installation has completed successfully. Click on the Done button.

Fig. 10: Your installation has completed successfully

The SDK Distribution is now installed on your computer. You can launch it from your application launcher or by
executing the MicroEJ executable in the installation path.

Once the SDK is started, it is recommended to check if updates are available (see Update SDK Version section). If
your are running SDK on Windows OS, it is also strongly recommended to configure Windows defender exclusion
rules.

3.1. Installation 15

MicroEJ Documentation, Revision 32bb132e

3.1.2 Update SDK Version

Once you have an SDK Distribution installed, you can update the included SDK Version to a newer version.

Note: If you want to know which SDK version is currently installed in your SDK Distribution, see the SDK Version
chapter.

To update your SDK Distribution to a newer SDK version, follow the next steps:

• Select Help > Check for updates .

Fig. 11: Check for updates

• If your SDK is up-to-date, you will see the following screen:

Fig. 12: No update available

• If an update is available, you will see the following screen:

3.1. Installation 16

MicroEJ Documentation, Revision 32bb132e

Fig. 13: Update available

• Check the version you want to install. Then click on the Next button.

• Review and confirm the updates. Then click on the Next button.

Fig. 14: Review the updates

• Select I accept the terms of the license agreements. . Then click on the Finish button.

3.1. Installation 17

MicroEJ Documentation, Revision 32bb132e

Fig. 15: Accept the terms of the license agreement

• Wait until the So�ware Update pop-up appears. Then click on the Restart Now button.

Fig. 16: Restart your SDK.

The update of your SDK is done.

3.1.3 Install Other SDK Distributions

Install Portable SDK Distribution

The portable package allows you to install the SDKDistributionwhen the use of the SDKDistribution installer is not
possible or not desired, for example:

• you do not have administrator privileges on your workstation;

• you want to install SDK Distribution 23.07 but JDK 11 is not your default JDK version;

• you want to install SDK Distribution up to 21.11 but JDK 8 is not your default JDK version.

Perform the following steps:

• Download the Portable SDK Distribution for your operating system:

3.1. Installation 18

MicroEJ Documentation, Revision 32bb132e

SDK
Dis-
tri-
bu-
tion

JDK
Ver-
sion

Windows Linux macOS x86_64 (Intel
chip)

macOS aarch64 (M1
chip)1

24.
01

11 Portable (.zip) Portable (.zip) Portable (.zip) Portable (.zip)

23.
07

11 Portable (.zip) Portable (.zip) Portable (.zip) Portable (.zip)

21.
11

8 Portable (.zip) Portable (.zip) Portable (.zip) N/A

• Once downloaded, extract the zip file in a local directory of your choice

• Edit the MicroEJ-SDK.ini file

• Configure the path to the JDK version indicated above by adding the option -vm at the beginning of the file.
If you don’t have any JDK installed, see the Get JDK section.

-vm
[path_to_jdk]/bin
-startup
plugins/org.eclipse.equinox.launcher_1.6.400.v20210924-0641.jar
...

• Start the SDK by executing MicroEJ-SDK.exe on Windows or MicroEJ-SDK on Linux or macOS.

Once the SDK is started, it is recommended to check if updates are available (see Update SDK Version section). If
your are running SDK on Windows OS, it is also strongly recommended to configure Windows defender exclusion
rules.

Install SDK Distribution 21.11

This section will guide you through the installation process of the SDK Distribution 21.11 using the step-by-step
executable installer.

The SDKDistribution 21.11 requires a JRE or a JDK 8 and is not available formacOSwithM1 chips. See the System
Requirements page for more information on the list of supported environments.

Note: Launching the SDK Distribution installer requires administrator privileges and a JDK 8 installed by default
on your workstation. If you don’t have one of them or if you do not want to modify your default settings, please
jump to Install Portable SDK Distribution section.

1 SDK Distribution for macOS aarch64 (M1 chip) requires Architecture 7.18.0 or higher.

3.1. Installation 19

https://repository.microej.com/packages/SDK/24.01/zip
https://repository.microej.com/packages/SDK/24.01/zip
https://repository.microej.com/packages/SDK/24.01/zip
https://repository.microej.com/packages/SDK/24.01/zip
https://repository.microej.com/packages/SDK/23.07/zip
https://repository.microej.com/packages/SDK/23.07/zip
https://repository.microej.com/packages/SDK/23.07/zip
https://repository.microej.com/packages/SDK/23.07/zip
https://repository.microej.com/packages/SDK/21.11/zip
https://repository.microej.com/packages/SDK/21.11/zip
https://repository.microej.com/packages/SDK/21.11/zip

MicroEJ Documentation, Revision 32bb132e

Download SDK Distribution

Download the SDK Distribution 21.11 installer for your operating system:

• Windows (.exe)

• Linux (.zip)

• macOS x86_64 - Intel chip (.zip)

Check JDK Version

The SDK Distribution 21.11 installer requires a JDK 8 installed by default on your workstation. If you don’t have
any JDK installed, see the Get JDK section.

Check the default Java version by running the following command in a new terminal:

> java -version

java version "1.8.0_281"
Java(TM) SE Runtime Environment (build 1.8.0_281-b09)
Java HotSpot(TM) 64-Bit Server VM (build 25.281-b09, mixed mode)

Now you can proceed with the installation steps.

Install SDK Distribution

• Launch the installer executable

– OnWindows, start MicroEJ-SDK-Installer-Win64-21.11.exe .

– On Linux, unzip MicroEJ-SDK-Installer-Linux64-21.11.zip and start
MicroEJ-SDK-Installer-Linux64-21.11.sh .

– On macOS, unzip MicroEJ-SDK-Installer-Linux64-21.11.zip and start
MicroEJ-SDK-Installer-MacOS-21.11.app . In case of error, check your app has not been put
in quarantine (seemacOS troubleshooting section).

3.1. Installation 20

https://repository.microej.com/packages/SDK/21.11/MicroEJ-SDK-Installer-Win64-21.11.exe
https://repository.microej.com/packages/SDK/21.11/MicroEJ-SDK-Installer-Linux64-21.11.zip
https://repository.microej.com/packages/SDK/21.11/MicroEJ-SDK-Installer-MacOS-21.11.zip

MicroEJ Documentation, Revision 32bb132e

Fig. 17: Welcome to the installer

• Click on the Next button.

• Select I accept the terms of this license agreement. . Then click on the Next button.

Fig. 18: Accept the terms of this license agreement

• Select the installation path of your SDK. By default it is C:\Program Files\MicroEJ\MicroEJ-SDK-21.11

for Windows. Then click on the Next button.

3.1. Installation 21

MicroEJ Documentation, Revision 32bb132e

Fig. 19: Choose the installation path

• Click on the OK button to confirm the installation path.

Fig. 20: Confirm your installation path

• Wait until the installation is done. Then click on the Next button.

3.1. Installation 22

MicroEJ Documentation, Revision 32bb132e

Fig. 21: Installation in progress

• Select options depending on your own preferences. Then click on the Next button.

Fig. 22: Select the options

• The installation has completed successfully. Click on the Done button.

3.1. Installation 23

MicroEJ Documentation, Revision 32bb132e

Fig. 23: Your installation has completed successfully

The SDK Distribution is now installed on your computer. You can launch it from your application launcher or by
executing the MicroEJ executable in the installation path.

Once the SDK is started, it is recommended to check if updates are available (see Update SDK Version section). If
your are running SDK on Windows OS, it is also strongly recommended to configure Windows defender exclusion
rules.

This section applies when the installation of the latest SDK Distribution via the installer does not fit your case:

• youwant to install the latest SDKDistribution compatiblewith JDK8, see Install SDKDistribution 21.11 section.

• you want to install an SDK Distribution with no native installer, see Install Portable SDK Distribution section.

• you want to install an old SDK Distribution. The following table gives you access to all the SDK 5.x Distribu-
tions download links.

3.1. Installation 24

MicroEJ Documentation, Revision 32bb132e

SDK
Dis-
tri-
bu-
tion

JDK
Ver-
sion

Windows Linux macOS
x86_64 (Intel
chip)

macOS
aarch64 (M1
chip)1

SDK Ver-
sion

Eclipse
Version

24.
01

11
• Installer
(.exe)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

5.8.2 2022-03

23.
07

11
• Installer
(.exe)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

5.8.0 2022-03

23.
02

11
• Installer
(.exe)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

5.7.0 2022-12

22.
06

11
• Installer
(.exe)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

5.6.0 2022-03

21.
11

8
• Installer
(.exe)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

N/A 5.5.0 2020-06

21.
03

8
• Installer
(.exe)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

N/A 5.4.0 2020-06

20.
12

8
• Installer
(.exe)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

N/A 5.3.1 2020-06

20.
10

8
• Installer
(.exe)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

N/A 5.3.0 2020-06

20.
07

8
• Installer
(.exe)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

N/A 5.2.0 4.7.2

19.
05

8
• Installer
(.exe)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

N/A 5.1.0 4.7.2

19.
02

8
• Installer
(.exe)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

• Installer
(.zip)

•
Portable
(.zip)

N/A 5.0.1 4.7.2

3.1. Installation 25

https://repository.microej.com/packages/SDK/24.01/MicroEJ-SDK-Installer-Win64-24.01.exe
https://repository.microej.com/packages/SDK/24.01/MicroEJ-SDK-Installer-Win64-24.01.exe
https://repository.microej.com/packages/SDK/24.01/zip
https://repository.microej.com/packages/SDK/24.01/zip
https://repository.microej.com/packages/SDK/24.01/MicroEJ-SDK-Installer-Linux64-24.01.zip
https://repository.microej.com/packages/SDK/24.01/MicroEJ-SDK-Installer-Linux64-24.01.zip
https://repository.microej.com/packages/SDK/24.01/zip
https://repository.microej.com/packages/SDK/24.01/zip
https://repository.microej.com/packages/SDK/24.01/MicroEJ-SDK-Installer-MacOS-24.01.zip
https://repository.microej.com/packages/SDK/24.01/MicroEJ-SDK-Installer-MacOS-24.01.zip
https://repository.microej.com/packages/SDK/24.01/zip
https://repository.microej.com/packages/SDK/24.01/zip
https://repository.microej.com/packages/SDK/24.01/MicroEJ-SDK-Installer-MacOS-A64-24.01.zip
https://repository.microej.com/packages/SDK/24.01/MicroEJ-SDK-Installer-MacOS-A64-24.01.zip
https://repository.microej.com/packages/SDK/24.01/zip
https://repository.microej.com/packages/SDK/24.01/zip
https://repository.microej.com/packages/SDK/23.07/MicroEJ-SDK-Installer-Win64-23.07.exe
https://repository.microej.com/packages/SDK/23.07/MicroEJ-SDK-Installer-Win64-23.07.exe
https://repository.microej.com/packages/SDK/23.07/zip
https://repository.microej.com/packages/SDK/23.07/zip
https://repository.microej.com/packages/SDK/23.07/MicroEJ-SDK-Installer-Linux64-23.07.zip
https://repository.microej.com/packages/SDK/23.07/MicroEJ-SDK-Installer-Linux64-23.07.zip
https://repository.microej.com/packages/SDK/23.07/zip
https://repository.microej.com/packages/SDK/23.07/zip
https://repository.microej.com/packages/SDK/23.07/MicroEJ-SDK-Installer-MacOS-23.07.zip
https://repository.microej.com/packages/SDK/23.07/MicroEJ-SDK-Installer-MacOS-23.07.zip
https://repository.microej.com/packages/SDK/23.07/zip
https://repository.microej.com/packages/SDK/23.07/zip
https://repository.microej.com/packages/SDK/23.07/MicroEJ-SDK-Installer-MacOS-A64-23.07.zip
https://repository.microej.com/packages/SDK/23.07/MicroEJ-SDK-Installer-MacOS-A64-23.07.zip
https://repository.microej.com/packages/SDK/23.07/zip
https://repository.microej.com/packages/SDK/23.07/zip
https://repository.microej.com/packages/SDK/23.02/MicroEJ-SDK-Installer-Win64-23.02.exe
https://repository.microej.com/packages/SDK/23.02/MicroEJ-SDK-Installer-Win64-23.02.exe
https://repository.microej.com/packages/SDK/23.02/zip
https://repository.microej.com/packages/SDK/23.02/zip
https://repository.microej.com/packages/SDK/23.02/MicroEJ-SDK-Installer-Linux64-23.02.zip
https://repository.microej.com/packages/SDK/23.02/MicroEJ-SDK-Installer-Linux64-23.02.zip
https://repository.microej.com/packages/SDK/23.02/zip
https://repository.microej.com/packages/SDK/23.02/zip
https://repository.microej.com/packages/SDK/23.02/MicroEJ-SDK-Installer-MacOS-23.02.zip
https://repository.microej.com/packages/SDK/23.02/MicroEJ-SDK-Installer-MacOS-23.02.zip
https://repository.microej.com/packages/SDK/23.02/zip
https://repository.microej.com/packages/SDK/23.02/zip
https://repository.microej.com/packages/SDK/23.02/MicroEJ-SDK-Installer-MacOS-A64-23.02.zip
https://repository.microej.com/packages/SDK/23.02/MicroEJ-SDK-Installer-MacOS-A64-23.02.zip
https://repository.microej.com/packages/SDK/23.02/zip
https://repository.microej.com/packages/SDK/23.02/zip
https://repository.microej.com/packages/SDK/22.06/MicroEJ-SDK-Installer-Win64-22.06.exe
https://repository.microej.com/packages/SDK/22.06/MicroEJ-SDK-Installer-Win64-22.06.exe
https://repository.microej.com/packages/SDK/22.06/zip
https://repository.microej.com/packages/SDK/22.06/zip
https://repository.microej.com/packages/SDK/22.06/MicroEJ-SDK-Installer-Linux64-22.06.zip
https://repository.microej.com/packages/SDK/22.06/MicroEJ-SDK-Installer-Linux64-22.06.zip
https://repository.microej.com/packages/SDK/22.06/zip
https://repository.microej.com/packages/SDK/22.06/zip
https://repository.microej.com/packages/SDK/22.06/MicroEJ-SDK-Installer-MacOS-22.06.zip
https://repository.microej.com/packages/SDK/22.06/MicroEJ-SDK-Installer-MacOS-22.06.zip
https://repository.microej.com/packages/SDK/22.06/zip
https://repository.microej.com/packages/SDK/22.06/zip
https://repository.microej.com/packages/SDK/22.06/MicroEJ-SDK-Installer-MacOS-A64-22.06.zip
https://repository.microej.com/packages/SDK/22.06/MicroEJ-SDK-Installer-MacOS-A64-22.06.zip
https://repository.microej.com/packages/SDK/22.06/zip
https://repository.microej.com/packages/SDK/22.06/zip
https://repository.microej.com/packages/SDK/21.11/MicroEJ-SDK-Installer-Win64-21.11.exe
https://repository.microej.com/packages/SDK/21.11/MicroEJ-SDK-Installer-Win64-21.11.exe
https://repository.microej.com/packages/SDK/21.11/zip
https://repository.microej.com/packages/SDK/21.11/zip
https://repository.microej.com/packages/SDK/21.11/MicroEJ-SDK-Installer-Linux64-21.11.zip
https://repository.microej.com/packages/SDK/21.11/MicroEJ-SDK-Installer-Linux64-21.11.zip
https://repository.microej.com/packages/SDK/21.11/zip
https://repository.microej.com/packages/SDK/21.11/zip
https://repository.microej.com/packages/SDK/21.11/MicroEJ-SDK-Installer-MacOS-21.11.zip
https://repository.microej.com/packages/SDK/21.11/MicroEJ-SDK-Installer-MacOS-21.11.zip
https://repository.microej.com/packages/SDK/21.11/zip
https://repository.microej.com/packages/SDK/21.11/zip
https://repository.microej.com/packages/SDK/21.03/MicroEJ-SDK-Installer-Win64-21.03.exe
https://repository.microej.com/packages/SDK/21.03/MicroEJ-SDK-Installer-Win64-21.03.exe
https://repository.microej.com/packages/SDK/21.03/zip
https://repository.microej.com/packages/SDK/21.03/zip
https://repository.microej.com/packages/SDK/21.03/MicroEJ-SDK-Installer-Linux64-21.03.zip
https://repository.microej.com/packages/SDK/21.03/MicroEJ-SDK-Installer-Linux64-21.03.zip
https://repository.microej.com/packages/SDK/21.03/zip
https://repository.microej.com/packages/SDK/21.03/zip
https://repository.microej.com/packages/SDK/21.03/MicroEJ-SDK-Installer-MacOS-21.03.zip
https://repository.microej.com/packages/SDK/21.03/MicroEJ-SDK-Installer-MacOS-21.03.zip
https://repository.microej.com/packages/SDK/21.03/zip
https://repository.microej.com/packages/SDK/21.03/zip
https://repository.microej.com/packages/SDK/20.12/MicroEJ-SDK-Installer-Win64-20.12.exe
https://repository.microej.com/packages/SDK/20.12/MicroEJ-SDK-Installer-Win64-20.12.exe
https://repository.microej.com/packages/SDK/20.12/zip
https://repository.microej.com/packages/SDK/20.12/zip
https://repository.microej.com/packages/SDK/20.12/MicroEJ-SDK-Installer-Linux64-20.12.zip
https://repository.microej.com/packages/SDK/20.12/MicroEJ-SDK-Installer-Linux64-20.12.zip
https://repository.microej.com/packages/SDK/20.12/zip
https://repository.microej.com/packages/SDK/20.12/zip
https://repository.microej.com/packages/SDK/20.12/MicroEJ-SDK-Installer-MacOS-20.12.zip
https://repository.microej.com/packages/SDK/20.12/MicroEJ-SDK-Installer-MacOS-20.12.zip
https://repository.microej.com/packages/SDK/20.12/zip
https://repository.microej.com/packages/SDK/20.12/zip
https://repository.microej.com/packages/SDK/20.10/MicroEJ-SDK-Installer-Win64-20.10.exe
https://repository.microej.com/packages/SDK/20.10/MicroEJ-SDK-Installer-Win64-20.10.exe
https://repository.microej.com/packages/SDK/20.10/zip
https://repository.microej.com/packages/SDK/20.10/zip
https://repository.microej.com/packages/SDK/20.10/MicroEJ-SDK-Installer-Linux64-20.10.zip
https://repository.microej.com/packages/SDK/20.10/MicroEJ-SDK-Installer-Linux64-20.10.zip
https://repository.microej.com/packages/SDK/20.10/zip
https://repository.microej.com/packages/SDK/20.10/zip
https://repository.microej.com/packages/SDK/20.10/MicroEJ-SDK-Installer-MacOS-20.10.zip
https://repository.microej.com/packages/SDK/20.10/MicroEJ-SDK-Installer-MacOS-20.10.zip
https://repository.microej.com/packages/SDK/20.10/zip
https://repository.microej.com/packages/SDK/20.10/zip
https://repository.microej.com/packages/SDK/20.07/MicroEJ-SDK-Installer-Win64-20.07.exe
https://repository.microej.com/packages/SDK/20.07/MicroEJ-SDK-Installer-Win64-20.07.exe
https://repository.microej.com/packages/SDK/20.07/zip
https://repository.microej.com/packages/SDK/20.07/zip
https://repository.microej.com/packages/SDK/20.07/MicroEJ-SDK-Installer-Linux64-20.07.zip
https://repository.microej.com/packages/SDK/20.07/MicroEJ-SDK-Installer-Linux64-20.07.zip
https://repository.microej.com/packages/SDK/20.07/zip
https://repository.microej.com/packages/SDK/20.07/zip
https://repository.microej.com/packages/SDK/20.07/MicroEJ-SDK-Installer-MacOS-20.07.zip
https://repository.microej.com/packages/SDK/20.07/MicroEJ-SDK-Installer-MacOS-20.07.zip
https://repository.microej.com/packages/SDK/20.07/zip
https://repository.microej.com/packages/SDK/20.07/zip
https://repository.microej.com/packages/SDK/19.05/MicroEJ-SDK-Installer-Win64-19.05.exe
https://repository.microej.com/packages/SDK/19.05/MicroEJ-SDK-Installer-Win64-19.05.exe
https://repository.microej.com/packages/SDK/19.05/zip
https://repository.microej.com/packages/SDK/19.05/zip
https://repository.microej.com/packages/SDK/19.05/MicroEJ-SDK-Installer-Linux64-19.05.zip
https://repository.microej.com/packages/SDK/19.05/MicroEJ-SDK-Installer-Linux64-19.05.zip
https://repository.microej.com/packages/SDK/19.05/zip
https://repository.microej.com/packages/SDK/19.05/zip
https://repository.microej.com/packages/SDK/19.05/MicroEJ-SDK-Installer-MacOS-19.05.zip
https://repository.microej.com/packages/SDK/19.05/MicroEJ-SDK-Installer-MacOS-19.05.zip
https://repository.microej.com/packages/SDK/19.05/zip
https://repository.microej.com/packages/SDK/19.05/zip
https://repository.microej.com/packages/SDK/19.02/MicroEJ-SDK-Installer-Win64-19.02.exe
https://repository.microej.com/packages/SDK/19.02/MicroEJ-SDK-Installer-Win64-19.02.exe
https://repository.microej.com/packages/SDK/19.02/zip
https://repository.microej.com/packages/SDK/19.02/zip
https://repository.microej.com/packages/SDK/19.02/MicroEJ-SDK-Installer-Linux64-19.02.zip
https://repository.microej.com/packages/SDK/19.02/MicroEJ-SDK-Installer-Linux64-19.02.zip
https://repository.microej.com/packages/SDK/19.02/zip
https://repository.microej.com/packages/SDK/19.02/zip
https://repository.microej.com/packages/SDK/19.02/MicroEJ-SDK-Installer-MacOS-19.02.zip
https://repository.microej.com/packages/SDK/19.02/MicroEJ-SDK-Installer-MacOS-19.02.zip
https://repository.microej.com/packages/SDK/19.02/zip
https://repository.microej.com/packages/SDK/19.02/zip

MicroEJ Documentation, Revision 32bb132e

Finally, if you need an older SDK Distribution, browse the SDK Downloads Page.

3.1.4 System Requirements

• Hardware :

– Intel x64 (Dual-core i5 minimum) or macOS AArch64 (M1) processor

– 4GB RAM (minimum)

– 2GB Disk (minimum)

• Operating Systems :

– Windows 11, Windows 10, Windows 8.1 or Windows 8

– Linuxdistributions (testedonUbuntu 18.04, 20.04and22.04) - As of SDKDistribution 20.10 (based
on Eclipse 2020-06), Ubuntu 16.04 is not supported.

– macOS x86_64 with Intel chip (tested on version 10.13 High Sierra, 10.14 Mojave)

– macOS aarch64withM1 chip (tested on version 12.0.1 Monterey), from SDKDistribution 22.06 (re-
quires Architecture 7.18.0 or higher)

• Java Runtime Environment :

The compatible JRE/JDK version depends on the Distribution, the SDK and the Architecture version. This table lists
the supported combinations:

Distribution SDK Architecture JRE/JDK
>= 22.06 >= 5.6.0 >= 7.17.0 JDK 11
<= 21.11 >= 5.6.0 >= 7.17.0 JRE or JDK 8 or 11
<= 21.11 < 5.6.0 * JRE or JDK 8
<= 21.11 * < 7.17.0 JRE or JDK 8

The combinations not listed here are not supported. For the supported combinations, tests have been done with
both the Oracle and the Eclipse Adoptium JDK builds.

Warning: It is important to note that the SDKDistributions 22.06 and higher require a JDK 11 (not a JRE) and
can be used only with an Architecture 7.17.0 or more.

Get JDK

You can download and install a JDK from Adoptium or Oracle.

Warning: Up to version 23.02 of the SDK Distribution, when installing the Eclipse Temurin/AdoptOpenJDK
build on Windows, the option JavaSoft (Oracle) registry keys must be enabled:

1 SDK Distribution for macOS aarch64 (M1 chip) requires Architecture 7.18.0 or higher.

3.1. Installation 26

https://repository.microej.com/packages/SDK/
https://adoptium.net/temurin/releases/
https://www.oracle.com/fr/java/technologies/downloads/

MicroEJ Documentation, Revision 32bb132e

Without this option, the SDK installer cannot find the JDK and the message The application requires a
Java Runtime Environment 8 is displayed.

3.1.5 Troubleshooting

Incompatible Default Java Version

When launching the installer, youmayget the followingerror: The application you are trying to install requires a JDK11
.

Or when launching the SDK, youmay get the following error: Version: 11 or greater is required .

3.1. Installation 27

MicroEJ Documentation, Revision 32bb132e

The default Java version installed on your system is not compatible. You have two options:

• either install a JDK 11 as your default JVM. If you are on Windows OS and your SDK Distribution version is
23.02 or lower, ensure you enabled JavaSoft (Oracle) registry keys during the JDK installation (see
Get JDK),

• or install the portable SDK Distribution if you don’t want to modify your default JVM version.

This latter case is recommended if you are installing SDK Dist. 22.06 or higher while you already have active
projects based on SDK Dist. 21.11 .

Windows Specifics

If you are using Windows Defender as your default antivirus so�ware, the SDK may be slowed down as it manipu-
lates lots of JAR files (which are ZIP files) that are regularly analyzed.

To improve the SDK experience, please find below a list of folders that should be excluded fromWindows Defender
monitoring:

• %USERPROFILE%\.eclipse

• %USERPROFILE%\.ivy2

• %USERPROFILE%\.microej

• %USERPROFILE%\.p2

• %USERPROFILE%\AppData\Local\Temp\microej

• C:\Program Files\MicroEJ or the custom directory where the SDK has been installed

• your workspace(s) folder(s)

The exclusion page is available in the Settings application (Windows Security > Virus & threat protection >

Manage settings > Exclusions > Add or remove exclusions).

Linux Specifics

Starting the SDK on a linux distribution may produce troubles such as missing content pages. This is related to
incomplete Eclipse SWT configuration (see Eclipse GTK wiki page).

One solution is to configure Eclipse as follows:

• Add the next lines to MicroEJ-SDK.ini , before -vmargs argument:

--launcher.GTK_Version 2

• Ensure GTK is correctly installed (libwebkitgtk packet)

3.1. Installation 28

https://wiki.eclipse.org/SWT/Devel/Gtk/GtkVersion

MicroEJ Documentation, Revision 32bb132e

• Configure the following environment variables

MOZILLA_FIVE_HOME=/usr/lib/mozilla
LD_LIBRARY_PATH=${MOZILLA_FIVE_HOME}:${LD_LIBRARY_PATH}

• Restart the SDK

• Check there is not more SWT/MOZILLA related errors (Window > Show View > Other. . . > General >
Error Log)

MacOS Specifics

When launching the SDK using the .app file, youmay encounter the following message:

"MicroEJ-SDK-xx.xx" is damaged and can't be opened. You should move it to the Trash.

or this one:

"MicroEJ-SDK-xx.xx" cannot be opened because the developer cannot be verified.

This is due to macOS putting applications in quarantine when downloaded with a browser. Use this command to
remove the SDK application from quarantine:

sudo xattr -rd com.apple.quarantine sdk.app

where sdk.app is the SDK file name.

3.2 Licenses

3.2.1 SDK EULA

MICROEJ SDK is licensed under the SDK EndUser License Agreement (EULA), which covers the following elements:

• SDK Tools & Plugins packaged in the SDK 5.x Version,

• Architectures,

• Modules published to the Central Repositorywith the SDK EULA license, such as GUI or Networking Pack (see
Central Repository Licensing for more details).

Fig. 24: SDK EULA Coverage

3.2. Licenses 29

MicroEJ Documentation, Revision 32bb132e

3.2.2 License Manager Overview

Architectures are distributed in two di�erent versions:

• Evaluation Architectures, associated with a so�ware license key. They can be downloaded at https://
repository.microej.com/modules/com/microej/architecture/.

• Production Architectures, associated with a hardware license key stored on a USB dongle. They can be re-
quested to our support team.

The license manager is provided with Architectures and then integrated into VEE Ports, consequently:

• Evaluation licenses will be shown only if at least one Evaluation Architecture or VEE Port built from an Evalu-
ation Architecture has been imported in the SDK.

• Production licenses will be shown only if at least one Production Architecture or VEE Port built from a Pro-
duction Architecture has been imported in the SDK.

The list of installed licenses is available in theSDKpreferencesdialogpage in Window > Preferences > MicroEJ
:

Fig. 25: License Manager View

3.2.3 License Check

The table below summarizes where the license is checked.

Application Run on
Simulator
(Virtual
Device)

Build on De-
vice

Documentation Link

Standalone Application or Kernel Application NO YES Run on the Device
Sandboxed Application NO NO Application Linking

3.2. Licenses 30

https://repository.microej.com/modules/com/microej/architecture/
https://repository.microej.com/modules/com/microej/architecture/

MicroEJ Documentation, Revision 32bb132e

3.2.4 Evaluation Licenses

This section shouldbeconsideredwhenusingEvaluationArchitectures,whichuse so�ware licensekeys. Amachine
UID needs to be provided to activate an Evaluation license on the MicroEJ Licenses Server. Themachine UID is a 16
hexadecimal digits number.

Get your Machine UID

Retrieving the machine UID depends on the kind of VEE Port being evaluated.

If your VEE Port is already imported in Package Explorer and built with MicroEJ Module Manager, the Architecture
has been automatically imported. The machine UID will be displayed when building a Standalone Application on
device.

[INFO] Launching in Evaluation mode. Your UID is XXXXXXXXXXXXXXXX.
[ERROR] Invalid license check (No license found).

Otherwise, an Architecture or VEE Port should have been manually imported from the SDK preferences page. The
machine UID can be retrieved as follows:

• Go to Window > Preferences > MicroEJ ,

• Select either Architectures , Platforms in workspace or Platforms ,

• Click on one of the available items,

• Press the Get UID button to get the machine UID.

Note: To access this Get UID option, at least one Evaluation Architecture or VEE Port must have been imported
before (see License Manager Overview).

Copy the UID. It will be needed when requesting a license.

Fig. 26: Machine UID for Evaluation License

3.2. Licenses 31

MicroEJ Documentation, Revision 32bb132e

Request your Activation Key

• Go to MicroEJ Licenses Server https://license.microej.com.

• Click on Create a new account link.

• Create your account with a valid email address. You will receive a confirmation email a few minutes a�er.
Click on the confirmation link in the email and log in with your new account.

• Click on Activate a License .

• Set Product P/N: to 9PEVNLDBU6IJ .

• Set UID: to the machine UID you copied before.

• Click on Activate .

• The license is being activated. You should receive your activation by email in less than 5 minutes. If not,
please contact our support team.

• Once received by email, save the attached zip file that contains your activation key.

Install the License Key

If your VEE Port is already imported in Package Explorer and built withMicroEJ Module Manager, the license key zip
file must be simply dropped to the ~/.microej/licenses/ directory (create it if it doesn’t exist).

Fig. 27: MicroEJ Shared Licenses Directory

Note: The SDKPreferences pagewill be automatically refreshedwhenbuilding a Standalone Application ondevice.

Otherwise, the license key must be installed as follows:

• Go back to the SDK.

• Select the Window > Preferences > MicroEJ menu.

• Press Add. . . .

• Browse the previously downloaded activation key archive file.

• Press OK. A new license is successfully installed.

• Go to Architectures sub-menu and check that all Architectures are now activated (green check).

• Your SDK is successfully activated.

If an errormessage appears, the license key could not be installed. (see section Troubleshooting). A license key can
be removed from the key-store by selecting it and by clicking on Remove button.

3.2. Licenses 32

https://license.microej.com

MicroEJ Documentation, Revision 32bb132e

Troubleshooting

Unable to add an Evaluation license key in the SDK

Consider this section when an error message appears while adding the Evaluation license key. Before contacting
our support team, please check the following conditions:

• Key is corrupted (wrong copy/paste, missing characters, or extra characters)

• Key has not been generated for the installed environment

• Key has not been generated with the machine UID

• Machine UID has changed since submitting license request and no longer matches license key

• Keyhasnotbeengenerated foroneof the installedArchitectures (no licensemanagerable to load this license)

Fig. 28: Invalid License Key Error Message

Machine UID has changed

This canoccurwhen thehardware configurationof themachine is changed (especiallywhen thenetwork interfaces
have changed).

In this case, you can either request a new activation key for this new UID or go back to the previous hardware
configuration.

3.2.5 Production Licenses

This section should be considered when using Production Architectures, which use hardware license keys stored
on a USB dongle.

3.2. Licenses 33

MicroEJ Documentation, Revision 32bb132e

Fig. 29: MicroEJ USB Dongle

Note: If your USB dongle has been provided to you by your sales representative and you don’t have received an
activation certificate by email, itmay be a pre-activated dongle. Then you can skip the activation steps and directly
jump to the Check Activation section.

Request your Activation Key

• Go to license.microej.com.

• Click on Create a new account link.

• Create your account with a valid email address. You will receive a confirmation email a few minutes a�er.
Click on the confirmation link in the email and login with your new account.

• Click on Activate a License .

• Set Product P/N: to The P/N on the activation certificate.

• Enter your UID: serial number printed on the USB dongle label (8 alphanumeric char.).

• Click on Activate and check the confirmation message.

• Click on Confirm your registration .

• Enter the Registration Code provided on the activation certificate.

• Click on Submit .

• Your Activation Key will be sent to you by email as soon as it is available (12 business hours max.).

Note: You can check the My Products page to verify your product registration status, the Activation Key avail-
ability, and download the Activation Key when available.

Once the Activation Key is available, download and save the Activation Key ZIP file to a local directory.

3.2. Licenses 34

https://license.microej.com/

MicroEJ Documentation, Revision 32bb132e

Activate your USB Dongle

This section contains instructions that will allow you to flash your USB dongle with the proper activation key.

You shall ensure that the following prerequisites are met :

• Your operating system is Windows

• The USB dongle is plugged and recognized by your operating system (see Troubleshooting section)

• Nomore than one USB dongle is plugged into the computer while running the update tool

• The update tool is not launched from a network drive or a USB key

• The activation key you downloaded is the one for the dongle UID on the sticker attached to the dongle (each
activation key is tied to the unique hardware ID of the dongle).

You can then proceed to the USB dongle update:

• Unzip the Activation Key file to a local directory

• Enter the directory just created by your ZIP extraction tool.

• Launch the executable program.

• Accept running the unsigned so�ware if requested (Windows 10/11)

• Click on the Update button (no password needed)

3.2. Licenses 35

MicroEJ Documentation, Revision 32bb132e

Fig. 30: Dongle Update Tool

• On success, an Update successfully message shall appear. On failure, an Error key or no proper
rockey message may appear.

Fig. 31: Successful Dongle Update

3.2. Licenses 36

MicroEJ Documentation, Revision 32bb132e

Check Activation

This section contains instructions that will allow you to verify that your USB dongle has been properly activated.

Check Activation in the SDK

Note: Production licenseswill be shownonly if at least oneProduction Architecture or VEEPort has been imported
before (see License Manager Overview).

In the SDK,

• Go to Window > Preferences > MicroEJ ,

• Go to Architectures , Platforms in workspace or Platforms sub-menu and check that all items are now
activated (green check).

Fig. 32: License Status OK

If the license is still not recognized (red cross), checkwith the following command line tool to getmore information.

Check Activation with the Command Line Tool

To get more details on connected USB dongle(s), run the debug tool as following:

1. Open a terminal.

2. Change directory to a Production VEE Port.

3. Execute the command:

java -Djava.library.path=resources/os/[OS_NAME] -jar licenseManager/
→˓licenseManagerUsbDongle.jar

3.2. Licenses 37

MicroEJ Documentation, Revision 32bb132e

with OS_NAME set to Windows64 for Windows OS, Linux64 for Linux OS, Mac for macOS x86_64 (Intel chip)
or MacA64 for macOS aarch64 (M1 chip).

If your USB dongle has been properly activated, you should get the following output:

[DEBUG] ===== MicroEJ Dongle Debug Tool =====
[DEBUG] => Detected dongle UID: XXXXXXXX.
[DEBUG] => Dongle UID has valid MicroEJ data: XXXXXXXX (only the first one is␣
→˓listed).
[DEBUG] => Detected MicroEJ License XXXXX-XXXXX-XXXXX-XXXXX - valid until YYYY-MM-
→˓DD.
[DEBUG] ===== SUCCESS =====

USB Dongle on GNU/Linux

For GNU/Linux Users (Ubuntu at least), by default, the dongle access has not been granted to the user, you have to
modify udev rules. Please create a /etc/udev/rules.d/91-usbdongle.rules file with the following contents:

ACTION!="add", GOTO="usbdongle_end"
SUBSYSTEM=="usb", GOTO="usbdongle_start"
SUBSYSTEMS=="usb", GOTO="usbdongle_start"
GOTO="usbdongle_end"

LABEL="usbdongle_start"

ATTRS{idVendor}=="096e" , ATTRS{idProduct}=="0006" , MODE="0666"

LABEL="usbdongle_end"

Then, restart udev: sudo /etc/init.d/udev restart

You can check that the device is recognized by running the lsusb command. The output of the command should
contain a line similar to the one below for each dongle: Bus 002 Device 003: ID 096e:0006 Feitian
Technologies, Inc.

USB Dongle with Docker on Linux

If you use the SDK Docker image on a Linux host to build an Executable, the donglemust bemapped to the Docker
container. First, it requires to add a symlink on the dongle by following the instructions of the USB Dongle on
GNU/Linux section but with this /etc/udev/rules.d/91-usbdongle.rules file:

ACTION!="add", GOTO="usbdongle_end"
SUBSYSTEM=="usb", GOTO="usbdongle_start"
SUBSYSTEMS=="usb", GOTO="usbdongle_start"
GOTO="usbdongle_end"

LABEL="usbdongle_start"

ATTRS{idVendor}=="096e" , ATTRS{idProduct}=="0006" , MODE="0666" , SYMLINK+="microej_
→˓dongle"

LABEL="usbdongle_end"

3.2. Licenses 38

https://hub.docker.com/r/microej/sdk

MicroEJ Documentation, Revision 32bb132e

Then the symlink has to bemapped in the Docker container by adding the following option in the Docker container
creation command line:

--device /dev/microej_dongle:/dev/bus/usb/999/microej_dongle

The /dev/microej_dongle symlink can bemapped to any device path as long as it is in /dev/bus/usb .

USB Dongle with WSL

Note: The following steps have been tested on WSL2 with Ubuntu 22.04.2 LTS.

To use a USB dongle with WSL, you first need to install usbipd following the steps described in Microso� WSL doc-
umentation:

First, check that WSL2 is installed on your system. If not, install it or update it following Microso� Documentation

Then, you need install usbipd-win on Windows from usbipd-win Github repository.

And then, install usbipd and update hardware database inside you WSL installation:

sudo apt install linux-tools-generic hwdata
sudo update-alternatives --install /usr/local/bin/usbip usbip /usr/lib/linux-tools/
→˓*-generic/usbip 20

Add the udev rule described in USB Dongle on GNU/Linux, and restart udev:

/etc/init.d/udev restart

You then need to unplug and plug your dongle again before attaching the dongle to WSL from powershell:

usbipd.exe wsl attach --busid <BUSID>

The <BUSID> can be obtainted with the following powershell command:

usbipd wsl list

Note: You’ll need to follow these steps each time you system is rebooted or the dongle is plugged/unplugged.

Troubleshooting

This section contains instructions to check that your operating system correctly recognizes your USB dongle.

3.2. Licenses 39

https://learn.microsoft.com/fr-fr/windows/wsl/connect-usb#install-the-usbipd-win-project
https://learn.microsoft.com/fr-fr/windows/wsl/connect-usb#install-the-usbipd-win-project
https://learn.microsoft.com/fr-fr/windows/wsl/install
https://github.com/dorssel/usbipd-win/releases

MicroEJ Documentation, Revision 32bb132e

Windows Troubleshooting

• If the dongle activation failed with No rockey message, check there is one and only one dongle recognized
with the following hardware ID :

HID\VID_096E&PID_0006&REV_0201

Go to the Device Manager > Human Interface Devices and check among the USB Input Device entries

that the Details > Hardware Ids property match the ID mentioned before.

• If the dongle activationwas successful with Update successfully message but the license does not appear
in the SDK or is not updated, try to activate again by starting the executable with administrator privileges:

• If the following errormessage is thrownwhenbuilding anExecutable, either thedongle plugged is a verbatim
dongle or it has not been successfully activated:

Invalid license check (Dongle found is not compatible).

VirtualBox Troubleshooting

In a VirtualBox virtual machine, USB drives must be enabled to be recognized correctly. Make sure to enable the
USB dongle by clicking on it in the VirtualBox menu Devices > USB .

To make this setting persistent, go to Devices > USB > USB Settings. . . and add the USB dongle in the

USB Devices Filters list.

WSL Troubleshooting

Check that your dongle is attached to WSL from Powershell:

usbipd wsl list

You should have a line saying Attached - Ubuntu :

PS C:\Users\sdkuser> usbipd.exe wsl list
BUSID VID:PID DEVICE ␣
→˓STATE
2-1 096e:0006 USB Input Device ␣
→˓Attached - Ubuntu
2-6 0c45:6a10 Integrated Webcam ␣

(continues on next page)

3.2. Licenses 40

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

→˓Not attached
2-10 8087:0026 Intel(R) Wireless Bluetooth(R) ␣
→˓Not attached
3-1 045e:0823 USB Input Device ␣
→˓Not attached
3-4 046d:c31c USB Input Device ␣
→˓Not attached

In you WSL console, the dongle must also be recognized. Ckeck by using lsusb` :

skduser@host:~/workspaces/docs$ lsusb
Bus 002 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub
Bus 001 Device 003: ID 096e:0006 Feitian Technologies, Inc. HID Dongle (for OEMs -␣
→˓manufacturer string is "OEM")
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

This might not be su�icient. If you’re still facing license issues, restart udev, abd attach your dongle to WSL once
again.

Note: Hibernation may have unattached your dongle. Reload udev, unplug/plug your dongle and attach it from
powershell.

Dongle not detected in the licenses screen

If the USB dongle is plugged and activated but not visible in the menu Window > Preferences > MicroEJ ,
please check that youhaveanactiveVEEPort in Window > Preferences > MicroEJ > Platforms in workspace
.

Then, ensure that the VEE Port has been built in prod configuration, this can be checked with the architecture
dependency inside the file module.ivy . If no VEE Ports are visible in your current workspace, please build a VEE
Port configured to the prod mode and this should fix the issue.

3.2. Licenses 41

MicroEJ Documentation, Revision 32bb132e

Remote USB Dongle Connection

When the dongle cannot be physically plugged to themachine running the SDK (cloud builds, virtualization, miss-
ing permissions, . . .), it can be configured using USB redirection over IP network.

There aremany hardware and so�ware solutions available on themarket. Among others, this has been testedwith
https://www.net-usb.com/ and https://www.virtualhere.com/. Please contact our support team for more details.

3.3 Standalone Application

3.3.1 Platform Import

A Platform is required to run a Standalone Application on the Simulator or build the Firmware binary for the target
device.

The VEE Porting Guide describes how to create a Platform from scratch for any kind of device. In addition, Mi-
croEJ Corp. provides Platforms for various development boards (see https://repository.microej.com/index.php?
resource=JPF).

Platforms are distributed in two packages:

• Source Platform. The source files are imported into the workspace. This is the default case.

• Binary Platform. A .jpf file is imported into theMicroEJ repository. As of MicroEJ SDK 5.3.0 , this package
is deprecated.

Source Platform Import

Import from Folder

This section applies when the Platform files are already available on a local folder. This is likely the case when the
files are checked out from a Version Control System, such as a local git repository clone.

Note: If you are going to import a Platform from MicroEJ Github, you can follow the specific GitHub Repositories
section instead (the projects will be automatically imported).

• Select File > Import. . . > General > Existing Projects into Workspace > Select root directory >

Browse. . . .

• Select the root directory. The wizard will automatically discover projects to import.

• Click on the Finish button.

3.3. Standalone Application 42

https://www.net-usb.com/
https://www.virtualhere.com/
https://repository.microej.com/index.php?resource=JPF
https://repository.microej.com/index.php?resource=JPF

MicroEJ Documentation, Revision 32bb132e

Import from Zip File

This section applies when the Platform files are packaged in a .zip file.

• Select File > Import. . . > General > Existing Projects into Workspace > Select archive file >

Browse. . . .

• Select the zip of the project (e.g., x.zip). The wizard will automatically discover projects to import.

• Click on the Finish button.

Platform Build

Platforms are usually shared with only the Platform configuration files. Once the projects are imported, follow the
platform-specific documentation to build the Platform.

Once imported or built, a Platform project should be available as follows:

Fig. 33: Platform Project

The source folder contains the Platform content which can be set to the target.platform.dir option.

Binary Platform Import

A�er downloading the Platform .jpf file, launch MicroEJ SDK and follow these steps to import the Platform:

• Open the Platform view in MicroEJ SDK, select Window > Preferences > MicroEJ > Platforms . The
view should be empty on a fresh install of the tool.

3.3. Standalone Application 43

MicroEJ Documentation, Revision 32bb132e

Fig. 34: Platform Import

• Press Import. . . button.

• Choose Select File. . . and use the Browse option to navigate to the .jpf file containing your Platform,
then read and accept the license agreement to proceed.

3.3. Standalone Application 44

MicroEJ Documentation, Revision 32bb132e

Fig. 35: Platform Selection

• The Platform should now appear in the Platforms view, with a green valid mark.

3.3. Standalone Application 45

MicroEJ Documentation, Revision 32bb132e

Fig. 36: Platform List

3.3.2 Build and Run an Application

Create a MicroEJ Standalone Application

Note: This section is releated to the version 5 and lower of the SDK. If you use the SDK 6, please refer to the page
Create a Project.

• Create a project in your workspace. Select File > New > Standalone Application Project .

Fig. 37: NewMicroEJ Standalone Application Project

3.3. Standalone Application 46

MicroEJ Documentation, Revision 32bb132e

• Fill in the Application template fields, the project name field will automatically duplicate in the following
fields. For this tutorial, the project name is hello . Click on Finish . A template project is automatically
created and ready to use, this project already contains all folders wherein developers need to put content:

– src/main/java : Folder for future sources

– src/main/resources : Folder for future resources (raw resources, images, fonts, nls)

– module.ivy : Module description file, dependencies description for the current project

• A Main class already exists in the package com.mycompany and prints “Hello World!” :

Fig. 38: MicroEJ Application Content

The main Application is now ready to be executed. See next sections.

Run on the Simulator

Note: This section is releated to the version 5 and lower of the SDK. If you use the SDK 6, please refer to the page
Run on Simulator.

Note: A Platform must have been imported to run the Application. If several Platforms have been imported, the
target Platform can be selected in the Launcher’s Execution tab.

To run the sample project on Simulator, select it in the le� panel then right-click and select Run > Run as >
MicroEJ Application .

3.3. Standalone Application 47

MicroEJ Documentation, Revision 32bb132e

Fig. 39: MicroEJ Launcher Shortcut

MicroEJ SDK console will display Launch steps messages.

=============== [Initialization Stage] ===============
=============== [Launching on Simulator] ===============
Hello World!
=============== [Completed Successfully] ===============

SUCCESS

Run on the Device

Build the Application

• Open the run dialog (Run > Run Configurations. . .).

• Select the MicroEJ Application > Hello Main that is created by the previous chapter.

• Open Execution tab and select Execute on Device .

• Set Settings checkbox to Build & Deploy .

3.3. Standalone Application 48

MicroEJ Documentation, Revision 32bb132e

Fig. 40: Execution on Device

• Click Run : The Application is compiled and the Application, the runtime library and the header files are
automatically deployed to the locations defined in your Platform BSP connection settings.

=============== [Deployment] ===============
MicroEJ files for the 3rd-party BSP project are generated to '<application-project>/<fully-
→˓qualified-name-of-main-class>/platform'.
The MicroEJ application (microejapp.o) has been deployed to: '<path-to-deployment-location>'.
The MicroEJ platform library (microejruntime.a) has been deployed to: '<path-to-deployment-
→˓location>'.
The MicroEJ platform header files (*.h) have been deployed to: '<path-to-deployment-location>
→˓'.
=============== [Completed Successfully] ===============

SUCCESS

3.3. Standalone Application 49

MicroEJ Documentation, Revision 32bb132e

Build the Executable File

If your Platform has configured a build script file, the final Application linking can be triggered from the launcher:

• Open Configuration tab and select Device > Deploy . The options to deploy the Application, runtime
library and header files have already been set in the previous step.

• Check Execute the MicroEJ build script (build.bat) at a location known by the 3rd-party BSP project .

Fig. 41: BSP Connection Application Options

Note: The table MicroEJ Application Options for BSP Connection specifies the Application options that can be set
depending on the BSP connection configured by the Platform.

• Click Apply and Run : the final executable application.out file is generated in the directory fromwhere
the script has been executed and can now be deployed on your Device using the appropriate flash tool.

3.3. Standalone Application 50

MicroEJ Documentation, Revision 32bb132e

3.3.3 MicroEJ Launch

TheMicroEJ launch configuration sets up theMicroEJApplicationsenvironment (main class, target, andApplication
options), and then launches a script for execution.

Execution is done either on the Simulator or on the Device. In this latter case, it may depend on external tools such
as target memory programming.

Main Tab

The Main tab allows you to set in order:

1. The main project of the application.

2. The main class of the application containing the main method.

3. Types required in your application that are not statically embedded from themain class entry point. Most re-
quired typesare those thatmaybe loadeddynamicallyby theapplication, using theClass.forName()method.

4. Binary resources that need to be embedded by the application. These are usually loaded by the application
using the Class.getResourceAsStream() method.

5. Immutable objects’ description files. See the [BON 1.2] ESR documentation for use of immutable objects.

3.3. Standalone Application 51

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#forName-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#getResourceAsStream-java.lang.String-

MicroEJ Documentation, Revision 32bb132e

Fig. 42: MicroEJ Launch Application Main Tab

Execution Tab

The next tab is the Execution tab. Here the target needs to be selected. Choose between execution on a MicroEJ
Platform or on a MicroEJ Simulator. Each of themmay providemultiple launch settings. This page also allows you
to keep generated, intermediate files and to print verbose options (advanced debug purpose options).

3.3. Standalone Application 52

MicroEJ Documentation, Revision 32bb132e

Fig. 43: MicroEJ Launch Application Execution Tab

Configuration Tab

The next tab is the Configuration tab. This tab shows the available Application options.

3.3. Standalone Application 53

MicroEJ Documentation, Revision 32bb132e

Fig. 44: Configuration Tab

JRE Tab

The next tab is the JRE tab. This tab allows you to configure the Java Runtime Environment used for running the
underlying launch script. It does not configure the MicroEJ Application execution. The VM Arguments text field
allows you to set vm-specific options, which are typically used to increase memory spaces:

• Tomodify heap space to 1024MB, set the -Xmx1024M option.

• To modify string space (also called PermGen space) to 256MB, set the -XX:PermSize=256M
-XX:MaxPermSize=256M options.

• To set thread stack space to 512MB, set the -Xss512M option.

• To set an advanced Application option, declare a system property with the following pattern
-D[OPTION_KEY]>=[OPTION_VALUE]

3.3. Standalone Application 54

MicroEJ Documentation, Revision 32bb132e

Source Tab

Thenext tab is the Source tab. Bydefault, it is automatically configured to connect your Add-OnLibraries sources
dependencies. To connect your PlatformFoundation Library sources, please refer to the section Foundation Library
Sources.

Common Tab

The last tab is the Common tab. This is a default Eclipse tab that allows to configure your launch. Particularly,
you can configure the console encoding. Refer to Eclipse help for more details on other available options.

A Standalone Application is a Java Application directly linked to the C code to produce an Executable. Such an
application must define a main entry point (i.e., a class containing a public static void main(String[])
method).

The next chapters explain how to build and run a Standalone Application.

3.3. Standalone Application 55

MicroEJ Documentation, Revision 32bb132e

3.4 Sandboxed Application

3.4.1 Create a First Application

Now that the purposes of the Sandboxed Applications have been explained, let’s create a first application.

A Sandboxed Application project can be created in the SDK with the menu File > New >
Sandboxed Application Project .

Fig. 45: Sandboxed Application Project Creation Menu

The project creation window is displayed:

Fig. 46: Sandboxed Application Project Creation Form

3.4. Sandboxed Application 56

MicroEJ Documentation, Revision 32bb132e

Once the Application information are fulfilled and validated, the project is created with the following structure:

src/main/java
Application Java sources;

src/main/resources
Application resources (raw resources, images, fonts, nls);

module.ivy
Module description file, containing build information and dependencies of the project.

The next sections describe the required files to have your first basic Application.

Entry Point

ASandboxedApplicationmust contain a class implementing the ej.kf.FeatureEntryPoint interface in the src/
main/java folder:

package com.mycompany;

import ej.kf.FeatureEntryPoint;

public class MyApplication implements FeatureEntryPoint {

@Override
public void start() {

System.out.println("Feature MyApplication started!");
}

@Override
public void stop() {

System.out.println("Feature MyApplication stopped!");
}

}

This class is the entry point of the Application. The method start is called when the Application is started. It is
considered as themainmethod of the Sandboxed Application. Themethod stop is called when the Application is
stopped. Please refer to the Sandboxed Application Lifecycle chapter to learnmore about the Applications lifecycle.

The src/main/java folder is also the place to add all the other Java classes of the Application.

Configuration

A Sandboxed Application project must contain a file with the .kf extension in the src/main/resources folder.
This file contains the configuration of the Application. Here is an example:

name=MyApplication
entryPoint=com.mycompany.MyApplication
types=*
version=0.1.0

It contains the following properties:

• name: the name of the Application

• entryPoint: the Full Qualified Name of the class implementing ej.kf.FeatureEntryPoint

3.4. Sandboxed Application 57

MicroEJ Documentation, Revision 32bb132e

• types: this property defined the types included in the Application andmust always be * (do not forget the
space at the end)

• version: the version of the Application

SSL Certificate

A Sandboxed Application requires a certificate for identification. It must be located in the src/main/resources
folder of the project. The project created by the SDK provides a sample certificate. This certificate is su�icient for
testing, but it is recommended to provide your own.

Module Descriptor

The module.ivy file is the Module description file which contains the project information and declares all the
libraries required by the Application. SeeMicroEJ Module Manager for more information.

The dependencies must contain at least a module containing the ej.kf.FeatureEntryPoint class, for example
the KF library:

<dependency org="ej.api" name="kf" rev="1.6.1" />

3.4.2 Run on the Simulator

Note: This page is releated to the version 5 and lower of the SDK. If you use the SDK 6, please refer to the page Run
on Simulator.

Once a Sandboxed Application project has been created, it can be tested on the Simulator.

The Simulator requires a Virtual Device to execute the Application. Please refer to the Kernel Developer Guide to
learn how to get or create one.

From the SDK

In order to test a Sandboxed Application in the SDK, the first thing to do is to import the Virtual Device of the Multi-
Sandbox Executable:

• go to Window > Preferences > MicroEJ > Virtual Devices

• click on Import. . .

• the Virtual Device can be provided as a folder or as a .vde file, select the adequate format and the Virtual
Device resource

• check the License checkbox to accept it

• click on Finish

3.4. Sandboxed Application 58

MicroEJ Documentation, Revision 32bb132e

Fig. 47: Virtual Device Import

Now the Application can be executed by right-clicking on its project, then clicking on Run As >
MicroEJ Application .

3.4. Sandboxed Application 59

MicroEJ Documentation, Revision 32bb132e

Fig. 48: Sandboxed Application Run

If there is only one Virtual Device imported in the SDK, it is automatically used to execute the Application. Other-
wise, you have to select the one you want to use.

With the Application created in the section Create a First Application, the output should be:

=============== [Initialization Stage] ===============
=============== [Converting fonts] ===============
=============== [Converting images] ===============
=============== [Launching on Simulator] ===============
KERNEL Hello World!
=> Starting Feature MyApplication
Feature MyApplication started!
=============== [Completed Successfully] ===============

SUCCESS

3.4. Sandboxed Application 60

MicroEJ Documentation, Revision 32bb132e

Run Multiple Sandboxed Applications

It is possible to execute additional Sandboxed Applications besides the main Sandboxed Application project. This
is typically useful when you want to test the integration of a Sandboxed Application that communicates with an
other one, for example through a Shared Interface.

The additional Sandboxed Applications must have been previously built in its binary format (WPK, see Remote
Deployment section). Then, to include them:

• Select the Sandboxed Application project,

• Create the META-INF/wpk folders,

• Drop any *.wpk files in the META-INF/wpk folder.

Your Sandboxed Application project shall look like:

Now, when launching the Sandboxed Application project, these additional Sandboxed Applications will also be
executed on the Virtual Device.

From the Command Line Interface

An Sandboxed Application can also be launched on the Simulator via the Command Line Interface. Before contin-
uing, make sure the Command Line Interface is installed and correctly configured.

In your favorite terminal application, go to the root folder of the Application and execute the following commands:

mmm build
mmm run -Dplatform-loader.target.platform.file=/path/to/the/virtual-device.vde

With the Application created in the section Create a First Application, the output should be:

MicroEJ Simulator is being launched. Relax and enjoy...
=============== [Initializing Easyant] ===============
=============== [Resolving and retrieving dependencies] ===============
=============== [Compiling sources] ===============
=============== [Loading platform] ===============
=============== [Initialization Stage] ===============
=============== [Converting fonts] ===============
=============== [Converting images] ===============

(continues on next page)

3.4. Sandboxed Application 61

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

=============== [Launching on Simulator] ===============
KERNEL Hello World!
=> Starting Feature MyApplication
Feature MyApplication started!
=============== [Completed Successfully] ===============

SUCCESS

Note that the Virtual Device location can also be configured in the module.ivy file of the Sandboxed Application
project:

<ea:property name="platform-loader.target.platform.file" value="/path/to/the/virtual-device.
→˓vde"/>

The Virtual Device can also be provided di�erently, for example from a dependency in the module.ivy file. Refer
to the Platform Selection section for the list of available capabilities.

3.4.3 Run on the Device

The deployment of a Sandboxed Application on a device depends on the Kernel implementation. We can group
them in two categories:

• Local Deployment: the device is connected to the developer’s computer, the SDK builds the .fo from the
workspace project classes and transfers it on the device (recommended during application development).

• Remote Deployment: the Application is built, then the device connects a Repository where the Application
is stored, and deploys it over the air using a device management system (production deployment).

In both cases, deploying a Sandboxed Application requires that a Multi-Sandbox Executable is running on the de-
vice. Please refer to the Kernel Developer Guide to learn how to build it or browse the Resources Repository for
Multi-Sandbox demo Firmware available for popular hardware evaluation kits.

Local Deployment

Deploying an Application on a device locally is the easiest way to test it since it only requires:

• the Application project sources imported in the SDK,

• thedeviceprogrammedwith aMulti-SandboxExecutable that provides the LocalDeployment capability (you
can browse the Resources Repository for available demos of such Multi-Sandbox Executable),

• the device connected to the developer’s computer either on the same network (LAN) or using a serial wire,
depending on the Firmware capabilities.

If these prerequisites are fulfilled:

• duplicate the Run Configuration created in the chapter Run on the Simulator,

3.4. Sandboxed Application 62

https://repository.microej.com/index.php?resource=FIRM&topic=ALL&version=ANY&edition=ANY
https://repository.microej.com/index.php?resource=FIRM&topic=ALL&version=ANY&edition=ANY

MicroEJ Documentation, Revision 32bb132e

Fig. 49: Duplicate Run Configuration

• rename the duplicated Run Configuration, for example by prefixing by (Local) ,

• in the Execution tab, modify the Execution mode to Execute on Device ,

Note: The selected Platform must be a Virtual Device (VDE) including the Local Deployment capability,
not a VEE Port.

• select the option Local Deployment (Socket) in the Settings list. Note that depending on the device
capability, the virtual device may implement a local deployment over a Comm Port.

3.4. Sandboxed Application 63

MicroEJ Documentation, Revision 32bb132e

Fig. 50: Configure Run Configuration

• go to the Configuration tab,

• select the item Local Deployment (Socket) ,

• set the IP address of the device in the Host field,

• click on the Run button to deploy the Application on the board.

The Console output should be:

=============== [Initialization Stage] ===============
=============== [Converting fonts] ===============
=============== [Converting images] ===============
=============== [Build Application] ===============
=============== [Completed Successfully] ===============
=============== [Deploy on 192.168.0.7:4000] ===============
=============== [Completed Successfully] ===============

SUCCESS

The Application is deployed on the device and automatically started. You can use a Serial terminal to get the traces
of the Application:

KERNEL Hello World!
=> Starting Feature MyApplication
Feature MyApplication started!

3.4. Sandboxed Application 64

MicroEJ Documentation, Revision 32bb132e

Remote Deployment

Remote Deployment requires building and publishing the Sandboxed Application module. To do so, in the SDK,
right-click on the Sandboxed Application project and click on Build Module .

The build process will display messages in the console, ending up the following message:

[echo] project hello published locally with version 0.1.0-RC201907091602

BUILD SUCCESSFUL

Total time: 1 minute 6 seconds

The files produced by the build process are located in a dedicated target~/artifacts folder in the project and is
published to the target module repository declared inMicroEJ Module Manager settings file.

The file that ends with .wpk (the WPK file) is a portable file that contains all necessary binary data to build .
fo files on any compatible Multi-Sandbox Executable. Then, the WPK file can be published to a MICROEJ FORGE
instance. Please contact our support team if you want to getmore information onMICROEJ FORGE and automated
Applications deployment through a device management system.

A Sandboxed Application is an Application that can run over a Multi-Sandbox Executable.

The Application development flow requires the following elements:

• a Virtual Device, a so�ware package including the resources and tools required for building and testing an
application for a specific device. A Virtual Device will simulate all capabilities of the corresponding hardware
board:

– Computation and Memory

– Communication channels (e.g., Network, USB . . .)

– Display

– User interaction

• an hardware device that has been previously programmedwith a Multi-Sandbox Executable. Virtual Devices
and Multi-Sandbox Executable share the same version (there is a 1:1 mapping).

The next chapters explain how to create, test and publish Sandboxed Applications.

3.5 Module Repository

A module repository is a module that bundles a set of modules in a portable ZIP file. It is a tree structure where
modules organizations and names are mapped to folders.

3.5. Module Repository 65

https://www.microej.com/product/forge/
https://www.microej.com/product/forge/

MicroEJ Documentation, Revision 32bb132e

Fig. 51: Example of MicroEJ Module Repository Tree

Amodule repository takes its input modules from other repositories, usually theMicroEJ Central Repository which
is itself built by MicroEJ Corp. as a module repository.

3.5. Module Repository 66

MicroEJ Documentation, Revision 32bb132e

A module repository is o�en called an o�line repository as it includes the settings file for a local configuration in
MicroEJ SDK. It can also be imported in MicroEJ Forge.

3.5.1 Create a Repository Project

In the SDK, first create a newmodule project using the artifact-repository skeleton.

• The ivysettings.xml settings file describes how to import the modules of this repository when it is ex-
tracted locally on file system. This file will be packaged at the root of the zip file and does not need to be
modified.

• The module.ivy file describes how to build repository and lists the module dependencies that will be in-
cluded in this repository.

3.5.2 Configure Resolver for Input Modules

MicroEJ Module Manager (MMM) needs to import dependencies to build the module repository. The location
fetched by MMM is defined by a resolver. The resolver is configured with the parameter bar.populate.from.
resolver . The preset value is the resolver provided by default in MicroEJ SDK configuration, which is connected
toMicroEJ Central Repository.

<ea:property name="bar.populate.from.resolver" value="MicroEJChainResolver"/>

The MicroEJChainResolver is a URL resolver defined in $USER_HOME\.microej\
microej-ivysettings-[VERSION].xml that points to MicroEJ Central Repository.

3.5.3 Configure Consistency Check

The module repository consistency check consists in verifying that each declared module can be imported using
the settings file provided by the repository. Especially, it ensures that all module transitive dependencies are also
available.

It is enabled by default to avoid further issues for repository users such as Unresolved Dependency. This is done by
the following option:

<ea:property name="skip.retrieve.checker" value="false"/>

Moreover, to ensure the repository will be compliant with theMMM specification, add the following option:

<ea:property name="bar.check.as.v2.module" value="true"/>

3.5.4 Advanced Options

There are other advanced options that do not need to be modified by default. These options are described in the
module.ivy generated by the skeleton.

See alsoModule Repository for more details.

3.5. Module Repository 67

https://www.microej.com/product/forge/

MicroEJ Documentation, Revision 32bb132e

3.5.5 Include Modules

Modules bundled into the module repository must be declared in the dependencies element of the module.ivy
file.

Include a Single Module

To add amodule, declare themodule dependency using the artifacts configuration:

<dependencies>
<dependency conf="artifacts->*" transitive="false" org="[module_org]" name="[module_name]

→˓" rev="[module_version]" />

<!-- ... other dependencies ... -->
</dependencies>

For example, to add the ej.api.edc library version 1.2.3 , write the following line:

<dependency conf="artifacts->*" transitive="false" org="ej.api" name="edc" rev="1.2.3" />

Note: We recommended to manually describe each dependency of the module repository, in order to keep full
controlof the includedmodulesaswell as includedmodulesversions. Moduledependencies canstill be transitively
included by setting the dependency attribute transitive to true . In this case, the includedmodule versions are
those that have been resolved when the module was built.

Multiple versions of the same module can be included by declaring each dependency using a di�erent configura-
tion. The artifacts configurationhas tobederivedwith anewnameasmany times as there aredi�erent versions
to include.

<configurations defaultconfmapping="default->default;provided->provided">
<conf name="artifacts" visibility="private"/>
<conf name="artifacts_1" visibility="private"/>
<conf name="artifacts_2" visibility="private"/>

<!-- ... other configurations ... -->
</configurations>

<dependencies>
<dependency conf="artifacts->*" transitive="false" org="[module_org]" name="[module_name]

→˓" rev="[module_version_1]" />
<dependency conf="artifacts_1->*" transitive="false" org="[module_org]" name="[module_

→˓name]" rev="[module_version_2]" />
<dependency conf="artifacts_2->*" transitive="false" org="[module_org]" name="[module_

→˓name]" rev="[module_version_3]" />

<!-- ... other dependencies ... -->
</dependencies>

3.5. Module Repository 68

MicroEJ Documentation, Revision 32bb132e

Include a Module Repository

To add all the modules already included in an other module repository, add the configuration repository if it
does not exist:

<configurations defaultconfmapping="default->default;provided->provided">
<!-- ... other configurations ... -->
<conf name="repository" visibility="private" description="Repository to be embedded in␣

→˓the repository" />

</configurations>

Then declare the module repository dependency using the repository configuration:

<dependencies>
<dependency conf="repository->*" transitive="false" org="[repository_org]" name=

→˓"[repository_name]" rev="[repository_version]" />

<!-- ... other dependencies ... -->
</dependencies>

3.5.6 Generate Javadoc

Anoverall Javadoc canbegeneratedbeside the includedmodules. It is built fromof all Java elements of all libraries
included in the module repository.

Javadoc generation is disabled in the module.ivy generated by the skeleton. To enable javadoc generation, re-
move skip.javadoc option or set it to false .

There are also javadoc specific options such as Java packages exclusion. Please refer to *javadoc* options of
Module Repository reference documentation.

As of SDK 5.3.0, themodule dependency line that defines a Java type is shown in the topmenu.

Fig. 52: Example of Javadoc Module Dependency

3.5. Module Repository 69

MicroEJ Documentation, Revision 32bb132e

3.5.7 Build the Repository

In the Package Explorer, right-click on the repository project and select Build Module .

The build consists of two steps:

1. Gathers all module dependencies. The whole repository content is created under target~/
mergedArtifactsRepository folder.

2. Checks the repository consistency. For each module, it tries to import it from this repository and fails the
build if at least one of the dependencies cannot be resolved.

Themodule repository .zip file is built in the target~/artifacts/ folder. This file may be published along with
a CHANGELOG.md , LICENSE.txt and README.md .

3.5.8 Use the O�line Repository

By default, when starting an empty workspace, MicroEJ SDK is configured to import dependencies from MicroEJ
Central Repository.

To configure MicroEJ SDK to import dependencies from a local module repository, follow these steps:

1. Open theMMM preferences page: Window > Preferences > MicroEJ > Module Manager .

2. In Module Manager group, click on Import Repository .

3. Select the module repository .zip file, and then click on Finish .

The import may take some time. The module repository is unzipped in the folder ${user.dir}/.microej/
repositories , and the settings are updated.

3.6 Platform Selection

Note: This page is releated to the version 5 and lower of the SDK. If you use the SDK 6, please refer to the page
Select a VEE Port.

Building or running an Application or a Test Suitewith MMM requires a Platform.

There are 4 di�erent ways to provide a Platform for a module project:

• Set the build option platform-loader.target.platform.file to the path of a Platform file (.zip , .jpf
or .vde).

• Set thebuild option platform-loader.target.platform.dir to thepathof the source folder of analready
imported Source Platform.

• Declare amodule dependency with the conf platform :

<dependency org="myorg" name="myname" rev="1.0.0" conf="platform->default"␣
→˓transitive="false"/>

• Copy a Platform file to the dropins folder. The default dropins folder location is [module_project_dir]/
dropins . It can be changed using the build option platform-loader.target.platform.dropins .

3.6. Platform Selection 70

MicroEJ Documentation, Revision 32bb132e

Note: Using a Platform in the .zip format requires at least the version 5.4.0 of the SDK.

At least 1 of these 4 ways is required to build an application with a platform. If several ways are used, the following
rules are applied:

• If platform-loader.target.platform.file or platform-loader.target.platform.dir is set, the other
options are ignored.

• If the the module project defined several platforms, the build fails. For example the following cases are not
allowed:

– Setting a platform with the option platform-loader.target.platform.file and another one with
the option platform-loader.target.platform.dir

– Declaring a platform as a dependency and adding a platform in the dropins folder

– Declaring 2 platforms as Dependencies

– Adding 2 platforms in the dropins folder

Refer to the Platform Loader section for a complete list of options.

3.7 Module Natures

Note: This page is releated to the version 5 and lower of the SDK. If you use the SDK 6, please refer to the page
Module Natures.

This page describes the most commonmodule natures as follows:

• Skeleton Name: the project skeleton name.

• Build Type Name: the build type name, derived from the module nature name: com.is2t.easyant.
buildtypes#build-[NATURE_NAME] .

• Documentation: a link to the documentation.

• SDK Menu: the menu to the direct wizard in the SDK (if available). Any module nature can be created with
the default wizard from File > New > Module Project .

• Configuration: properties that can be defined to configure the module. Properties are defined inside the
ea:build tag of the module.ivy file, using ea:property tag as described in the section Build Options. A
module nature also inherits the build options from the listed Natures Plugins.

3.7.1 Add-On Library

Skeleton Name: microej-javalib

Build Type Name: com.is2t.easyant.buildtypes#build-microej-javalib

Documentation: Libraries

SDKMenu: File > New > Add-On Library Project

Configuration:

This module nature inherits the build options of the following plugins:

3.7. Module Natures 71

MicroEJ Documentation, Revision 32bb132e

• Java Compilation

• Platform Loader

• Javadoc

• Test Suite

• Artifact Checker

3.7.2 Add-On Processor

Skeleton Name: addon-processor

Build Type Name: com.is2t.easyant.buildtypes#build-addon-processor

Configuration:

This module nature inherits the build options of the following plugins:

• Java Compilation

• J2SE Unit Tests

• Artifact Checker

3.7.3 Foundation Library API

Skeleton Name: microej-javaapi

Build Type Name: com.is2t.easyant.buildtypes#build-microej-javaapi

Documentation: Libraries

Configuration:

This module nature inherits the build options of the following plugins:

• Java Compilation

• Javadoc

• Artifact Checker

This module nature defines the following dedicated build options:

Name Description Default
microej.lib.name Platform library name on the form: [NAME]-[VERSION]-api . -

[NAME] : name of the implemented Foundation Library API module.
- [VERSION] : version of the implemented Foundation Library API
module without patch (Major.minor).

Not set

rip.printableName Printable name for the Platform Editor. Not set

3.7. Module Natures 72

MicroEJ Documentation, Revision 32bb132e

3.7.4 Foundation Library Implementation

Skeleton Name: microej-javaimpl

Build Type Name: com.is2t.easyant.buildtypes#build-microej-javaimpl

Documentation: Libraries

Configuration:

This module nature inherits the build options of the following plugins:

• Java Compilation

• Test Suite

• Artifact Checker3

This module nature defines the following dedicated build options:

Name Description Default
microej.lib.implfor Execution target. Possible values are emb (only onDevice), sim (only

Simulator) and common (both).
common

3.7.5 Kernel Application

Skeleton Name: firmware-multiapp

Build Type Name: com.is2t.easyant.buildtypes#build-firmware-multiapp

Documentation: Kernel Developer Guide

Configuration:

This module nature inherits the build options of the following plugins:

• Java Compilation

• Platform Loader

• Javadoc

• Artifact Checker3

This module nature defines the following dedicated build options:

Name Description Default
application.main.class Full Qualified Name of the main class of the kernel. This option is

required.
Not set

runtime.api.name Name of the Runtime API of the kernel. This option is ignored when
a Runtime API is declared in the dependencies.

RUNTIME

runtime.api.version Versionof theRuntimeAPI of thekernel. This option is ignoredwhen
a Runtime API is declared in the dependencies.

1.0

skip.build.virtual.device When this property is set (any value), the virtual device is not built. Not set
virtual.device.sim.only When this property is set (any value), the Executable is not built. Not set
launch.properties.jvm Additional options to pass to the JVM for building the Executable. -Xmx1024M

3 Require SDK version 5.5.0 or higher.

3.7. Module Natures 73

MicroEJ Documentation, Revision 32bb132e

3.7.6 Meta Build

Skeleton Name: microej-meta-build

Build Type Name: com.is2t.easyant.buildtypes#microej-meta-build

Documentation: Meta Build

Configuration:

This module nature defines the following dedicated build options:

Name Description Default
metabuild.root Path of the root folder containing the modules to build. ${basedir}/

..
private.modules.file Name of the file listing the private modules to build. private.

modules.
list

public.modules.file Name of the file listing the public modules to build. public.
modules.
list

3.7.7 Mock

Skeleton Name: microej-mock

Build Type Name: com.is2t.easyant.buildtypes#build-microej-mock

Documentation: Mock

Configuration:

This module nature inherits the build options of the following plugins:

• Java Compilation

• J2SE Unit Tests

• Artifact Checker3

3.7.8 Module Repository

Skeleton Name: artifact-repository

Build Type Name: com.is2t.easyant.buildtypes#build-artifact-repository

Documentation: Module Repository

Configuration:

This module nature inherits the build options of the following plugins:

• Artifact Checker

This module nature defines the following dedicated build options:

3.7. Module Natures 74

MicroEJ Documentation, Revision 32bb132e

Name Description Default
architec-
ture.configurations.includes1

Comma-separated list of configurations to include for the Architec-
ture modules. Set dist,eval or dist,prod to include only eval-
uation or production Architectures or dist,eval,prod to include
both.

dist,eval

bar.check.as.v2.module When this property is set to true, the artifact checker uses the Mi-
croEJ Module Manager semantic.

false

bar.javadoc.dir Path of the folder containing the generated javadoc. ${target}/
javadoc

bar.notification.email.fromThe email address used as the from address when sending the noti-
fication emails.

Not set

bar.notification.email.host The hostname of the mail service used to send the notification
emails.

Not set

bar.notification.email.passwordThe password used to authenticate on the mail service. Not set
bar.notification.email.port The port of the mail service used to send the notification emails Not set
bar.notification.email.ssl When this property is set to true, SSL/TLS is used to send the notifi-

cation emails.
Not set

bar.notification.email.to The notification email address destination. Not set
bar.notification.email.user The username used to authenticate on the mail service. Not set
bar.populate.from.resolverName of the resolver used to fetch the modules to populate the

repository.
fetchRelease

bar.populate.ivy.settings.filePathof the Ivy settings file used to fetch themodules topopulate the
repository.

${project.
ivy.
settings.
file}

bar.populate.repository.confIvy configuration of included repositories. The modules of the
repositories declared as dependency with this configuration are in-
cluded in the built repository.

repository

bar.test.haltonerror When this property is set to true, the artifact checker stops at the
first error.

false

javadoc.excludes Comma-separated list of packages to exclude from the javadoc. Empty string
javadoc.includes Comma-separated list of packages to include in the javadoc. ** (all pack-

ages)
javadoc.modules.excludes2Comma-separated list of modules to exclude from the javadoc. Empty string
skip.artifact.checker When this property is set to true, all artifact checkers are skipped. Not set
skip.email When this property is set (any value), the notification email is not

sent. Otherwise the bar.notification.* properties are required.
Not set

skip.javadoc Prevents the generation of the javadoc. false
skip.javadoc.deprecated Prevents the generation of any deprecated API at all in the javadoc. true

1 Require SDK version 5.4.0 or higher.
2 Require SDK version 5.6.0 or higher.

3.7. Module Natures 75

MicroEJ Documentation, Revision 32bb132e

3.7.9 Runtime Environment

Skeleton Name: runtime-api

Build Type Name: com.is2t.easyant.buildtypes#build-runtime-api

Documentation: Runtime Environment

Configuration:

This module nature inherits the configuration properties of the following plugins:

• Artifact Checker

3.7.10 Sandboxed Application

Skeleton Name: application

Build Type Name: com.is2t.easyant.buildtypes#build-application

Documentation: Sandboxed Application

SDKMenu: File > New > Sandboxed Application Project

Configuration:

This module nature inherits the build options of the following plugins:

• Java Compilation

• Platform Loader

• Javadoc

• Test Suite

• Artifact Checker

3.7.11 Standalone Application

Skeleton Name: firmware-singleapp

Build Type Name: com.is2t.easyant.buildtypes#build-firmware-singleapp

Documentation: Standalone Application

SDKMenu: File > New > Standalone Application Project

Configuration:

This module nature inherits the build options of the following plugins:

• Java Compilation

• Platform Loader

• JavadocPage 73, 3

• Test SuitePage 73, 3

• Artifact CheckerPage 73, 3

3.7. Module Natures 76

MicroEJ Documentation, Revision 32bb132e

This module nature defines the following dedicated build options:

Name Description Default
application.main.class Full Qualified Name of themain class of the application. This option

is required.
Not set

skip.build.virtual.device When this property is set (any value), the virtual device is not built. Not set
virtual.device.sim.only When this property is set (any value), the Executable is not built. Not set
launch.properties.jvm Additional options to pass to the JVM for building the Executable. -Xmx1024M

3.7.12 Studio Rebranding

Skeleton Name: microej-studio-rebrand

Build Type Name: com.is2t.easyant.buildtypes#build-izpack

Configuration:

The skeleton template contains all the necessary files for a Studio that is ready to build. The main elements are:

• HOWTO.md : This file describes the minimum configuration required to build the Studio template as it is.

• module.ivy : This file describes all available build options and dependencies.

• branding-resources : This folder contains default resources that can be replaced with your own to cus-
tomize the Studio. These resources include names, images, icons, and license files.

3.7.13 Natures Plugins

This page describes the most commonmodule nature plugins as follows:

• Documentation: link to documentation.

• Module Natures: list ofModule Natures using this plugin.

• Configuration: properties that can be defined to configure the module. Properties are defined inside the
ea:build tag of themodule.ivy file, using ea:property tag as described in the section Build Options.

Java Compilation

Module Natures:

This plugin is used by the following module natures:

• Add-On Library

• Foundation Library API

• Foundation Library Implementation

• Standalone Application

• Sandboxed Application

Configuration:

This plugin defines the following build options:

3.7. Module Natures 77

MicroEJ Documentation, Revision 32bb132e

Name Description Default
javac.debug.level Comma-separated list of levels for the Java compiler debugmode. lines,

source,
vars

javac.debug.mode When this property is set to true, the Java compiler is set in debug
mode.

false

src.main.java Path of the folder containing the Java sources. ${basedir}/
src/main/
java

Platform Loader

Documentation: Platform Selection

Module Natures:

This plugin is used by the following module natures:

• Add-On Library

• Standalone Application

• Sandboxed Application

Configuration:

This plugin defines the following build options:

Name Description Default
platform-
loader.platform.dir

Path of the folder to unzip the loaded platform to. ${target}/
platform

plat-
form.loader.skip.load.platform

When this property is set to true, the platform is not loaded. It
must be already available in the directory defined by the property
platform-loader.platform.dir . Use with caution: the platform
content may be modified during the build (e.g. in case of Testsuite
or Virtual Device build).

false

platform-
loader.target.platform.conf

The Ivy configuration used to retrieved the platform if fetched via
dependencies.

platform

platform-
loader.target.platform.dir

Path of the root folder of the platform to use in the build. See Plat-
form Selection section for Platform Selection rules.

Not set

platform-
loader.target.platform.dropins

Absolute or relative (to the project root folder) path of the folder
where the platform can be found (see Platform Selection).

dropins

platform-
loader.target.platform.file

Path of the platform file to use in the build. See Platform Selection
section for Platform Selection rules.

Not set

3.7. Module Natures 78

MicroEJ Documentation, Revision 32bb132e

Javadoc

Module Natures:

This plugin is used by the following module natures:

• Add-On Library

• Foundation Library API

• Sandboxed Application

Configuration:

This plugin defines the following build options:

Name Description Default
src.main.java Path of the folder containing the Java sources. ${basedir}/

src/main/
java

javadoc.file.encoding Encoding used for the generated Javadoc. UTF-8
javadoc.failonerror When this property is set to true, the build is stopped if an error is

raised during the Javadoc generation.
true

javadoc.failonwarning When this property is set to true, the build is stopped if a warning is
raised during the Javadoc generation.

false

target.reports Path of the base folder for reports. ${target}/
reports

target.javadoc Path of the base folder where the Javadoc is generated. ${target.
reports}/
javadoc

target.javadoc.main Path of the folder where the Javadoc is generated. ${target.
javadoc}/
main

javadoc-
microej.overview.html

Path of the HTML template file used for the Javadoc overview page. ${src.
main.
java}/
overview.
html if
exists, oth-
erwise a
default
template.

target.artifacts Path of the packaged artifacts. ${target}/
artifacts

tar-
get.artifacts.main.javadoc.jar.name

Name of the packaged JAR containing the generated Javadoc
(stored in folder target.artifacts).

${module.
name}-javadoc.
jar

javadoc.publish.conf Ivy configuration used to publish the Javadoc artifact. documentation

3.7. Module Natures 79

MicroEJ Documentation, Revision 32bb132e

Test Suite

Documentation: Test Suite with JUnit

Module Natures:

This plugin is used by the following module natures:

• Add-On Library

• Foundation Library API

• Foundation Library Implementation

• Standalone Application

• Sandboxed Application

Configuration:

This plugin defines the following build options:

3.7. Module Natures 80

MicroEJ Documentation, Revision 32bb132e

Name Description Default
mi-
croej.testsuite.cc.excludes.classes

Pattern of classes excluded from the code coverage anal-
ysis.

Not set

mi-
croej.testsuite.retry.count

A test execution may not be able to produce the success
trace for an external reason, for example an unreliable
harness script that may lose some trace characters or
crop the end of the trace. For all these unlikely reasons,
it is possible to configure the number of retries before a
test is considered to have failed.

0

mi-
croej.testsuite.timeout

The time in seconds before a test is considered as failed.
Set it to 0 to disable the timeout.

60

mi-
croej.testsuite.properties.[name]

Inject an Application Option named [name] for all
tests. For example, declaring the build option microej.
testsuite.properties.core.memory.javaheap.size
will configure the Java heap size of all tests.

Not applicable

mi-
croej.testsuite.properties.launch.test.trace.file

Set this property to true if your VEE Port Run script redi-
rects execution traces.

Not set

mi-
croej.testsuite.properties.s3.cc.activated

When this property is set to true, the code coverage anal-
ysis is enabled.

true

mi-
croej.testsuite.properties.testsuite.trace.ip

The TCP/IP address to connect for retrieving test execu-
tion traces. This property is required if your VEE Port Run
script does not redirect execution traces.

Not set

mi-
croej.testsuite.properties.testsuite.trace.port

The TCP/IP port to connect for retrieving test execution
traces. Thisproperty is required if yourVEEPortRunscript
does not redirect execution traces.

Not set

mi-
croej.testsuite.properties.testsuite.trace.timeout

The time in secondswithout activity on the standard out-
put before the trace analysis is stopped.

75

cc.src.folders Path to the folders containing the Java sources used for
code coverage analysis.

Java source folder (
src/main/java) and
Add-On Processor gen-
erated source folders (
src-adpgenerated/*)4

mi-
croej.testsuite.verbose

When this property is set to true, the verbose trace level
is enabled.

false

test.run.excludes.pattern Pattern of classes excluded from the test suite execution. Empty string (no test)
test.run.failonerror When this property is set to true, the build fails if an error

is raised.
true

target.vm.name The execution target (S3 to execute on Simulator,
MICROJVM to execute on the Device).

S3

test.run.includes.pattern Pattern of classes included in the test suite execution. **/* (all tests)
skip.test When this property is set (any value), the tests are not ex-

ecuted.
Not set

4 Option cc.src.folders is not set by default for SDK versions lower than 5.5.0 .

3.7. Module Natures 81

MicroEJ Documentation, Revision 32bb132e

J2SE Unit Tests

Warning: This plugin is reserved for tools written in Java Standard Edition. Tests classes must be created in
the folder src/test/java of the project. See Test Suite section for MicroEJ tests.

Module Natures:

This plugin is used by the following module natures:

• Add-On Processor

• Mock

Configuration:

This plugin defines the following build options:

Name Description Default
test.run.excludes.pattern Pattern of classes excluded from the test suite execution. Empty string

(no test)
test.run.failonerror When this property is set to true, the build fails if an error is raised. true
test.run.includes.pattern Pattern of classes included in the test suite execution. **/* (all

tests)
skip.test When this property is set (any value), the tests are not executed. Not set

Artifact Checker

Module Natures:

This plugin is used by the following module natures:

• Add-On Library

• Foundation Library API

• Standalone Application

• Sandboxed Application

• Module Repository

Configuration:

This plugin defines the following build options:

3.7. Module Natures 82

MicroEJ Documentation, Revision 32bb132e

Name Description Default
run.artifact.checker When this property is set (any value), the artifact checker is exe-

cuted.
Not set

skip.addonconf.checker When this property is set to true, the addon configurations checker
is not executed.

Not set

skip.changelog.checker When this property is set to true, the changelog checker is not exe-
cuted.

Not set

skip.foundationconf.checkerWhen this property is set to true, the foundation configurations
checker is not executed.

Not set

skip.license.checker When this property is set to true, the license checker is not executed. Not set
skip.nullanalysis.checker5 When this property is set to true, the null analysis checker is not ex-

ecuted.
Not set

skip.publicconf.checker When this property is set to true, the public configurations checker
is not executed.

Not set

skip.readme.checker When this property is set to true, the readme checker is not exe-
cuted.

Not set

skip.retrieve.checker When this property is set to true, the retrieve checker is not exe-
cuted.

Not set

3.7.14 Global Build Options

The following Build Options are available in any module:

Name Description Default
target Path of the build directory target~ . ${basedir}/target~

3.8 Debug an Application

Note: This page is releated to the version 5 and lower of the SDK. If you use the SDK 6, please refer to the page
Debug on Simulator.

3.8.1 Debug on Simulator

To debug an application on Simulator, select it in the le� panel then right-click and select Debug As >

MicroEJ Application .

5 Require SDK version 5.5.0 or higher.

3.8. Debug an Application 83

MicroEJ Documentation, Revision 32bb132e

Fig. 53: MicroEJ Development Tools Overview of the Debugger on Simulator

3.8.2 Debug on Device

Todebug an application ondevice, first run theMicroEJdebugger proxy, and run aRemote Java Application launch:

• Go to Run > Debug Configurations > Remote Java Application

• Set the informations about the project to debug, the proxy connections properties, etc.

• Click on Debug

Fig. 54: MicroEJ Development Tools Overview of the Remote Java Application

3.8. Debug an Application 84

MicroEJ Documentation, Revision 32bb132e

In the SDK, open the Debug perspective (Window > Perspective > Open Perspective > Other. . . > Debug
) to show the current debugging process.

Fig. 55: MicroEJ Development Tools Overview of the Debugger on Board

It makes use of Eclipse Java debugger client. If you are unfamiliar with Java debugging or Eclipse IDE, see Debug-
ging the Eclipse IDE for Java Developers to get started.

You can also debug with IntelliJ IDEA. For more information on IntelliJ IDEA Remote debug process, see IntelliJ
IDEA Remote debug

3.8.3 Get Library Sources

All libraries included in MicroEJ SDK are provided with their source code and resources. The way the sources are
retrieved depends on the kind of library (Add-On Library or Foundation Library).

3.8. Debug an Application 85

https://help.eclipse.org/latest/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Fconcepts%2Fcremdbug.htm
https://help.eclipse.org/latest/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Fconcepts%2Fcremdbug.htm
https://www.jetbrains.com/help/idea/tutorial-remote-debug.html
https://www.jetbrains.com/help/idea/tutorial-remote-debug.html

MicroEJ Documentation, Revision 32bb132e

Add-On Library Sources

Add-OnLibrary sources are packaged in adedicated file named [module_name]-source.jar available in themod-
ule directory:

Fig. 56: Add-On Library Sources Location

In the SDK, sources are automatically connected to Eclipse JDTwhen the newAdd-On Library is added as amodule
dependency.

On any Java element (type, method, field), press F3 or CTRL-Click to open the implementation:

3.8. Debug an Application 86

MicroEJ Documentation, Revision 32bb132e

Fig. 57: Add-On Library Open Implementation

Then the implementation class is open in read-only mode.

Fig. 58: Add-On Library Read-Only Source Code

Foundation Library Sources

Foundation Library sources are directly included in the implementation file (JAR file) provided by the Platform.

They are located in the following Platform folders:

• javaLibs for generic Foundation Libraries (defaults).

• MICROJVM/javaLibs for Foundation Libraries specific to the MicroEJ Core Engine.

• S3/javaLibs for Foundation Libraries specific to the Simulator.

3.8. Debug an Application 87

MicroEJ Documentation, Revision 32bb132e

Fig. 59: Foundation Library Platform Folders

3.8. Debug an Application 88

MicroEJ Documentation, Revision 32bb132e

In the SDK, sources can be connected while debugging an Application on Simulator. This ensures to get the exact
source code which is executed on your Platform.

Here are the steps to attach Foundation Library sources from a Platform loaded in the workspace:

• Open aMicroEJ Application launch,

• Select the Source tab (see also Source Tab),

• Click on Add. . . button,

• Select Archive item and press OK ,

Fig. 60: Add Foundation Library Sources to MicroEJ Application Launch

• Select the Foundation Libraries from Platform folders and press OK ,

3.8. Debug an Application 89

MicroEJ Documentation, Revision 32bb132e

Fig. 61: Select Foundation Libraries Implementation files

Warning: Youmust select the libraries from the Platform project corresponding to the execu-
tion Platform (see Execution Tab).

In the debug session the implementation sources will be now displayed.

3.8. Debug an Application 90

MicroEJ Documentation, Revision 32bb132e

Fig. 62: Foundation Library Read-Only Source Code

3.9 Development Tools

MicroEJprovidesanumberof tools toassistwith variousaspectsof development. Someof these tools are runusing
MicroEJ Tool configurations, and created using the Run Configurations dialog of the MicroEJ SDK. A configuration
must be created for the tool before it can be used.

3.9. Development Tools 91

MicroEJ Documentation, Revision 32bb132e

Fig. 63: MicroEJ Tool Configuration

The above figure shows a tool configuration being created. In the figure, the MicroEJ Platform has been selected,
but the selection of which tool to run has not yet been made. That selection is made in the Execution Settings. . .
box. The Configuration tab then contains the options relevant to the selected tool.

3.9.1 Test Suite with JUnit

The SDKallows to run unit tests using the standard JUnit API during the build process of a Library or an Application.
TheMicroEJ Test Suite Engine runs tests on a VEE Port and outputs a JUnit XML report.

3.9. Development Tools 92

https://repository.microej.com/modules/ej/library/test/junit/

MicroEJ Documentation, Revision 32bb132e

Principle

JUnit testing can be enabled when using the microej-javalib (MicroEJ Add-On Library) or the
microej-application (MicroEJ Applications) build type. JUnit test cases processing is automatically enabled
when the following dependency is declared in the module.ivy file of the project.

<dependency conf="test->*" org="ej.library.test" name="junit" rev="1.6.2"/>

WhenanewJUnit test case class is created in the src/test/java folder, a JUnit processor generatesMicroEJ com-
pliant classes into a specific source folder named src-adpgenerated/junit/java . These files are automatically
managed andmust not be edited manually.

JUnit Compliance

MicroEJ is compliant with a subset of JUnit version 4. MicroEJ JUnit processor supports the following annotations:
@After , @AfterClass , @Before , @BeforeClass , @Ignore , @Test .

Each test case entry point must be declared using the org.junit.Test annotation (@Test before amethod dec-
laration). Please refer to JUnit documentation to get details on usage of other annotations.

Setup a Platform for Tests

Before running tests, a target platformmust be configured.

Execution in SDK

In order to execute the Test Suite in the SDK, a target platformmust be configured in the MicroEJ workspace. The
following stepsassume that aplatformhasbeenpreviously imported into theMicroEJPlatformrepository (or avail-
able in the Workspace):

• Go to Window > Preferences > MicroEJ > Platforms (or Platforms in workspace).

• Select the desired platform on which to run the tests.

• Press F2 to expand the details.

• Select the the platform path and copy it to the clipboard.

• Go to Window > Preferences > Ant > Runtime and select the Properties tab.

• Click on Add Property. . . button and set a new property named target.platform.dir with the platform
path pasted from the clipboard.

Execution duringmodule build

Inorder toexecute theTestSuiteduring thebuildof themodule, a targetplatformmustbeconfigured in themodule
project as described in the section Platform Selection.

3.9. Development Tools 93

https://repository.microej.com/modules/ej/library/test/junit/

MicroEJ Documentation, Revision 32bb132e

Setup a Project with a JUnit Test Case

This section describes how to create a new JUnit Test Case starting from a newMicroEJ library project.

• First create a newmodule project using the microej-javalib skeleton. A new project named mylibrary is
created in the workspace.

• Right-click on the src/test/java folder and select New > Other. . . menu item.

• Select the Java > JUnit > New JUnit Test Case wizard.

• Enter a test name and press Finish . A new JUnit test case class is created with a default failing test case.

Build and Run a JUnit Test Suite

• Right-clickon the mylibrary project and select Build Module . A�er the library is built, the test suite engine
launches available test cases and the build process fails in the console view.

• On the mylibrary project, right-click and select Refresh . A target~ folder appears with intermediate
build files. The JUnit report is available at target~\test\xml\TEST-test-report.xml .

• Double-click on the file to open the JUnit test suite report.

• Modify the test case by replacing

fail("Not yet implemented");

with

Assert.assertTrue(true);

• Right-click again on the mylibrary project and select Build Module . The test is now successfully executed
on the target platform so the MicroEJ Add-On Library is fully built and published without errors.

• Double-click on the JUnit test suite report to see the test has been successfully executed.

Test Suite Reports

Once a test suite is completed, the following test suite reports are generated:

• JUnit HTML report in the module project location target~/test/html/test/junit-noframes.html . This
report contains a summary and the execution trace of every executed test.

3.9. Development Tools 94

MicroEJ Documentation, Revision 32bb132e

Fig. 64: Example of MicroEJ Test Suite HTML Report

• JUnit XML report in the module project location target~/test/xml/TEST-test-report.xml .

Fig. 65: Example of MicroEJ Test Suite XML Report

XML report file can also be opened in the JUnit View. Right-click on the file > Open With > JUnit View :

Fig. 66: Example of MicroEJ Test Suite XML Report in JUnit View

If executed on device, the Firmware binary produced for each test is available inmodule project location target~/
test/xml/<TIMESTAMP>/bin/<FULLY-QUALIFIED-CLASSNAME>/application.out .

3.9. Development Tools 95

MicroEJ Documentation, Revision 32bb132e

Configure the Execution on your Device

By default, the Test Suite is configured to execute tests on the Simulator usingMocks declared by the VEE Port. You
can switch the default configuration to execute tests on your Device. For that, your VEE Port must implement the
BSP Connection.

Also, a device must be connected to your workstation both for programming the Executable and getting output
traces. Consult your VEE Port specific documentation for setup.

Here is a summary of the options to add (see Testsuite Options and BSP Connection Options for more details).

<!-- Execute tests on Device -->
<ea:property name="target.vm.name" value="MICROJVM"/>

<!-- Enable Executable built using the SDK -->
<ea:property name="microej.testsuite.properties.deploy.bsp.microejscript" value="true"/>
<ea:property name="microej.testsuite.properties.microejtool.deploy.name" value=
→˓"deployToolBSPRun"/>

<!-- Tell the testsuite engine that your VEE Port Run script redirects execution traces -->
<ea:property name="microej.testsuite.properties.launch.test.trace.file" value="true"/>
<!-- Configure TCP/IP address and port if your VEE Port Run script does not redirect␣
→˓execution traces -->
<ea:property name="microej.testsuite.properties.testsuite.trace.ip" value="127.0.0.1"/>
<ea:property name="microej.testsuite.properties.testsuite.trace.port" value="5555"/>

Warning: If your VEE Port Run script does not redirect execution traces, the Serial to Socket Transmitter tool
must have been started before running the Test Suite.

Advanced Configurations

Autogenerated Test Classes

The JUnit processor generates test classes into the src-adpgenerated/junit/java folder. This folder contains:

_AllTestClasses.java file
A single class with a main entry point that sequentially calls all declared test methods of all JUnit test case
classes.

AllTests[TestCase].java files
For eachJUnit test case class, a classwith amainentrypoint that sequentially calls all declared testmethods.

SingleTest[TestCase]_[TestMethod].java files
For each test method of each JUnit test case class, a class with amain entry point that calls the test method.

3.9. Development Tools 96

MicroEJ Documentation, Revision 32bb132e

JUnit Test Case to MicroEJ Test Case

TheMicroEJ Test Suite Engine allows to select the classes that will be executed, by adding the following configura-
tion in the project build file:

MMM (module.ivy)

Gradle (build.gradle.kts)

<ea:property name="test.run.includes.pattern" value="[MicroEJ Test Case Include Pattern]"/>

tasks.test {
filter {

includeTestsMatching([MicroEJ Test Case Include Pattern])
}

}

The following configuration considers all JUnit testmethods of the same class as a singleMicroEJ test case (default
behavior). If at least one JUnit test method fails, the whole test case fails in the JUnit report.

MMM (module.ivy)

Gradle (build.gradle.kts)

<ea:property name="test.run.includes.pattern" value="**/_AllTests_*.class"/>

tasks.test {
filter {

includeTestsMatching("*._AllTests_*")
}

}

The following configuration considers each JUnit test method as a dedicated MicroEJ test case. Each test method
is viewed independently in the JUnit report, but this may slow down the test suite execution because a new de-
ployment is done for each test method.

MMM (module.ivy)

Gradle (build.gradle.kts)

<ea:property name="test.run.includes.pattern" value="**/_SingleTest_*.class"/>

tasks.test {
filter {

includeTestsMatching("*._SingleTest_*")
}

}

3.9. Development Tools 97

MicroEJ Documentation, Revision 32bb132e

Test Suite Options (SDK 5 only)

The MicroEJ Test Suite Engine can be configured with specific options which can be added to the module.ivy file
of the project running the test suite, within the <ea:build> XML element.

Test Suite options are described in the Test Suite Module Nature section.

Test Specific Options

TheMicroEJ Test Suite Engine allows to define Standalone ApplicationOptions specific to each test case. This can be
done by defining a file with the same name as the generated test case file with the .properties extension instead
of the .java extension. The file must be put in the src/test/resources folder and within the same package
than the test case file.

3.9.2 Stack Trace Reader

Principle

Stack Trace Reader is a MicroEJ tool that reads and decodes the MicroEJ stack traces. When an exception occurs,
theMicroEJCore Engine prints the stack trace on the standard output System.out . The class names, non-required
types names(see Types), and method names obtained are encoded with a MicroEJ internal format. This internal
format prevents embedding all class names and method names in the executable image to save some memory
space. The Stack Trace Reader tool allows you to decode the stack traces by replacing the internal class names and
method names with their real names. It also retrieves the line numbers in the MicroEJ Application.

Functional Description

The Stack Trace Reader reads the debug information from the fully linked ELF file (the ELF file that contains the
MicroEJ Core Engine, the other libraries, the BSP, the OS, and the compiled MicroEJ Application). It prints the
decoded stack trace.

WhenMulti-Sandbox capability is enabled, the stack trace reader can simultaneously decode heterogeneous stack
traces with lines owned by di�erent MicroEJ Sandboxed Applications and the firmware. Lines owned by the
firmware can be decoded with the firmware debug information file (optionally made available by your firmware
provider).

Dependencies

No dependency.

Installation

This tool is a built-in Architecture tool.

3.9. Development Tools 98

MicroEJ Documentation, Revision 32bb132e

Use (Standalone Application)

For example, write the following new line to dump the currently executed stack trace on the standard output.

Fig. 67: Code to Dump a Stack Trace

To decode an application stack trace, the stack trace reader tool requires the application executable ELF file. In the
case of a platformwith full BSP connection (see BSP Connection Cases), the file is application.out in the output
folder. In the other cases, the ELF file is generated by the C toolchainwhen building the BSP project (usually a .out
or .axf file).

3.9. Development Tools 99

MicroEJ Documentation, Revision 32bb132e

Fig. 68: Application Binary File

On successful deployment, the application is started on the device and the following trace is dumped on standard
output.

Fig. 69: Stack Trace Output

To create a new MicroEJ Tool configuration, right-click on the application project and click on Run As. . . >

3.9. Development Tools 100

MicroEJ Documentation, Revision 32bb132e

Run Configurations. . . .

Create a new MicroEJ Tool configuration. In the Execution tab, select your target platform, then select the
Stack Trace Reader tool. Set an output folder in the Output folder field.

Fig. 70: Stack Trace Reader Tool Configuration (Platform Selection)

In Configuration tab, browse the previously generated application binary file with debug information (
application.out in case of a Standalone Application with full BSP connection)

3.9. Development Tools 101

MicroEJ Documentation, Revision 32bb132e

Fig. 71: Stack Trace Reader Tool Configuration (Standalone Application)

Click on Run button and copy/paste the trace into the Eclipse console. The decoded trace is dumped and the
line corresponding to the application hook is now readable.

Fig. 72: Stack Trace Reader Console

3.9. Development Tools 102

MicroEJ Documentation, Revision 32bb132e

Use (Sandboxed Application)

For example, write the following new line to dump the currently executed stack trace on the standard output.

Fig. 73: Code to Dump a Stack Trace

To decode an application stack trace, the stack trace reader tool requires the application binary file with debug
information (application.fodbg in the output folder). Note that the file uploaded on the device is application.
fo (stripped version without debug information).

Fig. 74: Application Binary File with Debug Information

On successful deployment, the application is started on the device and the following trace is dumped on standard
output.

3.9. Development Tools 103

MicroEJ Documentation, Revision 32bb132e

Fig. 75: Stack Trace Output

To create a new MicroEJ Tool configuration, right-click on the application project and click on Run As. . . >
Run Configurations. . . .

Create a new MicroEJ Tool configuration. In the Execution tab, select your target platform, then select the
Stack Trace Reader tool. Set an output folder in the Output folder field.

Fig. 76: Stack Trace Reader Tool Configuration (Virtual Device Selection)

In the Configuration tab, if the Kernel executable file is available to you (usually named firmware.out and

located in your Virtual Device files), you canbrowse for it in the Executable file field, and thenadd your previously
generatedapplicationbinary filewithdebug information (application.fodbg in caseof aSandboxedApplication)
in the Additional object files field.

3.9. Development Tools 104

MicroEJ Documentation, Revision 32bb132e

Fig. 77: Select the Kernel Executable File

To checkwhere theKernel executable file of your Virtual Device is located, if youhave access to it, go to Window >
Preferences > MicroEJ > Virtual Devices , hoverover yourVirtualDevice in the list andwaituntil an information
popup appears. Press F2 to get all the informations and the path to the directory of your Virtual Device should
appear in the list.

3.9. Development Tools 105

MicroEJ Documentation, Revision 32bb132e

Fig. 78: Location of the Virtual Device Directory

In this directory, the Kernel executable file should be named firmware.out in the /firmware sub-directory.

If you do not have access to the Kernel executable file, you can still get some information from the Stack Trace
Reader using the application binary file only. In the Configuration tab, browse the previously generated applica-
tion binary file with debug information (application.fodbg in case of a Sandboxed Application)

3.9. Development Tools 106

MicroEJ Documentation, Revision 32bb132e

Fig. 79: Stack Trace Reader Tool Configuration (Sandboxed Application)

Click on Run button and copy/paste the trace into the Eclipse console. The decoded trace is dumped and the
line corresponding to the application hook is now readable.

3.9. Development Tools 107

MicroEJ Documentation, Revision 32bb132e

Fig. 80: Stack Trace Reader Console

Other debug information files can be appended using the Additional object files option.

Stack Trace Reader Options

The following section explains MicroEJ tool options.

3.9. Development Tools 108

MicroEJ Documentation, Revision 32bb132e

Category: Stack Trace Reader

Group: Application

Option(browse): Executable file

Option Name: application.file

Default value: (empty)

Description:

Specify the full path of a full linked elf file.

Option(list): Additional object files

Option Name: additional.application.files

Default value: (empty)

Group: “Trace port” interface for Eclipse

Description:

This group describes the hardware link between the device and the PC.

3.9. Development Tools 109

MicroEJ Documentation, Revision 32bb132e

Option(combo): Connection type

Option Name: proxy.connection.connection.type

Default value: Console

Available values:

Uart (COM)

Socket

File

Console

Description:

Specify the connection type between the device and PC.

Option(text): Port

Option Name: pcboardconnection.usart.pc.port

Default value: COM0

Description:

Format: port name

Specifies the PC COM port:

Windows - COM1 , COM2 , ... , COM*n*

Linux - /dev/ttyS0 , /dev/ttyS1 , ... , /dev/ttyS*n*

Option(combo): Baudrate

Option Name: pcboardconnection.usart.pc.baudrate

Default value: 115200

Available values:

9600

38400

57600

115200

Description:

Defines the COM baudrate for PC-Device communication.

3.9. Development Tools 110

MicroEJ Documentation, Revision 32bb132e

Option(text): Port

Option Name: pcboardconnection.socket.port

Default value: 5555

Description:

IP port.

Option(text): Address

Option Name: pcboardconnection.socket.address

Default value: (empty)

Description:

IP address, on the form A.B.C.D.

Option(browse): Stack trace file

Option Name: pcboardconnection.file.path

Default value: (empty)

3.9.3 Code Coverage Analyzer

Principle

The Simulator features an option to output .cc (Code Coverage) files that represent the use rate of functions of an
application. It traces how the opcodes are really executed.

Functional Description

The Code Coverage Analyzer scans the output .cc files, and outputs anHTML report to ease the analysis ofmethods
coverage. The HTML report is available in a folder named htmlReport in the same folder as the .cc files generated
by enabling the Code Coverage option .

3.9. Development Tools 111

MicroEJ Documentation, Revision 32bb132e

Fig. 81: Code Coverage Analyzer Process

Dependencies

In order to work properly, the Code Coverage Analyzer should input the .cc files. The .cc files relay the classpath
used during the execution of the Simulator to the Code Coverage Analyzer. Therefore the classpath is considered
to be a dependency of the Code Coverage Analyzer.

Installation

This tool is a built-in Architecture tool.

Use

A MicroEJ tool is available to launch the Code Coverage Analyzer tool. The tool name is Code Coverage Analyzer.

Two levels of code analysis are provided, the Java level and the bytecode level. Also provided is a view of the fully
or partially covered classes and methods. From the HTML report index, just use hyperlinks to navigate into the
report and source / bytecode level code.

3.9. Development Tools 112

MicroEJ Documentation, Revision 32bb132e

Category: Code Coverage

Option(browse): *.cc files folder

Option Name: cc.dir

Default value: (empty)

Description:

Specify a folder which contains the cc files to process (*.cc).

Group: Classes filter

Option(list): Includes

Option Name: cc.includes

Default value: (empty)

Description:

List packages and classes to include to code coverage report. If no package/class is specified, all classes found in
the project classpath will be analyzed.

Examples:

packageA.packageB.* : includes all classes which are in package packageA.packageB

packageA.packageB.className : includes the class packageA.packageB.className

3.9. Development Tools 113

MicroEJ Documentation, Revision 32bb132e

Option(list): Excludes

Option Name: cc.excludes

Default value: (empty)

Description:

List packages and classes to exclude to code coverage report. If no package/class is specified, all classes found in
the project classpath will be analyzed.

Examples:

packageA.packageB.* : excludes all classes which are in package packageA.packageB

packageA.packageB.className : excludes the class packageA.packageB.className

3.9.4 Heap Dumper & Heap Analyzer

Introduction

Heap Dumper is a tool that takes a snapshot of the heap. Generated files (with the .heap extension) are available
in the application output folder.

The Heap Analyzer is a set of tools to help developers understand the contents of the Java heap and find problems
such as memory leaks. For its part, the Heap Analyzer plugin is able to open dump files. It helps you analyze their
contents thanks to the following features:

• memory leaks detection

• objects instances browse

• heap usage optimization (using immortal or immutable objects)

The Heap

The heap is a memory area used to hold Java objects created at runtime. Objects persist in the heap until they are
garbage collected. An object becomes eligible for garbage collection when there are no longer any references to it
from other objects.

Heap Dump

A heap dump is an XML file that provides a snapshot of the heap contents at the moment the file is created. It
contains a list of all the instances of both class and array types that exist in the heap. For each instance, it records:

• The time at which the instance was created

• The thread that created it

• Themethod that created it

For instances of class types, it also records:

• The class

• The values in the instance’s non-static fields

For instances of array types, it also records:

• The type of the contents of the array

3.9. Development Tools 114

MicroEJ Documentation, Revision 32bb132e

• The contents of the array

For each referenced class type, it records the values in the static fields of the class.

Heap Analyzer Tools

The Heap Analyzer is an Eclipse plugin that adds three tools to the MicroEJ environment.

Tool name Number of
input files

Purpose

Heap Viewer 1 Shows what instances are in the heap, when they were created,
and attempts to identify problem areas

Progressive
Heap Usage

1 or more Shows how the number of instances in the heap has changed over
time

Compare 2 Compares two heap dumps, showing which objects were created,
or garbage collected, or have changed values

Heap Dumper

When the Heap Dumper option is activated, the garbage collector process ends by performing a dump file that
representsa snapshotof theheapat thismoment. Togenerate suchdump files, youmustexplicitly call the System.
gc() method in your code.

The heap dump file contains the list of all instances of both class and array types that exist in the heap. For each
instance, it records:

• the time at which the instance was created

• the thread that created it

• the method that created it

For instances of class types, it also records:

• the class

• the values in the instance’s non-static fields

For instances of array types, it also records:

• the type of the contents of the array

• the contents of the array

For each referenced class type, it records the values in the static fields of the class.

3.9. Development Tools 115

MicroEJ Documentation, Revision 32bb132e

Category: Heap Dumper

Group: Application

Option(browse): Executable file

Option Name: application.filename

Default value: (empty)

Description:

Specify the full path of a full linked ELF file.

Option(list): Feature files

Option Name: additional.application.filenames

Default value: (empty)

Description:

Specify the full path of Feature files with debug information (.fodbg files).

3.9. Development Tools 116

MicroEJ Documentation, Revision 32bb132e

Group: Memory

Option(browse): Heapmemory file

Option Name: heap.filename

Default value: (empty)

Description:

Specify the full path of heapmemory dump, in Intel Hex format.

Option(list): Memory files

Option Name: additional.memory.filenames

Default value: (empty)

Description:

Specify the full path of additionalmemory files in Intel Hex format (Installed Feature areas, Dynamic Features table,
. . .).

Group: Output

Option(text): Heap file name

Option Name: output.name

Default value: application.heap

Heap Viewer

To open the Heap Viewer tool, select a heap dump XML file in the Package Explorer , right-click on it and select

Open With > Heap Viewer

Alternatively, right-click on it and select Heap Analyzer > Open heap viewer

This will open a Heap Viewer tool window for the selected heap dump1.

The Heap Viewer works in conjunction with two views:

1. The Outline view

2. The Instance Browser view

These views are described below.

The Heap Viewer tool has three tabs, each described below.
1 Although this is an Eclipse ‘editor’, it is not possible to edit the contents of the heap dump.

3.9. Development Tools 117

MicroEJ Documentation, Revision 32bb132e

Outline View

The Outline view shows a list of all the types in the heap dump, and for each type shows a list of the instances of
that type. When an instance is selected it also shows a list of the instances that refer to that instance. The Outline
view is opened automatically when an Heap Viewer is opened.

Fig. 82: Outline View

Instance Browser View

The Instance Browser view opens automatically when a type or instance is selected in the Outline view. It has two
modes, selected using the buttons in the top right corner of the view. In ‘Fields’ mode it shows the field values for
the selected type or instance, andwhere those fields hold references it shows the fields of the referenced instance,
and so on. In ‘Reference’ mode it shows the instances that refer to the selected instance, and the instances that
refer to them, and so on.

3.9. Development Tools 118

MicroEJ Documentation, Revision 32bb132e

Fig. 83: Instance Browser View - Fields mode

Fig. 84: Instance Browser View - References mode

Heap Usage Tab

TheHeapusage page of theHeap Viewer displays four bar charts. Each chart divides the total time spanof the heap
dump (from the time stampof the earliest instance creation to the time stampof the latest instance creation) into a
number of periods along the x axis, and shows, bymeans of a vertical bar, the number of instances created during
the period.

• The top-le� chart shows the total number of instances created in each period, and is the only chart displayed
when the Heap Viewer is first opened.

• When a type or instance is selected in the Outline view the top-right chart is displayed. This chart shows the
number of instances of the selected type created in each time period.

• When an instance is selected in the Outline view the bottom-le� chart is displayed. This chart shows the
number of instances created in each time period by the thread that created the selected instance.

3.9. Development Tools 119

MicroEJ Documentation, Revision 32bb132e

• When an instance is selected in the Outline view the bottom-right chart is displayed. This chart shows the
number of instances created in each time period by the method that created the selected instance.

Fig. 85: Heap Viewer - Heap Usage Tab

Clicking on the graph area in a chart restricts the Outline view to just the types and instances that were created
during the selected time period. Clicking on a chart but outside of the graph area restores the Outline view to
showing all types and instances2.

The button Generate graphViz file in the top-right corner of the Heap Usage page generates a file compatible with
graphviz (www.graphviz.org).

The section Heap Usage Monitoring shows how to compute the maximum heap usage.
2 The Outline can also be restored by selecting the All types and instances option on the drop-downmenu at the top of the Outline view.

3.9. Development Tools 120

MicroEJ Documentation, Revision 32bb132e

Dominator Tree Tab

The Dominator tree page of the Heap Viewer allows the user to browse the instance reference tree which contains
the greatest number of instances. This can be useful when investigating a memory leak because this tree is likely
to contain the instances that should have been garbage collected.

The page contains two tree viewers. The top viewer shows the instances that make up the tree, starting with the
root. The le� column shows the ids of the instances – initially just the root instance is shown. The Shallow instances
column shows the number of instances directly referenced by the instance, and the Referenced instances column
shows the total number of instances below this point in the tree (all descendants).

Thebottomviewergroups the instances thatmakeup the treeeither according to their type, the thread that created
them, or the method that created them.

Double-clicking an instance in either viewer opens the Instance Browser view (if not already open) and shows de-
tails of the instance in that view.

Fig. 86: Heap Viewer - Dominator Tree Tab

3.9. Development Tools 121

MicroEJ Documentation, Revision 32bb132e

Leak Suspects Tab

The Leak suspects page of the Heap Viewer shows the result of applying heuristics to the relationships between
instances in the heap to identify possible memory leaks.

The page is in three parts.

• The top part lists the suspected types (classes). Suspected types are classes which, based on numbers of
instances and instance creation frequency, may be implicated in a memory leak.

• Themiddle part lists accumulation points. An accumulation point is an instance that references a high num-
ber of instances of a type that may be implicated in a memory leak.

• The bottom part lists the instances accumulated at an accumulation point.

Fig. 87: Heap Viewer - Leak Suspects Tab

3.9. Development Tools 122

MicroEJ Documentation, Revision 32bb132e

Progressive Heap Usage

To open the Progressive HeapUsage tool, select one ormore heap dumpXML files in the Package Explorer , right-

click and select Heap Analyzer > Show progressive heap usage

This tool is much simpler than the Heap Viewer described above. It comprises three parts.

• The top-right part is a line graph showing the total number of instances in the heap over time, based on the
creation times of the instances found in the heap dumps.

• The le� part is a pane with three tabs, one showing a list of types in the heap dump, another a list of threads
that created instances in the heap dump, and the third a list of methods that created instances in the heap
dump.

• The bottom-le� is a line graph showing the number of instances in the heap over time restricted to those
instances that match with the selection in the le� pane. If a type is selected, the graph shows only instances
of that type; if a thread is selected the graph shows only instances created by that thread; if a method is
selected the graph shows only instances created by that method.

Fig. 88: Progressive Heap Usage

3.9. Development Tools 123

MicroEJ Documentation, Revision 32bb132e

Compare Heap Dumps

The Compare tool compares the contents of two heap dump files. To open the tool select two heap dump XML files
in the Package Explorer, right-click and select Heap Analyzer > Compare

The Compare tool shows the types in the old heap on the le�-hand side, and the types in the new heap on the
right-hand side, andmarks the di�erences between them using di�erent colors.

Types in the old heapdumpare colored red if there are one ormore instances of this typewhich are in the old dump
but not in the new dump. Themissing instances have been garbage collected.

Types in the new heap dump are colored green if there are one or more instances of this type which are in the new
dump but not in the old dump. These instances were created a�er the old heap dumpwas written.

Clicking to the right of the type name unfolds the list to show the instances of the selected type.

Fig. 89: Compare Heap Dumps

The combo box at the top of the tool allows the list to be restricted in various ways:

• All instances – no restriction.

• Garbage collected and new instances – showonly the instances that exist in the old heap dumpbut not in the
new dump, or which exist in the new heap dump but not in the old dump.

• Persistent instances – show only those instances that exist in both the old and new dumps.

3.9. Development Tools 124

MicroEJ Documentation, Revision 32bb132e

• Persistent instanceswith value changed– showonly those instances that exist inboth theoldandnewdumps
and have one or more di�erences in the values of their fields.

Instance Fields Comparison View

TheCompare toolworks in conjunctionwith the InstanceFieldsComparisonview,whichopensautomaticallywhen
an instance is selected in the tool.

The view shows the values of the fields of the instance in both the old and new heap dumps, and highlights any
di�erences between the values.

Fig. 90: Instance Fields Comparison view

3.9.5 Serial to Socket Transmitter

Principle

The MicroEJ serialToSocketTransmitter is a piece of so�ware which transfers all bytes from a serial port to a tcp
client or tcp server.

3.9. Development Tools 125

MicroEJ Documentation, Revision 32bb132e

Installation

This tool is a built-in Architecture tool.

Use

This chapter explains MicroEJ tool options.

Category: Serial to Socket

Group: Serial Options

Option(text): Port

Option Name: serail.to.socket.comm.port

Default value: COM0

Description: Defines the COM port:

Windows - COM1 , COM2 , ... , COM*n*

Linux - /dev/ttyS0 , /dev/ttyUSB0 , ... , /dev/ttyS*n* , /dev/ttyUSB*n*

3.9. Development Tools 126

MicroEJ Documentation, Revision 32bb132e

Option(combo): Baudrate

Option Name: serail.to.socket.comm.baudrate

Default value: 115200

Available values:

9600

38400

57600

115200

Description: Defines the COM baudrate.

Group: Server Options

Option(text): Port

Option Name: serail.to.socket.server.port

Default value: 5555

Description: Defines the server IP port.

3.9.6 Memory Map Analyzer

Principle

When a MicroEJ Application is linked with the MicroEJ Workbench, a Memory MAP file is generated. The Memory
Map Analyzer (MMA) is an Eclipse plug-in made for exploring the map file. It displays the memory consumption of
di�erent features in the RAM and ROM.

3.9. Development Tools 127

MicroEJ Documentation, Revision 32bb132e

Functional Description

Fig. 91: Memory Map Analyzer Process

In addition to the executable file, the MicroEJ Platform generates a map file. Double click on this file to open the
Memory Map Analyzer.

Dependencies

No dependency.

Installation

This tool is a built-in SDK tool.

Use

Themap file is available in the MicroEJ Application project output directory.

3.9. Development Tools 128

MicroEJ Documentation, Revision 32bb132e

Fig. 92: Retrieve Map File

Select an item (or several) to show the memory used by this item(s) on the right. Select “All” to show the memory
used by all items. This special item performs the same action as selecting all items in the list.

Fig. 93: Consult Full Memory

Select an item in the list, and expand it to see all symbols used by the item. This view is useful in understanding
why a symbol is embedded.

3.9. Development Tools 129

MicroEJ Documentation, Revision 32bb132e

Fig. 94: Detailed View

3.9.7 Null Analysis

NullPointerException thrown at runtime is one of the most common causes for failure of Java programs. The Null
Analysis tool can detect such programming errors (misuse of potential null Java values) at compile-time.

The following example of code shows a typical Null Analysis error detection in MicroEJ SDK.

3.9. Development Tools 130

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/NullPointerException.html

MicroEJ Documentation, Revision 32bb132e

Fig. 95: Example of Null Analysis Detection

Principle

The Null Analysis tool is based on Java annotations. Each Java field, method parameter and method return value
must be marked to indicate whether it can be null or not.

Once the Java code is annotated,module projectsmust be configured to enable Null Analysis detection in MicroEJ
SDK.

Java Code Annotation

MicroEJ defines its own annotations:

• @NonNullByDefault: Indicates that all fields, method return values or parameters can never be null in the
annotated package or type. This rule can be overridden on each element by using the Nullable annotation.

• @Nullable: Indicates that a field, local variable, method return value or parameter can be null.

• @NonNull: Indicates that a field, local variable, method return value or parameter can never be null.

MicroEJ recommends to annotate the Java code as follows:

• In each Java package, create a package-info.java file and annotate the Java package with
@NonNullByDefault . This is a common good practice to deal with non null elements by default to avoid
undesired NullPointerException. It enforces the behavior which is already widely outlined in Java coding
rules.

3.9. Development Tools 131

https://repository.microej.com/javadoc/microej_5.x/apis/ej/annotation/NonNullByDefault.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/annotation/Nullable.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/annotation/NonNull.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/NullPointerException.html

MicroEJ Documentation, Revision 32bb132e

• IneachJava type, annotateall fields,methods returnvaluesandparameters that canbenullwith @Nullable .
Usually, this information is already available as textual information in the field ormethod Javadoc comment.
The following example of code shows where annotations must be placed:

Module Project Configuration

Requirements

EDC-1.3.3orhigher is requiredwhenMicroEJSDK 5.3.0 orhigher is used. SeeEDC1.3.3Changelog formoredetails.

Project configuration

To enable the Null Analysis tool, amodule projectmust be configured as follows:

• In the Package Explorer, right-click on the module project and select Properties ,

• Navigate to Java Compiler > Errors/Warnings ,

• In the Null analysis section, configure options as follows:

3.9. Development Tools 132

https://repository.microej.com/modules/ej/api/edc/1.3.3/
https://repository.microej.com/modules/ej/api/edc/1.3.3/CHANGELOG-1.3.3.md

MicroEJ Documentation, Revision 32bb132e

• Click on the Configure. . . link to configure MicroEJ annotations:

– ej.annotation.Nullable

– ej.annotation.NonNull

– ej.annotation.NonNullByDefault

3.9. Development Tools 133

MicroEJ Documentation, Revision 32bb132e

• In the Annotations section, check Suppress optional errors with ‘@SuppressWarnings’ option:

3.9. Development Tools 134

MicroEJ Documentation, Revision 32bb132e

This option allows to fully ignore Null Analysis errors in advanced cases using @SuppressWarnings("null")
annotation.

If you have multiple projects to configure, you can then copy the content of the .settings folder to an other
module project.

3.9. Development Tools 135

MicroEJ Documentation, Revision 32bb132e

Fig. 96: Null Analysis Settings Folder

Warning: You may lose information if your target module project already has custom parameterization or if it
was created with another MicroEJ SDK version. In case of any doubt, please configure the options manually or
merge with a text file comparator.

MicroEJ Libraries

Many libraries available on Central Repository are annotated with Null Analysis. If you are using a library which is
not yet annotated, please contact our support team.

For the benefit of Null Analysis, some APIs have been slightly constrained compared to the Javadoc description.
Here are some examples to illustrate the philosophy:

• System.getProperty(String key, String def) does not accept a null default value, which allows to ensure the
returned value is always non null .

• Collections of the Java Collections Framework that can hold null elements (e.g. HashMap) do not accept
null elements. This allows APIs to return null (e.g. HashMap.get(Object)) only when an element is not
contained in the collection.

Implementations are le� unchanged and still comply with the Javadoc description whether the Null Analysis is
enabled or not. So if these additional constraints are not acceptable for your project, please disable Null Analysis.

3.9. Development Tools 136

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#getProperty-java.lang.String-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/HashMap.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/HashMap.html#get-java.lang.Object-

MicroEJ Documentation, Revision 32bb132e

Advanced Use

For more information about Null Analysis and inter-procedural analysis, please visit Eclipse JDT Null Analysis doc-
umentation.

Troubleshooting

The project cannot build anymore a�er Null Analysis setup

java.lang.NullPointerException
at org.eclipse.jdt.internal.compiler.lookup.BinaryTypeBinding.getMethods(BinaryTypeBinding.

→˓java:1348)
at org.eclipse.jdt.internal.compiler.lookup.AnnotationBinding.

→˓setMethodBindings(AnnotationBinding.java:238)
at org.eclipse.jdt.internal.compiler.lookup.LookupEnvironment.

→˓createAnnotation(LookupEnvironment.java:995)
at org.eclipse.jdt.internal.compiler.lookup.AnnotationBinding.

→˓buildTargetAnnotation(AnnotationBinding.java:191)
at org.eclipse.jdt.internal.compiler.lookup.AnnotationBinding.

→˓addStandardAnnotations(AnnotationBinding.java:79)
at org.eclipse.jdt.internal.compiler.lookup.BinaryTypeBinding.

(continues on next page)

3.9. Development Tools 137

https://help.eclipse.org/2020-06/index.jsp?topic=/org.eclipse.jdt.doc.user/tasks/task-using_null_annotations.htm
https://help.eclipse.org/2020-06/index.jsp?topic=/org.eclipse.jdt.doc.user/tasks/task-using_null_annotations.htm

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

→˓retrieveAnnotations(BinaryTypeBinding.java:1698)
at org.eclipse.jdt.internal.compiler.lookup.ReferenceBinding.

→˓getAnnotations(ReferenceBinding.java:1054)
at org.eclipse.jdt.internal.compiler.lookup.BinaryTypeBinding.

→˓evaluateTypeQualifierDefault(BinaryTypeBinding.java:2021)
at org.eclipse.jdt.internal.compiler.lookup.BinaryTypeBinding.

→˓getNonNullByDefaultValue(BinaryTypeBinding.java:1999)
at org.eclipse.jdt.internal.compiler.lookup.BinaryTypeBinding.

→˓scanTypeForNullDefaultAnnotation(BinaryTypeBinding.java:1943)
at org.eclipse.jdt.internal.compiler.lookup.BinaryTypeBinding.

→˓cachePartsFrom(BinaryTypeBinding.java:470)
at org.eclipse.jdt.internal.compiler.lookup.LookupEnvironment.

→˓createBinaryTypeFrom(LookupEnvironment.java:1055)
at org.eclipse.jdt.internal.compiler.lookup.LookupEnvironment.

→˓createBinaryTypeFrom(LookupEnvironment.java:1036)
at org.eclipse.jdt.internal.compiler.Compiler.accept(Compiler.java:308)
at org.eclipse.jdt.internal.compiler.lookup.LookupEnvironment.askForType(LookupEnvironment.

→˓java:326)
at org.eclipse.jdt.internal.compiler.lookup.PackageBinding.getType(PackageBinding.java:195)
at org.eclipse.jdt.internal.compiler.lookup.PackageBinding.

→˓initDefaultNullness(PackageBinding.java:325)
at org.eclipse.jdt.internal.compiler.lookup.PackageBinding.

→˓getDefaultNullness(PackageBinding.java:339)
at org.eclipse.jdt.internal.compiler.lookup.BinaryTypeBinding.

→˓scanTypeForNullDefaultAnnotation(BinaryTypeBinding.java:1965)
at org.eclipse.jdt.internal.compiler.lookup.BinaryTypeBinding.

→˓cachePartsFrom(BinaryTypeBinding.java:470)
at org.eclipse.jdt.internal.compiler.lookup.LookupEnvironment.

→˓createBinaryTypeFrom(LookupEnvironment.java:1055)
at org.eclipse.jdt.internal.compiler.lookup.LookupEnvironment.

→˓createBinaryTypeFrom(LookupEnvironment.java:1036)
at org.eclipse.jdt.internal.compiler.Compiler.accept(Compiler.java:308)
at org.eclipse.jdt.internal.compiler.lookup.LookupEnvironment.askForType(LookupEnvironment.

→˓java:326)
at org.eclipse.jdt.internal.compiler.lookup.LookupEnvironment.getType(LookupEnvironment.

→˓java:1705)
at org.eclipse.jdt.internal.compiler.lookup.LookupEnvironment.

→˓getResolvedType(LookupEnvironment.java:1633)
at org.eclipse.jdt.internal.compiler.lookup.LookupEnvironment.

→˓getResolvedJavaBaseType(LookupEnvironment.java:1645)
at org.eclipse.jdt.internal.compiler.lookup.AnnotationBinding.

→˓buildTargetAnnotation(AnnotationBinding.java:134)
at org.eclipse.jdt.internal.compiler.lookup.AnnotationBinding.

→˓addStandardAnnotations(AnnotationBinding.java:79)
at org.eclipse.jdt.internal.compiler.lookup.BinaryTypeBinding.

→˓retrieveAnnotations(BinaryTypeBinding.java:1698)
at org.eclipse.jdt.internal.compiler.lookup.ReferenceBinding.

→˓getAnnotations(ReferenceBinding.java:1054)
at org.eclipse.jdt.internal.compiler.lookup.BinaryTypeBinding.

→˓evaluateTypeQualifierDefault(BinaryTypeBinding.java:2021)
at org.eclipse.jdt.internal.compiler.lookup.BinaryTypeBinding.

→˓getNonNullByDefaultValue(BinaryTypeBinding.java:1999)
(continues on next page)

3.9. Development Tools 138

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

at org.eclipse.jdt.internal.compiler.lookup.BinaryTypeBinding.
→˓scanTypeForNullDefaultAnnotation(BinaryTypeBinding.java:1943)
at org.eclipse.jdt.internal.compiler.lookup.BinaryTypeBinding.

→˓cachePartsFrom(BinaryTypeBinding.java:470)
at org.eclipse.jdt.internal.compiler.lookup.LookupEnvironment.

→˓createBinaryTypeFrom(LookupEnvironment.java:1055)
at org.eclipse.jdt.internal.compiler.lookup.LookupEnvironment.

→˓createBinaryTypeFrom(LookupEnvironment.java:1036)
at org.eclipse.jdt.internal.compiler.Compiler.accept(Compiler.java:308)
at org.eclipse.jdt.internal.compiler.lookup.LookupEnvironment.askForType(LookupEnvironment.

→˓java:326)
at org.eclipse.jdt.internal.compiler.lookup.PackageBinding.getType(PackageBinding.java:195)
at org.eclipse.jdt.internal.compiler.lookup.PackageBinding.

→˓isViewedAsDeprecated(PackageBinding.java:314)
at org.eclipse.jdt.internal.compiler.lookup.ReferenceBinding.

→˓isViewedAsDeprecated(ReferenceBinding.java:1745)
at org.eclipse.jdt.internal.compiler.lookup.BinaryTypeBinding.

→˓cachePartsFrom(BinaryTypeBinding.java:566)
at org.eclipse.jdt.internal.compiler.lookup.LookupEnvironment.

→˓createBinaryTypeFrom(LookupEnvironment.java:1055)
at org.eclipse.jdt.internal.compiler.lookup.LookupEnvironment.

→˓createBinaryTypeFrom(LookupEnvironment.java:1036)
at org.eclipse.jdt.internal.compiler.Compiler.accept(Compiler.java:308)
at org.eclipse.jdt.internal.compiler.lookup.LookupEnvironment.askForType(LookupEnvironment.

→˓java:257)
at org.eclipse.jdt.internal.compiler.lookup.LookupEnvironment.getType(LookupEnvironment.

→˓java:1703)
at org.eclipse.jdt.internal.compiler.lookup.BinaryTypeBinding.

→˓getNonNullByDefaultValue(BinaryTypeBinding.java:1995)
at org.eclipse.jdt.internal.compiler.lookup.BinaryTypeBinding.

→˓scanTypeForNullDefaultAnnotation(BinaryTypeBinding.java:1943)
at org.eclipse.jdt.internal.compiler.lookup.BinaryTypeBinding.

→˓cachePartsFrom(BinaryTypeBinding.java:470)
at org.eclipse.jdt.internal.compiler.lookup.LookupEnvironment.

→˓createBinaryTypeFrom(LookupEnvironment.java:1055)
at org.eclipse.jdt.internal.compiler.lookup.LookupEnvironment.

→˓createBinaryTypeFrom(LookupEnvironment.java:1036)
at org.eclipse.jdt.internal.compiler.Compiler.accept(Compiler.java:308)
at org.eclipse.jdt.internal.compiler.lookup.LookupEnvironment.askForType(LookupEnvironment.

→˓java:326)
at org.eclipse.jdt.internal.compiler.lookup.PackageBinding.getType(PackageBinding.java:195)
at org.eclipse.jdt.internal.compiler.lookup.PackageBinding.

→˓initDefaultNullness(PackageBinding.java:325)
at org.eclipse.jdt.internal.compiler.lookup.PackageBinding.

→˓getDefaultNullness(PackageBinding.java:339)
at org.eclipse.jdt.internal.compiler.lookup.BinaryTypeBinding.

→˓scanTypeForNullDefaultAnnotation(BinaryTypeBinding.java:1965)
at org.eclipse.jdt.internal.compiler.lookup.BinaryTypeBinding.

→˓cachePartsFrom(BinaryTypeBinding.java:470)
at org.eclipse.jdt.internal.compiler.lookup.LookupEnvironment.

→˓createBinaryTypeFrom(LookupEnvironment.java:1055)
at org.eclipse.jdt.internal.compiler.lookup.LookupEnvironment.

(continues on next page)

3.9. Development Tools 139

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

→˓createBinaryTypeFrom(LookupEnvironment.java:1036)
at org.eclipse.jdt.internal.compiler.Compiler.accept(Compiler.java:308)
at org.eclipse.jdt.internal.compiler.lookup.LookupEnvironment.askForType(LookupEnvironment.

→˓java:326)
at org.eclipse.jdt.internal.compiler.lookup.LookupEnvironment.getType(LookupEnvironment.

→˓java:1705)
at org.eclipse.jdt.internal.compiler.lookup.LookupEnvironment.

→˓getResolvedType(LookupEnvironment.java:1633)
at org.eclipse.jdt.internal.compiler.lookup.LookupEnvironment.

→˓getResolvedJavaBaseType(LookupEnvironment.java:1645)
at org.eclipse.jdt.internal.compiler.lookup.Scope.getJavaLangObject(Scope.java:2961)
at org.eclipse.jdt.internal.compiler.lookup.ClassScope.connectSuperclass(ClassScope.

→˓java:1065)
at org.eclipse.jdt.internal.compiler.lookup.ClassScope.connectTypeHierarchy(ClassScope.

→˓java:1246)
at org.eclipse.jdt.internal.compiler.lookup.CompilationUnitScope.

→˓connectTypeHierarchy(CompilationUnitScope.java:367)
at org.eclipse.jdt.internal.compiler.lookup.LookupEnvironment.

→˓completeTypeBindings(LookupEnvironment.java:518)
at org.eclipse.jdt.internal.compiler.Compiler.internalBeginToCompile(Compiler.java:878)
at org.eclipse.jdt.internal.compiler.Compiler.beginToCompile(Compiler.java:394)
at org.eclipse.jdt.internal.compiler.Compiler.compile(Compiler.java:444)
at org.eclipse.jdt.internal.compiler.Compiler.compile(Compiler.java:426)
at org.eclipse.jdt.internal.core.builder.AbstractImageBuilder.compile(AbstractImageBuilder.

→˓java:386)
at org.eclipse.jdt.internal.core.builder.BatchImageBuilder.compile(BatchImageBuilder.

→˓java:214)
at org.eclipse.jdt.internal.core.builder.AbstractImageBuilder.compile(AbstractImageBuilder.

→˓java:318)
at org.eclipse.jdt.internal.core.builder.BatchImageBuilder.build(BatchImageBuilder.java:79)
at org.eclipse.jdt.internal.core.builder.JavaBuilder.buildAll(JavaBuilder.java:275)
at org.eclipse.jdt.internal.core.builder.JavaBuilder.build(JavaBuilder.java:192)
at org.eclipse.core.internal.events.BuildManager$2.run(BuildManager.java:832)
at org.eclipse.core.runtime.SafeRunner.run(SafeRunner.java:45)
at org.eclipse.core.internal.events.BuildManager.basicBuild(BuildManager.java:220)
at org.eclipse.core.internal.events.BuildManager.basicBuild(BuildManager.java:263)
at org.eclipse.core.internal.events.BuildManager$1.run(BuildManager.java:316)
at org.eclipse.core.runtime.SafeRunner.run(SafeRunner.java:45)
at org.eclipse.core.internal.events.BuildManager.basicBuild(BuildManager.java:319)
at org.eclipse.core.internal.events.BuildManager.basicBuildLoop(BuildManager.java:371)
at org.eclipse.core.internal.events.BuildManager.build(BuildManager.java:392)
at org.eclipse.core.internal.events.AutoBuildJob.doBuild(AutoBuildJob.java:154)
at org.eclipse.core.internal.events.AutoBuildJob.run(AutoBuildJob.java:244)
at org.eclipse.core.internal.jobs.Worker.run(Worker.java:63)

Youmay encounter the two popup windows and the full stack trace above when your version of EDC is too old. To
fix this issue, please use EDC-1.3.3 or higher with MicroEJ SDK 5.3.0 or higher.

3.9. Development Tools 140

https://repository.microej.com/modules/ej/api/edc/1.3.3/

MicroEJ Documentation, Revision 32bb132e

3.10 IDE

The SDK provides an Integrated Development Environment (IDE) for creating and building Applications. It is based
on Eclipse Java Edition and relies on the integrated Java Compiler (JDT).

3.10.1 Startup

When starting the SDK, it prompts you to select the last used workspace or a default workspace on the first run.

Fig. 97: Workspace selection

A workspace is the Eclipse main folder where are imported a set of projects containing the source code.

When loading a new workspace, the SDK prompts for the location of the MicroEJ repository, where Architectures,
Platforms or Virtual Devices will be imported.

3.10. IDE 141

MicroEJ Documentation, Revision 32bb132e

Fig. 98: Repository selection

Bydefault, the SDK suggests to point to thedefault repository on your operating system, located at ${user.home}/
.microej/repositories/[version] . Youcan select analternative location. Another commonpractice is todefine
a local repository relative to the workspace, so that the workspace is self-contained, without external file system
links and can be shared within a zip file.

3.10.2 Resolve Dependencies in Workspace

When resolving the modules’ dependencies, if the project of a dependency is imported and opened in the same
workspace as the module, the project is directly used for compilation and execution instead of using the depen-
dency, provided that the dependency’s project has the same version as the one required by the module.

For example, suppose that the workspace contains a module myApp and its dependency mylib :

3.10. IDE 142

MicroEJ Documentation, Revision 32bb132e

Fig. 99: A module and its dependency opened in the same workspace

If the mylib project’s version is 1.0.0 , it is used for compilation and execution. Otherwise the published artifact
is downloaded from the artifact repository.

To avoid a dependency to be resolved in theworkspace, you can close the corresponding project or remove it from
the workspace.

Warning: If you open, close, import or remove a project, youmust refresh the dependency resolution of other
previously imported projects by clicking on the Resolve All button :

Fig. 100: Resolve all the workspace projects

3.10.3 Resolve Foundation Libraries in Workspace

A Foundation Library is composed of :

• An API project that contains Java classes, methods and fields used at compile time with their associated
Javadoc,

• An Implementation project that contains the runtime code executed by the Platform and Low Level C header
files

Beside Foundation Library projects, there is usually a Mock project that contains the implementation of native
methods for simulation.

3.10. IDE 143

MicroEJ Documentation, Revision 32bb132e

Note: To learn how to setup a Foundation Library, please consult the How-to available on https://github.com/
MicroEJ/How-To/tree/master/FoundationLibrary-Get-Started.

When the API is set as a dependency, the Implementation project is automatically used at runtime if it is opened in
the workspace.

If a Mock project or a Front Panel project is also opened in the workspace, it is automatically used for execution on
Simulator.

Note: Whenopened in theworkspace, FoundationLibrary Implementationprojects,Mockprojects andFrontPanel
projects are loaded, regardless of their version, prior to the ones provided by the Platform (if any).

To avoid the use of an Implementation project, a Mock project or a Front Panel project, uncheck the
Resolve Foundation Library in workspace option in Window > Preferences > MicroEJ > Settings .

Fig. 101: Resolve Foundation Library in workspace

3.10. IDE 144

https://github.com/MicroEJ/How-To/tree/master/FoundationLibrary-Get-Started
https://github.com/MicroEJ/How-To/tree/master/FoundationLibrary-Get-Started

MicroEJ Documentation, Revision 32bb132e

3.10.4 Resolve Front Panel in Workspace

A Front Panel is a “mock” of the control panel of the device. The Front Panel generates a graphical representation
of the device, and is displayed in a window on the user’s development machine when the application is executed
in the Simulator.

Note: To learn more about Front Panels, consult the Front Panel section.

When a Front Panel project is opened in the workspace, it is automatically used at runtime when launching the
Simulator.

Note: This feature requires SDK version 5.7.0 or higher and Architecture version 8.0 or higher.

If the workspace contains several Front Panel projects, they are all automatically used by the Simulator, which can
very probably causes issues. You can select the Front Panel you want to use by closing all the other Front Panel
projects.

Also, a Front Panel project can contain several Front Panel descriptor files. Refer to the Multiple Front Panel Files
section to know how to select the file you want to use.

3.11 SDK Version

In the SDK, go to Help > About MicroEJ SDK menu.

In case of SDK 4.1.x , the SDK version is directly displayed, such as 4.1.5 :

In case of SDK 5.x , the value displayed is the SDK distribution, such as 19.05 or 20.07 :

3.11. SDK Version 145

MicroEJ Documentation, Revision 32bb132e

To retrieve the SDK version that is currently installed in this distribution, proceed with the following steps:

• Click on the Installation Details button,

• Click on the Installed Software tab,

• Retrieve the version of entry named MicroEJ SDK .

3.11. SDK Version 146

MicroEJ Documentation, Revision 32bb132e

3.12 MicroEJ Module Manager

3.12.1 Introduction

Modern electronic device design involvesmanyparts and teams to collaborate to finally obtain a product to be sold
on its market. MicroEJ encourages modular design which involves various stake holders: hardware engineers, UX
designers, graphic designers, drivers/BSP engineers, so�ware engineers, etc.

Modular design is a design technique that emphasizes separating the functionality of an application into inde-
pendent, interchangeable modules. Each module contains everything necessary to execute only one aspect of
the desired functionality. In order to have team members collaborate internally within their team and with other
teams, MicroEJ provides a powerful modular design concept, with smart module dependencies, controlled by the
MicroEJModule Manager (MMM). MMM frees engineers from the di�icult task of computingmodule dependencies.
Engineers specify the bare minimum description of the module requirements.

The following schema introduces the main concepts detailed in this chapter.

Fig. 102: MMMOverview

MMM is based on the following tools:

• Apache Ivy (http://ant.apache.org/ivy) for dependencies resolution andmodule publication;

• Apache EasyAnt (https://ant.apache.org/easyant/history/trunk/reference.html) for module build from
source code.

3.12. MicroEJ Module Manager 147

http://ant.apache.org/ivy
https://ant.apache.org/easyant/history/trunk/reference.html

MicroEJ Documentation, Revision 32bb132e

3.12.2 Specification

MMM provides a non ambiguous semantic for dependencies resolution. Please consult the MMM specification
available on https://developer.microej.com/packages/documentation/TLT-0831-SPE-MicroEJModuleManager-2.
0-E.pdf.

3.12.3 Module Project Skeleton

In the SDK, a newMicroEJ module project is created as follows:

• Select File > New > Project. . . ,

• Select MicroEJ > Module Project 1,

• Fill the module information (project name, module organization, name and revision),

• Select one of the suggested skeletons depending on the desiredmodule nature,

• Click on Finish .

The project is created and a set of files and directories are generated from the selected skeleton.

Note: When an empty Eclipse project already exists or when the skeleton has to be created within an existing
directory, the MicroEJ module is created as follows:

• In the Package Explorer, click on the parent project or directory,

• Select File > New > Other. . . ,

• Select EasyAnt > EasyAnt Skeleton .

3.12.4 Module Description File

Amoduledescription file is an Ivy configuration filenamed module.ivy , locatedat the rootof eachMicroEJmodule
project. It describes themodule nature (also called build type) and dependencies to other modules.

<ivy-module version="2.0" xmlns:ea="http://www.easyant.org" xmlns:m="http://ant.apache.org/
→˓ivy/extra"

xmlns:ej="https://developer.microej.com" ej:version="2.0.0">
<info organisation="[organisation]" module="[name]" status="integration" revision=

→˓"[version]">
<ea:build organisation="com.is2t.easyant.buildtypes" module="[buildtype_name]"␣

→˓revision="[buildtype_version]">
<ea:property name="[buildoption_name]" value="[buildoption_value]"/>

</ea:build>
</info>

<configurations defaultconfmapping="default->default;provided->provided">
<conf name="default" visibility="public"/>
<conf name="provided" visibility="public"/>
<conf name="documentation" visibility="public"/>
<conf name="source" visibility="public"/>

(continues on next page)

1 If using SDK versions lower than 5.2.0 , please refer to the following section.

3.12. MicroEJ Module Manager 148

https://developer.microej.com/packages/documentation/TLT-0831-SPE-MicroEJModuleManager-2.0-E.pdf
https://developer.microej.com/packages/documentation/TLT-0831-SPE-MicroEJModuleManager-2.0-E.pdf

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

<conf name="dist" visibility="public"/>
<conf name="test" visibility="private"/>

</configurations>

<publications>
</publications>

<dependencies>
<dependency org="[dep_organisation]" name="[dep_name]" rev="[dep_version]"/>

</dependencies>
</ivy-module>

Enable MMM Semantic

The MMM semantic is enabled in a module by adding the MicroEJ XML namespace and the ej:version attribute
in the ivy-module node:

<ivy-module xmlns:ej="https://developer.microej.com" ej:version="2.0.0">

Note: Multiple namespaces can be declared in the ivy-module node.

MMM semantic is enabled in the module created with theModule Project Skeleton.

Module Dependencies

Module dependencies are added to the dependencies node as follow:

<dependencies>
<dependency org="[dep_organisation]" name="[dep_name]" rev="[dep_version]"/>

</dependencies>

When nomatching rule is specified, the default matching rule is compatible .

Dependency Matching Rule

The following matching rules are specified by MMM:

Name Range Notation Semantic
compatible [M.m.p-RC, (M+1).0.0-RC[Equal or up to next major version. Default if

not set.
equivalent [M.m.p-RC, M.(m+1).0-RC [Equal or up to next minor version
greaterOrEqual [M.m.p-RC,∞[Equal or greater versions
perfect [M.m.p-RC, M.m.(p+1)-RC[Exact match (strong dependency)

Set the matching rule of a given dependency with ej:match="matching rule" . For example:

<dependency org="[dep_organisation]" name="[dep_name]" rev="[dep_version]" ej:match="perfect
→˓" />

3.12. MicroEJ Module Manager 149

MicroEJ Documentation, Revision 32bb132e

Dependency Visibility

• A dependency declared public is transitively resolved by upper modules. The default when not set.

• A dependency declared private is only used by the module itself, typically for:

– Bundling the content into the module

– Testing the module

The visibility is set by the configurations declared in the configurations node. For example:

<configurations defaultconfmapping="default->default;provided->provided">
<conf name="[conf_name]" visibility="private"/>

</configurations>

The configuration of a dependency is specified by setting the conf attribute, for example:

<dependency org="[dep_organisation]" name="[dep_name]" rev="[dep_version]" conf="[conf_name]-
→˓>*" />

Build Options

MMM builds can be configured by settings options in the module.ivy file using the ea:property tag inside the
ea:build tag:

<ea:build organisation="..." module="..." revision="x.y.z">
<ea:property name="[build_option_name]" value="[build_option_value]"/>

</ea:build>

Refer to the documentation ofModule Natures for the list of available build options for each Module Nature.

The options can also be defined via System Properties. If an option is defined as both System Property and
ea:property tag, the value passed as System Property takes precedence.

Automatic Update Before Resolution

The Easyant plugin ivy-update can be used to automatically update the version (attribute rev) of everymodule
dependencies declared.

<info organisation="[organisation]" module="[name]" status="integration" revision="[version]
→˓">

<ea:plugin org="com.is2t.easyant.plugins" name="ivy-update" revision="1.+" />
</info>

When the plugin is enabled, for eachmodule dependency, MMM will check the version declared in the module file
and update it to the highest version available which satisfies the matching rule of the dependency.

3.12. MicroEJ Module Manager 150

MicroEJ Documentation, Revision 32bb132e

3.12.5 SDK Configuration

By default, when starting an emptyworkspace, the SDK is configured to import dependencies fromMicroEJ Central
Repository and to publish builtmodules to a local directory. The repository configuration is stored in a settings file (
ivysettings.xml), and the default one is located at $USER_HOME\.microej\microej-ivysettings-[VERSION].
xml

Preferences Page

The MMM preferences page in the SDK is available at Window > Preferences > MicroEJ > Module Manager
Page 148, 1.

Fig. 103: MMM Preferences Page

This page allows to configure the following elements:

1. Settings File : the file describing how to connectmodule repositories. See the settings file section.

2. Options : files declaring MMM options. See the Options section.

3. Use Module repository as Build repository : the settings file for connecting the build repository in
place of the one bundled in the SDK. This option shall not be enabled by default and is reserved for advanced
configuration.

4. Build repository Settings File : the settings file for connecting the build repository in place of the one
bundled in the SDK. This option is automatically initialized the first time the SDK is launched. It shall not be
modified by default and is reserved for advanced configuration.

5. Set verbose mode : to enable advanced debug traces when building a module.

3.12. MicroEJ Module Manager 151

MicroEJ Documentation, Revision 32bb132e

6. Runtime JRE : the Java Runtime Environment that executes the build process.

7. Max build history size : the maximum number of previous builds available in Build Module shortcut
list:

Settings File

The settings file is an XML file that describes howMMMconnects local or onlinemodule repositories. The file format
is described in Apache Ivy documentation.

To configure MMM to a custom settings file (usually from an o�line repository):

1. Set Settings file to a custom ivysettings.xml settings filePage 148, 1,

2. Click on Apply and Close button

If the workspace is not empty, it is recommended to trigger a full resolution and rebuild all the projects using this
new repository configuration:

1. Clean caches

• In the Package Explorer, right-click on a project;

• Select Ivy > Clean all caches .

2. Resolve projects using the new repository

To resolve all the workspace projects, click on the Resolve All button in the toolbar:

To only resolve a subset of the workspace projects:

• In the Package Explorer, select the desired projects,

• Right-click on a project and select Ivy > Clean all caches .

3. Trigger Add-On Library processors for automatically generated source code

• Select Project > Clean. . . ,

• Select Clean all projects ,

• Click on Clean button.

3.12. MicroEJ Module Manager 152

https://ant.apache.org/ivy/history/2.5.0/settings.html

MicroEJ Documentation, Revision 32bb132e

Options

Options can be used to parameterize amodule description file or a settings file. Options are declared as key/value
pairs in a standard Java properties file, and are expanded using the ${my_property} notation.

A typical usage in a settings file is for extracting repository server credentials, such as HTTP Basic access authenti-
cation:

1. Declare options in a properties file

2. Register this property file to MMM options

3. Use this option in a settings file

A typical usage in amodule description file is for factorizing dependency versions acrossmultiplemodules projects:

1. Declare an option in a properties file

2. Register this property file to MMM options

3. Use this option in amodule description file

3.12. MicroEJ Module Manager 153

https://en.wikipedia.org/wiki/.properties

MicroEJ Documentation, Revision 32bb132e

Resolution Logs

Resolution logs of module projects imported in the workspace are available from the console view:

• Select Windows > Show View > Console ,

• In the Console view, click on the console window icon and select Ivy console :

To enable the verbose mode:

• In the Ivy console view, click on the debug icon and select debug instead of info (defaults):

This triggers the full workspace resolution with verbose mode enabled.

3.12. MicroEJ Module Manager 154

MicroEJ Documentation, Revision 32bb132e

3.12.6 Module Build

In the SDK, the build of a MicroEJ module project can be started as follows:

• In the Package Explorer, right-click on the project,

• Select Build Module .

Fig. 104: Module Build

The build of a module can take time depending on

• themodule nature to build,

3.12. MicroEJ Module Manager 155

MicroEJ Documentation, Revision 32bb132e

• the number and the size of module dependencies to download,

• the repository connection bandwidth, . . .

The module build logs are redirected to the integrated console.

Alternatively, the build of a MicroEJ module project can be started from the build history:

Fig. 105: Module Build History

3.12.7 Build Kit

The Module Manager Build Kit is a consistent set of tools, scripts, configuration and artifacts required for build-
ing modules in command-line mode. Starting from SDK 5.4.0 , it also contains a Command Line Interface (CLI).
The Build Kit allows to work in headless mode (e.g. in a terminal) and to build your modules using a Continuous
Integration tool.

The Build Kit is bundled with the SDK and can be exported using the following steps:2

• Select File > Export > MicroEJ > Module Manager Build Kit ,

• Choose an empty Target directory ,

• Click on the Finish button.

Once the Build Kit is fully exported, the directory content shall look like:

/
bin

mmm
mmm.bat

conf
lib
microej-build-repository

ant-contrib
com
...
ivysettings.xml

microej-module-repository
ivysettings.xml

release.properties

2 If using SDK versions lower than 5.4.0 , please refer to the following section.

3.12. MicroEJ Module Manager 156

MicroEJ Documentation, Revision 32bb132e

• Add the bin directory of the Build Kit directory to the PATH environment variable of your machine.

• Make sure the JAVA_HOME environment variable is set and points to a JRE/JDK installation or that java
executable is in the PATH environment variable (Java 8 is required)

• Confirm that the installation works fine by executing the command mmm --version . The result should
display the MMM CLI version.

The mmm tool can run on any supported Operating Systems:

• onWindows, either in the command prompt using the Windows batch script mmm.bat or in MinGW environ-
ments such as Git BASH using the bash script mmm .

• onmacOS and Linux distributions using the bash script mmm .

The build repository (microej-build-repository directory) contains scripts and tools for buildingmodules. It is
specific to a SDK version and shall not be modified by default.

The module repository (microej-module-repository directory) contains a default Settings File for importing
modules from Central Repository and this local repository (modules that are locally built will be published to this
directory). You can override with custom settings or by extracting an o�line repository.

To go further with headless builds, please consult the next chapter for command line builds, and this tutorial to
setup MicroEJ modules build in continuous integration environments.

3.12.8 Command Line Interface

Starting from version 5.4.0 , the SDK provides a Command Line Interface (CLI). Please refer to theBuild Kit section
for installation details.

The following operations are supported by the MMM CLI:

• creating a module project

• cleaning a module project

• building a module project

• running a MicroEJ Application project on the Simulator

• publishing a module in a module repository

Usage

In order to use the MMM CLI for your project:

• go to the root directory of your project

• run the following command

mmm [COMMAND] [OPTION]...

where COMMAND is the command to execute (for example mmm build). The available commands are:

• help : display help information about the specified command

• init : create a new project

• clean : clean the project

• build : build the project

• publish : build the project and publish the module

3.12. MicroEJ Module Manager 157

https://en.wikipedia.org/wiki/MinGW
https://en.wikipedia.org/wiki/MinGW
https://gitforwindows.org/

MicroEJ Documentation, Revision 32bb132e

• run : run the MicroEJ Application project on the Simulator

The available options are:

• --help (-h): show the help message and exit

• --version (-V): print version information and exit

• --build-repository-settings-file (-b): path of the Ivy settings file for build scripts and tools. Defaults
to ${CLI_HOME}/microej-build-repository/ivysettings.xml .

• --module-repository-settings-file (-r): path of the Ivy settings file for modules. Defaults to
${CLI_HOME}/microej-module-repository/ivysettings.xml .

• --ivy-file (-f): path of the project’s Ivy file. Defaults to ./module.ivy .

• --verbose (-v): verbose mode. Disabled by default. Add this option to enable verbose mode.

• -Dxxx=yyy : any additional option passed as system properties.

When no command is specified, MMM CLI executes Easyant with custom targets using the --targets (-t) option
(defaults to clean,verify).

Shared configuration

In order to share configuration across several projects, these parameters can be defined in the file ${user.home}/
.microej/.mmmconfig . This file uses the TOML format. Parameters names are the same than the ones passed
as system properties, except the character _ is used as a separator instead of - . The parameters defined in the
[options] section are passed as system properties. Here is an example:

build_repository_settings_file = "/home/johndoe/ivy-configuration/ivysettings.xml"
module_repository_settings_file = "/home/johndoe/ivy-configuration/ivysettings.xml"
ivy_file = "ivy.xml"

[options]
my.first.property = "value1"
my.second.property = "value2"

Warning:

• TOML values must be surrounded with double quotes

• Backslash characters (\) must be doubled (for example a Windows path C:\\Users\\johndoe\\
ivysettings.xml)

Command lineoptions takeprecedenceover thosedefined in the configuration file. So if the sameoption is defined
in both locations, the value defined in the command line is used.

3.12. MicroEJ Module Manager 158

https://toml.io

MicroEJ Documentation, Revision 32bb132e

Commands

init

The command init creates a new project (executes Easyant with skeleton:generate target). The skeleton and
project information must be passed with the following system properties:

• skeleton.org : organisation of the skeletonmodule. Defaults to com.is2t.easyant.skeletons .

• skeleton.module : name of the skeletonmodule. Mandatory, defaults to microej-javalib .

• skeleton.rev : revision of the skeleton module. Mandatory, defaults to + (meaning the latest released
version).

• project.org : organisation of the project module. Mandatory, defaults to com.mycompany .

• project.module : name of the project module. Mandatory, defaults to myproject .

• project.rev : revision of the project module. Defaults to 0.1.0 .

• skeleton.target.dir : relative path of the project directory (created if it does not exist). Mandatory, de-
faults to the current directory.

For example

mmm init -Dskeleton.org=com.is2t.easyant.skeletons -Dskeleton.module=microej-javalib -
→˓Dskeleton.rev=4.2.8 -Dproject.org=com.mycompany -Dproject.module=myproject -Dproject.rev=1.
→˓0.0 -Dskeleton.target.dir=myproject

If one of these properties is missing, it will be asked in interactive mode:

$ mmm init -Dskeleton.org=com.is2t.easyant.skeletons -Dskeleton.module=microej-javalib -
→˓Dskeleton.rev=4.2.8 -Dproject.org=com.mycompany -Dproject.module=myproject -Dproject.rev=1.
→˓0.0

...

-skeleton:check-generate:
[input] skipping input as property skeleton.org has already been set.
[input] skipping input as property skeleton.module has already been set.
[input] skipping input as property skeleton.rev has already been set.
[input] The path where the skeleton project will be unzipped [/home/tdelhomenie/microej/

→˓working/skeleton]

To force the non-interactive mode, the property skeleton.interactive.mode must be set to false . In non-
interactivemode thedefault values areused formissingnon-mandatoryproperties, and the creation fails ifmanda-
tory properties are missing.

$ mmm init -Dskeleton.org=com.is2t.easyant.skeletons -Dskeleton.module=microej-javalib -
→˓Dskeleton.rev=4.2.8 -Dproject.org=com.mycompany -Dskeleton.target.dir=myproject -Dskeleton.
→˓interactive.mode=false

...

* Problem Report:

expected property 'project.module': Module name of YOUR project

clean

3.12. MicroEJ Module Manager 159

MicroEJ Documentation, Revision 32bb132e

The command clean cleans the project (executes Easyant with clean target). For example

mmm clean

cleans the project.

build

The command build builds the project (executes Easyant with clean,verify targets). For example

mmm build -f ivy.xml -v

builds the project with the Ivy file ivy.xml and in verbose mode.

publish

Thecommand publish builds theproject andpublishes themodule. This commandaccepts thepublication target
as a parameter, amongst these values:

• local (default value): executes the clean,publish-local Easyant target, which publishes the projectwith
the resolver referenced by the property local.resolver in the Settings File.

• shared : executes the clean,publish-shared Easyant target, which publishes the project with the resolver
referenced by the property shared.resolver in the Settings File.

• release : executes the clean,release Easyant target, which publishes the project with the resolver refer-
enced by the property release.resolver the Settings File.

For example

mmm publish local

builds the project and publishes the module using the local resolver.

run

The command run runs the application on the Simulator (executes Easyant with compile,simulator:run tar-
gets). It has the following requirements:

• to run on the Simulator, the project must be configured with one of the followingModule Natures:

– Sandboxed Application

– Standalone Application

– Add-On Library

• the property application.main.class must be set to the Fully Qualified Name of the application main
class (for example com.mycompany.Main)

• a MicroEJ Platformmust be provided (see Platform Selection section)

• Standalone ApplicationOptionsmust be defined using properties file under in the build directory (seeUsing
a Properties File section)

• the module must have been built once before running the Simulator. So the mmm build commandmust be
executed before running the Simulator the first time or a�er a project clean (mmm clean command).

Note: The next times, it is not required to rebuild the module if source code files have been modified. The
content of src/main/java and src/main/resources folders are automatically compiled by mmm run com-
mand before running the Simulator.

For example

3.12. MicroEJ Module Manager 160

MicroEJ Documentation, Revision 32bb132e

mmm run -D"platform-loader.target.platform.file"="/path/to/the/platform.zip"

runs the application on the given platform.

The Simulator can be launched in debug mode by setting the property execution.mode of the application file
build/commons.properties to debug :

execution.mode=debug

The debug port can be defined with the property debug.port . Go to Simulator Debug options section for more
details.

help

The command help displays the help for a command. For example

mmm help run

displays the help of the command run .

3.12.9 Build SystemOptions

MMM allows to modify the behavior of a build via System options. These options must be passed as system prop-
erties, using CLI -D option or via the SDK Configuration options. MMM provides the following options:

• easyant.debug.port : defines the debug port and triggers the debugmode for the build execution.

3.12.10 Meta Build

AMeta Build is amodule allowing to build other modules. It is typically used in a project containingmultiple mod-
ules. The Meta Build module serves as an entry point to build all the modules of the project.

Meta Build creation

• In the SDK, select File > New > Module Project .

Fig. 106: NewMeta Build Project

• Fill in the fields Project name , Organization , Module and Revision , then select the Skeleton named
microej-meta-build

3.12. MicroEJ Module Manager 161

MicroEJ Documentation, Revision 32bb132e

• Click on Finish . A template project is automatically created and ready to use.

Meta Build configuration

The main element to configure in a meta build is the list of modules to build. This is done in 2 files, located at the
root folder:

• public.modules.list which contains the list of the modules relative paths to build and publish.

• private.modules.list which contains the list of the modules relative paths to build. These modules are
not published but only stored in a private and local repository in order to be fetched by the public modules.

The format of these files is a plain text file with onemodule path by line, for example:

module1
module2
module3

These paths are relative to the meta build root folder, which is set by default to the parent folder of the meta build
module (..). For this reason, a meta build module is generally created at the same level of the other modules to
build. Here is a typical structure of a meta build:

/
module1

...
module.ivy

module2
...
module.ivy

module3
...
module.ivy

metabuild
private.modules.list
public.modules.list
module.ivy

The modules build order is calculated based on the dependency information. If a module is a dependency of an-
other module, it is built first.

For a complete list of configuration options, please refer toMeta Build Module Nature section.

3.12.11 Troubleshooting

Unresolved Dependency

If the following message appears when resolving module dependencies:

:: problems summary ::
:::: WARNINGS

module not found: com.mycompany#mymodule;[M.m.p-RC,M.m.(p+1)-RC[

::

(continues on next page)

3.12. MicroEJ Module Manager 162

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

:: UNRESOLVED DEPENDENCIES ::

::

:: com.mycompany#mymodule;[M.m.p-RC,M.m.(p+1)-RC[: not found

::

First, check that either a released module com.mycompany/mymodule/M.m.p or a snapshot module com.
mycompany/mymodule/M.m.p-RCYYYYMMDD-HHMM exists in your module repository.

• If the module does not exist,

– if it is declared as a direct dependency, the module repository is not compatible with your source code.
You can either check if an othermodule version is available in the repository or add themissingmodule
to the repository.

– otherwise, this is likely a missing transitive module dependency. The module repository is not consis-
tent. Check themodule repository settings file and that consistency check has been enabled during the
module repository build (see Configure Consistency Check).

• If the module exists, this may be either a configuration issue or a network connection error. We have to find
the cause in the resolution logs.

Note:

The activation of the verbose mode depends on how the resolution has been launched:

– if the error occurs during workspace resolution, configure the verbose mode of resolution logs,

– if the error occurs while building a module from workspace, check the verbose mode option in prefer-
ences page,

– if the error occurs while building a module from command line, set the verbose mode option in com-
mand line options.

For URL repositories, find:

trying https://[MY_REPOSITORY_URL]/[MY_REPOSITORY_NAME]/com.mycompany/mymodule/
tried https://[MY_REPOSITORY_URL]/[MY_REPOSITORY_NAME]/com.mycompany/mymodule/

For filesystem repository, find:

trying [MY_REPOSITORY_PATH]/com.mycompany/mymodule/
tried [MY_REPOSITORY_PATH]/com.mycompany/mymodule/

If your module repository URL or filesystem path does not appear, check your settings file. This is likely a
missing resolver.

Otherwise, if your module repository is an URL, this may be a network connection error between MMM (the
client) and the module repository (the server). First, check for Invalid Certificate issue.

Otherwise, the next step is to debug at the HTTP level:

HTTP response status: [RESPONSE_CODE] url=https://[MY_REPOSITORY_URL]/com.mycompany/
→˓mymodule/
CLIENT ERROR: Not Found url=https://[MY_REPOSITORY_URL]/com.mycompany/mymodule/

3.12. MicroEJ Module Manager 163

MicroEJ Documentation, Revision 32bb132e

Depending on the HTTP error code:

– 401 Unauthorized : check your settings file credentials configuration.

– 404 Not Found : add the following options to log raw HTTP tra�ic:

-Dorg.apache.commons.logging.Log=org.apache.commons.logging.impl.SimpleLog -Dorg.
→˓apache.commons.logging.simplelog.showdatetime=true -Dorg.apache.commons.logging.
→˓simplelog.log.org.apache.http=DEBUG -Dorg.apache.commons.logging.simplelog.log.
→˓org.apache.http.wire=ERROR

Particularly, Ivy requires the HTTP HEAD request which may be disabled by some servers.

Invalid Certificate

If the following message appears when resolving module dependencies:

HttpClientHandler: sun.security.validator.ValidatorException: PKIX path building failed: sun.
→˓security.provider.certpath.SunCertPathBuilderException: unable to find valid certification␣
→˓path to requested target url=[artifactory address]

This can be raised in several cases, such as:

• an artifact repository configured in the MicroEJ Module Manager settings using a self-signed SSL certificate
or a SSL certificate not trusted by the JDK.

• the requests to an artifact repository configured in the MicroEJ Module Manager settings are redirected to a
proxy server using a SSL certificate not trusted by the JDK.

In all cases, the SSL certificate (used by the artifact repository server or the proxy) must be added to the JDK trust
store that is running MicroEJ Module Manager. Ask your System Administrator, or retrieve the SSL certificate and
add it to the JDK trust store:

• on Windows

1. Install Keystore Explorer.

2. Start Keystore Explorer, and open file [JRE_HOME]/lib/security/cacerts or [JDK_HOME]/jre/lib/
security/cacerts with the password changeit . You may not have the right to modify this file. Edit
rights if needed before opening it or open Keystore Explorer with admin rights.

3. Click on Tools , then Import Trusted Certificate .

4. Select your certificate.

5. Save the cacerts file.

• on Linux/macOS

1. Open a terminal.

2. Make sure the JDK’s bin folder is in the PATH environment variable.

3. Execute the following command:

keytool -importcert -v -noprompt -trustcacerts -alias myAlias -file /path/to/the/
→˓certificate.pem -keystore /path/to/the/truststore -storepass changeit

If the problem still occurs, set the javax.net.debug property to all to enable SSL protocol traces:

• when using the MMM CLI, add the property in the command line with: -Djavax.net.debug=all

3.12. MicroEJ Module Manager 164

https://ant.apache.org/ivy/history/2.5.0/settings/credentials.html
http://keystore-explorer.org/downloads.html

MicroEJ Documentation, Revision 32bb132e

• when using the Build Module button in the SDK, add the property in the MicroEJ Module Manager options
as described in the section Options

• when resolving thedependenciesonaproject in theSDKwith thebutton Ivy > Resolve , add the following
line at the end of the file MicroEJ-SDK.ini located at the root of the SDK installation:

-Djavax.net.debug=all

and start the SDK from a terminal.

In all cases, such logs should appear in the terminal or in the SDK console:

...
javax.net.ssl|DEBUG|01|main|2022-09-09 18:22:20.828 CEST|SSLContextImpl.
→˓java:428|System property jdk.tls.client.cipherSuites is set to 'null'
javax.net.ssl|DEBUG|01|main|2022-09-09 18:22:20.871 CEST|SSLCipher.java:464|jdk.
→˓tls.keyLimits: entry = AES/GCM/NoPadding KeyUpdate 2^37. AES/GCM/
→˓NOPADDING:KEYUPDATE = 137438953472
javax.net.ssl|DEBUG|01|main|2022-09-09 18:22:20.892 CEST|SSLContextImpl.
→˓java:402|Ignore disabled cipher suite: TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
...

There should be a trace at the beginning which indicates the path of the truststore used by the JDK:

javax.net.ssl|FINE|01|main|2022-09-05 14:34:38.631 CEST|TrustStoreManager.
→˓java:112|trustStore is: /path/to/the/truststore

The error very probably occurs during the handshake phase of the SSL negotiation. There should be the following
trace before the error:

Consuming server Certificate handshake message

The traces below this one indicates the SSL certificate (or the SSL certificates chain) presented by the server. This
certificate or one of the root or intermediate certificates must be added in the JDK truststore as explained previ-
ously.

Target “simulator:run” does not exist

If the following message appears when executing the mmm run command:

* Problem Report:

Target "simulator:run" does not exist in the project "my-app".

it means that the command run is not supported by the build type declared by your module project. Make sure it
is one of the following ones:

• build-application , with version 7.1.0 or higher

• build-microej-javalib , with version 4.2.0 or higher

• build-firmware-singleapp , with version 1.3.0 or higher

3.12. MicroEJ Module Manager 165

MicroEJ Documentation, Revision 32bb132e

3.12.12 Former SDK Versions (lower than 5.2.0)

This section describes MMM configuration elements for SDK versions lower than 5.2.0 .

NewMicroEJ Module Project

TheNewMicroEJModuleProjectwizard is available at File > New > Project. . . , EasyAnt > EasyAnt Project
.

Preferences Pages

MMM Preferences Pages are located in two dedicated pages. The following pictures show the options mapping
using the same options numbers declared in Preferences Page.

Ivy Preferences Page

The Ivy Preferences Page is available at Window > Preferences > Ivy > Settings .

Easyant Preferences Page

The Easyant Preferences Page is available at Window > Preferences > EasyAnt4Eclipse .

3.12. MicroEJ Module Manager 166

MicroEJ Documentation, Revision 32bb132e

Build Kit

• Create an empty directory (e.g. mmm_sdk_[version]_build_kit),

• Locate your SDK installation plugins directory (by default, C:\Program Files\MicroEJ\MicroEJ
SDK-[version]\rcp\plugins on Windows OS),

• Open the file com.is2t.eclipse.plugin.easyant4e_[version].jar with an archive manager,

• Extract the directory lib to the target directory,

• Open the file com.is2t.eclipse.plugin.easyant4e.offlinerepo_[version].jar with an archive man-
ager,

• Navigate to directory repositories ,

• Extract the file named microej-build-repository.zip for SDK 5.x or is2t_repo.zip for SDK 4.1.x to
the target directory.

3.12.13 Former SDK Versions (from 5.2.0 to 5.3.x)

Build Kit

The Build Kit is bundled with the SDK and can be exported using the following steps:

• Select File > Export > MicroEJ > Module Manager Build Kit ,

• Choose an empty Target directory ,

• Click on the Finish button.

Once the Build Kit is fully exported, the directory content shall look like:

3.12. MicroEJ Module Manager 167

MicroEJ Documentation, Revision 32bb132e

3.13 Release Notes

Starting from SDK version 5.0.0 , Architectures are distributed separately from the Integrated Development Envi-
ronment. Evaluation Architectures can be downloaded from the Architectures Repository.

The SDK is now packaged into an Eclipse P2 repository (https://repository.microej.com/p2/sdk), allowing partial
updates and installation on any compatible Eclipse version. The historical version (5) of MicroEJ is reused for the
P2 repository delivery.

MicroEJ Corp. continues to regularly build all-in-one packages, called Distributions, including the SDK and ded-
icated OS installers. This distribution has a separate versioning, which follows modern convention: [YY].[MM]
.

3.14 SDK Distribution Changelog

3.14.1 [24.01] - 2024-01-31

Note: This release requires a JDK 11 and therefore an Architecture 7.17.0 or higher. Please refer to System Re-
quirements for more details.

• Included SDK 5.8.2.

• Enabled the “Terminate and Relaunch while launching” launcher option by default when a new Workspace
is created.

3.14.2 [23.07] - 2023-07-03

Note: This release requires a JDK 11 and therefore an Architecture 7.17.0 or higher. Please refer to System Re-
quirements for more details.

• Included SDK 5.8.0.

• Downgraded to Eclipse version 2022-03 to fix incompatibilities of components with JDK 11.

• Fixed no JDK found error when launching the installer in the case the JDK path has not been set in the Win-
dows registry.

3.14.3 [23.02] - 2022-02-28

Note: This release requires a JDK 11 and therefore an Architecture 7.17.0 or higher. Please refer to System Re-
quirements for more details.

• Included SDK 5.7.0.

• Updated to Eclipse version 2022-12 .

3.13. Release Notes 168

https://repository.microej.com/modules/com/microej/architecture/
https://repository.microej.com/p2/sdk

MicroEJ Documentation, Revision 32bb132e

3.14.4 [22.06] - 2022-06-29

Note: This release requires a JDK 11 and therefore an Architecture 7.17.0 or higher. Please refer to System Re-
quirements for more details.

• Included SDK 5.6.0.

• Added support for macOS aarch64 (M1 chip).

• Updated to Eclipse version 2022-03 .

• Changed required Java Runtime to JDK 11 (JRE and other versions are not supported anymore).

3.14.5 [21.11] - 2021-11-15

Note: This release prepares for a future JRE 11 support. However, the only o�icially supported JRE version is still
JRE 8. Please refer to System Requirements for more details.

• Included SDK 5.5.0.

• Updated installer to accept both JRE 8 and JRE 11.

• Fixed error Error while loading manipulator when installing SDK updates on MacOS.

• Updated End User License Agreement.

3.14.6 [21.03] - 2021-03-25

• Included SDK 5.4.0.

• Updated End User License Agreement.

KNOWN ISSUES:

• The following error occurs when installing an SDK update on MacOS:

!MESSAGE Error while loading manipulator.
!STACK 0
java.lang.IllegalStateException: Error while loading manipulator.

at org.eclipse.equinox.internal.p2.touchpoint.eclipse.LazyManipulator.
→˓loadDelegate(LazyManipulator.java:64)

at org.eclipse.equinox.internal.p2.touchpoint.eclipse.LazyManipulator.
→˓getConfigData(LazyManipulator.java:117)

at org.eclipse.equinox.internal.p2.touchpoint.eclipse.actions.
→˓UninstallBundleAction.uninstallBundle(UninstallBundleAction.java:57)

at org.eclipse.equinox.internal.p2.touchpoint.eclipse.actions.
→˓UninstallBundleAction.execute(UninstallBundleAction.java:33)

at org.eclipse.equinox.internal.p2.engine.ParameterizedProvisioningAction.
→˓execute(ParameterizedProvisioningAction.java:42)

at org.eclipse.equinox.internal.p2.engine.Phase.mainPerform(Phase.java:186)
at org.eclipse.equinox.internal.p2.engine.Phase.perform(Phase.java:99)
at org.eclipse.equinox.internal.p2.engine.PhaseSet.perform(PhaseSet.java:50)
at org.eclipse.equinox.internal.p2.engine.Engine.perform(Engine.java:80)

(continues on next page)

3.14. SDK Distribution Changelog 169

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

at org.eclipse.equinox.internal.p2.engine.Engine.perform(Engine.java:48)
at org.eclipse.equinox.p2.operations.ProvisioningSession.

→˓performProvisioningPlan(ProvisioningSession.java:181)
at org.eclipse.equinox.p2.operations.ProfileModificationJob.

→˓runModal(ProfileModificationJob.java:76)
at org.eclipse.equinox.p2.operations.ProvisioningJob.run(ProvisioningJob.

→˓java:190)
at org.eclipse.core.internal.jobs.Worker.run(Worker.java:63)

The workaround is to replace /eclipse/plugins/ by /Eclipse/plugins/ (capital E) in
MicroEJ-SDK-21.03.app\Contents\Eclipse\eclipse.ini .

• See SDK 5.4.0 Known Issues section

3.14.7 [20.12] - 2020-12-11

• Included SDK 5.3.1

• Disabled Java version check when updating SDK (see known issues of SDK Distribution 20.10)

3.14.8 [20.10] - 2020-10-30

• Included SDK 5.3.0

• Updated to Eclipse version 2020-06

• Fixed low quality MacOS SDK icons

Note: Starting with this release, only 64bits JRE are supported because 32bits JRE support has been removed
since Eclipse version 2018-12 .

KNOWN ISSUES:

• Projects configuredwith Null Analysis must be updated to import EDC API 1.3.3 or higher in order to avoid an
Eclipse JDT builder error (see also this link for more details).

• The default settings file for connecting MicroEJ Central Repository is not automatically installed. To connect
to the MicroEJ Central Repository, follow the procedure:

– For Windows, create the folder: C:\Users\%USERNAME%\.microej .

– For Linux, create the folder: /home/$USER/.microej .

– For macos, create the folder: /Users/$USER/.microej .

– Download and save this file microej-ivysettings-5.xml to the previously created .microej folder.

• By default, a check is done on the JRE version required by the plugins on install/update. Since CDT
requires JRE 11, it prevents to install/update a newer SDK version. The CDT documentation explains
that this can be bypassed by disabling the option Windows > Preferences > Install/Update >

Verify provisioning operation is compatible with currently running JRE .

3.14. SDK Distribution Changelog 170

https://repository.microej.com/modules/ej/api/edc/1.3.3/
https://bugs.eclipse.org/bugs/show_bug.cgi?id=566599
https://repository.microej.com/microej-ivysettings-5.xml

MicroEJ Documentation, Revision 32bb132e

3.14.9 [20.07] - 2020-07-28

• IncludedMicroEJ SDK 5.2.0

• Updated the default microej repository folder name (replaced SDK version by the distribution number)

• Added Dist. prefix in installer name (e.g. MicroEJ SDK Dist. 20.07) to avoid confusion between SDK
distribution vs SDK version

• Updated SDK End User License Agreement

• Disabled popup windowwhen installing a SDK update site (allow to install unsigned content by default)

3.14.10 [19.05] - 2019-05-17

• Included SDK version 5.1.0

• Updated MicroEJ icons (16x16 and 32x32)

• Updated the publisher of Windows executables (MicroEJ instead of IS2T SA.)

• Updated the JRE link to download in case the default JRE is not compatible. (https://www.java.com is
deprecated)

3.14.11 [19.02] - 2019-02-22

• Updated to Eclipse Oxygen version 4.7.2

• Included SDK version 5.0.1

• Included Sonarlint version 4.0.0

3.15 SDK Changelog

3.15.1 [5.8.2] - 2024-01-31

General

• Added the --keep-going option for the MMM Command Line Interface to continue the build of the meta-
build when a subproject fails.

MicroEJ Module Manager

General

• Upgraded Front Panel plugin to version 6.3.0 to use FP framework dependency only by default.

3.15. SDK Changelog 171

MicroEJ Documentation, Revision 32bb132e

Build Types

• Set default Java compile version to 1.8 for build-std-javalib build type.

• Fixed hardcoded dependency line in generated javadoc of artifacts repositories.

• Fixed incompatibility of the Artifact Checker with modules published with the SDK 6.

• New build types added:

– build-firmware-multiapp#8.2.0

– build-firmware-singleapp#2.3.0

– build-std-javalib#3.3.0

3.15.2 [5.8.1] - 2023-09-19

General

• Fixedunreadable tooltipbecauseofblack textonblackbackground for theVEEPortsandArchitecturesviews.

• Fixed wrong value for the example in the StackOverflow error message in the Memory Map Analyzer plugin.

• Fixed Configuration tab content disappearing when navigating in Run Configurations.

MicroEJ Module Manager

General

• Remove legacy configuration fields for application project wizard (Application ID, Printable Name and De-
scription).

Build Types

• New build types added:

– None

Skeletons

• Add section in README of the build-addon-processor skeleton to document how to override a generated
source file.

3.15. SDK Changelog 172

MicroEJ Documentation, Revision 32bb132e

3.15.3 [5.8.0] - 2023-07-03

General

• Added improvements inOutline viewand InstanceBrowser view (newOwner column, new filters) of theHeap
Viewer.

• Enabled on/o� tags in the MicroEJ Java format profile.

• Updated Code template for Widget.handleEvent to use MWT 3 API.

• Fixed default Ivy settings file not created at startup.

• Fixed topological order in Application classpath.

MicroEJ Module Manager

General

Build Types

• Added Gradle dependency line in the generated Javadoc of an artifact repository (
build-artifact-repository build type).

• New build types added:

– build-artifact-repository#3.4.0

– build-izpack#3.3.0

Skeletons

• Removed META-INF folder from firmware-multiapp skeleton.

3.15.4 [5.7.0] - 2023-02-27

General

• Added latest BSD license and SDK/BSD license and deprecate ESR.

• Added the capability to resolve a Front Panel dependency as a project in theworkspace, as any othermodule
type.

• Added the capability to resolve a Front Panel Mock dependency as a project in the workspace, as any other
module type.

• Added the support to fetch Mavenmodules fromMMM projects.

• Changed the error message displayed by the Memory Map Analyzer to show the real error message.

• Fixed build error when an ADP is opened in the workspace.

• Fixed slowness issue during Ivy resolution on Windows with JDK 11.

• Fixed syntaxic coloration lost in an openedmodule.ivy file a�er an SDK restart.

• Fixed inadequate colors in editors and console in Dark theme.

3.15. SDK Changelog 173

MicroEJ Documentation, Revision 32bb132e

• Fixed failing Ivy resolution a�er an SDK restart.

• Fixed the freeze of the Heap Analyzer when opening a large heap file or clicking on a large byte array.

• Fixed error when building a VEE Port using the Build Platform button in the .platform file.

• Fixed “Resolve Foundation Library in workspace” option unchecked a�er closing and re-opening the
workspace.

• Fixed Addon Processor modules not resolved when opened in the workspace.

MicroEJ Module Manager

General

• Fixed release version of a runtime API module.

• Fixed build of a module that uses the obf-proguard plugin with JDK 11.

• Upgraded ProGuard to version 7.2.1 to support JDK 11.

• Fixed Application external jars resolution at compile time.

• Fixed resolution in workspace error depending on a Mock’s name.

• Fixed error message when an Easyant target is executed in a folder that does not contain a module.ivy file.

Build Types

• Fixed build-std-javalib compilation with JDK 11.

• Fixed Artifact Checker’s execution on build-std-javalib .

• Fixed build-artifact-repository build type which couldn’t find the previous release of the repository to
merge it.

• New build types added:

– build-addon-processor#2.2.0

– build-application#9.2.0

– build-artifact-repository#3.3.0

– build-custom#2.2.0

– build-firmware-customizer#3.2.0

– build-firmware-multiapp#8.1.0

– build-firmware-singleapp#2.2.0

– build-izpack#3.2.0

– build-microej-extension#2.2.0

– build-microej-javaapi#5.2.0

– build-microej-javaimpl#5.2.0

– build-microej-javalib#6.2.0

– build-microej-mock#2.2.0

– build-microej-ri#3.2.0

3.15. SDK Changelog 174

MicroEJ Documentation, Revision 32bb132e

– build-microej-testsuite#4.2.0

– build-product-java#2.2.0

– build-runtime-api#4.1.0

– build-std-javalib#3.2.0

Skeletons

• Aligned Kernel APIs dependencies between runtime-api and firmware-multiapp skeletons.

• Changed default compilation level to Java 8 for Mock projects.

• Fixed Build Executable options to make the “No BSP Connection” work.

3.15.5 [5.6.2] - 2022-08-31

General

• Fixed error when opening some heap dump files.

• Fixed error when saving a EJF file with the Font Designer.

MicroEJ Module Manager

General

• Fixed invalid module name when using spaces in the project name.

Skeletons

• Fixed wrong package name in the class generated when creating a firmware-multiapp project.

3.15.6 [5.6.1] - 2022-07-08

General

• Removed check on JRE version when opening a workspace.

3.15.7 [5.6.0] - 2022-06-29

General

• Added support for JDK 11.

• Changed Easyant targets executed by mmm build from clean,verify to clean,package .

• Upgraded Front Panel plugin to version 6.1.3 to remove warning on fp framework.

• Updated Workspace settings to ignore errors in Ant build files by default.

• Fixed error when opening a Heap Dump file not part of the workspace.

3.15. SDK Changelog 175

MicroEJ Documentation, Revision 32bb132e

• Fixed error when opening a Map file not part of the workspace.

• Removed Resources Center view.

MicroEJ Module Manager

General

• Added the capability to override module organisation/name/revision with Build System Options.

• Added error message when using non-supported Eclipse Link Folders.

• Updated End User License Agreement.

• Fixed MMM failure when resolving a dependency with a version containing a number with 4 digits.

• Fixed error when building a meta-build project with public sub-modules and using target verify .

Build Types

• Added support for Kernel Runtime Environments (build-firmware-multiapp , build-runtime-api and
build-application).

• Added option javadoc.modules.excludes to exclude modules from Javadoc generation when building a
module repository.

• New build types added:

– build-addon-processor#2.1.0

– build-application#9.1.0

– build-artifact-repository#3.2.0

– build-custom#2.1.0

– build-firmware-customizer#3.1.0

– build-firmware-multiapp#8.0.0

– build-firmware-singleapp#2.1.0

– build-izpack#3.1.0

– build-microej-extension#2.1.0

– build-microej-javaapi#5.1.0

– build-microej-javaimpl#5.1.0

– build-microej-javalib#6.1.0

– build-microej-mock#2.1.0

– build-microej-ri#3.1.0

– build-microej-testsuite#4.1.0

– build-product-java#2.1.0

– build-runtime-api#4.0.0

– build-std-javalib#3.1.0

3.15. SDK Changelog 176

MicroEJ Documentation, Revision 32bb132e

Build Plugins

• Updated elf-utils plugin to load the ELF related tools from the architecture/platform.

Skeletons

• Added JUnit dependency to all Java module skeletons (including default JUnit tests pattern).

• Updated firmware-singleapp and firmware-multiapp skeletons for building the executable by default.

• Updated Sandboxed Application skeleton (application) to be compatible with any Kernel (based on KF
FeatureEntryPoint).

3.15.8 [5.5.3] - 2022-05-03

MicroEJ Module Manager

• Fixed error Can't parse module descriptor when building a Module on Windows with a JDK 8.0.331+.

3.15.9 [5.5.2] - 2021-12-22

General

• Fixed Addon Processors of a project in a workspace being applied to others projects.

MicroEJ Module Manager

Build Plugins

• Updated Log4j in Artifact Checker and Cobertura plugins to version 2.17.0.

3.15.10 [5.5.1] - 2021-12-02

General

• Fixed wrong category name in New Project wizard.

3.15.11 [5.5.0] - 2021-11-15

Note: This release prepares for a future JRE 11 support. However, the only o�icially supported JRE version is still
JRE 8. Please refer to System Requirements for more details.

3.15. SDK Changelog 177

MicroEJ Documentation, Revision 32bb132e

General

• Added Add-On Processor resolution in workspace.

• Updated tools for both JRE 8 and JRE 11 compatibility.

• Fixed corrupted font file created by the Font designer when importing large number of glyphs.

• Updated Architecture version check during Pack import (greaterOrEqual instead of compatible). This
allows to import Architecture Specific Pack and Legacy Generic Pack on future Architecture versions 8.x .

• Updated End User License Agreement.

MicroEJ Module Manager

• Added bin folder to .gitignore file of module natures Java project skeleton.

• Added Null Analysis configuration to artifact-checker . When building a module repository, null analysis
configuration is only checked on the highest module version included in the repository.

• Added Eclipse Public License v2.0 to the list of default licenses allowed for artifact-checker .

• Clarified input messages of mmm init command.

• Updated artifact-checker plugin binding to target verify . This allowmodule checks to be executed on
builds triggered by a pull request (no publication).

• Fixed missing artifact-checker plugin to some module natures (custom , firmware-multiapp ,
firmware-singleapp , microej-javaimpl , microej-mock , microej-testsuite , product-java).

• Fixed mmm run execution on a firmware-singleapp module (do not trigger the Firmware build).

• Fixed kf-testsuite plugin test project build.

• Added support of branch analysis with Sonar.

• Added ability to package private dependencies to mock module natures (configuration embedded).

• Added testsuite and javadoc plugin to firmware-singleapp module nature.

• Added ssh deployment to microej-kf-testsuite plugin.

• Updated firmware-multiapp to remove the bsp directory in Virtual Devices.

• Updated firmware-multiapp to allow Virtual Devices for launching a specific main class other than the
Kernel main class. This is useful for running JUnit tests using a Virtual Device instead of a Platform.

• Updated firmware-multiapp to allow Virtual Devices for automatically launching a Sandboxed Application
project in the SDK.

• Updated firmware-multiapp to automatically configure the Virtual Device Kernel UID when a Firmware is
built.

• Fixed firmware-multiapp skeleton default dependencies with only modules available in MicroEJ Central
Repository.

• Fixed firmware-multiapp unexpected build error when no declared pre-installed Application.

• Fixed firmware-multiapp build which may fail an unexpected Unresolved Dependencies error the first
time, for Kernel APIs module dependencies (configuration kernelapi) or Virtual Device specific modules
dependencies (configuration default-vd).

• Fixed firmware-multiapp unexpected build error when no Application (.wpk file) found in the dropins
folder.

3.15. SDK Changelog 178

MicroEJ Documentation, Revision 32bb132e

• Fixed firmware-multiapp unexpected build error when no declared pre-installed Application.

• Fixed firmware-singleapp and firmware-multiapp skeletons wrong package name generation for the
default Main class.

• Fixed artifact-repository changelog check for modules with a snapshot version.

• New build types added:

– build-addon-processor#2.0.0

– build-application#9.0.0

– build-artifact-repository#3.0.0

– build-custom#2.0.0

– build-firmware-customizer#3.0.0

– build-firmware-multiapp#7.0.0

– build-firmware-singleapp#2.0.0

– build-izpack#3.0.0

– build-microej-extension#2.0.0

– build-microej-javaapi#5.0.0

– build-microej-javaimpl#5.0.0

– build-microej-javalib#6.0.0

– build-microej-mock#2.0.0

– build-microej-ri#3.0.0

– build-microej-testsuite#4.0.0

– build-product-java#2.0.0

– build-runtime-api#3.0.0

– build-std-javalib#3.0.0

– microej-meta-build#3.0.0

3.15.12 [5.4.1] - 2021-04-16

Note: This release is both compatible with Eclipse version 2020-06 and Eclipse Oxygen, so it can still be installed
on a previous SDK Distribution.

3.15. SDK Changelog 179

MicroEJ Documentation, Revision 32bb132e

MicroEJ Module Manager

• Fixed missing repository configuration in artifact-repository skeleton (this configuration is required
to include modules bundled in an other module repository)

• Fixed missing some old build types versions that were removed by error. (introduced in SDK 5.4.0 , please
refer to the Known Issues section for more details)

• Fixedwrong version ofmodule built in ameta-build (modulewas publishedwith themodule version instead
of the snapshot version)

• Fixed code coverage analysis on source code (besides on bytecode) thanks to the property cc.src.folders
(only for architectures in version 7.16.0 and beyond)

• New build types added:

– microej-meta-build#2.0.1

3.15.13 [5.4.0] - 2021-03-25

Note: This release is both compatible with Eclipse version 2020-06 and Eclipse Oxygen, so it can still be installed
on a previous SDK Distribution.

Known Issues

• Some older build types versions have been removed by error. Consequently, using SDK 5.4.0 , it may be not
possible to build modules that have been created with an older SDK version (For example, MicroEJ GitHub
code). The list of missing build types:

– build-application 7.0.2

– build-microej-javalib 4.1.1

– build-firmware-singleapp 1.2.10

– build-microej-extension 1.3.2

General

• Added MicroEJ Module Manager Command Line Interface in Build Kit

• Added ignore optional compilation problems in Addon Processor generated source folders

• Added logs to Standalone Application build indicating the mapping of Foundation Libraries to the Platform

• Updated End User License Agreement

• Added the latest HIL Engine API to mock-up skeleton (native resources management)

• Updated the Architecture import wizard to automatically accept Pack licenses when the Architecture license
is accepted

3.15. SDK Changelog 180

https://github.com/MicroEJ/

MicroEJ Documentation, Revision 32bb132e

MicroEJ Module Manager

General

• Added JSCH library to execute MicroEJ test suites on Device through ssh

• Added pre-compilation phase before executing Addon Processor to have compiled classes available

• Updated the default settings file to import modules fromMicroEJ Developer repository (located at ${user.
dir}\.microej\microej-ivysettings-5.4.xml)

Build Types

• Updated all relevant build types to load the Platform using the platform configuration instead of the test
configuration:

– Sandboxed Application (application)

– Foundation Library Implementation (javaimpl)

– Addon Library (javalib)

– MicroEJ Testsuite (testsuite)

• Updated Module Repository to allow to partially include an Architecture module (eval and/or prod)

• Fixedpotential AddonProcessor error NoClassDefFoundError: ej/tool/addon/util/Message depending
on the resolution order

• Removed javadoc generation for microej-extension

• New build types added:

– build-application#8.0.0

– build-artifact-repository#2.3.0

– build-firmware-singleapp#1.4.0

– build-microej-extension#1.4.0

– build-microej-javaimpl#4.0.0

– build-microej-javalib#5.0.0

– build-microej-testsuite#3.0.0

Build Plugins

• UpdatedAddonProcessor to fail the buildwhenan error is detected. Errormessages are dumped to the build
logs.

• Updated Platform Loader to handle Platformmodule (.zip file)

• Updated Platform Loader to handle Virtual Device module (.vde file) declared as a dependency. It worked
before only by using the dropins folder.

• Updated Platform Loader to list the Platforms locations when toomany Platformmodules are detected

3.15. SDK Changelog 181

https://forge.microej.com/artifactory/microej-developer-repository-release/

MicroEJ Documentation, Revision 32bb132e

Skeletons

• Fixed wrong README.md generation for artifact-repository skeleton

• Removeduseless files in microej-javaapi , microej-javaimpl and microej-extension skeletons (intern
changelog and .dbk file)

3.15.14 [5.3.1] - 2020-12-11

Note: This release is both compatible with Eclipse version 2020-06 and Eclipse Oxygen, so it can still be installed
on a previous SDK Distribution.

General

• Fixed missing default settings file for connecting MicroEJ Central Repository when starting a fresh install
(introduced in 5.3.0)

MicroEJ Module Manager

Build Plugins

• Fixed potential build error when computing Sonar classpath from dependencies (ivy:cachepath task was
sometimes using a wrong cache location)

Skeletons

• Fixedskeletondependency toEDCAPI 1.3.3 toavoidanEclipseJDTbuildererrorwhenNull Analysis is enabled
(see known issues of SDK Distribution 20.10)

3.15.15 [5.3.0] - 2020-10-30

Note: This release is both compatible with Eclipse version 2020-06 and Eclipse Oxygen, so it can still be installed
on a previous SDK Distribution.

Known Issues

• Library module build may lead to unexpected Unresolved Dependencies error in some cases (in
sonar:init target / ivy:cachepath task). Workaround is to trigger the library build again.

3.15. SDK Changelog 182

https://repository.microej.com/modules/ej/api/edc/1.3.3/

MicroEJ Documentation, Revision 32bb132e

General

• Fixed various plugins for Eclipse version 2020-06 compatibility (icons, project explorer menu entries)

• Fixed closedmodule.ivy files a�er an SDK restart that were opened before

• Removed license check before launching an Application on Device

• Disabled Activate on new event option of the Error Log view to prevent popup of this view when an
internal error is thrown

• Removed license check before Platform build

• Updated filter of the Launch Group configuration (exclude the deprecated Eclipse CDT one)

• Fixed inclusion of mock project dependencies in launcher mock classpath

• Enhance error message in Platform editor (.platform files) when the required Architecture has not been
imported (displays Architecture information)

MicroEJ Module Manager

General

• Fixed workspace default settings file when clicking on the Default button

• First wrong resolved dependency when ChainResolver returnFirst option is enabled and the module to re-
solve is already in the cache

• Fixed potential build module crash (Not comparable issue) when resolving module dependencies across
multiple configurations

Build Types

• Exclude packs from artifact checker when building a module repository

• Merged Foundation & Add-On Libraries javadoc when building a module repository

• Added Module dependency line for each type in module repository javadoc

• Added an option to skip deprecated types, fields, methods in module repository javadoc

• Allow to include or exclude Java packages in module repository javadoc

• Added an option skip.publish to skip artifacts publication in build-custom build type

• Allow to define Application options from build option using the platform-launcher.inject. prefix

• Added generation and publication of code coverage report a�er a testsuite execution. The report generation
is enabled under the following conditions:

– at least one test is executed,

– tests are executed on Simulator,

– build option s3.cc.activated is set to true (default),

– the Platform is based on an Architecture version 7.12.0 or higher

– if testing a Foundation Library (using microej-testsuite), build option microej.testsuite.cc.
jars.name.regex must be set to match the simple name of the library being covered (e.g. edc-*.jar
or microui-*.jar)

3.15. SDK Changelog 183

https://ant.apache.org/ivy/history/2.5.0/resolver/chain.html

MicroEJ Documentation, Revision 32bb132e

• Fixed sonar false negative Null Analysis detection in some cases

• Added a better error message for Studio rebrand build when izpack.microej.product.location option
is missing

• Deprecated build-microej-ri and disabled documentation generation (useless docbook toolchains have
been removed to reduce the bundle size: -150MB)

• New build types added:

– build-artifact-repository#2.0.1

– build-custom#1.2.0

– build-firmware-singleapp#1.2.10

– build-microej-ri#2.4.0

Skeletons

• Fixed microej-mock content script initialization folder name

3.15.16 [5.2.0] - 2020-07-28

General

• Added Dist. prefix in default workspace and repository name to avoid confusion between SDK distribution
vs SDK version

• Replaced Version by Dist. in Help > About MicroEJ® SDK menu. The SDK version is available in
Installation Details view.

• Replaced IS2T S.A. and MicroEJ S.A. by MicroEJ Corp. in Help > About MicroEJ® SDK menu.

• Updated Front Panel plugin to version 6.1.1

• Removed MicroEJ Copyright in Java class template and skeletons files

• Fixed Stopping a MicroEJ launch in the progress view doesn’t stop the launch

MicroEJ Module Manager

General

• Added a new configuration page (Window > Preferences > Module Manager). This page is a merge of
formerly named Easyant4Eclipse preferences page and Ivy Settings relevant options for MicroEJ.

• Added Export > MicroEJ > Module Manager Build Kit wizard, toextract the files required forautomating
MicroEJ modules builds out of the IDE.

• Added New > MicroEJ > Module Project wizard (formerly named New Easyant Project), withmodule
fields content assist and alphabetical sort of the skeletons list

• Added Import > MicroEJ > Module Repository wizard to automatically configure workspace with a
module repository (directory or zip file)

• Added NewMicroEJ Add-On Library Project wizard to simplify Add-On Library skeleton project creation

3.15. SDK Changelog 184

MicroEJ Documentation, Revision 32bb132e

• Updated the build repository (microej-build-repository.zip) to be self contained with its owns
ivysettings.xml

• Updated Virtual Device Player (firmware-singleapp) launcher-windows.bat (use
launcher-windows-verbose.bat to get logs)

• Renamed the classpath container to Module Dependencies instead of Ivy

• Fixed Addon Processor src-adpgenerated folder generation when creating or importing a project with the
same name than a previously deleted one

• Fixed implementation of settings ChainResolver returnFirst option

• Fixed Ivy module resolution being blocked from time to time

Build Types

• Fixedmetabuild topublish correct snapshot revisions for built dependencies. (Indirectly fixes ADP resolution
issue when an Add-On Library and its associated Addon Processor were built together using a meta build)

• Fixed potential infinite loop when building a Modules Repository with MMM semantic enabled

• Fixed javadoc not being generated in artifactory repository build when skip.javadoc is set to false

• Added the capability to build partial modules repository, by using the user provided ivysettings.xml file
to check the repository consistency

• Added the possibility to partially extend the build repository in a module repository. The build repository
can be referenced by a file system resolver using the property ${microej-build-repository.repo.dir}

• Added the possibility to include a module repository into an other module repository (using new configura-
tion repository->*)

• Added the possibility to bundle a set of Virtual Devices when building a branded Studio. They are automati-
cally imported to the MicroEJ repository when booting on a newworkspace.

• Added the possibility to bundle a Module Repository when building a branded Studio. It is automatically
imported and settings file is configured when booting on a newworkspace.

Build Plugins

• Added variables @MMM_MODULE_ORGANISATION@ , @MMM_MODULE_NAME@ and @MMM_MODULE_VERSION@ for
README.md file

• Fixed microej-kf-testsuite repository access issue (introduced in SDK 5.0.0).

• Fixed artifact-checker to accept revisions surrounded by brackets (as specified by https:
//keepachangelog.com/en/1.0.0/)

3.15. SDK Changelog 185

https://ant.apache.org/ivy/history/2.5.0/resolver/chain.html
https://keepachangelog.com/en/1.0.0/
https://keepachangelog.com/en/1.0.0/

MicroEJ Documentation, Revision 32bb132e

Skeletons

• Updated module.ivy indentation characters with tabs instead of spaces

• Updated CHANGELOG.md formatting

• Updated and standardized README.md files

• Updated dependencies in module.ivy to use the latest versions

• Added .gitignore to ignore the target~ and src-adpgenerated folder where the module is built

• Added Sandboxed Application WPK dropins folder (META-INF/wpk)

• Removed conf provided in module.ivy for foundation libraries dependencies

• Remove MicroEJ internal site reference in module.ant file

• Fixed corrupted library workbenchExtension-api.jar in microej-extension skeleton

• Fixed corrupted library HILEngine.jar in microej-mock skeleton

• Fixed javadoc content issue in Main class firmware-singleapp skeleton

Misc

• Updated End User License Agreement

• Added support for generating Application Options in reStructured Text format

3.15.17 [5.1.2] - 2020-03-09

MicroEJ Module Manager

• Fixed potential build error when generating fixed dependencies file (fixdeps task was sometimes using a
wrong cache location)

• Fixed topogical sort of classpath dependencieswhen building using Build Module (same as in IvyDE class-
path sorted view)

• Fixed resolution of modules with a version 0.m.p when transitively fetched (an error was thrown with the
range [1.m.p-RC,1.m.(p+1)-RC[)

• Fixed missing classpath dependencies to prevent an error when building a standard JAR with JUnit tests

3.15.18 [5.1.1] - 2019-09-26

General

• Fixed files locked in Platform in workspace projects preventing the Platform frombeing deleted or rebuilt

3.15. SDK Changelog 186

MicroEJ Documentation, Revision 32bb132e

3.15.19 [5.1.0] - 2019-05-17

General

• Updated MicroEJ icons (16x16 and 32x32)

• Fixed potential long-blocking operation when launching an application on a Virtual Device on Windows 10
(Windows defender performs a slow analysis on a zip file when it is open for the first time since OS startup)

• Fixed missing ADP resolution on a fresh MicroEJ installation

• Fixed ADP source folders order generation in .classpath (alphabetical sort of the ADP id)

• Fixed Run As. . . > MicroEJ Application automatic launcher creation: when selecting a Platform in

workspace , an other platform of the repository was used instead

• Fixed Memory Map Analyzer load of mapping scripts from Virtual Devices

• Fixed MMM and ADP resolution when importing a zip project in a fresh MicroEJ install

• Fixed ADP crash when a project declares dependencies without a source folder

• Fixed inability to debug an application on a Virtual Device if option execution.mode was specified in
firmware build properties (now SDK options cannot be overridden)

• Updated Front Panel plugin to comply with the new Front Panel engine

– The Front Panel engine has been refactored and moved from UI Pack to Architecture (UI pack 12.0.0
requires Architecture version 7.11.0 or higher)

– New Front Panel Project wizard now generates a project skeleton for this new Front Panel engine,
based on MMM

– Legacy Front Panel projects for UI Pack v11.1.0 or higher are still valid

• Updated Virtual Device builder to speed-up Virtual Device boot time (pre-installed Applications are now ex-
tracted at build time)

• Fixed inability to select a Platform in workspace in a MicroEJ Tool launch configuration

• Fixed broken title in MicroEJ export menu (Platform Export)

MicroEJ Module Manager

Build Plugins

• Added a new option application.project.dir passed to launch scripts with the workspace project direc-
tory

• Updated MMM to throw a non ambiguous error message when a module.ivy configured for MMM declares
versions with legacy Ivy range notation

• Updated MicroEJ Central Repository cache directory to ${user.dir}\.microej\caches\repository.
microej.com-[version] instead of ${user.dir}\.ivy2

• Updated Update Module Dependencies... to be disabledwhen module.ivy cannot be loaded. Themenu
entry is now grayed when the project does not declare an IvyDE classpath container

• Fixed wrong resolution order when a module is both resolved in the repository and the workspace (the
workspace module must always take precedence to the module resolved in the repository)

3.15. SDK Changelog 187

MicroEJ Documentation, Revision 32bb132e

• Fixed useless unknown resolver trace when cache is used by multiple Ivy settings configurations with
di�erent resolver names.

• Fixed slowAdd-OnProcessor generation. The classpathpassed toADPmodules could contain the sameentry
multiple times, which leads each ADPmodule to process the same classpath multiple times.

• Fixed misspelled recommendation message when a build failed

• Fixed Update Module Dependencies... tool: wrong ej:match="perfect" added where it was expected
to be compatible

• Fixed Update Module Dependencies... tool: parse error when module.ivy contains <artifact
type="rip"/> element

• Fixed resolution and publication of a module declared with an Ivy branch

• Fixed character '-' rejected in module organisation (according to MMM specification 2.0-B)

• Fixed ADP resolution error when the Add-On Processor module was only available in the cache

• Fixed potential build crash depending on the build kit classpath order (error was This module requires
easyant [0.9,+])

• Fixed product-java broken skeleton

Build Types

• UpdatedPlatformLoader errormessagewhen theproperty platform-loader.target.platform.dir is set
to an invalid directory

• Fixed meta build property substitution in *.modules.list files

• Fixed missing publications for README.md and CHANGELOG.md files

• Update skeletons to fetch latest libraries (Wadapps Framework v1.10.0 and Junit v1.5.0)

• Updated README.md publication to generate MMM usage and the list of Foundation Libraries dependencies

• Added a new build nature for building platform options pages (microej-extension)

• Updated Virtual Device builder to speed-up Virtual Device boot time (pre-installed Applications are now ex-
tracted at build time)

• Fixed Virtual Device Player builder (dependencies were not exported into the zip file) and updated
firmware-singleapp skeleton with missing configurations

Skeletons

• Updated CHANGELOG.md basedon Keep a Changelog specification (https://keepachangelog.com/en/1.0.0/)

• Updated o�line module repository skeleton to fetch in a dedicated cache directory under ${user.dir}/.
microej/caches

3.15. SDK Changelog 188

https://keepachangelog.com/en/1.0.0/

MicroEJ Documentation, Revision 32bb132e

3.15.20 [5.0.1] - 2019-02-14

General

• Removed Wadapps Code generation (see migration notes below)

• Added support for MicroEJ Module Manager semantic (see migration notes below)

• Added a dedicated view for Virtual Devices in MicroEJ Preferences

• Removed Platform related views andmenus in the SDK (Import/Export and Preferences)

• Added Studio rebranding capability (product name, icons, splash screen and installer for Windows)

• Added a newmeta build version, with simplified syntax for multi-projects build (see migration notes below)

• Added a skeleton for building o�line module repositories

• Added support for importing extended characters in Fonts Designer

• Allow to import Virtual Deviceswith .vde extension (*.jpf import still available for backward compatibility)

• Removed legacy selection for Types, Resources and Immutables in MicroEJ Launch Configuration (replaced
by *.list files since MicroEJ 4.0)

• Enabled IvyDE workspace dependencies resolution by default

• Enabled MicroEJ workspace Foundation Libraries resolution by default

• Addedpossibility for Architectures to check for aminimumrequired versionof SDK (sdk.min.version prop-
erty)

• Updated New Standalone Application Project wizard to generate a single-app firmware skeleton

• Updated Virtual Device Builder tomanage Sandboxed Applications (compatible with Architectures Products
*_7.10.0 or newer)

• Updated Virtual Device Builder to include kernel options (now options are automatically filled for the appli-
cation developer on Simulator)

MicroEJ Module Manager

Build Plugins

• Added IvyDE resolution from properties defined in Windows > Preferences > Ant > Runtime >
Properties

• Fixed Illegal character in path error that may occur when running an Add-On Processor

• Fixed IvyDE crash when defining an Ant property file with Eclipse variables

3.15. SDK Changelog 189

MicroEJ Documentation, Revision 32bb132e

Build Types

• Kept only latest build types versions (skeletons updated)

• Updatedmetabuild to execute tests by default for private module dependencies

• Removed remaining build dependencies to JDK (Java code compiler and Javadoc processors). All MicroEJ
code is now compiled using the JDT compiler

• Introduced a new plugin for executing custom testsuite using MicroEJ testsuite engine

• FixedMalformedURLException error in Easyant trace

• Fixed Easyant build crash when an Ivy settings file contains a cache definitions with a wildcard

• Updated Platform Builder to keep track in the Platform of the architecture on which it has been built (
architecture.properties)

• Updated Virtual Device Builder to generate with .vde extension

• Updated Multi-app Firmware Builder to embed (Sim/Emb) specific modules (Add-On libraries and pre-
installed Applications)

• Fixed build-microej-ri v1.2.1 missing dependencies (embedded in SDK 4.1.5)

Skeletons

• Updated all skeletons: migrated to latest build types, addedmore comments, copyright cleanup and config-
uration for MicroEJ Module Manager semantic)

• Added the latest HIL Engine API to mock-up skeleton (Start and Stop listeners hooks)

3.16 Build Types per SDK

• SDK 5.8.2

– build-addon-processor#2.2.0

– build-application#9.2.0

– build-artifact-repository#3.4.0

– build-custom#2.2.0

– build-firmware-customizer#3.2.0

– build-firmware-multiapp#8.2.0

– build-firmware-singleapp#2.3.0

– build-izpack#3.3.0

– build-microej-extension#2.2.0

– build-microej-javaapi#5.2.0

– build-microej-javaimpl#5.2.0

– build-microej-javalib#6.2.0

– build-microej-mock#2.2.0

– build-microej-ri#3.2.0

3.16. Build Types per SDK 190

MicroEJ Documentation, Revision 32bb132e

– build-microej-testsuite#4.2.0

– build-product-java#2.2.0

– build-runtime-api#4.1.0

– build-std-javalib#3.3.0

– microej-meta-build#3.0.0

• SDK 5.8.0 and SDK 5.8.1

– build-addon-processor#2.2.0

– build-application#9.2.0

– build-artifact-repository#3.4.0

– build-custom#2.2.0

– build-firmware-customizer#3.2.0

– build-firmware-multiapp#8.1.0

– build-firmware-singleapp#2.2.0

– build-izpack#3.3.0

– build-microej-extension#2.2.0

– build-microej-javaapi#5.2.0

– build-microej-javaimpl#5.2.0

– build-microej-javalib#6.2.0

– build-microej-mock#2.2.0

– build-microej-ri#3.2.0

– build-microej-testsuite#4.2.0

– build-product-java#2.2.0

– build-runtime-api#4.1.0

– build-std-javalib#3.2.0

– microej-meta-build#3.0.0

• SDK 5.7.0

– build-addon-processor#2.2.0

– build-application#9.2.0

– build-artifact-repository#3.3.0

– build-custom#2.2.0

– build-firmware-customizer#3.2.0

– build-firmware-multiapp#8.1.0

– build-firmware-singleapp#2.2.0

– build-izpack#3.2.0

– build-microej-extension#2.2.0

– build-microej-javaapi#5.2.0

3.16. Build Types per SDK 191

MicroEJ Documentation, Revision 32bb132e

– build-microej-javaimpl#5.2.0

– build-microej-javalib#6.2.0

– build-microej-mock#2.2.0

– build-microej-ri#3.2.0

– build-microej-testsuite#4.2.0

– build-product-java#2.2.0

– build-runtime-api#4.1.0

– build-std-javalib#3.2.0

– microej-meta-build#3.0.0

• SDK 5.6.2, 5.6.1 and SDK 5.6.0

– build-addon-processor#2.1.0

– build-application#9.1.0

– build-artifact-repository#3.2.0

– build-custom#2.1.0

– build-firmware-customizer#3.1.0

– build-firmware-multiapp#8.0.0

– build-firmware-singleapp#2.1.0

– build-izpack#3.1.0

– build-microej-extension#2.1.0

– build-microej-javaapi#5.1.0

– build-microej-javaimpl#5.1.0

– build-microej-javalib#6.1.0

– build-microej-mock#2.1.0

– build-microej-ri#3.1.0

– build-microej-testsuite#4.1.0

– build-product-java#2.1.0

– build-runtime-api#4.0.0

– build-std-javalib#3.1.0

– microej-meta-build#3.0.0

• SDK 5.5.3, SDK 5.5.2, SDK 5.5.1 and SDK 5.5.0

– build-addon-processor#2.0.0

– build-application#9.0.0

– build-artifact-repository#3.0.0

– build-custom#2.0.0

– build-firmware-customizer#3.0.0

– build-firmware-multiapp#7.0.0

3.16. Build Types per SDK 192

MicroEJ Documentation, Revision 32bb132e

– build-firmware-singleapp#2.0.0

– build-izpack#3.0.0

– build-microej-extension#2.0.0

– build-microej-javaapi#5.0.0

– build-microej-javaimpl#5.0.0

– build-microej-javalib#6.0.0

– build-microej-mock#2.0.0

– build-microej-ri#3.0.0

– build-microej-testsuite#4.0.0

– build-product-java#2.0.0

– build-runtime-api#3.0.0

– build-std-javalib#3.0.0

– microej-meta-build#3.0.0

• SDK 5.4.1

– build-addon-processor#1.0.3

– build-application#8.0.0

– build-artifact-repository#2.3.0

– build-custom#1.2.0

– build-firmware-customizer#2.0.1

– build-firmware-multiapp#5.1.2

– build-firmware-singleapp#1.4.0

– build-izpack#2.0.1

– build-microej-extension#1.4.0

– build-microej-javaapi#4.0.4

– build-microej-javaimpl#4.0.0

– build-microej-javalib#5.0.0

– build-microej-mock#1.0.3

– build-microej-ri#2.4.0

– build-microej-testsuite#3.0.0

– build-product-java#1.2.4

– build-runtime-api#2.0.2

– build-std-javalib#2.0.1

– microej-meta-build#2.0.1

• SDK 5.4.0

– build-addon-processor#1.0.3

– build-application#8.0.0

3.16. Build Types per SDK 193

MicroEJ Documentation, Revision 32bb132e

– build-artifact-repository#2.3.0

– build-custom#1.2.0

– build-firmware-customizer#2.0.1

– build-firmware-multiapp#5.1.2

– build-firmware-singleapp#1.4.0

– build-izpack#2.0.1

– build-microej-extension#1.4.0

– build-microej-javaapi#4.0.4

– build-microej-javaimpl#4.0.0

– build-microej-javalib#5.0.0

– build-microej-mock#1.0.3

– build-microej-ri#2.4.0

– build-microej-testsuite#3.0.0

– build-product-java#1.2.4

– build-runtime-api#2.0.2

– build-std-javalib#2.0.1

– microej-meta-build#2.0.0

• SDK 5.3.1 and SDK 5.3.0

– build-addon-processor#1.0.3

– build-application#7.0.2

– build-artifact-repository#2.0.1

– build-custom#1.2.0

– build-firmware-customizer#2.0.1

– build-firmware-multiapp#5.1.2

– build-firmware-singleapp#1.2.10

– build-izpack#2.0.1

– build-microej-extension#1.3.2

– build-microej-javaapi#4.0.4

– build-microej-javaimpl#3.2.2

– build-microej-javalib#4.1.1

– build-microej-mock#1.0.3

– build-microej-ri#2.4.0

– build-microej-testsuite#2.2.2

– build-product-java#1.2.4

– build-runtime-api#2.0.2

– build-std-javalib#2.0.1

3.16. Build Types per SDK 194

MicroEJ Documentation, Revision 32bb132e

– microej-meta-build#2.0.0

• SDK 5.2.0

– build-addon-processor#1.0.3

– build-application#7.0.2

– build-artifact-repository#1.6.2

– build-custom#1.1.3

– build-firmware-customizer#2.0.1

– build-firmware-multiapp#5.1.2

– build-firmware-singleapp#1.2.9

– build-izpack#2.0.1

– build-microej-extension#1.3.2

– build-microej-javaapi#4.0.4

– build-microej-javaimpl#3.2.2

– build-microej-javalib#4.1.1

– build-microej-mock#1.0.3

– build-microej-ri#2.3.1

– build-microej-testsuite#2.2.2

– build-product-java#1.2.4

– build-runtime-api#2.0.2

– build-std-javalib#2.0.1

– microej-meta-build#2.0.0

• SDK 5.1.2, SDK 5.1.1 and SDK 5.1.0

– build-addon-processor#1.0.3

– build-application#7.0.2

– build-artifact-repository#1.6.0

– build-custom#1.1.3

– build-firmware-customizer#2.0.1

– build-firmware-multiapp#5.1.2

– build-firmware-singleapp#1.2.9

– build-izpack#2.0.1

– build-microej-extension#1.3.2

– build-microej-javaapi#4.0.4

– build-microej-javaimpl#3.2.2

– build-microej-javalib#4.1.1

– build-microej-mock#1.0.3

– build-microej-ri#2.3.1

3.16. Build Types per SDK 195

MicroEJ Documentation, Revision 32bb132e

– build-microej-testsuite#2.2.2

– build-product-java#1.2.4

– build-runtime-api#2.0.2

– build-std-javalib#2.0.1

– microej-meta-build#2.0.0

3.17 Migration Notes

3.17.1 From 5.2.x to 5.3.x or more

This section applies if MicroEJ SDK 5.3.x is started on aworkspace thatwas previously created usingMicroEJ SDK
5.2.x .

Workspacemigration warning

Startingwith theMicroEJ SDKDistribution 20.10, when opening aworkspacewhich has been createdwith an older
MicroEJ Distribution, a message is displayed with the following warning:

The workspace was written with an older version. Continue and update workspace which may␣
→˓make it incompatible with older versions?

This is a generic warning from Eclipse which can be safely ignored as long as you don’t intend to open it back with
an older MicroEJ SDK Distribution then.

3.17.2 From 5.1.x to 5.2.x

This section applies if MicroEJ SDK 5.2.x is started on aworkspace thatwas previously created usingMicroEJ SDK
5.1.x .

Enable NewWizards Shortcuts in MicroEJ Perspective

Eclipse perspective settings are stored in the workspace metadata, so the new wizards shortcuts (
Add-On Library Project and Module Project) are not visible in the File > New menu.

The MicroEJ perspective must be reset to its default settings as following:

• Click on Windows > Perspective > Open Perspective > Other. . . menu

• Select MicroEJ perspective

• Click on Windows > Perspective > Reset Perspective. . . menu

• Click on Yes button to accept to reset the MicroEJ perspective to its defaults.

The new wizards shortcuts are now visible into File > New menu.

3.17. Migration Notes 196

MicroEJ Documentation, Revision 32bb132e

Re-enable the Ivy Preferences Pages (Advanced Use)

The original Window > Preferences > Ivy pages can be re-enabled as following:

• Close all running instances of the SDK

• Edit MicroEJ-SDK.ini and add the property -Dorg.apache.ivy.showAdvancedPrefs=true

• Start the SDK again

• Go to Window > Preferences > Module Manager page

A new link Ivy settings should appear on the bottom of the page. It opens a popupwindowwith the original Ivy
preferences pages.

3.17.3 From 4.1.x to 5.x

This section applies if MicroEJ SDK 5.x is started on a workspace that was previously created using MicroEJ SDK
4.1.x .

Wadapps Application Update

TheWadapps codegenerator hasbeenmoved from IDE to anAddonProcessor comingwith ej.library.wadapps.
framework module (v1.9.0 or higher is required).

A Wadapps Application Project can be updated as follows:

• Right-click on the project, then Configure > Remove Sandboxed Application Nature

• Right-click on the project, then Configure > Add Sandboxed Application Nature

• Update module.ivy dependency to fetch ej.library.wadapps.framework version 1.9.0 (or perform
MicroEJ Module Manager update as defined below)

• Delete remaining folder src/.generated~ if any

• Check that project compiles and folder src-adpgenerated/wadapps is generated

MicroEJ Module Manager Update

It is highly recommended to migrate module.ivy to the MicroEJ Module Manager semantic, since the default Ivy
resolution will be nomore maintained in future versions.

The module.ivy can be updated as follows:

• Right-click on module.ivy , then Update Module Dependencies. . .

This has for e�ect to both migrate the module.ivy to the MicroEJ Module Manager semantic and also to update
dependencies version to the latest available in the target repository.

3.17. Migration Notes 197

MicroEJ Documentation, Revision 32bb132e

Meta build Project Update

A project using microej-meta-build version 1.x can be updated to version 2.x as follows:

• Edit module.ivy

– Replace the microej-meta-build version by 2.0.+

– Update all properties declaration to append the metabuild.inject. prefix (e.g. <ea:property
name="skip.test" value="true" /> must beupdated to <ea:property name="metabuild.inject.
skip.test" value="true" />)

– Optionally remove or comment the root folder declaration as it is the default. (<ea:property
name="metabuild.root" value=".." />)

• Delete module.properties . It only contains the property easyant.fork.build=true . This property is
now automatically set by easyant-build-component since version 1.12.0 . Otherwise it must be explicitly
injected by the build system as an Ant property: easyant.inject.easyant.fork.build=true

• Extract from override.module.ant the projects declarations lines:

– Extract the project declarations of local.submodule.dirs.id into a new file named private.
modules.list (one project per line)

– Extract the project declarations of submodule.dirs.id into a new file names public.modules.list
(one project per line)

• Delete override.module.ant

The new file system structure shall look like:

metabuild-project
module.ivy
private.modules.list
public.modules.list

3.17. Migration Notes 198

CHAPTER

FOUR

SDK 6 USER GUIDE

MICROEJ SDK 6 provides the tools to write applications for MicroEJ-ready devices and run them on a virtual (sim-
ulated) or real device. The capability to execute an application in a simulated environment allows to quickly test
changes done in the application code and hence provides a short development feedback loop.

Since the purpose of the SDK is to develop for targeted MCU/MPU computers (IoT, wearable, etc.), it is a cross-
development tool. But unlike standard low-level cross-development tools, the SDK o�ers unique services like
hardware simulation. Used with your favorite IDE (Eclipse or IntelliJ IDEA), it provides a complete development
environment to create your applications:

Fig. 1: MicroEJ Application Development Overview

Note: The SDK 6 is limited to the build, test and simulation of Applications and Add-On Libraries (see Scope and
Limitations for more information). If you need other features, such as creating a VEE Port, you have to use the SDK
5.

The SDK is composed of the following main elements:

• Gradle plugins, the plugins to compile and package MicroEJ modules with Gradle, a popular module and
buildmanager. Gradle provides a Command Line Interface and a complete integrationwith all themost used
IDEs.

• Architecture, the so�ware package that includes theMEJ32 port to a target instruction set and a C compiler,
SOAR, core libraries and Simulator. SeeMicroEJ Architecture section for more details.

199

https://gradle.org/

MicroEJ Documentation, Revision 32bb132e

The SDK is licensed under the SDK End User License Agreement (EULA). The following figure shows a detailed view
of the elements.

Fig. 2: SDK Detailed View

4.1 Getting Started

4.1.1 NXP

i.MX RT595 Evaluation Kit

During this Getting Started, you will learn to run:

• run an Application on the i.MX RT595 Evaluation Kit Virtual Device,

• run the same Application on your i.MX RT595 Evaluation Kit.

In case you are not familiar withMicroEJ, please visit Discover MicroEJ to understand the principles of our technol-
ogy.

Prerequisites

Note: This Getting Started has been tested on Windows 10 & 11.

This Getting Started is separated in twomain parts.

The first part consists of running a demo application on the Virtual Device. All you need is:

• An Internet connection to access Github repositories &Module Repositories.

• MICROEJ SDK 6 (installed during Environment Setup).

The second part consists of running the same demo application on your device. For that you will need:

4.1. Getting Started 200

https://developer.microej.com/discover-microej/

MicroEJ Documentation, Revision 32bb132e

• i.MX RT595 Evaluation Kit, available here.

• G1120B0MIPI display panel, available here,

• A GNU ARM Embedded Toolchain, Cmake and Make are needed to build the BSP. You will be guided on how
to install the toolchain later.

• LinkServer tool to flash the board. You will be guided on how to install this tool later.

Environment Setup

To follow this Getting Started, you need to install:

• MICROEJ SDK 6.

• Get Demo-Wearable-VG.

Install MICROEJ SDK 6

Install MICROEJ SDK 6 by following Installation instructions. IntelliJ IDEA is used on this Getting Started but feel
free to use your favorite IDE.

Get Demo-Wearable-VG

For this Getting Started, the Demo-Wearable-VG Applicationwill be use. You can download it using the following
command:

git clone -b 2.0.0 https://github.com/MicroEJ/Demo-Wearable-VG.git

Note: If you don’t have Git installed, you can download the source code directly from our GitHub repository. Then
you can click on : Code > Download ZIP .

Set up the Application on your IDE

Import the Project

The first step is to import the Demo-Wearable-VG Application into your IDE:

Note: If you are using another IDE than IntelliJ IDEA, please have a look at Import a Project section.

• If you are in the Welcome Screen, click on the Open button. Otherwise click either on File > Open. . .

or on File > New > Project From Existing Sources. . . .

• Select the Demo-Wearable-VG directory located where you downloaded it and click on the OK button.

4.1. Getting Started 201

https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-rt595-evaluation-kit:MIMXRT595-EVK
https://www.nxp.com/part/G1120B0MIPI
https://github.com/MicroEJ/Demo-Wearable-VG/tree/2.0.0

MicroEJ Documentation, Revision 32bb132e

• If you are asked to choose a project model, select Gradle .

• Click on the Create button.

The Gradle project should now be imported in IntelliJ IDEA, your workspace contains the following projects:

4.1. Getting Started 202

MicroEJ Documentation, Revision 32bb132e

Accept the MICROEJ SDK EULA

Youmay have to accept the SDK EULA if you didn’t already do, please have a look at SDK EULA Acceptation.

Run an Application on the Virtual Device

In order to execute the Demo-Wearable-VG Application on the Virtual Device, the SDK provides the Gradle
runOnSimulator task.

Note: If you are using another IDE than IntelliJ IDEA, please have a look at Run on Simulator section.

• Double-click on the runOnSimulator task in the Gradle tasks view. It may takes few seconds.

4.1. Getting Started 203

MicroEJ Documentation, Revision 32bb132e

The Virtual Device starts and executes the Demo-Wearable-VG application.

4.1. Getting Started 204

MicroEJ Documentation, Revision 32bb132e

Note: If you want to knowmore about the use of the Demo-Wearable-VG , please have a look at its README.md
file.

4.1. Getting Started 205

https://github.com/MicroEJ/Demo-Wearable-VG/blob/master/watch-vg/README.md

MicroEJ Documentation, Revision 32bb132e

Well done !

Now you know how to run an application on a Virtual Device.

If you want to learn how to run an application on your i.MX RT595 Evaluation Kit, you can continue this Getting
Started: Run an Application on i.MX RT595 Evaluation Kit.

Otherwise, learn how toModify the Java Application.

Run an Application on i.MX RT595 Evaluation Kit

To deploy Demo-Wearable-VG application on your board, you will have to:

• Setup your Environment (Toolchain, flashing-tool, hardware setup).

• Request a 30 days Evaluation License and install an activation key.

• Build the Executable.

• Flash the board.

Environment Setup

This chapter takes approximately one hour and will take you through the steps to set up your board and build the
BSP.

Install the C Toolchain

The C toolchain must be installed, it is composed of the GNU ARM Embedded Toolchain, CMake and Make.

Note: This Getting Started has been tested with the following configuration:

• GNU ARM Embedded Toolchain version 10.3 2021.10 .

• CMake version 3.26.5 .

• Make version 3.81 .

Later versions may or may not work, andmay needmodification to the Getting Started steps.

Install GNU ARM Embedded Toolchain

The toolchain is the GNU ARM Embedded Toolchain.

At the end of the installation, it will ask you to complete the Setup of the wizard, choose the following options:

4.1. Getting Started 206

https://developer.arm.com/downloads/-/gnu-rm

MicroEJ Documentation, Revision 32bb132e

Once installed, ARMGCC_DIR must be set as an environment variable and point to the toolchain directory. To do so:

• Open the Edit the system environment variables application on Windows.

• Click on the Environment Variables. . . button.

• Click on the New.. . button under the User variables section.

• Set Variable Name to ARMGCC_DIR .

• Set Variable Value to the toolchain directory (e.g. C:\Program Files (x86)\GNU Arm Embedded
Toolchain\10 2021.10).

• Click on the Ok button until it closes Edit the system environment variables application.

Install CMake

CMake is the application used by the build system to generate the firmware.

During the installation, it will ask you if you wish to add CMake to your system Path, add it at least to the current
user system path. If you missed it, you canmanually add CMake/bin folder to your path.

Install Make

Make is the tool that will generate the executable based on the files generated by CMake. It will also be used to
flash the board. Under Download section, you can select the Setup program for the complete package, except
sources.

By default, it will automatically add Make to your path. If not, you canmanually add GnuWin32\bin folder to your
path.

4.1. Getting Started 207

https://cmake.org/download/
https://gnuwin32.sourceforge.net/packages/make.htm

MicroEJ Documentation, Revision 32bb132e

Install the Flashing Tool

Note: This Getting Started has been tested with LinkServer version 1.2.45 .

Later versions may or may not work, andmay needmodification to the Getting Started steps.

LinkServer is needed to flash the board.

Once installed, LinkServer_xxx/binaries folder must be set on your Path. To do so:

• Open the Edit the system environment variables application on Windows.

• Click on the Environment Variables. . . button.

• Select Path variable under the User variables section and edit it.

• Click on New and point to the binaries folder located where you installed LinkServer (e.g. nxp/
LinkServer_1.2.45/binaries).

Hardware Setup

4.1. Getting Started 208

https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/linkserver-for-microcontrollers:LINKERSERVER

MicroEJ Documentation, Revision 32bb132e

Setup the i.MX RT595 Evaluation Kit:

• Check that the dip switches (SW7) are set to OFF, OFF and ON (ISP0, ISP1, ISP2).

• Ensure jumpers JP18 and JP19 are closed.

• Remove jumper JP4.

• Connect the micro-USB cable to J40 to power the board.

The USB connection is used as a serial console for the SoC, as a CMSIS-DAP debugger, and as a power input for the
board.

A COM port is automatically mounted when the board is plugged into a computer using a USB cable. All board logs
are available through this COM port.

The COM port uses the following parameters:

Baudrate Data bits Parity bits Stop bits Flow control
115200 8 None 1 None

You can have a look at your application logs with an RS232 Terminal (e.g. Termite).

Congratulations, you have finished the setup of your environment. You are now ready to discover how to build and
flash a MicroEJ application.

Build the Executable for i.MX RT595 Evaluation Kit

In order to build the Executable of the Demo-Wearable-VG Application, the SDK provides the Gradle
buildExecutable task.

Note: If you are using another IDE than IntelliJ IDEA, please have a look at Build an Executable section. Come back
on this page if you need to activate an Evaluation License.

• Double-click on the buildExecutable task in the Gradle tasks view.

• The build stops with a failure.

• Go to the top project in the console view and scroll up to get the following error message:

• Copy the UID. It will be required to activate your Evaluation license.

Request your Evaluation License:

4.1. Getting Started 209

https://www.compuphase.com/software_termite.htm

MicroEJ Documentation, Revision 32bb132e

• Request your Evaluation license by following the Request your Activation Key instructions. You will be asked
to fill the machine UID you just copied before.

• When you have received your activation key by email, drop it in the license directory by following the Install
the License Key instructions (drop the license key zip file to the ~/.microej/licenses/ directory).

Now your Evaluation license is installed, you can relaunch your application build by double-clicking on the
buildExecutable task in the Gradle tasks view. It may takes some time.

The gradle task deploys the MicroEJ application in the BSP and then builds the BSP using Make.

The Demo-Wearable-VG application is built and ready to be flashed on i.MX RT595 Evaluation Kit once the hard-
ware setup is completed.

Flash the Application on the i.MX RT595 Evaluation Kit

In order to flash the Demo-Wearable-VG Application on i.MX RT595 Evaluation Kit, the application provides the
Gradle runOnDevice task.

Note: If you are using another IDE than IntelliJ IDEA, please have a look at Run on Device section.

• Double-click on the runOnDevice task in the Gradle tasks view. It may takes some time.

4.1. Getting Started 210

MicroEJ Documentation, Revision 32bb132e

Once the firmware is flashed, you should see the Demo-Wearable-VG running on your board.

Modify the Java Application

With MicroEJ, it is easy to modify and test your Java application on the Virtual Device.

For example, we could modify the color of the date on the Flower Watchface that is shown at the startup of the
application.

• Open FlowerWatchface.java file located in the watchface-flower/src/main/java/com/microej/demo/watch/watchface/flower
folder.

• On the renderDate method, replace the following line:

g.setColor(style.getColor());

by

4.1. Getting Started 211

MicroEJ Documentation, Revision 32bb132e

g.setColor(Colors.GREEN);

• Follow Run an Application on the Virtual Device instructions to launch themodified application on the Virtual
Device.

Here is the modified application running in simulation:

i.MX RT1170 Evaluation Kit

During this Getting Started, you will learn to:

• run an Application on the i.MX RT1170 Evaluation Kit Virtual Device,

• run the same Application on your i.MX RT1170 Evaluation Kit.

In case you are not familiar withMicroEJ, please visit Discover MicroEJ to understand the principles of our technol-
ogy.

Prerequisites

Note: This Getting Started has been tested on Windows 10 & 11.

This Getting Started is separated in twomain parts.

The first part consists of running a demo application on the Virtual Device. All you need is:

4.1. Getting Started 212

https://developer.microej.com/discover-microej/

MicroEJ Documentation, Revision 32bb132e

• AnimatedMascot Application will be used in this Getting Started. Please contact our support team to get
the code for this demo. It will soon be released publicly.

• An Internet connection to access Github repositories &Module Repositories.

• MICROEJ SDK 6 (installed during Environment Setup).

The second part consists of running the same demo application on your device. For that you will need:

• i.MX RT1170 Evaluation Kit, available here.

• RK055HDMIPI4MA0 display panel, available here.

• A GNU ARM Embedded Toolchain, Cmake and Make are needed to build the BSP. You will be guided on how
to install the toolchain later.

• LinkServer tool to flash the board. You will be guided on how to install this tool later.

Environment Setup

To follow this Getting Started, you need to install:

• MICROEJ SDK 6.

Install MICROEJ SDK 6

Install MICROEJ SDK 6 by following Installation instructions. IntelliJ IDEA is used on this Getting Started but feel
free to use your favorite IDE.

Set up the Application on your IDE

Import the Project

The first step is to import the AnimatedMascot Application into your IDE:

Note: If you are using another IDE than IntelliJ IDEA, please have a look at Import a Project section.

• If you are in the Welcome Screen, click on the Open button. Otherwise click either on File > Open. . .

or on File > New > Project From Existing Sources. . . .

• Select the AnimatedMascot directory located where you downloaded it and click on the OK button.

4.1. Getting Started 213

https://www.nxp.com/design/design-center/development-boards/i-mx-evaluation-and-development-boards/i-mx-rt1170-evaluation-kit:MIMXRT1170-EVK
https://www.nxp.com/part/RK055HDMIPI4MA0

MicroEJ Documentation, Revision 32bb132e

• If you are asked to choose a project model, select Gradle .

• Click on the Create button.

The Gradle project should now be imported in IntelliJ IDEA, your workspace contains the following projects:

4.1. Getting Started 214

MicroEJ Documentation, Revision 32bb132e

Accept the MICROEJ SDK EULA

Youmay have to accept the SDK EULA if you didn’t already do, please have a look at SDK EULA Acceptation.

Run an Application on the Virtual Device

In order to execute the AnimatedMascot Application on the Virtual Device, the SDK provides the Gradle
runOnSimulator task.

Note: If you are using another IDE than IntelliJ IDEA, please have a look at Run on Simulator section.

• Double-click on the runOnSimulator task in the Gradle tasks view. It may takes few seconds.

The Virtual Device starts and executes the AnimatedMascot application.

4.1. Getting Started 215

MicroEJ Documentation, Revision 32bb132e

Note: The Front Panelmay be too big for your screen, that is because of the RK055HDMIPI4MA0display resolution.
You can scroll down to see the bottom of the display.

If you want to knowmore about the use of the AnimatedMascot usage, please have a look at its README.md file.

4.1. Getting Started 216

MicroEJ Documentation, Revision 32bb132e

Well done !

Now you know how to run an application on a Virtual Device.

If you want to learn how to run an application on your i.MX RT1170 Evaluation Kit, you can continue this Getting
Started: Run an Application on i.MX RT1170 Evaluation Kit.

Otherwise, learn how toModify the Java Application.

Run an Application on i.MX RT1170 Evaluation Kit

To deploy AnimatedMascot application on your board, you will have to:

• Setup your Environment (Toolchain, flashing-tool, hardware setup).

• Request a 30 days Evaluation License and install an activation key.

• Build the Executable.

• Flash the board.

Environment Setup

This chapter takes approximately one hour and will take you through the steps to set up your board and build the
BSP.

Install the C Toolchain

The C toolchain must be installed, it is composed of the GNU ARM Embedded Toolchain, CMake and Make.

Note: This Getting Started has been tested with the following configuration:

• GNU ARM Embedded Toolchain version 10.3 2021.10 .

• CMake version 3.26.5 .

• Make version 3.81 .

Later versions may or may not work, andmay needmodification to the Getting Started steps.

Install GNU ARM Embedded Toolchain

The toolchain is the GNU ARM Embedded Toolchain.

At the end of the installation, it will ask you to complete the Setup of the wizard, choose the following options:

4.1. Getting Started 217

https://developer.arm.com/downloads/-/gnu-rm

MicroEJ Documentation, Revision 32bb132e

Once installed, ARMGCC_DIR must be set as an environment variable and point to the toolchain directory. To do so:

• Open the Edit the system environment variables application on Windows.

• Click on the Environment Variables. . . button.

• Click on the New.. . button under the User variables section.

• Set Variable Name to ARMGCC_DIR .

• Set Variable Value to the toolchain directory (e.g. C:\Program Files (x86)\GNU Arm Embedded
Toolchain\10 2021.10).

• Click on the Ok button until it closes Edit the system environment variables application.

Install CMake

CMake is the application used by the build system to generate the firmware.

During the installation, it will ask you if you wish to add CMake to your system Path, add it at least to the current
user system path. If you missed it, you canmanually add CMake/bin folder to your path.

Install Make

Make is the tool that will generate the executable based on the files generated by CMake. It will also be used to
flash the board. Under Download section, you can select the Setup program for the complete package, except
sources.

By default, it will automatically add Make to your path. If not, you canmanually add GnuWin32\bin folder to your
path.

4.1. Getting Started 218

https://cmake.org/download/
https://gnuwin32.sourceforge.net/packages/make.htm

MicroEJ Documentation, Revision 32bb132e

Install the Flashing Tool

Note: This Getting Started has been tested with LinkServer version 1.2.45 .

Later versions may or may not work, andmay needmodification to the Getting Started steps.

LinkServer is needed to flash the board.

Once installed, LinkServer_xxx/binaries folder must be set on your Path. To do so:

• Open the Edit the system environment variables application on Windows.

• Click on the Environment Variables. . . button.

• Select Path variable under the User variables section and edit it.

• Click on New and point to the binaries folder located where you installed LinkServer (e.g. nxp/
LinkServer_1.2.45/binaries).

Hardware Setup

4.1. Getting Started 219

https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/linkserver-for-microcontrollers:LINKERSERVER

MicroEJ Documentation, Revision 32bb132e

Setup the i.MX RT1170 Evaluation Kit

• Check that the dip switches (SW1) are set to OFF, OFF, ON and OFF.

• Ensure jumpers J6 and J7 are closed.

• Connect the micro-USB cable to J11 to power the board.

• You can connect 5 V power supply to J43 if you need to use the display

The USB connection is used as a serial console for the SoC, as a CMSIS-DAP debugger and as a power input for the
board.

The VEE Port uses the virtual UART from the i.MX RT1170 Evaluation Kit USB port. A COM port is automatically
mounted when the board is plugged into a computer using a USB cable. All board logs are available through this
COM port.

The COM port uses the following parameters:

Baudrate Data bits Parity bits Stop bits Flow control
115200 8 None 1 None

You can have a look at your application logs with an RS232 Terminal (e.g. Termite).

Congratulations, you have finished the setup of your environment. You are now ready to discover how to build and
flash a MicroEJ application.

Build the Executable for i.MX RT1170 Evaluation Kit

In order to build the Executable of the AnimatedMascot Application, the SDK provides the Gradle
buildExecutable task.

Note: If you are using another IDE than IntelliJ IDEA, please have a look at Build an Executable section. Come back
on this page if you need to activate an Evaluation License.

• Double-click on the buildExecutable task in the Gradle tasks view.

• The build stops with a failure.

• Go to the top project in the console view and scroll up to get the following error message:

• Copy the UID. It will be required to activate your Evaluation license.

Request your Evaluation License:

4.1. Getting Started 220

https://www.compuphase.com/software_termite.htm

MicroEJ Documentation, Revision 32bb132e

• Request your Evaluation license by following the Request your Activation Key instructions. You will be asked
to fill the machine UID you just copied before.

• When you have received your activation key by email, drop it in the license directory by following the Install
the License Key instructions (drop the license key zip file to the ~/.microej/licenses/ directory).

Now your Evaluation license is installed, you can relaunch your application build by double-clicking on the
buildExecutable task in the Gradle tasks view. It may takes some time.

The gradle task deploys the Application in the BSP and then builds the BSP using Make.

The AnimatedMascot application is built and ready tobe flashedon i.MXRT1170EvaluationKit once thehardware
setup is completed.

Flash the Application on the i.MX RT1170 Evaluation Kit

In order to flash the AnimatedMascot Application on i.MX RT1170 Evaluation Kit, the application provides the
Gradle runOnDevice task.

Note: If you are using another IDE than IntelliJ IDEA, please have a look at Run on Device section.

• Double-click on the runOnDevice task in the Gradle tasks view. It may takes some time.

4.1. Getting Started 221

MicroEJ Documentation, Revision 32bb132e

Once the firmware is flashed, you should see the AnimatedMascot running on your board.

Modify the Java Application

With MicroEJ, it is easy to modify and test your Java application on the Virtual Device.

For example, we could modify the color of the background that is shown behind the MicroEJ mascot.

• Open AnimatedMascot.java file located in the src/main/java/com/microej/demo/animatedMascot
folder.

• Background color is set line 84, replace the following line:

g.setColor(Colors.WHITE);

by

4.1. Getting Started 222

MicroEJ Documentation, Revision 32bb132e

g.setColor(Colors.GREEN);

• Follow Run an Application on the Virtual Device instructions to launch themodified application on the Virtual
Device.

Here is the modified application running in simulation:

4.1.2 STMicroelectronics

STM32F7508-DK Evaluation Kit

During this Getting Started, you will learn to:

• run an Application on the STM32F7508-DK Evaluation Kit Virtual Device,

• run the same Application on your STM32F7508-DK Evaluation Kit.

In case you are not familiar withMicroEJ, please visit Discover MicroEJ to understand the principles of our technol-
ogy.

4.1. Getting Started 223

https://developer.microej.com/discover-microej/

MicroEJ Documentation, Revision 32bb132e

Prerequisites

Note: This Getting Started has been tested on Windows 10.

This Getting Started is separated in twomain parts.

The first part consists of running an MVC demo application on the Virtual Device. All you need is:

• An Internet connection to access Github repositories &Module Repositories.

• MICROEJ SDK 6 (installed during Environment Setup).

• The Example-Foundation-Libraries samples at GitHub. Download or clone the project here.

The second part consists of running the same demo application on your device. For that you will need:

• STM32F7508-DK Evaluation Kit, available here.

• You will be guided on how to install STM32CubeIDE later.

Environment Setup

To follow this Getting Started, you need to install:

• MICROEJ SDK 6.

• Get the Example-Foundation-Libraries from GitHub.

Install MICROEJ SDK 6

Install MICROEJ SDK 6 by following Installation instructions. Android Studio Hedgehog is used on this Getting
Started but feel free to use your favorite IDE.

Set up the Application on your IDE

Import the Project

The first step is to import the Application into your IDE:

Note: If you are using another IDE than Android Studio, please have a look at Import a Project section.

• If you are in the Welcome Screen, click on the Open button. Otherwise click either on File > Open. . . .

• Select the Example-Foundation-Libraries directory located where you downloaded it and click on the
OK button.

4.1. Getting Started 224

https://github.com/MicroEJ/Example-Foundation-Libraries/tree/51.0.0
https://www.st.com/en/evaluation-tools/stm32f7508-dk.html

MicroEJ Documentation, Revision 32bb132e

The Gradle project should now be imported in Android Studio, your workspace contains the following project in
the Projects view:

4.1. Getting Started 225

MicroEJ Documentation, Revision 32bb132e

4.1. Getting Started 226

MicroEJ Documentation, Revision 32bb132e

Accept the MICROEJ SDK EULA

Youmay have to accept the SDK EULA if you didn’t already do, please have a look at SDK EULA Acceptation.

Run an Application on the Virtual Device

We will be using the microui.mvc Application as the sample to test the VEE port simulation execution (you can
choose another example it’ll work similarly). In order to execute the microui.mvc Application on the Virtual
Device, the SDK provides the Gradle runOnSimulator task.

Note: If you are using another IDE than Android Studio, please have a look at Run on Simulator section.

• Double-click on the runOnSimulator task in the Gradle tasks view. It may take few seconds.

4.1. Getting Started 227

MicroEJ Documentation, Revision 32bb132e

The Virtual Device starts and executes the microui.mvc application.

4.1. Getting Started 228

MicroEJ Documentation, Revision 32bb132e

Well done !

Now you know how to run an application on a Virtual Device.

If youwant to learn how to run anapplicationon your STM32F7508-DKEvaluationKit, you can continue this Getting
Started: Run an Application on STM32F7508-DK Evaluation Kit.

Otherwise, learn how toModify the Java Application.

4.1. Getting Started 229

MicroEJ Documentation, Revision 32bb132e

Run an Application on STM32F7508-DK Evaluation Kit

To deploy microui.mvc application on your board, you will have to:

• Setup your Environment (IDE, flashing-tool, hardware setup).

• Request a 30 days Evaluation License and install an activation key.

• Build the Executable.

• Flash the board.

Environment Setup

This chapter takes approximately one hour and will take you through the steps to set up your board and build the
BSP.

Install the STM32CubeIDE so�ware

Please install the following:

• The STM32CubeIDE version 1.9.0 for STM32F7508-DK, available here.

• The STM32CubeProgrammer utility program, available here.

Be aware that we need the 1.9.0 version of the STM32CubeIDE, also please install the IDE and programmer to the
default installation folders, it will simplify future steps.

Hardware Setup

• Check the jumpers configuration on JP1, you only want the 5V link jumper to be bridged.

• Connect the micro-USB cable to CN14 to power the board.

The USB connection is used as a serial link, as a ST-Link probe and as a power input for the board.

The COM port uses the following parameters:

Baudrate Data bits Parity bits Stop bits Flow control
115200 8 None 1 None

You can have a look at your application logs with an RS232 Terminal (e.g. Termite).

Congratulations, you have finished the setup of your environment. You are now ready to discover how to build and
flash a MicroEJ application.

4.1. Getting Started 230

https://www.st.com/en/development-tools/stm32cubeide.html
https://www.st.com/en/development-tools/stm32cubeprog.html
https://www.compuphase.com/software_termite.htm

MicroEJ Documentation, Revision 32bb132e

Build the Executable for the STM32F7508-DK Evaluation Kit

In order to build the Executable of the microui.mvc Application, the SDK provides the Gradle buildExecutable
task.

Note: If you are using another IDE than Android Studio, please have a look at Build an Executable section. Come
back on this page if you need to activate an Evaluation License.

• Double-click on the buildExecutable task in the Gradle tasks view.

• The build stops with a failure.

• Go to the top project in the console view and scroll up to get the following error message:

• Copy the UID. It will be required to activate your Evaluation license.

Request your Evaluation License:

• Request your Evaluation license by following the Request your Activation Key instructions. You will be asked
to fill the machine UID you just copied before.

• When you have received your activation key by email, drop it in the license directory by following the Install
the License Key instructions (drop the license key zip file to the ~/.microej/licenses/ directory).

Now your Evaluation license is installed, you can relaunch your application build by double-clicking on the
buildExecutable task in the Gradle tasks view. It may takes some time.

The gradle task deploys the Application in the BSP and then builds the BSP using Make.

The microui.mvc application isbuilt and ready tobe flashedonSTM32F7508-DKEvaluationKitonce thehardware
setup is completed.

Flash the Application on the STM32F7508-DK Evaluation Kit

In order to flash the microui.mvc Application on the STM32F7508-DK Evaluation Kit, the application provides the
Gradle runOnDevice task.

Note: If you are using another IDE than Android Studio, please have a look at Run on Device section.

• Double-click on the runOnDevice task in the Gradle tasks view. It may takes some time.

4.1. Getting Started 231

MicroEJ Documentation, Revision 32bb132e

Once the firmware is flashed, you should see the microui.mvc running on your board.

Modify the Java Application

With MicroEJ, it is easy to modify and test your Java application on the Virtual Device.

For example, we could modify the color used in the pie chart.

• Open the PieView file located in the src/main/java/com/microej/example/foundation/microui/mvc
folder.

• The pie char color is set at line 12, replace the following line:

public static final int COLOR_CONTENT = 0x2fc19c; // green

by

public static final int COLOR_CONTENT = 0x800080; // purple

4.1. Getting Started 232

MicroEJ Documentation, Revision 32bb132e

• Follow Run an Application on the Virtual Device instructions to launch themodified application on the Virtual
Device.

Here is the modified application running in simulation:

4.2 Installation

This chapter will guide you through the installation process of the SDK on your workstation. First check the System
Requirements before proceeding.

4.2.1 System Requirements

• Hardware

– Intel x64 (Dual-core i5 minimum) or macOS AArch64 (M1) processor

– 4GB RAM (minimum)

– 16GB Disk (minimum)

• Operating Systems

– Windows 11 or Windows 10

– Linux distributions (tested on Ubuntu 20.04 and 22.04)

– macOS x86_64 with Intel chip

– macOS aarch64 with M1 chip

• Java Runtime Environment

– JDK 11 or 17 - Eclipse Temurin or Oracle Distributions

4.2. Installation 233

MicroEJ Documentation, Revision 32bb132e

4.2.2 Check your JDK version

The SDK requires a JDK 11 or a higher LTS version to be installed and:

• The JAVA_HOME environment variable set to the path of a JDK.

OR

• The java executable of a JDK available in the PATH .

If the JAVA_HOME is set to a JDK, make sure that it is a JDK 11 or a higher LTS version.

If the JAVA_HOME is not set, make sure a JDK executable is available in the PATH environment variable. To check,
run java -version in a terminal:

$ java -version
openjdk version "11.0.15" 2022-04-19
OpenJDK Runtime Environment Temurin-11.0.15+10 (build 11.0.15+10)
OpenJDK 64-Bit Server VM Temurin-11.0.15+10 (build 11.0.15+10, mixed mode)

If you don’t have a JDK installed, you can download and install one from Adoptium or Oracle.

4.2.3 Install Gradle

Once a JDK is correctly configured, the next step is to install Gradle by following the o�icial documentation. The
SDK is only compatible with the Gradle 8.0.2 and higher, so make sure to install a right version. Once done, you
can verify your installation by opening a terminal and run the command gradle -v . It should display, amongst
other information, the Gradle and the JVM versions:

$ gradle -v

--
Gradle 8.0.2
--

Build time: 2023-03-03 16:41:37 UTC
Revision: 7d6581558e226a580d91d399f7dfb9e3095c2b1d

Kotlin: 1.8.10
Groovy: 3.0.13
Ant: Apache Ant(TM) version 1.10.11 compiled on July 10 2021
JVM: 11.0.18 (Eclipse Adoptium 11.0.18+10)
OS: Windows 10 10.0 amd64

4.2.4 Configure Repositories

In order to use the SDKGradle plugins andmodules in your project, the Central andDeveloper repositoriesmust be
configured. There are several ways to declare repositories. To get started, you can declare them globally to make
them available in all your projects:

• Create the folder <user.home>/.gradle/init.d if they do not exist.

• download and copy this file in the previously created folder.

4.2. Installation 234

https://adoptium.net/temurin/releases/
https://www.oracle.com/fr/java/technologies/downloads/
https://gradle.org/install/

MicroEJ Documentation, Revision 32bb132e

At this stage, you can already build a project from the command line, for example, by executing the command
gradle build at the root of theproject. But let’s continue the installationprocess tohavea completedevelopment
environment.

4.2.5 Install the IDE

Using an IDE is highly recommended for developing MicroEJ projects, making the developmentmore comfortable
and increasing productivity. The three following IDEs are supported:

• Android Studio - Minimum supported version is Hedgehog - 2023.1.1 .

• IntelliJ IDEA (Community or Ultimate edition) - Minimum supported version is 2021.2 .

• Eclipse IDE for Java Developers - Minimum supported version is 2022-03 .

Follow their respective documentation to install one of them.

These 3 IDEs come with the Gradle plugin installed by default.

4.2.6 Install the IDE Plugin

Once your favorite IDE is installed, the MicroEJ plugin must be installed.

Android Studio

IntelliJ IDEA

Eclipse

Follow these steps to install the latest stable version of the MicroEJ plugin for Android Studio:

• In Android Studio, open the Settings window (menu File > Settings. . . on Windows and Linux, menu

Android Studio > Settings. . . on macOS).

• Go to Plugins menu.

• In the search field, type MicroEJ for Android Studio :

Fig. 3: Android Studio Plugin Installation

• Click on the Install button.

• In the upcoming Third-Party Plugins Notice window, click on the Accept button.

4.2. Installation 235

https://developer.android.com/studio
https://www.jetbrains.com/idea/
https://www.eclipse.org/downloads/packages/

MicroEJ Documentation, Revision 32bb132e

Fig. 4: Android Studio Plugin Installation - Third-Party Plugins Notice

• Click on the Restart IDE button.

Warning: There used to be a unique plugin for both Android Studio and IntelliJ IDEA. Each IDE nowhas its own
dedicated plugin, so if the IntelliJ IDEA MicroEJ plugin has been previously installed, you should uninstall it
and install MicroEJ for Android Studio instead.

Follow these steps to install the latest stable version of the MicroEJ plugin for IntelliJ IDEA:

• In IntelliJ IDEA, open the Settings window (menu File > Settings. . . on Windows and Linux, menu

IntelliJ IDEA > Settings. . . on macOS).

• Go to Plugins menu.

• In the search field, type MicroEJ :

Fig. 5: IntelliJ IDEA Plugin Installation

• Click on the Install button.

• In the upcoming Third-Party Plugins Notice window, click on the Accept button.

4.2. Installation 236

MicroEJ Documentation, Revision 32bb132e

Fig. 6: IntelliJ IDEA Plugin Installation - Third-Party Plugins Notice

• Click on the Restart IDE button.

To install the snapshot version of the MicroEJ plugin, please refer to How to Install MicroEJ Plugin Snapshot Version
on Android Studio or IntelliJ IDEA.

Follow these steps to install the latest stable version of the MicroEJ plugin for Eclipse:

• In Eclipse, go to Help > Eclipse Marketplace. . . .

• In the search field, type MicroEJ and press Enter:

4.2. Installation 237

MicroEJ Documentation, Revision 32bb132e

Fig. 7: Eclipse Plugin Installation - Marketplace

• Click on the Install button.

• Accept the license agreement and click on the Finish button.

• In the upcoming Trust Authorities window, check the https://repository.microej.com

item and click on the Trust Selected button.

4.2. Installation 238

MicroEJ Documentation, Revision 32bb132e

Fig. 8: Eclipse Plugin Installation - Trust Authorities

• In the upcoming Trust Artifacts window, check the Unsigned item and click on

Trust Selected button.

Fig. 9: Eclipse Plugin Installation - Trust Artifacts

• In the upcoming window, click on the Restart Now button.

4.2. Installation 239

MicroEJ Documentation, Revision 32bb132e

4.3 Licenses

4.3.1 SDK EULA

MICROEJ SDK is licensed under the SDK EndUser License Agreement (EULA). The following figure shows a detailed
view of the elements.

Fig. 10: SDK Detailed View

4.3.2 License Manager Overview

Architectures are distributed in two di�erent versions:

• Evaluation Architectures, associated with a so�ware license key. They can be downloaded at https://
repository.microej.com/modules/com/microej/architecture/.

• Production Architectures, associated with a hardware license key stored on a USB dongle. They can be re-
quested to our support team.

The license manager is provided with Architectures and then integrated into VEE Ports.

4.3.3 License Check

The table below summarizes where the license is checked.

Application Run on
Simulator
(Virtual
Device)

Build on De-
vice

Documentation Link

Application containing a Java main class NO YES Run on Device
Application containing a Feature class NO NO Application Linking

4.3. Licenses 240

https://repository.microej.com/modules/com/microej/architecture/
https://repository.microej.com/modules/com/microej/architecture/

MicroEJ Documentation, Revision 32bb132e

4.3.4 SDK EULA Acceptation

The use of MICROEJ SDK 6 requires to accept the SDK EULA. If the license is not accepted, the followingmessage is
displayed when executing a Gradle task:

> The MICROEJ SDK End-User License Agreement (EULA) must be accepted before it can start.
The license terms for this product can be downloaded from
https://repository.microej.com/licenses/sdk/LAW-0011-LCS-MicroEJ_SDK-EULA-v3.1B.txt
You can accept the EULA by specifying the -Daccept-microej-sdk-eula-v3-1b=YES command line␣

→˓option,
or setting the system property systemProp.accept-microej-sdk-eula-v3-1b=YES in a gradle.

→˓properties file,
or setting the ACCEPT_MICROEJ_SDK_EULA_V3_1B=YES environment variable.

As mentioned in the message, there are several ways to accept the EULA:

• define the accept-microej-sdk-eula-v3-1b system property in the command line:

./gradlew build -Daccept-microej-sdk-eula-v3-1b=YES

• define the accept-microej-sdk-eula-v3-1b system property in a gradle.properties file with the
systemProp. prefix:

systemProp.accept-microej-sdk-eula-v3-1b=YES

This can be in the gradle.properties of your Gradle User Home folder (located by default at $USER_HOME/
.gradle/gradle.properties), or in the gradle.properties file at the root of your project for example.

• set the ACCEPT_MICROEJ_SDK_EULA_V3_1B environment variable to YES .

4.3.5 Evaluation Licenses

This section shouldbeconsideredwhenusingEvaluationArchitectures,whichuse so�ware licensekeys. Amachine
UID needs to be provided to activate an Evaluation license on the MicroEJ Licenses Server. Themachine UID is a 16
hexadecimal digits number.

Get your Machine UID

If your VEE Port is defined in the build.gradle.kts of your project, the machine UID will be displayed when
building an Executable.

[INFO] Launching in Evaluation mode. Your UID is XXXXXXXXXXXXXXXX.
[ERROR] Invalid license check (No license found).

4.3. Licenses 241

MicroEJ Documentation, Revision 32bb132e

Request your Activation Key

• Go to MicroEJ Licenses Server https://license.microej.com.

• Click on Create a new account link.

• Create your account with a valid email address. You will receive a confirmation email a few minutes a�er.
Click on the confirmation link in the email and log in with your new account.

• Click on Activate a License .

• Set Product P/N: to 9PEVNLDBU6IJ .

• Set UID: to the machine UID you copied before.

• Click on Activate .

• The license is being activated. You should receive your activation by email in less than 5 minutes. If not,
please contact our support team.

• Once received by email, save the attached zip file that contains your activation key.

Install the License Key

The license key zip file must be simply dropped to the ~/.microej/licenses/ directory (create it if it doesn’t
exist).

Fig. 11: MicroEJ Shared Licenses Directory

Troubleshooting

Machine UID has changed

This canoccurwhen thehardware configurationof themachine is changed (especiallywhen thenetwork interfaces
have changed).

In this case, you can either request a new activation key for this new UID or go back to the previous hardware
configuration.

4.3.6 Production Licenses

This section should be considered when using Production Architectures, which use hardware license keys stored
on a USB dongle.

4.3. Licenses 242

https://license.microej.com

MicroEJ Documentation, Revision 32bb132e

Fig. 12: MicroEJ USB Dongle

Note: If your USB dongle has been provided to you by your sales representative and you don’t have received an
activation certificate by email, itmay be a pre-activated dongle. Then you can skip the activation steps and directly
jump to the Check Activation section.

Request your Activation Key

• Go to license.microej.com.

• Click on Create a new account link.

• Create your account with a valid email address. You will receive a confirmation email a few minutes a�er.
Click on the confirmation link in the email and login with your new account.

• Click on Activate a License .

• Set Product P/N: to The P/N on the activation certificate.

• Enter your UID: serial number printed on the USB dongle label (8 alphanumeric char.).

• Click on Activate and check the confirmation message.

• Click on Confirm your registration .

• Enter the Registration Code provided on the activation certificate.

• Click on Submit .

• Your Activation Key will be sent to you by email as soon as it is available (12 business hours max.).

Note: You can check the My Products page to verify your product registration status, the Activation Key avail-
ability, and download the Activation Key when available.

Once the Activation Key is available, download and save the Activation Key ZIP file to a local directory.

4.3. Licenses 243

https://license.microej.com/

MicroEJ Documentation, Revision 32bb132e

Activate your USB Dongle

This section contains instructions that will allow you to flash your USB dongle with the proper activation key.

You shall ensure that the following prerequisites are met :

• Your operating system is Windows

• The USB dongle is plugged and recognized by your operating system (see Troubleshooting section)

• Nomore than one USB dongle is plugged into the computer while running the update tool

• The update tool is not launched from a network drive or a USB key

• The activation key you downloaded is the one for the dongle UID on the sticker attached to the dongle (each
activation key is tied to the unique hardware ID of the dongle).

You can then proceed to the USB dongle update:

• Unzip the Activation Key file to a local directory

• Enter the directory just created by your ZIP extraction tool.

• Launch the executable program.

• Accept running the unsigned so�ware if requested (Windows 10/11)

• Click on the Update button (no password needed)

4.3. Licenses 244

MicroEJ Documentation, Revision 32bb132e

Fig. 13: Dongle Update Tool

• On success, an Update successfully message shall appear. On failure, an Error key or no proper
rockey message may appear.

Fig. 14: Successful Dongle Update

Check Activation

This section contains instructions that will allow you to verify that your USB dongle has been properly activated.

To get more details on connected USB dongle(s), run the debug tool as following:

1. Open a terminal.

2. Change directory to a Production VEE Port.

3. Execute the command:

java -Djava.library.path=resources/os/[OS_NAME] -jar licenseManager/
→˓licenseManagerUsbDongle.jar

4.3. Licenses 245

MicroEJ Documentation, Revision 32bb132e

with OS_NAME set to Windows64 for Windows OS, Linux64 for Linux OS, Mac for macOS x86_64 (Intel chip)
or MacA64 for macOS aarch64 (M1 chip).

If your USB dongle has been properly activated, you should get the following output:

[DEBUG] ===== MicroEJ Dongle Debug Tool =====
[DEBUG] => Detected dongle UID: XXXXXXXX.
[DEBUG] => Dongle UID has valid MicroEJ data: XXXXXXXX (only the first one is␣
→˓listed).
[DEBUG] => Detected MicroEJ License XXXXX-XXXXX-XXXXX-XXXXX - valid until YYYY-MM-
→˓DD.
[DEBUG] ===== SUCCESS =====

USB Dongle on GNU/Linux

For GNU/Linux Users (Ubuntu at least), by default, the dongle access has not been granted to the user, you have to
modify udev rules. Please create a /etc/udev/rules.d/91-usbdongle.rules file with the following contents:

ACTION!="add", GOTO="usbdongle_end"
SUBSYSTEM=="usb", GOTO="usbdongle_start"
SUBSYSTEMS=="usb", GOTO="usbdongle_start"
GOTO="usbdongle_end"

LABEL="usbdongle_start"

ATTRS{idVendor}=="096e" , ATTRS{idProduct}=="0006" , MODE="0666"

LABEL="usbdongle_end"

Then, restart udev: sudo /etc/init.d/udev restart

You can check that the device is recognized by running the lsusb command. The output of the command should
contain a line similar to the one below for each dongle: Bus 002 Device 003: ID 096e:0006 Feitian
Technologies, Inc.

USB Dongle with Docker on Linux

If you use the SDK Docker image on a Linux host to build an Executable, the donglemust bemapped to the Docker
container. First, it requires to add a symlink on the dongle by following the instructions of the USB Dongle on
GNU/Linux section but with this /etc/udev/rules.d/91-usbdongle.rules file:

ACTION!="add", GOTO="usbdongle_end"
SUBSYSTEM=="usb", GOTO="usbdongle_start"
SUBSYSTEMS=="usb", GOTO="usbdongle_start"
GOTO="usbdongle_end"

LABEL="usbdongle_start"

ATTRS{idVendor}=="096e" , ATTRS{idProduct}=="0006" , MODE="0666" , SYMLINK+="microej_
→˓dongle"

LABEL="usbdongle_end"

4.3. Licenses 246

https://hub.docker.com/r/microej/sdk

MicroEJ Documentation, Revision 32bb132e

Then the symlink has to bemapped in the Docker container by adding the following option in the Docker container
creation command line:

--device /dev/microej_dongle:/dev/bus/usb/999/microej_dongle

The /dev/microej_dongle symlink can bemapped to any device path as long as it is in /dev/bus/usb .

USB Dongle with WSL

Note: The following steps have been tested on WSL2 with Ubuntu 22.04.2 LTS.

To use a USB dongle with WSL, you first need to install usbipd following the steps described in Microso� WSL doc-
umentation:

First, check that WSL2 is installed on your system. If not, install it or update it following Microso� Documentation

Then, you need install usbipd-win on Windows from usbipd-win Github repository.

And then, install usbipd and update hardware database inside you WSL installation:

sudo apt install linux-tools-generic hwdata
sudo update-alternatives --install /usr/local/bin/usbip usbip /usr/lib/linux-tools/
→˓*-generic/usbip 20

Add the udev rule described in USB Dongle on GNU/Linux, and restart udev:

/etc/init.d/udev restart

You then need to unplug and plug your dongle again before attaching the dongle to WSL from powershell:

usbipd.exe wsl attach --busid <BUSID>

The <BUSID> can be obtainted with the following powershell command:

usbipd wsl list

Note: You’ll need to follow these steps each time you system is rebooted or the dongle is plugged/unplugged.

Troubleshooting

This section contains instructions to check that your operating system correctly recognizes your USB dongle.

4.3. Licenses 247

https://learn.microsoft.com/fr-fr/windows/wsl/connect-usb#install-the-usbipd-win-project
https://learn.microsoft.com/fr-fr/windows/wsl/connect-usb#install-the-usbipd-win-project
https://learn.microsoft.com/fr-fr/windows/wsl/install
https://github.com/dorssel/usbipd-win/releases

MicroEJ Documentation, Revision 32bb132e

Windows Troubleshooting

• If the dongle activation failed with No rockey message, check there is one and only one dongle recognized
with the following hardware ID :

HID\VID_096E&PID_0006&REV_0201

Go to the Device Manager > Human Interface Devices and check among the USB Input Device entries

that the Details > Hardware Ids property match the ID mentioned before.

• If the dongle activationwas successful with Update successfully message but the license does not appear
in the SDK or is not updated, try to activate again by starting the executable with administrator privileges:

• If the following errormessage is thrownwhenbuilding anExecutable, either thedongle plugged is a verbatim
dongle or it has not been successfully activated:

Invalid license check (Dongle found is not compatible).

VirtualBox Troubleshooting

In a VirtualBox virtual machine, USB drives must be enabled to be recognized correctly. Make sure to enable the
USB dongle by clicking on it in the VirtualBox menu Devices > USB .

To make this setting persistent, go to Devices > USB > USB Settings. . . and add the USB dongle in the

USB Devices Filters list.

WSL Troubleshooting

Check that your dongle is attached to WSL from Powershell:

usbipd wsl list

You should have a line saying Attached - Ubuntu :

PS C:\Users\sdkuser> usbipd.exe wsl list
BUSID VID:PID DEVICE ␣
→˓STATE
2-1 096e:0006 USB Input Device ␣
→˓Attached - Ubuntu
2-6 0c45:6a10 Integrated Webcam ␣

(continues on next page)

4.3. Licenses 248

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

→˓Not attached
2-10 8087:0026 Intel(R) Wireless Bluetooth(R) ␣
→˓Not attached
3-1 045e:0823 USB Input Device ␣
→˓Not attached
3-4 046d:c31c USB Input Device ␣
→˓Not attached

In you WSL console, the dongle must also be recognized. Ckeck by using lsusb` :

skduser@host:~/workspaces/docs$ lsusb
Bus 002 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub
Bus 001 Device 003: ID 096e:0006 Feitian Technologies, Inc. HID Dongle (for OEMs -␣
→˓manufacturer string is "OEM")
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

This might not be su�icient. If you’re still facing license issues, restart udev, abd attach your dongle to WSL once
again.

Note: Hibernation may have unattached your dongle. Reload udev, unplug/plug your dongle and attach it from
powershell.

Remote USB Dongle Connection

When the dongle cannot be physically plugged to themachine running the SDK (cloud builds, virtualization, miss-
ing permissions, . . .), it can be configured using USB redirection over IP network.

There aremany hardware and so�ware solutions available on themarket. Among others, this has been testedwith
https://www.net-usb.com/ and https://www.virtualhere.com/. Please contact our support team for more details.

4.4 Scope and Limitations

The SDK 6 allows to:

• Build the Java artifact of an Application and an Add-On Library.

• Execute the tests of a project with the Simulator and on a device.

• Execute the Artifact Checker on a project.

• Run an Application with the Simulator.

• Load the VEE Port from its archive file path, its folder path or a dependency.

• Build the Executable of an Application.

• Build the WPK of an Application.

• Build the Feature file (.fo) of an Application.

• Build the Virtual Device of an Application.

• Use the Stack Trace Reader.

• Use the Code Coverage Analyzer.

4.4. Scope and Limitations 249

https://www.net-usb.com/
https://www.virtualhere.com/

MicroEJ Documentation, Revision 32bb132e

• Use the Font Designer, Memory Map Analyzer, Heap Analyzer and Front Panel Designer tools.

Therefore, it does not support all the features of the SDK 5, especially:

• Build of Foundation Libraries, VEE Ports or any other component type except Applications, Add-On Libraries
and Mocks.

• Launch of someMicroEJ tools, such as the Local Deploy, the Serial to Socket Transmitter or the Kernel Meta-
data Generator.

If you need these features, you have to use the SDK 5.

4.5 Create a Project

This chapter explains the di�erent ways to create a new project.

Note: The di�erent project creation systems do not produce exactly the same project content and structure. Es-
pecially, the IntelliJ IDEA wizard produces a simple project whereas the Android Studio, Command Line Interface
and Eclipse wizards create multi-projects builds. Both structures (single and multi projects) can be used, the rec-
ommended one depends on the context (components, size of the project, . . .). Refer to the o�icial Gradle docu-
mentation for more information.

Android Studio

IntelliJ IDEA

Eclipse

Command Line Interface

The creation of a project with Android Studio is done as follows:

• Click on File > New > Project. . . .

• Select Generic > NewMicroEJ project .

4.5. Create a Project 250

https://docs.gradle.org/current/userguide/multi_project_builds.html
https://docs.gradle.org/current/userguide/multi_project_builds.html

MicroEJ Documentation, Revision 32bb132e

Fig. 15: Project Creation in Android Studio

• Click on the Next button.

• Fill the name of the project in the Name field.

• Fill the package name of the project in the Package name field.

• Select the location of the project in the Save location field.

• Keep the default Android SDK in the Minimum SDK field.

• Select Kotlin for the Build configuration language field.

Note: Groovy build script DSL is not o�icially supported by the SDK, so the project created by the Wizard uses
Kotlin regardless of the language selected by the user.

4.5. Create a Project 251

MicroEJ Documentation, Revision 32bb132e

Fig. 16: Project Creation in Android Studio

• Click on Next button.

• Fill the group of the artifact to publish in the Group field.

• Fill the version of the artifact to publish in the Version field.

• Select the module type among Application , Mock and Addon-Library in the drop-down list.

• If you selected Application module type, you can check This is a kernel application checkbox if your
Application is a Kernel.

• Click on Finish button.

4.5. Create a Project 252

MicroEJ Documentation, Revision 32bb132e

Fig. 17: Project Creation in Android Studio

• Change the view from Android to Project in the selectbox at the top of the project’s files tree:

Fig. 18: Project View in Android Studio

Note: The newly createdGradle project uses GradleWrapperwithGradle version 8.2 . Refer to theGradleWrapper
section for more information.

The project created by thewizard is amulti-project with a single subproject (named app). This subproject is either

4.5. Create a Project 253

MicroEJ Documentation, Revision 32bb132e

an Application or an Add-On Library, depending on the module type that has been chosen.

Note: By default, Android Studio automatically saves any file change, but requires the user to explicitly trigger
the reload of a Gradle project when its configuration has changed. Therefore, when the configuration of a Gradle
project has been updated, you have to click on the Sync Now actionwhich appears on the top-right of the editor:

Fig. 19: Gradle Project reload in Android Studio

You can also configure Android Studio to automatically reload a Gradle project a�er a change. Refer to the How To
Automatically reload a Gradle project section for more information.

Warning: When reloading your Gradle project, the build can fail if the SDK EULA has not been accepted. In that
case, you must set the ACCEPT_MICROEJ_SDK_EULA_V3_1B environment variable to YES and restart Android
Studio. For more information about SDK EULA, refer to the Licenses chapter.

When the Gradle project has been reloaded, it should compile successfully, without any error. You can then learn
how to launch the build of the project, or how to run it on the Simulator in the case of an Application.

The creation of a project with IntelliJ IDEA is done as follows:

• Click on File > New > Project. . . .

• Select MicroEJ in Generators list on the le� panel.

• Fill the name of the project in the Name field.

• Select the location of the project in the Location field.

• Select the module type among Application , Mock and Addon-Library buttons.

• If you selected Application module type, you can check This is a kernel application checkbox if your
Application is a Kernel.

• Fill the version of the artifact to publish in the Version field.

4.5. Create a Project 254

MicroEJ Documentation, Revision 32bb132e

• Fill the group of the artifact to publish in the Group field.

• Fill the name of the artifact to publish in the Artifact field.

• Select the JVM used by Gradle in the JDK combobox.

• Check the Add sample code checkbox.

• Click on Create button.

Fig. 20: Project Creation in IntelliJ IDEA

Note: The Gradle project created by the wizard uses Gradle Wrapper with Gradle version 8.5 . Refer to the Gradle
Wrapper section for more information.

Note: By default, IntelliJ IDEA automatically saves any file change, but requires the user to explicitly trigger the
reloadofaGradleprojectwhen its configurationhaschanged. Therefore,when theconfigurationof aGradleproject

4.5. Create a Project 255

MicroEJ Documentation, Revision 32bb132e

has been updated, you have to click on the reload icon button which appears on the right of the editor:

Fig. 21: Gradle Project reload in IntelliJ IDEA

You can also configure IntelliJ IDEA to automatically reload a Gradle project a�er a change. Refer to the How To
Automatically reload a Gradle project section for more information.

Warning: When reloading your Gradle project, the build can fail if the SDK EULA has not been accepted. In that
case, you must set the ACCEPT_MICROEJ_SDK_EULA_V3_1B environment variable to YES and restart IntelliJ
IDEA. For more information about SDK EULA, refer to the Licenses chapter.

When the Gradle project is loaded, it should compile successfully, without any error. You can then learn how to
launch the build of the project, or how to run it on the Simulator in the case of an Application.

The creation of a project with Eclipse is done as follows:

• Click on File > New > Project. . . .

• Select the project type MicroEJ > MicroEJ Application Project , MicroEJ Mock or

MicroEJ Add-onLibrary Project and click on the Next button.

4.5. Create a Project 256

MicroEJ Documentation, Revision 32bb132e

Fig. 22: Project Type Selection in Eclipse

• Fill the name of the project in the Name field, for example My Project .

• Fill the group of the artifact to publish in the Organization field.

• Fill the name of the artifact to publish in the Module field.

• Fill the version of the artifact to publish in the Revision field.

• If you selected Application module type, you can check This is a kernel application checkbox if your
Application is a Kernel.

• Click on Finish button.

4.5. Create a Project 257

MicroEJ Documentation, Revision 32bb132e

Fig. 23: Application Creation in Eclipse

Note: The Gradle project created by the wizard uses Gradle Wrapper with Gradle version 8.5 . Refer to the Gradle
Wrapper section for more information.

Warning: When reloading your Gradle project, the build can fail if the SDK EULA has not been accepted. In that
case, you must set the ACCEPT_MICROEJ_SDK_EULA_V3_1B environment variable to YES and restart Eclipse.
For more information about SDK EULA, refer to the Licenses chapter.

When the Gradle project is loaded, it should compile successfully, without any error. You can then learn how to
launch the build of the project, or how to run it on the Simulator in the case of an Application.

The creation of a project can be done via the command line interface via the Gradle init task. This task guides
you throughmultiple steps to configure and select the project template to use. Refer to the o�icial documentation
for the full list of templates and options.

In order to create a MicroEJ project, the best way is to use the application template:

• In a new empty directory, execute the command gradle init .

• Select the application project type.

• Select the Java implementation language.

• For the step Generate multiple subprojects for application? , select no .

• Select build script DSL Kotlin .

4.5. Create a Project 258

https://docs.gradle.org/current/userguide/build_init_plugin.html

MicroEJ Documentation, Revision 32bb132e

Note: The SDK uses Kotlin as the default Gradle build script DSL. The use of the Groovy build script DSL is still
possible but not o�icially supported.

• For the test framework, select JUnit 4 .

• Choose the name of the project (defaults to the name of the parent directory).

• Choose the package name for the source files.

• For the target version of Java, select 7 .

• Decide if you want to use Gradle new APIs and behavior in your build script. If you are new to Gradle, choose
no .

Note: These steps are the ones proposed when creating a project with Gradle 8.2.1 . Depending on the Gradle
version used, the steps to create a project can be slightly di�erent.

The created project is a multi-project build containing a root project and a single subproject (named app). The
app subproject is a standard Java Application project (Gradle java plugin), so it must be updated to be a MicroEJ
project:

• Open the project in your favorite editor.

• Open the app/build.gradle.kts file.

• Erase its whole content.

• Configure the project depending on the module nature you want to build.

• Declare the dependencies required by your project in the dependencies block. For example:

dependencies {
implementation("ej.api:edc:1.3.5")

}

• Delete the test class in the folder app/src/test/java .

4.5.1 Configure a Project

The SDK allows to build several types of modules. Each type has its own Gradle plugin and configuration options.
Refer to the module type you want to build to configure your project:

• Application

• Add-On Library

• Mock

• J2SE Library

4.5. Create a Project 259

MicroEJ Documentation, Revision 32bb132e

Application Project

• Add the com.microej.gradle.application plugin in the build.gradle.kts file:

plugins {
id("com.microej.gradle.application") version "0.15.0"

}

Note: The java plugin must not be added since it is automatically applied by the MicroEJ plugin.

• If your Application is a Standalone Application:

– Create the Java main class in the src/main/java folder.

– Define theproperty applicationMainClass in the microej configurationblockof the build.gradle.
kts file. It must be set to the Full Qualified Name of the Application main class, for example:

microej {
applicationMainClass = "com.mycompany.Main"

}

• If your Application is a Kernel Application:

– Create the Java main class in the src/main/java folder.

– Define theproperty applicationMainClass in the microej configurationblockof the build.gradle.
kts file. It must be set to the Full Qualified Name of the Application main class, for example:

microej {
applicationMainClass = "com.mycompany.Main"

}

– Create a file named kernel.kf in the src/main/resources folder. This file is a property file which
must contain at least the version property, and optionally the name property (defaults to KERNEL),
for example:

version=1.0.0
name=MY-KERNEL

• If your Application is a Sandboxed Application:

– Create the Java class of the Feature Entry Point in the src/main/java folder, for example:

package com.mycompany;

import ej.kf.FeatureEntryPoint;

public class MyApplication implements FeatureEntryPoint {

@Override
public void start() {
System.out.println("Feature MyApplication started!");

}

@Override

(continues on next page)

4.5. Create a Project 260

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

public void stop() {
System.out.println("Feature MyApplication stopped!");

}
}

– Createa filewith theextension .kf in the src/main/resources folder, for example MyApplication.kf
. This file must at least contain the property entryPoint set to the Full Qualified Name of the Applica-
tion Feature class, for example:

entryPoint=com.mycompany.MyApplication
version=0.1.0

Refer to the pageModule Natures for a complete list of the available MicroEJ natures and their corresponding plu-
gins.

Add-On Library Project

• Add the com.microej.gradle.addon-library plugin in the build script:

plugins {
id("com.microej.gradle.addon-library") version "0.15.0"

}

Note: The java plugin must not be added since it is automatically applied by the MicroEJ plugin.

Refer to the pageModule Natures for a complete list of the available MicroEJ natures and their corresponding plu-
gins.

Mock

• Add the com.microej.gradle.mock plugin in the build script:

plugins {
id("com.microej.gradle.mock") version "0.15.0"

}

Note: The java plugin must not be added since it is automatically applied by the MicroEJ plugin.

Refer to the pageModule Natures for a complete list of the available MicroEJ natures and their corresponding plu-
gins.

4.5. Create a Project 261

MicroEJ Documentation, Revision 32bb132e

J2SE Library Project

• Add the com.microej.gradle.j2se-library plugin in the build script:

plugins {
id("com.microej.gradle.j2se-library") version "0.15.0"

}

Note: The java plugin must not be added since it is automatically applied by the MicroEJ plugin.

Refer to the pageModule Natures for a complete list of the available MicroEJ natures and their corresponding plu-
gins.

4.5.2 Create a subproject in an existing project

This section explains the di�erent ways to add amodule to an existing project.

Warning: If you want to add a MicroEJ module to a non MicroEJ project, for example an Android project,
you must configure the repositories before creating the module. If the repositories used by your project are
centralized in the settings.gradle.kts file of the project, the MicroEJ repositories defined in this file must

be added to your settings.gradle.kts file.

Android Studio

IntelliJ IDEA

Eclipse

The creation of a module with Android Studio is done as follows:

• Click on File > New > NewModule. . . .

• Select MicroEJ Module in Templates list on the le� panel.

• Fill the name of the module in the Name field.

• Fill the group of the artifact to publish in the Group field.

• Fill the version of the artifact to publish in the Version field.

• Select the module type among Application and Addon-Library buttons.

• If you selected Application module type, you can check This is a kernel application checkbox if your
Application is a Kernel.

• Click on Finish button.

4.5. Create a Project 262

https://docs.gradle.org/current/userguide/declaring_repositories.html#sub:centralized-repository-declaration

MicroEJ Documentation, Revision 32bb132e

Fig. 24: Module Creation in Android Studio

The creation of a module with IntelliJ IDEA is done as follows:

• Click on File > New > Module. . . .

• Select MicroEJ in Generators list on the le� panel.

• Fill the name of the module in the Name field.

• Select the location of the module in the Location field.

• Select the module type among Application and Addon-Library buttons.

• If you selected Application module type, you can check This is a kernel application checkbox if your
Application is a Kernel.

• Fill the version of the artifact to publish in the Version field.

• Fill the group of the artifact to publish in the Group field.

• Fill the name of the artifact to publish in the Artifact field.

• Select the JVM used by Gradle in the JDK combobox.

• Check the Add sample code checkbox.

• Click on Create button.

4.5. Create a Project 263

MicroEJ Documentation, Revision 32bb132e

Fig. 25: Module Creation in IntelliJ IDEA

• Include themodule to your project by adding the following line to the settings.gradle.kts file of the project:

include("<module_name>")

• Right-click on the module name in the Gradle tasks view and click on Unlink Gradle Project .

• Reload of a Gradle project by clicking on the reload icon button which appears on the right of the editor:

Fig. 26: Gradle Project reload in IntelliJ IDEA

The creation of a module with Eclipse is done as follows:

4.5. Create a Project 264

MicroEJ Documentation, Revision 32bb132e

• Right-click on your project and click on New > Folder .

• Select your project as parent folder.

• Fill the name of the module in the Folder name field.

• Click on Finish button.

Fig. 27: Module Creation in Eclipse

• Right-click on your newly created folder and click on New > File .

• Enter build.gradle.kts in the File name field.

• Click on Finish button and open the build.gradle.kts file.

• Add the MicroEJ plugin, depending on the module nature you want to build, for example for an Add-On Li-
brary:

plugins {
id("com.microej.gradle.addon-library") version "0.15.0"

}

or for an Application:

plugins {
id("com.microej.gradle.application") version "0.15.0"

}

Refer to the pageModule Natures for a complete list of the availableMicroEJ natures and their corresponding
plugins.

4.5. Create a Project 265

MicroEJ Documentation, Revision 32bb132e

• Declare the dependencies required by your project in the dependencies block. For example:

dependencies {
implementation("ej.api:edc:1.3.5")

}

• Open the settings.gradle.kts file of your project and add the following content:

include("<module_name>")

Note: By default, Eclipse requires the user to explicitly trigger the reload of a Gradle project when its content has
changed. Therefore, when the content of a Gradle project has been updated, you have to right-click on the project,
then click on Gradle and Refresh Gradle Project :

Fig. 28: Gradle Project reload in Eclipse

You can also configure Eclipse to automatically reload a Gradle project a�er a change. Refer to the How To Auto-
matically reload a Gradle project section for more information.

• Right-click on the newly created module and click on New > Source Folder .

• Enter src/main/java in the Folder name field.

• Click on Finish button.

4.5. Create a Project 266

MicroEJ Documentation, Revision 32bb132e

Fig. 29: Source Folder Creation in Eclipse

• Follow the same steps to create the src/main/resources , src/test/java and src/test/resources fold-
ers.

4.5.3 Gradle Wrapper

It is recommended to use the Gradle Wrapper to execute a build. The Wrapper is a script that ensures that the
required version of Gradle is downloaded and used during the build of a project.

When creating a project following one of the project creation systems described in the Create a Project section, the
Wrapper files are automatically generated in the gradle/wrapper folder of the project. It is also possible to add
the Wrapper to an existing project by executing the wrapper task:

gradle wrapper

TheGradle versionusedby theproject can thenbeupdated in the gradle/wrapper/gradle-wrapper.properties
file. The SDK requires Gradle 8.0.2 or higher:

distributionUrl=https\://services.gradle.org/distributions/gradle-8.0.2-bin.zip

To use the Wrapper during a build, use gradlew or ./gradlew depending on your OS instead of gradle in the
command line:

Windows

Linux

gradlew build

./gradlew build

In the following chapters of the documentation, the Linux command ./gradlew is used in all examples to execute
a build.

Refer to the o�icial Gradle documentation for more information about the Wrapper.

4.5. Create a Project 267

https://docs.gradle.org/current/userguide/gradle_wrapper.html

MicroEJ Documentation, Revision 32bb132e

4.6 Import a Project

This chapter explains how to import a project in an IDE.

Android Studio

IntelliJ IDEA

Eclipse

In order to import an existing Gradle project in Android Studio, follow the following steps:

• If you are in the Welcome Screen, click on the Open button. Otherwise click either on File > Open. . .

or on File > Import Project. . . .

• Select the root directory of the project and click on the OK button.

Fig. 30: Project Import in Android Studio

The Gradle project should now be opened in Android Studio.

In order to import an existing Gradle project in IntelliJ IDEA, follow the following steps:

• If you are in the Welcome Screen, click on the Open button. Otherwise click either on File > Open. . .

or on File > New > Project From Existing Sources. . . .

• Select the root directory of the project and click on the OK button.

4.6. Import a Project 268

MicroEJ Documentation, Revision 32bb132e

Fig. 31: Project Import in IntelliJ IDEA

• If you are asked to choose a project model, select Gradle .

• Click on the Create button.

The Gradle project should now be opened in IntelliJ IDEA.

In order to import an existing Gradle project in Eclipse, follow these steps:

• Click on File > Import. . . .

• Select the project type Gradle > Existing Gradle Project and click on the Next button.

4.6. Import a Project 269

MicroEJ Documentation, Revision 32bb132e

Fig. 32: Project Type Selection in Eclipse

• Select the root directory of the project.

Fig. 33: Project root folder in Eclipse

• Click on the Next button and finally on the Finish button.

The Gradle project should now be opened in Eclipse.

4.6. Import a Project 270

MicroEJ Documentation, Revision 32bb132e

4.7 Select a VEE Port

Building or running an Application or a Test Suite with the SDK requires a VEE Port.

Use one of the following available options to provide it to your project.

4.7.1 Using a Module Dependency

When your VEE Port is published in an artifact repository, you can define the VEE Port by declaring a module de-
pendency in the build.gradle.kts file, with the microejVee configuration:

dependencies {
microejVee("com.mycompany:myveeport:1.0.0")

}

Note: For dependencies stored in an Ivy repository, Gradle fetches them with the configuration
default . If several artifacts are published with this configuration, the build will fail because it doesn’t
know which artifact to choose. You can select the right artifact by adding information on the one to
fetch in the artifact block, for example:

microejVee("com.mycompany:myveeport:1.0.0") {
artifact {

name = "artifact-name"
type = "zip"

}
}

This will select the artifact with the name artifact-name and with the type zip .

Refer to the Gradle documentation to learn all the options to select dependencies.

4.7.2 Using a Local VEE Port Directory

When your VEE Port has been built locally and is therefore available in a local directory, you can use it by declaring
a file dependency in the build.gradle.kts file, with the microejVee configuration:

dependencies {
microejVee(files("C:\\path\\to\\my\\veePort\\source"))

}

Note: This file, aswell as other Gradle configuration files, respects the Java properties file convention: theOS path
must use the UNIX path convention (path separator is /). TheWindows pathsmust have been convertedmanually
replacing \ by / or by \\ .

4.7. Select a VEE Port 271

https://docs.gradle.org/current/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html

MicroEJ Documentation, Revision 32bb132e

4.7.3 Using a Local VEE Port Archive

When your VEE Port is available locally as an archive file (.zip or .vde), you can use it by declaring a file depen-
dency in the build.gradle.kts file, with the microejVee configuration:

dependencies {
microejVee(files("C:\\path\\to\\my\\veePort\\file.zip"))

}

Note: The legacy JPF format of a VEE Port is not supported anymore in the SDK 6. If you want to use a VEE Port
.jpf file, you have to use the SDK 5.

4.8 Run on Simulator

In order to execute an Application on the Simulator, the SDK provides the Gradle runOnSimulator task. The pre-
requisites of this task are:

• The Application main class or Feature class must be configured, as described in Configure a Project.

• If the Application has amain class, the target VEE Portmust be defined. Refer to the Select a VEE Port page to
know the di�erent ways to provide a VEE Port for a module project.

• If the Application has a Feature class and a .kf file containing the property entryPoint set to the Full
Qualified Name of the Feature class in the src/main/resources folder , the target Kernel must be defined.
Refer to the Select a Kernel page to know the di�erent ways to provide a Kernel for a module project.

Once these prerequisites are fulfilled, the Application can be started with the Simulator:

Android Studio / IntelliJ IDEA

Eclipse

Command Line Interface

By double-clicking on the runOnSimulator task in the Gradle tasks view:

By double-clicking on the runOnSimulator task in the Gradle tasks view:

4.8. Run on Simulator 272

MicroEJ Documentation, Revision 32bb132e

From the command line interface:

$./gradlew runOnSimulator

With a simple Hello World Application, the output should be:

=============== [Initialization Stage] ===============
=============== [Converting fonts] ===============
=============== [Converting images] ===============
=============== [Launching on Simulator] ===============
Hello World!
=============== [Completed Successfully] ===============

SUCCESS

Warning: The execution of the runOnSimulator task can fail if the SDK EULA has not been accepted. In that
case, you can set the ACCEPT_MICROEJ_SDK_EULA_V3_1B environment variable to YES and restart your IDE
or you can define the accept-microej-sdk-eula-v3-1b System property by creating a custom configuration.
For more information about SDK EULA, refer to the Licenses chapter.

4.8. Run on Simulator 273

MicroEJ Documentation, Revision 32bb132e

4.8.1 Verbose Mode

If you needmore information about the execution of the Application with the Simulator, the verbosemode can be
enabled by using the --info Gradle option:

./gradlew runOnSimulator --info

4.8.2 Debug on Simulator

TheSDKallows to runanApplicationwith theSimulator indebugmodeby setting theSystemproperty debug.mode
to true when executing the runOnSimulator task:

./gradlew runOnSimulator -P"debug.mode"=true

The debugmode is activated on the port 12000 by default. The port can be changed by using the SystemProperty
debug.port :

./gradlew runOnSimulator -P"debug.mode"=true -P"debug.port"=8000

Once started, the Simulator waits for the connection of a debugger.

If you want to connect the IDE debugger:

Android Studio / IntelliJ IDEA

Eclipse

Warning: Android Studio and IntelliJ IDEA need an Architecture 8.1 or higher for debugmode.

• Add a breakpoint in your Application code.

• Click on Run > Edit Configurations... .

• Click on + button (Add New Configuration).

• Select Remote JVM Debug .

• Click on the New launch configuration button.

• Give a name to the launcher in the Name field.

• Set the debug host and port.

• Click on the Debug button.

• Add a breakpoint in your Application code.

• Click on Run > Debug Configurations... .

• Select Remote Java Application .

• Click on the New launch configuration button.

• Give a name to the launcher in the Name field.

• Set the debug host and port.

• Click on the Debug button.

The debugger should connect to the Simulator and you should be able to debug your Application.

4.8. Run on Simulator 274

MicroEJ Documentation, Revision 32bb132e

4.8.3 Generate Code Coverage

To generate the Code Coverage files (.cc), invoke the :runOnSimulator task as follow:

gradle :runOnSimulator -D"s3.cc.thread.period=15" -D"s3.cc.activated=true"

Option Name: s3.cc.thread.period

Description:

It specifies the period between the generation of .cc files.

Note: If the application is abruptly ended (for example with Ctrl-C) before the the first period, no .cc files are
generated.

Option Name: s3.cc.activated

Description

Set to true to enable the generation of Code Coverage files, don’t define the property to disable the generation.

4.8.4 Generate Heap Dump

Option Name: s3.inspect.heap

Description:

Set to true to enable a dumpof the heap each time the System.gc() method is called by theMicroEJ Application.
The .heap files are generated in build/output/application/heapDump/ .

Use the Heap Viewer to visualize the .heap files.

4.9 Build an Executable

In order to build the Executable of an Application, the SDK provides the Gradle buildExecutable task. The pre-
requisites to use this task are:

• The property applicationMainClass must be defined in the microej configuration block of the Gradle
build file of the project. It must be set to the Full Qualified Name of the Application main class, for example:

microej {
applicationMainClass = "com.mycompany.Main"

}

• A target VEE Port that uses an Architecture version 7.17 minimummust be defined. Refer to the Select a VEE
Port page to know the di�erent ways to provide a VEE Port for a module project.

Once these prerequisites are fulfilled, the Executable can be built:

Android Studio / IntelliJ IDEA

Eclipse

Command Line Interface

By double-clicking on the buildExecutable task in the Gradle tasks view:

4.9. Build an Executable 275

MicroEJ Documentation, Revision 32bb132e

By double-clicking on the buildExecutable task in the Gradle tasks view:

From the command line interface:

$./gradlew buildExecutable

In case of Full BSP Connection, the Executable file is generated in the build/output/application folder of the
project.

4.9. Build an Executable 276

MicroEJ Documentation, Revision 32bb132e

4.10 Run on Device

The SDK allows to deploy an Application on a Device thanks to the Gradle runOnDevice task. The prerequisites of
this task are:

• The Application main class or Feature class must be configured, as described in Configure a Project.

• The target VEE Portmust be defined. Refer to the Select a VEE Port page to know the di�erentways to provide
a VEE Port for a module project.

• The Device must be connected to the developer’s computer.

• The configuration required by the VEE Port must be set. Refer to the VEE Port documentation to check the
required configuration.

Once these prerequisites are fulfilled, the Application can be deployed on the Device:

Android Studio / IntelliJ IDEA

Eclipse

Command Line Interface

By double-clicking on the runOnDevice task in the Gradle tasks view:

By double-clicking on the runOnDevice task in the Gradle tasks view:

4.10. Run on Device 277

MicroEJ Documentation, Revision 32bb132e

From the command line interface:

$./gradlew runOnDevice

The build should be successful and the output should end with:

Execution of script '<RUN_SCRIPT_PATH>' done.
BUILD SUCCESSFUL

where RUN_SCRIPT_PATH is the absolute path to the run.[sh|bat] script of the VEE Port.

The Application Executable is now deployed on the Device.

4.11 Select a Kernel

Building the Feature file of an Application with the SDK requires a Kernel.

Use one of the following available options to provide it to your project.

4.11.1 Using a Module Dependency

When your Kernel is published in an artifact repository, you can define the Kernel by declaring a module depen-
dency in the build.gradle.kts file, with the microejVee configuration:

dependencies {
microejVee("com.mycompany:mykernel:1.0.0")

}

4.11. Select a Kernel 278

MicroEJ Documentation, Revision 32bb132e

4.11.2 Using a Local Kernel

When your Kernel has been built locally, you can use its Virtual Device and its Executable by declaring a file depen-
dency in the build.gradle.kts file, with the microejVee configuration:

dependencies {
microejVee(files("C:\\path\\to\\my\\kernel\\virtual\\device", "C:\\path\\to\\my\\kernel\\

→˓executable.out"))
}

Note: This file, aswell as other Gradle configuration files, respects the Java properties file convention: theOS path
must use the UNIX path convention (path separator is /). TheWindows pathsmust have been convertedmanually
replacing \ by / or by \\ .

4.12 Build a Feature file

Tobuild theFeature file (.fo) of anApplication, theSDKprovides theGradle buildFeature task. Theprerequisites
to use this task are:

• The Application must contain a Java class implementing the ej.kf.FeatureEntryPoint interface.

• The Applicationmust contain a .kf file in the src/main/resources folder containing at least the property
entryPoint set to the Fully Qualified Name of the Application Feature class, for example:

entryPoint=com.microej.MyFeature

• A Multi-Sandbox Kernel must be defined. Refer to the Select a Kernel page to learn how to provide a Kernel
for a module project.

Once these prerequisites are fulfilled, the Feature file can be built:

Android Studio / IntelliJ IDEA

Eclipse

Command Line Interface

By double-clicking on the buildFeature task in the Gradle tasks view:

4.12. Build a Feature file 279

MicroEJ Documentation, Revision 32bb132e

By double-clicking on the buildFeature task in the Gradle tasks view:

From the command line interface:

$./gradlew buildFeature

The Feature file is generated in the build/binary folder of the project.

4.12. Build a Feature file 280

MicroEJ Documentation, Revision 32bb132e

4.13 Build a Virtual Device

In order to build the Virtual Device of an Application, the SDKprovides theGradle buildVirtualDevice task. Refer
to the Virtual Device page for more information about the Virtual Device.

The prerequisites to use the buildVirtualDevice task are:

• The property applicationMainClass must be defined in the microej configuration block of the Gradle
build file of the project. It must be set to the fully qualified name of the Application main class, for example:

microej {
applicationMainClass = "com.mycompany.Main"

}

• A target VEE Port that uses an Architecture version 7.17 minimummust be defined. Refer to the Select a VEE
Port page to know the di�erent ways to provide a VEE Port for a module project.

Once these prerequisites are fulfilled, the Virtual Device can be built:

Android Studio / IntelliJ IDEA

Eclipse

Command Line Interface

By double-clicking on the buildVirtualDevice task in the Gradle tasks view:

By double-clicking on the buildVirtualDevice task in the Gradle tasks view:

4.13. Build a Virtual Device 281

MicroEJ Documentation, Revision 32bb132e

From the command line interface:

$./gradlew buildVirtualDevice

When the build is completed, the Virtual Device is available in the build/virtualDevice folder of the project. It
can then be used to run an Application on the Simulator for example.

4.13.1 Add a Pre-Installed Application in a Virtual Device

When building a Virtual Device for a Kernel, Applications can be pre-installed inside. These Applications can be
loaded and started when the Kernel starts for example.

To install an Application in a Virtual Device for a Kernel, you must declare the Application as a dependency of the
project in the build file, with the microejApplication configuration:

dependencies {
microejApplication("com.mycompany:myapp:1.0.0")

}

Warning:

• Only modules with the Application Module Nature can be declared this way (modules built with the com.
microej.gradle.application plugin). Declaring a module with another Module Nature would make
the build fail.

• The VEE Port used to create the Virtual Device has to be a Multi-Sandbox VEE Port to support the load of
these pre-installed Applications.

4.13. Build a Virtual Device 282

MicroEJ Documentation, Revision 32bb132e

4.13.2 Add a Kernel API in a Virtual Device

When building a Virtual Device for a Kernel, the Kernel must define the set of classes, methods and static fields all
applications are allowed to use. This can be done by declaring Kernel APIs as a dependency in the build file:

dependencies {
implementation("com.microej.kernelapi:edc:1.2.0")

}

4.14 Add a Dependency

A project generally relies on other components such as libraries. These components have to be declared as de-
pendencies of the build to be used by the project. This declaration is done in the dependencies block of the
build.gradle.kts file. For example, to add the EDC library as a dependency:

dependencies {
implementation("ej.api:edc:1.3.5")

}

4.14.1 Configurations

Everydependencydeclared foraGradleproject applies toa specific scope. Forexample somedependencies should
beused for compiling source codewhereasothersonlyneed tobeavailable at runtime. Gradle represents the scope
of adependencywith thehelpof a configuration. In theaboveexample, the implementation configuration isused.

Since the MicroEJ Gradle plugins extend the Gradle Java and Java Library plugins, they inherits from their config-
urations, but they also adds their own configurations. Let’s have a look at the mostly used configurations:

• implementation (fromGradle Java plugin) : Dependencies used by the project at compile time and runtime.

• api (from Gradle Java Library plugin) : Same as the implementation configuration, except that the depen-
dency is also exposed to the consumers of your project.

• testImplementation (from Gradle Java plugin) : Dependencies used by the test classes of the project. This
configuration extends the implementation configuration, so it inherits from all the dependencies declared
with the implementation configuration.

• microejVee : VEE Port, Virtual Device or Kernel used by the project for build and test.

Here is an example of dependencies declaration for a project:

dependencies {
implementation("ej.library.runtime:basictool:1.7.0")

testImplementation("ej.library.test:junit:1.7.1")

microejVee("com.microej.platform.esp32.esp-wrover-kit-v41:HDAHT:1.8.0")
}

In this example, the ej.library.runtime:basictool module is used at compile time and runtime, the ej.
library.test:junit module is used for the tests compilation and execution, and the com.microej.platform.
esp32.esp-wrover-kit-v41:HDAHT module is the VEE Port used for build and test.

For an exhaustive list of the available configurations and more details on how to manage dependencies, refer to
the following o�icial documentations:

4.14. Add a Dependency 283

MicroEJ Documentation, Revision 32bb132e

• Declaring dependencies

• Java plugin

• Java Library plugin

4.14.2 Version

The version declared in the dependencies of a build file are explicit:

• Release version: to depend on a released version of a module, the exact fixed version must be used (e.g.,
1.0.0).

• Snapshot version: todependonasnapshot version (-RC) of amodule, theversionmustbedeclaredexplicitly
with the -RC+ su�ix (e.g., 1.0.0-RC+).

Note: This is an important change compared to the SDK 5. In the SDK 5, using a fixed version (e.g., 1.0.0) fetched
the release version (e.g., 1.0.0) if it existed, or a snapshot version (e.g., 1.0.0-RCxxx) otherwise. This is not the
case anymore in the SDK 6.

4.14.3 Dependencies Repositories

Gradle needs to know in which repositories the modules must be fetched and published. The SDK 6 installation
process provides a Gradle Init Script to declare the MicroEJ public repositories. You can declare other repositories,
either in the same Gradle Init Script and in any other location supported by Gradle. Refer to the o�icial documen-
tation for more information on repositories configuration.

It is important to note that the declaration order of the repositoriesmatters. Gradle requests the repositories in the
order they are declared and stops as soon as it finds a matching version.

4.15 Test a Project

The SDK provides the capabilities to implement and run tests for a project. It relies on the standard JUnit API.

There are di�erent types of tests:

• Test on the Simulator

• Test on a device

• Test on a J2SE VM

Each type of test is detailed in the next sections.

4.15. Test a Project 284

https://docs.gradle.org/current/userguide/declaring_dependencies.html
https://docs.gradle.org/current/userguide/java_plugin.html#sec:java_plugin_and_dependency_management
https://docs.gradle.org/current/userguide/java_library_plugin.html#sec:java_library_separation
https://docs.gradle.org/current/userguide/declaring_repositories.html
https://docs.gradle.org/current/userguide/declaring_repositories.html
https://repository.microej.com/modules/ej/library/test/junit/

MicroEJ Documentation, Revision 32bb132e

4.15.1 JUnit Compliance

The SDK relies on JUnit, the most popular Java testing framework, to define and execute the tests. It supports a
subset of JUnit 4, namely the annotations: @After , @AfterClass , @Before , @BeforeClass , @Ignore , @Test .

Each test case entry point must be declared using the org.junit.Test annotation (@Test before amethod dec-
laration). Refer to JUnit documentation to get details on the usage of other annotations.

4.15.2 Gradle Integration

Tests are configured and launched by Gradle. Gradle provides 2 ways to configure tests in a project:

• By using the built-in Test task, as described in Testing in Java & JVM projects.

• By using the new JVM Test Suite plugin, as described in The JVM Test Suite Plugin.

The JVM Test Suite plugin provides an enhancedmodel to declaremultiple groups of automated testsuites, and
is therefore the recommended way to configure your tests. The next sections use the JVM Test Suite plugin to
explain how to configure and run tests, but the same results can be achieved with the Test task.

4.15.3 Test on Simulator

Tests can be executed on the Simulator. They are run on a target VEE Port and generate a JUnit XML report.

Executing tests on the Simulator allows to check the behavior of the code in an environment similar to the target
device but without requiring the board. This solution is therefore less constraining andmore portable than testing
on the board.

Configure the Testsuite

The configurationof the testsuites of aprojectmust bedefined inside the followingblock in the build.gradle.kts
file:

testing {
suites { // (1)

val test by getting(JvmTestSuite::class) { // (2)
microej.useMicroejTestEngine(this) // (3)

dependencies { // (4)
implementation(project())
implementation("ej.api:edc:1.3.5")
implementation("ej.library.test:junit:1.7.1")
implementation("org.junit.platform:junit-platform-launcher:1.8.2")

}
}

}
}

This piece of configuration is the minimum configuration required to define a testsuite on the Simulator:

• (1) : configures all the testsuites of the project.

• (2) : configures the built-in test suite provided by Gradle. Use this testsuite to configure the tests on the
Simulator.

4.15. Test a Project 285

https://junit.org/junit4/
https://junit.org/junit4/
https://docs.gradle.org/current/userguide/java_testing.html
https://docs.gradle.org/current/userguide/jvm_test_suite_plugin.html

MicroEJ Documentation, Revision 32bb132e

• (3) : declares that this testsuite uses the MicroEJ Testsuite Engine. By default, the MicroEJ Testsuite Engine
executes the tests on the Simulator.

• (4) : adds the dependencies required by the tests. The first line declares a dependency to the code of the
project. The second line declares a dependency on the edc Library. The third line declares a dependency to
the JUnit API used to annotate Java Test classes. Finally the fourth line declares a dependency to a required
JUnit library.

Create a Test Class

The SDK provides a JUnit library containing the subset of the supported JUnit API: ej.library.test:junit . Be-
fore creating the Test class, make sure this library is declared in the testsuite dependencies:

testing {
suites {

val test by getting(JvmTestSuite::class) {
...
dependencies {

implementation("ej.library.test:junit:1.7.1")
}
...

}
}

}

The test class can now be created in the src/test/java folder. This can be donemanually or with IDEmenu:

Android Studio / IntelliJ IDEA

Eclipse

• right-click on the src/test/java folder.

• select New > Java Class , then press Alt + Insert and select Test Method .

• right-click on the src/test/java folder.

• select New > Other. . . > Java > JUnit > New JUnit Test Case .

Note: Gradle allows to define alternative folders for test sources but it would require additional configuration, so
it is recommended to stick with the src/test/java folder.

Setup a VEE Port

Before running tests, at least one target VEE Port must be configured using one of the methods described in the
Select a VEE Port page. If several VEE Ports are defined, the testsuite is executed on each of them.

4.15. Test a Project 286

MicroEJ Documentation, Revision 32bb132e

Execute the Tests

Once the testsuite is configured, it can be run thanks to the test Gradle task. This task is bound to the check and
the build Gradle lifecycle tasks, whichmeans that the tests are also executed when launching one of these tasks.

Android Studio / IntelliJ IDEA

Eclipse

Command Line Interface

In order to execute the testsuite from Android Studio or IntelliJ IDEA, double-click on the task in the Gradle tasks
view:

In order to execute the testsuite from Eclipse, double-click on the task in the Gradle tasks view:

In order to execute the testsuite from the Command Line Interface, execute this command:

4.15. Test a Project 287

MicroEJ Documentation, Revision 32bb132e

$./gradlew test

Filter the Tests

Gradle automatically executes all the tests located in the test source folder. If you want to execute only a subset of
these tests, Gradle provides 2 solutions:

• Filtering configuration in the build script file.

• Filtering option in the command line.

The tests filtering configuration must be done in the filter block of the test task:

testing {
suites {
val test by getting(JvmTestSuite::class) {

...

targets {
all {

testTask.configure {
filter {

includeTestsMatching("com.mycompany.*")
}

}
}

}
}

}
}

This example tells Gradle to run the tests located in the com.mycompany package only. Othermethods are available
for test filtering, such as excludeTestsMatching to exclude tests. Refer to the TestFilter documentation for the
complete list of available filtering methods.

As mentionned earlier, Gradle allows to filter the tests from the command line directly, thanks to the --tests
option:

./gradlew test --tests MyTestClass

This can be convenient to quickly execute one test for example, without requiring a change in the build script file.

Refer to the Gradle Test filtering documentation for more details on how to filter the tests and on the available
patterns.

Warning: At themoment, only class-level filtering is supported. Thismeans that, for instance, it is not possible
to run a single test method within a test class.

4.15. Test a Project 288

https://docs.gradle.org/current/javadoc/org/gradle/api/tasks/testing/TestFilter.html
https://docs.gradle.org/current/userguide/java_testing.html#test_filtering

MicroEJ Documentation, Revision 32bb132e

4.15.4 Test on Device

The SDK allows to execute a testsuite on a device. This requires to:

• Have a VEE Port which implements the BSP Connection.

• Have a device connected to your workstation both for programming the Executable and getting the output
traces. Consult your VEE Port specific documentation for setup.

• Start the Serial to Socket Transmitter tool if the VEE Port does not redirect execution traces.

The configuration is similar to the one used to execute a testsuite on the Simulator.

1. Follow the instructions to setup a testsuite on the Simulator.

2. In the build script file, replace the line:

microej.useMicroejTestEngine(this)

by:

microej.useMicroejTestEngine(this, TestTarget.EMB)

3. Add the import statement at the beginning of the file:

import com.microej.gradle.plugins.TestTarget

4. Add the required properties as follows:

val test by getting(JvmTestSuite::class) {
microej.useMicroejTestEngine(this, TestTarget.EMB)

targets {
all {

testTask.configure {
doFirst {

systemProperties = mapOf(
// Enable the build of the Executable
"microej.testsuite.properties.deploy.bsp.microejscript" to "true",
"microej.testsuite.properties.microejtool.deploy.name" to

→˓"deployToolBSPRun",
// Tell the testsuite engine that the VEE Port Run script␣

→˓redirects execution traces
"microej.testsuite.properties.launch.test.trace.file" to "true",
// Configure the TCP/IP address and port if the VEE Port Run␣

→˓script does not redirect execution traces
"microej.testsuite.properties.testsuite.trace.ip" to "localhost",
"microej.testsuite.properties.testsuite.trace.port" to "5555"

)
}

}
}

}
}

The properties are:

4.15. Test a Project 289

MicroEJ Documentation, Revision 32bb132e

• microej.testsuite.properties.deploy.bsp.microejscript : enables the build of the Executable. It is
required.

• microej.testsuite.properties.microejtool.deploy.name : name of the tool used to deploy the Exe-
cutable to the board. It is required. It is generally set to deployToolBSPRun .

• microej.testsuite.properties.launch.test.trace.file : enables the redirection of the traces in file.
If the VEE Port does not have this capability, the Serial to Socket Transmitter toolmust be used to redirect the
traces to a socket.

• microej.testsuite.properties.testsuite.trace.ip : TCP/IP address used by the Serial to Socket Trans-
mitter tool to redirect traces from the board. This property is only required if the VEE Port does not redirect
execution traces.

• microej.testsuite.properties.testsuite.trace.port : TCP/IP port used by the Serial to Socket Trans-
mitter tool to redirect traces from the board. This property is only required if the VEE Port does not redirect
execution traces.

Any other property can be passed to the Test Engine by prefixing it by microej.testsuite.properties. . For
example, to set the the Immortal heap size:

systemProperties = mapOf(
"microej.testsuite.properties.core.memory.immortal.size" to "8192",
...

)

4.15.5 Test on J2SE VM

TheSDKallows to run testsonaJ2SEVM.This canbeusefulwhen theusageofmock libraries likeMockito is needed.

There is nothing specific related to MicroEJ to run tests on a J2SE VM. Follow the Gradle documentation to setup
such tests. As an example, here is a typical configuration to execute the tests located in the src/test/java folder:

testing {
suites {

val test by getting(JvmTestSuite::class) {
useJUnitJupiter()

}
}

}

4.15.6 Test Suite Reports

Once a testsuite is completed, the JUnit XML report is generated in themodule project location build/testsuite/
output/<date>/testsuite-report.xml .

4.15. Test a Project 290

https://site.mockito.org/
https://docs.gradle.org/current/userguide/jvm_test_suite_plugin.html

MicroEJ Documentation, Revision 32bb132e

Fig. 34: Example of MicroEJ Test Suite XML Report

XML report file can also be opened In Eclipse in the JUnit View. Right-click on the file > Open With >

JUnit View :

Fig. 35: Example of MicroEJ Test Suite XML Report in JUnit View

4.15.7 Mixing tests

The SDK allows to define multiple testsuites on di�erent targets. For example, you can configure a testsuite to run
tests on the Simulator and a testsuite to run tests on a device.

Configuringmultiple testsuites is almost only amatter of aggregating the testsuite declarations documented in the
previous sections, as described in the Gradle documentation.

Mixing tests on the Simulator and on a device

If you need to define a testsuite to run on the Simulator and a testsuite to run on a device, the only point to take
care is related to the tests source location, because:

• Gradle automatically uses the testsuite name to know the tests source folder to use. For example, for a test-
suite named test (the built-in testsuite), the folder src/test/java is used, and for a testsuite named
testOnDevice , the folder src/testOnDevice/java is used.

• Tests classes executed by the MicroEJ Test Engine on the Simulator and on device are not directly the tests
source classes. The SDK generates new tests classes, based on the original ones, but compliant with the
MicroEJ Test Suite mechanism. This process assumes by default that the tests classes are located in the
src/test/java folder.

Therefore:

• It is recommended to use the built-in test testsuite for either the tests on the Simulator or the tests on
device. This avoids extra configuration to change the location of the tests source folder.

• The tests source folder of the other testsuite must be changed to use the src/test/java folder as well:

4.15. Test a Project 291

https://docs.gradle.org/current/userguide/jvm_test_suite_plugin.html#sec:declare_an_additional_test_suite

MicroEJ Documentation, Revision 32bb132e

testing {
suites {

val test by getting(JvmTestSuite::class) {
microej.useMicroejTestEngine(this)

dependencies {
implementation(project())
implementation("ej.library.test:junit:1.7.1")
implementation("org.junit.platform:junit-platform-launcher:1.8.2")

}
}

val testOnDevice by registering(JvmTestSuite::class) {
microej.useMicroejTestEngine(this, TestTarget.EMB)

sources {
java {

setSrcDirs(listOf("src/test/java"))
}
resources {

setSrcDirs(listOf("src/test/resources"))
}

}

dependencies {
implementation(project())
implementation("ej.library.test:junit:1.7.1")
implementation("org.junit.platform:junit-platform-launcher:1.8.2")

}

targets {
all {
testTask.configure {

doFirst {
systemProperties = mapOf(

"microej.testsuite.properties.deploy.bsp.microejscript" to "true",
"microej.testsuite.properties.microejtool.deploy.name" to

→˓"deployToolBSPRun",
"microej.testsuite.properties.testsuite.trace.ip" to "localhost",
"microej.testsuite.properties.testsuite.trace.port" to "5555"

)
}

}
}

}
}

}
}

The important part is the sources block of the testOnDevice testsuite. This allows to use the src/test/java
and src/test/resources folders as the tests source folders.

With this configuration, all tests are executed on both the Simulator and the device. If you want to have di�erent
tests for each testsuite, it is recommended to separate the tests in di�erent packages. For example the tests on the

4.15. Test a Project 292

MicroEJ Documentation, Revision 32bb132e

Simulator could be in src/test/java/com/mycompany/sim and the tests on the device could be in src/test/
java/com/mycompany/emb . Then you use the test filtering capabilities to configure which package to run in which
testsuite:

testing {
suites {

val test by getting(JvmTestSuite::class) {
...

targets {
all {
testTask.configure {

...

filter {
includeTestsMatching("com.mycompany.sim.*")

}
}

}
}

}

val testOnDevice by registering(JvmTestSuite::class) {
...

targets {
all {
testTask.configure {

...

filter {
includeTestsMatching("com.mycompany.emb.*")

}
}

}
}

}
}

}

Mixing tests on the Simulator and on a J2SE VM

Defining tests on the Simulator and on a J2SE VM is only amatter of aggregating the configuration of each testsuite:

testing {
suites {

val test by getting(JvmTestSuite::class) {
microej.useMicroejTestEngine(this)
...

}

val testOnJ2SE by registering(JvmTestSuite::class) {

(continues on next page)

4.15. Test a Project 293

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

useJUnitJupiter()
...

}
}

}

As explained in the previous section, it is recommended to use the built-in test testsuite for the tests on the
Simulator since it avoids adding confguration to change the tests sources folder. With this configuration, tests on
theSimulator are located in the src/test/java folder, and tests ona J2SEVMare located in the src/testOnJ2SE/
java folder.

4.15.8 Configure the Testsuite Engine

Theengineused toexecute the testsuiteprovides a set of configurationparameters that canbedefinedwithSystem
Properties. For example, to set the timeout of the tests:

• In the command line with -D :

./gradlew test -Dmicroej.testsuite.timeout=120

• In the build script file:

testing {
suites {

val test by getting(JvmTestSuite::class) {
...

targets {
all {

testTask.configure {
...

doFirst {
systemProperties = mapOf(

"microej.testsuite.timeout" to "120"
)

}
}

}
}

}
}

}

The following configuration parameters are available:

4.15. Test a Project 294

MicroEJ Documentation, Revision 32bb132e

Name Description Default
microej.testsuite.

timeout
The time in seconds before a test is considered as failed.
Set it to 0 to disable the timeout.

60

microej.testsuite.
jvmArgs

The arguments to pass to the Java VM started for each
test.

Not set

microej.testsuite.
lockPort

The localhost port used by the framework to synchronize
its execution with other frameworks on same computer.
Synchronization is not performed when this port is 0 or
negative.

0

microej.testsuite.
retry.count

A test execution may not be able to produce the success
trace for an external reason, for example an unreliable
harness script that may lose some trace characters or
crop the end of the trace. For all these unlikely reasons,
it is possible to configure the number of retries before a
test is considered to have failed.

0

microej.testsuite.
retry.if

Regular expression checked against the test output to
retry the test. If the regular expression is found in the test
output, the test is retried (up to the value of microej.
testsuite.retry.count).

Not set

microej.testsuite.
retry.unless

Regular expression checked against the test output to
retry the test. If the regular expression is not found in
the test output, the test is retried (up to the value of
microej.testsuite.retry.count).

Not set

microej.testsuite.
verbose.level

Verbose level of the testsuite output. Available values are
error , warning , info , verbose and debug .

info

4.15.9 Inject Application Options

Standalone Application Options can be defined to configure the Application or Library being tested. They can be
defined globally, to be applied on all tests, or specifically to a test.

Inject Application Options Globally

In order to define an Application Option globally, it must be prefixed by microej.testsuite.properties. and
passed as a System Property, either in the command line or in the build script file. For example, to inject the prop-
erty core.memory.immortal.size :

• In the command line with -D :

./gradlew test -Dmicroej.testsuite.properties.core.memory.immortal.size=8192

• In the build script file:

testing {
suites {

val test by getting(JvmTestSuite::class) {
...

targets {
all {

testTask.configure {

(continues on next page)

4.15. Test a Project 295

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

...

doFirst {
systemProperties = mapOf(

"microej.testsuite.properties.core.memory.immortal.size
→˓" to "8192"

)
}

}
}

}
}

}
}

Inject Application Options For a Specific Test

In order to define an Application Option for a specific test, it must set in a file with the same name as the generated
test case file, butwith the .properties extension instead of the .java extension. The filemust be put in the src/
test/resources folder andwithin the same package than the test file. For example, to inject a Application Option
for the test class com.mycompany.MyTest , it must be set in a file named src/test/resources/com.mycompany/
MyTest.properties .

4.16 Publish a Project

Publishing is the process by which the built artifacts of a module is made available to other modules or any other
systems.

The requirements to publish a module are:

• Defining the name of themodule. It is set by default to the name of themodule folder, and can be changed in
the settings.gradle.kts file located at the root of themodule, thanks to the property rootProject.name
:

rootProject.name = "myModule"

• Defining the group and version properties. They can be set in the build.gradle.kts file:

group = "com.mycompany"
version = "1.0.0"

• Declaring a maven publication repository. This can be done in the build file for example, with:

publishing {
repositories {

maven {
name = "mavenPublish"
url = uri("https://my.server/repository")

}
}

}

4.16. Publish a Project 296

MicroEJ Documentation, Revision 32bb132e

Refer to the o�icial documentation for more information on publication repositories.

Then the publication of a module to a repository is achieved by executing the publish task:

$./gradlew publish

The following artifacts are automatically published:

• Themain artifact, which is the JAR file for Application and Add-On Library natures.

• The README.md file.

• The CHANGELOG.md file.

• The LICENSE.txt file.

• The ASSEMBLY_EXCEPTION.txt file.

• The Gradle module descriptor file.

• The Ivy descriptor file (to allow SDK 5 project to fetch it).

• The WPK file, if the project is an Application.

• The Virtual Device, if the project is an Application containing a Java main class.

If the project is an Application containing a Java main class, the Executable is not built and published by default
(when launching a ./gradlew build or a ./gradlew publish for example). This default behavior canbe changed
by adding the produceExecutableDuringBuild() method in the microej configuration block of theGradle build
file of the project:

microej {
produceExecutableDuringBuild()

}

If the project is an Application containing a Java class that implements the ej.kf.FeatureEntryPoint interface,
the Feature is not built and published by default (when launching a ./gradlew build or a ./gradlew publish
for example). This default behavior can be changed by adding the produceFeatureDuringBuild() method in the
microej configuration block of the Gradle build file of the project:

microej {
produceFeatureDuringBuild()

}

4.17 Development Tools

MicroEJ provides a number of tools to assistwith various aspects of development. These tools are either command
line tools or Eclipse IDE plugins.

Command line tools

Command line tools can be executed using the gradle task execTool .

The format of the task is as follow:

./gradlew execTool --name=TOOL_NAME --toolProperty="PROPERTY=VALUE" --toolProperty=
→˓"PROPERTY=VALUE" ...

4.17. Development Tools 297

https://docs.gradle.org/current/userguide/publishing_maven.html#publishing_maven:repositories

MicroEJ Documentation, Revision 32bb132e

The parameter required --name is used to describe the name of the tool to execute. The optional parameters
--toolProperty are used to configure the tool’s options.

In addition, the tool’s options can be defined in configuration/tools/TOOL_NAME.properties .

The following sections describe the command line tools and their options:

4.17.1 Stack Trace Reader

Principle

Stack Trace Reader is a MicroEJ tool that reads and decodes the MicroEJ stack traces. When an exception occurs,
the Core Engine prints the stack trace on the standard output System.out . The class names, non-required types
names(see Types), and method names obtained are encoded with a MicroEJ internal format. This internal format
prevents embedding all class names andmethod names in the executable image to save somememory space. The
Stack Trace Reader tool allows you to decode the stack traces by replacing the internal class names and method
names with their real names. It also retrieves the line numbers in the Application.

Functional Description

The Stack Trace Reader reads the debug information from the fully linked ELF file (the ELF file that contains the
Core Engine, the other libraries, the BSP, the OS, and the compiled Application). It prints the decoded stack trace.

WhenMulti-Sandbox capability is enabled, the stack trace reader can simultaneously decode heterogeneous stack
traces with lines owned by di�erent Sandboxed Applications and the Kernel. Lines owned by the Kernel can be
decoded with the Executable debug information file (optionally made available by your Kernel provider).

Use (Standalone Application)

For example, write the following new line to dump the currently executed stack trace on the standard output.

package com.mycompany;

public class Test {
public static void main(String[] args) {

System.out.println("Hello, World!");
new Exception().printStackTrace();

}
}

To decode an application stack trace, the stack trace reader tool requires the application executable ELF file. In the
case of a platformwith full BSP connection (see BSP Connection Cases), the file is application.out in the output
folder. In the other cases, the ELF file is generated by the C toolchainwhen building the BSP project (usually a .out
or .axf file).

On successful deployment, the application is started on the device and the following trace is dumped on standard
output.

VM START
Hello World from Gradle!
Exception in thread "main" @C:0x8070c30@

at @C:0x8070c60@.@M:0x8075850:0x807585a@
at @C:0x8070c30@.@M:0x80769a4:0x80769ba@

(continues on next page)

4.17. Development Tools 298

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

at @C:0x8070c30@.@M:0x807857c:0x8078596@
at @C:0x8070c00@.@M:0x8074e04:0x8074e1a@
at @C:0x8070ce0@.@M:0x807601c:0x807603c@
at @C:0x806fe10@.@M:0x807779c:0x80777b0@
at @C:0x8070c00@.@M:0x8077b40:0x8077b4c@
at @C:0x8070c00@.@M:0x80779b0:0x80779bb@

To decode the trace, execute the execTool task as followed:

./gradlew execTool --name=stackTraceDecrypter \
--toolProperty="proxy.connection.connection.type=console" \
--toolProperty="application.file=../../executable/application/application.out" \
--toolProperty="additional.application.files=" \
--console plain

Paste the previous trace dump into the console. The output of the Stack Trace Reader is the following:

=============== [MicroEJ Core Engine Trace] ===============
console:
[INFO] Paste the MicroEJ core engine stack trace here.

VM START
Hello World from Gradle!
Exception in thread "main" @C:0x8070c30@

at @C:0x8070c60@.@M:0x8075850:0x807585a@
at @C:0x8070c30@.@M:0x80769a4:0x80769ba@
at @C:0x8070c30@.@M:0x807857c:0x8078596@
at @C:0x8070c00@.@M:0x8074e04:0x8074e1a@
at @C:0x8070ce0@.@M:0x807601c:0x807603c@
at @C:0x806fe10@.@M:0x807779c:0x80777b0@
at @C:0x8070c00@.@M:0x8077b40:0x8077b4c@
at @C:0x8070c00@.@M:0x80779b0:0x80779bb@

VM START
Hello World from Gradle!
Exception in thread "main" java.lang.Throwable

at java.lang.System.getStackTrace(Unknown Source)
at java.lang.Throwable.fillInStackTrace(Throwable.java:82)
at java.lang.Throwable.<init>(Throwable.java:32)
at java.lang.Thread.dumpStack(Thread.java:573)
at com.microej.Main.main(Main.java:22)
at java.lang.MainThread.run(Thread.java:855)
at java.lang.Thread.runWrapper(Thread.java:464)
at java.lang.Thread.callWrapper(Thread.java:449)

4.17. Development Tools 299

MicroEJ Documentation, Revision 32bb132e

Options

Option: Executable file

Option Name: application.file

Required?: Yes

Description:

Specify the full path of a full linked elf file.

Option: Additional object files

Option Name: additional.application.files

Required?: Yes

Option: Connection type

Option Name: proxy.connection.connection.type

Required?: Yes

Available values:

• console

• file

• uart

• socket

Description:

Specify the connection type between the device and PC.

Option: Port

Option Name: pcboardconnection.usart.pc.port

Required?: (For uart Connection Type)

Description:

Format: port name

Specifies the PC COM port:

• Windows - COM1 , COM2 , ... , COM*n*

• Linux - /dev/ttyS0 , /dev/ttyS1 , ... , /dev/ttyS*n*

4.17. Development Tools 300

MicroEJ Documentation, Revision 32bb132e

Option: Baudrate

Option Name: pcboardconnection.usart.pc.baudrate

Required?: (For uart Connection Type)

Available values:

• 9600

• 38400

• 57600

• 115200

Description:

Defines the COM baudrate for PC-Device communication.

Option: Port

Option Name: pcboardconnection.socket.port

Required?: (For socket Connection Type)

Description:

IP port.

Option: Address

Option Name: pcboardconnection.socket.address

Required?: (For socket Connection Type)

Description:

IP address, on the form A.B.C.D. or empty.

Option: Stack trace file

Option Name: pcboardconnection.file.path

Required?:

Description:

Path to a stack trace file or empty.

4.17. Development Tools 301

MicroEJ Documentation, Revision 32bb132e

4.17.2 Code Coverage Analyzer

Principle

The Simulator features an option to output .cc (Code Coverage) files that represent the use rate of functions of an
application. It traces how the opcodes are really executed.

Functional Description

The Code Coverage Analyzer scans the output .cc files, and outputs an HTML report to ease the analysis of meth-
ods coverage. The HTML report is available in a folder named htmlReport in the same folder as the .cc files.

Dependencies

In order to work properly, the Code Coverage Analyzer should input the .cc files (See Generate Code Coverage).
The .cc files rely on the classpath used during the execution of the Simulator to the Code Coverage Analyzer.
Therefore the classpath is considered to be a dependency of the Code Coverage Analyzer.

Installation

This tool is a built-in Architecture tool.

Use

A MicroEJ tool is available to launch the Code Coverage Analyzer tool. The tool name is Code Coverage Analyzer.

Two levels of code analysis are provided, the Java level and the bytecode level. Also provided is a view of the fully
or partially covered classes and methods. From the HTML report index, just use hyperlinks to navigate into the
report and source / bytecode level code.

./gradlew execTool --name=codeCoverageAnalyzer \
--toolProperty="cc.dir=/MODULE_PATH/build/output/com.microej.Main/cc/" \
--toolProperty="cc.includes=" \
--toolProperty="cc.excludes=" \
--toolProperty="cc.src.folders=/MODULE_PATH/src" \
--toolProperty="cc.html.dir=/MODULE_PATH/cc"

Options

Option: *.cc files folder

Option Name: cc.dir

Description:

Specify a folder which contains the cc files to process (*.cc).

4.17. Development Tools 302

MicroEJ Documentation, Revision 32bb132e

Option: Source Folders

Option Name: cc.src.folders

Description:

A list of folders to the source files.

Option: HTML Dir

Option Name: cc.html.dir

Description:

The output directory for the HTML report.

Option: Includes

Option Name: cc.includes

Description:

List packages and classes to include to code coverage report. If no package/class is specified, all classes found in
the project classpath will be analyzed.

Examples:

packageA.packageB.* : includes all classes which are in package packageA.packageB

packageA.packageB.className : includes the class packageA.packageB.className

Option: Excludes

Option Name: cc.excludes

Description:

List packages and classes to exclude to code coverage report. If no package/class is specified, all classes found in
the project classpath will be analyzed.

Examples:

packageA.packageB.* : excludes all classes which are in package packageA.packageB

packageA.packageB.className : excludes the class packageA.packageB.className

IDE tools

Eclipse IDE tools are graphical tools which are available as Eclipse plugins: Memory Map Analyzer, Heap Analyzer
and Font Designer.

Follow these steps to install the latest stable version of these tools:

• Install Eclipse IDE for Java Developers - Minimum supported version is 2022-03 .

• In Eclipse, go to Help > Eclipse Marketplace. . . .

• In the Find field, type MicroEJ Tools , then press Enter .

• Click on the Install button of the MicroEJ Tools plugin.

4.17. Development Tools 303

https://www.eclipse.org/downloads/packages/

MicroEJ Documentation, Revision 32bb132e

• Accept the license, then click on the Finish button.

• In the upcoming Trust Artifacts window, check the Unsigned item and click on

Trust Selected button.

Fig. 36: Eclipse Plugin Installation - Trust Artifacts

• In the upcoming window, click on the Restart Now button.

The following sections describe the IDE tools and their options:

4.17.3 Memory Map Analyzer

Principle

When the Executable of an Application is built, a Memory Map file is generated. This file can be visualized with the
Memory Map Analyzer, an Eclipse IDE plug-in. It displays thememory consumption of di�erent features in the RAM
and ROM.

4.17. Development Tools 304

MicroEJ Documentation, Revision 32bb132e

Fig. 37: Memory Map Analyzer Process

Use

When the Executable file of an Application has been produced, the Memory Map file is available at build/
executable/application/SOAR.map .

4.17. Development Tools 305

MicroEJ Documentation, Revision 32bb132e

Fig. 38: Memory Map File

You can visualize it by following these steps:

• Make sure the Eclipse IDE is installed with the required plugin, then launch it.

• Click on File > Open File. . . .

• Select the Memory Map file.

4.17. Development Tools 306

MicroEJ Documentation, Revision 32bb132e

Fig. 39: Consult Full Memory

You can select an item (or several) to show thememory used by this item(s) on the right, or select All to show the
memory used by all items. This special item performs the same action as selecting all items in the list.

You can also select an item in the list, and expand it to see all symbols used by the item. This view is useful in
understanding why a symbol is embedded.

Fig. 40: Detailed View

4.17. Development Tools 307

MicroEJ Documentation, Revision 32bb132e

4.17.4 Heap Dumper & Heap Analyzer

Introduction

Heap Dumper is a tool that allows to get a snapshot of the heap of an Application running on the Simulator or on a
device.

The Heap Analyzer is a set of tools to help developers understand the contents of the Java heap and find problems
such asmemory leaks. For its part, the Heap Analyzer IDE plugin is able to visualize dump files. It helps you analyze
their contents thanks to the following features:

• memory leaks detection

• objects instances browse

• heap usage optimization (using immortal or immutable objects)

The Heap

The heap is a memory area used to hold Java objects created at runtime. Objects persist in the heap until they are
garbage collected. An object becomes eligible for garbage collection when there are no longer any references to it
from other objects.

Heap Dump

Aheapdump is anXML file (with the .heap extension) that provides a snapshot of theheapcontents at themoment
the file is created. It contains a list of all the instances of both class and array types that exist in the heap. For each
instance, it records:

• The time at which the instance was created

• The thread that created it

• Themethod that created it

For instances of class types, it also records:

• The class

• The values in the instance’s non-static fields

For instances of array types, it also records:

• The type of the contents of the array

• The contents of the array

For each referenced class type, it records the values in the static fields of the class.

4.17. Development Tools 308

MicroEJ Documentation, Revision 32bb132e

Heap Analyzer Tools

The Heap Analyzer is an Eclipse IDE plugin that adds three tools to the MicroEJ environment.

Tool name Number of
input files

Purpose

Heap Viewer 1 Shows what instances are in the heap, when they were created,
and attempts to identify problem areas

Progressive
Heap Usage

1 or more Shows how the number of instances in the heap has changed over
time

Compare 2 Compares two heap dumps, showing which objects were created,
or garbage collected, or have changed values

Heap Dumper

When the Heap Dumper option is enabled, the garbage collector process ends by performing a dump that repre-
sents a snapshot of the heap at this moment. To generate such dump, you must explicitly call the System.gc()
method in your code.

This tool can be used with the Simulator and with a device.

Simulator

In order to generate a Heap dump of an Application running on the Simulator:

• Set the s3.inspect.heap Application properties to true .

• Update your Application code to call the System.gc() method where you need a Heap dump.

• run the Application on the Simulator.

When the System.gc() method is called, a .heap file is generated in the build/output/application/heapDump/
folder of the Application project.

Device

In order to generate a Heap dump of an Application running on a device:

• Update your Application code to call the System.gc() method where you need a Heap dump.

• Build the Executable and deploy it on the device.

When the Application is executed on the device and the System.gc() method is called, a Heap dump is performed
and stored in the device memory. You then have to:

• Retrieve the hex file from the device

• Extract the Heap dump from the hex file

4.17. Development Tools 309

MicroEJ Documentation, Revision 32bb132e

Retrieve the .hex file from the device

Retrieving the .hex file from the device can be done with Eclipse CDT and GDB:

• Run your debug configuration.

• Open the Disassembly view.

• Type LLMJVM_on_Runtime_gc_done in location field.

• Add a breakpoint by double-clicking on the first line.

• Resume execution until the debugger stops on the breakpoint.

• Open your debug configuration and copy the host name and the port in the Debugger tab.

• Run a GDB console.

• Connect to the GDB server, for example: target remote localhost:2331 .

• Dump thememory of the Java heap section by executing the following command line:

dump ihex memory heap.hex &_java_heap_start &_java_heap_end

You now have the .hex file and need to extract the Heap dump.

Extract the Heap dump from the .hex file

In order to extract the Heap dump from an .hex file, run the execTool Gradle task with the tool name
heapDumperPlatform :

./gradlew execTool --name=heapDumperPlatform \
--toolProperty="application.file=../../executable/application/application.out" \
--toolProperty="heap.filename=/path/to/memory.hex" \
--toolProperty="additional.application.files=" \
--console plain

You can find the list of available options below:

Name Description Default
application.
file

Specify the full path of the Executable file, a full linked ELF
file.

Not set

additional.
application.
filenames

Specify the full path of Feature files with debug information
(.fodbg files).

Not set

heap.
filename

Specify the full path of heap memory dump, in Intel Hex for-
mat.

Not set

additional.
memory.
filenames

Specify the full path of additional memory files in Intel Hex
format (Installed Feature areas, Dynamic Features table, . . .).

Not set

output.
name

Name of the extracted Heap dump file. application.heap

4.17. Development Tools 310

MicroEJ Documentation, Revision 32bb132e

Heap Viewer

To open the Heap Viewer tool, select a heap dump XML file in the Package Explorer , right-click on it and select

Open With > Heap Viewer

Alternatively, right-click on it and select Heap Analyzer > Open heap viewer .

This will open a Heap Viewer tool window for the selected heap dump1.

The Heap Viewer works in conjunction with two views:

1. The Outline view

2. The Instance Browser view

These views are described below.

The Heap Viewer tool has three tabs, each described below.

Outline View

The Outline view shows a list of all the types in the heap dump, and for each type shows a list of the instances of
that type. When an instance is selected it also shows a list of the instances that refer to that instance. The Outline
view is opened automatically when an Heap Viewer is opened.

Fig. 41: Outline View
1 Although this is an Eclipse editor, it is not possible to edit the contents of the heap dump.

4.17. Development Tools 311

MicroEJ Documentation, Revision 32bb132e

Instance Browser View

The Instance Browser view opens automatically when a type or instance is selected in the Outline view. It has two
modes, selected using the buttons in the top right corner of the view. In Fields mode it shows the field values for
the selected type or instance, andwhere those fields hold references it shows the fields of the referenced instance,
and so on. In Reference mode it shows the instances that refer to the selected instance, and the instances that
refer to them, and so on.

Fig. 42: Instance Browser View - Fields mode

Fig. 43: Instance Browser View - References mode

4.17. Development Tools 312

MicroEJ Documentation, Revision 32bb132e

Heap Usage Tab

TheHeapusage page of theHeap Viewer displays four bar charts. Each chart divides the total time spanof the heap
dump (from the time stampof the earliest instance creation to the time stampof the latest instance creation) into a
number of periods along the x axis, and shows, by means of a vertical bar, the number of instances created during
the period.

• The top-le� chart shows the total number of instances created in each period, and is the only chart displayed
when the Heap Viewer is first opened.

• When a type or instance is selected in the Outline view the top-right chart is displayed. This chart shows the
number of instances of the selected type created in each time period.

• When an instance is selected in the Outline view the bottom-le� chart is displayed. This chart shows the
number of instances created in each time period by the thread that created the selected instance.

• When an instance is selected in the Outline view the bottom-right chart is displayed. This chart shows the
number of instances created in each time period by the method that created the selected instance.

Fig. 44: Heap Viewer - Heap Usage Tab

Clicking on the graph area in a chart restricts the Outline view to just the types and instances that were created
during the selected time period. Clicking on a chart but outside of the graph area restores the Outline view to

4.17. Development Tools 313

MicroEJ Documentation, Revision 32bb132e

showing all types and instances2.

The button Generate graphViz file in the top-right corner of the Heap Usage page generates a file compatible with
graphviz (www.graphviz.org).

The section Heap Usage Monitoring shows how to compute the maximum heap usage.

Dominator Tree Tab

The Dominator tree page of the Heap Viewer allows the user to browse the instance reference tree which contains
the greatest number of instances. This can be useful when investigating a memory leak because this tree is likely
to contain the instances that should have been garbage collected.

The page contains two tree viewers. The top viewer shows the instances that make up the tree, starting with the
root. The le� column shows the ids of the instances – initially just the root instance is shown. The Shallow instances
column shows the number of instances directly referenced by the instance, and the Referenced instances column
shows the total number of instances below this point in the tree (all descendants).

Thebottomviewergroups the instances thatmakeup the treeeither according to their type, the thread that created
them, or the method that created them.

Double-clicking an instance in either viewer opens the Instance Browser view (if not already open) and shows de-
tails of the instance in that view.

2 The Outline can also be restored by selecting the All types and instances option on the drop-downmenu at the top of the Outline view.

4.17. Development Tools 314

MicroEJ Documentation, Revision 32bb132e

Fig. 45: Heap Viewer - Dominator Tree Tab

Leak Suspects Tab

The Leak suspects page of the Heap Viewer shows the result of applying heuristics to the relationships between
instances in the heap to identify possible memory leaks.

The page is in three parts.

• The top part lists the suspected types (classes). Suspected types are classes which, based on numbers of
instances and instance creation frequency, may be implicated in a memory leak.

• Themiddle part lists accumulation points. An accumulation point is an instance that references a high num-
ber of instances of a type that may be implicated in a memory leak.

• The bottom part lists the instances accumulated at an accumulation point.

4.17. Development Tools 315

MicroEJ Documentation, Revision 32bb132e

Fig. 46: Heap Viewer - Leak Suspects Tab

Progressive Heap Usage

To open the Progressive HeapUsage tool, select one ormore heap dumpXML files in the Package Explorer , right-

click and select Heap Analyzer > Show progressive heap usage

This tool is much simpler than the Heap Viewer described above. It comprises three parts.

• The top-right part is a line graph showing the total number of instances in the heap over time, based on the
creation times of the instances found in the heap dumps.

• The le� part is a pane with three tabs, one showing a list of types in the heap dump, another a list of threads
that created instances in the heap dump, and the third a list of methods that created instances in the heap
dump.

• The bottom-le� is a line graph showing the number of instances in the heap over time restricted to those
instances that match with the selection in the le� pane. If a type is selected, the graph shows only instances
of that type; if a thread is selected the graph shows only instances created by that thread; if a method is
selected the graph shows only instances created by that method.

4.17. Development Tools 316

MicroEJ Documentation, Revision 32bb132e

Fig. 47: Progressive Heap Usage

Compare Heap Dumps

The Compare tool compares the contents of two heap dump files. To open the tool select two heap dump XML files
in the Package Explorer, right-click and select Heap Analyzer > Compare

The Compare tool shows the types in the old heap on the le�-hand side, and the types in the new heap on the
right-hand side, andmarks the di�erences between them using di�erent colors.

Types in the old heapdumpare colored red if there are one ormore instances of this typewhich are in the old dump
but not in the new dump. Themissing instances have been garbage collected.

Types in the new heap dump are colored green if there are one or more instances of this type which are in the new
dump but not in the old dump. These instances were created a�er the old heap dumpwas written.

Clicking to the right of the type name unfolds the list to show the instances of the selected type.

4.17. Development Tools 317

MicroEJ Documentation, Revision 32bb132e

Fig. 48: Compare Heap Dumps

The combo box at the top of the tool allows the list to be restricted in various ways:

• All instances – no restriction.

• Garbage collected and new instances – showonly the instances that exist in the old heap dumpbut not in the
new dump, or which exist in the new heap dump but not in the old dump.

• Persistent instances – show only those instances that exist in both the old and new dumps.

• Persistent instanceswith value changed– showonly those instances that exist inboth theoldandnewdumps
and have one or more di�erences in the values of their fields.

Instance Fields Comparison View

TheCompare toolworks in conjunctionwith the InstanceFieldsComparisonview,whichopensautomaticallywhen
an instance is selected in the tool.

The view shows the values of the fields of the instance in both the old and new heap dumps, and highlights any
di�erences between the values.

4.17. Development Tools 318

MicroEJ Documentation, Revision 32bb132e

Fig. 49: Instance Fields Comparison view

4.17.5 Font Designer

Principle

The Font Designer module is a graphical tool (Eclipse plugin) that runs within the MicroEJ IDE used to build and
edit MicroUI fonts. It stores fonts in a platform-independent format.

4.17. Development Tools 319

MicroEJ Documentation, Revision 32bb132e

Functional Description

Fig. 50: Font Generation

Font Management

Create a MicroEJ Font

To create a MicroEJ font, follow the steps below:

1. Open the Eclipse wizard: File > New > Other. . . > MicroEJ > MicroEJ Font .

2. Select a directory and a name.

3. Click Finish.

Once the font is created, a new editor is opened: the MicroEJ Font Designer.

Edit a MicroEJ Font

You can edit your font with the MicroEJ Font Designer (by double-clicking on a *.ejf file or a�er running the new
MicroEJ Font wizard).

This editor is divided into three main parts:

• The top le� part manages the main font properties.

• The top right part manages the character to embed in your font.

• The bottom part allows you to edit a set of characters or an individual character.

4.17. Development Tools 320

MicroEJ Documentation, Revision 32bb132e

Main Properties

Themain font properties are:

• font size: height and width (in pixels).

• baseline (in pixels).

• space character size (in pixels).

• styles and filters.

• identifiers.

Refer to the following sections for more information about these properties.

Font Height

A font has a fixed height. This height includes the white pixels at the top and at the bottom of each character
simulating line spacing in paragraphs.

Fig. 51: Font Height

Font Width: Proportional and Monospace Fonts

A monospace font is a font in which all characters have the same width. For example a ‘!’ representation will be
the same width as a ‘w’ (they will be in the same size rectangle of pixels). In a proportional font, a ‘w’ will be wider
than a ‘!’.

A monospace font usually o�ers a smaller memory footprint than a proportional font because the Font Designer
does not need to store the size of each character. As a result, this option can be useful if the di�erence between the
size of the smallest character and the biggest one is small.

Baseline

Characters have a baseline: an imaginary line on top of which the characters seem to stand. Note that characters
can be partly under the line, for example, ‘g’ or ‘}’.

Fig. 52: The Baseline

4.17. Development Tools 321

MicroEJ Documentation, Revision 32bb132e

Space Character

The Space character (0x20) is a specific character because it has no filled pixels. From the Main Properties Menu
you can fix the space character size in pixels.

Note: When the font is monospace, the space size is equal to the font width.

Styles

FontDesigner allows creatinga font file that holds several combinationsof built-in styles (styles hardcoded inpixels
map) and runtime styles (styles rendered dynamically at runtime). However, since MicroUI 3, a MicroUI font holds
only one style: PLAIN , BOLD , ITALIC or BOLD + ITALIC .

Font Designer features three drop-downs, one for each of BOLD , ITALIC , and UNDERLINED . Each drop-down has
three options: None , Built-in and Dynamic . The font options must be adjusted to be compatible with MicroUI
3:

• The style option Dynamic (that targets the runtime style) is forbidden; select None instead.

• The syle UNDERLINED is forbidden; select None instead.

The styles options Built-in tag the font as bold, italic, or bold and italic. This style canbe retrievedby theMicroEJ
Application thanks the methods Font.isBold() and Font.isItalic(). Adjust the styles options according to the font:

• The font is a plain font: select None option for each style.

• The font is a bold font: select Built-in for the style bold and None for the other styles.

• The font is an italic font: select Built-in for the style italic and None for the other styles.

• The font is a bold and italic font: select Built-in for the styles bold and italic and None for UNDERLINED .

Warning: When a font holds a dynamic style or when the style UNDERLINED is not None , an error at MicroEJ
application compile-time is thrown (incompatible font file).

Identifiers

A number of identifiers can be attached to a MicroUI font. At least one identifier is required to specify the font.
Identifiers are a mechanism for specifying the contents of the font – the set or sets of characters it contains. The
identifier may be a standard identifier (for example, LATIN) or a user-defined identifier. Identifiers are numbers,
but standard identifiers, which are in the range 0 to 80, are typically associated with a handy name. A user-defined
identifier is an identifier with a value of 81 or higher.

4.17. Development Tools 322

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Font.html#isBold--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Font.html#isItalic--

MicroEJ Documentation, Revision 32bb132e

Character List

The list of characters can be populated through the import button, which allows you to import characters from
system fonts, images or another MicroEJ font.

Import from System Font

This page allows you to select the system font to use (le� part) and the range of characters. There are predefined
ranges of characters below the font selection, as well as a custom selection picker (for example 0x21 to 0xfe for
Latin characters).

The right part displays the selected characters with the selected font. If the background color of a displayed char-
acter is red, it means that the character is too large for the defined height, or in the case of a monospace font, it
means the character is too high or too wide. You can then adjust the font properties (font size and style) to ensure
that characters will not be truncated.

When your selection is done, click the Finish button to import this selection into your font.

Import from Images

This page allows the loading of images from a directory. The images must be named as follows: 0x[UTF-8].
[extension] .

When your selection is done, click the Finish button to import the images into your font.

Character Editor

When a single character is selected in the list, the character editor is opened.

4.17. Development Tools 323

MicroEJ Documentation, Revision 32bb132e

Fig. 53: Character Editor

You can define specific properties, such as le� and right space, or index. You can also draw the character pixel by
pixel - a le�-click in the grid draws the pixel, a right-click erases it.

The changes are not saved until you click the Apply button. When changes are applied to a character, the editor
shows that the font has changed, so you can now save it.

The same part of the editor is also used to edit a set of characters selected in the top right list. You can then edit
the common editable properties (le� and right space) for all those characters at the same time.

Working With Anti-Aliased Fonts

By default, when characters are imported from a system font, each pixel is either fully opaque or fully transparent.
Fully opaque pixels show as black squares in the character grid in the right-hand part of the character editor; fully
transparent pixels show as white squares.

However, thepixels stored in an ejf file can takeoneof 256grayscale values. A fully-transparent pixel has the value
255 (the RGB value for white), and a fully-opaque pixel has the value 0 (the RGB value for black). These grayscale
values are shown in parentheses at the endof the text in the Current alpha fieldwhen themouse cursor hovers over
a pixel in the grid. That field also shows the transparency level of the pixel, as a percentage, where 100% means
fully opaque.

It is possible to achieve better-looking characters by using a combination of fully-opaque and partially-transparent
pixels. This technique is calledanti-aliasing. Anti-aliasedcharacters canbe imported fromsystemfontsbychecking

4.17. Development Tools 324

MicroEJ Documentation, Revision 32bb132e

the anti aliasing box in the import dialog. The ‘&’ character shown in the screenshot abovewas imported using anti
aliasing, and you can see the various gray levels of the pixels.

When the Font Generator converts an ejf file into the raw format used at runtime, it can create fonts with char-
acters that have 1, 2, 4 or 8 bits-per-pixel (bpp). If the raw font has 8 bpp, then no conversion is necessary and the
characters will render with the same quality as seen in the character editor. However, if the raw font has less than
8 bpp (the default is 1 bpp) any gray pixels in the input file are compressed to fit, and the final rendering will be of
lower quality (but less memory will be required to hold the font).

It is useful to be able to see the e�ects of this compression, so the character editor provides radio buttons that allow
the user to preview the character at 1, 2, 4, or 8 bpp. Furthermore, when 2, 4 or 8 bpp is selected, a slider allows the
user to select the transparency level of the pixels drawn when the le�mouse button is clicked in the grid.

Previewing a Font

You can preview your font by pressing the Preview. . . button, which opens the Preview wizard. In the Preview
wizard, press the Select File button, and select a text file which contains text that you want to see rendered using
your font. Characters that are in the selected text file but not available in the font will be shown as red rectangles.

4.17. Development Tools 325

MicroEJ Documentation, Revision 32bb132e

Fig. 54: Font Preview

4.17. Development Tools 326

MicroEJ Documentation, Revision 32bb132e

Removing Unused Characters

In order to reduce the size of a font file, you can reduce the number of characters in your font to be only those char-
acters used by your application. To do this, create a file which contains all the characters used by your application
(for example, concatenating all your NLS files is a good starting point). Then open the Previewwizard as described
above, selecting that file. If you select the check box Delete unused on finish, then those characters that are in the
font but not in the text filewill be deleted from the fontwhen youpress the Finish button, leaving your font contain-
ing theminimumnumber of characters. As this font will contain only characters used by a specific application, it is
best to prepare a “complete” font, and then apply this technique to a copy of that font to produce an application
specific cut-down version of the font.

Use a MicroEJ Font

A MicroEJ Font must be converted to a format which is specific to the targeted platform. The Font Generator tool
performs this operation for all fonts specified in the list of fonts configured in the application launch.

Dependencies

No dependency.

Installation

The Font Designer module is already installed in the MicroEJ environment.

Use

Create a new ejf font file or open an existing one in order to open the Font Designer plugin.

4.17.6 Local Deployment Socket

Principle

The Local Deployment Socket is a tool that allows to transfer a SandboxedApplicationon thedevice over a network
connection.

Functional Description

The Local Deployment Socket builds the Sandboxed Application .fo and upload it on the device identified by its
IP address. On the device, it is the job of the Kernel Application that receives the .fo to install and to run the
Sandboxed Application.

4.17. Development Tools 327

MicroEJ Documentation, Revision 32bb132e

Use

./gradlew execTool --name=localDeploymentSocket \
--toolProperty="application.main.class=com.mycompany.MyFeature" \
--toolProperty="board.server.host=10.0.0.171" \
--toolProperty="board.server.port=4000" \
--toolProperty="board.timeout=120000" \
--toolProperty="use.storage=true"

Options

Option: Application Feature Class

Option Name: application.main.class

Required?: Yes

Description:

Specify the entry-point as the full qualified name of the Feature Application to deploy.

Option: Server Host

Option Name: board.server.host

Required?: Yes

Description:

The IP of the target device.

Option: Server Port

Option Name: board.server.port

Required?: Yes

Description:

The TCP port on which the Kernel listens (usually 4000).

Option: Timeout

Option Name: board.timeout

Required?: Yes

Description:

If there is no activity within the defined timeout period (in seconds), the tool will disconnect from the device.

4.17. Development Tools 328

MicroEJ Documentation, Revision 32bb132e

Option: Use Storage

Option Name: use.storage

Required?: Yes

Description:

A boolean describingwhether to use the storage to store the Application or not. Refer to the Kernel documentation
to find out the correct setting.

4.17.7 Null Analysis

NullPointerException thrownat runtime is oneof themost commoncauses for failure of Javaprograms. Allmodern
IDEs provide aNull Analysis toolwhich can detect such programming errors (misuse of potential null Java values)
at compile-time.

Principle

The Null Analysis tool is based on Java annotations. Each Java field, method parameter and method return value
must be marked to indicate whether it can be null or not.

Once the Java code is annotated, the IDEmust be configured to enable Null Analysis detection.

Java Code Annotation

MicroEJ defines its own annotations:

• @NonNullByDefault: Indicates that all fields, method return values or parameters can never be null in the
annotatedpackageor type. This rule canbeoverriddenoneachelementbyusing the @Nullable annotation.

• @Nullable: Indicates that a field, local variable, method return value or parameter can be null.

• @NonNull: Indicates that a field, local variable, method return value or parameter can never be null.

MicroEJ recommends to annotate the Java code as follows:

• In each Java package, create a package-info.java file and annotate the Java package with
@NonNullByDefault if you use Eclipse or with your custom annotation if you use Android Studio or IntelliJ
IDEA (see next section on IDEs configuration). This is a common good practice to deal with non null ele-
ments by default to avoid undesired NullPointerException. It enforces the behavior which is already widely
outlined in Java coding rules.

@ej.annotation.NonNullByDefault
package com.mycompany;

• IneachJava type, annotateall fields,methods returnvaluesandparameters that canbenullwith @Nullable .
Usually, this information is already available as textual information in the field ormethod Javadoc comment.
The following example of code shows where annotations must be placed:

@Nullable
public Object thisFieldCanBeNull;

@Nullable
public Object thisMethodCanReturnNull() {

(continues on next page)

4.17. Development Tools 329

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/NullPointerException.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/annotation/NonNullByDefault.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/annotation/Nullable.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/annotation/NonNull.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/NullPointerException.html

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

return null;
}

public void thisMethodParameterCanBeNull(@Nullable Object param) {

}

IDE Configuration

Requirements

The project must depend at least on the version 1.3.3 of the ej.api:edc module:

dependencies {
implementation("ej.api:edc:1.3.3")

}

Project configuration

Android Studio / IntelliJ IDEA

Eclipse

To enable theNull Analysis tool in Android Studio and IntelliJ IDEA, refer to the o�icial documentation onConfigure
nullability annotations.

Both IDEs support custom annotations for Nullable and NotNull annotations, but not for NonNullByDefault
. Here are the solutions to be able to define all fields, methods return values and parameters of a whole class or
package as non null by default:

• create a custom annotation in your project using the @TypeQualifierDefault annotation, for example
NonNullByDefault :

import javax.annotation.Nonnull;
import javax.annotation.meta.TypeQualifierDefault;
import java.lang.annotation.Documented;
import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;

/**
* This annotation can be applied to a package, class or method to indicate that the␣
→˓class fields,
* method return types and parameters in that element are not null by default.
*/
@Documented
@Nonnull
@TypeQualifierDefault(

{
ElementType.ANNOTATION_TYPE,
ElementType.CONSTRUCTOR,

(continues on next page)

4.17. Development Tools 330

https://www.jetbrains.com/help/idea/annotating-source-code.html#configure-nullability-annotations
https://www.jetbrains.com/help/idea/annotating-source-code.html#configure-nullability-annotations

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

ElementType.FIELD,
ElementType.LOCAL_VARIABLE,
ElementType.METHOD,
ElementType.PACKAGE,
ElementType.PARAMETER,
ElementType.TYPE

})
@Retention(RetentionPolicy.RUNTIME)
public @interface NonNullByDefault {
}

This requires to add the following dependency in your project:

compileOnly("com.google.code.findbugs:jsr305:3.0.2")

• add the @NonNull annotation explicitly on each field, method return value or parameter.

To enable the Null Analysis tool in Eclipse, a project must be configured as follows:

• In the Package Explorer, right-click on the module project and select Properties ,

• Navigate to Java Compiler > Errors/Warnings ,

• In the Null analysis section, configure options as follows:

4.17. Development Tools 331

MicroEJ Documentation, Revision 32bb132e

• Click on the Configure. . . link to configure MicroEJ annotations:

– ej.annotation.Nullable

– ej.annotation.NonNull

– ej.annotation.NonNullByDefault

4.17. Development Tools 332

MicroEJ Documentation, Revision 32bb132e

• In the Annotations section, check Suppress optional errors with ‘@SuppressWarnings’ option:

4.17. Development Tools 333

MicroEJ Documentation, Revision 32bb132e

This option allows to fully ignore Null Analysis errors in advanced cases using @SuppressWarnings("null")
annotation.

If you have multiple projects to configure, you can then copy the content of the .settings folder to an other
module project.

4.17. Development Tools 334

MicroEJ Documentation, Revision 32bb132e

Fig. 55: Null Analysis Settings Folder

Warning: You may lose information if your target module project already has custom parameterization or if it
was created with another SDK version. In case of any doubt, please configure the options manually or merge
with a text file comparator.

MicroEJ Libraries

Many libraries available on Central Repository are annotated with Null Analysis. If you are using a library which is
not yet annotated, please contact our support team.

For the benefit of Null Analysis, some APIs have been slightly constrained compared to the Javadoc description.
Here are some examples to illustrate the philosophy:

• System.getProperty(String key, String def) does not accept a null default value, which allows to ensure the
returned value is always non null .

• Collections of the Java Collections Framework that can hold null elements (e.g. HashMap) do not accept
null elements. This allows APIs to return null (e.g. HashMap.get(Object)) only when an element is not
contained in the collection.

Implementations are le� unchanged and still comply with the Javadoc description whether the Null Analysis is
enabled or not. So if these additional constraints are not acceptable for your project, please disable Null Analysis.

4.17. Development Tools 335

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#getProperty-java.lang.String-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/HashMap.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/HashMap.html#get-java.lang.Object-

MicroEJ Documentation, Revision 32bb132e

4.18 Manage Versioning

The SDK 5 used a specific notation for the snapshot versions. Instead of using the -SNAPSHOT prefix (e.g.,``1.0.0-
SNAPSHOT``), it used the -RCxxx prefix, where xxx is the timestamp (e.g., 1.0.0-RC202212021535).

In order to be able to transition from SDK 5 to SDK 6 smoothly, it is recommended to continue to publish snapshot
versions with the -RCxxx prefix. This can be done by setting the Gradle module version with the -RC prefix. For
example:

version = "1.0.0-RC"

The SDK will automatically append the timestamp to the version to keep the same notation than MMM. This way,
SDK 5 projects will be able to fetch modules published by the SDK 6.

Note: You are free to use any version number notation youwant, but you have to be aware that SDK 5 projects will
not be able to depend on snapshot modules published without the -RCxxx prefix.

4.19 Manage Resolution Conflicts

The MicroEJ Gradle plugin adds specific rules for compilation, building, resolving dependencies, versioning, and
publishing.

Gradle comes with a powerful dependency manager. One of its job is to resolve the conflicts in the dependency
graph, to determine which version should be added to the graph. By default, Gradle selects the highest version
amongst all the versions requested for a dependency. There are ways to influence the dependencies resolution,
but we believe additional rules should be added to provide a better and safer conflict resolution.

Note: You can learn more on the Gradle conflicts resolution and the way to configure it in the o�icial documenta-
tion.

The MicroEJ Gradle plugin adds the 2 following rules:

• The resolution fails when a dependency is requested with 2 incompatible versions in the graph, according to
the Semantic Versioning specification. So, it means that if 2 versions do not have the same major version,
the build fails. For example, this dependency graph makes the build fail because the moduleC dependency
is requested in 2 incompatible versions:

4.18. Manage Versioning 336

https://docs.gradle.org/current/userguide/dependency_resolution.html
https://docs.gradle.org/current/userguide/dependency_resolution.html
https://semver.org/

MicroEJ Documentation, Revision 32bb132e

rootModule

moduleA:1.0.0 moduleB:1.0.0

moduleC:2.0.0 moduleC:3.0.0

• The resolution fails when a direct dependency is resolvedwith a higherminor version than the one declared.
For example, this dependency graph makes the build fails because the moduleA dependency is resolved in
version 1.1.0 (the highest one), which is higher than the direct declared version (1.0.0):

rootModule

moduleA:1.0.0 moduleB:1.0.0

moduleA:1.1.0

If you want to come back to the Gradle default behavior, these 2 rules can be disabled by setting the

4.19. Manage Resolution Conflicts 337

MicroEJ Documentation, Revision 32bb132e

microejConflictResolutionRulesEnabled property of the microej configuration block to false in the project
build file:

microej {
microejConflictResolutionRulesEnabled = false

}

4.20 Migrate an MMM Project

This page explains how to migrate a project created with the SDK 5 or lower to the SDK 6. It covers the following
items:

• Project structure

• Build descriptor file

• Build scripts

4.20.1 Project structure

The structure of an SDK 6 Gradle project is similar to an MMM project. The di�erences are:

• The module.ivy file is replaced by a build.gradle.kts file and a settings.gradle.kts file (see Build
Descriptor File).

• The module.ant and override.module.ant files are removed (see Build Scripts).

• The build folder located at the root of the project and containing the Application configuration properties
is replaced by the configuration folder. This change is required since Gradle uses the build folder to store
the generated files and artifacts (equivalent of the MMM target~ folder).

Therefore, here are the 2 project structures side by side:

MMM Project Gradle Project

|- src
| |- main
| | |- java
| | |- resources
| |- test
| |- java
| |- resources
|- build
| |- common.properties
|- module.ivy
|- module.ant

|- src
| |- main
| | |- java
| | |- resources
| |- test
| |- java
| |- resources
|- configuration
| |- common.properties
|- build.gradle.kts
|- settings.gradle.kts

4.20. Migrate an MMM Project 338

MicroEJ Documentation, Revision 32bb132e

4.20.2 Build Descriptor File

The module.ivy file of the MMM project must be replaced by a build.gradle.kts file and a settings.gradle.
kts file. The settings.gradle.kts contains the name of the project, whereas the build.gradle.kts file con-
tains all the other information (module type, group, version, . . .).

Build Type

The MMM build type defined in the module.ivy file with the ea:build tag is replaced by a plugin in
the build.gradle.kts file. For example, here is the block to add at the beginning of the file to migrate a
build-microej-javalib MMMmodule:

plugins {
id("com.microej.gradle.addon-library") version "0.15.0"

}

Themapping between MMM build types and Gradle plugins is:

MMMBuild Type Gradle Plugin
build-microej-javalib com.microej.gradle.addon-library
build-application com.microej.gradle.application
build-firmware-singleapp com.microej.gradle.application
build-firmware-multiapp com.microej.gradle.application
build-std-javalib com.microej.gradle.j2se-library

Module Information

Themodule information defined by the info tag in the module.ivy file are split in the 2 following descriptor files:

• settings.gradle.kts

– The property rootProject.name replaces the module attribute.

• build.gradle.kts

– The property group replaces the organisation attribute.

– The property version replaces the revision attribute.

So for example, the following info tag:

<info organisation="com.mycompany" module="myProject" status="integration" revision="0.1.0">

will be converted to:

Listing 1: settings.gradle.kts

rootProject.name = "myProject"

4.20. Migrate an MMM Project 339

MicroEJ Documentation, Revision 32bb132e

Listing 2: build.gradle.kts

group = "com.mycompany"
version = "0.1.0"

Note: Refer toManage Versioning section for more information on the way to define the module version.

Configuration

The configuration of anMMMbuild is only donewith ea:property tags in the module.ivy file, whereas it can take
multiple form in Gradle. You can refer to theModule Natures page for a complete list of configurations.

As a first example, the main class is defined in MMMwith the property application.main.class :

<ea:property name="application.main.class" value="com.mycompany.Main"/>

whereas it is defined by the applicationMainClass property of the microej block in Gradle:

microej {
applicationMainClass = "com.mycompany.Main"

}

As a second example, the pattern of the executed tests is defined in MMMwith the property test.run.includes.
pattern :

<ea:property name="test.run.includes.pattern" value="**/_AllTests_MyTest.class"/>

whereas it is defined by the filter object of the test task in Gradle:

testing {
suites {
val test by getting(JvmTestSuite::class) {

...

targets {
all {

testTask.configure {
filter {

includeTestsMatching("MyTest")
}

}
}

}
}

}
}

4.20. Migrate an MMM Project 340

MicroEJ Documentation, Revision 32bb132e

Dependencies

The dependencies tag in the module.ivy file is replaced by the dependencies block in the build.gradle.kts
file. Each dependency is tight to a Gradle configuration. For example, migrating a dependency used at compile
time and runtime should use the implementation configuration, so the following dependency:

<dependency org="ej.api" name="edc" rev="1.3.5" />

will be converted to:

implementation("ej.api:edc:1.3.5")

wheras a dependency used for the tests only should use the testIplementation configuration, so the following
dependency:

<dependency conf="test->*" org="ej.library.test" name="junit" rev="1.7.1"/>

will be converted to:

testImplementation("ej.library.test:junit:1.7.1")

Also note that this will not resolve snapshot builds since versions are explicit in SDK 6, see this chapter for more
details. To resolve both snapshot and release versions, use [1.0.0-RC,1.0.0] instead of 1.0.0 .

Note: If the dependency relates to another module of the same project, you may use a multi-project structure
instead (see Multi-Project Build Basics).

Refer to the Add a Dependency page to go further on the Gradle dependencies and configurations.

Example

This section gives an example of migration from a module.ivy file to a build.gradle.kts file and a settings.
gradle.kts file.

SDK 5 and lower

Listing 3: module.ivy

<ivy-module version="2.0" xmlns:ea="http://www.easyant.org" xmlns:m="http://ant.apache.org/
→˓ivy/extra" xmlns:ej="https://developer.microej.com" ej:version="2.0.0">

<info organisation="com.mycompany" module="myProject" status="integration" revision="0.1.0
→˓">

<ea:build organisation="com.is2t.easyant.buildtypes" module="build-application"␣
→˓revision="9.2.+">

<ea:property name="test.run.includes.pattern" value="**/_AllTests_*.class"/>
</ea:build>

</info>

<configurations defaultconfmapping="default->default;provided->provided">
<conf name="default" visibility="public" description="Runtime dependencies to other␣

→˓artifacts"/>
<conf name="provided" visibility="public" description="Compile-time dependencies to␣

→˓APIs provided by the platform"/>
(continues on next page)

4.20. Migrate an MMM Project 341

https://docs.gradle.org/current/userguide/intro_multi_project_builds.html

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

<conf name="platform" visibility="private" description="Build-time dependency, specify␣
→˓the platform to use"/>

<conf name="documentation" visibility="public" description="Documentation related to␣
→˓the artifact (javadoc, PDF)"/>

<conf name="source" visibility="public" description="Source code"/>
<conf name="dist" visibility="public" description="Contains extra files like README.md,

→˓ licenses"/>
<conf name="test" visibility="private" description="Dependencies for test execution.␣

→˓It is not required for normal use of the application, and is only available for the test␣
→˓compilation and execution phases."/>

<conf name="microej.launch.standalone" visibility="private" description="Dependencies␣
→˓for standalone application. It is not required for normal use of the application, and is␣
→˓only available when launching the main entry point on a standalone MicroEJ launch."/>

</configurations>

<publications>
<!-- keep this empty if no specific artifact to publish -->
<!-- must be here in order to avoid all configurations for the default artifact -->

</publications>

<dependencies>
<!--

Put your custom Runtime Environment dependency here. For example:

<dependency org="com.company" name="my-runtime-api" rev="1.0.0" conf="provided->
→˓runtimeapi" />

-->
<!--

Or put direct dependencies to MicroEJ libraries if your Application is not intended␣
→˓to run on a specific custom Runtime Environment.

-->
<dependency org="ej.api" name="edc" rev="1.3.5" />
<dependency org="ej.api" name="kf" rev="1.6.1" />

<dependency conf="test->*" org="ej.library.test" name="junit" rev="1.7.1"/>

<dependency org="com.microej.platform.esp32.esp-wrover-kit-v41" name="HDAHT" rev="1.8.0
→˓" conf="platform->default" transitive="false"/>

</dependencies>
</ivy-module>

SDK 6

Listing 4: settings.gradle.kts

rootProject.name = "myProject"

Listing 5: build.gradle.kts

plugins {
id("com.microej.gradle.application") version "0.15.0"

}

(continues on next page)

4.20. Migrate an MMM Project 342

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

group = "com.mycompany"
version = "0.1.0"

dependencies {
implementation("ej.api:edc:1.3.3")
implementation("ej.api:kf:1.6.1")

testImplementation("ej.library.test:junit:1.7.1")

microejVee("com.microej.platform.esp32.esp-wrover-kit-v41:HDAHT:1.8.2")
}

4.20.3 Build Scripts

MMM supports the use of the module.ant and override.module.ant to customize the build process. These files
are not supported anymore with Gradle. Instead, since Gradle build files are code, customizations can be applied
directly in the build files.

As an example, defining a property conditionnaly is done as follows in a module.ant file:

<target name="my-project:define-properties" extensionOf="compile">
<condition property="myProperty" value="myValue">

<not><equals arg1="${anotherProperty}" arg2="anotherValue"/></not>
</condition>

</target>

and as follows in a build.gradle.kts file:

var myProperty = ""
tasks.register("defineProperties") {

if(project.properties["anotherProperty"] == "anotherValue") {
myProperty = "myValue"

}
}

tasks.compileJava {
dependsOn("defineProperties")

}

4.21 Module Natures

This page describes the most commonmodule natures as follows:

• Plugin Name: the build type name, derived from the module nature name: com.microej.gradle.
[NATURE_NAME] .

• Documentation: a link to the documentation.

• Tasks: tasks available from themodule nature, with the graph of their relationships.

4.21. Module Natures 343

MicroEJ Documentation, Revision 32bb132e

• Configuration: properties that can be defined to configure the module. Properties are defined inside the
microej block of the build.gradle.kts file.

4.21.1 Add-On Library

Plugin Name: com.microej.gradle.addon-library

Documentation: Libraries

Tasks:

This plugin adds the following tasks to your project:

• tasks of the Gradle Java plugin

• adp

• loadVee

• loadApplicationConfiguration

• runOnSimulator

• loadTestApplicationConfiguration

• checkModule

Legend

adp

checkModule

assemble

loadVee

loadApplicationConfiguration

loadTestApplicationConfiguration

runOnSimulator

classes

build

check

test

testClassesprocessResources

compileJava

compileTestJava

processTestResources

javadoc

jar uploadArchives

MicroEJ taskJava plugin or Base plugin task

Configuration:

This module nature inherits from the configuration of all its tasks.

4.21.2 Application

Plugin Name: com.microej.gradle.application

Documentation: Standalone Application

Tasks:

This plugin adds the following tasks to your project:

• tasks of the Gradle Java plugin

• adp

4.21. Module Natures 344

https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.gradle.org/current/userguide/java_plugin.html

MicroEJ Documentation, Revision 32bb132e

• loadVee

• loadApplicationConfiguration

• runOnSimulator

• loadTestApplicationConfiguration

• checkModule

• loadExecutableConfiguration

• buildExecutable

• buildWPK

• buildVirtualDevice

• loadKernelExecutable

• loadFeatureConfiguration

• buildFeature

• runOnDevice

Legend

adp

checkModule

assemble

loadKernelExecutable

loadVee loadApplicationConfiguration

loadExecutableConfiguration

loadFeatureConfiguration

loadTestApplicationConfiguration

runOnSimulator

classes

buildWPKjavadoc

jar

buildExecutable

test

buildVirtualDevice

buildFeature

runOnDevice

build

check

testClasses

processResources

compileJava
compileTestJava

processTestResources

uploadArchives

MicroEJ taskJava plugin or Base plugin task

4.21.3 J2SE Library

Plugin Name: com.microej.gradle.j2se-library

Tasks:

This plugin adds the following tasks to your project:

• tasks of the Gradle Java plugin

• checkModule

4.21. Module Natures 345

https://docs.gradle.org/current/userguide/java_plugin.html

MicroEJ Documentation, Revision 32bb132e

Legend

checkModuleassemble

build

checktest
classes testClasses

compileJava

processResources

compileTestJava

processTestResources

javadoc

jar
uploadArchives

MicroEJ taskJava plugin or Base plugin task

Configuration:

This module nature inherits from the configuration of all its tasks.

4.21.4 Tasks

This page describes the module nature tasks as follows:

• Description: description and link to the related documentation.

• Module Natures: list ofModule Natures using this task.

• Configuration: properties that can be defined to configure the task.

adp

Description: Executes the Addon Processors.

Inputs:

• The project directory

Outputs:

• The directory for each ADP output type (build/adp/all/main/java , build/adp/all/main/resources ,
build/adp/all/test/java , build/adp/all/test/resources)

Module Natures:

This task is used by the following module natures:

• Add-On Library

• Application

4.21. Module Natures 346

MicroEJ Documentation, Revision 32bb132e

loadVee

Description: Loads the VEE.

Inputs:

• The list of VEE archive files or folders.

Outputs:

• The directory where the VEE is copied/extracted (build/vee)

Module Natures:

This task is used by the following module natures:

• Add-On Library

• Application

loadApplicationConfiguration

Description: Loads the configuration for the Application to execute.

Inputs:

• The extracted VEE Port folder

• The project classpath which contains the MicroEJ dependent application classes and resources

• The Full Qualified Name of the Application main class

• The folder containing the application configuration (configuration)

• The System properties

• The debugmode

• The debug port

Outputs:

• The configuration file with all the properties set to launch the application (build/properties/target.
properties)

Module Natures:

This task is used by the following module natures:

• Add-On Library

• Application

Configuration:

This task provides the following properties that can be defined in the microej extension:

Name Description Default
applicationMainClass Full Qualified Name of themain class of the application. This option

is required.
Not set

For example:

4.21. Module Natures 347

MicroEJ Documentation, Revision 32bb132e

microej {
applicationMainClass = "com.company.Main"

}

runOnSimulator

Description: Executes the Application with the Simulator.

Inputs:

• The extracted VEE Port folder

• The configuration file with all the properties set to launch the application (build/properties/target.
properties)

Module Natures:

This task is used by the following module natures:

• Add-On Library

• Application

loadTestApplicationConfiguration

Description: Loads the configuration for the Test Application to execute.

Inputs:

• The extracted VEE Port folder

Outputs:

• The directory containing the configuration file with all the properties set to launch the test application (
build/testsuite/properties/)

Module Natures:

This task is used by the following module natures:

• Add-On Library

• Application

checkModule

Description: Checks the compliance of the module.

Inputs:

• The list of the checkers to execute, separated by comas. If not set, all the checkers are executed.

• The list of the checkers to skip, separated by comas.

Module Natures:

This task is used by the following module natures:

• Add-On Library

• Application

4.21. Module Natures 348

MicroEJ Documentation, Revision 32bb132e

Configuration:

This task is not bound by default on any lifecycle task, which means that it should be called explicitly if it must be
executed.

This task provides the following properties that can be defined in the microej extension:

Name Description Default
checkers Comma-separated list of the names of the checkers to execute. An

empty list means that all checkers are executed.
""

skippedCheckers Comma-separated list of the names of the checkers to exclude. Only
one property of checkers and skippedCheckers can be defined.

""

For example:

microej {
checkers = "readme,license"

}

loadExecutableConfiguration

Description: Loads the configuration to build the Executable of an Application.

Inputs:

• The extracted VEE Port folder

• The project classpath which contains the MicroEJ dependent application classes and resources

• The Full Qualified Name of the Application main class

• The folder containing the application configuration (configuration)

Outputs:

• The configuration file with all the properties set to launch the build of the Executable (build/properties/
target.properties)

Module Natures:

This task is used by the following module natures:

• Application

buildExecutable

Description: Builds the Executable of an Application.

Inputs:

• The extracted VEE Port folder

• The configuration file with all the properties set to launch the build of the Executable (build/properties/
target.properties)

• The project build classpath

Outputs:

• Thedirectory inwhich theExecutable file and thebuild filesaregenerated (build/executable/application
)

4.21. Module Natures 349

MicroEJ Documentation, Revision 32bb132e

• The Zip file containing the generated build files (build/executable/buildFiles.zip)

Module Natures:

This task is used by the following module natures:

• Application

buildWPK

Description: Builds the WPK of the Application.

Inputs:

• The Application name

• The Application version

• The Full Qualified Name of the Application main class

• The Application JAR file

• The Application Javadoc

• The Jar files of the Application classpath

• The folder containing the application configuration (configuration)

Outputs:

• The WPK of the Application (build/libs/<application_name>.wpk)

Module Natures:

This task is used by the following module natures:

• Application

buildVirtualDevice

Inputs:

• The extracted VEE Port folder

• The WPK of the Application

• The project build classpath

• The WPK of the Applications that must be pre-installed in the Virtual Device

Outputs:

• The Zip file of the Virtual Device (build/libs/<application_name>-virtualDevice.zip)

Description: Build the Virtual Device of an Application.

Module Natures:

This task is used by the following module natures:

• Application

4.21. Module Natures 350

MicroEJ Documentation, Revision 32bb132e

loadKernelExecutable

Description: Loads the Kernel Executable file.

Inputs:

• The list of Kernel Executable files.

Outputs:

• The loaded Kernel Executable file is copied (build/kernelExecutable/kernel.out)

Module Natures:

This task is used by the following module natures:

• Application

loadFeatureConfiguration

Description: Loads the configuration to build the Feature file of an Application.

Inputs:

• The Kernel Virtual Device

• The folder containing the Kernel Executable file (build/kernelExecutable)

• The project classpath

• The path of the folder where the Feature file must be generated (build/feature)

Outputs:

• The configuration file with all the properties set to launch the build of the Feature file (build/properties/
target.properties)

Module Natures:

This task is used by the following module natures:

• Application

buildFeature

Description: Build the Feature file of an Application.

Inputs:

• The Kernel Virtual Device

• The folder containing the Kernel Executable file (build/kernelExecutable)

• The project classpath

Outputs:

• The folder in which the Feature file is generated (build/feature)

Module Natures:

This task is used by the following module natures:

• Application

4.21. Module Natures 351

MicroEJ Documentation, Revision 32bb132e

runOnDevice

Description: Runs the Executable on a Device.

Inputs:

• The extracted VEE Port folder

• The folder containing the Executable file (build/executable/application)

• The configuration file with all the properties set to launch the build of the Executable (build/properties/
target.properties)

Module Natures:

This task is used by the following module natures:

• Application

4.21.5 Global Properties

The following properties are available in any module:

Name Description Default
microejConflictResolutionRulesEnabledBoolean to enabled or disabled the MicroEJ conflict resolu-

tion rules.
true

For example:

microej {
microejConflictResolutionRulesEnabled = false

}

4.22 Troubleshooting

4.22.1 Java Compiler Version Issue

The SDK requires a JDK 11, so when a JDK 8 is used, the following kind of errors are raised:

• When fetching the MicroEJ Gradle plugin:

A problem occurred configuring root project 'myProject'.
> Could not resolve all files for configuration ':classpath'.
> Could not resolve com.microej.gradle.plugins:plugins:0.3.0.

Required by:
project : > com.microej.gradle.addon-library:com.microej.gradle.addon-

→˓library.gradle.plugin:0.3.0:20221118.151454-1
> No matching variant of com.microej.gradle.plugins:plugins:0.3.0:20221118.

→˓151454-1 was found. The consumer was configured to find a runtime of a library␣
→˓compatible with Java 8, packaged as a jar, and its dependencies declared externally,␣
→˓as well as attribute 'org.gradle.plugin.api-version' with value '7.4' but:

- Variant 'apiElements' capability com.microej.gradle.plugins:plugins:0.
→˓3.0 declares a library, packaged as a jar, and its dependencies declared externally:

- Incompatible because this component declares an API of a␣

(continues on next page)

4.22. Troubleshooting 352

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

→˓component compatible with Java 11 and the consumer needed a runtime of a component␣
→˓compatible with Java 8

- Other compatible attribute:
- Doesn't say anything about org.gradle.plugin.api-

→˓version (required '7.4')
- Variant 'javadocElements' capability com.microej.gradle.

→˓plugins:plugins:0.3.0 declares a runtime of a component, and its dependencies␣
→˓declared externally:

- Incompatible because this component declares documentation␣
→˓and the consumer needed a library

- Other compatible attributes:
- Doesn't say anything about its target Java version␣

→˓(required compatibility with Java 8)
- Doesn't say anything about its elements (required␣

→˓them packaged as a jar)
- Doesn't say anything about org.gradle.plugin.api-

→˓version (required '7.4')
- Variant 'runtimeElements' capability com.microej.gradle.

→˓plugins:plugins:0.3.0 declares a runtime of a library, packaged as a jar, and its␣
→˓dependencies declared externally:

- Incompatible because this component declares a component␣
→˓compatible with Java 11 and the consumer needed a component compatible with Java 8

- Other compatible attribute:
- Doesn't say anything about org.gradle.plugin.api-

→˓version (required '7.4')
- Variant 'sourcesElements' capability com.microej.gradle.

→˓plugins:plugins:0.3.0 declares a runtime of a component, and its dependencies␣
→˓declared externally:

- Incompatible because this component declares documentation␣
→˓and the consumer needed a library

- Other compatible attributes:
- Doesn't say anything about its target Java version␣

→˓(required compatibility with Java 8)
- Doesn't say anything about its elements (required␣

→˓them packaged as a jar)
- Doesn't say anything about org.gradle.plugin.api-

→˓version (required '7.4')

• When using the MicroEJ Gradle plugin:

Cause: com/microej/gradle/plugins/MicroejApplicationGradlePlugin has been compiled by a␣
→˓more recent version of the Java Runtime (class file version 55.0), this version of␣
→˓the Java Runtime only recognizes class file versions up to 52.0

The solution is to use a JDK 11 or a higher LTS version (11 , 17 or 21) to fix this error:

• For the command line interface,make sure that a supported JDK version is defined in the PATH environment.
To check, run java -version . You should see something like this:

$ java -version
openjdk version "11.0.14.1" 2022-02-08
OpenJDK Runtime Environment Temurin-11.0.14.1+1 (build 11.0.14.1+1)
OpenJDK 64-Bit Server VM Temurin-11.0.14.1+1 (build 11.0.14.1+1, mixed mode)

4.22. Troubleshooting 353

MicroEJ Documentation, Revision 32bb132e

Alternatively, you can set the JAVA_HOME environment variable to point to the installation directory of the
JDK.

• For Android Studio and IntelliJ IDEA, go to File > Settings. . . > Build, Execution, Deployment >

Build Tools > Gradle , andmake sure the selected Gradle JVM is a supported JDK version:

Fig. 56: Project JDK in Android Studio and IntelliJ IDEA

4.22.2 Unresolved Dependency

If this kind of message appears when resolving plugins or modules dependencies:

* What went wrong:
Plugin [id: 'com.microej.gradle.application', version: '0.15.0'] was not found in any of the␣
→˓following sources:

or this kind:

* What went wrong:
Execution failed for task ':compileJava'.
> Could not resolve all files for configuration ':compileClasspath'.
> Could not find com.mycompany:mymodule:M.m.p.

Searched in the following locations:
- https://my-company-first-repository/com/mycompany/mymodule/M.m.p/kf-M.m.p.pom
- https://my-company-first-repository/com/mycompany/mymodule/M.m.p/ivy-M.m.p.xml
- https://my-company-second-repository/com/mycompany/mymodule/M.m.p/kf-M.m.p.pom
- https://my-company-second-repository/com/mycompany/mymodule/M.m.p/ivy-M.m.p.xml

Required by:
project :

First, check that either the requested plugin or module exists in your repository.

• If the plugin or module does not exist,

– if it is declared as a direct dependency, the module repository is not compatible with your source code.
You can either check if anothermodule version is available in the repository or add themissingmodule
to the repository.

– otherwise, this is likely a missing transitive module dependency. The module repository is not consis-
tent. Check the module repository andmake sure all the transitive dependencies exist.

• If themodule exists, this may be due to amissing repository in the configuration. Check that your repository
appears in the list of URLs below the error line:

Searched in the following locations:

If the URL of your repository is not listed, add it to the list of the repositories.

4.22. Troubleshooting 354

MicroEJ Documentation, Revision 32bb132e

• If the repository is correctly configured, this may be a network connection error. We can check in the debug
logs, by adding the --debug arguments in the Gradle command line.

Otherwise, if your module repository is an URL, check for an Invalid SSL Certificate issue.

4.22.3 Invalid SSL Certificate

If a dependency cannot be retrieved from a remote repository, this may be due to a missing or incorrect SSL cer-
tificate. It can be checked in the debug logs, by adding the --debug and -Djavax.net.debug=all arguments in
the Gradle command line, for example:

./gradlew build --debug -Djavax.net.debug=all

If the SSL certificate is missing or incorrect, the following line should appear:

PKIX path building failed: sun.security.provider.certpath.
→˓SunCertPathBuilderException: unable to find valid certification path to␣
→˓requested target

This can be raised in several cases, such as:

• an artifact repository configured in the MicroEJ Module Manager settings using a self-signed SSL certificate
or a SSL certificate not trusted by the JDK.

• the requests to an artifact repository configured in the MicroEJ Module Manager settings are redirected to a
proxy server using a SSL certificate not trusted by the JDK.

In all cases, the SSL certificate (used by the artifact repository server or the proxy) must be added to the JDK trust
store that is running Gradle. Ask your System Administrator, or retrieve the SSL certificate and add it to the JDK
trust store:

• on Windows

1. Install Keystore Explorer.

2. Start Keystore Explorer, and open file [JRE_HOME]/lib/security/cacerts or [JDK_HOME]/jre/lib/
security/cacerts with the password changeit . You may not have the right to modify this file. Edit
rights if needed before opening it or open Keystore Explorer with admin rights.

3. Click on Tools , then Import Trusted Certificate .

4. Select your certificate.

5. Save the cacerts file.

• on Linux/macOS

1. Open a terminal.

2. Make sure the JDK’s bin folder is in the PATH environment variable.

3. Execute the following command:

keytool -importcert -v -noprompt -trustcacerts -alias myAlias -file /path/to/the/
→˓certificate.pem -keystore /path/to/the/truststore -storepass changeit

If the problem still occurs, there should be a tracewhich indicates the beggining of the handshake phase of the SSL
negotiation:

4.22. Troubleshooting 355

http://keystore-explorer.org/downloads.html

MicroEJ Documentation, Revision 32bb132e

2023-12-15T17:32:47.442+0100 [DEBUG] [org.apache.http.conn.ssl.SSLConnectionSocketFactory]␣
→˓Starting handshake

The error very probably occurs during this phase. There should be the following trace before the error:

Consuming server Certificate handshake message

The traces below this one indicates the SSL certificate (or the SSL certificates chain) presented by the server. This
certificate or one of the root or intermediate certificates must be added in the JDK truststore as explained previ-
ously.

4.22.4 Failing Resolution in adp Task

During the build of a project, the error Cannot locate module version for non-maven layout may be raised:

Execution failed for task ':adp'.
> Could not resolve all files for configuration ':addonProcessorClasspath'.

> Could not download binary-nls-processor-2.4.2.adp (com.microej.tool.addon.
→˓runtime:binary-nls-processor:2.4.2)

> Cannot locate module version for non-maven layout.
> Could not download js-processor-0.13.0.adp (com.microej.tool.addon.runtime:js-

→˓processor:0.13.0)
> Cannot locate module version for non-maven layout.

> Could not download junit-processor-1.7.1.adp (ej.tool.addon.test:junit-processor:1.
→˓7.1)

> Cannot locate module version for non-maven layout.

This is due to a wrong pattern in the declaration of the Ivy repositories. Check your Ivy repositories and make
sure the value of the artifact of the patternLayout block is set to [organisation]/[module]/[revision]/
[artifact]-[revision](-[classifier])(.[ext]) . For example:

ivy {
url = uri("https://repository.microej.com/5/artifacts/")
patternLayout {

artifact("[organisation]/[module]/[revision]/[artifact]-[revision](-
→˓[classifier])(.[ext])")

ivy("[organisation]/[module]/[revision]/ivy-[revision].xml")
setM2compatible(true)

}
}

4.22.5 Missing Version for Publication

If the following message is displayed when publishing a module:

The project version must be defined.

It means the version property is missing and should be defined in themodule build file. See Publish a Project for
more information.

4.22. Troubleshooting 356

MicroEJ Documentation, Revision 32bb132e

4.22.6 Fail to load a VEE Port as dependency

When a VEE Port is defined as a dependency, the build of the project can fail with the following message:

> No 'release.properties' and 'architecture.properties' files found.
The given file <path/to/file> is not a VEE Port archive.

If the dependency is a valid VEEPort, this error probablymeans that several artifacts of the VEEPort havebeenpub-
lished with the default Ivy configuration. To fix this issue, you can select the right artifact by adding information
on the one to fetch in the artifact block, for example:

microejVee("com.mycompany:myveeport:1.0.0") {
artifact {

name = "artifact-name"
type = "zip"

}
}

This will select the artifact with the name artifact-name and with the type zip .

4.22.7 Slow Build because of File SystemWatching

In some cases, Gradle may take a lot of time to execute its build. One of the possible reasons is the file system
watching featurewhich allows Gradle to track any change on the file system. Depending on your environment, this
feature can impact the build execution time significantly. For example, when network drives are mapped and the
network connection experiences instability.

This feature can be disabled for a build by passing the --no-watch-fs option in the command line, for example:

./gradlew build --no-watch-fs

or for all builds by setting the following property in the $USER_HOME/.gradle/gradle.properties file:

org.gradle.vfs.watch=false

4.22. Troubleshooting 357

MicroEJ Documentation, Revision 32bb132e

4.22.8 Missing Tasks in the Gradle view of Android Studio

In some cases, Android Studio may not build all the Gradle tasks, the Task list not built. . . message is displayed:

To build all the Gradle tasks in Android Studio:

• Go to File > Settings > Experimental ,

• Enable the option: Configure all Gradle tasks during Gradle Sync (. . .) .

Back in the Gradle task view:

• Right-click on the project name,

• Select Reload Gradle Project .

4.22. Troubleshooting 358

MicroEJ Documentation, Revision 32bb132e

Note: By default, all supported IDEs require the user to explicitly trigger the reload of a Gradle project when its
configuration has changed. However you can configure your IDE to automatically reload your project. Refer to the
How To Automatically reload a Gradle project section for more information.

4.23 Tutorials

4.23.1 Branding an Eclipse IDE

Eclipse IDE allows to create custom versions of its distribution. This can be very convenient if you need to redis-
tribute your own unique Eclise IDE version, customized to your brand.

This tutorial will guide you through the steps to create such a branded Eclipse IDE.

Install Eclipse and the MicroEJ Plugin

• Download the Eclipse IDE for RCP and RAP Developers Edition.

• Install and launch it.

• Install the MicroEJ plugin as described in the Eclipse tab of the Install the IDE Plugin chapter.

Create the Project

Once everything is installed, the first step is to create the project:

• Click on File > New > Plug-in Project .

• Fill the Project name field, for example my-branded-eclipse .

• Click on the Next button.

• Change the version, the name and the vendor if necessary.

4.23. Tutorials 359

https://www.eclipse.org/downloads/packages/release/2023-09/r/eclipse-ide-rcp-and-rap-developers

MicroEJ Documentation, Revision 32bb132e

Fig. 57: Creation of a Branding Eclipse Project

• Click on the Finish button.

• Create a folder named images at the root of the project. It will contain the branding resources described
later in this tutorial.

Configure the Product

• Right-click on the project, then click on New > Other. . . .

• Select Plug-in Development > Product Configuration .

• Click on the Next button.

• Set a file name, for example eclipse .

• Click on the Finish button. The Product configuration file should be created and opened now.

• In the Overview tab

– In the Product field, click on New.. . .

4.23. Tutorials 360

MicroEJ Documentation, Revision 32bb132e

– Set a value in the Product Name field, for example My Branded Eclipse .

– Select the project in the Defining Plug-in field.

– Set a value in the Product ID field, for example product .

– In the Application field, select org.eclipse.ui.ide.workbench .

– Click on the Finish button.

• In the Contents tab

– For each of the following terms, click on Add. . . , type the term in the field, then select all the items in
the list and click on the Add button:

jdt
microej
egit
buildship
mpc
mylyn
org.eclipse.ui.ide.application
<plugin-name> (``my-branded-eclipse`` for the example values used previously)

– Click on Add Required Plug-ins .

• In the Configuration tab

– Click on the Add Recommended. . . button.

– Click on the OK button.

• In the Launching tab

– If you want to change the default name of the Eclipse launch executable (defaults to eclipse), set the
Launcher Name field with the new name.

– If you want to change the icon files of the Eclipse launch executable file,

* Copy the image file(s) of the IDE launcher in the images folder. The image format depends on the
Operating System:

· icon.xpm for Linux

· icon.icns for macOS

· icon.ico file or icon.bmp files for Windows.

ForWindows, if bmp files areused, it is required toprovideone bmp file for eachoneof the following
resolutions: 16x16 (8-bit), 16x16 (32-bit), 32x32 (8-bit), 32x32 (32-bit), 48x48 (8-bit), 48x48 (32-bit),
256x256 (32-bit).

* Select the icon files for the targeted Operating Systems. Make sure the paths are the relative paths
from the project root folder.

• In the Splash tab

– If you want to change the default splash screen displayed at startup,

* Copy the image file of the splash screen at the root of the project. The following name and image
types are supported:

4.23. Tutorials 361

MicroEJ Documentation, Revision 32bb132e

· splash.png

· splash.jpg

· splash.jpeg

· splash.gif

· splash.bmp

The recommended size for the splash screen is 455x295.

* In the Plug-in field, click on the Browse. . . button.

* Select the plugin of the project (my-branded-eclipse in our example).

– If you want to change the splash screen behavior, adapt the other options in the Customization sec-
tion to your need. For example you may want to add a progress bar in the splash screen by checking
the option Add a progress bar .

• In the Branding tab (make sure the image paths are the relative paths from the project root folder)

– If you want to change the default application window icon (visible in the Windows dock for example),

* Copy the image files associated with the application window in the images folder. The image
format must be png , with one png file for each one of the following resolutions: 16x16, 32x32,
48x48, 64x64, 128x128, 256x256.

* For each field in the Window Images section, select the corresponding image.

– If you want to content of the About dialog (visible in Help > About. . .),

* Copy the About dialog image in the images folder. This imagemust be in png format and should
not exceed 500x330.

* In the About Dialog section, select the image and fill the text. The text is not shown if the image
exceeds 250x330.

4.23. Tutorials 362

MicroEJ Documentation, Revision 32bb132e

Fig. 58: Branding Tab of a Branding Eclipse Project

• Save the Product file.

• Go back to the Overview tab and click on Synchronize in the Testing section.

Your project should look like this at this stage:

4.23. Tutorials 363

MicroEJ Documentation, Revision 32bb132e

Fig. 59: Structure of a Branding Eclipse Project

Advanced Options

Eclipse provides several other options to customize an Eclipse Product that can be defined in the
plugin_customization.ini file located at the root of the project. Create this file if it does not exist in your
project.

Then you can define any option, for example to set the default perspective to the Java perspective:

org.eclipse.ui/defaultPerspectiveId=org.eclipse.jdt.ui.JavaPerspective

Here is a list of interesting options:

Name Description Default
org.eclipse.ui/SHOW_PROGRESS_ON_STARTUPShow progress bar in the splash screen. false
org.eclipse.ui/defaultPerspectiveIdPerspective that the workbench opens initially. org.

eclipse.
ui.
resourcePerspective

4.23. Tutorials 364

MicroEJ Documentation, Revision 32bb132e

Export the Product

The final step is to export the project as an Eclipse Product:

• Open the build.properties file, andmake sure to select the Build tab.

• In the Binary Build section, select:

– META-INF folder

– plugin.xml file

– splash.bmp file

– images folder

– plugin_customization.ini file (if exists)

• Save your changes in the build.properties file.

• Right-click on the project, then click on Export. . . .

• Select Plug-in Developement > Eclipse product , then click on the Next button.

• In the Configuration field, select the .product file.

• In the Synchronization section, make sure the Synchronize before exporting option is checked.

• In the Directory field of the Destination section, select the destination folder.

• Click on the Finish button.

Once the process is done, you should find the new branded Eclipse IDE in the destination folder.

4.23.2 Creating and Using an O�line Repository

Developing MicroEJ projects requires the Gradle plugins used for the build, as well as the modules (Add-On Li-
braries, Foundation Libraries, . . .) used by the project code. All these artifacts must be available in artifact reposi-
tories.

MicroEJ provides them as online repositories which can be used directly, thanks to the configuration described in
the Configure Repositories section. However, it is not always possible to rely on these online repositories. Gradle
allows to use repositories packaged as a set of local folders and files, called O�line Repositories.

This tutorial explains how to create and use O�line Repositories for your MicroEJ project.

O�line Repository for the Gradle Plugins

The first step is to createanO�lineRepository for theGradleplugins. Theartifactsof theGradlepluginsareavailable
in the SDK 6 Forge repository.

• Go to the SDK 6 repository.

• Click on the Download button:

4.23. Tutorials 365

https://forge.microej.com/ui/repos/tree/General/microej-sdk6-repository-release

MicroEJ Documentation, Revision 32bb132e

Fig. 60: Download SDK 6 Gradle Plugins Repository

• In the upcoming popup, check the Include Checksum Files checkbox.

• Click on Download .

Now that the O�line Repository of the Gradle plugins has been retrieved, you can configure your projects to use it:

• Unzip thedownloadedarchive at the locationof your choice, for example in the C:\sdk6-repository folder.

• Add the following repository definition at the beginning of your repositories configuration script:

fun RepositoryHandler.offlineMicroEjSdk() {
val sdk6Uri = uri("C:\\sdk6-repository")

/* Offline MicroEJ SDK 6 repository for Maven/Gradle modules */
maven {
name = "offlineSDKRepositoryMaven"
url = sdk6Uri

}

/* Offline MicroEJ SDK 6 repository for Ivy modules */
ivy {
name = "offlineSDKRepositoryMaven"
url = sdk6Uri
patternLayout {

artifact("[organisation]/[module]/[revision]/[artifact]-[revision](-[classifier])(.
→˓[ext])")

ivy("[organisation]/[module]/[revision]/ivy-[revision].xml")
setM2compatible(true)

}
}

}

• Add the previously created repository declaration inside the repositories block of both allprojects and plug-
inManagement blocks:

4.23. Tutorials 366

MicroEJ Documentation, Revision 32bb132e

allprojects {
repositories {
...
offlineMicroEjSdk()
...

}
}

pluginManagement {
repositories {
...
offlineMicroEjSdk()
...

}
}

O�line Repository for the Modules

There are 2 ways to create an O�line Repository containing the required modules:

• download an existing online repository.

• create a SDK 5 o�line repository project to create a custom repository.

Download an existing online repository

A quick way to get an O�line Repository for the modules is to download an existing online repository. MicroEJ
provides severalmodule repositories, the main one being the Central Repository.

If this online repository, or another one, contains all themodule required for yourproject, download it. For example
for the Central Repository, go to its location and click on the Download button.

Now go to this section to configure your project to use it.

CustomO�line Repository

If you need a customO�line Repository (for example because the available online repositories does not contain all
themodules required by your project, or you want to control exactly what contains the repository), you can create
your own. This can be done only with SDK 5 for the moment, so refer to this page.

Once done, go to this section to configure your project to use it.

Use an O�line Modules Repository

When the O�line Repository of the modules has been retrieved or created, you can configure your projects to use
it:

• Unzip the O�line Repository archive at the location of your choice, for example in the C:\
modules-repository folder.

• Add the following repositories declaration in your repositories configuration script, inside the repositories
block:

4.23. Tutorials 367

https://forge.microej.com/ui/repos/tree/General/microej-central-repository-release

MicroEJ Documentation, Revision 32bb132e

repositories {

...

maven {
name = "offlineModulesRepositoryMaven"
url = uri("C:\\modules-repository")

}
ivy {

name = "offlineModulesRepositoryIvy"
url = uri("C:\\modules-repository")
patternLayout {

artifact("[organisation]/[module]/[revision]/[artifact]-[revision](-[classifier])(.
→˓[ext])")

ivy("[organisation]/[module]/[revision]/ivy-[revision].xml")
setM2compatible(true)

}
}

...

}

4.24 How-to Guides

4.24.1 How To Define a Specific Java Home for Gradle

By default, Gradle uses the JDK defined in the JAVA_HOME environment variable or in the PATH . If you want to use
a di�erent JDK without changing the default JDK of your system, you can define the property org.gradle.java.
home in the Gradle Properties. Gradle Properties can be defined in the following locations, sorted by the highest
priority:

• command line, as set using -D .

• gradle.properties in the GRADLE_USER_HOME directory (defaults to $USER_HOME/.gradle).

• gradle.properties in the project directory, then its parent project directory up to the build root directory.

• gradle.properties in the Gradle installation directory.

If an option is configured in multiple locations, the first one found in any of these locations wins. Therefore, if you
want all your Gradle project to use a di�erent JDK than the systemdefault JDK, you can add the following property
in the file $USER_HOME/.gradle/gradle.properties :

4.24. How-to Guides 368

https://docs.gradle.org/current/userguide/build_environment.html#sec:gradle_configuration_properties

MicroEJ Documentation, Revision 32bb132e

org.gradle.java.home="C:\\path\\to\\the\\jdk"

4.24.2 How To Pass a Property to Project Build Script

It is sometimes needed to use properties to pass values to a project build script. This avoids to have hardcoded
values in the project sources.

Gradle allows to define System Properties with the command line thanks to the -D prefix:

$./gradlew build -DmyPropertyName="myPropertyValue"

and use themwith the API providers.systemProperty("myPropertyName").get() .

For example to define a local VEE Port directory, the project can be configured with:

dependencies {
microejVee(files(providers.systemProperty("myVeePortPath").get()))

}

and built with:

$./gradlew build -DmyVeePortPath="C:\\path\\to\\my\\veePort\\directory"

The providers.systemProperty("myPropertyName") API returns a org.gradle.api.provider.Provider ob-
ject, which provides other capabilities like:

• defining a default value if the System Property does not exist: providers.
systemProperty("myPropertyName").getOrElse("myDefaultValue")

• returning null if the valuedoes not exist: providers.systemProperty("myPropertyName").getOrNull()
.

4.24.3 How To Skip a Gradle Task

When a task is executed, it is possible to skip one or more of the tasks on which the called task depends. For
example, you can skip the test task if you want to build a project without executing the tests.

If you want to skip a task, one of the following ways can be used :

• Add the -x or --exclude-task option in the command line:

./gradlew build -x test

The task is skipped for this execution only.

• Exclude the task in the build script of the project

project.gradle.startParameter.excludedTaskNames.add("test")

The task is never executed.

When one of these two ways is used, not only the task but also all the tasks on which it depends are skipped. For
example, if you choose to skip the test task, all the tasks which are used to produce the test runtime classpath
are also skipped.

4.24. How-to Guides 369

MicroEJ Documentation, Revision 32bb132e

Skip the task only

It is possible to skip a task but still execute the tasks on which it depends using one of the following ways :

• Disable the task in the build script of the project:

tasks.test {
enabled = false

}

The task is never executed.

• Define a predicate in the build script of the project:

tasks.test {
val skipProvider = providers.gradleProperty("skipTest")
onlyIf {
!skipProvider.isPresent()

}
}

The task is skippedeach time thepredicateevaluates to false . In this example, the test task isnotexecuted
if the skipTest property is added in the command line:

./gradlew build -PskipTest

4.24.4 How To Automatically reload a Gradle project

By default, regardless of the IDE that you are using (Android Studio, IntelliJ IDEA or Eclipse), the reload of a Gradle
project must be explicitly triggered by the user when the configuration of the project has changed. This allows to
avoid reloading the project too frequently, but the user must not forget to manually reload the project to apply
changes.

It is also possible to configure your IDE to automatically reload your Gradle project:

Android Studio / IntelliJ IDEA

Eclipse

The auto-reload of a Gradle project with Android Studio / IntelliJ IDEA can be enabled as follows:

• Click on File > Settings. . . .

• Go to Build, Execution, Deployment > Build Tools .

• Check the Reload changes in the build scripts option and check the Any changes option.

Fig. 61: Auto-reload option in Android Studio / IntelliJ IDEA

4.24. How-to Guides 370

MicroEJ Documentation, Revision 32bb132e

• Go to Languages & Frameworks > Kotlin > Kotlin Scripting .

• Check all the Auto Reload options.

Fig. 62: Auto-reload Kotlin option in Android Studio / IntelliJ IDEA

The auto-reload of a Gradle project with Eclipse can be enabled as follows:

• Click on Window > Preferences > Gradle .

• Check the Automatic Project Synchronization option.

4.24. How-to Guides 371

MicroEJ Documentation, Revision 32bb132e

Fig. 63: Auto-reload option in Eclipse

4.24.5 How To Add a Repository

TheSDK6 installationprocessasks to create aGradle Init Script file todeclaremodules andplugins repositories. You
may need to use additional repositories or replace the default ones, for example to fetch a module only available
in your company’s repository. This page presents the di�erent options to do that.

If you needmore details on this topic, refer to the o�icial Gradle documentation on repository declaration.

How To Add a Modules Repository

The di�erent ways to add amodules repository are:

• add a repositories block in the build.gradle.kts file of the project:

repositories {
maven {
name = "myModulesRepository"
url = uri("https://my.company/my-modules-repository")

}
}

The repositories defined here are fetched a�er the ones defined in the Gradle init script.

4.24. How-to Guides 372

https://docs.gradle.org/current/userguide/declaring_repositories.html

MicroEJ Documentation, Revision 32bb132e

For a multi-project, the repositories must be declared in a build.gradle.kts file located in the root folder
to make them available in all the subprojects.

• update the Gradle Init Script to add, replace or delete a repository. The version of this script provided in the
installation process is a recommended version to be applied to quickly setup an environment. However, it
can be modified to adapt it to your need, especially for the list of repositories. The modules repositories are
defined in theblock settingsEvaluated > allprojects > repositories , andare applied to all theGradle
builds executed on the machine.

How To Add a Plugins Repository

The di�erent ways to add a plugins repository are:

• add a pluginManagement > repositories block in the settings.gradle.kts file of the project or the
multi-project:

pluginManagement {
repositories {
maven {
name = "myPluginsRepository"
url = uri("https://my.company/my-plugind-repository")

}
}

}

The repositories defined here are fetched before the ones defines in the init script.

• update the Gradle Init Script to add, replace or delete a repository. The version of this script provided in the
installation process is a recommended version to be applied to quickly setup an environment. However, it
can be modified to adapt it to your need, especially for the list of repositories. The plugins repositories are
defined in the block settingsEvaluated > allprojects > pluginManagement > repositories , and are
applied to all the Gradle builds executed on the machine.

4.24.6 How To Resolve Dependencies in the IDE

When contributing tomultiple interdependent projects, it is very convenient andmore productive to test a change
without rebuilding and publishing manually the updated projects.

Gradle allows to consider a local project as a dependency thanks to the Composite Build feature. For example, if
you have a project named myApplication , with the coordinates com.mycompany:myApplication:1.0.0 , and a
project named myLibrary , with the coordinates com.mycompany:myLibrary:1.0.0 , structured as follows:

|- myApplication
| |- src
| |- build.gradle.kts
| |- settings.gradle.kts
|- myLibrary
| |- src
| |- build.gradle.kts
| |- settings.gradle.kts

And the build.gradle.kts file of the myApplication project declaring a dependency to the myLibrary module:

4.24. How-to Guides 373

https://docs.gradle.org/current/userguide/composite_builds.html

MicroEJ Documentation, Revision 32bb132e

dependencies {
implementation("com.mycompany:myLibrary:1.0.0")

}

Without any additional configuration, Gradle will try to fetch the com.mycompany:myLibrary:1.0.0 dependency
from the declared repositories. This means that when you do a change in the myLibrary project, it would require
to build and publish it, then refresh dependencies on the myApplication project to get the update. This is painful
and time consuming.

In order to avoid this, Gradle allows to consider the myLibrary build as part of the myApplication build,meaning
that when the myApplication project is built, the myLibrary project is also rebuilt if it has been changed, and is
used as the dependency. This can be configured by adding the following line in the settings.gradle.kts file of
the myApplication project:

includeBuild("../myLibrary")

The path given to the includeBuild method is the relative path of the project to include.

Warning: The includeBuild method should be used to declare a dependency between two autonomous
projects. To declare a dependency between two subprojects of a multi-project, a Project dependency must be
used. Refer to the Dependencies Between Subprojects of a Multi-Project section for more information.

Refer to the O�icial Gradle documentation on the Composite Build feature for more details.

Dependencies Between Subprojects of a Multi-Project

Gradle allows to declare dependencies between subprojects of a multi-project build by declaring a Project depen-
dency.

For example, if you have a multi-project named myProject composed of two subprojects myApplication and
myLibrary :

|- myProject
| |- myApplication
| | |- src
| | |- build.gradle.kts
| |- myLibrary
| | |- src
| | |- build.gradle.kts
| |- settings.gradle.kts

You can declare a Project dependency in the build.gradle.kts file of the myApplication subproject tomake it
depend on the myLibrary subproject:

dependencies {
implementation(project(":myLibrary"))

}

When building the myApplication subproject, the myLibrary subproject is also rebuilt if it has been changed, so
contrary to a Module dependency (e.g. implementation("com.mycompany:myLibrary:1.0.0")), you don’t have
tomanually build and publish it, and then refresh dependencies on the myApplication project to get the update.

Refer to the O�icial Gradle documentation about the di�erent kinds of dependencies for more details.

4.24. How-to Guides 374

https://docs.gradle.org/current/userguide/declaring_dependencies.html#sub:project_dependencies
https://docs.gradle.org/current/userguide/composite_builds.html
https://docs.gradle.org/current/userguide/multi_project_builds.html
https://docs.gradle.org/current/userguide/declaring_dependencies.html#sub:project_dependencies
https://docs.gradle.org/current/userguide/declaring_dependencies.html#sub:project_dependencies
https://docs.gradle.org/current/userguide/declaring_dependencies.html#sec:dependency-types

MicroEJ Documentation, Revision 32bb132e

4.24.7 How to Install MicroEJ Plugin Snapshot Version on Android Studio or IntelliJ IDEA

If you want to test the version under development, the latest snapshot version of the plugin can be installed:

• In Android Studio or IntelliJ IDEA, go to File > Settings... .

• Go to Plugins menu.

• Click on the icon at the right of the Installed tab, then click on Manage Plugin Repositories .

Fig. 64: Android Studio and IntelliJ IDEA Plugin Repository

• Click on the + icon.

• Set the URL https://repository.microej.com/intellij-plugins/snapshots/updatePlugins.xml .

• Click on the OK button.

• Click on the Marketplace tab.

• In the search field, type MicroEJ :

Fig. 65: Android Studio and IntelliJ IDEA Snapshot Plugin Installation

• Click on the Install button.

• Click on the Restart IDE button.

4.24.8 How To Build a Project

Generally speaking, building a project means compiling the source files, executing the tests and generating the
module artifact. Depending on the nature of the project, the build can include other specific phases. Refer to the
Module Natures page for a complete description of the build phases.

The build of a project is done by executing the Gradle build task.

Android Studio / IntelliJ IDEA

Eclipse

Command Line Interface

4.24. How-to Guides 375

MicroEJ Documentation, Revision 32bb132e

It can be executed from Android Studio or IntelliJ IDEA by double-clicking on the build task in the Gradle tasks
view:

It can be executed from Eclipse by double-clicking on the build task in the Gradle tasks view:

It can be executed with the command line interface:

$./gradlew build

Gradle stores the artifacts produced by the build in the build/libs folder.

Note: If the build fails with a message related to the Artifact Checker such as:

The Artifact Checker found the following problems:

Fix the listed problems or skip the Artifact Checker by adding the following line in the build script file:

project.gradle.startParameter.excludedTaskNames.add("checkModule")

4.24. How-to Guides 376

MicroEJ Documentation, Revision 32bb132e

4.24.9 How To Build an Executable With Multiple VEE Ports

When creating an Application, only one VEE Port must be defined to build an Executable. However, it is possible to
build an Executable for a list of VEE Ports by using a Gradle multi-project.

For example, if you want to build an Executable for two VEE Ports, you can create amulti-project composed of two
subprojects:

|- rootProject
| |- myApplicationVeePort1
| | |- src/main/java
| | |- src/main/resources
| | |- build.gradle.kts
| |- myApplicationVeePort2
| | |- build.gradle.kts
| |- settings.gradle.kts
| |- build.gradle.kts

• The myApplicationVeePort1 subproject is the Application project in which the first VEE Port is defined and
the applicationMainClass property is set to the Fully Qualified Name of your main class.

• The myApplicationVeePort2 subproject is an Application project that only contains a build.gradle.kts
file inwhich the second VEE Port is defined and the applicationMainClass property is set to the Fully Qual-
ified Name of your main class. To avoid having to duplicate the Source code of the Application, a SourceSet
must be defined to use the Source code of the myApplicationVeePort1 subproject:

sourceSets {
main {

java {
srcDirs(project(":myApplicationVeePort1").layout.

→˓projectDirectory.dir("src/main/java"),
project(":myApplicationVeePort1").layout.projectDirectory.

→˓dir("src/main/resources"))
}

}
}

• In the build.gradle.kts file of the multi-project, you can define the Gradle configuration that is common
to all subprojects to avoid duplicates, for example:

plugins {
id("com.microej.gradle.application") version "0.15.0" apply false

}

subprojects {
apply(plugin = "com.microej.gradle.application")

val implementation by configurations

dependencies {
implementation("ej.api:edc:1.3.5")

}
}

• For each VEE Port, the Application configuration properties can be defined in the configuration folder of
the corresponding Application project.

4.24. How-to Guides 377

https://docs.gradle.org/current/userguide/multi_project_builds.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceSet.html

MicroEJ Documentation, Revision 32bb132e

The Executable of the Application can now be built for a VEE Port by executing the buildExecutable task on the
corresponding subproject:

./gradlew myApplicationVeePort1:buildExecutable

To build the Executable for all VEE Ports, a new task can be created in the build.gradle.kts file of the multi-
project:

tasks.create("buildAllExecutables")
subprojects {

rootProject.tasks.getByName("buildAllExecutables").dependsOn("$path:buildExecutable")
}

All Executables can now be built by executing the buildAllExecutables task:

./gradlew buildAllExecutables

For each VEE Port, the Executable is generated in the build/output/application folder of the corresponding
subproject.

4.24.10 How To Create a Custom Configuration in the IDE

This chapter explains how to create a new Configuration in all the supported IDEs.

Android Studio / IntelliJ IDEA

Eclipse

The creation of a new Configuration with Android Studio / IntelliJ IDEA is done as follows:

• Click on Run > Edit Configurations. . . .

• Click on + and Select Gradle .

• Fill the name of the new Configuration in the Name field.

• Add a task and a property if needed in the Run dialog, for example runOnSimulator -Pdebug.mode=true .

4.24. How-to Guides 378

MicroEJ Documentation, Revision 32bb132e

Fig. 66: Configuration Creation in IntelliJ IDEA

• Click on OK .

• Select the newly created Configuration in the drop-down list in the Navigation bar and click on the run
button to launch it.

Fig. 67: Navigation bar in IntelliJ IDEA

• The Configuration can also be launched by double-clicking on it in the Gradle tasks view.

4.24. How-to Guides 379

MicroEJ Documentation, Revision 32bb132e

Fig. 68: Gradle view in IntelliJ IDEA

The creation of a new Configuration with Eclipse is done as follows:

• Click on Run > Run Configurations. . . .

• Right-click on Gradle Task and click on New Configuration .

• Fill the name of the new Configuration in the Name field.

• Add a task’s name in the Gradle Tasks tab, for example runOnSimulator .

Fig. 69: Configuration Gradle Tasks tab in Eclipse

4.24. How-to Guides 380

MicroEJ Documentation, Revision 32bb132e

• Go to the Project Settings tab.

• Check Override project settings .

• Add a property as a Program Argument if needed, for example -Pdebug.mode=true .

Fig. 70: Configuration Project Settings tab in Eclipse

• Click on Run to launch the Configuration.

4.25 Appendices

4.25.1 Virtual Device

This chapter describes the structure of a Virtual Device.

4.25. Appendices 381

MicroEJ Documentation, Revision 32bb132e

Structure

A Virtual Device is structured as follows:

|- virtualDevice
| |- installed-applications
| |- javaLibs
| |- MICROJVM
| |- main-application
| |- mocks
| |- options
| | |- target.properties
| |- resources
| |- S3
| |- scripts
| | |- init-vd
| | | |- vd-init.xml
| |- tools
| |- architecture.properties
| |- release.properties
| |- veePort.properties
| |- workbenchExtension*.jar

The Virtual Device contains the Simulation part files of the VEE Port used to build it:

• the javaLibs/ folder, that contains the Foundation Libraries which are common to MICROJVM and S3

• the linker/ folder, that contains the Linker jar files. This folder is not embedded in the Virtual Device if an
Architecture 8.0.0 is used

• the MICROJVM/ folder, that contains the VEE Port’s files required to build a Feature file (.fo)

• the mocks/ folder, that contains the Jar files of the mocks for Foundation Libraries

• the resources/ folder, that contains the OS specific libraries

• the S3/ folder, that contains the Simulator, HIL and Foundation Libraries specific to the Simulator

• the scripts/ folder, that contains launch and initialization scripts

• the tools/ folder

• the workbenchExtension*.jar files

The following elements are also embedded in the Virtual Device:

• a Kernel Application, whose WPK file is extracted in the main-application folder of the Virtual Device

• the WPK files of pre-installed Applications that are extracted in their own folder, in the
installed-applications/ folder that is empty by default

Note: Applications can only be pre-installed in a Multi-Sandbox Virtual Device. In case of a Mono-Sandbox Virtual
Device, the installed-applications/ folder is always empty.

• the options/target.properties , that contains the properties of the VEE Port used to build the Virtual
Device

• the scripts/init-vd/vd-init.xml script, that allows to enable or not the Virtual Device. If the Virtual
Device is not enabled, the Application main class specified by the user is launched on the VEE Port

4.25. Appendices 382

MicroEJ Documentation, Revision 32bb132e

You can refer to the Build a Virtual Device page to know how to build a Virtual Device.

4.25.2 Dependencies Configurations

This chapter describes all the dependency configurations added to your project by the MicroEJ Gradle plugins.

Note: The MicroEJ Gradle plugins extend the Gradle Java and Java Library plugins. For more information about
the configurations inherited from those plugins, refer to the o�icial documentation :

• Java plugin

• Java Library plugin

The following diagrams show the dependency configurations. Use this legend to interpret the colors:

• Green background : Dependencies can be declared against this configuration

• Gray background : This configuration is for consumption by tasks only

• Blue background : A task or plugin

microejVee microejApplication

microejApplicationClasspathmicroejVeeClasspath microejKernelExecutableClasspath virtualDeviceToolClasspath addonProcessorClasspath jdtCompilerClasspath

loadVee

uses

loadKernelExecutable

uses

buildVirtualDevice

uses uses

adp

uses

com.microej.gradle.java plugins

uses

Publication Variants

The Application plugin defines a list of variants that are used during the publication of an Application.

microejWPK

This variant is used to publish the WPK of an Application, that can be fetched by declaring a dependency with the
microejApplication configuration. The LibraryElement attribute of the variant is set to microej-wpk .

microejExecutable

This variant is used to publish the Executable of an Application, that can be fetched by declaring a dependency
with the microejVee configuration. The LibraryElement attribute of the variant is set to microej-executable .

4.25. Appendices 383

https://docs.gradle.org/current/userguide/java_plugin.html#sec:java_plugin_and_dependency_management
https://docs.gradle.org/current/userguide/java_library_plugin.html#sec:java_library_separation

MicroEJ Documentation, Revision 32bb132e

microejExecutableBuildFiles

This variant is used to publish the files generated when building the Executable of an Application. The
LibraryElement attribute of the variant is set to microej-build-files .

microejVirtualDevice

This variant is used to publish the Virtual Device of an Application, that can be fetched by declaring a dependency
with the microejVee configuration. The LibraryElement attribute of the variant is set to microej-vee-port .

4.26 Changelog

4.26.1 [0.15.0] - 2024-01-26

Added

• Unify microejVeePort and microejKernel configurations intomicroejVee.

• Add verification of dependencies checksums during build.

• Add the plugin com.microej.gradle.mock to build a Mock.

• Mention the system property to accept SDK EULA in error message.

Changed

• Task :execTool looks for a script named a�er the argument NAMEwith the following patterns in that order:
NAME, NAME.microejTool, NAME.microejLaunch.

• Align the behavior of the :buildFeature task with the localDeploymentSocket.microejLaunch script.

– output files are derived a�er “application” instead of “feature” (for example “application.fo”).

– the application.main.class is set to the entryPoint defined in the .kf of the application.

Fixed

• Upgrade to junit-test-engine 0.2.2 to fix failing tests using fonts.

• Handle Security Manager removal from JDK 18+ when executing MicroEJ VEE scripts.

• Support all MicroEJ VEE (VEE Ports & Kernel) for the task :execTool .

4.26. Changelog 384

MicroEJ Documentation, Revision 32bb132e

Removed

• Remove support of dropIns folder for MicroEJ VEE (VEE Port or Kernel) selection.

4.26.2 [0.14.0] - 2024-01-03

Added

• Add Jenkinsfile files to build and test with a JDK 17 and a JDK 21 (LTS versions).

Changed

• Do not build/publish an Executable or a Feature by default and add the produceExecutableDuringBuild()
and produceFeatureDuringBuild() methods to build them if needed.

• Set group and version for all projects, including the root project, in order to generate correctly the release
tag.

• Use version 2.1.0 of the microej-licenses library to check with the new SDK EULA 3.1-B.

Fixed

• Fix the override behavior of the Applicationmain class that was not consistent when -Dapplication.main.
class is used.

• Fix the Custom Ant Logger to display build errors without having to enable the verbose mode.

• Follow Gradle recommendation on resolvable and consumable configurations.

• Move the Custom Logger to a dedicatedmodule and use its jar instead of fetching the plugin when executing
VEE Port scripts to fix the tests failure during a release.

• Set Java Compiler encoding to UTF-8.

• Set Java Compliance level to 1.7 in JavaPluginExtension to fix the Cannot find the class file for
java.lang.invoke.MethodHandles error when opening a Gradle project in Eclipse.

• Fix wrong generated Virtual Device of an Application when the VEE Port changed.

• Bump source level for javadoc task to 1.8 to support JDK 21.

• Fix classpaths when using a Virtual Device to remove warnings about kf files not found.

• Make sure to close all opened streams.

• Fix Wrong java/lang/Object error when running an Application on the Simulator with a local repository.

• Fix No .kf file found for this feature classpath error message in logs when running VD with
launcher script.

4.26. Changelog 385

MicroEJ Documentation, Revision 32bb132e

4.26.3 [0.13.0] - 2023-11-10

Added

• Add a check on EULA acceptation when using the MicroEJ Gradle plugin.

• Automatically publish the ASSEMBLY_EXCEPTION.txt file if it exists at the root of the project.

• Allow to publish the Feature file of an Application.

• Add :execTool task to execute Stack Trace Reader and Code Coverage Analyzer Tools provided by the se-
lected VEE Port or Kernel.

Fixed

• Fix warning during compilation because of non-existing file or folder (incorrect classpath: C:\\Users\
\user\\...\myProject\\build\\resources\\main).

• Fix warning in SOAR when building an Executable with Architecture 8.0.0 ([M59] - Classpath file [C:\
Users\user\...\myProject\build\resources\main] does not exist).

• Enable Ant verbose mode for VEE Port scripts when Gradle debug log level is enabled.

• Fix the build of a Feature when the provided Virtual Device does not contain the dynamicFeatureLink.
microejLaunch build script (Virtual Device built with SDK 5).

4.26.4 [0.12.1] - 2023-10-16

Fixed

• Fix the issue with the microejKernel configuration that prevented IDEs from loading a project.

4.26.5 [0.12.0] - 2023-10-13

Added

• Allow to publish the Virtual Device of an Application.

• Allow to fetch a Virtual Device and an Executable with the microejKernel configuration.

Changed

• Add README, CHANGELOG and License files as publication artifacts in the generated ivy.xml file.

• Publish test report in Jenkins job.

• Set deploy.bsp.microejscript property to true by default to build the executable.

• Publish the Executable file as a variant.

• Rename the kernelFile property to kernelExecutableFile .

• Use File dependency instead of the veePortPath property to load a local VEE Port.

• Use File dependency instead of the kernelExecutableFile property to load a local Kernel Executable.

4.26. Changelog 386

MicroEJ Documentation, Revision 32bb132e

Fixed

• Fix unexpected fetch of the transitive dependencies of a VEE Port dependency (microejVeePort configura-
tion).

• Fix System properties defined in gradle.properties are ignored.

• Fix VEE Port launcher: temporary configuration file could prevent to launch a second time.

• Remove usage of deprecated API Project.getBuildDir().

• Fix the message when no executable are found by the runOnDevice task.

• Fix Executable not updated a�er a project change and a call to the buildExecutable task.

• Fix wrong order of tests classes and resources folder in the test classpath.

• Call VEE Port Ant script from a separate temporary directory to satisfy MicroEJ Architecture. This fixes spuri-
ous HIL timeouts when calling the runOnSimulator task.

• Fix Java process still running when Simulator is interrupted.

• Fix missing Nashorn dependencies when running a testsuite and when launching the launcher scripts to
make it work with JDK 17 and higher.

4.26.6 [0.11.1] - 2023-09-22

Fixed

• Fix usage of a SNAPSHOT version of the junit-test-engine dependency.

4.26.7 [0.11.0] - 2023-09-22

Changed

• Use Gradle standard mechanism to support Multi-VEEPort instead of relying on an in-house feature.

4.26.8 [0.10.0] - 2023-09-13

Added

• Add a task runOnDevice to run the Executable on a Device.

• Support all JDK LTS versions higher or equals to version 11.

Fixed

• Allow to build a Feature file of an Application with a Virtual Device.

• Fix javadoc failure when the project contains a JDK class.

4.26. Changelog 387

MicroEJ Documentation, Revision 32bb132e

4.26.9 [0.9.0] - 2023-09-01

Added

• Allow to depend on local Application project (dependency with microejApplication configuration).

• Implement properties loading chain.

• Add launcher scripts to the Virtual Device.

Changed

• Move the vd-init.xml script in the template file instead of hardcoding it in the class.

• Remove the Application properties from options/application.properties file and rename file to
target.properties in Virtual Device.

• Merge veePortFiles and veePortDirs properties into the veePortPaths property.

• Addmissing Javadoc and clean the project.

Fixed

• Fix resources generated by Addon Processors of type FolderKind.MainResources not processed.

• Fix root path used for relative VEE port path: use the project root directory.

• Fix the content of a WPK to remove the Foundation Libraries.

• Make sure .a and .o files of an Application are correct by always executing the buildExecutable task.

4.26.10 [0.8.0] - 2023-07-13

Added

• Allow to build the Virtual Device of an Application.

• Add checks to ensure that a Virtual Device can be used or not depending on the called task.

• Allow to build the Feature binary file of an Application.

Fixed

• Add the Application properties defined in the configuration folder to the WPK file.

4.26.11 [0.7.0] - 2023-06-26

Added

• Add Standard Java Library plugin (com.microej.gradle.j2se-library).

• Rename com.microej.gradle.library plugin to com.microej.gradle.addon-library .

4.26. Changelog 388

MicroEJ Documentation, Revision 32bb132e

Changed

• Unbind the checkModule task from the build task.

• Use version 0.1.1 of the MicroEJ JUnit Test Engine to fix error when test classes are not in a package.

• Use version 2.0.0 of the microej-licenses library to check with the new authorized licenses.

4.26.12 [0.6.0] - 2023-05-30

Added

• Allow to publish WPK file artifact.

• Allow to publish files generated by the buildExecutable task.

• Allow to define multiple testsuites in di�erent environments (sim or J2SE).

• Allow to define a testsuite for tests on device.

Changed

• Use Ivy descriptor content to know if a dependency is a Foundation Library or an Addon Processor Library.

• Optimize the loadVeePort task to reduce the time to load a VEE Port.

• Use a smaller VEE Port as dependency in tests to reduce the time to build.

• Remove JPF support.

• Check that the given file/directory is a VEE Port.

• Move Application properties to configuration folder instead of src/main/resources .

• Clean the Jenkins workspace a�er a successful build.

• Improve the checker on changelog files to support “-SNAPSHOT” su�ix and “Unreleased” label.

• Remove the debugOnSimulator task and use a property to run an Application in debugmode.

Fixed

• Fix multiple VEE Ports error message in loadConfiguration task.

• Fix connection to a debugger and debug.port property.

• Fix StackOverflow error when building a project with cyclic dependencies.

4.26.13 [0.5.0] - 2023-03-24

Added

• Add Xlint checking.

• Add verification of using java 11 by user’s project.

• Allow to build the Executable file of an Application.

• Allow to build the WPK file of an Application.

4.26. Changelog 389

MicroEJ Documentation, Revision 32bb132e

• Allow to define multiple VEE Ports.

• Check that the project uses at least Gradle 8.0.

• Addmore tests on topological order in the Application classpath.

Changed

• Make the plugin compatible with Gradle 8.0 .

4.26.14 [0.4.0] - 2023-01-27

Added

• Apply the Java Library Plugin to user’s project.

• Allow to load a VEE Port by dropping it in the dropIns folder.

Changed

• Optimise memory used by project.

• Remove the runArtifactChecker property, the Artifact Checker task must be executed explicitly.

• Hide compilation warnings in the adp and compileJava tasks.

Fixed

• Disable the warning on non-compatible version for Maven client.

• Fix loading new dependency when the build.gradle.kts file is updated.

• Fix too long classpath error when running the simulator on Windows.

4.26.15 [0.3.0] - 2022-12-09

Added

• Add feature to avoid loading the VEE Port when there is no test.

• Add the auto assembling project for runOnSimulator and debugOnSimulator tasks.

• Add the opportunity disable custom conflict resolution rules.

• Add the plugin com.microej.gradle.library to build an Addon Library.

• Generate and publish the Java sources jar.

• Generate and publish the Javadoc jar.

• Publish README.md , CHANGELOG.md and LICENSE.txt files if they exist in the project.

• Su�ix version with timestamp when it ends with “-RC”.

• Make the build fail if a direct dependency is resolved with a higher minor version than the one declared.

• Add the checkModule task to check compliance of the module with MicroEJ rules.

4.26. Changelog 390

MicroEJ Documentation, Revision 32bb132e

• Add the execution of tests on the simulator.

• Add support for Mac M1.

• Build the plugin in Java 11.

• Add test to ensure that the dependencies are topologically sorted.

Changed

• Remove automatic version conversion.

• Rename the Application plugin to com.microej.gradle.application .

• Change the publication plugin to publish Mavenmodules instead of Ivy modules.

• Use Ant Java API to launch the simulator to avoid requiring an Ant installation.

• Rename the runOnSim and debugOnSim tasks to runOnSimulator and debugOnSimulator .

• Use JDT compiler instead of javac.

• Isolate functional tests to keep a quick build.

Fixed

• VEE Port not reloaded when referenced by veePortDirPath and the VEE Port source folder is updated.

• Set Java source and target version to be recognized by IDEs.

• Make processResources task implicitly depend on ADP task to fix failures during runOnSimulator .

4.26.16 [0.2.0] - 2022-05-17

Changed

• Make the build fails when an ADP raises errors.

• Convert build scripts from Groovy to Kotlin .

4.26.17 [0.1.0] - 2022-05-03

Added

• Add the capability to load the platform from dependencies.

• Add the task debugOnSim to execute the application in debugmode in the simulator.

• Publish the sources jar of the plugin.

4.26. Changelog 391

MicroEJ Documentation, Revision 32bb132e

Fixed

• Extract ADP classpath JAR files into OS temp dir to avoid error on cleaning because of locks.

4.27 Migration Notes

4.27.1 From 0.14.0 to 0.15.0

This section applies if MicroEJ SDK 6 0.15.0 is used on a project that was created using MicroEJ SDK 6 0.14.0 or
lower.

Unification of VEE dependency declaration

The microejVeePort configuration, used to define a VEE Port, and the microejKernel configuration, used to
define a Kernel, have been unified into the microejVee configuration.

• To use a VEE Port or a Kernel published in an artifact repository, declare aModule dependency in the build.
gradle.kts file:

dependencies {
microejVee("com.mycompany:myVee:1.0.0")

}

• To use a VEE Port directory available locally, declare a file dependency in the build.gradle.kts file:

dependencies {
microejVee(files("C:\\path\\to\\my\\veePort\\source"))

}

• To use a VEE Port archive available locally, declare a file dependency in the build.gradle.kts file:

dependencies {
microejVee(files("C:\\path\\to\\my\\veePort\\file.zip"))

}

• To use a Kernel Virtual Device and Executable available locally, declare a file dependency in the build.
gradle.kts :

dependencies {
microejVee(files("C:\\path\\to\\my\\kernel\\executable.out", "C:\\path\\to\\my\\

→˓kernel\\virtual\\device"))
}

4.27. Migration Notes 392

MicroEJ Documentation, Revision 32bb132e

4.27.2 From 0.11.1 to 0.12.0

This section applies if SDK 6 0.12.0 is used on a project that was created using SDK 6 0.11.1 or lower.

Use of File Dependencies to Define a Local VEE Port or a Kernel Executable

The veePortPath and the kernelFile properties have been replaced by file dependencies.

• To use a VEE Port archive available locally, declare a file dependency in the build.gradle.kts file, with the
microejVeePort configuration:

dependencies {
microejVeePort(files("C:\\path\\to\\my\\veePort\\file.zip"))

}

• To use a VEE Port directory available locally, declare a file dependency in the build.gradle.kts file, with
the microejVeePort configuration:

dependencies {
microejVeePort(files("C:\\path\\to\\my\\veePort\\source"))

}

• To use a kernel Virtual Device and Executable available locally, declare a file dependency in the build.
gradle.kts file, with the microejKernel configuration:

dependencies {
microejKernel(files("C:\\path\\to\\my\\kernel\\executable.out", "C:\\path\\to\\my\\

→˓kernel\\virtual\\device"))
}

4.27.3 From 0.10.0 to 0.11.0

This section applies if SDK 6 0.11.0 is used on a project that was created using SDK 6 0.10.0 or lower.

Gradle mechanism usage for Multiple VEE Ports Support

Using multiple VEE Ports in a project uses Gradle mechanism now instead of relying on in-house feature. This im-
plies: - the veePortPaths property has been renamed to veePortPath and accepts a String value:

microej {
veePortPath = "C:\\path\\to\\my\\veePort\\source"

}

• the kernelFiles property has been renamed to kernelFile and accepts a String value:

microej {
kernelFile = "C:\\path\\to\\my\\kernel\\file"

}

Refer to the How To Build an Executable With Multiple VEE Ports section to learn how to support multiple VEE Ports
using the Gradle mechanisms.

4.27. Migration Notes 393

MicroEJ Documentation, Revision 32bb132e

4.27.4 From 0.8.0 to 0.9.0

This section applies if SDK 6 0.9.0 is used on a project that was created using SDK 6 0.8.0 or lower.

Merge of the veePortDirs and veePortFiles properties

The build properties veePortDirs and veePortFiles have been merged into a single property veePortPaths .
To define a local VEE Port, set the build property veePortPaths in the microej configuration block to the path of
the VEE Port file (.zip or .vde) or to the source folder of the VEE Port:

microej {
veePortPaths = listOf("C:\\path\\to\\my\\veePort\\source")

}

The veePortPaths property is defined as a list in order to provide multiple VEE Port files or source folders if it is
needed:

microej {
veePortPaths = listOf("C:\\path\\to\\my\\veePort1\\source", "C:\\path\\to\\my\\veePort2\\

→˓file.zip")
}

4.27. Migration Notes 394

CHAPTER

FIVE

APPLICATION DEVELOPER GUIDE

5.1 Introduction

The following sectionsof this document shall proveuseful as a referencewhendevelopingapplications forMicroEJ.
They cover concepts essential to MicroEJ Applications design.

In addition to these sections, by going to https://developer.microej.com/, you can access a number of helpful re-
sources such as:

• Libraries from the MicroEJ Central Repository (https://developer.microej.com/central-repository/);

• Application Examples as source code fromMicroEJ Github Repositories (https://github.com/MicroEJ);

• Documentation (HOWTOs, Reference Manuals, APIs javadoc. . .).

MicroEJ Applications are developed as standard Java applications on Eclipse JDT, using Foundation Libraries. Mi-
croEJ SDK allows you to run / debug / deploy MicroEJ Applications on a MicroEJ Platform.

Two kinds of applications can be developed on MicroEJ: MicroEJ Standalone Applications and MicroEJ Sanboxed
Applications.

A MicroEJ Standalone Application is a MicroEJ Application that is directly linked to the C code to produce a Mi-
croEJ Firmware. Such application must define a main entry point, i.e. a class containing a public static void
main(String[]) method.

A MicroEJ Sandboxed Application is a MicroEJ Application that can run over a Multi-Sandbox Executable. It can be
linked either statically or dynamically. If it is statically linked, it is then called a System Application as it is part of
the initial image and cannot be removed.

5.2 MicroEJ Runtime

5.2.1 Language

MicroEJ allows to develop Applications in the Java® Language Specification version 7 with some limitations, and
supports code extensions written in JavaScript.

Basically, Java source code is compiled by the Java compiler1 into the binary format specified in the JVM specifica-
tion2. This binary code is linked by a tool named SOAR before execution: .class files and some other application-
related files (see Classpath chapter) are linked to produce the final binary file that the Core Enginewill execute.

1 The JDT compiler from the Eclipse IDE.
2 Tim Lindholm & Frank Yellin, The Java™ Virtual Machine Specification, Second Edition, 1999

395

https://developer.microej.com/
https://developer.microej.com/central-repository/
https://github.com/MicroEJ
https://docs.oracle.com/javase/specs/jls/se7/jls7.pdf

MicroEJ Documentation, Revision 32bb132e

Note: Whenopened in theSDK,make sure that theCompiler Compliance Level of your project is set to 1.7 to ensure
the bytecode produced by the Java compiler is compatible with MicroEJ. The Compliance Level can be changed
from themenu: Window > Preferences > Java > Compiler .

5.2.2 Core Libraries

This section describes the core libraries which make up the runtime. Theses Foundation Libraries are tightly cou-
pled with the Core Engine.

Embedded Device Configuration (EDC)

The Embedded Device Configuration specification defines theminimal standard runtime environment for embed-
ded devices.

This module is always required in the build path of an Application project; and all others libraries depend on it.
This library provides a set of options. Refer to the chapter Standalone Application Options which lists all available
options.

It defines all default API packages:

• java.io

• java.lang

• java.lang.annotation

• java.lang.ref

• java.lang.reflect

• java.util

Documentation Link
Java APIs https://repository.microej.com/javadoc/microej_5.x/libraries/edc-1.3-api/
Module https://repository.microej.com/modules/ej/api/edc/

Use

The EDC API Module must be added to the project build file of the Application Project:

Gradle (build.gradle.kts)

MMM (module.ivy)

implementation("ej.api:edc:1.3.5")

<dependency org="ej.api" name="edc" rev="1.3.5"/>

5.2. MicroEJ Runtime 396

https://repository.microej.com/javadoc/microej_5.x/apis/java/io/package-frame.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/package-frame.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/annotation/package-frame.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/ref/package-frame.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/reflect/package-frame.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/package-frame.html
https://repository.microej.com/javadoc/microej_5.x/libraries/edc-1.3-api/
https://repository.microej.com/modules/ej/api/edc/
https://repository.microej.com/modules/ej/api/edc/

MicroEJ Documentation, Revision 32bb132e

Beyond Profile (BON)

This profile defines a suitable and flexible way to fully control both memory usage and start-up sequences on de-
vices with limitedmemory resources. It does sowithin the boundaries of Java semantics. More precisely, it allows:

• Controlling the initialization sequence in a deterministic way.

• Defining persistent, immutable, read-only objects (thatmay be placed into non-volatile memory areas), and
which do not require copies to be made in RAM to bemanipulated.

• Defining immortal, read-write objects that are always alive.

• Defining and accessing compile-time constants.

Documentation Link
Java APIs https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/

package-summary.html
Specification https://repository.microej.com/packages/ESR/ESR-SPE-0001-BON-1.2-G.pdf
Module https://repository.microej.com/modules/ej/api/bon/

Use

Add the following dependency to the project build file of the Application Project to use the BON API Module:

Gradle (build.gradle.kts)

MMM (module.ivy)

implementation("ej.api:edc:1.3.5")

<dependency org="ej.api" name="edc" rev="1.3.5"/>

Simple Native Interface (SNI)

SNI provides a simple mechanism for implementing native Java methods in the C language.

SNI allows you to:

• Call a C function from a Java method.

• Access an Immortal array in a C function (see the Beyond Profile (BON) to learn about immortal objects).

SNI does not allow you to:

• Access or create a Java object in a C function (except byte arrays).

• Access Java static variables in a C function.

• Call Java methods from a C function.

SNI also provides some Java APIs to manipulate some data arrays between Java and the native (C) world.

Documentation Link
Java APIs https://repository.microej.com/javadoc/microej_5.x/apis/ej/sni/

package-summary.html
Specification https://repository.microej.com/packages/ESR/ESR-SPE-0012-SNI_GT-1.2-I.pdf
Module https://repository.microej.com/modules/ej/api/sni/

Please refer to Simple Native Interface (SNI) section for more details.

5.2. MicroEJ Runtime 397

https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/package-summary.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/package-summary.html
https://repository.microej.com/packages/ESR/ESR-SPE-0001-BON-1.2-G.pdf
https://repository.microej.com/modules/ej/api/bon/
https://repository.microej.com/modules/ej/api/bon/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/sni/package-summary.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/sni/package-summary.html
https://repository.microej.com/packages/ESR/ESR-SPE-0012-SNI_GT-1.2-I.pdf
https://repository.microej.com/modules/ej/api/sni/

MicroEJ Documentation, Revision 32bb132e

Kernel & Features (KF)

The Kernel & Features semantic (KF) extends the runtime for managing Multi-Sandboxed Applications.

Please refer to the Kernel & Features Specification for more details, theMulti-Sandbox capability of the Core Engine
andmore generally the Kernel Developer Guide chapter.

5.2.3 Scheduler

The Core Engine features a Green Threads model. The semantic is as follows:

• preemptive for di�erent priorities,

• round-robin for same priorities,

• “priority inheritance protocol” when priority inversion occurs.3

Threads stacks automatically adapt their sizes according to the thread requirements: once a thread terminates, its
associated stack is reclaimed, freeing the corresponding RAMmemory.

5.2.4 Garbage Collector

The Core Engine includes a state-of-the-art memory management system, the Garbage Collector (GC). It manages
a bounded piece of RAM memory, devoted to the Java world. The GC automatically frees dead Java objects, and
defragments the memory in order to optimize RAM usage. This is done transparently while the Application keep
running.

See also Garbage Collector options for more details.

5.2.5 Limitations

Primitive Types

Getting a Class instance of a primitive type is not supported:

• boolean.class ,

• byte.class ,

• char.class ,

• short.class ,

• int.class ,

• long.class ,

• float.class ,

• double.class .

On Architecture 8.x , you will get the following dedicated error message:

Unsupported access to the Class instance of a primitive type (found 'boolean.class' in␣
→˓method 'com.mycompany.MyClass.myMethod()void')

On Architecture 7.x you will get the following default error message:
3 This protocol raises thepriority of a thread that is holdingamonitor neededbyahigher-priority thread, to thepriority of that higher-priority

thread (until exiting the monitor).

5.2. MicroEJ Runtime 398

https://en.wikipedia.org/wiki/Green_threads

MicroEJ Documentation, Revision 32bb132e

No such field TYPE at com/mycompany/MyClass.myMethod()V.

5.3 SOAR

This chapter describes SOAR capabilities and optimizations from the Application developer’s point of view. To get
more details on its internal structure, please refer to SOAR Build Phases section.

5.3.1 Java Symbols Encoding

Java symbols are any of package, type, method, field, or local names. In .class files, they are encoded in UTF-8 .
However, SOAR only supports Java symbols composed of characters that can be stored on 8 bits (unsigned byte).

This is typically the case of ISO-8859-X encoding family.

If you try to build an Application that includes an unsupported Java symbol you will get the following error:

Unsupported Java symbol XXX in file YYY. A character cannot be stored on an unsigned byte.

Note: Classpath *.list files are standard Java properties files that are encoded in ISO-8859-1 (Latin-1). If you
need to refer to a Java Symbol that contains a character out of this charset, you must declare the character using
the \uHHHH notation where HHHH is the hexadecimal index of the character in the Unicode character set.

5.3.2 Class Initialization Code

SOAR complies with the deterministic class initialization (<clinit>) order specified in [BON] specification. The
application is statically analyzed from its entry points in order to generate a clinit dependency graph. The com-
puted clinit sequence is the result of the topological sort of the dependency graph. An error is thrown if the clinit
dependency graph contains cycles.

A clinit map file (endingwith extension .clinitmap) is generated beside the SOAR object file. It describes for each
clinit dependency:

• the types involved

• the kind of dependency

• the stack calls between the two types

In case of complex clinit dependencies graph, the SOAR may detect static cycles (circular dependencies) and fail
with an error. In such case, you have to manually cut-o� the cycles, by providing the explicit clinit dependencies.

Explicit clinit dependencies aredeclared inXML files endingwith the .clinitdesc extension, at the rootof a library
or application classpath.

The file has the following format:

<?xml version='1.0' encoding='UTF-8'?>
<clinit>

<type name="T1" depends="T2"/>
</clinit>

where T1 and T2 are fully qualified names on the form a.b.C . This explicitly forces the SOAR to create a depen-
dency from T1 to T2 , and therefore cuts a potentially detected dependency from T2 to T1 .

5.3. SOAR 399

https://en.wikipedia.org/wiki/ISO/IEC_8859
https://en.wikipedia.org/wiki/.properties

MicroEJ Documentation, Revision 32bb132e

5.3.3 Method Devirtualization

Method devirtualization consists of transforming a virtual method call to a direct method call when possible. A
virtual method call is a call to a non-private instance method declared either in an interface or in a class. The Core
Engine determines the proper method to call at runtime depending on the actual class of the object. A call to a
constructor or a private method is already optimized as a direct method call by the Java compiler.

SOAR automatically optimizes a virtual method call to a direct method call if there is one and only one embedded
implementation method.

Note: SOAR generates the list of the embeddedmethods in the SOAR Information File.

5.3.4 Method Inlining

Method inlining consists of replacing a direct method call with the content of themethod. This avoids the creation
of a new stack frame context, which can be slower than executing the code itself. Method inlining is transitively
applied from leaf to root methods.

The following method code patterns are inlined:

• empty code a�er processing assertions and if code removal.

• call to a constructor with no parameters.

• call to a private method with no parameters.

• call to a static method with no parameters, if and only if the caller is also a static method.

Note: Method inlining is performed a�ermethod devirtualization, so a virtual method call will be inlined if there is
a unique embedded implementation method that matches one of the inlinedmethod code patterns.

5.3. SOAR 400

MicroEJ Documentation, Revision 32bb132e

5.3.5 Binary Code Verifier

The Binary Code Verifier is the tool that scrutinizes the bytecode instructions for adherence to strict rules and con-
straints. This process is crucial for preventing runtime errors, security vulnerabilities, and unexpected behavior. It
ensures that code loaded by the SOAR is in a consistent state before being linked. Consequently, this guarantees
the safe execution of the code by the Core Engine.

Fig. 1: Application Build Flow with Binary Code Verifier

The Binary Code Verifier performs tasks including:

• Type Checking: Verifying that variables and operands are used in a manner consistent with their declared
data types, preventing type-related errors at runtime.

• Bytecode Structure: Ensuring the bytecode is well-formed and follows the structure required by the JVM,
which helps prevent memory corruption and crashes.

• Stack Management: Checking that the operand stack used for calculations and evaluations is properly man-
aged to prevent stack overflows or underflows.

• Access Control: Verifying that class accesses and method invocations adhere to Java’s access control rules,
ensuring data encapsulation and security.

• Exception Handling: Validating that exception handlers are correctly defined and that exceptions are caught
and handled appropriately.

• Control Flow: Analyzing the flow of control within bytecode to detect anomalies in loops, branches, and
jumps that could lead to program instability.

A default implementation, derived from the Apache BCEL Project, is included in the SOAR. If you wish to integrate
an alternative implementation, contact our support team for access to the SOAR interface API and integration in-
structions.

Note: The Binary Code Verifier is enabled by default when building a Sandboxed Application, and disabled by

5.3. SOAR 401

https://commons.apache.org/proper/commons-bcel/
https://www.microej.com/contact/#form_2

MicroEJ Documentation, Revision 32bb132e

default when building a Standalone Application. See Option(checkbox): Enable Bytecode Verifier for more details.

5.4 SOAR Output Files

When building a Standalone Application, multiple files are generated next to the ELF executable file.

5.4.1 Launch Output Folder

Using aMicroEJ Application Launch, the files are generated in a folder which is named like themain type andwhich
is located in the output folder specified in the run configuration.

Build Output Files (Architecture 8.x)

Build Output Files (Architecture 7.x)

5.4. SOAR Output Files 402

MicroEJ Documentation, Revision 32bb132e

5.4.2 Published Module Files

A�er building the Standalone Application, the publishedmodule contains the following main files:

• [name]-[version].out : Firmware (ELF Executable)

• [name]-[version].zip : Virtual Device

• [name]-[version]-workingEnv.zip : Build intermediate files, including the content of the launch output
Folder

Fig. 2: Published Standalone Application Module Files

5.4. SOAR Output Files 403

MicroEJ Documentation, Revision 32bb132e

5.4.3 The SOARMap File

The .map file lists every embedded symbol of the application (section, Java class or method, etc.) and its size in
ROM or RAM. Since Architecture 8.x , this file is called <main class>.map . It was formerly named SOAR.map for
Architecture 7.x . This file can be opened using theMemory Map Analyzer.

The embedded symbols are grouped intomultiple categories. For example, the Object class and its methods are
grouped in the LibFoundationEDC category. For each symbol or each category, you can see its size in ROM (Image
Size) and RAM (Runtime Size).

TheSOARgroups all the Java strings in the same section,which appears in the ApplicationStrings category. The
sameapplies to the static fields (Statics category), the types (Types category), and the class names (ClassNames
category).

5.4.4 The SOAR Information File

The SOAR information file contains details on the embedded elements of an application.

Since Architecture 8.x , information are dispatched in separate files which are related to SOAR build phases:

• soar/<main class>.loadermap : generated by the SOAR Resolver. It provides details on files and resources
that have been loaded from the Application Classpath.

• soar/<main class>.selectormap : generated by the SOAR Resolver. It provides details about the elements
that have been included in the application.

• soar/<main class>.optimizermap : generated by the SOAR Optimizer. It provides details about the ele-
ments that have been linked in the application.

Each of these files can be opened with an XML editor. The following table describes the information that can be
retrieved with their file location.

The SOAR Information File (Architecture 8.x)

The SOAR Information File (Architecture 7.x)

5.4. SOAR Output Files 404

MicroEJ Documentation, Revision 32bb132e

Information XML Location (tag > subtag
[attribute=value])

File Location

Classpath classpath soar/<main class>.loadermap
Resources resources soar/<main class>.loadermap
External resources external_resources soar/<main class>.loadermap
System properties properties soar/<main class>.loadermap
Constants constants soar/<main class>.loadermap
Immutables N/A N/A
Interned strings strings soar/<main class>.selectormap
Class initialization order clinit soar/<main class>.selectormap
Types types soar/<main class>.selectormap
Number of types types>[nb] soar/<main class>.selectormap
Number of concrete
classes

types[nbConcreteClasses] soar/<main class>.selectormap

Number of abstract
classes

types[nbAbstractClasses] soar/<main class>.selectormap

Number of interfaces types[nbInterfaces] soar/<main class>.selectormap
Number of arrays types[nbArrays] soar/<main class>.selectormap
Class instance size (in
bytes)

types>type[instanceSize] soar/<main class>.optimizermap

Type embeds its name types>type[hasRuntimeName
= true]

soar/<main class>.selectormap

Type is exposed as Kernel
API

types>type[api=true] soar/<main class>.selectormap

Number of reference
fields in a class

types>type[nbReferenceFields]soar/<main class>.optimizermap

Methods methods soar/<main class>.selectormap
Method code size (in
bytes)

methods>method[codesize] soar/<main class>.optimizermap

Method is inlined methods>method[inlined=true]soar/<main class>.optimizermap
Method is exposed as Ker-
nel API

methods>method[api=true] soar/<main class>.selectormap

Statics fields statics soar/<main class>.selectormap

5.4. SOAR Output Files 405

MicroEJ Documentation, Revision 32bb132e

Information XML
tag>subtag[attribute=value]

File

Classpath classpath soar/<main class>.xml
Resources selected_resources soar/<main class>.xml
External resources external_resources soar/<main class>.xml
System properties java_properties soar/<main class>.xml
Constants constants soar/<main class>.xml
Immutables selected_immutables soar/<main class>.xml
Interned strings selected_internStrings soar/<main class>.xml
Class initialization order clinit_order soar/<main class>.xml
Types selected_types soar/<main class>.xml
Number of types selected_types[nb] soar/<main class>.xml
Number of concrete
classes

selected_types[nbConcreteClasses]soar/<main class>.xml

Number of abstract
classes

selected_types[nbAbstractClasses]soar/<main class>.xml

Number of interfaces selected_types[nbInterfaces]soar/<main class>.xml
Number of arrays selected_types[nbArrays] soar/<main class>.xml
Class instance size (in
bytes)

selected_types>type[instanceSize]soar/<main class>.xml

Type embeds its name required_types soar/<main class>.xml
Type is exposed as Kernel
API

selected_types>type[api=true]soar/<main class>.xml

Number of reference
fields in a class

selected_types>type[nbReferenceFields]soar/<main class>.xml

Methods selected_methods soar/<main class>.xml
Method code size (in
bytes)

selected_methods>method[codesize]soar/<main class>.xml

Method is inlined selected_methods>method[inlined=true]soar/<main class>.xml
Method is exposed as Ker-
nel API

selected_methods>method[api=true]soar/<main class>.xml

Statics fields selected_static_fields soar/<main class>.xml

5.5 Virtual Device

The Virtual Device includes the same custom MicroEJ Core, libraries, and pre-installed Applications as the real
device. The Virtual Device allows developers to run their applications either on the Simulator, or directly on the
real device through local deployment.

The Simulator runs a mockup board support package (BSP Mock) that mimics the hardware functionality. An ap-
plication on the Simulator is run as a Standalone Application.

Before an application is locally deployed on device, the SDK ensures that it does not depend on any API that is
unavailable on the device.

5.5. Virtual Device 406

MicroEJ Documentation, Revision 32bb132e

Fig. 3: MicroEJ Virtual Device Architecture

5.6 MicroEJ Classpath

MicroEJ Applications run on a target device and their footprint is optimized to fulfill embedded constraints. The
final execution context is an embedded device that may not even have a file system. Files required by the appli-
cation at runtime are not directly copied to the target device, they are compiled to produce the application binary
code which will be executed by MicroEJ Core Engine.

As a part of the compile-time trimming process, all types not required by the embedded application are eliminated
from the final binary.

MicroEJ Classpath is a developer defined list of all places containing files to be embedded in the final application
binary. MicroEJ Classpath is made up of an ordered list of paths. A path is either a folder or a zip file, called a JAR
file (JAR stands for Java ARchive).

• Application Classpath explains how the MicroEJ Classpath is built from a MicroEJ Application project.

• Classpath Load Model explains how the application contents is loaded fromMicroEJ Classpath.

• Classpath Elements specifies the di�erent elements that can be declared in MicroEJ Classpath to describe
the application contents.

5.6. MicroEJ Classpath 407

MicroEJ Documentation, Revision 32bb132e

5.6.1 Application Classpath

The following schema shows the classpath mapping from a MicroEJ Application project to the MicroEJ Classpath
ordered list of folders and JAR files. The classpath resolution order (le� to right) follows the project appearance
order (top to bottom).

Fig. 4: MicroEJ Application Classpath Mapping

Note: For Sandboxed Applications, when a library cannot be added as a dependency (because it is not available in
a repository for example), its JAR file can be directly added in the META-INF/libraries folder of the Application
project. It is then automatically added in the compilation classpath and is available for the Application.

5.6. MicroEJ Classpath 408

MicroEJ Documentation, Revision 32bb132e

5.6.2 Classpath Load Model

A MicroEJ Application classpath is created via the loading of :

• an entry point type,

• all *.[extension].list files declared in a MicroEJ Classpath.

Thedi�erentelements that constituteanapplicationaredescribed inClasspathElements. Theyare searchedwithin
MicroEJ Classpath from le� to right (the first file found is loaded). Types referenced by previously loaded MicroEJ
Classpath elements are loaded transitively.

Fig. 5: Classpath Load Principle

5.6.3 Classpath Elements

The MicroEJ Classpath contains the following elements:

• An entrypoint described in section Application Entry Points;

• Types in .class files, described in section Types;

• Immutables Object data files, described in Section Immutable Objects;

• Raw Resources, Images, Fonts and Native Language Support (NLS) described in Application Resources;

• *.[extension].list files, declaring contents to load. Supported list file extensions and format is specific
to declared application contents and is described in the appropriate section.

At source level, Java types are stored in src/main/java folder of themodule project, any other kind of resources
and list files are stored in the src/main/resources folder.

5.6. MicroEJ Classpath 409

MicroEJ Documentation, Revision 32bb132e

Application Entry Points

MicroEJ Application entry point declaration di�ers depending on the application kind:

• In case of a Standalone Application, it is a class that contains a public static void main(String[])
method, declared using the option application.main.class .

• In case of a Sandboxed Application, it is a class that implements ej.kf.FeatureEntryPoint, declared using the
entryPoint property in the .kf file in the src/main/resources/ folder.

Types

MicroEJ types (classes, interfaces) are compiled from source code (.java) to classfiles (.class). When a type is
loaded, all types dependencies found in the classfile are loaded (transitively).

A type can be declared as a Required type in order to enable the following usages:

• to be dynamically loaded from its name (with a call to Class.forName(String));

• to retrieve its fully qualified name (with a call to Class.getName()).

• when Tiny-Sandbox capability is enabled, to retrieve its package (with a call to Class.getPackage()).

A type that is not declared as a Required typemay not have its fully qualified name (FQN) embedded. Its FQN can
be retrieved using the stack trace reader tool (see Stack Trace Reader).

Required Types are declared in MicroEJ Classpath using *.types.list files. The file format is a standard Java
properties file, each line listing the fully qualified name of a type. Example:

The following types are marked as MicroEJ Required Types
com.mycompany.MyImplementation
java.util.Vector

Resources

Resources are binary files that need to be embedded by the application.

Note: For more details on all supported resources types, please refer to Application Resources chapter.

Raw resources are resources that can be dynamically retrieved with a call to
java.lang.Class.getResourceAsStream(String). Raw Resources are declared in *.resources.list files (and
in *.externresources.list for external resources, see Application Resources).

5.6. MicroEJ Classpath 410

https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/FeatureEntryPoint.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#forName-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#getName--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#getPackage--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#getResourceAsStream-java.lang.String-

MicroEJ Documentation, Revision 32bb132e

Raw Resource

internal?

*.resources.list

yes

*.resources.list +
*.externresources.list

no=external

The file format is a standard Java properties file, each line is a relative / separated name of a file in MicroEJ Class-
path to be embedded as a resource. Example:

The following resource is embedded as a raw resource
com/mycompany/MyResource.txt

A resource is 4-bytes aligned in memory by default. Starting from Architecture 8.0.0, it is possible to modify the
alignment constraint. Example:

The following resource is linked to a 32-bytes aligned address in memory.
com/mycompany/MyResource.txt:32

Note: If a Resource is declared multiple times in the classpath, the alignment constraint with the highest value is
used. If the alignment constraints are specific to the target, it is recommended to only declare them in the Appli-
cation project instead of libraries.

Immutable Objects

Immutables objects are regular read-only objects that canbe retrievedwith a call to ej.bon.Immutables.get(String).
Immutables objects are declared in files called immutable objects data files, which format is described in the [BON]
specification. Immutables objects data files are declared inMicroEJClasspath using *.immutables.list files. The
file format is a standard Java properties file, each line is a / separated name of a relative file in MicroEJ Classpath
to be loaded as an Immutable objects data file. Example:

The following file is loaded as an Immutable objects data files
com/mycompany/MyImmutables.data

5.6. MicroEJ Classpath 411

https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Immutables.html#get-java.lang.String-

MicroEJ Documentation, Revision 32bb132e

System Properties

System Properties are key/value string pairs that can be accessed with a call to System.getProperty(String).

System Properties are defined when building a Standalone Application, by declaring *.properties.list files in
MicroEJ Classpath.

The file format is a standard Java properties file. Example:

Listing 1: Example of Contents of a MicroEJ Properties File

The following property is embedded as a System property
com.mycompany.key=com.mycompany.value
microedition.encoding=ISO-8859-1

System Properties are resolved at runtime, and all declared keys and values are embedded as intern Strings.

SystemProperties can alsobedefinedusing StandaloneApplicationOptions. This canbedoneby setting the option
with a specific prefix in their name:

• Properties for both the MicroEJ Core Engine and the MicroEJ Simulator : name starts with microej.java.
property.*

• Properties for the MicroEJ Simulator: name starts with sim.java.property.*

• Properties for the MicroEJ Core Engine: name starts with emb.java.property.*

For example, to define the property myProp with the value theValue , set the following option :

Listing 2: Example of MicroEJ System Property Definition as Applica-
tion Option

microej.java.property.myProp=theValue

Option can also be set in the VM arguments field of the JRE tab of the launch using the -D option (e.g. -Dmicroej.
java.property.myProp=theValue).

Note: When building a Sandboxed Application, *.properties.list files found in MicroEJ Classpath are silently
skipped.

Constants

Note: This feature require [BON] version 1.4 which is available in MicroEJ Runtime starting from MicroEJ Archi-
tecture version 7.11.0 .

Constants are key/value string pairs that can be accessed with a call to ej.bon.Constants.get[Type](String), where
Type if one of:

• Boolean,

• Byte,

• Char,

• Class,

• Double,

5.6. MicroEJ Classpath 412

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#getProperty-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Constants.html

MicroEJ Documentation, Revision 32bb132e

• Float,

• Int,

• Long,

• Short,

• String.

Constants are declared inMicroEJ Classpath *.constants.list files. The file format is a standard Java properties
file. Example:

Listing 3: Example of Contents of a BON constants File

The following property is embedded as a constant
com.mycompany.myconstantkey=com.mycompany.myconstantvalue

Constants are resolved at binary level without having to recompile the sources.

At link time, constants are directly inlined at the place of Constants.get[Type] method calls with no cost.

The String key parameter must be resolved as an inlined String:

• either a String literal "com.mycompany.myconstantkey"

• or a static final String field resolved as a String constant

The String value is converted to the desired type using conversion rules described by the [BON] API. A boolean
constant declared in an if statement condition can be used to fully remove portions of code. This feature is
similar to C pre-processors #ifdef directive with the di�erence that this optimization is performed at binary level
without having to recompile the sources.

Listing 4: Example of if code removal using a BON boolean constant

if (Constants.getBoolean("com.mycompany.myconstantkey")) {
System.out.println("this code and the constant string will be fully removed when the␣

→˓constant is resolved to 'false'")
}

Please mind that Constants.getXXX must be inlined in the if condition to take e�ect. The following piece of
code will not remove the code:

static final boolean MY_CONSTANT = Constants.getBoolean("com.mycompany.myconstantkey");

...

if(MY_CONSTANT){
System.out.println("this code will not be removed when MY_CONSTANT is resolved to 'false'

→˓")
}

Note: InMulti-Sandbox environment, constants are processed locally within each context. In particular, constants
defined in the Kernel are not propagated to Sandboxed Applications.

5.6. MicroEJ Classpath 413

MicroEJ Documentation, Revision 32bb132e

5.7 Application Resources

An Application resource is the contents of a file identified its relative path from the Application classpath.

An Application resource is one of the following type:

• Raw Resource,

• Image,

• Font,

• Internationalized Message (Native Language Support).

The resource may be stored in RAM, flash, or external flash; and it is the responsibility of the Core Engine and/or
the BSP to retrieve and load it.

There are two ways to store resources:

• Internal resource: The resource is taken into consideration during the Application build. The SOAR step loads
the resource and copies it into the same C library as the Application. Like the Application, the resource is
linked into the CPU address space range (internal device memories, external parallel memories, etc.).

• External resource: The resource is not taken into consideration during the Application build. It is the respon-
sibility of the BSP project to manage external resources. The resource is o�en programmed outside the CPU
address space range (storage media like SD card, serial NOR flash, EEPROM, etc.).

The BSP must implement the proper Low Level API (LLAPI) C functions: LLEXT_RES_impl.h . See External
Resources Loader for more information on the implementation.

All resources must be added in the project, usually in src/main/resources/... folder. All resources must be
declared in the appropriate *.list files depending on the type (raw, image, font, NLS) and the storage location
(internal or external). The following figure summarized how to declare resources:

Raw Resource Image Font NLS

Add resource to project
in src/main/resources/...

Type of resource?

internal? internal? internal? internal?

*.resources.list

yes

*.resources.list +
*.externresources.list

no=external

*.images.list

yes

*.imagesext.list

no=external

*.fonts.list

yes

*.fontsext.list

no=external

*.nls.list

yes

*.nls.list +
*.externresources.list

no=external

For more details on how to use Application resources, refer to the following dedicated sections:

• Raw Resource

• Image

• Font

• Internationalized String (Native Language Support)

5.7. Application Resources 414

MicroEJ Documentation, Revision 32bb132e

5.8 Standalone Application

5.8.1 Introduction

A Standalone Application is a Java Application directly linked to the C code to produce an Executable. Such an
application must define a main entry point (i.e., a class containing a public static void main(String[])
method).

The following figure shows the general process of building a Standalone Application to an Executable.

Fig. 6: Standalone Application Link Flow

5.8.2 Standalone Application Options

To run a Standalone Application on a VEE Port, a set of options must be defined. Options can be of di�erent types:

• Memory Allocation options (e.g., set the Java Heap size). These options are usually called link-time options.

• Simulator & Debug options (e.g., enable periodic Java Heap dump).

• Deployment options (e.g., copy microejapp.o to a suitable BSP location).

• Foundation Library specific options (e.g., embed UTF-8 encoding).

The following section describes options provided by the latest Architecture version. Please consult the appropriate
Pack(s) documentation for options related to other Foundation Libraries (MicroUI, NET, SSL, FS, . . .) integrated to
your VEE Port.

5.8. Standalone Application 415

MicroEJ Documentation, Revision 32bb132e

Notice that some options may not be supported by your VEE Port, in the following cases:

• Option is specific to the Core Engine capability (tiny/mono/multi).

• Option is specific to the target (Core Engine or Simulator).

• Option has been introduced in a newer Architecture version.

5.8.3 Defining an Option with SDK 6

With the SDK 6, the Applications options can be defined in a properties file located in the configuration folder of
the project. Usually, the options are defined in a file named common.properties , but all properties files located
in this folder are loaded, nomatter what their name is.

To set an option in a properties file, open the file in a text editor and add a line to set the desired option to the
desired value, for example:

soar.generate.classnames=false

5.8.4 Defining an Option with SDK 5 or lower

With the SDK5or lower, a StandaloneApplication option canbedefined either froma launcher or fromaproperties
file. It is alsopossible touseboth together. EachMicroEJArchitectureandMicroEJPackoptioncomeswithadefault
value, which is used if the option has not been set by the user.

Using a Launcher

To set an option in a launcher, perform the following steps:

1. In the SDK, select Run > Run Configurations. . . menu,

2. Select the launcher of the application under MicroEJ Application or create a new one,

3. Select the Configuration tab,

4. Find thedesired option and set it to thedesired value. If the optiondoes not appear in thepage, there are two
cases: - the option has been introduced in a newer Architecture version, - the option is an advanced option.
It is set using a system property in the JRE Tab . See the JRE Tab section for more details.

It is recommended to index the launcher configuration to your version control system. To export launcher options
to the filesystem, perform the following steps:

1. Select the Common tab,

2. Select the Shared file: option and browse the desired export folder,

3. Press the Apply button. A file named [launcher_configuration_name].launch is generated in the ex-
port folder.

5.8. Standalone Application 416

MicroEJ Documentation, Revision 32bb132e

Using a Properties File

Options can be also be defined in properties files.

When a Standalone Application is built using the firmware-singleapp skeleton, options are loaded from proper-
ties files located in the build folder at the root of the project.

The properties files are loaded in the following order:

1. Every file matching build/sim/*.properties , for Simulator options only (Virtual Device build). These files
are optional.

2. Every file matching build/emb/*.properties , for Device options only (Firmware build). These files are
optional.

3. Every filematching build/*.properties , both forSimulator andDeviceoptions. At leastone file is required.

Usually, the build folder contains a single file named common.properties .

In case an option is defined in multiple properties files, the option of the first loaded file is taken into account and
the same option defined in the other files is ignored (a loaded option cannot be overridden).

The figure below shows the expected tree of the build folder:

Fig. 7: Build Options Folder

It is recommended to index the properties files to your version control system.

To set an option in a properties file, open the file in a text editor and add a line to set the desired option to the
desired value. For example: soar.generate.classnames=false .

To use the options declared in properties files in a launcher, perform the following steps:

1. In the SDK, select Run > Run Configurations. . . ,

2. Select the launcher of the application,

3. Select the Execution tab,

4. Under Option Files , press the Add. . . button,

5. Browse the sim.properties file for Simulator or the emb.properties file for Device (if any) and press
Open button,

6. Add the common.properties file and press the Open button.

Note: An option set in a properties file can not be modified in the Configuration tab. Options are loaded in the
order the properties files are added (you can use Up and Down buttons to change the file order). In Configuration

5.8. Standalone Application 417

MicroEJ Documentation, Revision 32bb132e

tab, hovering the pointer over an option field will show the location of the properties file that defines the option.

Generating a Properties File

In order to export options defined in a .launch file to a properties file, perform the following steps:

1. Select the [launcher_configuration_name].launch file,

2. Select File > Export > MicroEJ > Launcher as Properties File ,

3. Browse the desired output .properties file,

4. Press the Finish button.

Warning: The Simulator uses some system properties to configure internal memory limits. See Group: Ad-
vanced Simulation Options for more information.

5.8.5 Category: Runtime

Group: Types

Option(checkbox): Embed all type names

Option Name: soar.generate.classnames

Default value: true

Description:

Embed the name of all types. When this option is disabled, only names of declared required types are embedded.

5.8. Standalone Application 418

MicroEJ Documentation, Revision 32bb132e

Group: Assertions

Option(checkbox): Execute assertions on Simulator

Option Name: core.assertions.sim.enabled

Default value: false

Description:

When this option is enabled, assert statements are executed. Please note that the executed code may produce
side e�ects or throw java.lang.AssertionError .

Option(checkbox): Execute assertions on Device

Option Name: core.assertions.emb.enabled

Default value: false

Description:

When this option is enabled, assert statements are executed. Please note that the executed code may produce
side e�ects or throw java.lang.AssertionError .

Group: Trace

Option(checkbox): Enable execution traces

Option Name: core.trace.enabled

Default value: false

Option(checkbox): Start execution traces automatically

Option Name: core.trace.autostart

Default value: false

5.8. Standalone Application 419

MicroEJ Documentation, Revision 32bb132e

Category: Memory

Group: Heaps

Option(text): Java heap size (in bytes)

Option Name: core.memory.javaheap.size

Default value: 65536

Description:

Specifies the Java heap size in bytes.

A Java heap contains live Java objects. An OutOfMemory error can occur if the heap is too small.

Option(text): Immortal heap size (in bytes)

Option Name: core.memory.immortal.size

Default value: 4096

Description:

Specifies the Immortal heap size in bytes.

The Immortal heap contains allocated Immortal objects. An OutOfMemory error can occur if the heap is too small.

5.8. Standalone Application 420

MicroEJ Documentation, Revision 32bb132e

Group: Threads

Description:

This group allows the configuration of application and library thread(s). A thread needs a stack to run. This stack
is allocated from a pool and this pool contains several blocks. Each block has the same size. At thread startup the
thread uses only one block for its stack. When the first block is full it uses another block. Themaximum number of
blocks per thread must be specified. When the maximum number of blocks for a thread is reached or when there
is no free block in the pool, a StackOverflow error is thrown. When a thread terminates all associated blocks are
freed. These blocks can then be used by other threads.

Option(text): Number of threads

Option Name: core.memory.threads.size

Default value: 5

Description:

Specifies the number of threads the application will be able to use at the same time.

Option(text): Number of blocks in pool

Option Name: core.memory.threads.pool.size

Default value: 15

Description:

Specifies the number of blocks in the stacks pool.

Option(text): Block size (in bytes)

Option Name: core.memory.thread.block.size

Default value: 512

Description:

Specifies the thread stack block size (in bytes).

Option(text): Maximum size of thread stack (in blocks)

Option Name: core.memory.thread.max.size

Default value: 4

Description:

Specifies themaximum number of blocks a thread can use. If a thread requires more blocks a StackOverflow error
will occur.

5.8. Standalone Application 421

MicroEJ Documentation, Revision 32bb132e

5.8.6 Category: Simulator

Group: Options

Description:

This group specifies options for MicroEJ Simulator.

Option(checkbox): Use target characteristics

Option Name: s3.board.compliant

Default value: false

Description:

When selected, this option forces the MicroEJ Simulator to use the MicroEJ Platform exact characteristics. It sets
the MicroEJ Simulator scheduling policy according to the MicroEJ Platform one. It forces resources to be explicitly
specified. It enables log trace and gives information about the RAMmemory size the MicroEJ Platform uses.

Option(text): Slowing factor (0means disabled)

Option Name: s3.slow

Default value: 0

Description:

Format: Positive integer

This option allows the MicroEJ Simulator to be slowed down in order to match the MicroEJ Platform execution
speed. The greater the slowing factor, the slower the MicroEJ Simulator runs.

5.8. Standalone Application 422

MicroEJ Documentation, Revision 32bb132e

Group: HIL Connection

Description:

This group enables the control of HIL (Hardware In the Loop) connection parameters (connection betweenMicroEJ
Simulator and the Mocks).

Option(checkbox): Specify a port

Option Name: s3.hil.use.port

Default value: false

Description:

When selected allows the use of a specific HIL connection port, otherwise a random free port is used.

Option(text): Port

Option Name: s3.hil.port

Default value: 8001

Description:

Format: Positive integer

Values: [1024-65535]

It specifies the port used by the MicroEJ Simulator to accept HIL connections.

Option(text): Timeout (s)

Option Name: s3.hil.timeout

Default value: 10

Description:

Format: Positive integer

It specifies the time the MicroEJ Simulator should wait before failing when it invokes native methods.

Option(text): Maximum frame size (bytes)

Option Name: com.microej.simulator.hil.frame.size

Default value: 262144

Description:

Maximum frame size in bytes. Must be increased to transfer large arrays to native side.

5.8. Standalone Application 423

MicroEJ Documentation, Revision 32bb132e

Group: Shielded Plug server configuration

Description:

This group allows configuration of the Shielded Plug database.

Option(text): Server socket port

Option Name: sp.server.port

Default value: 10082

Description:

Set the Shielded Plug server socket port.

Group: Advanced Simulation Options

When running large applications, the Simulator can abruptly reach a memory limit with the following trace:

[...] An error message [...]
"Internal limits reached. Please contact support@microej.com"
See error log file: /tmp/microej/s3/s3_1616489929186.log

Depending on the error message, one of the following optionsmust be set to increase the size of thememory area
which is full.

Option: Objects Heap Size

Error Message: java.lang.OutOfMemoryError exception thrown

Option Name: S3.JavaMemory.HeapSize

Default value: 4096 (kilobytes)

Description:

Thismemory area contains any kind of objects (regular, immortal and immutable objects). If you get a java.lang.
OutOfMemoryError exception but your Java Heap is not full, most likely you should augment this option. It must
be greater than the sum of Java Heap and Immortal Heap.

Option: System Chars Size

Error Message: Failed to allocate internString.

Option Name: S3.JavaMemory.SystemCharsSize

Default value: 1024 (kilobytes)

Description:

Thismemory area contains system interned strings. System interned strings are likely allocated by the debugger. If
you get a Failed to allocate internString. message while debugging an Application, most likely you should
augment this option.

5.8. Standalone Application 424

MicroEJ Documentation, Revision 32bb132e

Option: Application Chars Size

Error Message: Failed to allocate internString.

Option Name: S3.JavaMemory.ApplicationCharsSize

Default value: 4096 (kilobytes)

Description:

This memory area contains Application interned strings (String literals). If you get a Failed to allocate
internString. message while the Simulator is starting the Application, most likely you should augment this op-
tion.

Option: Methods Size

Error Message: Failed to allocate method's code.

Option Name: S3.JavaMemory.MethodsSize

Default value: 10000 (kilobytes)

Description:

This memory area contains loadedmethods code.

Option: Thread Stack Size

Error Message: The simulator has encountered a stack overflow error while analyzing method [...]

Option Name: S3.JavaMemory.ThreadStackSize

Default value: 300 (kilobytes)

Description:

This memory area contains all Application threads stacks.

Option: Icetea Heap End

Error Message: S3 internal heap is full.

Option Name: IceteaRuntimeSupport.S3.HeapEnd

Default value: 64000000 (bytes)

Description:

This is the overall Simulator memory limit. It includes fixed sizes internal structures and all memory areas. The
value must be greater than the size of the memory areas that can be parameterized above.

5.8. Standalone Application 425

MicroEJ Documentation, Revision 32bb132e

Option: Symbol Table Size

Error Message: Symbols table area is full.

Option Name: S3.SymbolTable.MaxNbState

Default value: 500000

Description:

This is the number of symbols that can be handled by the internal symbol table (any kind of names: class names,
method names, . . .).

Category: Code Coverage

Group: Code Coverage

Description:

This group is used to set parameters of the code coverage analysis tool.

Option(checkbox): Activate code coverage analysis

Option Name: s3.cc.activated

Default value: false

Description:

When selected it enables the code coverage analysis by the MicroEJ Simulator. Resulting files are output in the cc
directory inside the output directory. You canprocess these files to anHTML report a�erwardwith the built-inCode
Coverage Analyzer .

5.8. Standalone Application 426

MicroEJ Documentation, Revision 32bb132e

Option(text): Saving coverage information period (in sec.)

Option Name: s3.cc.thread.period

Default value: 15

Description:

It specifies the period between the generation of .cc files.

Category: Debug

Group: Remote Debug

Option(text): Debug port

Option Name: debug.port

Default value: 12000

Description:

Configures the JDWP debug port.

Format: Positive integer

Values: [1024-65535]

5.8. Standalone Application 427

MicroEJ Documentation, Revision 32bb132e

Category: Heap Dumper

Group: Heap Inspection

Description:

This group is used to specify heap inspection properties.

Option(checkbox): Activate heap dumper

Option Name: s3.inspect.heap

Default value: false

Description:

When selected, this option enables a dump of the heap each time the System.gc() method is called by the MicroEJ
Application.

5.8. Standalone Application 428

MicroEJ Documentation, Revision 32bb132e

Category: Logs

Group: Logs

Description:

This group defines parameters for MicroEJ Simulator log activity. Note that logs can only be generated if the
Simulator > Use target characteristics option is selected.

Some logs are sent when the Simulator executes some specific action (such as start thread, start GC, etc), other
logs are sent periodically (according to defined log level and the log periodicity).

Option(checkbox): system

Option Name: console.logs.level.low

Default value: false

Description:

When selected, System logs are sent when the Simulator executes the following actions:

start and terminate a thread

start and terminate a GC

exit

5.8. Standalone Application 429

MicroEJ Documentation, Revision 32bb132e

Option(checkbox): thread

Option Name: console.logs.level.thread

Default value: false

Description:

When selected, thread information is sent periodically. It gives information about alive threads (status, memory
allocation, stack size).

Option(checkbox): monitoring

Option Name: console.logs.level.monitoring

Default value: false

Description:

When selected, threadmonitoring logs are sent periodically. It gives information about time execution of threads.

Option(checkbox): memory

Option Name: console.logs.level.memory

Default value: false

Description:

When selected, memory allocation logs are sent periodically. This level allows to supervise memory allocation.

Option(checkbox): schedule

Option Name: console.logs.level.schedule

Default value: false

Description:

When selected, a log is sent when the Simulator schedules a thread.

Option(checkbox): monitors

Option Name: console.logs.level.monitors

Default value: false

Description:

When selected, monitors information is sent periodically. This level permits tracing of all thread state by tracing
monitor operations.

5.8. Standalone Application 430

MicroEJ Documentation, Revision 32bb132e

Option(text): period (in sec.)

Option Name: console.logs.period

Default value: 2

Description:

Format: Positive integer

Values: [0-60]

Defines the periodicity of periodical logs.

Category: Mock

Description:

Specify Hardware In the Loop Mock client options

Group: Debug

Option(checkbox): Enable Mock debug

Option Name: com.microej.simulator.hil.debug.enabled

Default value: false

5.8. Standalone Application 431

MicroEJ Documentation, Revision 32bb132e

Option(text): Port

Option Name: com.microej.simulator.hil.debug.port

Default value: 8002

Category: Kernel

Group: Kernel UID

Option(checkbox): Enable

Option Name: com.microej.simulator.kf.kernel.uid.enabled

Default value: false

Option(text): UID

Option Name: com.microej.simulator.kf.kernel.uid

Default value: (empty)

5.8. Standalone Application 432

MicroEJ Documentation, Revision 32bb132e

5.8.7 Category: Libraries

Category: EDC

Group: Java System.out

5.8. Standalone Application 433

MicroEJ Documentation, Revision 32bb132e

Option(checkbox): Use a custom Java output stream

Option Name: core.outputstream.disable.uart

Default value: false

Description:

Select this option to specify another Java System.out print stream.

If selected, the default Java output stream is not used by the Java application. The Core Engine will not use the
default Java output stream at startup.

Option(text): Class

Option Name: core.outputstream.class

Default value: (empty)

Description:

Format: Java class like packageA.packageB.className

Defines the Java class used to manage System.out .

At startup the Core Engine will try to load this class using the Class.forName() method. If the given class is not
available, itwill use thedefault Javaoutput streamasusual. The specified classmustbeavailable in theapplication
classpath.

Group: Runtime options

Description:

Specifies the additional classes to embed at runtime.

Option(checkbox): Embed UTF-8 encoding

Option Name: cldc.encoding.utf8.included

Default value: true

Description:

Embed UTF-8 encoding.

Option(checkbox): Enable SecurityManager checks

Option Name: com.microej.library.edc.securitymanager.enabled

Default value: false

Description:

Enable the security manager Permission checks.

5.8. Standalone Application 434

MicroEJ Documentation, Revision 32bb132e

Category: Shielded Plug

Group: Shielded Plug configuration

Description:

Choose the database XML definition.

Option(browse): Database definition

Option Name: sp.database.definition

Default value: (empty)

Description:

Choose the database XML definition.

5.8. Standalone Application 435

MicroEJ Documentation, Revision 32bb132e

Category: External Resources Loader

Group: External Resources Loader

Description:

This group allows to specify the external resources input folder. The content of this folder will be copied in an
application output folder and used by SOAR and the Simulator. If empty, the default location will be [output
folder]/externalResources, where [output folder] is the location defined in Execution tab.

Option(browse):

Option Name: ej.externalResources.input.dir

Default value: (empty)

Description:

Browse to specify the external resources folder..

5.8. Standalone Application 436

MicroEJ Documentation, Revision 32bb132e

5.8.8 Category: Device

Category: Core Engine

Group: Memory

5.8. Standalone Application 437

MicroEJ Documentation, Revision 32bb132e

Option(text): Maximum number of monitors per thread

Option Name: core.memory.thread.max.nb.monitors

Default value: 8

Description:

Specifies the maximum number of monitors a thread can own at the same time.

Option(text): Maximum number of frames dumpers on OutOfMemoryError

Option Name: core.memory.oome.nb.frames

Default value: 5

Description:

Specifies the maximum number of stack frames that can be dumped to the standard output when Core Engine
throws an OutOfMemoryError.

Option(checkbox): Enable Java heap usagemonitoring

Option Name: com.microej.runtime.debug.heap.monitoring.enabled

Default value: false

Option(text): Java heap initial size

Option Name: com.microej.runtime.debug.heap.monitoring.init.size

Default value: 0

Description:

Specify the initial size (in bytes) of the Java Heap.

Group: SOAR

Option(checkbox): Enable Bytecode Verifier

Option Name: soar.bytecode.verifier

Default value: Standalone Application: false , Sandboxed Application: true

Description:

Enables Binary Code Verifier during application build.

In the context of building a Standalone Application, the bytecode verifier is, by default, disabled to prioritize per-
formance. In this case, the code is considered trusted. Conversely, when building a Sandboxed Application, the
bytecode verifier is automatically enabled by default. This is particularly important when dealing with untrusted
third-party code.

5.8. Standalone Application 438

MicroEJ Documentation, Revision 32bb132e

Group: Garbage Collector

Option(text): GCmark stack size

Option Name: com.microej.runtime.core.gc.markstack.levels.max

Default value: 32

Description:

Indicates the quantity of items in theGarbageCollector’smark stack. Themark stack is used by theGarbage Collec-
tor for identifying live objects within the heap through a depth-first search approach. Once themark stack reaches
its capacity, the Garbage Collector proceeds to inspect heap memory, which may slow down garbage collection
performance.

You can receive a notification when the mark stack limit is reached by implementing the following hook:

void LLMJVM_on_GC_MarkStackOverflow_reached(void) {
// When entering here, the GC mark stack is undersized, which may affect GC performance.
// It is recommended to either increase the GC mark stack size or reduce the object graph␣

→˓depth.
}

Category: Kernel

Group: Threads

Option(text): Maximum number of threads per Feature

Option Name: core.memory.feature.max.threads

5.8. Standalone Application 439

MicroEJ Documentation, Revision 32bb132e

Default value: 5

Description:

Specifies the maximum number of threads a Feature is allowed to use at the same time.

Option(text): Feature stop timeout

Option Name: com.microej.runtime.kf.waitstop.delay

Default value: 2000

Description:

Specifies the maximum time allowed for the FeatureEntryPoint.stop() method to return (value in milliseconds).

Group: Features Installation

Option(text): Maximum number of installed Features

Option Name: com.microej.runtime.kernel.dynamicfeatures.max

Default value: 16

Description:

Specifies the maximum number of Features that can be installed to this Kernel (see Kernel.install() method).

Option(text): Code chunk size

Option Name: com.microej.soar.kernel.featurecodechunk.size

Default value: 65536

Description:

Specifies the size in bytes of the code chunk in RAM. See Code Chunk Size section for more details.

Option(text): InputStream transfer bu�er size

Option Name: com.microej.runtime.kf.link.transferbuffer.size

Default value: 512

Description:

Specifies the size in bytes of the temporary byte array for reading in the Feature InputStream. See InputStream
Transfer Bu�er Size section for more details.

5.8. Standalone Application 440

https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/FeatureEntryPoint.html#stop--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#install-java.io.InputStream-

MicroEJ Documentation, Revision 32bb132e

Option(text): Maximum number of relocations applied simultaneously

Option Name: com.microej.runtime.kf.link.chunk.relocations.count

Default value: 128

Group: Feature Portability Control

Option(checkbox): Enable Feature Portability Control

Option Name: com.microej.soar.kernel.featureportabilitycontrol.enabled

Default value: false

Option(browse): Kernel Metadata File

Option Name: com.microej.soar.kernel.featureportabilitycontrol.metadata.path

Default value: (empty)

Description:

Specifies the path to the Kernel metadata file for Feature Portability Control.

Category: Watchdog

Option(checkbox): Enable watchdog support

Option Name: enable.watchdog.support

Default value: true

5.8. Standalone Application 441

MicroEJ Documentation, Revision 32bb132e

Group: Watchdog

Option(text):

Option Name: maximum.active.watchdogs

Default value: 4

Description:

Specifies the maximum number of active watchdogs at the same time.

Category: Deploy

Description:

Configures the output locations where store the Application, the Architecture libraries and Abstraction Layer
header files.

See Board Support Package (BSP) connection chapter for more details.

Group: Configuration

Option(checkbox): Deploy the Application (microejapp.o) at a location known by the 3rd-party BSP project.

Option Name: deploy.bsp.microejapp

Default value: true

Description:

Deploy the Application (microejapp.o) at a location known by the 3rd-party BSP project.

5.8. Standalone Application 442

MicroEJ Documentation, Revision 32bb132e

Option(browse):

Option Name: deploy.dir.microejapp

Default value: (empty)

Description:

Choose an output folder where to deploy the Application. An empty value means no deployment (file is available
in the Application output folder).

Option(checkbox): Deploy the Architecture library (microejruntime.a) at a location known by the 3rd-party
BSP project.

Option Name: deploy.bsp.microejlib

Default value: true

Description:

Deploy the Architecture library (microejruntime.a) at a location known by the 3rd-party BSP project.

Option(browse):

Option Name: deploy.dir.microejlib

Default value: (empty)

Description:

Choose an output folder where to deploy the Architecture library. An empty value means no deployment (file is
available in the Application output folder).

Option(checkbox): Deploy the Abstraction Layer header files (*.h) at a location knownby the 3rd-party BSP
project.

Option Name: deploy.bsp.microejinc

Default value: true

Description:

Deploy the Abstraction Layer header files (*.h) at a location known by the 3rd-party BSP project.

Option(browse):

Option Name: deploy.dir.microejinc

Default value: (empty)

Description:

Choose an output folder where to deploy the Architecture library. An empty value means no deployment (file is
available in the Application output folder).

5.8. Standalone Application 443

MicroEJ Documentation, Revision 32bb132e

Option(checkbox): Execute the MicroEJ build script (build.bat) at a location known by the 3rd-party BSP
project.

Option Name: deploy.bsp.microejscript

Default value: false

Description:

Execute the MicroEJ build script (build.bat) at a location known by the 3rd-party BSP project.

Option(browse):

Option Name: deploy.dir.microejscript

Default value: (empty)

Description:

Choose an output folder where is located theMicroEJ build script (build.bat) to execute. An empty valuemeans no
execution.

Option(browse):

Option Name: deploy.bsp.root.dir

Default value: (empty)

Description:

Choose an output folder where is located the 3rd-party BSP project. An empty value means not set (3rd-party BSP
project location may have been configured by the VEE Port).

5.8. Standalone Application 444

MicroEJ Documentation, Revision 32bb132e

5.8.9 Category: Feature

Description:

Specify Feature options

Group: Build

Option(text): Output Name

Option Name: feature.output.basename

Default value: application

Option(browse): Kernel

Option Name: kernel.filename

Default value: (empty)

5.9 Sandboxed Application

5.9.1 Fundamental Concepts

Multi-Sandboxing is based on the the Kernel & Features Specification (KF).

It allows an application code to be split betweenmultiples parts:

• the main application, called the Kernel,

5.9. Sandboxed Application 445

MicroEJ Documentation, Revision 32bb132e

• zero or more applications called Features.

Therefore, a Kernel Application relates to the Kernel concept and a Sandboxed Application relates to the Feature
concept.

Some fundamental points:

• The Kernel is mandatory. It is assumed to be reliable, trusted and cannot be modified.

• A Feature is an application “extension” managed by the Kernel.

• A Feature is fully controlled by the Kernel: it can be installed (dynamically or statically pre-installed), started,
stopped and uninstalled at any time independent of the system state (particularly, a Feature never depends
on another Feature to be stopped).

• A Feature is optional, potentially not-trusted, maybe unreliable and can be executed without jeopardizing
the safety of the Kernel execution and other Features.

• Resources accesses (RAM, hardware peripherals, CPU time, . . .) are under control of the Kernel.

Note: You can go further by reading the Kernel & Features Specification.

5.9.2 Shared Interfaces

Principle

The Shared Interfacemechanismprovided by the Core Engine is an object communication bus based on plain Java
interfaces where method calls are allowed to cross Sandboxed Applications boundaries without relying on Kernel
APIs.

The Shared Interfacemechanism is the cornerstone for designing reliable Service Oriented Architectures. Commu-
nication is based on the sharing of interfaces defining APIs (Contract Oriented Programming).

The basic schema:

• A provider application publishes an implementation for a shared interface into a system registry.

• A user application retrieves the implementation from the system registry and directly calls the methods de-
fined by the shared interface.

Fig. 8: Shared Interface Call Mechanism

The Shared Interface mechanism is based on automatic proxy objects created by the Core Engine. This o�ers a
reliable way for users to handle broken links in case the provider application has been stopped or uninstalled.

5.9. Sandboxed Application 446

MicroEJ Documentation, Revision 32bb132e

Applications with a Shared Interface must provide a dedicated implementation (called the Proxy class implemen-
tation). Its main goal is to perform the remote invocation and provide a reliable implementation regarding the in-
terface contract even if the remote application fails to fulfill its contract (unexpected exceptions, application killed,
. . .). The Core Engine will allocate instances of this Proxy class when an implementation (of the Shared Interface)
owned by another application is being transferred to this application.

Fig. 9: Shared Interfaces Proxy Overview

This mecanism is formally specified in the [KF] specification.

Shared Interface Usage

Usage of a Shared Interface follows these steps:

1. Define the Shared Interface:

1. Define the Java interface

2. Implement the proxy for the interface

3. Register the interface as a Shared Interface

2. From the provider application,

1. Create an instance of this Shared Interface

2. Register the instance to a KF service registry

3. From the consumer application,

1. Retrieve a proxy of the instance from the KF service registry

2. Call methods of the instance proxy.

Define the Shared Interface

Define the Java Interface

The definition of a Shared Interface starts by defining a standard Java interface. For example:

package mypackage;
public interface MyInterface {

void foo();
}

5.9. Sandboxed Application 447

MicroEJ Documentation, Revision 32bb132e

Some restrictions apply to Shared Interfaces compared to standard Java interfaces:

• Types for parameters and return values must be transferable types;

• Thrown exceptions must be classes owned by the Kernel.

Implement the Proxy Class

A proxy class is implemented and executed on the client side, each method of the implemented interface must be
defined according to the following pattern:

package mypackage;

public class MyInterfaceProxy extends Proxy<MyInterface> implements MyInterface {
@Override
public void foo(){

try {
invoke(); // perform remote invocation

} catch (Throwable e) {
e.printStackTrace(); // handle errors

}
}

}

Each implemented method of the proxy class is responsible for performing the remote call and catching all errors
from the server side and to provide an appropriate answer to the client application call according to the interface
method specification (contract).

The Proxy class implementation section documents how to perform the remote invocation.

Register the Shared Interface

Todeclare an interface as aShared Interface, itmust be registered in aShared Interfaces identification file. A Shared
Interface identification file is an XML file with the .si filename extension and the following format:

<sharedInterfaces>
<sharedInterface name="mypackage.MyInterface"/>

</sharedInterfaces>

Shared Interface identification filesmust be placed at the root of the application classpath, typically it is defined in
the src/main/resources folder.

Use the Shared Interface at Runtime

Projects Structure

Both the consumer and the provider applications must have the Java interface, the proxy class and the identifica-
tion file on the classpath in order to be able to use the Shared Interface.

Typically, the 3 files can be defined in an Add-On Library that both application projects depend on.

5.9. Sandboxed Application 448

MicroEJ Documentation, Revision 32bb132e

Create and Share an instance of a Shared Interface

The provider application can instantiate the Java interface. For example:

MyInterface myInstance = new MyInterface() {
@Override
public void foo() {

System.out.println("Hello world!");
}

};

In order to share the instancewithother applications, theprovider applicationmust register the instancewith some
registry owned by the Kernel (see Communication between Kernel and Feature for details) like so:

ServiceFactory.getServiceRegistry().register(MyInterface.class, myInstance);

Retrieve and Use a Proxy of a Shared Interface Instance

The consumer application can then retrieve the instance from the Kernel registry like so:

MyInterface otherAppInstance = ServiceFactory.getServiceRegistry().getService(MyInterface.
→˓class);
// otherAppInstance is actually an instance of the proxy class owned by the consumer␣
→˓application

Then it can call the interface methods transparently:

otherAppInstance.foo(); // remote invocation through the proxy

Transferable Types

In the process of a cross-application method call, parameters and return value of methods declared in a Shared
Interface must be transferred back and forth between application boundaries.

Fig. 10: Shared Interface Parameters Transfer

The following table describes the rules applied depending on the element to be transferred.

5.9. Sandboxed Application 449

MicroEJ Documentation, Revision 32bb132e

Table 1: Shared Interface Types Transfer Rules
Type Owner Instance

Owner
Rule

Base type N/A N/A Passing by value. (boolean , byte , short
, char , int , long , double , float)

Any Class, Array or Inter-
face

Kernel Kernel Passing by reference

Any Class, Array or Inter-
face

Kernel Application Kernel specific or forbidden

Array of base types Any Application Clone by copy
Arrays of references Any Application Clone and transfer rules applied again on

each element
Shared Interface Application Application Passing by indirect reference (Proxy cre-

ation)
Any Class, Array or Inter-
face

Application Application Forbidden

Objects created by an Application which type is owned by the Kernel can be transferred to another Application
provided this hasbeenauthorizedby theKernel. The list of Kernel types that canbe transferred isKernel specific, so
you have to consult your Kernel specification. When an argument transfer is forbidden, the call is abruptly stopped
and an java.lang.IllegalAccessError is thrown by the Core Engine.

Note: For these types to be transferable, a dedicated Kernel Type Converter must have been registered in the
Kernel.

The table below lists typical Kernel types allowed to be transferred through a Shared Interface call on Evaluation
Kernels <https://repository.microej.com/old_index.php?resource=FIRM> distributed by MicroEJ Corp.

Table 2: MicroEJ Evaluation Kernels Rules for Transferable Types
Type Rule
java.lang.Boolean Clone by copy
java.lang.Byte Clone by copy
java.lang.Character Clone by copy
java.lang.Short Clone by copy
java.lang.Integer Clone by copy
java.lang.Float Clone by copy
java.lang.Long Clone by copy
java.lang.Double Clone by copy
java.lang.String Clone by copy
java.io.InputStream Create a Proxy reference
java.util.Date Clone by copy
java.util.List<T> Clone by copy with recursive element conversion
java.util.Map<K,V> Clone by copy with recursive keys and values conversion

5.9. Sandboxed Application 450

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/IllegalAccessError.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Boolean.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Byte.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Character.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Short.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Integer.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Float.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Long.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Double.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/String.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/io/InputStream.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/Date.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/List.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/Map.html

MicroEJ Documentation, Revision 32bb132e

Implementing the Proxy Class

Remote invocation methods are defined in the super class ej.kf.Proxy and are named invokeXXX() where XXX is
the kind of return type.

Table 3: Proxy Remote Invocation Built-in Methods
Invocation Method Usage
void invoke() Remote invocation for a proxy method that returns void
Object invokeRef() Remote invocation for a proxymethod that returns a reference
boolean invokeBoolean(), byte invokeByte(),
char invokeChar(), short invokeShort(), int in-
vokeInt(), long invokeLong(), double invoke-
Double(), float invokeFloat()

Remote invocation for aproxymethod that returns abase type

As this class is part of the Application, the developer has the full control on the Proxy implementation and is free
to insert additional code such as logging calls and errors for example. It is also possible to have di�erent proxy
implementations for the same Shared Interface in di�erent applications.

A Sandboxed Application is an Application that can run over a Multi-Sandbox Executable. Sandboxed Applications
can be linked statically to the Multi-Sandbox Executable or installed dynamically on the device.

Typical use cases for a Sandboxed Application are:

• over the air provisioning: the Application is dynamically installed or updated on a fleet of heterogenous de-
vices.

• modularization: a monolithic application is split intomultiple Sandboxed Applications; each of them can be
started or stopped separately.

The following figure shows the general process of building a Sandboxed Application.

Fig. 11: Sandboxed Application Link Flow

Please refer to theKernel Developer Guide to learnmore onwriting Kernel Applications and buildingMulti-Sandbox
Executable and Virtual Devices.

5.9. Sandboxed Application 451

https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Proxy.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Proxy.html#invoke--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Proxy.html#invokeRef--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Proxy.html#invokeBoolean--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Proxy.html#invokeByte--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Proxy.html#invokeChar--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Proxy.html#invokeShort--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Proxy.html#invokeInt--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Proxy.html#invokeInt--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Proxy.html#invokeLong--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Proxy.html#invokeDouble--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Proxy.html#invokeDouble--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Proxy.html#invokeFloat--

MicroEJ Documentation, Revision 32bb132e

5.10 Character Encoding

5.10.1 Default Encoding

The default character encoding is ISO-8859-1 . It is thus the encoding used when:

• creating a new string from a byte array without specifying the encoding (String(byte[]) constructor),

• getting the byte array from a string without specifying the encoding (String.getBytes() method),

• printing a string to standard output stream (System.out),

• creating a new PrintStreamwithout specifying the encoding.

5.10.2 UTF-8 Encoding

EDC provides an implementation of the UTF-8 character encoding. It can be embedded using the Embed UTF-8
encoding option (otherwise a java.io.UnsupportedEncodingException exception will be thrown).

This implementationalso supportsUnicode codepoints as supplementary characters, by setting the constant com.
microej.library.edc.supplementarycharacter.enabled to true .

5.10.3 Custom Encoding

It is possible to connect additional custom encodings. Please contact our support team for more details.

5.10.4 Console Output

By default, the standard output stream (System.out) uses ISO-8859-1 encoding to print strings. If you want to
print a string with a di�erent encoding, you can create a new PrintStream:

PrintStream outUtf8 = new PrintStream(System.out, true, "UTF-8");
outUtf8.println("");

Warning: Make sure you embed the UTF-8 encoder (see UTF-8 Encoding)

The print methods write the raw byte array with the encoding used by the PrintStream to the console. The console
must then be configured with the same encoding to display characters properly.

Set Encoding in MicroEJ SDK Console

The default encoding for Eclipse consoles is UTF-8 . If your application prints non-ASCII characters, they may not
be displayed properly.

The encoding used by a console for a given application can be set in the application launcher options: Run >
Run Configurations. . . , and then Common tab > Encoding radio buttons.

5.10. Character Encoding 452

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/String.html#String-byte:A-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/String.html#getBytes--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#out
https://repository.microej.com/javadoc/microej_5.x/apis/java/io/PrintStream.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/io/UnsupportedEncodingException.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#out
https://repository.microej.com/javadoc/microej_5.x/apis/java/io/PrintStream.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/io/PrintStream.html

MicroEJ Documentation, Revision 32bb132e

Fig. 12: Eclipse Launcher Console Encoding Options

5.11 Limitations

The following table lists the limitations of MicroEJ Architectures version 7.14.0 or higher, for both Evaluation and
Production usage. Please consult Architectures Changelog for limitations changes on former versions.

Note: The term unlimited means there is no Architecture specific limitation. However, there may be limitations
driven by device memory layout. Please refer to Platform specific documentation to get the memory mapping of
MicroEJ Core Engine sections.

5.11. Limitations 453

MicroEJ Documentation, Revision 32bb132e

Table 4: Architecture Limitations
Item EVAL PROD
[Mono-Sandbox] Number of concrete types1 8192 8192
[Multi-Sandbox] Number of concrete types per contextPage 454, 1 4096 4096
Number of abstract classes and interfaces unlimited unlimited
Class or Interface hierarchy depth 127 127
Number of methods unlimited unlimited
Method size in bytes 65536 65536
Numbers of exception handlers per method 63 63
Number of parameters for an SNI method 15 15
Number of instance fields2 (Base type) 4096 4096
Number of instance fields2 (References) 31 31
Number of static fields (boolean + byte) 65536 65536
Number of static fields (short + char) 65536 65536
Number of static fields (int + float) 65536 65536
Number of static fields (long + double) 65536 65536
Number of static fields (References) 65536 65536
Number of threads 63 63
Number of held monitors3 63 63
Time limit 60 minutes unlimited
Number of methods and constructors calls 500000000 unlimited
Number of Java heap Garbage Collection 30004 unlimited

5.12 GitHub Repositories

A large number of examples, libraries, demos and tools are sharedonMicroEJGitHubaccount: https://github.com/
MicroEJ.

Most of these GitHub repositories contain projects ready to be imported in MicroEJ SDK.

5.12.1 Repository Import

This section explains the steps to import a Github repository in MicroEJ SDK, illustrated with the MWT Examples
repository.

Note: MicroEJ SDK Distribution includes the Eclipse plugin for Git.

First, from the GitHub page, copy the repository URI (HTTP address) from the dedicated field in the right menu
(highlighted in red):

1 Concrete types are classes and arrays that can be instantiated.
2 All instance fields declared in the class and its super classes.
3 Themaximumnumber of di�erentmonitors that can be held by one thread at any time is defined by themaximumnumber ofmonitors per

thread Application option.
4 The JavaheapGarbageCollection limitmay throwunexpected cascading java.lang.OutOfMemoryError exceptionsbefore theMicroEJCore

Engine exits.

5.12. GitHub Repositories 454

https://github.com/MicroEJ
https://github.com/MicroEJ
https://github.com/MicroEJ/ExampleJava-MWT
https://github.com/MicroEJ/ExampleJava-MWT
https://projects.eclipse.org/projects/technology.egit/
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/OutOfMemoryError.html

MicroEJ Documentation, Revision 32bb132e

In the SDK, to clone and import the project from the remoteGit repository into theMicroEJworkspace, select File
> Import > Git > Projects from Git wizard.

5.12. GitHub Repositories 455

MicroEJ Documentation, Revision 32bb132e

Click Next , select Clone URI , click Next and paste the remote repository address in the URI field. For
this repository, the address is https://github.com/MicroEJ/ExampleJava-MWT.git. If the HTTP address is a valid
repository, the other fields are filed automatically.

5.12. GitHub Repositories 456

https://github.com/MicroEJ/ExampleJava-MWT.git

MicroEJ Documentation, Revision 32bb132e

Click Next , select the master branch, click Next and accept the proposed Local Destination by clicking Next
once again.

5.12. GitHub Repositories 457

MicroEJ Documentation, Revision 32bb132e

Click Next once more and finally Finish . The Package Explorer view now contains the imported projects.

5.12. GitHub Repositories 458

MicroEJ Documentation, Revision 32bb132e

If you want to import projects from another (GitHub) repository, you simply have to do the same procedure using
the Git URL of the desired repository.

5.12.2 MicroEJ GitHub Badges

MicroEJ GitHub Badges are badges embedded in a README at the root of the repository. They highlight the com-
patibilities of the repository at a quick glance with MicroEJ Architecture, MicroEJ SDK and Graphical User Interface
versions.

The color of the badge has the following meaning:

• Greenmeans a current supported version:

• Orangemeans a still supported version that will be deprecated in the future:

• Gray means a deprecated version:

5.13 Module Repositories

This chapter describes themodule repositories provided by MicroEJ Corp.

5.13.1 Central Repository

TheCentralRepository is themodule repositorydistributedandmaintainedbyMicroEJCorp. It containsa selection
of production-grade modules such as Libraries and Packs.

Use

By default, the SDK is configured to import modules from the online Central Repository.

You canmanually browse the repository at https://repository.microej.com/modules/.

Before starting to develop production code, it is strongly recommended to import the repository to your local en-
vironment. Please follow the steps described at https://developer.microej.com/central-repository/.

Licensing

The Central Repository is a set of modules distributed under various so�ware licenses, including the SDK EULA for
some of them. Please consult the LICENSE.txt file attached to eachmodule.

Changelog

The Central Repository content is versioned. The overall changelog is available at https://repository.microej.com/
and describesmodules additions or removals. Formodule content changes, please consult the CHANGELOG.md file
attached to eachmodule.

5.13. Module Repositories 459

https://repository.microej.com/modules/
https://developer.microej.com/central-repository/
https://repository.microej.com/

MicroEJ Documentation, Revision 32bb132e

Javadoc

To consult the APIs documentation (Javadoc) of all libraries available in the repository, please visit https://
repository.microej.com/javadoc/microej_5.x/apis/.

5.13.2 Developer Repository

The developer repository is an online repository hosted by MicroEJ Corp., contains community modules provided
“as-is”. It is similar to what Maven Central Repository are for hosting Java standard modules.

MicroEJ Corp. contributes to the developer repository in the following cases:

• Demos (Platforms, Firmware, Virtual Devices, Applications),

• Incubating Libraries,

• Former Central Repository versions,

• Hardware specific modules.

Use

By default, the SDK is configured to import modules from the developer repository1.

You can also manually browse the repository at https://forge.microej.com/artifactory/
microej-developer-repository-release/.

Before starting to develop production code, it is strongly recommended to transfer the desired modules to your
local environment by creating your ownmodule repository copy.

Licensing

The developer repository is a set of modules distributed under various so�ware licenses. Please consult the
LICENSE.txt file attached to eachmodule.

Changelog

The developer repository is populated frommultiple sources, thus there is no changelog for the whole repository
content as it is the case of the Central Repository.

Please consult the CHANGELOG.md file attached to eachmodule.

Javadoc

To consult the APIs documentation (Javadoc) of libraries available in the developer repository, please consult the
javadoc attached to eachmodule.

1 Require SDK version 5.4.0 or higher.

5.13. Module Repositories 460

https://repository.microej.com/javadoc/microej_5.x/apis/
https://repository.microej.com/javadoc/microej_5.x/apis/
https://repo1.maven.org/maven2/
https://forge.microej.com/artifactory/microej-developer-repository-release/
https://forge.microej.com/artifactory/microej-developer-repository-release/

MicroEJ Documentation, Revision 32bb132e

Community

The developer repository can host modules developed by the community. If your organization plan to develop
suchmodule, please contact our support team to get dedicated credentials for publication.

5.13.3 Content Organization

The following table describes how are organized themodules natureswithin the repository.

Table 5: Modules Organization
Organization Module Nature
ej.api , com.microej.api Foundation Library API
com.microej.architecture Architecture
com.microej.pack Pack
ej.tool , com.microej.tool Tool or Add-On processor
Any other Add-On Library

5.14 Libraries

A MicroEJ Foundation Library is a MicroEJ Core library that provides core runtime APIs or hardware-dependent
functionality. A Foundation library is divided into an API and an implementation. A Foundation library API is com-
posed of a name and a 2 digits version (e.g. EDC-1.3) and follows the semantic versioning (http://semver.org)
specification. A Foundation Library API only contains prototypes without code. Foundation Library implementa-
tions are provided by MicroEJ Platforms. From a MicroEJ Classpath, Foundation Library APIs dependencies are
automaticallymapped to the associated implementations provided by the Platform or the Virtual Device onwhich
the application is being executed.

A MicroEJ Add-On Library is a MicroEJ library that is implemented on top of MicroEJ Foundation Libraries (100%
full Java code). A MicroEJ Add-On Library is distributed in a single JAR file, with a 3 digits version and provides its
associated source code.

Foundation and Add-On Libraries are added to MicroEJ Classpath by the application developer as module depen-
dencies (seeMicroEJ Module Manager).

Fig. 13: MicroEJ Foundation Libraries and Add-On Libraries

MicroEJ Corp. provides a large number of libraries through the MicroEJ Central Repository. To consult its libraries
APIs documentation, please visit https://developer.microej.com/microej-apis/.

5.14. Libraries 461

http://semver.org
https://developer.microej.com/microej-apis/

MicroEJ Documentation, Revision 32bb132e

5.14.1 Graphical User Interface

This section presents libraries relative to the user interface.

The following schema shows the overall architecture andmodules:

Fig. 14: Graphical User Interface Overview

Note: This chapter describes the current Graphical User Interface version 3 , provided by UI Pack version 13.0.0
or higher. If you are using the former Graphical User Interface version 2 (provided by MicroEJ UI Pack version up
to 12.4.x), please refer to this MicroEJ Documentation Archive.

5.14. Libraries 462

https://docs.microej.com/_/downloads/en/20201009/pdf/

MicroEJ Documentation, Revision 32bb132e

MicroUI

MicroUI Foundation Library provides access to a pixel-based display and inputs.

The aim of this library is to enable the creation of user interface in Java by reifying hardware capabilities.

Usage

To use the MicroUI Foundation Library, add MicroUI API module to the project build file:

Gradle (build.gradle.kts)

MMM (module.ivy)

implementation("ej.api:microui:3.1.0")

<dependency org="ej.api" name="microui" rev="3.1.0"/>

Drawing Foundation Library extends MicroUI drawing APIs1 with more complex ones such as:

• thick line, arc, circle and ellipse

• polygon

• image deformation and rotation

To use the Drawing Foundation Library, add Drawing API module to the project build file:

Gradle (build.gradle.kts)

MMM (module.ivy)

implementation("ej.api:drawing:1.0.3")

<dependency org="ej.api" name="drawing" rev="1.0.3"/>

Drawing Logs

When performing drawing operations, the VEE portmay report incidents that occurred during a drawing to the ap-
plication. Graphics contexts enable this by holding flags that canbe set by the VEEport and readby the application.

Usage Overview

When the VEE port needs to report an incident, it will set drawing log flags in the graphics context describing its
nature. The application will then be able to read the flag values to know if an incident occurred. This mechanism
is meant to help the developer to debug the application if it does not display what is expected. See Drawing Logs
for more information on setting drawing log flags in the VEE port.

Incidents are split into two categories:

• Warnings are non-critical incidents that the application developer may ignore. When such an incident is re-
ported, the flags are set in the graphics context so that the application can read them. However, if they are
not explicitly read, the incident will be ignored silently.

1 These APIs were formerly included in MicroUI 2.x

5.14. Libraries 463

https://repository.microej.com/modules/ej/api/microui/
https://repository.microej.com/modules/ej/api/drawing/

MicroEJ Documentation, Revision 32bb132e

• Errors are critical incidents that the application developer should not ignorewhen developing. As withwarn-
ings, drawing log flagswill be set in the graphics context. Additionally, an exception will be thrownwhen the
display is flushed so that the developer is aware of the incident.

Any incident may be either a warning or an error, depending on how the VEE port reported it. The distinction is
made through the value of the flag DRAWING_LOG_ERROR .

Default Behavior

When the VEE port reports an incident, it sets drawing log flags in the graphics context. Additionally, if the incident
was an error, it sets the special flag DRAWING_LOG_ERROR .

Every time the display is flushed, the flags contained in its graphics context will be checked. If the flag
DRAWING_LOG_ERROR is set — which means an error has been reported — the flush function will throw a
MicroUIException with the code DRAWING_ERROR , and the values of the drawing log flags in its message. Af-
terward, the flags will be reset.

Warning: This behavior can be disabled at build time. In this case, the flags will keep their values a�er the
display is flushed, and no exceptions will be thrown.

Therefore, the developer should not rely on the drawing log flags in the application workflow. They are meant
to be used as a debugging hint.

If an exception is thrown, the application developer should use the flag values to find the cause of the error and fix
it accordingly.

Explicit Checks

MicroUI only checks the drawing log flags automatically during a display flush. The developer may want to read
the flag values between drawing operations to investigate the cause of an error. Two functions are provided to do
so:

• GraphicsContext.getAndClearDrawingLogFlags will return the current values of the flags and reset them.

• GraphicsContext.checkDrawingLogFlags behaves like GraphicsContext.
getAndClearDrawingLogFlags . However, it will also throw an exception if the flag DRAWING_LOG_ERROR is
set, like it is done when the display is flushed.

For example, if a VEE port with no implementation to draw circles reports an error with the flag
DRAWING_LOG_NOT_IMPLEMENTED , the application would behave as below.

// The VEE port has not implemented this function.
Painter.drawCircle(gc, 1, 2, 3);

// This throws a MicroUIException with the error code -13 (DRAWING_ERROR).
Display.getDisplay().flush();

The application developer could force a check of the drawing log flags:

// The VEE port has not implemented this function.
Painter.drawCircle(gc, 1, 2, 3);

// This throws a MicroUIException with the error code -13 (DRAWING_ERROR).
int flags = gc.checkDrawingLogFlags();

5.14. Libraries 464

MicroEJ Documentation, Revision 32bb132e

Or the developer could explicitly retrieve the value of the flags:

// The VEE port has not implemented this function.
Painter.drawCircle(gc, 1, 2, 3);

// This retrieves the values of drawing log flags.
int flags = gc.getAndClearDrawingLogFlags();
// This prints "80000001" (DRAWING_LOG_ERROR | DRAWING_LOG_NOT_IMPLEMENTED == 1 << 31 | 1 <<␣
→˓0).
System.out.println(Integer.toHexString(flags));

Configuration

When releasing an application, the developer should disable the automatic check of drawing log flags performed
when thedisplay is flushed. Doing sowill prevent exceptions frombeing thrown,whichwould causeanunexpected
crash. It will also not clear the drawing log flags when the display is flushed.

Disabling this check can be done by setting the constant com.microej.library.microui.impl.
check-drawing-errors-on-flush to false when building the application. If it is not set, it defaults to
true .

Available Constants

MicroUI provides a set of constants to describe reported incidents. They are defined and documented in the class
GraphicsContext .

Constant Value Description
DRAWING_LOG_NOT_IMPLEMENTED 1 << 0 This function is not implemented.
DRAWING_LOG_FORBIDDEN 1 << 1 This function must not be called in this situation.
DRAWING_LOG_OUT_OF_MEMORY 1 << 2 The system ran out of memory.
DRAWING_LOG_CLIP_MODIFIED 1 << 3 An undefined character was drawn.
DRAWING_LOG_MISSING_CHARACTER1 << 4 The VEE port modified clip values in the graphics context.
DRAWING_LOG_LIBRARY_INCIDENT1 << 29 An incident occurred in an underlying library.
DRAWING_LOG_UNKNOWN_INCIDENT1 << 30 An incident that does not match other flags occurred.
DRAWING_LOG_ERROR 1 << 31 Special flag denoting critical incidents.

The special value DRAWING_SUCCESS (defined as 0) represents a state where no drawing log flags are set, so en-
countering this value means no incident was reported.

New flag constants may be added in future versions of MicroUI. Also, their actual values may change, and the de-
veloper should not rely on them.

5.14. Libraries 465

MicroEJ Documentation, Revision 32bb132e

Images

Immutable Images

Overview

Immutable images are graphical resources that can be accessed with a call to ej.microui.display.Image.getImage()
or ej.microui.display.ResourceImage.loadImage(). As their name suggests, immutable images cannot bemodified.
Therefore, there is noway to get a Graphics Context to draw into these images. To be displayed, these images have
to be converted from their source format to a RAW format. The conversion can either be done:

• At build-time, using the Image Generator.

• At run-time, using the relevant decoder library.

Immutable images are declared in Classpath *.images.list files (or in *.imagesext.list for an external re-
source, see External Images).

Image

internal?

*.images.list

yes

*.imagesext.list

no=external

The file format is a standard Java properties file. Each line contains a / -separated resource path relative to the
Classpath root referring to a standard image file (e.g. .png , .jpg). The resource may be followed by an optional
parameter (separated by a :) which defines and/or describes the image output file format (RAW format). When no
option is specified, the image is embedded as-is and will be decoded at run-time. Example:

The following image is embedded as
a PNG resource (decoded at run-time)
com/mycompany/MyImage1.png

The following image is embedded as
a 16-bit encoding without transparency (decoded at build-time)
com/mycompany/MyImage2.png:RGB565

The following image is embedded as

(continues on next page)

5.14. Libraries 466

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Image.html#getImage-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/ResourceImage.html#loadImage-java.lang.String-

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

a 16-bit encoding with transparency (decoded at build-time)
com/mycompany/MyImage3.png:ARGB1555

Configuration File

Here is the format of the *.images.list files.

ConfigFile ::= Line ['EOL' Line]*
Line ::= ImagePath [':' ImageOption]*
ImagePath ::= Identifier ['/' Identifier]*
ImageOption ::= [^:]*
Identifier ::= Letter [LetterOrDigit]*
Letter ::= 'a-zA-Z_$'
LetterOrDigit ::= 'a-zA-Z_$0-9'

Unspecified Output Format

When no output format is set in the image list file, the image is embedded without any conversion / compression.
This allows you to embed the resource as-is, in order to keep the source image characteristics (compression, bpp,
size, etc.). This option produces the same result as specifying an image as a resource in the MicroEJ launcher (i.e.
in a .resources.list file).

Refer to the platform specification to retrieve the list of runtime decoders.

Advantages

• Preserves the image characteristics.

• Preserves the original image compression.

Disadvantages

• Requires an image runtime decoder.

• Requires some RAM in which to store the decoded image.

• Requires execution time to decode the image.

image1

Display Output Format

It encodes the image into the exact displaymemory representation. If the image to encode contains some transpar-
ent pixels, the output file will embed the transparency according to the display’s implementation capacity. When
all pixels are fully opaque, no extra information will be stored in the output file in order to free up some memory
space.

Note: When the display memory representation is standard, the display output format is automatically replaced
by a standard format.

Advantages

5.14. Libraries 467

MicroEJ Documentation, Revision 32bb132e

• Drawing an image is very fast because no pixel conversion is required at runtime.

• Supports alpha encoding when the display pixel format allows it.

Disadvantages

• No compression: the image size in bytes is proportional to the number of pixels.

image1:display

Standard Output Formats

Some image formats are well known and commonly implemented by GPUs.

Refer to the platform specification to retrieve the list of natively supported formats.

Advantages

• The pixel layout and bit format are standard, so it is easy to manipulate these images on the C-side.

• Drawing an image is very fast when the display driver recognizes the format (with or without transparency).

Disadvantages

• No compression: the image size in bytes is proportional to the number of pixels.

• Slower than display format when the display driver does not recognize the format: a pixel conversion is
required at runtime.

Here is the list of the standard formats:

• Transparent images:

– ARGB8888: 32-bit format, 8 bits for transparency, 8 per color,

– ARGB4444: 16-bit format, 4 bits for transparency, 4 per color,

– ARGB1555: 16-bit format, 1 bit for transparency, 5 per color.

• Transparent images with premultiplied alpha (RGB and alpha are linked)

– ARGB8888_PRE: 32-bit format, 8 bits for transparency, 8 per color,

– ARGB4444_PRE: 16-bit format, 4 bits for transparency, 4 per color,

– ARGB1555_PRE: 16-bit format, 1 bit for transparency, 5 per color.

• Opaque images:

– RGB888: 24-bit format, 8 per color,

– RGB565: 16-bit format, 5 for red, 6 for green, 5 for blue.

• Alpha images, only transparency is encoded (the color appliedwhen drawing the image is the current Graph-
icsContext color):

– A8: 8-bit format,

– A4: 4-bit format,

– A2: 2-bit format,

– A1: 1-bit format.

Examples:

5.14. Libraries 468

MicroEJ Documentation, Revision 32bb132e

image1:ARGB8888
image2:RGB565
image3:A4

Grayscale Output Formats

Some grayscale formats may be useful on grayscale or black and white displays.

Advantages

• Reduced footprint with less bits per pixels.

Disadvantages

• No compression: the image size in bytes is proportional to the number of pixels.

• Slower: a pixel conversion is required at runtime.

Here is the list of the grayscale formats:

• With transparency:

– AC44: 4 bits for transparency, 4 bits with grayscale conversion,

– AC22: 2 bits for transparency, 2 bits with grayscale conversion,

– AC11: 1 bit for transparency, 1 bit with grayscale conversion.

• Without transparency:

– C4: 4 bits with grayscale conversion,

– C2: 2 bits with grayscale conversion,

– C1: 1 bit with grayscale conversion.

Examples:

image1:AC44
image2:C2

Compressed Output Formats

Some image formats are compressed using run-length encoding. This compression is lossless. The principle is
that identical consecutive pixels are stored as one entry (value and count). The more the consecutive pixels are
identical, the more the compression is e�icient.

Advantages

• Good compression when there are a lot of identical consecutive pixels.

Disadvantages

• Drawing an imagemay be slightly slower than using an uncompressed format supported by the GPU.

• Not designed for imageswithmany di�erent pixel colors: in such case, the output file sizemay be larger than
the original image file.

Here is the list of the compressed formats:

• ARGB1565_RLE: 16-bit format, 1 bit for transparency, 5 for red, 6 for green, 5 for blue. (Formerly named RLE1
up to UI Pack 13.3.X.)

5.14. Libraries 469

MicroEJ Documentation, Revision 32bb132e

• A8_RLE: similar to A8.

image1:ARGB1565_RLE
image2:RLE1 # Deprecated
image3:A8_RLE

Expected Result

The following table summarizes the usage of the di�erent formats and the actual result on a white background.

5.14. Libraries 470

MicroEJ Documentation, Revision 32bb132e

Table 6: Image Output Formats Usage
Format Source Result

ARGB8888

ARGB4444

ARGB1555

ARGB8888_PRE

ARGB4444_PRE

ARGB1555_PRE

RGB888

RGB565

A8

With 0x0000� as color

A4

With 0x0000� as color

A2

With 0x0000� as color

A1

With 0x0000� as color

C4

C2

C1

AC44

AC22

AC11

ARGB1565_RLE

A8_RLE

5.14. Libraries 471

MicroEJ Documentation, Revision 32bb132e

Usage Advice

• When the image is rarely used, or when there is little Flash and enough RAM: embed the image in its original
compressed format (PNG or JPG for instance).

• For an opaque image: RGB565 is usually su�icient.

• For a transparent image: ARGB4444 is usually su�icient.

• For a transparent image that contains only shape(s) with horizontal or vertical edges:

– ARGB1555may be interesting to have more colors,

– for a smaller footprint if the imagematches the RLE rule, ARGB1565_RLE is best.

• For a pictogram to colorize:

– A4 is usually su�icient,

– A8may be necessary for pictograms with long gradients,

– for a smaller footprint if the imagematches the RLE rule, A8_RLE is best.

• For BSP with a GPU, choose a format compatible with the GPU (all formats may not be available),

– ARGB formats: choose between non-premultiplied formats and premultiplied formats (su�ixed with
_PRE),

– Ax formats (pictogram): all bits-per-pixel values may not be available.

– be careful about the color components position (A-R-G-B versus R-G-B-A for instance),

– avoid formats Cx, ACxx and xxx_RLE, which are not compatible with a GPU.

Caching Generated Images

Images converted using the Image Generator can be cached so that they are not rebuilt every time the application
is launched. Doing so can significantly speed up the application build phase.

The cache is enabled by default. It may be disabled by setting the Application option ej.microui.
imageConverter.disableCache to true .

The Image Generator obeys several rules when choosing whether an image should be converted.

• If the cache is disabled, all images are generated every time the application is launched.

• All images will be regenerated if the application is launched using another VEE port and the new VEE port
uses a di�erent Image Generator or another set of Image Generator plugins.

• If the generated image does not exist, it will be generated.

• If the source image has beenmodified since the last time it was converted, the image will be regenerated.

• The image will be regenerated if the destination format has beenmodified in the images.list file.

Cached images are stored in .cache/images , which is located in the application output folder. Youmay delete this
directory to force the generation of all images in your application. An image thatwas previously generated but is no
longer listed in the *.images.list fileswhen the application is launchedwill be deleted from the cache directory.

Warning: When testing an Image Generator extension project, the image cache is automatically disabled.

5.14. Libraries 472

MicroEJ Documentation, Revision 32bb132e

External Images

To fetch immutable images from external memory, the applicationmust pre-register the external Image resources.
Themanagement of this kind of imagemay be di�erent than the internal images andmay require someallocations
in the Images Heap. For more details about the external image management, refers to the VEE Port Guide chapter
External Resource.

Image Generator Error Messages

These errors can occur while preprocessing images.

Table 7: Static Image Generator Error Messages
ID Type Description
0 Error The image generator has encountered an unexpected internal error.
1 Error The images list file has not been specified.
2 Error The image generator cannot create the final, raw file.
3 Error The image generator cannot read the images list file. Make sure the system allows reading of

this file.
4 Warning The image generator has found no image to generate.
5 Error The image generator cannot load the images list file.
6 Warning The specified image path is invalid: The image will be not converted.
7 Warning There are toomany or too few options for the desired format.
8 Error The display format is not generic; a MicroUIRawImageGeneratorExtension implementation is

required to generate the MicroUI raw image.
9 Error The image cannot be read.
10 Error The image generator has encountered an unexpected internal error (invalid endianness).
11 Error The image generator has encountered an unexpected internal error (invalid bpp).
12 Error The image generator has encountered an unexpected internal error (invalid display format).
13 Error The image generator has encountered an unexpected internal error (invalid pixel layout).
14 Error The image generator has encountered an unexpected internal error (invalid output folder).
15 Error The image generator has encountered an unexpected internal error (invalid memory

alignment).
16 Error The input image format and / or the ouput format are not managed by the image generator.
17 Error The image has been already loaded with another output format.

Mutable Images

Overview

Unlike immutable images, mutable images are graphical resources that can be created and modified at runtime.
The application can draw into such images using the Painter classes with the image’s Graphics Context as the des-
tination. Mutable images can be created with a call to constructor ej.microui.display.Bu�eredImage().

BufferedImage image = new BufferedImage(320, 240);
GraphicsContext g = image.getGraphicsContext();
g.setColor(Colors.BLACK);
Painter.fillRectangle(g, 0, 0, 320, 240);
g.setColor(Colors.RED);
Painter.drawHorizontalLine(g, 50, 50, 100);
image.close();

5.14. Libraries 473

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/BufferedImage.html#getGraphicsContext--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/BufferedImage.html#BufferedImage-int-int-

MicroEJ Documentation, Revision 32bb132e

Display Format

By default, the output format of a Bu�eredImagematches the display’s pixel organization (layout, depth, etc.). The
algorithms used to draw in such an image are the same as those used on the display (for footprint purposes). The
algorithm cannot draw transparent pixels since the display bu�er is opaque.

In addition, GraphicsContext.setColor() does not consider the alpha channel and only accepts RGB values. The
given color value is interpreted as a 24-bit RGB color, where the high-order byte is ignored, and the remaining bytes
contain the red, green, and blue channels, respectively.

Other Formats

It is also possible to create a bu�ered image with another format using the constructor with the format parameter.

The other formats than the display one are not supported by MicroUI. But a VEE port can manage one or more
formats (see Destination Format).

Depending on the format, the transparency may be supported.

Images Heap

The image heap is used to allocate the pixel data of:

• Mutable images (i.e. Bu�eredImage instances).

• Immutable images decoded at runtime, typically a PNG: the heap is used to store the decoded image and
the runtime decoder’s temporary bu�ers, required during the decoding step. A�er the decoding step, all the
temporary bu�ers are freed. Note that the size of the temporary bu�ers depends on the decoder and on the
original image itself (compression level, pixel encoding, etc.).

• Immutable images which are not byte-addressable, such as images opened with an input stream (i.e. Re-
sourceImage instances).

• Immutable images which are byte-addressable but converted to a di�erent output format (i.e. ResourceIm-
age instances).

In other words, every image which cannot be retrieved using ej.microui.display.Image.getImage() is saved on the
image heap.

The size of the images heap can be configured with the ej.microui.memory.imagesheap.size property.

Warning: A ResourceImage allocated on the images heapmust be closedmanually by the application (Resour-
ceImage.close()); otherwise, a memory leak will occur on the images heap.

For more details about the images heap implementation, refers to this chapter in the VEE Port Guide.

5.14. Libraries 474

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/BufferedImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html#setColor-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/BufferedImage.html#BufferedImage-int-int-ej.microui.display.Format-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/BufferedImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/ResourceImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/ResourceImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/ResourceImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/ResourceImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Image.html#getImage-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/ResourceImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/ResourceImage.html#close--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/ResourceImage.html#close--

MicroEJ Documentation, Revision 32bb132e

Fonts

Overview

Fonts are graphical resources that can be accessed with a call to ej.microui.display.Font.getFont(). Fonts are de-
clared in Classpath *.fonts.list files (or in *.fontsext.list for an external resource, see External Fonts).

Font

internal?

*.fonts.list

yes

*.fontsext.list

no=external

The file format is a standard Java properties file, each line representing a / separated resource path relative to
the Classpath root referring to a Font file (usually with a .ejf file extension). The resource may be followed by
optional parameters which define :

• some ranges of characters to embed in the final raw file;

• the required pixel depth for transparency.

By default, all characters available in the input font file are embedded, and the pixel depth is 1 (i.e 1 bit-per-pixel).
Example:

The following font is embedded with all characters
without transparency
com/mycompany/MyFont1.ejf

The following font is embedded with only the latin
unicode range without transparency
com/mycompany/MyFont2.ejf:latin

The following font is embedded with all characters
with 2 levels of transparency
com/mycompany/MyFont2.ejf::2

Font files conventionally end with the .ejf su�ix and are created using the Font Designer (see Font Designer).

5.14. Libraries 475

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Font.html#getFont-java.lang.String-

MicroEJ Documentation, Revision 32bb132e

Configuration File

Here is the format of the *.fonts.list files.

ConfigFile ::= Line ['EOL' Line]*
Line ::= FontPath [':' [Ranges] [':' BitsPerPixel]]
FontPath ::= Identifier ['/' Identifier]*
Ranges ::= Range [';' Range]*
Range ::= CustomRangeList | KnownRange
CustomRangeList ::= CustomRange [',' CustomRange]*
CustomRange ::= Number | Number '-' Number
KnownRange ::= Name [SubRangeList]?
SubRangeList ::= '(' SubRange [',' SubRange]* ')'
SubRange ::= Number | Number - Number
Identifier ::= 'a-zA-Z_$' ['a-zA-Z_$0-9']*
Number ::= Number16 | Number10
Number16 ::= '0x' [Digit16]+
Number10 ::= [Digit10]+
Digit16 ::= 'a-fA-F0-9'
Digit10 ::= '0-9'
BitsPerPixel ::= '1' | '2' | '4' | '8'

Font Range

The first parameter is for specifying the font ranges to embed. Selecting only a specific set of characters to embed
reduces the memory footprint. If unspecified, all characters of the font are embedded.

Several ranges can be specified, separated by ; . There are twoways to specify a character range: the custom range
and the known range.

Custom Range

Allows the selection of raw Unicode character ranges.

Examples:

• myfont:0x21-0x49 : Defines one range: embed all characters from 0x21 to 0x49 (included);

• myfont:0x21-0x49,0x55-0x75 : Defines a set of two ranges: embed all characters from 0x21 to 0x49 and
from 0x55 to 0x75.

• myfont:0x21-0x49,0x55 : Defines a set of one range and one character: embed all characters from 0x21 to
0x49 and character 0x55.

5.14. Libraries 476

MicroEJ Documentation, Revision 32bb132e

Known Range

A known range is a range available in the following table.

Examples:

• myfont:basic_latin : Embed all Basic Latin characters;

• myfont:basic_latin;arabic : Embed all Basic Latin characters, and all Arabic characters.

The following table describes the available list of ranges and sub-ranges (processed from the “Unicode Character
Database” version 9.0.0 available on the o�icial unicode website https://home.unicode.org/).

Table 8: Ranges
Name Tag Start End
Basic Latin basic_latin 0x0 0x7f
Latin-1 Supplement latin-1_supplement 0x80 0x�
Latin Extended-A latin_extended-a 0x100 0x17f
Latin Extended-B latin_extended-b 0x180 0x24f
IPA Extensions ipa_extensions 0x250 0x2af
Spacing Modifier Letters spacing_modifier_letters 0x2b0 0x2�
Combining Diacritical Marks combining_diacritical_marks 0x300 0x36f
Greek and Coptic greek_and_coptic 0x370 0x3�
Cyrillic cyrillic 0x400 0x4�
Cyrillic Supplement cyrillic_supplement 0x500 0x52f
Armenian armenian 0x530 0x58f
Hebrew hebrew 0x590 0x5�
Arabic arabic 0x600 0x6�
Syriac syriac 0x700 0x74f
Arabic Supplement arabic_supplement 0x750 0x77f
Thaana thaana 0x780 0x7bf
NKo nko 0x7c0 0x7�
Samaritan samaritan 0x800 0x83f
Mandaic mandaic 0x840 0x85f
Arabic Extended-A arabic_extended-a 0x8a0 0x8�
Devanagari devanagari 0x900 0x97f
Bengali bengali 0x980 0x9�
Gurmukhi gurmukhi 0xa00 0xa7f
Gujarati gujarati 0xa80 0xa�
Oriya oriya 0xb00 0xb7f
Tamil tamil 0xb80 0xb�
Telugu telugu 0xc00 0xc7f
Kannada kannada 0xc80 0xc�
Malayalam malayalam 0xd00 0xd7f
Sinhala sinhala 0xd80 0xd�
Thai thai 0xe00 0xe7f
Lao lao 0xe80 0xe�
Tibetan tibetan 0xf00 0x�f
Myanmar myanmar 0x1000 0x109f
Georgian georgian 0x10a0 0x10�
Hangul Jamo hangul_jamo 0x1100 0x11�
Ethiopic ethiopic 0x1200 0x137f
Ethiopic Supplement ethiopic_supplement 0x1380 0x139f

continues on next page

5.14. Libraries 477

https://home.unicode.org/

MicroEJ Documentation, Revision 32bb132e

Table 8 – continued from previous page
Name Tag Start End
Cherokee cherokee 0x13a0 0x13�
Unified Canadian Aboriginal Syllabics unified_canadian_aboriginal_syllabics 0x1400 0x167f
Ogham ogham 0x1680 0x169f
Runic runic 0x16a0 0x16�
Tagalog tagalog 0x1700 0x171f
Hanunoo hanunoo 0x1720 0x173f
Buhid buhid 0x1740 0x175f
Tagbanwa tagbanwa 0x1760 0x177f
Khmer khmer 0x1780 0x17�
Mongolian mongolian 0x1800 0x18af
Unified Canadian Aboriginal Syllabics
Extended

unified_canadian_aboriginal_syllabics_extended 0x18b0 0x18�

Limbu limbu 0x1900 0x194f
Tai Le tai_le 0x1950 0x197f
New Tai Lue new_tai_lue 0x1980 0x19df
Khmer Symbols khmer_symbols 0x19e0 0x19�
Buginese buginese 0x1a00 0x1a1f
Tai Tham tai_tham 0x1a20 0x1aaf
CombiningDiacriticalMarks Extended combining_diacritical_marks_extended 0x1ab0 0x1a�
Balinese balinese 0x1b00 0x1b7f
Sundanese sundanese 0x1b80 0x1bbf
Batak batak 0x1bc0 0x1b�
Lepcha lepcha 0x1c00 0x1c4f
Ol Chiki ol_chiki 0x1c50 0x1c7f
Cyrillic Extended-C cyrillic_extended-c 0x1c80 0x1c8f
Sundanese Supplement sundanese_supplement 0x1cc0 0x1ccf
Vedic Extensions vedic_extensions 0x1cd0 0x1c�
Phonetic Extensions phonetic_extensions 0x1d00 0x1d7f
Phonetic Extensions Supplement phonetic_extensions_supplement 0x1d80 0x1dbf
Combining Diacritical Marks Supple-
ment

combining_diacritical_marks_supplement 0x1dc0 0x1d�

Latin Extended Additional latin_extended_additional 0x1e00 0x1e�
Greek Extended greek_extended 0x1f00 0x1�f
General Punctuation general_punctuation 0x2000 0x206f
Superscripts and Subscripts superscripts_and_subscripts 0x2070 0x209f
Currency Symbols currency_symbols 0x20a0 0x20cf
Combining Diacritical Marks for Sym-
bols

combining_diacritical_marks_for_symbols 0x20d0 0x20�

Letterlike Symbols letterlike_symbols 0x2100 0x214f
Number Forms number_forms 0x2150 0x218f
Arrows arrows 0x2190 0x21�
Mathematical Operators mathematical_operators 0x2200 0x22�
Miscellaneous Technical miscellaneous_technical 0x2300 0x23�
Control Pictures control_pictures 0x2400 0x243f
Optical Character Recognition optical_character_recognition 0x2440 0x245f
Enclosed Alphanumerics enclosed_alphanumerics 0x2460 0x24�
Box Drawing box_drawing 0x2500 0x257f
Block Elements block_elements 0x2580 0x259f
Geometric Shapes geometric_shapes 0x25a0 0x25�

continues on next page

5.14. Libraries 478

MicroEJ Documentation, Revision 32bb132e

Table 8 – continued from previous page
Name Tag Start End
Miscellaneous Symbols miscellaneous_symbols 0x2600 0x26�
Dingbats dingbats 0x2700 0x27bf
Miscellaneous Mathematical
Symbols-A

miscellaneous_mathematical_symbols-a 0x27c0 0x27ef

Supplemental Arrows-A supplemental_arrows-a 0x27f0 0x27�
Braille Patterns braille_patterns 0x2800 0x28�
Supplemental Arrows-B supplemental_arrows-b 0x2900 0x297f
Miscellaneous Mathematical
Symbols-B

miscellaneous_mathematical_symbols-b 0x2980 0x29�

Supplemental Mathematical Opera-
tors

supplemental_mathematical_operators 0x2a00 0x2a�

Miscellaneous Symbols and Arrows miscellaneous_symbols_and_arrows 0x2b00 0x2b�
Glagolitic glagolitic 0x2c00 0x2c5f
Latin Extended-C latin_extended-c 0x2c60 0x2c7f
Coptic coptic 0x2c80 0x2c�
Georgian Supplement georgian_supplement 0x2d00 0x2d2f
Tifinagh tifinagh 0x2d30 0x2d7f
Ethiopic Extended ethiopic_extended 0x2d80 0x2ddf
Cyrillic Extended-A cyrillic_extended-a 0x2de0 0x2d�
Supplemental Punctuation supplemental_punctuation 0x2e00 0x2e7f
CJK Radicals Supplement cjk_radicals_supplement 0x2e80 0x2e�
Kangxi Radicals kangxi_radicals 0x2f00 0x2fdf
Ideographic Description Characters ideographic_description_characters 0x2�0 0x2�f
CJK Symbols and Punctuation cjk_symbols_and_punctuation 0x3000 0x303f
Hiragana hiragana 0x3040 0x309f
Katakana katakana 0x30a0 0x30�
Bopomofo bopomofo 0x3100 0x312f
Hangul Compatibility Jamo hangul_compatibility_jamo 0x3130 0x318f
Kanbun kanbun 0x3190 0x319f
Bopomofo Extended bopomofo_extended 0x31a0 0x31bf
CJK Strokes cjk_strokes 0x31c0 0x31ef
Katakana Phonetic Extensions katakana_phonetic_extensions 0x31f0 0x31�
Enclosed CJK Letters and Months enclosed_cjk_letters_and_months 0x3200 0x32�
CJK Compatibility cjk_compatibility 0x3300 0x33�
CJK Unified Ideographs Extension A cjk_unified_ideographs_extension_a 0x3400 0x4dbf
Yijing Hexagram Symbols yijing_hexagram_symbols 0x4dc0 0x4d�
CJK Unified Ideographs cjk_unified_ideographs 0x4e00 0x9�f
Yi Syllables yi_syllables 0xa000 0xa48f
Yi Radicals yi_radicals 0xa490 0xa4cf
Lisu lisu 0xa4d0 0xa4�
Vai vai 0xa500 0xa63f
Cyrillic Extended-B cyrillic_extended-b 0xa640 0xa69f
Bamum bamum 0xa6a0 0xa6�
Modifier Tone Letters modifier_tone_letters 0xa700 0xa71f
Latin Extended-D latin_extended-d 0xa720 0xa7�
Syloti Nagri syloti_nagri 0xa800 0xa82f
Common Indic Number Forms common_indic_number_forms 0xa830 0xa83f
Phags-pa phags-pa 0xa840 0xa87f
Saurashtra saurashtra 0xa880 0xa8df

continues on next page

5.14. Libraries 479

MicroEJ Documentation, Revision 32bb132e

Table 8 – continued from previous page
Name Tag Start End
Devanagari Extended devanagari_extended 0xa8e0 0xa8�
Kayah Li kayah_li 0xa900 0xa92f
Rejang rejang 0xa930 0xa95f
Hangul Jamo Extended-A hangul_jamo_extended-a 0xa960 0xa97f
Javanese javanese 0xa980 0xa9df
Myanmar Extended-B myanmar_extended-b 0xa9e0 0xa9�
Cham cham 0xaa00 0xaa5f
Myanmar Extended-A myanmar_extended-a 0xaa60 0xaa7f
Tai Viet tai_viet 0xaa80 0xaadf
Meetei Mayek Extensions meetei_mayek_extensions 0xaae0 0xaa�
Ethiopic Extended-A ethiopic_extended-a 0xab00 0xab2f
Latin Extended-E latin_extended-e 0xab30 0xab6f
Cherokee Supplement cherokee_supplement 0xab70 0xabbf
Meetei Mayek meetei_mayek 0xabc0 0xab�
Hangul Syllables hangul_syllables 0xac00 0xd7af
Hangul Jamo Extended-B hangul_jamo_extended-b 0xd7b0 0xd7�
High Surrogates high_surrogates 0xd800 0xdb7f
High Private Use Surrogates high_private_use_surrogates 0xdb80 0xdb�
Low Surrogates low_surrogates 0xdc00 0xd�f
Private Use Area private_use_area 0xe000 0xf8�
CJK Compatibility Ideographs cjk_compatibility_ideographs 0xf900 0xfa�
Alphabetic Presentation Forms alphabetic_presentation_forms 0xfb00 0xfb4f
Arabic Presentation Forms-A arabic_presentation_forms-a 0xfb50 0xfd�
Variation Selectors variation_selectors 0xfe00 0xfe0f
Vertical Forms vertical_forms 0xfe10 0xfe1f
Combining Half Marks combining_half_marks 0xfe20 0xfe2f
CJK Compatibility Forms cjk_compatibility_forms 0xfe30 0xfe4f
Small Form Variants small_form_variants 0xfe50 0xfe6f
Arabic Presentation Forms-B arabic_presentation_forms-b 0xfe70 0xfe�
Halfwidth and Fullwidth Forms halfwidth_and_fullwidth_forms 0x�00 0x�ef
Specials specials 0x�f0 0x��

Transparency

The second parameter is for specifying the font transparency level (1 , 2 , 4 or 8). If unspecified, the encoded
transparency level is 1 (does not depend on transparency level encoded in EJF file).

Examples:

• myfont:latin:4 : Embed all latin characters with 16 levels of transparency

• myfont::2 : Embed all characters with 4 levels of transparency

5.14. Libraries 480

MicroEJ Documentation, Revision 32bb132e

External Fonts

To fetch fonts from non-byte addressable external memory, the application must pre-register the external Font
resources. The management of this kind of font may be di�erent than the internal fonts and may require a dedi-
cated heap. For more details about the external font management, refers to the VEE Port Guide chapter External
Resources.

Font Generator Error Messages

Table 9: Static Font Generator Error Messages
ID Type Description
0 Error The font generator has encountered an unexpected internal error.
1 Error The Fonts list file has not been specified.
2 Error The font generator cannot create the final, raw file.
3 Error The font generator cannot read the fonts list file.
4 Warning The font generator has found no font to generate.
5 Error The font generator cannot load the fonts list file.
6 Warning The specified font path is invalid: The font will be not converted.
7 Warning There are toomany arguments on a line: the current entry is ignored.
8 Error The font generator has encountered an unexpected internal error (invalid output format).
9 Error The font generator has encountered an unexpected internal error (invalid endianness).
10 Error The specified entry is invalid.
11 Error The specified entry does not contain a list of characters.
12 Error The specified entry does not contain a list of identifiers.
13 Error The specified entry is an invalid width.
14 Error The specified entry is an invalid height.
15 Error The specified entry does not contain the characters’ addresses.
16 Error The specified entry does not contain the characters’ bitmaps.
17 Error The specified entry bits-per-pixel value is invalid.
18 Error The specified range is invalid.
19 Error There are toomany identifiers. The output RAW format cannot store all identifiers.
20 Error The font’s name is too long. The output RAW format cannot store all name characters.
21 Error There are toomany ranges. The output RAW format cannot store all ranges.
22 Error Output list files cannot be created.
23 Error Dynamic styles are not supported. Only a PLAIN font can be encoded.
24 Error Underlined style is not supported. Only a BOLD and ITALIC font can be set.

Default Character

The applicationmay request the rendering of a stringwhere some characters are not available in the selected font.
In that case, a default character is drawn instead: it is the first available character in the font. For example, the first
available character for a font where the range matches the ASCII printable characters (0x21-0x7E) would be the
exclamation mark (0x21).

The characters of a font are referenced by their Unicode value. For a given font range, the default character is the
first character of the first range. Consequently, the default character may not be the same for two given fonts of an
application: it depends on the specified character range for each font.

To help developers identify quickly why a string is rendered with unexpected characters, it is recommended that
the fontmaker sets a default character that is easy to recognize (a symbol, for example, a rectangle). This character
must have the first character index (index 0 is allowed).

5.14. Libraries 481

MicroEJ Documentation, Revision 32bb132e

Caching Generated Fonts

Fonts converted using the Font Generator can be cached so that they are not rebuilt every time the application is
launched. Doing so can significantly speed up the application build phase.

The cache is enabled by default. Itmay bedisabled by setting the Application option ej.microui.fontConverter.
disableCache to true .

The Font Generator obeys several rules when choosing whether a font should be converted.

• If the cache is disabled, all fonts are generated every time the application is launched.

• All fonts will be regenerated if the application is launched using another VEE port and the new VEE port uses
a di�erent Font Generator.

• If the generated font does not exist, it will be generated.

• If the source font has beenmodified since the last time it was converted, the font will be regenerated.

• The font will be regenerated if the destination format or the range has beenmodified in the fonts.list file.

Cached fonts are stored in .cache/fonts , which is located in the application output folder. You may delete this
directory to force the generation of all fonts in your application. A font that was previously generated but is no
longer listed in the *.fonts.list files when the application is launched will be deleted from the cache directory.

Application Options

MicroUI libraries and its toolsprovidea setofoptions. SeeStandaloneApplicationOptions tohavemore information
about the application options.

Note: MicroUI implementation requires one thread (MicroUI Pump) and at least 100 bytes in the immortals heap.

5.14. Libraries 482

MicroEJ Documentation, Revision 32bb132e

Category: Libraries

Category: MicroUI

Group: Memory

5.14. Libraries 483

MicroEJ Documentation, Revision 32bb132e

Option(text): Pump events (inputs and display) queue size (in number of events)

Option Name: ej.microui.memory.queue.size

Default value: 100

Description:

Specifies the size of the pump events queue.

Option(combo): Pump events thread priority

Option Name: com.microej.library.microui.pump.priority

Default value: 5

Available values: 1 to 10

Description:

Specifies the priority of the pump events queue.

Option(text): Images heap size (in bytes)

Option Name: ej.microui.memory.imagesheap.size

Default value: 131072

Description:

Specifies the size of the images heap. This heap is used to store the dynamic user images, the decoded images
and the working bu�ers of embedded image decoders (for instance the PNG decoder). A too small value can cause
OutOfMemory errors and incomplete drawings.

5.14. Libraries 484

MicroEJ Documentation, Revision 32bb132e

Category: Font

Group: Fonts to Process

Description:

This group allows to select a file describing the font files which need to be converted into a RAW format. At Mi-
croUI runtime, the pre-generated fonts will be read from the flashmemory without anymodifications (see MicroUI
specification).

Option(checkbox): Activate the font pre-processing step

Option Name: ej.microui.fontConverter.useIt

Default value: true

Description:

When checked, enables the next option Fonts list file. When the next option is disabled, there is no check on
the file path validity.

5.14. Libraries 485

MicroEJ Documentation, Revision 32bb132e

Option(checkbox): Define an explicit list file

Option Name: ej.microui.fontConverter.file.enabled

Default value: false

Description:

Bydefault, list files are loaded fromtheclasspath. Whenchecked, only thenextoption Fonts list file isprocessed.

Option(browse):

Option Name: ej.microui.fontConverter.file

Default value: (empty)

Description:

Browse to select a font list file. Refer to Font Generator chapter for more information about the font list file format.

Category: Image

Group: Images to Process

Description:

This group allows to select a file describing the image files which need to be converted into a RAW format. At
MicroUI runtime, the pre-generated images will be read from the flash memory without any modifications (see
MicroUI specification).

5.14. Libraries 486

MicroEJ Documentation, Revision 32bb132e

Option(checkbox): Activate the image pre-processing step

Option Name: ej.microui.imageConverter.useIt

Default value: true

Description:

When checked, enables the next option Images list file. When the next option is disabled, there is no check on
the file path validity.

Option(checkbox): Define an explicit list file

Option Name: ej.microui.imageConverter.file.enabled

Default value: false

Description:

By default, list files are loaded from the classpath. When checked, only the next option Images list file is pro-
cessed.

Option(browse):

Option Name: ej.microui.imageConverter.file

Default value: (empty)

Description:

Browse to select an image list file. Refer to Image Generator chapter for more information about the image list file
format.

Debug Traces

MicroUI logs several actions when traces are enabled. This chapter explains the trace identifiers.

Note: Most of the logs are only available on the Embedded VEE Port (not on the Simulator).

Trace format

The trace output format is the following:

[TRACE: MicroUI] Event AA(BB[CC],DD[EE])

where:

• AA is the event identifier. See next table.

• BB is the first event data.

• CC is the index of the first event data (0x0).

• DD is the second event data.

• EE is the index of the second event data (0x1).

5.14. Libraries 487

MicroEJ Documentation, Revision 32bb132e

• etc.

For example, given the following trace output:

[TRACE: MicroUI] Event 0x2(1[0x0],2[0x1],117571586[0x2])

• 0x2 -> Execute native input event

• 1 -> Event “Button” (index 0x0)

• 2 -> Generator Id (index 0x1)

• 117571586 -> event data (index 0x2)

Trace identifiers

The following tables describe some events data.

5.14. Libraries 488

MicroEJ Documentation, Revision 32bb132e

Table 10: MicroUI Traces
Event
ID

Description End of event

0x0 (0) Execute EventGenerator event %0% (see Event Type). Generator id is
%1% and data is %2% .

End of %0% (see Event Type).

0x1 (1) Drop event %0% .
0x2 (2) Execute native input event %0% (see Event Type). Generator id is %1%

and data is %2% .
End of %0% (see Event Type).

0x3 (3) Execute display event %0% (see Event Type). Event is %1% . End of %0% (see Event Type).
0x4 (4) Execute user event %0% . End of %0% .
0x5 (5) Create new image using %0% algorithm (see Create Image). Image created, image identi-

fier is %0% .
0x6 (6) New image characteristics %0% (see Image Type), identifier is %1%

andmemory size is %2% .
0xb
(11)

Flush done.

0xf (15) Asynchronous drawing operation done.
0x14
(20)

Invalid input event %0% .

0x15
(21)

Event queue is full, cannot add event %0% .

0x16
(22)

Add event %0% at index %1% ; queue length is %2% .

0x17
(23)

Replace event %0% by %1% at index %2% ; queue length is %3% .

0x18
(24)

Read event %0% at index %1% .

0x40
(64)

Start drawing operation %0% (see Drawing Type). Drawingstatus %0% (seeDraw-
ing Status)

0x50
(80)

[BRS] New drawing region

0x51
(81)

[BRS] Flush LCD (id = %0% bu�er = %1%) with a single region (%2% ,
%3%) to (%4% , %5%)

0x52
(82)

[BRS] Flush LCD (id = %0% bu�er = %1%) with several %2% regions

0x53
(83)

[BRS] Add a region (%0% , %1%) to (%2% , %3%)

0x54
(84)

[BRS] Remove a region (%0% , %1%) to (%2% , %3%)

0x55
(85)

[BRS] Restore a region (%0% , %1%) to (%2% , %3%)

0x56
(86)

[BRS] Clear the list of regions

5.14. Libraries 489

MicroEJ Documentation, Revision 32bb132e

Table 11: Event Type
Event ID Description
0x0 (0) Event “Command”
0x1 (1) Event “Button”
0x2 (2) Event “Pointer”
0x3 (3) Event “State”
0x4 (4) Event “Unknwon”
0x5 (5) Event “Call Serially”
0x6 (6) Event “MicroUI Stop”
0x7 (7) Event “Input”
0x8 (8) Event “Show Displayable”
0x9 (9) Event “Hide Displayable”
0xb (11) Event “Pending Flush”
0xc (12) Event “Force Flush”
0xd (13) Event “Repaint Displayable”
0xe (14) Event “Repaint Current Displayable”
0xf (15) Event “KF Stop Feature”

Table 12: Create Image
Event ID Description
0x0 (0) Create Bu�eredImage
0x1 (1) Create Image from path
0x2 (2) Create Image from InputStream

Table 13: Image Type
Event ID Description
0x0 (0) New Bu�eredImage
0x1 (1) Load MicroEJ Image from RAW file
0x2 (2) NewMicroEJ Image from encoded image
0x3 (3) NewMicroEJ Image from RAW image in external memory
0x4 (4) NewMicroEJ Image from encoded image in external memory
0x5 (5) NewMicroEJ Image frommemory InputStream
0x6 (6) NewMicroEJ Image from byte array InputStream
0x7 (7) NewMicroEJ Image from generic InputStream
0x8 (8) Link Image

Table 14: Drawing Type
Event ID Description
0x1 (1) Write pixel
0x2 (2) Draw line
0x3 (3) Draw horizontal line
0x4 (4) Draw vertical line
0x5 (5) Draw rectangle
0x6 (6) Fill rectangle
0x7 (7) Unknown
0x8 (8) Draw rounded rectangle
0x9 (9) Fill rounded rectangle

continues on next page

5.14. Libraries 490

MicroEJ Documentation, Revision 32bb132e

Table 14 – continued from previous page
Event ID Description
0xa (10) Draw circle arc
0xb (11) Fill circle arc
0xc (12) Draw ellipse arc
0xd (13) Fill ellipse arc
0xe (14) Draw ellipse
0xf (15) Fill ellipse
0x10 (16) Draw circle
0x11 (17) Fill circle
0x12 (18) Draw ARGB array
0x13 (19) Draw image
0x32 (50) Draw polygon
0x33 (51) Fill polygon
0x34 (52) Get ARGB image data
0x35 (53) Draw string
0x36 (54) Draw deformed string
0x37 (55) Draw deformed image
0x38 (56) Draw character with rotation (bilinear)
0x39 (57) Draw character with rotation (simple)
0x3a (58) Get string width
0x3b (59) Get pixel
0x64 (100) Draw thick faded point
0x65 (101) Draw thick faded line
0x66 (102) Draw thick faded circle
0x67 (103) Draw thick faded circle arc
0x68 (104) Draw thick faded ellipse
0x69 (105) Draw thick line
0x6a (106) Draw thick circle
0x6b (107) Draw thick ellipse
0x6c (108) Draw thick circle arc
0xc8 (200) Draw image with fli
0xc9 (201) Draw image with rotation (simple)
0xca (202) Draw image with rotation (bilinear)
0xcb (203) Draw image with scalling (simple)
0xcc (204) Draw image with scalling (bilinear)

Table 15: Drawing Status
Event ID Description
0x0 (0) Synchronous drawing done
0x1 (1) Asynchronous drawing runs

5.14. Libraries 491

MicroEJ Documentation, Revision 32bb132e

SystemView Integration

The traces are SystemView compatible.

Fig. 15: MicroUI Traces displayed in SystemView

The following text canbecopied ina file called SYSVIEW_MicroUI.txt andcopied inSystemView installation folder
(e.g. SEGGER/SystemView_V252a/Description/).

NamedType UIEvent 0=COMMAND
NamedType UIEvent 1=BUTTON
NamedType UIEvent 2=POINTER
NamedType UIEvent 3=STATE
NamedType UIEvent 4=UNKNOWN
NamedType UIEvent 5=CALLSERIALLY
NamedType UIEvent 6=STOP
NamedType UIEvent 7=INPUT
NamedType UIEvent 8=SHOW_DISPLAYABLE
NamedType UIEvent 9=HIDE_DISPLAYABLE
NamedType UIEvent 11=PENDING_FLUSH
NamedType UIEvent 12=FORCE_FLUSH
NamedType UIEvent 13=REPAINT_DISPLAYABLE
NamedType UIEvent 14=REPAINT_CURRENT_DISPLAYABLE
NamedType UIEvent 15=KF_STOP_FEATURE

NamedType UINewImage 0=MUTABLE_IMAGE
NamedType UINewImage 1=IMAGE_FROM_PATH
NamedType UINewImage 2=IMAGE_FROM_INPUTSTREAM

NamedType UIImageData 0=NEW_IMAGE
NamedType UIImageData 1=LOAD_MICROEJ
NamedType UIImageData 2=NEW_ENCODED
NamedType UIImageData 3=NEW_MICROEJ_EXTERNAL
NamedType UIImageData 4=NEW_ENCODED_EXTERNAL
NamedType UIImageData 5=MEMORY_INPUTSTREAM
NamedType UIImageData 6=BYTEARRAY_INPUTSTREAM
NamedType UIImageData 7=GENERIC_INPUTSTREAM
NamedType UIImageData 8=LINK_IMAGE

NamedType GEDraw 1=WRITE_PIXEL
NamedType GEDraw 2=DRAW_LINE
NamedType GEDraw 3=DRAW_HORIZONTALLINE
NamedType GEDraw 4=DRAW_VERTICALLINE

(continues on next page)

5.14. Libraries 492

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

NamedType GEDraw 5=DRAW_RECTANGLE
NamedType GEDraw 6=FILL_RECTANGLE
NamedType GEDraw 7=UNKNOWN
NamedType GEDraw 8=DRAW_ROUNDEDRECTANGLE
NamedType GEDraw 9=FILL_ROUNDEDRECTANGLE
NamedType GEDraw 10=DRAW_CIRCLEARC
NamedType GEDraw 11=FILL_CIRCLEARC
NamedType GEDraw 12=DRAW_ELLIPSEARC
NamedType GEDraw 13=FILL_ELLIPSEARC
NamedType GEDraw 14=DRAW_ELLIPSE
NamedType GEDraw 15=FILL_ELLIPSE
NamedType GEDraw 16=DRAW_CIRCLE
NamedType GEDraw 17=FILL_CIRCLE
NamedType GEDraw 18=DRAW_ARGB
NamedType GEDraw 19=DRAW_IMAGE

NamedType GEDraw 50=DRAW_POLYGON
NamedType GEDraw 51=FILL_POLYGON
NamedType GEDraw 52=GET_IMAGEARGB
NamedType GEDraw 53=DRAW_STRING
NamedType GEDraw 54=DRAW_DEFORMED_STRING
NamedType GEDraw 55=DRAW_IMAGE_DEFORMED
NamedType GEDraw 56=DRAW_CHAR_ROTATION_BILINEAR
NamedType GEDraw 57=DRAW_CHAR_ROTATION_SIMPLE
NamedType GEDraw 58=STRING_WIDTH
NamedType GEDraw 59=GET_PIXEL

NamedType GEDraw 100=DRAW_THICKFADEDPOINT
NamedType GEDraw 101=DRAW_THICKFADEDLINE
NamedType GEDraw 102=DRAW_THICKFADEDCIRCLE
NamedType GEDraw 103=DRAW_THICKFADEDCIRCLEARC
NamedType GEDraw 104=DRAW_THICKFADEDELLIPSE
NamedType GEDraw 105=DRAW_THICKLINE
NamedType GEDraw 106=DRAW_THICKCIRCLE
NamedType GEDraw 107=DRAW_THICKELLIPSE
NamedType GEDraw 108=DRAW_THICKCIRCLEARC

NamedType GEDraw 200=DRAW_FLIPPEDIMAGE
NamedType GEDraw 201=DRAW_ROTATEDIMAGENEARESTNEIGHBOR
NamedType GEDraw 202=DRAW_ROTATEDIMAGEBILINEAR
NamedType GEDraw 203=DRAW_SCALEDIMAGENEARESTNEIGHBOR
NamedType GEDraw 204=DRAW_SCALEDIMAGEBILINEAR

NamedType GEDrawAsync 0=done
NamedType GEDrawAsync 1=started

#
MicroUI
#
0 UI_EGEvent (MicroUI) Execute EventGenerator event %UIEvent (generatorID =
→˓%u, data = %p) | (MicroUI) EventGenerator event %UIEvent done
1 UI_DROPEvent (MicroUI) Drop event %p

(continues on next page)

5.14. Libraries 493

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

2 UI_InputEvent (MicroUI) Execute native input event %UIEvent (generatorID = %u,␣
→˓event = %p) | (MicroUI) Native input event %UIEvent done
3 UI_DisplayEvent (MicroUI) Execute display event %UIEvent (event = %p) ␣
→˓ | (MicroUI) Display event %UIEvent done
4 UI_UserEvent (MicroUI) Execute user event %p ␣
→˓ | (MicroUI) User event %p done
5 UI_OpenImage (MicroUI) Create %UINewImage ␣
→˓ | (MicroUI) Image created, id = %p
6 UI_ImageData (MicroUI) %UINewImage %UIImageData, id = %p, size = %d*%d

#
MicroUI Graphics Engine
#
11 GE_FlushDone (MicroUI GraphicsEngine) Flush done
15 GE_GPUDrawDone (MicroUI GraphicsEngine) Asynchronous drawing operation done

#
MicroUI Event Engine
#
20 EE_InvalidEvent (MicroUI Event Engine) Invalid event: %p
21 EE_QueueFull (MicroUI Event Engine) Queue full, cannot add event %p
22 EE_AddEvent (MicroUI Event Engine) Add event %p (index = %u / queue length =
→˓%u)
23 EE_ReplaceEvent (MicroUI Event Engine) Replace event %p by %p (index = %u /␣
→˓queue length = %u)
24 EE_ReadEvent (MicroUI Event Engine) Read event %p (index %u)

#
MicroUI CCO
#
40 UI_Draw (MicroUI) Drawing operation %GEDraw |␣
→˓(MicroUI) Drawing operation %GEDrawAsync

50 BRS_NewDrawing (BRS) New drawing region (%u,%u) to (%u,%u)
51 BRS_FlushSingle (BRS) Flush LCD (id=%u buffer=%p) single region (%u,%u) to (%u,
→˓%u)
52 BRS_FlushMulti (BRS) Flush LCD (id=%u buffer=%p) %u regions
53 BRS_AddRegion (BRS) Add region (%u,%u) to (%u,%u)
54 BRS_RemoveRegion (BRS) Remove region (%u,%u) to (%u,%u)
55 BRS_RestoreRegion (BRS) Restore region (%u,%u) to (%u,%u)
56 BRS_ClearList (BRS) Clear the list of regions

5.14. Libraries 494

MicroEJ Documentation, Revision 32bb132e

Error Messages

When an exception is thrown by the implementation of the MicroUI API, the exception MicroUIException with the
error message MicroUI:E=<messageId> is issued, where the meaning of <messageId> is defined in following
table:

Table 16: MicroUI Error Messages
Message ID Description
1 Another EventGenerator cannot be added into the system pool (max 254).
0 [VEE Port issue] Result of MicroUI static initialization step seems invalid: MicroUI cannot

start. Fix MicroUI static initialization step and rebuild the VEE Port.
-1 MicroUI is not started; call MicroUI.start() before using a MicroUI API.
-2 [Warning] Event generator specified duringMicroUI static initialization step is not available

in the application classpath.
-3 Deadlock. Cannot wait for an event in the same thread that runs events. Dis-

play.waitFlushCompleted() must not be called in the MicroUI thread (for example in
render method).

-4 Resource’s pathmust be relative to the classpath (startwith ‘/’) or resource is not available.
-5 The resource data cannot be read for unknown reason.
-6 The resource has been closed and cannot be used anymore.
-7 Out of memory. Not enough memory to allocate the Image’s bu�er. Try to close some

useless images and retry opening the new image, or increase the size of theMicroUI images
heap.

-8 The VEE Port cannot decode this kind of image (the required runtime image decoder is not
available in the VEE Port).

-9

This exception is thrown when the FIFO of the internal MicroUI thread is full. In this case,
no more event (such as requestRender , input events, etc.) can be added into it.
Most of time this error occurs when:
- There is a user thread which performs toomany calls to the method requestRender
without waiting for the end of the previous drawing.
- Toomany input events are pushed from an input driver to the MicroUI thread (for
example some touch events).

-10 There is no display on the VEE Port.
-11 There is no font (VEE Port and application).
-12 The maximum number of event generators in the pool (254) has been reached.

Migration Guide

The MicroUI implementation is provided by the MicroEJ UI Pack. According the MicroEJ UI Pack used to build the
MicroEJ Platform, the application has to be updated.

• Refer to the table that illustrates the implemented MicroUI API for each MicroEJ UI Pack.

• Refer to the latest MicroUI API Changelog.

• Refer to the latest Drawing API Changelog.

The following chapters describe the changes to perform in the application according the MicroEJ UI Pack used to
build the MicroEJ Platform.

5.14. Libraries 495

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/MicroUIException.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/EventGenerator.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#waitFlushCompleted--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#waitFlushCompleted--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Image.html
https://repository.microej.com/modules/ej/api/microui
https://repository.microej.com/modules/ej/api/drawing

MicroEJ Documentation, Revision 32bb132e

From 12.x to 13.x

• Update ej.api#microui dependency to the latest available version 3.x .

• Add ej.api#drawing dependency.

Gradle (build.gradle.kts)

MMM (module.ivy)

implementation("ej.api:microui:3.1.0")
implementation("ej.api:drawing:1.0.3")

<dependencies>
<dependency org="ej.api" name="microui" rev="3.1.0"/>
<dependency org="ej.api" name="drawing" rev="1.0.3"/>

</dependencies>

From 10.x to 12.x

• In MicroEJ application launcher > Configuration tab > MicroUI: check Use Flying Images when the
application is using the flying images (property com.microej.library.microui.flyingimage.enabled).

• In MicroEJ application launcher, increase the Java heap: it now contains MicroUI images metadata (size,
format, clip etc.). The iceatea heap has been automatically decreased.

From 9.x to 10.x

• In MicroEJ application launcher > Configuration tab > MicroUI: set the image heap size (property
ej.microui.memory.imagesheap.size).

MicroVG

MicroVG Foundation Library provides vector drawing capabilities.

Usage

To use the MicroVG Foundation Library, add MicroVG API module to the project build file:

Gradle (build.gradle.kts)

MMM (module.ivy)

implementation("ej.api:microvg:1.2.0")

<dependency org="ej.api" name="microvg" rev="1.2.0"/>

The MicroVG Library brings the following features:

• the creation and drawing of paths with color or linear gradient.

• the drawing of texts using vector fonts with color or linear gradient.

• the drawing of vector images.

5.14. Libraries 496

https://repository.microej.com/modules/ej/api/microui
https://repository.microej.com/modules/ej/api/drawing
https://repository.microej.com/modules/ej/api/microvg/

MicroEJ Documentation, Revision 32bb132e

• the transformation of paths, texts, images with a�ine transformation matrices.

Note: TheMicroVG library natives use di�erent drawing engines, font rendering and layout engines for embedded
and simulator implementations.

This can lead to some slightly drawing di�erences, like for instance in the antialiasing processing of font glyphs.

Path

Path Creation

The MicroVG library enables the creation of vector paths composed of the following commands:

• Move

• Line

• Cubic Bezier Curve

• Quadratic Bezier Curve

• Close

The coordinates of the points associated with these commands can be absolute or relative.

Path path = new Path();

path.moveTo(70, 20);
path.cubicTo(0, 0, 10, 50, 80, 90);
path.lineTo(95, 75);
path.quadTo(12, 40, 80, 50);
path.close();

Path path = new Path();

path.moveTo(70, 20);
path.cubicToRelative(-70, -20, -60, 30, 10, 70);
path.lineToRelative(15, -15);
path.quadToRelative(-83, -35, -15, -25);
path.close();

Path Drawing

A path can be drawn with a call to ej.microvg.VectorGraphicsPainter.fillPath().

The drawn path will be filled with the graphic context color or with a linear gradient.

The path can be transformed by a transformation matrix (this concept is explained inMatrix section) before draw-
ing.

A FillType and an Alpha Blending Mode can be applied during the drawing.

5.14. Libraries 497

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorGraphicsPainter.html#fillPath-ej.microui.display.GraphicsContext-ej.microvg.Path-float-float-

MicroEJ Documentation, Revision 32bb132e

Fill Path With Graphics Context Color

The default alpha channel value of the drawing is 0xFF (opaque opacity).

g.setColor(Colors.GRAY);
VectorGraphicsPainter.fillPath(g, path, 0, 0);

Fill Path With a Linear Gradient

Refer to Linear Gradient section for more details about the definition of a linear gradient.

Theopacity valueof thedrawing is definedby theAlpha channel of theARGBcolor valuesof the each linear gradient
stop point.

LinearGradient gradient = new LinearGradient(0, 0, 100, 0, new int[] { 0xffff0000,␣
→˓0xffffff00, 0xffffffff });
VectorGraphicsPainter.fillPath(g, path, new Matrix(), gradient);

5.14. Libraries 498

MicroEJ Documentation, Revision 32bb132e

Fill Type

A path can be drawn with a FillType argument. This argument defines the way a path will be filled.

The following values are a available:

• FillType.Winding: Specifies that “inside” is computed by a non-zero sum of signed edge crossings.

• FillType.EVEN_ODD: Specifies that “inside” is computed by an odd number of edge crossings.

Path path = new Path();

path.moveTo(50, 0);
path.lineTo(21, 90);
path.lineTo(98, 35);
path.lineTo(2, 35);
path.lineTo(79, 90);
path.close();

5.14. Libraries 499

MicroEJ Documentation, Revision 32bb132e

Opacity and Blending Mode

The opacity of the drawing can be provided to the fillPathmethod with a blending mode.

When the drawing is done with graphic context color, the given alpha value replaces the default value (0xFF).

When the drawing is donewith a linear gradient, the given alpha is applied above each gradient colors alpha chan-
nel values(0x80 alpha value on #80FFFFFF ARGB color leads to #40FFFFFF color).

The supported blending modes are:

• SRC : The source pixels replace the destination pixels.

• SRC_OVER : The source pixels are drawn over the destination pixels.

• DST_OVER : The source pixels are drawn behind the destination pixels.

• SRC_IN : Keeps the source pixels that cover the destination pixels, discards the remaining source and desti-
nation pixels.

• DST_IN : Keeps the destination pixels that cover source pixels, discards the remaining source anddestination
pixels.

• DST_OUT : Keeps the destination pixels that are not covered by source pixels. Discards destination pixels that
are covered by source pixels. Discards all source pixels.

• PLUS : Adds the source pixels to the destination pixels and saturates the result.

• SCREEN : Adds the source and destination pixels, then subtracts the source pixels multiplied by the destina-
tion.

• MULTIPLY : Multiplies the source and destination pixels.

5.14. Libraries 500

MicroEJ Documentation, Revision 32bb132e

Fig. 16: SRC

Fig. 17:
SRC_OVER

Fig. 18:
DST_OVER

Fig. 19: SRC_IN

Fig. 20: DST_IN

Fig. 21: DST_OUT

Fig. 22: PLUS

Fig. 23: SCREEN

Fig. 24:
MULTIPLY

Matrix

A Matrix is composed of an array of numbers with three rows and three columns. It is used
to apply an a�ine transformations to Path points. (Refer to https://en.wikipedia.org/wiki/
Transformation_matrix#A�ine_transformations to get more information about a�ine transfor-
mations).

The available transformations are:

• translation

• rotation

5.14. Libraries 501

https://en.wikipedia.org/wiki/Transformation_matrix#Affine_transformations
https://en.wikipedia.org/wiki/Transformation_matrix#Affine_transformations

MicroEJ Documentation, Revision 32bb132e

• scaling

Scaling and rotation are always performed around the (0,0) pivot point. In order to rotate
or scale a Path with a pivot point, the matrix must be translated before and a�er the rota-
tion/scaling.

AMatrix is created as an identity matrix, whichmeans that a Path resulting of a transformation
with this matrix is identical to the original Path.

TheMatrix can be initialized with a transformation with set methods:

• setTranslate(translateX, translateY)

• setRotate(angle)

• setScale(scaleX, scaleY)

A transformation can be prepended to aMatrix with the prependmethods:

• preTranslate(translateX, translateY)

• preRotate(angle)

• preScale(scaleX, scaleY)

A transformation can be appended to aMatrix with the appendmethods:

• postTranslate(translateX, translateY)

• postRotate(angle)

• postScale(scaleX, scaleY)

AMatrix can also get transformations from an otherMatrix with the concatenate and set meth-
ods:

• preConcat(matrix)

• postConcat(matrix)

• set(matrix)

• setConcat(matrix0, matrix1)

Once aMatrix has been computed, it can be used to draw an object (Path, String, VectorImage).
All the points of the drawn object will be transformed by theMatrix.

When aMatrix has been computedwithmultiple type of transformation, the sequence order of
the transformation is important. Chaining the transformations in a di�erent order will not pro-
vide the same Matrix. The result of the previous transformation is the input to the next trans-
formation.

The following examples use the Path created in the section Path Creation with di�erent trans-
formations.

5.14. Libraries 502

MicroEJ Documentation, Revision 32bb132e

Translation

Matrix matrix = new Matrix();
matrix.setTranslate(200, 150);

Rotation

Around point (0,0).

Matrix matrix = new Matrix();
matrix.setRotate(40);

5.14. Libraries 503

MicroEJ Documentation, Revision 32bb132e

Around a pivot point (80,50).

Matrix matrix = new Matrix();
matrix.setRotate(40);

float pivotX = 80;
float pivotY = 50;
matrix.preTranslate(-pivotX, -pivotY);
matrix.postTranslate(pivotX, pivotY);

5.14. Libraries 504

MicroEJ Documentation, Revision 32bb132e

Scale

From point (0,0).

Matrix matrix = new Matrix();
matrix.setScale(2,3);

Concatenate Matrixes

Sequence order has an incidence on the rendering.

Matrix matrix0 = new Matrix();
matrix0.setScale(2, 3);

Matrix matrix1 = new Matrix();
matrix1.setTranslate(100, 40);

Matrix matrix2 = new Matrix();
matrix2.setConcat(matrix0, matrix1);

g.setColor(Colors.GRAY);
VectorGraphicsPainter.fillPath(g, path, matrix2);

(continues on next page)

5.14. Libraries 505

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

matrix2.setConcat(matrix1, matrix0);

g.setColor(Colors.YELLOW);
VectorGraphicsPainter.fillPath(g, path, matrix2);

Linear Gradient

The MicroVG library supports the drawing of shapes with a linear gradient of color.

A linear gradient is specifiedby a linear segment anda set of ARGBcolors associatedwithpoints
on that segment.

The colors along the segment between those points are calculated using linear interpolation,
then extended perpendicular to that line.

The position of the color points on the segment are given from 0.0f (start of point) to 1.0f
(end of the segment).

There are two ways to create a gradient:

• with a start point, an end point and a color table: the first color will be applied to the start
point, the second color to the end point and other colors distributed evenly along the gradient
segment.

Path path = new Path();
path.moveTo(0, 0);
path.lineTo(100, 0);

(continues on next page)

5.14. Libraries 506

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

path.lineTo(100, 100);
path.lineTo(0, 100);
path.close();

LinearGradient gradient = new LinearGradient(0, 0, 99, 0,
␣

→˓ new int[] { 0xffff0000, 0xffffff00, 0xffffffff });

VectorGraphicsPainter.fillPath(g, path, new Matrix(), gradient);

• with a start point, an endpoint, a color table and a position table: the colors are applied to their
corresponding relative positions on the segment. If the first point is not the start point of the
segment, then first color is applied from the start of the segment to the first point. If the last
point is not the end point of the segment, then last color is applied from the last point to the
end of the segment.

LinearGradient gradient = new LinearGradient(0, 0, 99, 0,
␣

→˓ new int[] { 0xffff0000, 0xffffff00, 0xffffffff },
␣

→˓ new float[] { 0.4f, 0.6f, 0.8f });

VectorGraphicsPainter.fillPath(g, path, new Matrix(), gradient);

5.14. Libraries 507

MicroEJ Documentation, Revision 32bb132e

The transformation applied to the object (Path or String) to drawwith a gradient is also applied
to that gradient. The LinearGradient is not updated a�er the drawing.

LinearGradient gradient = new LinearGradient(0, 0, 99, 0,
␣

→˓ new int[] { 0xffff0000, 0xffffff00, 0xffffffff });

Matrix matrix = new Matrix();
matrix.setScale(2, 2.5f);
matrix.postRotate(30);
matrix.postTranslate(100, 100);

VectorGraphicsPainter.fillPath(g, path, matrix, gradient);

5.14. Libraries 508

MicroEJ Documentation, Revision 32bb132e

Vector Fonts

Overview

The MicroVG library enables the usage of Vector Fonts.

Compared to MicroUI Fonts, Vector Fonts brings the following features:

• the text strings are scalable and can be transformed using a Matrix object.

• the TTF/OTF font files don’t need to be preprocessed.

• the text strings can be drawn with opacity, a color or a linear gradient.

The library also considers the Kerning space described in the font file kerning table, and allows
a fine adjustement of the inter-letters spacing.

It also providesmetrics measurementmethods to correctly place the text within the surround-
ing drawing elements (i.e. in a label).

Loading a Font File

A Vector Font has to be loaded in a VectorFont object with a call to
ej.microvg.VectorFont.loadFont(). This VectorFont object can then be used to draw text
strings.

The fonts are decoded at runtime. They don’t need to be pre-processed by some generator tool
like MicroUI Fonts Vector Font files must be declared as resources in a .resources.list file
available in the classpath (Application Resources). To declare them as external resources, the
font files must be declared too in a .externresources.list file.

5.14. Libraries 509

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/Matrix.html
https://repository.microej.com/javadoc/microej_5.x/apis/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorFont.html#loadFont-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/

MicroEJ Documentation, Revision 32bb132e

Text String Drawing

A string can be drawn in the graphics context with a call to
ej.microvg.VectorGraphicsPainter.drawString().

The text string height is scalable, andmultiple font files can be used in parrallel.

VectorFont font0 = VectorFont.loadFont("/fonts/Arial.ttf");
VectorFont font1 = VectorFont.loadFont("/fonts/RAVIE.ttf");

int x = 20;
int y = 30;
int yOffset = 150;

g.setColor(Colors.LIME);
VectorGraphicsPainter.drawString(g, "Hello MicroEJ", font0, 20, x, y);
VectorGraphicsPainter.
→˓drawString(g, "Hello MicroEJ", font1, 20, x, y + yOffset);

g.setColor(Colors.RED);
y += 20;
VectorGraphicsPainter.drawString(g, "Hello MicroEJ", font0, 30, x, y);
VectorGraphicsPainter.
→˓drawString(g, "Hello MicroEJ", font1, 30, x, y + yOffset);

g.setColor(Colors.WHITE);
y += 30;
VectorGraphicsPainter.drawString(g, "Hello MicroEJ", font0, 40, x, y);
VectorGraphicsPainter.
→˓drawString(g, "Hello MicroEJ", font1, 40, x, y + yOffset);

g.setColor(Colors.YELLOW);
y += 40;
VectorGraphicsPainter.drawString(g, "Hello MicroEJ", font0, 50, x, y);
VectorGraphicsPainter.
→˓drawString(g, "Hello MicroEJ", font1, 50, x, y + yOffset);

display.flush();

5.14. Libraries 510

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorGraphicsPainter.html#drawString-ej.microui.display.GraphicsContext-java.lang.String-ej.microvg.VectorFont-float-float-float-

MicroEJ Documentation, Revision 32bb132e

Text Color

The text string can be colored with the graphics context color or a with a linear gradient(Linear
Gradient).

FillType and Alpha Blending Mode are also managed similarly to Path drawing (refer to Fill Type
and Opacity and Blending Mode).

g.setColor(Colors.LIME);
VectorGraphicsPainter.drawString(g, "Hello MicroEJ", font, 50, x, y);

LinearGradient gradient = new LinearGradient(0, 0, 250, 50,
␣

→˓ new int[] { 0xffff0000, 0xffffff00, 0xffffffff });

Matrix matrix = new Matrix();
matrix.setTranslate(x, y + 60);
VectorGraphicsPainter.
→˓drawGradientString(g, "Hello MicroEJ", font, 50, matrix, gradient, 0xff,

BlendMode.SRC_OVER, 0);

5.14. Libraries 511

MicroEJ Documentation, Revision 32bb132e

Text Transformations

The text string can also be transformed with a Matrix to translate, rotate, scale the drawing.

Matrix matrix0 = new Matrix();

matrix0.setTranslate(20, 60);
VectorGraphicsPainter.drawString(g,
→˓ "Hello MicroEJ", font, 50, matrix0, 0xff, BlendMode.SRC_OVER, 0);

matrix0.preRotate(180);
matrix0.postTranslate(300, 120);
VectorGraphicsPainter.drawString(g,
→˓ "Hello MicroEJ", font, 50, matrix0, 0xff, BlendMode.SRC_OVER, 0);

Matrix matrix1 = new Matrix();
matrix1.setScale(0.5f, 1.2f);
matrix1.postRotate(45);
matrix1.postTranslate(80, 200);

VectorGraphicsPainter.drawString(g,
→˓ "Hello MicroEJ", font, 50, matrix1, 0xff, BlendMode.SRC_OVER, 0);

matrix1.setScale(0.5f, 1.2f);
matrix1.postRotate(-45);
matrix1.postTranslate(200, 300);
VectorGraphicsPainter.drawString(g,
→˓ "Hello MicroEJ", font, 50, matrix1, 0xff, BlendMode.SRC_OVER, 0);

5.14. Libraries 512

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/Matrix.html

MicroEJ Documentation, Revision 32bb132e

Letter Spacing

The inter character distance can be adjusted for each string drawing. By default, the inter char-
acter distance is computed from the font file metrics, considering kerning, if the font file in-
cludes a kerning table. It can be adjusted with the letterSpacing parameter of drawString().
Itsdefault value is0pixel, apositive/negativevaluewill increase/reduce the inter spacedistance
by the corresponding pixel value.

Matrix matrix = new Matrix();

matrix.setTranslate(20, 60);
VectorGraphicsPainter.drawString(g,
→˓ "Hello MicroEJ", font, 50, matrix, 0xff, BlendMode.SRC_OVER, 0);

matrix.postTranslate(0, 60);
VectorGraphicsPainter.drawString(g,
→˓ "Hello MicroEJ", font, 50, matrix, 0xff, BlendMode.SRC_OVER, 5f);

matrix.postTranslate(0, 60);
VectorGraphicsPainter.drawString(g,
→˓ "Hello MicroEJ", font, 50, matrix, 0xff, BlendMode.SRC_OVER, -2);

5.14. Libraries 513

https://en.wikipedia.org/wiki/Kerning

MicroEJ Documentation, Revision 32bb132e

Colored Emojis

The library supports the drawing of colored multilayer glyphs, but only for the embedded im-
plementation. The simulator implementation draws the full emoji glyph with the color of the
graphics context.

Only font files with CPAL/COLR tables are supported.

Font files with CBDT/CBLC tables are not supported.

To add colored emojis to a font, see the tutorial How to Add Emojis to a Vector Font.

Metrics and Text Positioning

All metrics provided by the ej.microvg.VectorFont class are given for a specific font size. The
font size defines the height to which each character bounding box will be scaled.

The following figure presents some concepts of font metrics standarts:

When a string is drawn with a call to ej.microvg.VectorGraphicsPainter.drawString() or
ej.microvg.VectorGraphicsPainter.drawGradientString(), theanchorpointof thestring is the top
le� corner of the text rendering box. This anchor point is located horizontally on the first pixel
of the first drawn glyph and vertically on the max ascent line.

5.14. Libraries 514

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorFont.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorGraphicsPainter.html#drawString-ej.microui.display.GraphicsContext-java.lang.String-ej.microvg.VectorFont-float-float-float-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorGraphicsPainter.html#drawGradientString-ej.microui.display.GraphicsContext-java.lang.String-ej.microvg.VectorFont-float-ej.microvg.Matrix-ej.microvg.LinearGradient-int-ej.microvg.BlendMode-float-

MicroEJ Documentation, Revision 32bb132e

The ej.microvg.VectorFont.getBaselinePosition()method can be used to position the text base-
line on a horizontal line.

The ej.microvg.VectorFont.getHeight() method can be used to center a text inside a label, by
positionning the anchor point in order to have the same space above and below the text string.

Two other methods are available to position a known text in a label:

• ej.microvg.VectorFont.measureStringHeight()

• ej.microvg.VectorFont.measureStringWidth()

These methods return the width and height of a string drawing. They are computed from the
width and height of the glyphs composing the string.

5.14. Libraries 515

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorFont.html#getBaselinePosition-float-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorFont.html#getHeight-float-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorFont.html#measureStringHeight-java.lang.String-float-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorFont.html#measureStringWidth-java.lang.String-float-

MicroEJ Documentation, Revision 32bb132e

These methods canmeasure a specific glyph width and height using a one character string.

Note: Themetrics are extracted from the character glyphmetrics without considering the antialiasing introduced
by the glyphs rasterizer.

Drawing a Text on a Circle

The library proposes the drawing of a text on a circle by a call to
ej.microvg.VectorGraphicsPainter.drawStringOnCircle(). The string is rendered as if the
baseline of the string was a circle arc.

The string direction can be either clockwise or counter clockwise.

All the features described above are still available (linear gradient, transformations, letter spac-
ing, kerning, colored emojis).

int x = 196;
int y = 196;
int diameter = 250;

g.setColor(Colors.YELLOW);

Painter.drawCircle(g, x - diameter / 2, y - diameter / 2, diameter);

g.setColor(Colors.PURPLE);
Matrix matrix = new Matrix();

matrix.setTranslate(x, y);

VectorGraphicsPainter.
→˓drawStringOnCircle(g, "Hello MicroEJ", font, 50, matrix, diameter / 2,

Direction.CLOCKWISE);

diameter = 100;

g.setColor(Colors.YELLOW);
Painter.drawCircle(g, x - diameter / 2, y - diameter / 2, diameter);

g.setColor(Colors.RED);
VectorGraphicsPainter.
→˓drawStringOnCircle(g, "Hello MicroEJ", font, 20, matrix, diameter / 2,

Direction.COUNTER_CLOCKWISE);

5.14. Libraries 516

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorGraphicsPainter.html#drawStringOnCircle-ej.microui.display.GraphicsContext-java.lang.String-ej.microvg.VectorFont-float-ej.microvg.Matrix-float-ej.microvg.VectorGraphicsPainter.Direction-

MicroEJ Documentation, Revision 32bb132e

The anchor point of the drawing is the center of the circle.

The position where the text starts along the circle is the 3 o’clock position (positive X axis). This
starting position can bemodified by specifying a rotation into the transformationMatrix.

g.setColor(Colors.PURPLE);
Matrix matrix = new Matrix();

matrix.setTranslate(x, y);

VectorGraphicsPainter.
→˓drawStringOnCircle(g, "Hello MicroEJ", font, 20, matrix, diameter / 2,

Direction.CLOCKWISE);

matrix.preRotate(90);
g.setColor(Colors.RED);
VectorGraphicsPainter.
→˓drawStringOnCircle(g, "Hello MicroEJ", font, 20, matrix, diameter / 2,

Direction.CLOCKWISE);

matrix.preRotate(90);
g.setColor(Colors.GREEN);
VectorGraphicsPainter.
→˓drawStringOnCircle(g, "Hello MicroEJ", font, 20, matrix, diameter / 2,

Direction.CLOCKWISE);

matrix.preRotate(90);
g.setColor(Colors.WHITE);
VectorGraphicsPainter.
→˓drawStringOnCircle(g, "Hello MicroEJ", font, 20, matrix, diameter / 2,

Direction.CLOCKWISE);

5.14. Libraries 517

MicroEJ Documentation, Revision 32bb132e

Complex Text Layout

Some scripts like Arabic or Thai scripts request a specific text layout mode where the shape
or positioning of a grapheme depends on its relation to other graphemes (Refer to https://en.
wikipedia.org/wiki/Complex_text_layout).

The MicroVG library provides two di�erent layout modes:

• the simple layoutmode for latin scripts and other scripts where character unicodes and glyphs
are one-to-one associated.

• the complex layout mode for complex text layout scripts like arabic or thai.

The simple layout mode draws the text character as described in the previous sections. It uses
the font Kerning table and the glyphs advanceX parameter to position the glyphs one a�er the
other.

The complex layout mode uses the GPOS and GSUB font tables to substitute and position the
character glyph.

The complex layout mode can be selected while loading the glyph with
ej.microvg.VectorFont.loadFont by passing a supplementary boolean argument with value
true.

Next example shows the same arabic string drawnwith the same font butwith simple (inwhite)
and complex layout(in RED).

VectorFont font0 = VectorFont.loadFont(FONT_NAME, false);
VectorFont font1 = VectorFont.loadFont(FONT_NAME, true);

(continues on next page)

5.14. Libraries 518

https://en.wikipedia.org/wiki/Complex_text_layout
https://en.wikipedia.org/wiki/Complex_text_layout

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

String s = "";

g.setColor(Colors.WHITE);
VectorGraphicsPainter.drawString(g, s, font0, 20, 50, 50);

g.setColor(Colors.RED);
VectorGraphicsPainter.drawString(g, s, font1, 20, 50, 100);

Text Measurement and Positioning

The measurement of string in complex layout mode respects the requirements presented in
Metrics and Text Positioning.

Strings fromscriptwhere text is read fromright to le�, likearabic, are still drawnwith theanchor
point located on the top le� of the string.

Bidirectional Text

The complex layout mode does not support bidirectional text. A bidirectional text has to be
splitted in multiple strings and each string has to be drawn to the correct location.

5.14. Libraries 519

MicroEJ Documentation, Revision 32bb132e

Limitations

The simulator rendering of complex layout mode for Drawing a Text on a Circle feature is done
with many approximations. This rendering can still be used to have an overview of the text
positionning on the display.

The letterSpacing feature is not supported by the simulator implementation. Texts will be dis-
played with a letterspacing value of 0.

External Fonts

To fetch fonts from external memory, the application must pre-register the external Font re-
sources. The management of this kind of font may be di�erent than the internal images and
may require some allocations in the runtimememory. For more details about the external font
management, refers to the VEE Port Guide chapter External Memory.

Vector Images

Overview

Vector Images are graphical resources that can be accessed with a call to
ej.microvg.VectorImage.getImage(). The images are converted at build-time (using the
image generator tool) to binary resources.

Images that must be processed by the image generator tool are declared in *.vectorimages.
list files (or in *.externvectorimages.list for an external resource, see External Images).
The file format is a standard Java properties file, each line representing a / separated resource
path relative to the MicroEJ classpath root referring to a vector image file (e.g. .svg , .xml
). The resource must be followed by a parameter (separated by a :) which defines and/or
describes the image output file format (raw format).

Currently accepted formats are :

• :VGF : vglite compatible format with coordinates encoded as float numbers (32 bits).

• :VG32 : vglite compatible format with coordinates encoded as signed int numbers (32 bits).

• :VG16 : vglite compatible format with coordinates encoded as signed short numbers (16 bits).

• :VG8 : vglite compatible format with coordinates encoded as signed char numbers (8 bits).

Example:

/com/mycompany/MyImage1.svg:VGF
/com/mycompany/androidVectorDrawable.xml:VG8

5.14. Libraries 520

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorImage.html#getImage-java.lang.String-

MicroEJ Documentation, Revision 32bb132e

Supported Input Files

The image generator tool supports the following input file formats:

• Android Vector Drawable

• SVG

Refer to the Limitations / Supported Features section for the list of supported features for these
file formats.

The vector image objects are extracted and converted to pathsmade of Move , Line and Curve
commands.

Each path is associated with either a fill color or a linear gradient. All object strokes are con-
verted to filled paths at build-time.

Objects group transformations are also extracted from the input file and applied at run-time.

Drawing Images

Drawing and Transforming Images

Once an image has been loaded it can be drawn in the graphic context with a call to
ej.microvg.VectorGraphicsPainter.drawImage().

The image is associated with a transformationMatrix that will be applied in order to translate,
scale and/or rotate the image.

The application can get the width and the height of the image with
ej.microvg.VectorImage.getWidth() and ej.microvg.VectorImage.getHeight() to correctly
scale and position the image in the application window.

The following example describes how an Android Vector Drawable file can be drawn and posi-
tioned on the display.

• Android Vector Drawable file:

<vector xmlns:android="http://schemas.
→˓android.com/apk/res/android" xmlns:aapt="http://schemas.android.com/aapt"

android:width="100dp" android:height=
→˓"100dp" android:viewportWidth="100" android:viewportHeight="100">
␣

→˓<path android:pathData="M 0 0 h50 v50 h-50 z" android:fillColor="#FFFFAA"/>
<path android:pathData="M 50 50 h50 v50 h-50 z">

<aapt:attr name="android:fillColor">
<gradient

␣
→˓ android:startColor="#0000ff" android:startX="50" android:startY="50"

␣
→˓ android:endColor="#ff00ff" android:endX="100" android:endY="100"

android:type="linear">
</gradient>

</aapt:attr>
</path>

</vector>

5.14. Libraries 521

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorGraphicsPainter.html#drawImage-ej.microui.display.GraphicsContext-ej.microvg.VectorImage-float-float-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorImage.html#getWidth--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorImage.html#getHeight--

MicroEJ Documentation, Revision 32bb132e

public static void main(String[] args) {

MicroUI.start();

Display display = Display.getDisplay();
GraphicsContext g = display.getGraphicsContext();

VectorImage␣
→˓image = VectorImage.getImage("/images/myImage.xml"); //$NON-NLS-1$

Matrix matrix0 = new Matrix();
matrix0.setTranslate(20, 20);
matrix0.preScale(50 / image.getWidth(), 50 / image.getHeight());

Matrix matrix1 = new Matrix();
matrix1.setTranslate(150, 150);
matrix1.preRotate(45);

VectorGraphicsPainter.drawImage(g, image, matrix0);
VectorGraphicsPainter.drawImage(g, image, matrix1);

display.flush();
}

5.14. Libraries 522

MicroEJ Documentation, Revision 32bb132e

DrawingWith Opacity

The vector image can be drawn with a global opacity level.

VectorImage␣
→˓image = VectorImage.getImage("/images/myImage.xml"); //$NON-NLS-1$

// the␣
→˓global opacity rendering value, between 0 (transparent) and 255 (opaque)
int opacity = 0x80;

VectorGraphicsPainter.drawImage(g, image, new Matrix(), opacity);

Warning: As paths are drawn one a�er the other, images that contain overlapping paths are
not correctly coloredwhena global opacity is applied. The rendering of these imageswill throw
an exception. The images must be reworked to suppress overlapping.

5.14. Libraries 523

MicroEJ Documentation, Revision 32bb132e

Color Filtering

A VectorImage object can be derived from another VectorImage object, keeping the paths and
transformations but updating the colors using a color matrix.

This color matrix is a 4x5 float matrix. It is organized like that:

• Each line is used to compute a component of the resulting color, in this order: red, green, blue,
alpha.

• The four first columns are multipliers applied to a component of the initial color, in this order:
red, green, blue, alpha.

• The last column is a constant value.

Let A, R, G, B be the components of the initial color and the following array a color matrix:

{ rR, rG, rB, rA, rC, // red
gR, gG, gB, gA, gC, // green
bR, bG, bB, bA, bC, // blue
aR, aG, aB, aA, aC } // alpha

The resulting color components are computed as:

resultRed = rR * R + rG * G + rB * B + rA * A + rC
resultGreen = gR * R + gG * G + gB * B + gA * A + gC
resultBlue = bR * R + bG * G + bB * B + bA * A + bC
resultAlpha = aR * R + aG * G + aB * B + aA * A + aC

If the resulting component value is below 0 or above 255, the component value is clamped to
these limits.

Note: The new image is a ResourceVectorImage. The image bu�er is allocated in the MicroUI image heap. The
application must manage the image cycle life and close the image to free the image bu�er.

A VectorImage object can also be drawn associated to a color matrix by a call to
ej.microvg.VectorGraphicsPainter.drawFilteredImage().

The following example illustrates this feature.

VectorImage␣
→˓image = VectorImage.getImage("/images/myImage.xml"); //$NON-NLS-1$

// Derive a new VectorImage
float[] colorMatrix0 = new float[] { //

1f, 0, 0, 0, 0, // red
0, 0, 0, 0, 0, // green
0, 0, 1f, 0, 0, // blue
0, 0, 0, 1f, 0, // alpha

};

VectorImage imageFiltered = image.filterImage(colorMatrix0);
VectorGraphicsPainter.drawImage(g, imageFiltered, new Matrix());

(continues on next page)

5.14. Libraries 524

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/ResourceVectorImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorGraphicsPainter.html#drawFilteredImage-ej.microui.display.GraphicsContext-ej.microvg.VectorImage-ej.microvg.Matrix-float:A-

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

float[] colorMatrix1 = new float[] { //
0f, 0, 0, 0, 0, // red
0.5f, 0.5f, 0, 0, 0, // green
0, 0, 1f, -0.5f, 0, // blue
0, 0, 0, 1f, 0, // alpha

};
Matrix matrix1 = new Matrix();
matrix1.setTranslate(image.getWidth(), 0);

VectorGraphicsPainter.drawFilteredImage(g, image, matrix1, colorMatrix1);

Animated Vector Images

The Android Vector Drawable format provides the ability to change the properties of vector
graphics over time, in order to create animated e�ects.

The transformations of the objects over the time are embedded in the Vector im-
age file and a call to ej.microvg.VectorGraphicsPainter.drawAnimatedImage() or
ej.microvg.VectorGraphicsPainter.drawFilteredAnimatedImage() will draw the image for a
specific time frame.

The application can get the duration of the image animation with a call to
ej.microvg.VectorImage.getDuration().

Every image object that is animated outside the image viewbox is clipped at the image bound-
ary. In any cases, especially when the image is rotated, the image boundary is the rectangle
that contains all the corners of the original image.

The supported file format is an Animated Vector Drawable xml file with animations and vector
definition in the same file as described in Android API.

5.14. Libraries 525

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorGraphicsPainter.html#drawAnimatedImage-ej.microui.display.GraphicsContext-ej.microvg.VectorImage-float-float-long-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorGraphicsPainter.html#drawFilteredAnimatedImage-ej.microui.display.GraphicsContext-ej.microvg.VectorImage-ej.microvg.Matrix-long-float:A-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorImage.html#getDuration--
https://developer.android.com/reference/android/graphics/drawable/AnimatedVectorDrawable#define-an-animatedvectordrawable-all-in-one-xml-file

MicroEJ Documentation, Revision 32bb132e

The SVG format also supports the animation of vector graphics objects, but this feature is not
yet implemented in the MicroVG library for this file format.

SVG files that need tobeanimated shouldbe converted toAndroid VectorDrawable formatwith
the Android Vector Asset tool and then animatedmanually or with a tool like Shapeshi�er.

Warning: A flaw in Eclipse Temurin™ JDK 8 causes animated vector images to render incor-
rectly on the Simulator. You should upgrade to Eclipse Temurin™ JDK 11 or use the JDK from
Oracle instead.

Supported animations

This section will present the di�erent available animations with an example.

For each example, this simple java code will be used.

VectorImage␣
→˓image = VectorImage.getImage("/images/myImage.xml"); //$NON-NLS-1$
Matrix matrix = new Matrix();
matrix.setTranslate(100,100);
matrix.preScale(2,2);

long elapsed = 0;
long step = 10;
while (true) {

// Clear Screen
g.setColor(Colors.BLACK);
Painter.fillRectangle(g, 0, 0, display.getWidth(), display.getHeight());

VectorGraphicsPainter.drawAnimatedImage(g, image, matrix, elapsed);

display.flush();

// Pause the current thread
try {

Thread.sleep(step);
} catch (InterruptedException e) {

e.printStackTrace();
}

// Update current image time
if (elapsed < image.getDuration()) {

elapsed += step;
} else {

elapsed = 0;
}

}

5.14. Libraries 526

https://shapeshifter.design/

MicroEJ Documentation, Revision 32bb132e

TranslateX and TranslateY

Any group in the Android Vector Drawable can be translated in X or Y direction with an object
animator.

<animated-vector xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:aapt="http://schemas.android.com/aapt">

<aapt:attr name="android:drawable">
<vector android:width="100dp" android:height="100dp"

android:viewportWidth="100" android:viewportHeight="100">
<group android:name="yellow_group">

␣
→˓<path android:pathData="M 0 0 h50 v50 h-50 z" android:fillColor="#FFFFAA"/>

</group>
<group android:name="gradient_group">
<path android:pathData="M 50 50 h50 v50 h-50 z">

<aapt:attr name="android:fillColor">
<gradient

␣
→˓ android:startColor="#0000ff" android:startX="50" android:startY="50"

␣
→˓ android:endColor="#ff00ff" android:endX="100" android:endY="100"

android:type="linear">
</gradient>

</aapt:attr>
</path>
</group>

</vector>
</aapt:attr>
<target android:name="yellow_group">

<aapt:attr name="android:animation">
<set android:ordering="together">

<objectAnimator␣
→˓android:propertyName="translateX" android:valueType="floatType"

android:duration=
→˓"1000" android:startOffset="0" android:valueFrom="0" android:valueTo="50"/>

<objectAnimator␣
→˓android:propertyName="translateX" android:valueType="floatType"

android:duration="1000
→˓" android:startOffset="1500" android:valueFrom="50" android:valueTo="0"/>

</set>
</aapt:attr>

</target>
<target android:name="gradient_group">

<aapt:attr name="android:animation">
<set android:ordering="together">

<objectAnimator␣
→˓android:propertyName="translateX" android:valueType="floatType"

android:duration="1000
→˓" android:startOffset="0" android:valueFrom="0" android:valueTo="-50"/>

<objectAnimator␣
(continues on next page)

5.14. Libraries 527

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

→˓android:propertyName="translateX" android:valueType="floatType"
android:duration="1000

→˓" android:startOffset="1500" android:valueFrom="-50" android:valueTo="0"/>
<objectAnimator␣

→˓android:propertyName="translateY" android:valueType="floatType"
android:duration="1000

→˓" android:startOffset="0" android:valueFrom="0" android:valueTo="-50"/>
<objectAnimator␣

→˓android:propertyName="translateY" android:valueType="floatType"
android:duration="1000

→˓" android:startOffset="1500" android:valueFrom="-50" android:valueTo="0"/>
</set>

</aapt:attr>
</target>
</animated-vector>

TranslateXY over a path

Any group in the Android Vector Drawable can be translated over a path.

<animated-vector xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:aapt="http://schemas.android.com/aapt">

<aapt:attr name="android:drawable">
<vector android:width="100dp" android:height="100dp"

android:viewportWidth="100" android:viewportHeight="100">
... same as previous example

</vector>
</aapt:attr>
<target android:name="gradient_group">

<aapt:attr name="android:animation">
<set android:ordering="together">

<objectAnimator
android:propertyName="translateXY" android:duration="5000"

␣
→˓ android:propertyXName="translateX" android:propertyYName="translateY"

android:pathData=
→˓"M -0.143 0.479 C -30.355 28.02 -153.405 -111.8 -39.441 -70.818

␣
→˓ C -48.423 -63.52 70.593 -18.608 -91.09 -15.802 Z"/>

</set>
</aapt:attr>

</target>
</animated-vector>

5.14. Libraries 528

MicroEJ Documentation, Revision 32bb132e

ScaleX and ScaleY

Agroup in theAndroid VectorDrawable canbe scaledonXor Ydirection. The scalingpivot point
is the one defined in the group attributes. By default, the pivot point is (0,0).

<animated-vector xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:aapt="http://schemas.android.com/aapt">

<aapt:attr name="android:drawable">
<vector android:width="100dp" android:height="100dp"

android:viewportWidth="100" android:viewportHeight="100">
␣

→˓<group android:name="yellow_group" android:pivotX="25" android:pivotY="25">
␣

→˓<path android:pathData="M 0 0 h50 v50 h-50 z" android:fillColor="#FFFFAA"/>
</group>
<group android:name="gradient_group" >
<path android:pathData="M 50 50 h50 v50 h-50 z">

<aapt:attr name="android:fillColor">
<gradient

␣
→˓ android:startColor="#0000ff" android:startX="50" android:startY="50"

␣
→˓ android:endColor="#ff00ff" android:endX="100" android:endY="100"

android:type="linear">
</gradient>

</aapt:attr>
</path>
</group>

</vector>
</aapt:attr>
<target android:name="yellow_group">

<aapt:attr name="android:animation">
<set android:ordering="together">

␣
→˓<objectAnimator android:propertyName="scaleX" android:valueType="floatType"

␣
→˓ android:duration="1000" android:startOffset="0" android:valueFrom="1"

android:valueTo="0.5"/>
␣

→˓<objectAnimator android:propertyName="scaleX" android:valueType="floatType"
␣

→˓ android:duration="1000" android:startOffset="1500" android:valueFrom="0.5"
android:valueTo="1"/>

</set>
(continues on next page)

5.14. Libraries 529

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

</aapt:attr>
</target>
<target android:name="gradient_group">

<aapt:attr name="android:animation">
<set android:ordering="together">

␣
→˓<objectAnimator android:propertyName="scaleX" android:valueType="floatType"

android:duration="1000" android:startOffset="0"
android:valueFrom="0.2" android:valueTo="1"/>

␣
→˓<objectAnimator android:propertyName="scaleX" android:valueType="floatType"

android:duration="1000" android:startOffset="1500"
android:valueFrom="1" android:valueTo="0.2"/>

␣
→˓<objectAnimator android:propertyName="scaleY" android:valueType="floatType"

android:duration="1000" android:startOffset="0"
android:valueFrom="0.2" android:valueTo="1"/>

␣
→˓<objectAnimator android:propertyName="scaleY" android:valueType="floatType"

android:duration="1000" android:startOffset="1500"
android:valueFrom="1" android:valueTo="0.2"/>

</set>
</aapt:attr>

</target>
</animated-vector>

Rotate

A group in the Android Vector Drawable can be rotated around a pivot point. The pivot point is
the one defined in the group attributes. By default, the pivot point is (0,0).

<animated-vector xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:aapt="http://schemas.android.com/aapt">

<aapt:attr name="android:drawable">
<vector android:width="100dp" android:height="100dp"

android:viewportWidth="100" android:viewportHeight="100">
... same as previous example

</vector>
</aapt:attr>
<target android:name="yellow_group">

<aapt:attr name="android:animation">
<set android:ordering="together">

<objectAnimator␣
(continues on next page)

5.14. Libraries 530

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

→˓android:propertyName="rotation" android:valueType="floatType"
android:duration="1000" android:startOffset="0"
android:valueFrom="0" android:valueTo="720"/>

<objectAnimator␣
→˓android:propertyName="rotation" android:valueType="floatType"

android:duration="1000" android:startOffset="1500"
android:valueFrom="720" android:valueTo="0"/>

</set>
</aapt:attr>

</target>
</animated-vector>

Morphing

The Android Vector Drawable format supports the animation of the pathData attribute of a
path. With this type of animation a shape can be transformed to a totally di�erent other shape.
Theonly constraint is that theorigin anddestination pathData must have the samecommands
format.

Lets take, for instance, the morphing of a rectangle to a circle which have the following com-
mands.

Circle: M 11.9 9.8 C 11.9 8.1 13.3 6.7 14.9 6.7 C 16.6␣
→˓6.7 18 8.1 18 9.8 C 18 11.6 16.6 13 14.9 13 C 13.3 13 11.9 11.6 11.9 9.8 Z

Rectangle: M 11.9 6.7 H 18 V 13 H 11.9 Z

The rectangle path has to be reworked to match with the sequence of commands of the circle
path.

The following tools can be used tomanipulate the paths to create thewanted animation e�ect:

• Shapeshi�er

• SVGPathEditor

There is an infinity of possibilities to create the new path, and the association of each points of
the pathswill induce a specificmorphing animation. As an example, let’s define two rectangles
very similar visually but with di�erent definitions:

New Rectangle path1: M 11.9 9.8 C 11.
→˓897 7.735 11.906 7.995 11.906 6.697 C 16.6 6.7 16.601 6.706 17.995 6.697 C␣
→˓18 11.6 17.995 11.587 18.004 13.006 C 13.3 13 13.852 13.006 11.897 13.006 Z

New Rectangle path2: M 11.906 6.697 C 11.953 6.698 12.
→˓993 6.698 17.995 6.697 C 17.999 8.331 17.997 9.93 18.002 13.004 C 16.239␣
→˓13.007 16.009 13.001 11.893 13.007 C 13.3 13 13.852 13.006 11.893 13.007 Z

5.14. Libraries 531

https://shapeshifter.design/
https://yqnn.github.io/svg-path-editor

MicroEJ Documentation, Revision 32bb132e

<animated-vector xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:aapt="http://schemas.android.com/aapt">

<aapt:attr name="android:drawable">
<vector android:width="20dp" android:height="20dp"

android:viewportWidth="20" android:viewportHeight="20">
␣

→˓ <path android:fillColor="#FF0000" android:pathData="M 0 0 h40 v40 h-40"/>
␣

→˓ <path android:fillColor="#FF0000" android:pathData="M 0 0 h40 v40 h-40"/>
<group android:name="group1" android:translateX="-10">

<path
android:name="circle1"
android:pathData="M 11.9 9.8 C 11.9 8.1 13.3 6.7 14.9 6.7

C 16.6 6.7 18 8.1 18 9.8
C 18 11.6 16.6 13 14.9 13
C 13.3 13 11.9 11.6 11.9 9.8 Z"

android:fillColor="#FFFFAA"/>
</group>
<group android:name="group2">

<path android:name="circle2"
android:pathData="M 11.9 9.8 C 11.9 8.1 13.3 6.7 14.9 6.7

C 16.6 6.7 18 8.1 18 9.8
C 18 11.6 16.6 13 14.9 13
C 13.3 13 11.9 11.6 11.9 9.8 Z"

android:fillColor="#00FFAA" />
</group>

</vector>
</aapt:attr>

<target android:name="circle1">
<aapt:attr name="android:animation">

<set>
<objectAnimator

android:propertyName="pathData"
android:duration="2000"
android:valueFrom="M 11.9 9.8 C 11.9 8.1 13.3 6.7 14.9 6.7

C 16.6 6.7 18 8.1 18 9.8
C 18 11.6 16.6 13 14.9 13
C 13.3 13 11.9 11.6 11.9 9.8 Z"

␣
→˓ android:valueTo="M 11.9 9.8 C 11.897 7.735 11.906 7.995 11.906 6.697

C 16.6 6.7 16.601 6.706 17.995 6.697
C 18 11.6 17.995 11.587 18.004 13.006
C 13.3 13 13.852 13.006 11.897 13.006 Z"

android:valueType="pathType"/>
</set>

</aapt:attr>
</target>
<target android:name="circle2">

<aapt:attr name="android:animation">
<set>

(continues on next page)

5.14. Libraries 532

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

<objectAnimator
android:propertyName="pathData"
android:duration="2000"
android:valueFrom="M 11.9 9.8 C 11.9 8.1 13.3 6.7 14.9 6.7

C 16.6 6.7 18 8.1 18 9.8
C 18 11.6 16.6 13 14.9 13
C 13.3 13 11.9 11.6 11.9 9.8 Z"

␣
→˓ android:valueTo="M 11.906 6.697 C 11.953 6.698 12.993 6.698 17.995 6.697

C 17.999 8.331 17.997 9.93 18.002 13.004
C 16.239 13.007 16.009 13.001 11.893 13.007
C 13.3 13 13.852 13.006 11.893 13.007 Z"

android:valueType="pathType"/>
</set>

</aapt:attr>
</target>
</animated-vector>

Warning: As path strokes are converted at build-time to filled path, the morphing of stroked
paths is not supported. Any image with a path morphing animation on a stroked path will be
rejected. Path strokes must be manually converted to filled path and the morphing of these
new filled paths must be created.

Color and Opacity

Any path fillColor, strokeColor, fillAlpha and strokeAlpha attributes in the Android Vector Draw-
able can be animated.

<animated-vector xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:aapt="http://schemas.android.com/aapt">

<aapt:attr name="android:drawable">
<vector android:width="55dp" android:height="55dp"

android:viewportWidth="55" android:viewportHeight="55">
<group android:translateX="5">
<path android:name="fillColor" android:fillColor="#FF00FF"

android:pathData="M 0 0 h20 v20 h-20 Z"/>
<path android:name="fillAlpha" android:fillColor="#FF0000"

android:pathData="M 25 0 h20 v20 h-20 Z"/>
<path android:name="strokeColor" android:strokeWidth="5"
␣

→˓ android:strokeColor="#FFFF00" android:pathData="M 0 25 h20 v20 h-20 Z"/>
<path android:name=

(continues on next page)

5.14. Libraries 533

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

→˓"strokeAlpha" android:strokeWidth="5" android:strokeColor="#00FF00"
android:pathData="M 25 25 h20 v20 h-20 Z"/>

</group>
</vector>

</aapt:attr>

<target android:name="fillColor">
<aapt:attr name="android:animation">

<set><objectAnimator
android:propertyName="fillColor"
android:duration="3000"
android:valueFrom="#FF00FF"
android:valueTo="#FFFF00"/>

</set>
</aapt:attr>
</target>
<target android:name="strokeColor">

<aapt:attr name="android:animation">
<set><objectAnimator

android:propertyName="strokeColor"
android:duration="3000"
android:valueFrom="#FFFF00"
android:valueTo="#FF00FF"/>

</set>
</aapt:attr>

</target>

<target android:name="fillAlpha">
<aapt:attr name="android:animation">

<set> <objectAnimator
android:propertyName="fillAlpha"
android:duration="3000"
android:valueFrom="0.2"
android:valueTo="1"
android:valueType="floatType"/>

</set>
</aapt:attr>

</target>
<target android:name="strokeAlpha">

<aapt:attr name="android:animation">
<set> <objectAnimator

android:propertyName="strokeAlpha"
android:duration="3000"
android:valueFrom="1"
android:valueTo="0.2"
android:valueType="floatType"/>

</set>
</aapt:attr>

</target>
</animated-vector>

5.14. Libraries 534

MicroEJ Documentation, Revision 32bb132e

Warning: The color of paths colored with a linear gradient can not be animated.

Easing Interpolators

Every animation is associated with an easing interpolator. By default, the animation transition
is linear, but the rate of change in the animation can be defined by an interpolator. This allows
the existing animation e�ects to be accelerated, decelerated, repeated, bounced, etc.

The supported Android interpolators are:

• accelerate_cubic

• accelerate_decelerate

• accelerate_quad

• anticipate

• anticipate_overshoot

• bounce

• cycle

• decelerate_cubic

• decelerate_quad

• decelerate_quint

• fast_out_extra_slow_in

• fast_out_linear_in

• fast_out_slow_in

• linear

• linear_out_slow_in

• overshoot

Any other vectorial path can also be used as the interpolator easing function.

Following examples show the behavior of some of the interpolators for a simple translation
animation.

• Image:

<animated-vector xmlns:android="http://schemas.
→˓android.com/apk/res/android" xmlns:aapt="http://schemas.android.com/aapt">
<aapt:attr name="android:drawable">

<vector android:width="100dp" android:height=
→˓"100dp" android:viewportWidth="100" android:viewportHeight="100">

<path android:pathData="M 0␣
→˓0 h100 v20 h-100 Z" android:strokeColor="#FFFFFF" android:strokeWidth="1"/>

(continues on next page)

5.14. Libraries 535

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

<group android:name="translate">
␣

→˓<path android:pathData="M 0 0 h20 v20 h-20 Z" android:fillColor="#335566"/>
</group>
</vector>

</aapt:attr>

<target android:name="translate">
<aapt:attr name="android:animation">

<set><objectAnimator
android:propertyName="translateX"
android:duration="2000"
android:valueFrom="0"
android:valueTo="80"
android:interpolator = "@android:interpolator/linear" />

</set>
</aapt:attr>
</target>
</animated-vector>

android:interpolator = "@android:interpolator/linear"

android:interpolator = "@android:interpolator/accelerate_cubic"

android:interpolator = "@android:interpolator/bounce"

android:interpolator = "@android:interpolator/fast_out_slow_in"

5.14. Libraries 536

MicroEJ Documentation, Revision 32bb132e

<aapt:attr name="android:interpolator">
<pathInterpolator android:pathData="M 0 0 C 0.371 2.888 0.492 -1.91 1 1"/>

</aapt:attr>

<aapt:attr name="android:interpolator">
<pathInterpolator android:pathData="M␣

→˓0 0 C 0.333 1.939 0.171 -0.906 0.601 0.335 C 0.862 0.998 0.83 -0.771 1 1"/>
</aapt:attr>

5.14. Libraries 537

MicroEJ Documentation, Revision 32bb132e

External Images

To fetch images from external memory, the application must pre-register the external Image
resources. The management of this kind of image may be di�erent than the compile-time im-
ages andmay require some allocations in theMicroUI Images Heap. Formore details about the
external imagemanagement, refers to the VEE Port Guide chapter External Memory.

Caching Generated Images

Images converted using the Image Generator can be cached so that they are not rebuilt ev-
ery time the application is launched. Doing so can significantly speed up the application build
phase.

See Caching Generated Images to have more details.

Note: The cache is available from version 13.6 of the UI Pack.

Limitations / Supported Features

Android Vector Drawable

The MicroVG library supports most of the Android Vector Drawable features with the following
limitations:

• clip-path feature is only supported for static images.

• trim-path animation is not supported.

• morphing animations are not supported for paths with stroke.

• usage of path opacity is limited

– drawImage with alpha is not supported if the image contains overlapping paths.

– imageswith global alpha(android:alpha attribute of vector element) andoverlappingpaths
are not supported.

– Beware that using android:fillColor and android:strokeColor attributes on the same
path leads to overlapping paths.

• radial and sweep gradient types are not supported.

• tint , tintMode and autoMirrored features are not supported.

• trimPath feature is not supported.

5.14. Libraries 538

MicroEJ Documentation, Revision 32bb132e

SVG

The MicroVG library supports a subset of SVGTiny: https://www.w3.org/TR/SVGTiny12/ includ-
ing:

• Path

• Basic shape

• Painting filling

• Painting stroking

• Painting gradient (only linear gradient with one pattern)

• Painting color formats : #RRGGBB, #RGB, rgb(r,g,b), keywords

• Transforms

• Text

• Fonts (the text fonts used in the SVG file has to be installed on the operating system)

Debug Traces

MicroVG logs several actions when traces are enabled. This chapter explains the trace identi-
fiers.

Note: The logs are only available on the Embedded VEE Port (not on the Simulator).

Trace format

The trace output format is the following:

[TRACE: MicroVG] Event AA(BB[CC])

where:

• AA is the event identifier. See next table.

• BB is the event data.

• CC is the index of the event data (0x0).

For example, given the following trace output:

[TRACE: MicroVG] Event 0x2(2[0x0])

• 0x2 -> Execute drawing event

• 2 -> Event “Draw String” (index 0x0)

5.14. Libraries 539

https://www.w3.org/TR/SVGTiny12/

MicroEJ Documentation, Revision 32bb132e

Trace identifiers

The following tables describe some events data.

Table 17: MicroVG Traces
Event ID Description End of event
0x0 (0) Image event %0% (see Image Type). End of %0% (see Image Type).
0x1 (1) Font event %0% (see Font Type). End of %0% (see Font Type).
0x2 (2) Drawing event %0% (see Drawing Type). End of %0% (see Drawing Type).

Table 18: Image Type
Event ID Description
0x0 (0) Get or load image from RAW file
0x1 (1) Create Bu�eredVectorImage
0x2 (2) Close image

Table 19: Font Type
Event ID Description
0x0 (0) Load font from TTF / OTF file
0x1 (1) Retrieve font baseline
0x2 (2) Retrieve font height
0x3 (3) Measure string width
0x4 (4) Measure string height

Table 20: Drawing Type
Event ID Description
0x0 (0) Fill path with a color
0x1 (1) Fill path with a linear gradient
0x2 (2) Draw string with a color
0x3 (3) Draw string with a linear gradient
0x4 (4) Draw string on a circle with a color
0x5 (5) Draw string on a circle with a gradient
0x6 (6) Draw image

SystemView Integration

The traces are SystemView compatible.

Fig. 25: MicroVG Traces displayed in SystemView

5.14. Libraries 540

MicroEJ Documentation, Revision 32bb132e

The following text can be copied in a file called SYSVIEW_MicroVG.txt and copied in Sys-
temView installation folder (e.g. SEGGER/SystemView_V252a/Description/).

NamedType VGImage 0=LOAD_IMAGE
NamedType VGImage 1=CREATE_IMAGE
NamedType VGImage 2=CLOSE_IMAGE

NamedType VGFont 0=LOAD_FONT
NamedType VGFont 1=FONT_BASELINE
NamedType VGFont 2=FONT_HEIGHT
NamedType VGFont 3=STRING_WIDTH
NamedType VGFont 4=STRING_HEIGHT

NamedType VGDraw 0=DRAW_PATH
NamedType VGDraw 1=DRAW_PATH_GRADIENT
NamedType VGDraw 2=DRAW_STRING
NamedType VGDraw 3=DRAW_STRING_GRADIENT
NamedType VGDraw 4=DRAW_STRING_ON_CIRCLE
NamedType VGDraw 5=DRAW_STRING_ON_CIRCLE_GRADIENT
NamedType VGDraw 6=DRAW_IMAGE
NamedType VGDraw 7=DRAW_VGLITE_PATH
NamedType VGDraw 8=UPLOAD_VGLITE_PATH

0 VG_ImageEvent (MicroVG)␣
→˓Execute image event %VGImage | (MicroVG) Image event %VGImage done
1 VG_FontEvent ␣
→˓ (MicroVG) Execute font event %VGFont | (MicroVG) Font event %VGFont done
2 VG_DrawingEvent (MicroVG)␣
→˓Execute drawing event %VGDraw | (MicroVG) Drawing event %VGDraw done

Android Vector Drawable Loader

Overview

TheAVDLoader is an Add-On Library that can load vector images fromAndroid Vector Drawable
XML files. Unlike the vector images that are loaded using a raw output file format (see Vector
Images), the XML parsing and interpreting is done at runtime. This is useful for loading a vector
image as an external resource, especially when the resource has to be loaded dynamically (i.e.,
not known at build-time).

To use the AVD Loader library, add the following dependency to the project build file:

Gradle (build.gradle.kts)

MMM (module.ivy)

implementation("ej.library.ui:vectorimage-loader:1.1.0")

<dependency org="ej.library.ui" name="vectorimage-loader" rev="1.1.0"/>

Note: The AVD Loader library requires the VG Pack 1.2 and above.

5.14. Libraries 541

MicroEJ Documentation, Revision 32bb132e

Supported Format

The library supports the vector drawables with the following elements (in that order):

<vector>
Used to define a vector drawable

android:viewportWidth The width
of the image (must be a positive value).

android:viewportHeight The height
of the image (must be a positive value).

<path>
Defines a path.

android:fillColor (optional)
The color used to fill the path. Color is specified as a 32-bit ARGB value in hexadecimal format
(#AARRGGBB). This attribute is optional when a gradient color is specified (see below).

android:fillType The fill-
Type for the path, can be either evenOdd or nonZero .

android:pathData The path
data, using the commands in { M , L , C , Q , Z } (match upper-case).

A linear gradient can also be used as color fill for a <path> . This element is optional if a solid
color fill has been specified.

<gradient>
Used to define a linear gradient

android:endX The x-
coordinate for the end of the gradient vector.

android:endY The y-
coordinate for the end of the gradient vector.

android:startX The x-
coordinate for the start of the gradient vector.

android:startY The y-
coordinate for the start of the gradient vector.

<item> Defines an
item of the gradient (minimum two items for a gradient).

android:color The color of the
item. Color is specified as a 32-bit ARGB value in hexadecimal format (#AARRGGBB).

android:offset The position of
the item inside the gradient (value in [0..1]).

Here is anexampleof aVectorDrawable myImage.xml that complieswith that format. It defines
a 100 x 100 imagewith twopaths: the first onewith a solid color fill, the secondonewith a linear
gradient.

<vector xmlns:aapt=
→˓"http://schemas.android.com/aapt" xmlns:android="http://schemas.android.
→˓com/apk/res/android" android:height="100.0dp" android:viewportHeight=
→˓"100.0" android:viewportWidth="100.0" android:width="100.0dp">

(continues on next page)

5.14. Libraries 542

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

<path android:fillColor="#FFFFFFAA
→˓" android:fillType="nonZero" android:pathData="M0,0L50,0L50,50L0,50Z " />

<path android:fillType=
→˓"nonZero" android:pathData="M50,50L100,50L100,100L50,100Z ">

<aapt:attr name="android:fillColor">
<gradient android:endX="100.0" android:endY="100.0"␣

→˓android:startX="50.0" android:startY="50.0" android:type="android:linear">
<item android:color="#FF0000FF" android:offset="0.0" />
<item android:color="#FFFF00FF" android:offset="1.0" />

</gradient>
</aapt:attr>

</path>
</vector>

The library only supports a subset of the Vector Drawable specification, to optimize the
CPU time and memory needed for parsing and interpreting Vector Drawables in resource-
constrained embedded devices. If the input Vector Drawable does not comply with this format,
the library will throw an exception.

Note: The image generator tool provides a way to make a Vector Drawable compatible with the library. See this
section for more information.

Loading a Vector Drawable

The following code loads the Vector Drawable myImage.xml with the AvdImageLoader.
loadImage() method. Thismethodhasoneparameterwhich is thepath to theVectorDrawable
file, provided asa raw resource of theapplication. The resulting vector image can thenbedrawn
on the display:

public static void main(String[] args) {
MicroUI.start();

Display display = Display.getDisplay();
GraphicsContext g = display.getGraphicsContext();

try (ResourceVectorImage␣
→˓image = AvdImageLoader.loadImage("/images/myImage.xml")) {

VectorGraphicsPainter.drawImage(g, image, 100, 100);
display.requestFlush();

}
}

5.14. Libraries 543

https://developer.android.com/reference/android/graphics/drawable/VectorDrawable

MicroEJ Documentation, Revision 32bb132e

Listing 5: Declaration of the resource in a *.resources.list file.

/images/myImage.xml

Note: The image must be provided as a raw resource of the application, either internal or external. For external
resource loading, the BSPmust implement the proper Abstraction Layer API (LLAPI), see External Resources Loader
for more information on the implementation.

Warning: The new image is a ResourceVectorImage . In the current implementation, an im-
age loaded with the AvdImageLoader is allocated in the Java heap. To release memory, the
application must close the image and remove any references to it.

5.14. Libraries 544

MicroEJ Documentation, Revision 32bb132e

Limitations

The AVD Loader can only load static images (i.e., no animations). The other limitations are the
same as for vector images.

Advanced

Make a Vector Drawable compatible with the library

To ensure that a Vector Drawable can be loadedby the AVD Loader library at runtime, the image
generator tool can generate a compatible version of the drawable.

The tool comes with the VG pack installed in the platform, use the following command line to
run it:

java -cp␣
→˓[path_to_platform]/source/tools/imagegenerator-vectorimage.jar com.microej.
→˓converter.vectorimage.Main --input originalImage.xml --avd myImage.xml

This processes the input Vector Drawable originalImage.xml and outputs a Vector Drawable
myImage.xml which is compliant with the library and optimized for runtime loading.

The processing does the following:

• Normalize the output

• Limit the size of the XML file (e.g., minification)

• Pre-process the resource-consuming operations (e.g., transformations, stroking)

Convert a SVG into a compatible Vector Drawable

It is possible to convert a SVG into a compatible Vector Drawable using the platform tooling.
Use the following command:

java -cp␣
→˓[path_to_platform]/source/tools/imagegenerator-vectorimage.jar com.microej.
→˓converter.vectorimage.Main --input originalImage.svg --avd myImage.xml

This processes the input SVG originalImage.svg and outputs a Vector Drawable myImage.
xml .

Memory Usage

The loading of a Vector Drawable at runtime uses Java heap:

• for theworkingbu�ers and intermediateobjectsusedduring the loadingphase. TheXMLparser
is optimized to stream the data and uses as few heap as possible.

• for the image data.

5.14. Libraries 545

MicroEJ Documentation, Revision 32bb132e

Simplify the Path Data

The loading timeandheapusagegrow linearlywith thenumberofpathcommands in theVector
Drawable. To achieve optimal performances, it is recommended to reduce the number of path
commands, by “simplifying” the paths. The simplification algorithmwill determine the optimal
amount of anchor points to use in the artwork. Most of the modern Graphic Design So�ware
have an option to simplify a path (check this article for Adobe Illustrator for example).

Monitor the Number of Path Commands

To print the number of paths and path commands declared in a Vector Drawable, set the con-
stant ej.vectorimage.loader.debug.enabled to true . This will output the numbers in the
console when loading a file.

Output example:

avdimageloader INFO: Parsed a path data with a number of 5 commands
avdimageloader INFO: Parsed a path data with a number of 5 commands
avdimageloader INFO: Parsed a path data with a number of 28 commands
avdimageloader INFO: Number of paths in loaded image: 3

Troubleshooting

The Image Cannot Be Parsed

A error can be raised when the parsing fails:

Exception in thread "main" ej.microvg.
→˓VectorGraphicsException: MicroVG: The image cannot be parsed. The image␣
→˓must be a valid AVD image, converted with the platform's image generator.

This error indicates that the file is not a compatible Vector Drawable, as specified in this section.

MWT (Micro Widget Toolkit)

MWT is a toolkit that simplifies the creation and use of graphical user interface widgets on a
pixel-based display.

The aim of this library is to be su�icient to create complex applications with a minimal frame-
work. It provides themain concepts withoutmanaging particular needs. Specific needs can be
met by aMWTexpert by creating newwidgets, addingmore complex concepts, etc. The flexibil-
ity of theMWTopen frameworkallows the selectionofonlywhat is necessary for theapplication
in order to guarantee lightweight applications and fast execution.

5.14. Libraries 546

https://helpx.adobe.com/illustrator/using/simplify_paths.html

MicroEJ Documentation, Revision 32bb132e

Usage

To use the MWT library, add MWT library module to the project build file:

Gradle (build.gradle.kts)

MMM (module.ivy)

implementation("ej.library.ui:mwt:3.3.0")

<dependency org="ej.library.ui" name="mwt" rev="3.3.0"/>

Concepts

Graphical Elements

Widget

A widget is an object that is intended to be displayed on a screen. A widget occupies a specific
region of the display and holds a state. A user may interact with a widget (using a touch screen
or a button for example).

Widgets are arranged on a desktop. Awidget can be part of only one desktop hierarchy, and can
appear only once on that desktop.

5.14. Libraries 547

https://repository.microej.com/modules/ej/library/ui/mwt/

MicroEJ Documentation, Revision 32bb132e

Container

A container follows the composite pattern: it is a widget composed of other widgets. It also
defines the layout policy of its children (defining their bounds). The children’s positions are
relative to the position of their parent. Containers can be nested to design elaborate user inter-
faces.

By default, the children are rendered in the order in which they have been added in the con-
tainer. And thus if the container allows overlapping, thewidgets added last will be on top of the
widgets added first. A container can also modify how its children are rendered.

Desktop

A desktop is a displayable intended to be shownon a display (cf. MicroUI). At any time, only one
desktop can be displayed per display.

A desktop contains a widget (or a container). When the desktop is shown, its widget (and all its
hierarchy for a container) is drawn on the display.

Rendering

A new rendering of a widget on the display can be requested by calling its requestRender()
method. The rendering is done asynchronously in the MicroUI thread.

When a container is rendered, all its children are also rendered.

A widget can be transparent, meaning that it does not draw every pixel within its bounds. In
this case, when this widget is asked to be rendered, its parent is asked to be rendered in the
area of the widget (recursively if the parent is also transparent). Usually a widget is transparent
when its background (from the style) is transparent.

A widget can also be rendered directly in a specific graphics context by calling its ren-
der(GraphicsContext) method. It can be useful to render a widget (and its children) in an image
for example.

Render Policy

A render policy is a strategy that MWT uses in order to repaint the entire desktop or to repaint
a specific widget.

Themost naive render policy would be to render the whole hierarchy of the desktop whenever
a widget has changed. However DefaultRenderPolicy is smarter than that: it only repaints the
widget, and its ancestors if the widget is transparent. The result is correct only if there is no
overlappingwidget, in which case OverlapRenderPolicy should be used instead. This policy re-
paints the widget (or its non-transparent ancestor), then it repaints all the widgets that overlap
it.

When using a partial bu�er, these render policies can not be used because they render the en-
tire screen in a single pass. Instead, a custom render policywhich renders the screen inmultiple
passes has to be used. Refer to the partial bu�er demo for more information on how to imple-
ment this render policy and how to use it.

The render policy can be changed by overridding Desktop.createRenderPolicy().

5.14. Libraries 548

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#requestRender--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#render-ej.microui.display.GraphicsContext-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#render-ej.microui.display.GraphicsContext-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/render/DefaultRenderPolicy.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/render/OverlapRenderPolicy.html
https://github.com/MicroEJ/Demo-PartialBuffer
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Desktop.html#createRenderPolicy--

MicroEJ Documentation, Revision 32bb132e

Lay Out

All widgets are laid out at once during the lay out process. This process can be started by
Desktop.requestLayOut(),Widget.requestLayOut(). The layout is also automatically donewhen
the desktop is shown (Desktop.onShown()). This process is composed of two steps, each step
browses the hierarchy of widgets following a depth-first algorithm:

• compute the optimal size for each widget and container (considering the constraints of the lay
out),

• set position and size for each widget.

Once the position and size of a widget is set, the widget is notified by a call to onLaidOut().

Rendering Pipeline

The Rendering Pipeline of an MWT application consists of three main phases: Layout, Render,
and Flush.

1. Layout: This phase determines which widgets should be displayed on the screen and the po-
sitions of the widgets. It is typically triggered when widgets are added or removed from the
widget hierarchy. An application should only modify the widget hierarchy when necessary and
avoid doing so during animation to ensure e�iciency.

2. Render: During this phase, each widget executes its rendering code to perform the necessary
drawing operations. The widgets must render only what is needed and minimize overlapping
with other widgets to ensure optimal performance.

3. Flush: This phase involves copying the UI working bu�er to the screen bu�er. The VEE Port
performs this operation, and it is the responsibility of the VEE Port developer to optimize this
process, for example, by utilizing a GPU.

Event Dispatch

Events generated in the hardware (touch, buttons, etc.) are sent to the event dispatcher of the
desktop. It is then responsible of sending the event to one or several widgets of the hierarchy. A
widget receives the event through its handleEvent(int)method. Thismethod returns a boolean
that indicates whether or not the event has been consumed by the widget.

Widgets are disabled by default and don’t receive the events.

Pointer Event Dispatcher

By default, the desktop proposes an event dispatcher that handles only pointer events.

Pointer events are grouped in sessions. A session starts when the pointer is pressed, and ends
when the pointer is released or when it exits the pressed widget.

While nowidget consumes the events, they are sent to thewidget that is under the pointer (see
Desktop.getWidgetAt(int, int)), then sent to all its parent hierarchy recursively.

5.14. Libraries 549

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Desktop.html#requestLayOut--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#requestLayOut--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Desktop.html#onShown--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#onLaidOut--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#handleEvent-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Desktop.html#getWidgetAt-int-int-

MicroEJ Documentation, Revision 32bb132e

Once a widget has consumed an event, it will be the only one to receive the next events during
the session.

A widget can redefine its reactive area by subclassing the contains(int x, int y) method. It is
useful when a widget does not fill fully its bounds.

5.14. Libraries 550

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#contains-int-int-

MicroEJ Documentation, Revision 32bb132e

Style

A style describes how widgets must be rendered on screen. The attributes of the style are
strongly inspired from CSS.

Dimension

The dimension is used to constrain the size of the widget.

MWT provides multiple implementations of dimensions:

• NoDimension does not constrain the dimension of the widget, so the widget will take all the
space granted by its parent container.

• OptimalDimension constrains the dimension of the widget to its optimal size, which is given by
the computeContentOptimalSize() method of the widget.

• FixedDimension constrains the dimension of the widget to a fixed absolute size.

• RelativeDimension constrains the dimension of thewidget to a percentage of the size of its par-
ent container.

Alignment

The horizontal and vertical alignments are used to position the content of the widget within its
bounds.

The alignment is used by the framework to position the widget within its available space if the
size of the widget has been constrained with a Dimension.

Thealignmentcanalsobeused in the renderContent()method inorder toposition thedrawings
of the widget (such as a text or an image) within its content bounds.

Outlines

The margin, border and padding are the 3 outlines which wrap the content of the widget. The
widget is wrapped in the following sequence: first the padding, then the border, and finally the
margin.

MWTprovidesmultiple implementations of invisible outlineswhich are usually used formargin
and padding:

5.14. Libraries 551

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/dimension/NoDimension.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/dimension/OptimalDimension.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#computeContentOptimalSize-ej.mwt.util.Size-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/dimension/FixedDimension.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/dimension/RelativeDimension.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/dimension/Dimension.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#requestRender-int-int-int-int-

MicroEJ Documentation, Revision 32bb132e

• NoOutline does not wrap the widget in an outline.

• UniformOutline wraps the widget in an outline which thickness is equal on all sides.

• FlexibleOutlinewraps thewidget in an outlinewhich thickness can be configured for each side.

MWT also providesmultiple implementations of visible outlineswhich are usually used for bor-
der:

• RectangularBorder draws a plain rectangle around the widget.

• RoundedBorder draws a plain rounded rectangle around the widget.

Background

The background is used to render the background of the widget. The background covers the
border, the padding and the content of the widget, but not its margin.

MWT provides multiple implementations of backgrounds:

• NoBackground leaves a transparent background behind the widget.

• RectangularBackground draws a plain rectangle behind the widget.

• RoundedBackground draws a plain rounded rectangle behind the widget.

• ImageBackground draws an image behinds the widget.

Color

The color is not used by the framework itself, but it may be used in the renderContent() to
select the color of the drawings.

Font

The font is not used by framework itself, but it may be used in the renderContent() to select
the font to use when drawing strings.

Extra fields

Extra fields are not used by framework itself, but theymay be used in the renderContent() to
customize the behavior and the appearance of the widget.

See chapter How to Define an Extra Style Field for more information on extra fields.

Stylesheet

A stylesheet allows to customize the appearance of all the widgets of a desktopwithout chang-
ing the code of the widget subclasses.

MWT provides multiple implementations of stylesheets:

• VoidStylesheet assigns the same default style for every widget.

• CascadingStylesheet assigns styles to widgets using selectors, similarly to CSS.

5.14. Libraries 552

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/outline/NoOutline.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/outline/UniformOutline.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/outline/FlexibleOutline.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/outline/border/RectangularBorder.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/outline/border/RoundedBorder.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/background/NoBackground.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/background/RectangularBackground.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/background/RoundedBackground.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/background/ImageBackground.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/stylesheet/VoidStylesheet.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/stylesheet/cascading/CascadingStylesheet.html

MicroEJ Documentation, Revision 32bb132e

For example, the following code customizes the style of every Label widget of the desktop:

CascadingStylesheet stylesheet = new CascadingStylesheet();

EditableStyle␣
→˓labelStyle = stylesheet.getSelectorStyle(new TypeSelector(Label.class));
labelStyle.setColor(Colors.RED);
labelStyle.setBackground(new RectangularBackground(Colors.WHITE));

desktop.setStylesheet(stylesheet);

Animations

MWT provides a utility class in order to animate widgets: Animator. When a widget is being
animatedbyananimator, thewidget is notifiedeach time that thedisplay is flushed. Thewidget
can use this interrupt in order to update its state and request a new rendering.

See chapter How to Animate a Widget for more information on animating a widget.

Partial bu�er considerations

Rendering a widget in partial bu�er mode may require multiple cycles if the bu�er is not big
enough to hold all the pixels to update in a single shot. This means that rendering is slower in
partial bu�er mode, and this may cause performance being significantly a�ected during ani-
mations.

Besides, thewhole screen is flushed inmultiple times instead of a single one, whichmeans that
the usermay see the display at a timewhere every part of the display has not been flushed yet.

Due to these limitations, it is not recommended to repaint big parts of the screen at the same
time. For example, a transition on a small part of the screen will look better than a transition
a�ecting the whole screen. A transition will look perfect if the partial bu�er can hold all the
lines to repaint. Since the bu�er holds a group of lines, a horizontal transitionmay not look the
same as a vertical transition.

Desktop andwidget states

Desktop and widgets pass through di�erent states. Once created, they can be attached, then
they can be shown.

A desktop is attached automatically as soon as it is shown on the display. It can also be at-
tachedmanually by calling Desktop.setAttached(). It could be used to render the desktop (and
its widgets) on an image for example.

A widget is considered as attached when it is contained by a desktop that is attached.

In the sameway, by default, a widget is shownwhen its desktop is shown. But for optimization
purpose, a container can control when its children are shown or hidden. A typical use case is
when the widgets are moved outside the display.

Once a widget is attached, it means that it is ready to be shown (for instance, the necessary
resources are allocated). In other words, once attached a widget is ready to be rendered (on an
image or on the display).

5.14. Libraries 553

https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/basic/Label.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/animation/Animator.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Desktop.html#setAttached--

MicroEJ Documentation, Revision 32bb132e

Once awidget is shown, itmeans that it is intended to be rendered on the display. While shown,
it may start a periodic refresh or an animation.

5.14. Libraries 554

MicroEJ Documentation, Revision 32bb132e

5.14. Libraries 555

MicroEJ Documentation, Revision 32bb132e

The following sectionswill present several ways to customize and extend the framework to bet-
ter fit your needs.

How to Create a Widget

A widget is the main way to render information on the display. A set of pre-defined widgets is
described in theWidgets section.

If the neededwidget does not already exist, it is possible to create it from scratch (or by derivat-
ing another one).

To create a custom widget, a new class should be created, extending the Widget class. Widget
subclasses have to implement twomethods andmay override optional methods, as explained
in the following sections.

Implementing themandatorymethods

Computing the optimal size of the widget

The computeContentOptimalSize() method is called by the MWT framework in order to know
the optimal size of the widget.

The optimal size of the widget is the size of the smallest possible area which would still allow
to represent the widget. Unless the widget is using an OptimalDimension in its style, the actual
size of the widget will most likely be bigger than the optimal size returned in this method.

The size parameter of the computeContentOptimalSize() method initially contains the size
available for the widget. An available width or height equal to Widget.NO_CONSTRAINTmeans
that the optimal size should be computedwithout considering any restriction on the respective
axis. Before themethod returns, the size object should be set to the optimal size of the widget.

When implementing this method, the getStyle() method may be called in order to retrieve the
style of the widget.

For example, the following snippet computes the optimal size of an image widget:

@Override
protected void computeContentOptimalSize(Size size) {

size.setSize(this.image.getWidth(), this.image.getHeight());
}

Rendering the content of the widget

The renderContent() method is called by the MWT framework in order to render the content of
the widget.

The g parameter is used to draw the content of the widget. It is already configured with
the translation and clipping area which match the widget’s bounds. The contentWidth and
contentHeight parameters indicate the actual size of the content of the widget (excluding its
outlines). Unless the widget is using an OptimalDimension in its style, the given content size
will most likely be bigger than the optimal size returned in computeContentOptimalSize(). If
the drawings do not take the complete content area, the position of the drawings should be
computed using the horizontal and vertical alignment values set in the widget’s style.

5.14. Libraries 556

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#computeContentOptimalSize-ej.mwt.util.Size-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/dimension/OptimalDimension.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#computeContentOptimalSize-ej.mwt.util.Size-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#NO_CONSTRAINT
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#getStyle--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#renderContent-ej.microui.display.GraphicsContext-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/dimension/OptimalDimension.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#computeContentOptimalSize-ej.mwt.util.Size-

MicroEJ Documentation, Revision 32bb132e

When implementing this method, the getStyle() method may be called in order to retrieve the
style of the widget.

For example, the following snippet renders the content of an image widget:

@Override
protected void␣
→˓renderContent(GraphicsContext g, int contentWidth, int contentHeight) {

Style style = getStyle();
int imageX = Alignment.computeLeftX(this.

→˓image.getWidth(), 0, contentWidth, style.getHorizontalAlignment());
int imageY = Alignment.computeTopY(this.

→˓image.getHeight(), 0, contentHeight, style.getVerticalAlignment());
Painter.drawImage(g, this.image, imageX, imageY);

}

Handling events

When a widget is created, it is disabled and it will not receive any event. A widget may be en-
abled or disabled by calling setEnabled(). A common practice is to enable the widget in its con-
structor.

Enabled widgets can handle events by overriding handleEvent(). MicroUI event APIs may be
used in order to know more information on the event, such as its type. The handleEvent()
method should return whether or not the event was consumed by the widget.

For example, the following snippet prints a message when the widget receives an event:

@Override
public boolean handleEvent(int event) {

System.out.println("Event type: " + Event.getType(event));
return false;

}

Consuming events

To indicate that an event was consumed by a widget, handleEvent() should return true . Usu-
ally, onceanevent is consumed, it is not dispatched tootherwidgets (this behavior is controlled
by the event dispatcher). The widget that consumed the event is the last one to receive it.

The following guidelines are recommended to decidewhen to consume an event andwhen not
to consume an event:

• If the widget triggers an action when receiving the event, it consumes the event.

• If thewidgetdoesnot trigger anactionwhen receiving theevent, it doesnot consume theevent.

Note: If the event is Pointer.PRESSED, do not consume the event unless it is required that the subsequent widgets
in the hierarchy do not receive it. The Pointer.PRESSED event is special because pressing a widget is usually not
the deciding factor to trigger an action. The user has to release or to drag thewidget to trigger an action. If the user
presses a widget and then drags the pointer (e.g. their finger or a stylus) out of the widget before releasing it, the
action is not triggered.

5.14. Libraries 557

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#getStyle--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#setEnabled-boolean-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#handleEvent-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#handleEvent-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Buttons.html#PRESSED
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Buttons.html#PRESSED

MicroEJ Documentation, Revision 32bb132e

Listening to the life-cycle hooks

Widget subclasses may override the followingmethods in order to allocate and free the neces-
sary resources:

• onAttached()

• onDetached()

• onLaidOut()

• onShown()

• onHidden()

For example, the onAttached() methodmay be overridden to load an image:

@Override
protected void onAttached() {

this.image = ResourceImage.loadImage(this.imagePath);
}

Likewise, the onDetached() methodmay be overridden to close the image:

@Override
protected void onDetached() {

this.image.close();
}

For example, the onShown() methodmay be overridden to start an animation:

@Override
protected void onShown() {

Animator animator = getDesktop().getAnimator();
animator.startAnimation(this);

}

Likewise, the onHidden() methodmay be overridden to stop an animation:

@Override
protected void onHidden() {

Animator animator = getDesktop().getAnimator();
animator.stopAnimation(this);

}

How to Create a Container

Tocreate a customcontainer, a newclass shouldbe created, extending theContainer class. This
new classmay define a constructor and settermethods in order to provide away for the user to
configure the container, such as its orientation. Container subclasses have to implement two
methods andmay override optional methods, as explained in the following sections.

5.14. Libraries 558

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#onAttached--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#onDetached--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#onLaidOut--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#onShown--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#onHidden--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Container.html

MicroEJ Documentation, Revision 32bb132e

Implementing themandatorymethods

This section explains how to implement the twomandatory methods of a container subclass.

Computing the optimal size of the container

The computeContentOptimalSize() method is called by the MWT framework in order to know
the optimal size of the container. The optimal size of the container should be big enough so
that each child can be laid out with a size at least as big as its own optimal size.

The container is responsible for computing the optimal size of every child. To do so, the com-
puteChildOptimalSize() method should be called for every child. A�er this method is called,
the optimal size of the child can be retrieved by calling getWidth() and getHeight() on the child
widget.

The Size parameter of the computeContentOptimalSize() method initially contains the size
available for the container. An available width or height equal to Widget.NO_CONSTRAINT
means that the optimal size should be computed without considering any restriction on the
respective axis. Before the method returns, the size object should be set to the optimal size of
the container.

For example, the following snippet computes the optimal size of a simple wrapper:

@Override
protected void computeContentOptimalSize(Size size) {

Widget child = getChild(0);
computeChildOptimalSize(child, size.getWidth(), size.getHeight());
size.setSize(child.getWidth(), child.getHeight());

}

Laying out the children of the container

The layOutChildren() method is called by the MWT framework in order to lay out every child
of the container, i.e. to set the position and size of the children. If a child is laid out outside
the bounds of the container (partially or fully), only the part of the widget which is within the
container bounds will be visible.

The container is responsible for laying out each child. To do so, the layOutChild() method
should be called for every child. Before this method is called, the optimal size of the child can
be retrieved by calling getWidth() and getHeight() on the child widget.

When laying out a child, its bounds have to be passed as parameter. The position will be inter-
preted as relative to the position of the container content. This means that the position should
not include the outlines of the container. This means that the (0, 0) coordinates represent
the top-le� pixel of the container content and the (contentWidth-1, contentHeight-1) co-
ordinates represent the bottom-right pixel of the container content.

For example, the following snippet lays out the children of a simple wrapper:

@Override
protected void layOutChildren(int contentWidth, int contentHeight) {

Widget child = getChild(0);
layOutChild(child, 0, 0, contentWidth, contentHeight);

}

5.14. Libraries 559

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#computeContentOptimalSize-ej.mwt.util.Size-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Container.html#computeChildOptimalSize-ej.mwt.Widget-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Container.html#computeChildOptimalSize-ej.mwt.Widget-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#getWidth--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#getHeight--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#computeContentOptimalSize-ej.mwt.util.Size-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#NO_CONSTRAINT
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Container.html#layOutChildren-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Container.html#layOutChild-ej.mwt.Widget-int-int-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#getWidth--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#getHeight--

MicroEJ Documentation, Revision 32bb132e

Managing the visibility of the children of the container

By default, when a container is shown, each of its children is shown too. This behavior can be
changed by overriding the setShownChildren() method of Container. When implementing this
method, the setShownChild() method should be called for each child which should be shown
when the container is shown.

At any timewhile the container is visible, childrenmaybe shownorhiddenby calling setShown-
Child() or setHiddenChild().

When a container is hidden, each of its children is hidden too (unless it is already hidden). It is
not necessary to override setHiddenChildren(), except for optimization.

Providing APIs to change the children list of the container

The Container class introduces protected APIs in order to manipulate the list of children of
the container. These methods may be overridden in the container subclass and set as public
in order to make these APIs available for the user.

Each of the following methods may be overridden individually:

• addChild()

• removeChild()

• removeAllChildren()

• insertChild()

• replaceChild()

• changeChildIndex()

For example, the following snippet allows the user to call the addChild() method on the con-
tainer:

@Override
public void addChild(Widget child) {

super.addChild(child);
}

How to Animate a Widget

Starting and stopping the animation

To animate a widget, an Animator instance is required. This instance can be retrieved from the
desktop of the widget by calling Desktop.getAnimator(). Make sure that your widget subclass
implements the Animation interface so that it can be used with an Animator.

An animation can be started at any moment, provided that the widget is shown. For example,
the animation can start on a click event. Likewise, an animation can be stopped at any mo-
ment, for example a few seconds a�er the animation has started. Once thewidget is hidden, its
animation should always be stopped to avoid memory leaks and unnecessary operations.

To start the animation of thewidget, call the startAnimation()methodof the Animator instance.
To stop it, call the stopAnimation() method of the same Animator instance.

5.14. Libraries 560

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Container.html#setShownChildren--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Container.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Container.html#setShownChild-ej.mwt.Widget-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Container.html#setShownChild-ej.mwt.Widget-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Container.html#setShownChild-ej.mwt.Widget-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Container.html#setHiddenChild-ej.mwt.Widget-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Container.html#setHiddenChildren--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Container.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Container.html#addChild-ej.mwt.Widget-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Container.html#removeChild-ej.mwt.Widget-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Container.html#removeAllChildren--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Container.html#insertChild-ej.mwt.Widget-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Container.html#replaceChild-int-ej.mwt.Widget-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Container.html#changeChildIndex-ej.mwt.Widget-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/animation/Animator.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Desktop.html#getAnimator--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/animation/Animation.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/animation/Animator.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/animation/Animator.html#startAnimation-ej.mwt.animation.Animation-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/animation/Animator.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/animation/Animator.html#stopAnimation-ej.mwt.animation.Animation-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/animation/Animator.html

MicroEJ Documentation, Revision 32bb132e

For example, the following snippet starts the animation as soon as the widget is shown and
stops it once the widget is hidden:

public class MyAnimatedWidget extends Widget implements Animation {

private long startTime;
private long elapsedTime;

@Override
protected void onShown() {

// start animation
getDesktop().getAnimator().startAnimation(this);
// save start time
this.startTime = Util.platformTimeMillis();
// set widget initial state
this.elapsedTime = 0;

}

@Override
protected void onHidden() {

// stop animation
getDesktop().getAnimator().stopAnimation(this);

}
}

Performing an animation step

The tick() method is called by the animator in order to update the widget. It is called in the UI
threadonce thedisplayhasbeen flushed. Thismethod shouldnot render thewidget but should
update its state and request a new render. The tick() method should return whether or not the
animation should continue a�er this increment.

For example, the following snippet updates the state of the widget when it is ticked, requests a
new render and keeps the animation going until 5 seconds have passed:

@Override
public boolean tick(long platformTimeMillis) {

// update widget state
this.elapsedTime = platformTimeMillis - this.startTime;
// request new render
requestRender();
// return whether to continue or to stop the animation
return (this.elapsedTime < 5_000);

}

The renderContent() method should render the widget by using its current state (saved in the
fields of the widget). This method should not call methods such as Util.platformTimeMillis()
because thewidget could be rendered inmultiple passes, for example if a partial bu�er is used.

For example, the following snippet renders the current state of the widget by displaying the
time elapsed since the start of the animation:

5.14. Libraries 561

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/animation/Animation.html#tick-long-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/animation/Animation.html#tick-long-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#renderContent-ej.microui.display.GraphicsContext-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Util.html#platformTimeMillis--

MicroEJ Documentation, Revision 32bb132e

@Override
protected void␣
→˓renderContent(GraphicsContext g, int contentWidth, int contentHeight) {

Style style = getStyle();
g.setColor(style.getColor());
Painter.

→˓drawString(g, Long.toString(this.elapsedTime), style.getFont(), 0, 0);
}

Note: Since ananimator ticks its animations as o�enaspossible, the animatormay take 100%CPUusage if noneof
its animations requestsa render. Formore informationonhowtodebuganimators, see theHowtoDebugAnimators
section.

How to Define an Outline or Border

Tocreate a customoutlineorborder, a newclass shouldbecreated, extending theOutline class.
Outline subclasses have to implement twomethods, as explained in the following sections.

Applying the outline on an outlineable object

The apply(Outlineable)method is called by theMWT framework in order to subtract the outline
from a Size or Rectangle object.

The Outlineable parameter of the method initially contains the size or bounds of the box, in-
cluding the outline. Before the method returns, the outlineable object should be modified by
subtracting the outline. In order to remove the outline from the object, the removeOutline()
method of Outlineable should be used, passing as argument the thickness on each side.

For example, the following snippet applies an outline of 1 pixel on every side:

@Override
public void apply(Outlineable outlineable) {

outlineable.removeOutline(1, 1, 1, 1);
}

Applying the outline on a graphics context

The apply(GraphicsContext, Size) method is called by the MWT framework in order to render
the outline (only relevant if it is a border) and to update the translation and clip of a graphics
context.

The Size parameter of the method initially contains the size of the box, including the outline.
Before the method returns, the size object should be modified by subtracting the outline. In
order to remove theoutline from theobject, the removeOutline()methodofOutlineable should
be used, passing as argument the thickness on each side.

For example, the following snippet applies an outline of 1 pixel on every side:

5.14. Libraries 562

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/outline/Outline.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/outline/Outline.html#apply-ej.mwt.util.Outlineable-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/util/Size.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/util/Rectangle.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/util/Outlineable.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/util/Outlineable.html#removeOutline-int-int-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/util/Outlineable.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/outline/Outline.html#apply-ej.microui.display.GraphicsContext-ej.mwt.util.Size-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/util/Outlineable.html#removeOutline-int-int-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/util/Outlineable.html

MicroEJ Documentation, Revision 32bb132e

@Override
public void apply(GraphicsContext g, Size size) {

size.removeOutline(1, 1, 1, 1);
g.translate(1, 1);
g.setClip(0, 0, size.getWidth(), size.getHeight());

}

How to Define a Background

Tocreateacustombackground, anewclass shouldbecreated, extending theBackgroundclass.
Background subclasses have to implement two methods, as explained in the following sec-
tions.

Informing whether the background is transparent

The isTransparent() method is called by the MWT framework in order to know whether or not
the background is transparent. A background is considered as transparent if it does not draw
every pixel with maximal opacity when it is applied.

For example, the following snippet informs that the background is completely opaque regard-
less of its size:

@Override
public boolean isTransparent(int width, int height) {

return false;
}

Applying the background on a graphics context

The apply(GraphicsContext g, int width, int height) method is called by the MWT framework
in order to render the background and to set or remove the background color of subsequent
drawings.

For example, the following snippet applies a white background:

@Override
public void apply(GraphicsContext g, int width, int height) {

g.setColor(Colors.WHITE);
Painter.fillRectangle(g, 0, 0, width, height);
g.setBackgroundColor(Colors.WHITE);

}

5.14. Libraries 563

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/background/Background.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/background/Background.html#isTransparent-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/background/Background.html#apply-ej.microui.display.GraphicsContext-int-int-

MicroEJ Documentation, Revision 32bb132e

How to Create a Desktop Event Dispatcher

Creating a custom event dispatcher can help you address two use cases:

• [Dispatch] Extending an EventDispatcher is used to dispatch the events. For example, the Fo-
cusEventDispatcher will send the events to the widget owning the focus.

• [Handle]Overriding thedesktop is used todirectly trigger abehavior. For example “BACK” com-
mand shows the previous page.

To create a custom event dispatcher, a new class should be created, extending the EventDis-
patcher class. Event dispatcher subclasses have to implement a method andmay override op-
tional methods, as explained in the following sections.

Dispatching the events to the widgets

The dispatchEvent() method is called by the MWT framework in order to dispatch a MicroUI
event to thewidgets of the desktop. The getDesktop()methodmaybe called in order to retrieve
the desktop with which the event dispatcher is associated. This is useful in order to browse
the widget hierarchy of the desktop, for example by using the getWidget() and getWidgetAt()
methods of Desktop.

In order to send an event to one of the widgets of the hierarchy, the sendEventToWidget()
method should be used. The dispatchEvent() method should return whether or not the event
was dispatched and consumed by a widget.

For example, the following snippet dispatches every event to the widget of the desktop:

@Override
public boolean dispatchEvent(int event) {

Widget desktopWidget = getDesktop().getWidget();
if (desktopWidget != null) {

return sendEventToWidget(desktopWidget, event);
} else {

return false;
}

}

In addition to dispatching the provided events, an event dispatcher may generate custom
events. This may be done by using a DesktopEventGenerator. Its buildEvent() method allows
to build an event which may be sent to a widget using the sendEventToWidget() method.

Initializing and disposing the dispatcher

EventDispatcher subclasses may override the initialize() and dispose() methods in order to al-
locate and free the necessary resources.

For example, the initialize()methodmay be overridden to create an event generator and to add
it to the system pool of MicroUI:

@Override
public void initialize() {

this.eventGenerator = new DesktopEventGenerator();
this.eventGenerator.addToSystemPool();

}

5.14. Libraries 564

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/event/EventDispatcher.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/event/EventDispatcher.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/event/EventDispatcher.html#dispatchEvent-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/event/EventDispatcher.html#getDesktop--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Desktop.html#getWidget--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Desktop.html#getWidgetAt-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Desktop.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/event/EventDispatcher.html#sendEventToWidget-ej.mwt.Widget-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/event/EventDispatcher.html#dispatchEvent-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/event/DesktopEventGenerator.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/event/DesktopEventGenerator.html#buildEvent-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/event/EventDispatcher.html#sendEventToWidget-ej.mwt.Widget-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/event/EventDispatcher.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/event/EventDispatcher.html#initialize--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/event/EventDispatcher.html#dispose--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/event/EventDispatcher.html#initialize--

MicroEJ Documentation, Revision 32bb132e

Likewise, the dispose()methodmay be overridden to remove the event generator from the sys-
tem pool of MicroUI:

@Override
public void dispose() {

this.eventGenerator.removeFromSystemPool();
}

How to Define an Extra Style Field

Extra style fields allow to customize a widget by configuring graphical elements of the widget
from the stylesheet. Extra fields are only relevant to a specific widget type and its subtypes. A
widget type can support up to 7 extra fields. The value of an extra field may be represented as
an int , a float or any object, and it can not be inherited from parent widgets.

Defining an extra field ID

The recommended practice is to add a public constant for the ID of the new extra field in the
widget subtype. This ID should be an integer with a value between 0 and 6 .

Every extra field ID has to be unique within the widget type. However, two unrelated widget
types may define an extra field with the same ID.

For example, the following snippet defines an extra field for a secondary color:

public static final int SECONDARY_COLOR_FIELD = 0;

Setting an extra field in the stylesheet

The value of an extra fieldmay be set in the stylesheet in a similar fashion to built-in style fields,
using one of the setExtraXXX() methods of EditableStyle.

For example, the following snippet sets the valueof anextra field for all the instancesof awidget
subtype:

EditableStyle␣
→˓style = stylesheet.getSelectorStyle(new TypeSelector(MyWidget.class));
style.setExtraInt(MyWidget.SECONDARY_COLOR_FIELD, Colors.RED);

Getting an extra field during rendering

The value of an extra field may be retrieved from the style of a widget in a similar fashion to
built-in style fields, using one of the getExtraXXX() methods of Style. When calling one of
these methods, a default value has to be given in case the extra field is not set for this widget.

For example, the following snippet gets the value of an extra field of the widget:

Style style = getStyle();
int secondaryColor = style.getExtraInt(SECONDARY_COLOR_FIELD, Colors.BLACK);

5.14. Libraries 565

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/event/EventDispatcher.html#dispose--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/EditableStyle.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/Style.html

MicroEJ Documentation, Revision 32bb132e

How to Use the Overlap Render Policy

TheMWT library implements two render policies: the DefaultRenderPolicy and theOverlapRen-
derPolicy:

• DefaultRenderPolicy: renders the specified widget. If the widget is transparent, it renders its
parent (and recursively).

• OverlapRenderPolicy: renders the specifiedwidget but also the otherwidgets that overlapwith
it.

While the DefaultRenderPolicy will be fine for most GUIs, it will not handle properly the case
where widgets overlap. In this case, the OverlapRenderPolicy will be the best match.

Making Widgets Overlap

A widget is said to overlap with another when:

• their boundaries intersect

• it comes a�er in the widget tree (depth-first search)

The following snippet displays two widgets that overlap:

public static void main(String[] args) {
MicroUI.start();

Desktop desktop = new Desktop();

// make two widgets overlap in a Canvas container
Canvas rootWidget = new Canvas();
final Button overlapped = new Button("Overlapped widget");
rootWidget.addChild(overlapped, 50, 50, 200, 200);
final Label overlapping = new Label("Overlapping widget");
rootWidget.addChild(overlapping, 125, 75, 100, 50);
desktop.setWidget(rootWidget);

// the overlapping widget is silver
CascadingStylesheet stylesheet = new CascadingStylesheet();
EditableStyle␣

→˓style = stylesheet.getSelectorStyle(new TypeSelector(Label.class));
style.setBackground(new RectangularBackground(Colors.SILVER));

// the overlapped widget is orange
style = stylesheet.getSelectorStyle(new TypeSelector(Button.class));
style.setBackground(new RectangularBackground(0xee502e));
desktop.setStylesheet(stylesheet);

desktop.requestShow();
}

As expected from the addChild() sequence, the widget overlapping overlaps the widget
overlapped :

5.14. Libraries 566

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/render/DefaultRenderPolicy.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/render/OverlapRenderPolicy.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/render/OverlapRenderPolicy.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/render/DefaultRenderPolicy.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/render/OverlapRenderPolicy.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/render/DefaultRenderPolicy.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/render/OverlapRenderPolicy.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/container/Canvas.html#addChild-ej.mwt.Widget-int-int-int-int-

MicroEJ Documentation, Revision 32bb132e

So far, the DefaultRenderPolicy is being used and it seems to look fine: the widgets of the desk-
top are rendered successively in depth-first order a�er the call to desktop.requestShow().

Requesting a New Render

Let’s see how the DefaultRenderPolicy performs when the widget overlapped is requested to
render again. Inmost cases, awidget is requested to renderwhen its content has been updated
(e.g. the value displayed has changed). For demonstration purposes, let’s introduce a mean to
trigger a new render: each time the user clicks on the widget overlapped , it will request the
widget to render.

The snippet above shows how to do that, by adding an OnClickListener to the overlapped
widget:

overlapped.setOnClickListener(new OnClickListener() {

@Override
public void onClick() {

overlapped.requestRender();
}

});

When theuser clickson thewidget overlapped , thewidget is renderedagainbutnot thewidget
overlapping . As a consequence, the widget that overlaps is not displayed anymore:

When using the DefaultRenderPolicy, widgets are rendered regardless of their order in the wid-
get hierarchy. However, the OverlapRenderPolicy will take account of the relative order of the
other widgets: widgets that come a�er in the widget tree will be rendered if their boundaries
intersect those of the widget.

5.14. Libraries 567

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/render/DefaultRenderPolicy.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Desktop.html#requestShow--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/render/DefaultRenderPolicy.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/basic/OnClickListener.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/render/DefaultRenderPolicy.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/render/OverlapRenderPolicy.html

MicroEJ Documentation, Revision 32bb132e

Using the OverlapRenderPolicy

Overriding the method createRenderPolicy() of the Desktop, as follows, will cause the Over-
lapRenderPolicy to be used when rendering widgets:

Desktop desktop = new Desktop() {
@Override
protected RenderPolicy createRenderPolicy() {

return new OverlapRenderPolicy(this);
}

};

Now, both widgets will be displayed correctly when they are requested to render.

As a conclusion, favor the OverlapRenderPolicy when a GUI uses overlapping elements. Note
that this render policy is slightly more time-consuming because it traverses the widget tree to
determine which widgets are overlapping with each other.

How to Debug

Highlighting the Bounds of the Widgets

When designing a UI, it can be pretty convenient to highlight the bounds of each widget. Here
are some cases where it helps:

• Verify if the layout fits the expected design.

• Set the outlines (margin, padding, border).

• Check the alignment of the widget content inside its bounds.

Setting the ej.mwt.debug.bounds.enabled constant to true will adda rectangleoverlayover
each widget and container. For more information about constants, see the Constants section.

By default, the rectangles around the widgets are magenta. But their color can be adjusted by
modifying the ej.mwt.debug.bounds.color constant.

Here is an example of a xxx.constants.list file with the result in an application:

ej.mwt.debug.bounds.enabled=true
ej.mwt.debug.bounds.color=0x00ff00

5.14. Libraries 568

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Desktop.html#createRenderPolicy--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Desktop.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/render/OverlapRenderPolicy.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/render/OverlapRenderPolicy.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/render/OverlapRenderPolicy.html

MicroEJ Documentation, Revision 32bb132e

Note: Available since MWT 3.3.0.

5.14. Libraries 569

MicroEJ Documentation, Revision 32bb132e

Monitoring the Render Operations

When developing a GUI application, itmay not be obviouswhat/how exactly theUI is rendered.
Especially, when a widget can be re-rendered from a distant part of the application code. Or
simply because of the RenderPolicy used.

MWT provides a way to inject a monitor for the following render operations:

• Render requests done by the Application.

• Successive render executions triggered by the RenderPolicy .

Setting the ej.mwt.debug.render.enabled constant to true will enable the monitoring of
above render operations. Formore information about themonitoringmechanism, see Render-
Policy Javadoc. For more information about constants, see the Constants section.

TheWidget library provides a defaultmonitor implementation that prints the operations on the
standard output. The logs produced also contain information about what is rendered (widget
and area) and what code requested the rendering. For more information about this monitor
implementation, see RenderMonitor Javadoc.

Touse adi�erent implementation (and ifWidget is not in the classpath), set the ej.mwt.debug.
render.monitor constant to the FQN of the monitor implementation class.

Here is an example of a xxx.constants.list file with the result in an application:

ej.mwt.debug.render.enabled=true
ej.mwt.debug.render.monitor=ej.widget.debug.RenderMonitor

Fig. 26: Screenshot before click

Listing 6: Application logs a�er click

rendermonitor@ INFO: Render requested on com.microej.demo.widget.
→˓common.PageHelper$2 > SimpleDock > OverlapContainer > SimpleDock > List␣
→˓> RadioButton at {0,0 87x25} of {221,116 87x25} by com.microej.demo.widget.
→˓radiobutton.widget.RadioButtonGroup.setChecked(RadioButtonGroup.java:47)
rendermonitor@ INFO: Render requested on com.microej.demo.widget.
→˓common.PageHelper$2 > SimpleDock > OverlapContainer > SimpleDock > List␣
→˓> RadioButton at {0,0 87x25} of {221,166 87x25} by com.microej.demo.widget.
→˓radiobutton.widget.RadioButtonGroup.setChecked(RadioButtonGroup.java:50)
rendermonitor@ INFO: Render executed on com.
→˓microej.demo.widget.common.PageHelper$2 > SimpleDock > OverlapContainer␣
→˓> SimpleDock > List > RadioButton at {-221,-116 87x25} of {221,116 87x25}
rendermonitor@ INFO: Render executed on com.
→˓microej.demo.widget.common.PageHelper$2 > SimpleDock > OverlapContainer␣
→˓> SimpleDock > List > RadioButton at {-221,-141 87x25} of {221,141 87x25}
rendermonitor@ INFO: Render executed on com.
→˓microej.demo.widget.common.PageHelper$2 > SimpleDock > OverlapContainer␣

(continues on next page)

5.14. Libraries 570

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/render/RenderPolicy.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/render/RenderPolicy.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/debug/RenderMonitor.html

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

→˓> SimpleDock > List > RadioButton at {-221,-166 87x25} of {221,166 87x25}
rendermonitor@ INFO: Render␣
→˓executed on com.microej.demo.widget.common.PageHelper$2 > SimpleDock␣
→˓> OverlapContainer > ImageWidget at {133,116 87x25} of {44,0 20x16}
rendermonitor@ INFO: Render␣
→˓executed on com.microej.demo.widget.common.PageHelper$2 > SimpleDock␣
→˓> OverlapContainer > ImageWidget at {133,-140 87x25} of {44,256 20x16}
rendermonitor@ INFO: Render executed on com.
→˓microej.demo.widget.common.PageHelper$2 > SimpleDock > OverlapContainer␣
→˓> SimpleDock > List > RadioButton at {-221,-116 87x25} of {221,166 87x25}
rendermonitor@ INFO: Render␣
→˓executed on com.microej.demo.widget.common.PageHelper$2 > SimpleDock␣
→˓> OverlapContainer > ImageWidget at {133,166 87x25} of {44,0 20x16}
rendermonitor@ INFO: Render␣
→˓executed on com.microej.demo.widget.common.PageHelper$2 > SimpleDock␣
→˓> OverlapContainer > ImageWidget at {133,-90 87x25} of {44,256 20x16}

Fig. 27: Screenshot a�er click

Note: Available since MWT 3.5.0 & Widget 5.0.0.

Monitoring the Animators

Since an animator ticks its animations as o�en as possible, the animator may take 100% CPU
usage if none of its animations requests a render.

MWT provides a way to inject a monitor to be notified when none of the animations has re-
quested a render during an animator tick.

Setting the ej.mwt.debug.animator.enabled constant to true will enable animator moni-
toring. For more information about constants, see the Constants section.

The Widget library provides a default monitor implementation which logs warning messages.
The logs produced also contain information about the animations running on the animator.
The Animation instances are logged using their toString() method, so it can be a good idea
to override this method in the Animation subclasses to be able to identify them.

Touse adi�erent implementation (and ifWidget is not in the classpath), set the ej.mwt.debug.
animator.monitor constant to the FQN of the monitor implementation class.

Here is an example of a xxx.constants.list file with the result in an application:

ej.mwt.debug.animator.enabled=true

5.14. Libraries 571

MicroEJ Documentation, Revision 32bb132e

Listing 7: Application logs when the watchface update animation is
started but it doesn’t request a render

animatormonitor WARNING: No render requested␣
→˓during animator tick. Animations list: [Watchface update animation]

Note: Available since MWT 3.5.0 & Widget 5.0.0.

MWT Examples

TheMWTExamples are code samples that showhow to implement various use caseswithMWT.

Because theMWT toolkit is designed to be compact and customizable, it allows formany possi-
bilities when developing a GUI. Thus, the examples can be used, with or withoutmodifications,
to extend and customize the MWT framework for your specific needs. They also help to learn
the best practices for the development of graphic interfaces with MWT.

Source

Toget the source codeof theseexamples, clone the followingGitHub repository: https://github.
com/MicroEJ/ExampleJava-MWT.

The repository contains several projects (one project for each example). You can import the
projects in MicroEJ SDK to browse the source code and run the examples.

• Go to File > Import. . . .

• In General , select Existing Projects into Workspace .

• Check Select root directory and browse to the cloned MWT Examples repository.

• Select the projects to import and click Finish .

For each project, please refer to its README.md file for more details about the example and its
usage.

Run the Examples

Make sure to have a valid VEE port in the workspace. The examples can be tested with the Plat-
form STM32F7508-DK.

To run the examples in the simulator:

• Right-click on a project.

• Select Run As > MicroEJ Application .

Note: Some of the examples may require extra configuration, please refer to their README for more details.

To run the examples on a device, adapt the Run Configuration, then refer to the VEE port docu-
mentation.

5.14. Libraries 572

https://github.com/MicroEJ/ExampleJava-MWT
https://github.com/MicroEJ/ExampleJava-MWT
https://github.com/MicroEJ/ExampleJava-MWT
https://github.com/MicroEJ/Platform-STMicroelectronics-STM32F7508-DK/tree/1.5.0

MicroEJ Documentation, Revision 32bb132e

Provided Examples

Attribute Selectors

This example shows how to customize the style of widgets using attribute selectors, similar to
CSS Attribute Selectors.

It provides several types of attribute selectors, any of which can be used in a stylesheet to se-
lect widgets based on custom attributes. In this case, the background color of a label switches
depending on the value of an attribute of the label.

Bu�ered Image Pool

This example shows how to use a pool of Bu�eredImages to share them across an application.

In this demo, there is one image in the pool, which is shared between the histogramwidget and
the transition container.

Context-Sensitive Container

This example shows a smartwatch application that looks di�erent depending on whether the
user is wearing the device on the le� arm or on the right arm.

It demonstrates how a container can adapt to the context by changing how its children are laid
out: in this case, depending on the wrist mode, the widgets are displayed on either the le� or
right side. For demonstration purposes, the example displays a virtual watch to simulate the
device flip.

5.14. Libraries 573

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/BufferedImage.html

MicroEJ Documentation, Revision 32bb132e

Drag’n’Drop

This example shows how to implement drag’n’drop support in a grid.

Focus

This example shows how to introduce focus management in a project when using peripherals
like buttons or a joystick.

The virtual joystick (on the right) is used to simulate a hardware joystick. When the joystick
directions (up, down, le�, right) are pressed, the focus changes on the items in the same way
as when using the touch pointer.

Immutable Stylesheet

This example shows how to create and use an immutable stylesheet.

The immutable stylesheet resolves the style for a widget with the same algorithm as the cas-
cading stylesheet. The di�erence is that the immutable stylesheet is described in an immutable
file instead of Java code. Therefore, the style objects are allocated in flash instead of the Java
heap.

Lazy Stylesheet

This example shows how to create and use a “lazy” stylesheet.

The lazy stylesheet resolves the style for a widget with the same algorithm as the cascading
stylesheet. The di�erence is that the lazy stylesheet associates style factories with selectors
(rather than style instances). As a result, the style elements are allocated “on demand” when a
rule’s selector applies to a widget.

5.14. Libraries 574

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/stylesheet/cascading/CascadingStylesheet.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/stylesheet/cascading/CascadingStylesheet.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/stylesheet/cascading/CascadingStylesheet.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/stylesheet/cascading/CascadingStylesheet.html

MicroEJ Documentation, Revision 32bb132e

Masking Grid

This example shows how tomask a widget temporarily.

The grid is a custom container (MaskingGrid) that exposes an API to change the visibility of
its children (visible or invisible). When requested to render, the grid only renders the children
marked as visible.

MVC

This example shows how to create and use an MVC design pattern (Model, View, Controller).

The value of the model can be changed by clicking on the physical button.

It is also possible to resize all the widgets at once.

Popup

This example shows how to show a popup in an application.

Two types of popups are illustrated. The information popup can be dismissed by clicking out-
side of its bounds. The action popup needs the user to click on a button to close it.

5.14. Libraries 575

MicroEJ Documentation, Revision 32bb132e

RemoveWidget

This example shows how to add and remove widgets in a widget hierarchy.

The layout adapts automatically to the number of items because requestLayout() is called
for each addition/deletion on the container.

Slide Container

This example shows a slide container. This is a container that shows only its last child.

An animation is done when adding/removing a child by translating the widgets from/to the
right.

Stack Container

This example shows a stack container. This is a container that stacks its children on top of each
other.

Ananimation is donewhenadding/removinga childby translating thewidget from/to the right.

Stashing Grid

This example shows how to stash a widget temporarily.

The grid is a custom container (StashingGrid) that exposes an API to change the visibility of
its children (visible or invisible). When requested to lay out, the grid only lays out the children
marked as visible. When requested to render, the grid only renders the children marked as vis-
ible.

5.14. Libraries 576

MicroEJ Documentation, Revision 32bb132e

Theming and Branding

This example shows how to create theming and branding for your project.

The application contains only one page.

There are two di�erent types of theming shown:

1. Changing from normal to condensed by passing a Themewhen building the stylesheet.

2. Changing the styling (including padding, margin, background, etc.) itself with a StyleTheme.

Transition

This example shows a container that triggers e�ects during page transitions.

The e�ect applied to the transition container can be changed dynamically. New e�ects can be
developed easily.

Virtual Watch

This example showshow to simulate the skin and inputs of a devicewith a di�erent device (e.g.,
an evaluation board).

This can be a convenient option when the target hardware is not yet available.

Here, it simulates a watch with a round screen and 3 buttons. The actual application is shown
in a round area of the screen and receives events from the virtual buttons. The virtual buttons
send commands when clicked, the same way a target device would have sent events from the
native world. The goal is to be able to migrate the application on the target device without
modifying the application code.

5.14. Libraries 577

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Command.html

MicroEJ Documentation, Revision 32bb132e

Widgets

The Widget library provides very common widgets with basic implementations. These simple
widgets may not provide every desired feature, but they can easily be forked since their imple-
mentation is very simple.

Usage

To use the widgets provided by the widget library, add Widget library module to the project
build file:

Gradle (build.gradle.kts)

MMM (module.ivy)

implementation("ej.library.ui:widget:4.1.0")

<dependency org="ej.library.ui" name="widget" rev="4.1.0"/>

To fork one of the providedwidgets, duplicate the associated Java class from thewidget library
JAR into the source code of your application. It is recommended to move the duplicated class
to an other package and to rename the class in order to avoid confusion between your forked
class and the original class.

ProvidedWidgets

Widgets:

• Label: displays a text.

• ImageWidget: displays an image which is loaded from a resource.

• Button: displays a text and reacts to click events.

• ImageButton: displays an image which is loaded from a resource and reacts to click events.

Containers:

• List: lays out any number of children horizontally or vertically.

• Flow: lays out any number of children horizontally or vertically, using multiple rows if neces-
sary.

• Grid: lays out any number of children in a grid.

• Dock: lays out any number of children by docking each child one by one on a side.

• SimpleDock: lays out three children horizontally or vertically.

• OverlapContainer: lays out any number of children by stacking them.

• Canvas: lays out any number of children freely.

5.14. Libraries 578

https://repository.microej.com/modules/ej/library/ui/widget/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/basic/Label.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/basic/ImageWidget.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/basic/Button.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/basic/ImageButton.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/container/List.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/container/Flow.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/container/Grid.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/container/Dock.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/container/SimpleDock.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/container/OverlapContainer.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/container/Canvas.html

MicroEJ Documentation, Revision 32bb132e

Color Utilities

The widget library o�ers some color utilities.

The ColorHelper is helpful for decomposing colors into components (alpha, red, blue, green)
and building back a color from components.

The GradientHelper can blend two colors and create a gradient from two colors.

The resulting gradient is a list of distinct colors from the start color to the end color. The colors
are truncated to the display color depth. As a consequence, for the same start and end colors,
a gradient created for a 32-bit display will contain more colors than on a 16-bit display.

The LightHelper proposes several primitives concerning the luminance of the colors. The lumi-
nance of a color is computed from the luminance and the quantity of each of its components.
The green being the brighter, then the red and finally the blue.

Debug Utilities

A few utilities useful for debugging are available in the package ej.widget.util.debug of the
widget library.

Print the Hierarchy of Widgets

ThemethodHierarchyInspector.hierarchyToString(Widget) returns aString representing thehi-
erarchy of a widget. In other words, it prints the widget and its children recursively in a tree
format.

It may be used to analyse the content of a page and have a quick estimation of the number of
widgets and the depth of the hierarchy.

For example:

Scroll
+--ScrollableList
| +--Label
| +--Dock
| | +--ImageWidget
| | +--Label
| +--Label

Print the Path to a Widget

The method HierarchyInspector.pathToWidgetToString(Widget) returns a String representing
the list of ancestors of the widget. For example: Desktop > Scroll > ScrollableList >
Label .

It may be used to identify a widget in a trace.

It is also possible to choose the separator by using HierarchyInspec-
tor.pathToWidgetToString(Widget, char) method. For example: Desktop ; Scroll ;
ScrollableList ; Label .

5.14. Libraries 579

https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/color/ColorHelper.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/color/GradientHelper.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/color/LightHelper.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/debug/HierarchyInspector.html#hierarchyToString-ej.mwt.Widget-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/debug/HierarchyInspector.html#pathToWidgetToString-ej.mwt.Widget-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/debug/HierarchyInspector.html#pathToWidgetToString-ej.mwt.Widget-char-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/debug/HierarchyInspector.html#pathToWidgetToString-ej.mwt.Widget-char-

MicroEJ Documentation, Revision 32bb132e

Count the Number of Widgets or Containers

The methods HierarchyInspector.countNumberOfWidgets(Widget) and HierarchyInspec-
tor.countNumberOfContainers(Widget) respectively count the number of widgets and
containers in a hierarchy.

It may be used to evaluate the complexity of a hierarchy of widgets.

Count the MaximumDepth of a Hierarchy

Themethod HierarchyInspector.countMaxDepth(Widget) counts themaximumdepth of a hier-
archy. In other words, the depth of the widget with the biggest number of parents recursively.

It may be used to evaluate the complexity of a hierarchy of widgets.

Print the Bounds of a Widget

The method BoundsInspector.boundsToString(Widget) returns a String with the widget type
and its bounds. The returned String contains:

• the simple name of the class of the widget,

• its position relative to its parent,

• its size,

• its absolute position.

For example: Label: 0,0 7x25 (absolute: 75,75)

Print the bounds of all the widgets in a hierarchy

The method BoundsInspector.boundsRecursiveToString(Widget) returns a String representing
the type and bounds of each widget in the hierarchy of a widget.

For example:

Scroll: 0,0 480x272 (absolute: 0,0)
+--ScrollableList: 0,0 480x272 (absolute: 0,0)
| +--Label: 0,0 480x50 (absolute: 0,0)
| +--Dock: 0,50 480x50 (absolute: 0,50)
| | +--ImageWidget: 0,0 70x50 (absolute: 0,50)
| | +--Label: 70,0 202x50 (absolute: 70,50)
| +--Label: 0,100 480x50 (absolute: 0,100)

5.14. Libraries 580

https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/debug/HierarchyInspector.html#countNumberOfWidgets-ej.mwt.Widget-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/debug/HierarchyInspector.html#countNumberOfContainers-ej.mwt.Widget-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/debug/HierarchyInspector.html#countNumberOfContainers-ej.mwt.Widget-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/debug/HierarchyInspector.html#countMaxDepth-ej.mwt.Widget-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/debug/BoundsInspector.html#boundsToString-ej.mwt.Widget-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/debug/BoundsInspector.html#boundsRecursiveToString-ej.mwt.Widget-

MicroEJ Documentation, Revision 32bb132e

Widget Demo

The widget demo provides some widget implementations as well as usage examples for these
widgets and for thewidgets of theWidget library. Thewidgets andusageexamples are intended
to be duplicated by the developers in order to be adapted to their use-case.

Source

To use the widgets provided by the widget demo, clone the following GitHub repository: https:
//github.com/MicroEJ/Demo-Widget. You can then import the com.microej.demo.widget
project into your workspace to see the source of the widgets and their associated examples.

Each subpackage contains the source code for a specific widget and for a page which show-
cases the widget. For example, the com.microej.demo.widget.checkbox package contains
the Checkbox widget and the CheckboxPage .

ProvidedWidgets

The showcased widgets are listed in the README of the project.

Simulation

The Front Panel Mock is provided by the VEE Ports.

It is especially useful for those exposing a MicroUI display, LEDs and input devices. It then pro-
vides an interactive window for the Application simulation.

The following sections present the options of the Front Panel and some tooling and tips to help
debugging and optimizing an application.

Front Panel Options

The following options are available in the Front Panel. Please refer to the dedicated sections
(SDK 6 or SDK 5) to know how to define options.

Table 21: Front Panel Options
Options Chapter Aim
ej.fp.project Installation Specify a local Front Panel project to avoid rebuilding VEE Port.
ej.fp.hil Classpath Run the Front Panel in the same VM as the standard mocks.
ej.fp.display.

flushVisualizer
Flush Visualizer Export all the frames drawn on the display and list the drawings

done for each frame.
ej.fp.brs.

drawnColor
Drawn Region(s) Identify the drawn regions for each frame.

ej.fp.brs.
restoredColor

Restored Region(s) Identify the restored regions for each frame.

ej.fp.brs.
dirtyColor

Dirty Region(s) Identify the regions not fully filled by the drawings.

5.14. Libraries 581

https://github.com/MicroEJ/Demo-Widget
https://github.com/MicroEJ/Demo-Widget
https://github.com/MicroEJ/Demo-Widget/blob/master/com.microej.demo.widget/README.md

MicroEJ Documentation, Revision 32bb132e

Flush Visualizer

Presentation

Building smooth and visually appealing UI applications requires a keen focus on performance.
To achieve e�icient UI rendering, minimizing unnecessary work that consumes valuable CPU
time is essential.

For example, assuming the application targets 60 FPS to perform a transition between two
screens, that means the application has 1/60s ~= 16ms in total to execute the rendering and
the flush (see Rendering Pipeline).

The Flush Visualizer is a tool designed to investigate potential performance bottlenecks in UI
applications running on the Simulator. The Flush Visualizer provides the following information:

• A screenshot of what was shown on the screen a�er a flush.

• The list of drawing operations that were performed before this flush (and a�er the previous
one).

• The total area covered by the sumof the area drawnby the drawing operations as a percentage.
A value of 100% indicates that the area drawn is equivalent to the surface of the entire display.
A value of 200% indicates the area drawn is equivalent to twice the surface of the entire display.

5.14. Libraries 582

MicroEJ Documentation, Revision 32bb132e

A perfect application has 100% of its display area drawn. (It can even be less than 100% if only
a subset of the display has changed.) A total area drawn between 100% to 200% is the norm in
practice because widgets o�en overlap. However, if the total area drawn is bigger than 200%,
that means that the total surface of the display was drawnmore than twice. Probably meaning
that a lot of drawings are done above others. Identifying this drawing (and the ones below) can
help reducing the number of drawings done (or their surface).

As always, when conducting a performance study, measure. Use SystemView to identify the
bottlenecks in your application on the embedded target. A total area drawn over 200% is in-
e�icient, but your application may have bigger bottlenecks. Confirm it by measuring the time
spent drawing vs. the time spent elsewhere between flushes.

Installation

Set the option ej.fp.display.flushVisualizer to true to enable the flush vizualizer.

This option is available in the for the Display widget in frontpanel widget module version 4.+
for UI Pack 14.0.0 or later.

Usage

1. Run the application in the Simulator.

2. Open the file MicroUIFlushVisualizer/MicroUIFlushVisualizer.html that was generated
in the application output folder.

Limitations

Please refer to the javadoc of the FlushVisualizer class alongside the Display widget.

5.14. Libraries 583

https://forge.microej.com/artifactory/microej-developer-repository-release/ej/tool/frontpanel/widget/

MicroEJ Documentation, Revision 32bb132e

Examples

Here are examples of the Flush Visualizer in action:

Simple GFX DemoWearable

Refresh Strategy Highlighting

Presentation

A bu�er refresh strategy is responsible of making sure that what is shown on the display con-
tains all the drawings. The ones done since last flush and the past. To achieve that it detects
the drawn regions and refresh the necessary data in the back bu�er.

These informations can also be used to understand what happens for each frame in terms of
drawings and refreshes. It may be very useful to identify performance issues.

The drawn and restored regions can be very di�erent depending on the selected strategy and
the associated options. See Bu�er Refresh Strategy for more information about the di�erent
strategies and their behavior.

5.14. Libraries 584

MicroEJ Documentation, Revision 32bb132e

Drawn Region(s)

The bu�er refresh strategies registers the list of drawn regions between two flushes. These re-
gions can be highlighted during the execution of an application. It is activated by setting the
ej.fp.brs.drawnColor option to any 32-bit color (opaque or semi-transparent).

For example with ej.fp.brs.drawnColor=0xff00ff00 :

Fig. 28: Drawn region when scrolling.

Fig. 29: Drawn region when selecting a radio button.

5.14. Libraries 585

MicroEJ Documentation, Revision 32bb132e

Restored Region(s)

It is also possible to track the regions restored by the bu�er refresh strategies. The ej.fp.brs.
restoredColor option can be set to any 32-bit color (opaque or semi-transparent) to highlight
these regions.

For example with ej.fp.brs.restoredColor=0xffff00ff :

Fig. 30: Restored region when selecting a radio button when entering page.

Fig. 31: Restored region when selecting another radio button.

5.14. Libraries 586

MicroEJ Documentation, Revision 32bb132e

Dirty Region(s)

The bu�er refresh strategies use the clip to determine the regions changed between each flush.
If a clip has been set but not fully filled by the drawings, the pixels “not drawn”may be flushed
to thedisplay as is (without restoration). But the content of thesepixels is undefineddepending
on what this bu�er was used for before. It can be a previous frame, one or several flush before
depending on the number of bu�ers. It can also be randompixels if nothing has been drawn on
the bu�er yet.

These regions are considered as “dirty” since they do not contain the current drawnings nor the
state of the previous display panel. In other words, it can cause glitches .

To detect easily these regions, a rectangle can be filled with a color for each clip handled by
the bu�er refresh strategy. It is activated by setting the ej.fp.brs.dirtyColor option to any
32-bit color (opaque or semi-transparent).

For example: ej.fp.brs.dirtyColor=0x880000ff .

Combining Highlightings

It is possible to use all the highlightings in the same execution. It is particularly convenient to
see at the same time the drawn regions and the restored regions.

For example:

ej.fp.brs.drawnColor=0xff00ff00
ej.fp.brs.restoredColor=0xffff00ff

Fig. 32: Drawn and restored regions when the scrollbar is hidden at the end of a scroll.

5.14. Libraries 587

MicroEJ Documentation, Revision 32bb132e

Fig. 33: Drawn and restored regions when selecting another radio button.

Front Panel Tips

The following sections provides a non-exhaustive list of tips to make the best use of the Front
Panel for Application developers.

Pixel Accurate Display: Window scaling

The Front Panel Display is designed for a pixel-accurate simulation of the GUI application. It
uses MicroUI’s graphics engine, not the system native engine. Therefore, the Front Panel does
not support scaling of the window. For accurate graphics, the window must not be resized by
the system or the application that launched the simulation (typically the IDE). Check your set-
tings:

System (Windows)

Application (Windows)

On Windows, check your Display settings:

5.14. Libraries 588

MicroEJ Documentation, Revision 32bb132e

Fig. 34: Windows Display “Scale & Layout” settings

If needed, override the application auto scaling with the system’s in Windows Explorer:

5.14. Libraries 589

MicroEJ Documentation, Revision 32bb132e

Fig. 35: Windows Application “High DPI scaling override” setting

Zoom on pixelated view for checking custom drawings

Assumingapixel accurate simulateddisplay (seeWindowscaling), usea screenmagnifier tool to
zoomon portions of the GUI. It is especially useful to check customdrawings as well as MicroUI
Fonts (EJF) & Images. Also, make sure the tool does not apply a filter to smooth when scaling.

Windows Magnifier

Windows Magnifier Settings

5.14. Libraries 590

MicroEJ Documentation, Revision 32bb132e

Fig. 36: Windows Magnifier Example

Fig. 37: Windows Magnifier “Smooth edges of images and text” setting

5.14. Libraries 591

MicroEJ Documentation, Revision 32bb132e

Take screenshots of the simulated display

An alternative is to make a screenshot and zooming with an image viewer/editor. For that, use
a screenshot tool or programmatically extend the Front Panel with:

// Use ej.fp.widget package to access ej.fp.widget.Display.visibleBuffer
package ej.fp.widget;

import java.awt.Graphics;
import java.awt.Image;
import java.awt.Toolkit;
import java.awt.datatransfer.DataFlavor;
import java.awt.datatransfer.Transferable;
import java.awt.datatransfer.UnsupportedFlavorException;
import java.awt.image.BufferedImage;
import java.io.IOException;

import ej.fp.Device;
import ej.fp.widget.Button.ButtonListener;

public class SceenshotOnClick implements ButtonListener {

@Override
public void press(Button widget) {

copyImageToClipboard(copyToType(takeScreenshot(),
→˓ BufferedImage.TYPE_INT_RGB));

System.out.println("Screenshot copied to clipboard");
}

@Override
public void release(Button widget) {

// do nothing
}

private static BufferedImage takeScreenshot() {
Display display = Device.getDevice().getWidget(Display.class, null);
return (BufferedImage) display.visibleBuffer.getRAWImage();

}

private static Image copyToType(BufferedImage src, int imageType) {
BufferedImage␣

→˓dst = new BufferedImage(src.getWidth(), src.getHeight(), imageType);
Graphics g = dst.createGraphics();
g.drawImage(src, 0, 0, null);
g.dispose();
return dst;

}

private static void copyImageToClipboard(Image image) {
Toolkit.

→˓getDefaultToolkit().getSystemClipboard().setContents(new Transferable() {

@Override

(continues on next page)

5.14. Libraries 592

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

public boolean isDataFlavorSupported(DataFlavor flavor) {
return DataFlavor.imageFlavor.equals(flavor);

}

@Override
public DataFlavor[] getTransferDataFlavors() {

return new DataFlavor[] { DataFlavor.imageFlavor };
}

@Override
public Object getTransferData(DataFlavor␣

→˓flavor) throws UnsupportedFlavorException, IOException {
if (!DataFlavor.imageFlavor.equals(flavor)) {

throw new UnsupportedFlavorException(flavor);
}
return image;

}

}, null);
}

}

Visual Testing

Such screenshots simplifies visual testing. The screenshot can be compared against a made-
up image from design specification (typically exported from design tools), or against another
screenshot taken from a di�erent version of the application. To go further (and possibly auto-
mate such tests), use tools like ImageMagick:

Before

A�er

Compare

5.14. Libraries 593

https://imagemagick.org/

MicroEJ Documentation, Revision 32bb132e

$ compare before.png after.png compare.png

5.14. Libraries 594

MicroEJ Documentation, Revision 32bb132e

Compare screenshots with Figma frames

In Figma, frames can be easily exported to PNG images. But it may need more processing be-
fore the comparison with the screenshot. First (optional), within Figma, enable Pixel Preview (
View > Pixel Preview (Ctrl+Shi�+P)):

5.14. Libraries 595

MicroEJ Documentation, Revision 32bb132e

Then, if the exported frame does not contain only the display, the image can be cropped with:

$ convert figma.png -crop 480x480+45+45 figma-cropped.png

Then, if theMicroUI bpp setting is not RGB888 , the image can be filtered tomatch the supported
colors. For example, for bpp=RGB565 , apply the following filter:

$ convert figma.png -channel red,blue␣
→˓-evaluate AND 63743 -channel green -evaluate AND 64767 figma-rgb565.png

Keep the Front Panel always on top

To keep the front panel visible while developing the application, use multiple displays and/or
use tools like Microso� PowerToys’ Always on Top utility.

5.14.2 Native Language Support

Introduction

Native Language Support (NLS) allows the application to facilitate internationalization. It pro-
vides support to manipulate messages and translate them in di�erent languages. Each mes-
sage to be internationalized is referenced by a key, which can be used in the application code
instead of using the message directly.

Principle

NLS is distributed as an add-on library containing a single Java interface: NLS.

In addition to that, the binary-nls library provides a factory for implementations of this inter-
face: it uses an add-on processor which processes, o�board, the Localization Source Files into
one BON resource bu�er file for compactness.

During the clinit phase, this resource file is opened and the list of locales is parsed. A�er that,
the resource remains opened for the rest of the Application execution and is directly used to
retrieve messages translations for the supported locales.

Usage of this binary-nls implementation is documented below (see current limitations).

Localization Source Files

Messagesmustbedefined in localization source files, located in theClasspathof theapplication
(i.e. in the src/main/resources folder).

Localization source files can be either PO files or Android String resources.

Here is an example of a PO file:

msgid "Label1"
msgstr "My label 1"

msgid "Label2"
msgstr "My label 2"

5.14. Libraries 596

https://learn.microsoft.com/en-us/windows/powertoys/always-on-top
https://repository.microej.com/javadoc/microej_5.x/apis/ej/nls/NLS.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/ResourceBuffer.html
https://www.gnu.org/software/gettext/manual/gettext.html#PO-Files
https://developer.android.com/guide/topics/resources/string-resource

MicroEJ Documentation, Revision 32bb132e

And here is an example of an Android String resource:

<resources>
<string name="Label1">My label 1</string>
<string name="Label2">My label 2</string>

</resources>

Note: When using Android String resources, string arrays are also supported. However, plurals are not supported.

NLS List Files

Localization source files are declared in Classpath *.nls.list files (and to *.
externresources.list for an external resource, see Application Resources and Loading
Translations as an External Resource).

NLS

internal?

*.nls.list

yes

*.nls.list +
*.externresources.list

no=external

The file format is a standard Java properties file, each line represents the Full Qualified Name
of a Java interface that will be generated and used in the application. Example:

com.mycompany.myapp.Labels
com.mycompany.myapp.Messages

5.14. Libraries 597

https://developer.android.com/guide/topics/resources/string-resource#StringArray
https://developer.android.com/guide/topics/resources/string-resource#Plurals

MicroEJ Documentation, Revision 32bb132e

Usage

The binary-nls module must be added to the Application project build file:

Gradle (build.gradle.kts)

MMM (module.ivy)

implementation("com.microej.library.runtime:binary-nls:2.5.0")

<dependency org="com.microej.library.runtime" name="binary-nls" rev="2.5.0"/>

This module includes an Add-On Processor which parses the localization source files. For each
interface declared in the NLS list files, all the localization source files whose names start with
the interface name are used to generate:

• a Java interface with the given FQN, containing a field for each message of the localization
source files

• a NLS binary file containing the translations

So, in the example, the generated interface com.mycompany.myapp.Labels will gather all the
translations from files named Labels* and located in anypackageof theClasspath. Thenames
of the localization source files should be su�ixed by their locale (for example Labels_en_US.po
).

The generation is triggeredwhenbuilding the applicationor a�er a changedone in any localiza-
tion source file or *.nls.list files. This allows to always have the Java interfaces up-to-date
with the translations and to use them immediately.

Besides themessage fields, the generated interface declares anNLS instancewhich is automat-
ically created in the clinit of the interface.

Once thegeneration is done, the application canuse the Java interfaces to get internationalized
messages, for example:

String label = Labels.NLS.getMessage(Labels.Label1);

For the application to knowwhich language to use among thosemade available andwhen, you
can set it and change it at any point using the setCurrentLocale(locale)method. If no locale has
been set yetwhengetting amessage, the translation for the first locale available in alphabetical
order will be used by default. However, you can also pick this locale to default to yourself, by
adding a com.microej.binarynls.defaultLocale property followed by a locale name in a
.properties.list file.

Plural Forms

Starting with version 4.0.0 of the NLS module and version 3.0.0 of the binary-nls module
is introduced support of GNU gettext’s plural form feature in PO files. This allows usage of
Plural-Forms header entries and several msgstr ‘s per msgid (referred to as plural forms)
as specified by gettext; you can then retrieve the correct message in a locale for a given count
of things by using the ej.nls.NLS.getMessage()methods that take in this count value as an argu-
ment.

If amessage for a given msgid has a msgid_plural andplural forms in a PO file for an interface
declared in an NLS list file, it must also have plural forms in all other PO files for this interface.

5.14. Libraries 598

https://repository.microej.com/modules/com/microej/library/runtime/binary-nls
https://repository.microej.com/javadoc/microej_5.x/apis/ej/nls/NLS.html#setCurrentLocale-java.lang.String-
https://repository.microej.com/modules/ej/library/runtime/nls/
https://repository.microej.com/modules/com/microej/library/runtime/binary-nls
https://www.gnu.org/software/gettext/manual/html_node/Plural-forms.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/nls/NLS.html#getMessage-int-

MicroEJ Documentation, Revision 32bb132e

Warning: Please note that one significant di�erence with gettext’s implementation is that the
expression described in the plural field of the Plural-Forms header must be a valid Java
expression returning an int , as opposed to a C expression. A usual case in which this makes
a di�erence is for expressions that rely on boolean values being evaluated as zero or one in C,
such as in:

"Plural-Forms: nplurals=2; plural=n != 1;\n"

This expression will not work with our implementation as Java does not interpret booleans as
integers. An easy way to convert this expression would be:

"Plural-Forms: nplurals=2; plural=n != 1 ? 1 : 0;\n"

Also note that the validity of these provided expressions is not entirely checked. Providing an
expression that is not valid Java or that would return an invalid plural form index would cause
errors at runtime or even in the Java files generated by the Add-On Processor.

Dealing With Missing Translations

By default, if a translation ismissing for a given msgid in a PO file in a given language, themes-
sage returned by the ej.nls.NLS.getMessage() method with the locale set to this language will
simply be the msgid itself. In the case of an XML Android String resource, the name attribute of
amissing string elementwill be returned. However if returning this identifier is not a suitable
solution, youmightwant to set a fallback locale parameter for an interface. This parameter cor-
responds to a language to print the translation for amessage in, in case it is not available in the
current language.

Starting with version 2.5.0 of the binary-nls module, you can set this fallback locale by specify-
ing a locale name in a .nls.list file, a�er the name of the interface youwant this locale to be
the fallback for, separated by a colon : . For example, with the following .nls.list file, if a
translation is missing in a language for a message in the Labels and Messages PO/XML files,
the message will be translated to en_US instead of just returning its msgid / name .

Missing translations for Labels and Messages will fall back to en_US
com.mycompany.myapp.Labels:en_US
com.mycompany.myapp.Messages:en_US

As such, you can specify a di�erent fallback locale for each interface in a .nls.list file. For
example, with the following .nls.list file, the messages in Labels will not have a fallback
language set and will only return the msgid / name if a translation is missing, while missing
translationswill default to en_US for themessages in Messages , and to ja_JP for themessages
in Content :

Missing translations for Labels will fall back to their msgid/name
com.mycompany.myapp.Labels

Missing translations for Messages will fall back to en_US
com.mycompany.myapp.Messages:en_US

Missing translations for Content will fall back to ja_JP
com.mycompany.myapp.Content:ja_JP

In the case of amessage with plural forms in PO files, this worksmuch the sameway, using the
messages and forms in the fallback locale if available. If no fallback locale is specified or if the

5.14. Libraries 599

https://repository.microej.com/javadoc/microej_5.x/apis/ej/nls/NLS.html#getMessage-int-
https://repository.microej.com/modules/com/microej/library/runtime/binary-nls

MicroEJ Documentation, Revision 32bb132e

requestedmessage is not specified in it, then the msgid will be used for a count value of 1, and
the msgid_plural will be used for any other value, as gettext would function.

BinaryNLS Resource Generation

If the classpath of the Application contains .po / .xml files and .nls.list files, the
binary-nls Add-On Processor will generate the following source files for each NLS interface:

• a .resourcebuffer

• a .resourcebuffer.list which references the .resourcebuffer

• a .resources.list which references the resource (this resource does not exist yet but it will
be generated later)

When building the Application or running it on Simulator, the Resource Bu�er Generator is first
executed. Based on the .resourcebuffer and the .resourcebuffer.list , it will generate a
resource.

Since the generated resource is referenced by the .resources.list generated by the
binary-nls ADP, the SOAR will embed the resource in the Application binary. Unless it is also
referenced by an .externresources.list in which case the SOAR will output the resource in
the External Resources Folder instead.

This resource is loaded as soon as the BinaryNLS instance is created, in the clinit of the gener-
ated NLS interface (see Principle).

Limitations

The latest BinaryNLS implementation does not support:

• to dynamicly add a new locale

• to dynamicly modify messages translations

even when the resource is external (see External resource loader).

For any addition / modification, the Application must be restarted and, typically, the full re-
source bu�er must be updated (not only the part of the added/modified locale).

Also, there is noAPI to close the resourcebu�er. If it is external, theApplicationmustbe stopped
to close this resource, before it can potentially bemodified depending on the external resource
loader.

NLS External Loader Tool

The NLS External Loader tool allows to update the PO files of an application executed on a Vir-
tualDevicewithout rebuilding it. PO files canbedropped inagiven location in theVirtualDevice
folders to dynamically replace the language strings packaged in the application.

This is typically useful when testing or translating an application in order to have a quick feed-
back when changing the PO files. Once the PO files are updated, a simple restart of the Virtual
Device allows to immediately see the result.

5.14. Libraries 600

https://repository.microej.com/modules/com/microej/tool/nls-po-external-loader/

MicroEJ Documentation, Revision 32bb132e

Installation

To enable the NLS External Loader in the Virtual Device, add the following dependency to the
Firmware project:

Gradle (build.gradle.kts)

MMM (module.ivy)

implementation("com.microej.tool:nls-po-external-loader:2.3.0")

<dependency org="com.microej.
→˓tool" name="nls-po-external-loader" rev="2.3.0" transitive="false"/>

Then rebuild the Firmware project to produce the Virtual Device.

Usage

Once the project built:

• unzip the Virtual Device and create a folder named translations in the root folder.

• copy all the PO files from the project into the translations folder. All PO files found in this
folder are processed, no matter their folder level.

• start the Virtual Device with the launcher. The following logs should be printed if the NLS Exter-
nal Loader has been executed and has found the PO files:

externalPoLoaderInit:init:

externalPoLoaderInit:loadPo:
[mkdir] Created dir: <PATH>\tmp\microejlaunch1307817858\resourcebuffer

[po-to-nls] *.nls files found in <PATH>\output\<FIRMWARE>\resourceBuffer :
[po-to-nls] - com.mycompany.Messages1
[po-to-nls] - com.mycompany.Messages2
[po-to-nls] Loading *.po files for NLS interface com.mycompany.Messages1
[po-to-nls] => loaded locales : fr_FR,de_DE,ja_JP,en_US
[po-to-nls] Loading *.po files for NLS interface com.mycompany.Messages2
[po-to-nls] => loaded locales : fr_FR,de_DE,ja_JP,en_US

• update the languages strings in the PO files of the Virtual Device (the files in the translations/
folder).

• restart the Virtual Device and check the changes.

It is important to know the following rules about the NLS External Loader:

• the external PO files namesmustmatchwith the default PO files names of the application to be
processed.

• when PO files with a given name are loaded, the default translations for these PO files are re-
placed, there is no merge. It means that:

– if messages are missing in the new PO files, they are not available anymore for the application
andmay very probably make it crash.

– if languages are missing (the application has 3 PO files for English, French and Spanish, and
only PO files for English and French are available in the translations folder), the messages of

5.14. Libraries 601

MicroEJ Documentation, Revision 32bb132e

the missing languages are not available anymore for the application and may very probably
make it crash.

– if newmessages are added in the PO files, it has no impact, they are ignored by the application.

• External PO files are loaded at Virtual Device startup, so any change requires a restart of the
Virtual Device to be considered

Troubleshooting

java.io.IOException: NLS-PO:S=4

The following error occurs when at least 1 PO file is missing for a language:

[parallel2] NLS-PO:I=6
[parallel2] Exception␣
→˓in thread "main" java.io.IOException: NLS-PO:S=4 323463627 -1948548092
[parallel2] at java.lang.Throwable.fillInStackTrace(Throwable.java:79)
[parallel2] at java.lang.Throwable.<init>(Throwable.java:30)
[parallel2] at java.lang.Exception.<init>(Exception.java:10)
[parallel2] at java.io.IOException.<init>(IOException.java:16)
[parallel2] at com.microej.nls.BinaryNLS.loadBinFile(BinaryNLS.java:310)
[parallel2] at com.microej.nls.BinaryNLS.<init>(BinaryNLS.java:157)
[parallel2] at com.microej.nls.BinaryNLS.newBinaryNLS(BinaryNLS.java:118)

Make sure that all PO files are copied in the translations folder.

Crowdin

Crowdin is a cloud-based localization platform which allows to manage multilingual content.
The NLS External Loader can fetch translations directly from Crowdin to make the translation
process even easier. Translators can then contribute and validate their translations in Crowdin
and apply them automatically in the Virtual Device.

Anewdependencymustbeadded toFirmwareproject dependencies toenable this integration:

Gradle (build.gradle.kts)

MMM (module.ivy)

implementation("com.microej.tool:nls-po-crowdin:1.0.0")

<dependency org=
→˓"com.microej.tool" name="nls-po-crowdin" rev="1.0.0" transitive="false"/>

Once themodule has been built, edit the file platform/tools/crowdin/crowdin.properties
to configure the Crowdin connection:

• set crowdin.token to the Crowdin API token. A token can be generated in the Crowdin in
Settings > API > click on New Token .

• set crowdin.projectsIds to the id of the Crowdin project. The project id can be found in the
Details section on a project page. Multiple projects can be set by separating their id with a
comma (for example crowdin.projectsIds=12,586,874).

5.14. Libraries 602

https://repository.microej.com/modules/com/microej/tool/nls-po-crowdin/

MicroEJ Documentation, Revision 32bb132e

When the configuration is done, the fetch of the Crowdin translations can be done by executing
the script crowdin.bat or crowdin.sh located in the folder platform/tools/crowdin/ . The
PO files retrieved fromCrowdinare automatically pasted in the folder translations , therefore
the new translations are applied a�er the next Virtual Device restart.

5.14.3 Networking

Foundation Libraries

Name Description Module
Link

API Link Use

ECOM-NetworkNetwork interfaces management
and IP configurations.

ecom-
network

NetworkInterfaceM-
anager class

ECOM-WIFI Wi-Fi connectivity. ecom-
wifi

WifiManager class
• Wi-Fi setup Ex-
ample

• Wi-Fi utility Li-
brary

NET Client and Server raw TCP/IP sock-
ets.

net java.net package
• NET Example
• NET utility
Library

Security Cryptographic operations. security javax.crypto package
SSL Client and Server secure sockets

layer using Transport Layer Secu-
rity (TLS) protocols.

ssl java.net.ssl package
• SSL mutual
client Example

• SSL mutual
server Example

• SSL utility
Library

Add-On Libraries

5.14. Libraries 603

https://repository.microej.com/modules/ej/api/ecom-network/
https://repository.microej.com/modules/ej/api/ecom-network/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/ecom/network/NetworkInterfaceManager.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/ecom/network/NetworkInterfaceManager.html
https://repository.microej.com/modules/ej/api/ecom-wifi/
https://repository.microej.com/modules/ej/api/ecom-wifi/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/ecom/wifi/WifiManager.html
https://github.com/MicroEJ/Example-Wi-Fi-Setup
https://github.com/MicroEJ/Example-Wi-Fi-Setup
https://repository.microej.com/modules/ej/library/iot/wifi-util/
https://repository.microej.com/modules/ej/library/iot/wifi-util/
https://repository.microej.com/modules/ej/api/net/
https://repository.microej.com/javadoc/microej_5.x/apis/java/net/package-summary.html
https://github.com/MicroEJ/Example-Foundation-Libraries/tree/master/net.helloworld
https://repository.microej.com/modules/ej/library/iot/net-util/
https://repository.microej.com/modules/ej/library/iot/net-util/
https://repository.microej.com/modules/ej/api/security/
https://repository.microej.com/javadoc/microej_5.x/apis/javax/crypto/package-summary.html
https://repository.microej.com/modules/ej/api/ssl/
https://repository.microej.com/javadoc/microej_5.x/apis/javax/net/ssl/package-summary.html
https://github.com/MicroEJ/Example-IOT/tree/master/ssl-mutual
https://github.com/MicroEJ/Example-IOT/tree/master/ssl-mutual
https://github.com/MicroEJ/Example-IOT/tree/master/ssl-mutual-server
https://github.com/MicroEJ/Example-IOT/tree/master/ssl-mutual-server
https://repository.microej.com/modules/ej/library/iot/ssl-util/
https://repository.microej.com/modules/ej/library/iot/ssl-util/

MicroEJ Documentation, Revision 32bb132e

IoT Libraries

Name Description Module
Link

API Link Use

Android
Connectivity

Network connection state and no-
tifications.

android-
connectivity

ConnectivityManager
class • Connectivity Ex-

ample

HTTP
Client

OpenJDK HTTP client. http-
client,
http-
sclient

HttpURLConnection
class • HTTP client

README

Web
Server
(HOKA)

Tiny footprint yet extensible web
server.

HOKA HttpServer class
• HOKA User Man-
ual

• HOKA Examples

MQTT
Client
(MicroPaho)

Tiny footprint MQTT 3.1.1 client
based on Eclipse Paho Java APIs.

mi-
cropaho

MqttClient class
• MicroPaho
README

• MQTT publish
Example

• MQTT subscribe
Example

REST
Client

REpresentational State Tranfer
(REST) client.

restclient Resty class
• REST client
README

SNTP
Client

Simple Network Time Protocol
(SNTP) client, used to retrieve the
current time from an NTP server.

sntp-
client

SntpClient class
• SNTP client
README

WebSocket
Client

WebSocket client (RFC 6455). web-
socket,
websocket-
secure

WebSocket class
• WebSocket
client README

• WebSocket
client Example

5.14. Libraries 604

https://repository.microej.com/modules/ej/library/iot/android-connectivity/
https://repository.microej.com/modules/ej/library/iot/android-connectivity/
https://repository.microej.com/javadoc/microej_5.x/apis/android/net/ConnectivityManager.html
https://repository.microej.com/javadoc/microej_5.x/apis/android/net/ConnectivityManager.html
https://github.com/MicroEJ/Example-IOT/tree/master/androidconnectivity
https://github.com/MicroEJ/Example-IOT/tree/master/androidconnectivity
https://repository.microej.com/modules/ej/library/eclasspath/httpclient/
https://repository.microej.com/modules/ej/library/eclasspath/httpclient/
https://repository.microej.com/modules/ej/library/eclasspath/httpsclient/
https://repository.microej.com/modules/ej/library/eclasspath/httpsclient/
https://repository.microej.com/javadoc/microej_5.x/apis/java/net/HttpURLConnection.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/net/HttpURLConnection.html
https://repository.microej.com/modules/ej/library/eclasspath/httpclient/1.3.0/README-1.3.0.md
https://repository.microej.com/modules/ej/library/eclasspath/httpclient/1.3.0/README-1.3.0.md
https://repository.microej.com/modules/ej/library/iot/hoka/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/hoka/http/HttpServer.html
https://github.com/MicroEJ/Example-Hoka
https://repository.microej.com/modules/ej/library/iot/micropaho/1.0.0/
https://repository.microej.com/modules/ej/library/iot/micropaho/1.0.0/
https://repository.microej.com/javadoc/microej_5.x/apis/org/eclipse/paho/client/mqttv3/MqttClient.html
https://repository.microej.com/modules/ej/library/iot/micropaho/1.0.0/README-1.0.0.md
https://repository.microej.com/modules/ej/library/iot/micropaho/1.0.0/README-1.0.0.md
https://github.com/MicroEJ/Example-IOT/tree/master/mqtt-publisher
https://github.com/MicroEJ/Example-IOT/tree/master/mqtt-publisher
https://github.com/MicroEJ/Example-IOT/tree/master/ssl-mqtt-subscriber
https://github.com/MicroEJ/Example-IOT/tree/master/ssl-mqtt-subscriber
https://repository.microej.com/modules/ej/library/iot/restclient/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/rest/web/Resty.html
https://repository.microej.com/modules/ej/library/iot/restclient/1.1.0/README-1.1.0.md
https://repository.microej.com/modules/ej/library/iot/restclient/1.1.0/README-1.1.0.md
https://repository.microej.com/modules/ej/library/iot/sntpclient/
https://repository.microej.com/modules/ej/library/iot/sntpclient/
https://repository.microej.com/javadoc/microej_5.x/apis/android/net/SntpClient.html
https://repository.microej.com/modules/ej/library/iot/sntpclient/1.3.0/README-1.3.0.md
https://repository.microej.com/modules/ej/library/iot/sntpclient/1.3.0/README-1.3.0.md
https://repository.microej.com/modules/ej/library/iot/websocket/
https://repository.microej.com/modules/ej/library/iot/websocket/
https://repository.microej.com/modules/ej/library/iot/websocket-secure/
https://repository.microej.com/modules/ej/library/iot/websocket-secure/
https://repository.microej.com/javadoc/microej_5.x/apis/index.html?ej/websocket/WebSocket.html
https://repository.microej.com/modules/ej/library/iot/websocket/2.0.0/README-2.0.0.md
https://repository.microej.com/modules/ej/library/iot/websocket/2.0.0/README-2.0.0.md
https://github.com/MicroEJ/Example-IOT/tree/master/ssl-websocket
https://github.com/MicroEJ/Example-IOT/tree/master/ssl-websocket

MicroEJ Documentation, Revision 32bb132e

Data Serialization Libraries

Name Description Module
Link

API Link Use

CBOR Concise Binary Object Representa-
tion (CBOR) encoder and decoder
(RFC 7049).

cbor
• CborEncoder
class

• CborDecoder
class

• CBOR Tutorial

JSON JavaScript Object Notation (JSON)
encoder and decoder.

json
• JSONObject
class (decoder)

• JSONWriter
class (encoder)

• README
• JSON Tutorial

Protocol
Buffers

Google Protocol Bu�ers 3 encoder
and decoder, supporting files com-
piled by protoc with lite plugin.

proto-
buf3 • CodedInput-

Stream class
(decoder)

• CodedOutput-
Stream class
(encoder)

• Protobuf3
Example

XML eXtensible Markup Language en-
coder and decoder (kXML 3).

kxml2
• XmlPullParser
class (decoder)

• XmlSerializer
class (encoder)

• XML Tutorial

Cloud Agent Libraries

Name Description Module Link Use
AWS

IoT
Core

AWS IoT Core client, providing pub-
lish/subscribe functionalities.

aws-iot
• AWS IoT Core README
• AWS IoT Core Example

Google
Cloud
Platform
Iot
Core

Google Cloud Platform Iot Core client. gcp-iotcore
• Google Cloud Platform Getting
Started

5.14. Libraries 605

https://repository.microej.com/modules/ej/library/iot/cbor/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/cbor/CborEncoder.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/cbor/CborEncoder.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/cbor/CborDecoder.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/cbor/CborDecoder.html
https://repository.microej.com/modules/ej/library/iot/json/
https://repository.microej.com/javadoc/microej_5.x/apis/org/json/me/JSONObject.html
https://repository.microej.com/javadoc/microej_5.x/apis/org/json/me/JSONObject.html
https://repository.microej.com/javadoc/microej_5.x/apis/org/json/me/JSONWriter.html
https://repository.microej.com/javadoc/microej_5.x/apis/org/json/me/JSONWriter.html
https://repository.microej.com/modules/ej/library/iot/json/1.0.0/README-1.0.0.md
https://repository.microej.com/modules/com/google/protobuf3/
https://repository.microej.com/modules/com/google/protobuf3/
https://repository.microej.com/javadoc/microej_5.x/apis/com/google/protobuf/CodedInputStream.html
https://repository.microej.com/javadoc/microej_5.x/apis/com/google/protobuf/CodedInputStream.html
https://repository.microej.com/javadoc/microej_5.x/apis/com/google/protobuf/CodedOutputStream.html
https://repository.microej.com/javadoc/microej_5.x/apis/com/google/protobuf/CodedOutputStream.html
https://github.com/MicroEJ/Demo-Protobuf3
https://github.com/MicroEJ/Demo-Protobuf3
http://kxml.sourceforge.net/about.shtml
https://repository.microej.com/modules/org/kxml2/kxml2/
https://repository.microej.com/javadoc/microej_5.x/apis/org/xmlpull/v1/XmlPullParser.html
https://repository.microej.com/javadoc/microej_5.x/apis/org/xmlpull/v1/XmlPullParser.html
https://repository.microej.com/javadoc/microej_5.x/apis/org/xmlpull/v1/XmlSerializer.html
https://repository.microej.com/javadoc/microej_5.x/apis/org/xmlpull/v1/XmlSerializer.html
https://repository.microej.com/modules/ej/library/iot/aws-iot/
https://repository.microej.com/modules/ej/library/iot/aws-iot/2.0.0/README-2.0.0.md
https://github.com/MicroEJ/AWS
https://forge.microej.com/artifactory/microej-developer-repository-release/googlecloud/iotcore/
https://developer.microej.com/features/iot-connectivity/get-started-google-cloud-iot-core-connectivity/
https://developer.microej.com/features/iot-connectivity/get-started-google-cloud-iot-core-connectivity/

MicroEJ Documentation, Revision 32bb132e

HOKAWeb Server

HOKA is a tiny extensible Java web server for embedded applications.

It comes with the support of HTTP, HTTPS, Server session, and routing for REST API.

Note: This is the documentation of the latest version of HOKA library 8.X.X

Intended Audience

The intended audience for this document is Java developers who are familiar with socket com-
munication, the HTTP 1.1 protocol, and web server concepts.

Getting Started

Create a newMicroEJ application and add the HOKA library dependency to your MicroEJ appli-
cation

Gradle (build.gradle.kts)

MMM (module.ivy)

implementation("ej.library.iot:hoka:8.4.0")

<dependency org="ej.library.iot" name="hoka" rev="8.4.0"/>

public class MyServer {

public static void main(String[] args) throws IOException {

HttpServer http = HttpServer.builder().port(8080).build();

http.get("/hello", new RequestHandler() {

@Override
public void process(HttpRequest request, HttpResponse response) {
response.setData("Hello world!");

}
});

http.start();

}
}

Run the application and check the result at http://localhost:8080/hello

5.14. Libraries 606

MicroEJ Documentation, Revision 32bb132e

Routes Mapping

In HOKA, an HTTP request is a combination of 4 elements:

• Verb: The HTTP verbs, GET, POST, PUT or DELETE. . .

• Path: The request path or URI. /hello/:username

• Handler: The request handler process the request and respond to the client.

• content type: (optional) the route supported content type

Note: Paths are matched in the order of their creation. The handler of the first matching path will be invoked.
All the paths need to be registered before calling the start() method of the HttpServer instance. If no path
matches the incoming request, the server will return a 404 Not Found response.

HttpServer http = HttpServer.builder().port(8080).build();

http.get("/", new RequestHandler() {

@Override
public void process(HttpRequest request, HttpResponse response) {
// read a resource

}
});

http.post("/", new RequestHandler() {

@Override
public void process(HttpRequest request, HttpResponse response) {
// write a resource

}
});

http.put("/", new RequestHandler() {

@Override
public void process(HttpRequest request, HttpResponse response) {
// update a resource

}
});

http.delete("/", new RequestHandler() {

@Override
public void process(HttpRequest request, HttpResponse response) {
// delete a resource

}
});

A path can be registered with one single specific content type in di�erent request handlers on
the same path.

For example, to map two content types on the same path, do the following:

5.14. Libraries 607

MicroEJ Documentation, Revision 32bb132e

HttpServer http = HttpServer.builder().port(8080).build();

http.get("/", "application/json", new RequestHandler() {

@Override
public void process(HttpRequest request, HttpResponse response) {
// read a resource and return a json formatted response.

}
});

http.get("/", "application/xml", new RequestHandler() {

@Override
public void process(HttpRequest request, HttpResponse response) {
// read a resource and return a json formatted response.

}
});

Path Parameters

The request path can contain named parameters called path parameters. Those
parameters are made available through the request instance of the process()
method of the RequestHandler . The path parameter can be accessed by calling
HttpRequest#getPathParam(String param)

HttpServer http = HttpServer.builder().port(8080).build();

http.get("/hello/:name", new RequestHandler() {

@Override
public void process(HttpRequest request, HttpResponse response) {
String name = request.getPathParam("name");
response.setData("Hello " + name);

}
});

Splat Parameters

The request path also supports splat parameters usingwildcard ‘*’. Those parameters aremade
available through the request instance of the process() method of the RequestHandler .
The splat parameters array can be accessed by calling HttpRequest#getSplatParams()

HttpServer http = HttpServer.builder().port(8080).build();

http.get("/greet/*/by/*", new RequestHandler() {

@Override
public void process(HttpRequest request, HttpResponse response) {
String name = request.getSplatParams().get(0);
String greeting = request.getSplatParams().get(1);

(continues on next page)

5.14. Libraries 608

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

response.setData(greeting + " " + name);
}

});

Request

• HttpRequest#getMethod() : returns the requestmethod (1 for POST , 2 for GET , 3 for PUT and
4 for DELETE . see HttpRequest for the full list).

• HttpRequest#getURI() : returns the requested URI.

• HttpRequest#getQueryParams() : returns the request query parameters map.

• HttpRequest#getQueryParam(String) : returns the query parameter by the given name from
the query parameters map.

• HttpRequest#getPathParam(String) : returns the requestpathparameterby thegivenname.

• HttpRequest#getSplatParams() : returns the list of splat parameters.

• HttpRequest#setAttribute(String, Object) : set a server-side request attribute. can be
used to passe data between handlers.

• HttpRequest#getAttribute(String) : get a server-side request attribute.

• HttpRequest#getVersion() : returns the HTTP protocol version of the request.

• HttpRequest#getHeaders() : returns the request headers, all header field names are con-
verted to lowercase.

• HttpRequest#getHeader(String) : returns the value of the header with the given name.

• HttpRequest#parseBody(BodyParser) : parses the body of the request with the given parser.

• HttpRequest#getRequestBody() : return the request InputStream to be used for any custom
request handling.

Body Parsers

The HttpRequest#parseBody(BodyParser) is used to read the body (data) of a request.

HOKA library provides 4 implementations of BodyParser :

• StringBodyParser : returns the full request body as a string.

• MultipartStringsParser : parse a multipart/* request body, each part is returned as a
string.

• MultiPartBodyParser : parse a multipart/* body, and parse each part as header fields and
an InputStream body.

• ParameterParser : parse an application/x-www-form-urlencoded request body.

5.14. Libraries 609

MicroEJ Documentation, Revision 32bb132e

Cookies

The cookies are lazily parsed the first time they are accessed.

• HttpRequest#getCookies() : returns the list of cookies.

• HttpRequest#getCookie(String) : returns the value of the cookie by the given name.

Response

Build a HttpResponse based on the request with the following data :

• data : the body of the response as a String , byte[] or as an InputStream .

• status : the status of the response to send. HTTP response code.

• mimeType : the value of the content-type header.

• HttpResponse#addHeader(String name, String value) : adds a header with given name
and value.

• HttpResponse#addCookie(Cookie) : adds a cookie to the response. USe
ej.hoka.http.Cookie.Builder() to create a cookie instance.

// Use the cookie builder to create a cookie instance.
Cookie cookie = Cookie.builder().name("cookieName").value("cookieValue")

.expires(expirationDate)

.maxAge(900)

.domain("www.example.com")

.path("/api")

.sameSite(SameSite.Strict)

.secure()

.httpOnly()

.build();

MIME Types

The Mime class provides constant values for commonly used MIME types and utility methods
to return the MIME type of a resource name based on file extensions.

The predefined MIME types are :

• MIME_PLAINTEXT = “text/plain”

• MIME_HTML = “text/html”

• MIME_XML = “text/xml”

• MIME_APP_JSON = “application/json”

• MIME_DEFAULT_BINARY = “application/octet-stream”

• MIME_CSS = “text/css”

• MIME_PNG = “image/png”

• MIME_JPEG = “image/jpeg”

• MIME_GIF = “image/gif”

5.14. Libraries 610

MicroEJ Documentation, Revision 32bb132e

• MIME_JS = “application/x-javascript”

• MIME_FORM_ENCODED_DATA = “application/x-www-form-urlencoded”

• MIME_MULTIPART_FORM_ENCODED_DATA = “multipart/form-data”

The method Mime#getMIMEType(String URI) returns the MIME type of the given
URI, assuming that the file extension in the URI was previously registered with the
Mime#mapFileExtensionToMIMEType(String fileExtension, String mimeType) . Only
lower case file extensions are recognized.

For example, calling getMIMEType("/images/logo.png") will return the string "image/png"
.

The following table shows thepredefinedassignmentsbetween file extensions andMIME types:

Extension MIME type
“.png” MIME_PNG
“.css” MIME_CSS
“.gif” MIME_GIF
“.jpeg” MIME_JPEG
“.jpg” MIME_JPEG
“.html” MIME_HTML
“.htm” MIME_HTML
“.js” MIME_JS
“.txt” MIME_PLAINTEXT
“.xml” MIME_XML

Halt Request Processing Chain

to stop a request processing and return immediately. The following static methods form
HttpServer class should be used.

This will cause the request handler to stop immediately and the response will be returned to
the client without executing other filters.

This is useful for error handling for example.

halt(); <--- return a 200 OK response.
halt(HTTPConstants.HTTP_STATUS_UNAUTHORIZED);
halt(HTTPConstants.HTTP_STATUS_UNAUTHORIZED, "login required!");

Filters

A filter is also a request handler that is executed before or a�er a registered request.

It needs to be registered before calling the start() method on the server instance.

It can be used to pre-process or post-process a request.

Multiple filters can be registered. They will be executed in the order they were added in.

HOKA supports 4 types of filters.

• before all requests: runs before any registered path.

• before a specific path: runs before a specific registered path.

5.14. Libraries 611

MicroEJ Documentation, Revision 32bb132e

• a�er a specific path: runs a�er a specific registered path.

• a�er all requests: runs a�er any registered path.

Before

Example of adding a filter that will be executed before any registered path.

Multiple before filters can be added by calling before() multiple times. They will be executed
in their registration order.

HttpServer http = HttpServer.builder().port(8080).build();

http.before(new RequestHandler() {

@Override
public void process(HttpRequest request, HttpResponse response) {
boolean authenticated = false;
// check if authenticated ...
if (!authenticated) {

halt(HTTPConstants.
→˓HTTP_STATUS_UNAUTHORIZED); // stop the processing and return an error.

}
}

});

Example of adding a filter that will be executed before a specific registered path.

Unlike global before filters, only one before filter by path can be registered.

HttpServer http = HttpServer.builder().port(8080).build();

http.before("/private/*", new RequestHandler() {

@Override
public void process(HttpRequest request, HttpResponse response) {
// check access privilege ...
halt(HTTPConstants.

→˓HTTP_STATUS_FORBIDDEN); // stop the processing and return an error.
}

});

A�er

Example of adding a filter that will be executed a�er any registered path.

Multiple global a�er filters can be added by calling after() multiple times. They will be exe-
cuted in their registration order.

HttpServer http = HttpServer.builder().port(8080).build();

http.after(new RequestHandler() {

(continues on next page)

5.14. Libraries 612

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

@Override
public void process(HttpRequest request, HttpResponse response) {
// do some post processing on the request/response
response.addHeader("common header key", "common header value");

}
});

Example of adding a filter that will be executed a�er a specific registered path.

Unlike global a�er filters, only one a�er filter by path can be registered.

HttpServer http = HttpServer.builder().port(8080).build();

http.after("/private/*", new RequestHandler() {

@Override
public void process(HttpRequest request, HttpResponse response) {
// do some post processing on the request/response
response.addHeader("special header key", "special header value");

}
});

Error Handling

Not Found Error

The 404 not found error can be customized by using the HttpServer#notFoundError()
method.

HttpServer http = HttpServer.builder().port(8080).build();

// html, The html page can be loaded form a file
http.
→˓notFoundError("<html><body><h1>404 Page doesn't exist</h1></body></html>");

// json format
http.notFoundError(
→˓"{\"message\":\"404 Page doesn't exist\"}", "application/json");

Internal Server Error

The 500 Internal Server Error can also be customized.

// html, The html page can be loaded form a file
http.internalServerError(
→˓"<html><body><h1>505 Something went wrong!</h1></body></html>");

// json format
http.internalServerError(
→˓"{\"message\":\"505 Something went wrong!\"}", "application/json");

5.14. Libraries 613

MicroEJ Documentation, Revision 32bb132e

Exception Mapping

An exception can bemapped to a custom handler to return specific errors.

HttpServer http = HttpServer.builder().port(8080).build();

http.get("/throwerror", new RequestHandler() {

@Override
public void process(HttpRequest request, HttpResponse response) {
throw new MyCustomError();

}
});

http.exception(MyCustomError.class, new RequestHandler() {

@Override
public void process(HttpRequest request, HttpResponse response) {
// handle the custom error here.

}
});

Static Files

A specific static file handler can be set to serve files from the application classpath by using
ClasspathFilesHandler class.

HttpServer http = HttpServer.builder() //
.port(8080) //
.staticFilesHandler(ClasspathFilesHandler.

→˓builder() // set the static file handler
.rootDirectory(

→˓"/public") // set the static file folder form src/main/resources
.build())

.build();

Note that the public directory name is not included in the request URL. to access a file in src/
main/resources/public/css/main.css the url is http://localhost:8080/css/main.css

An external file location can be used by providing your own implementation of
StaticFilesHandler interface and adding the fs foundation library to work with File*
classes from java.io .

5.14. Libraries 614

MicroEJ Documentation, Revision 32bb132e

Web Server Configuration

HttpServer class builder has the following options :

HttpServer http = HttpServer.builder()
.port(8080) //␣

→˓setup the port number to bind the server socket on. Use 0 for a random port
.simultaneousConnections(3)␣

→˓// setup the max simultaneous connections accepted by the server
.workerCount(3)␣

→˓// setup the number of threads to handle incoming connections
.connectionTimeout(60 * 1000) // setup connection timeout
.encodingRegistry(new EncodingRegistry())␣

→˓// register a custom the content encoding & transfer-coding registry
.secure(/**SSLContext#getServerSocketFactory()*/) // setup SSL / HTTPS
.apiBase("/api/v1/") // setup a common URI base for all␣

→˓relative registered path. relative means, the path do not starting with a /
.staticFilesHandler(staticFilesHandler) // setup the static files handler
.withTrailingSlashSupport()␣

→˓// process route with trailing slash as different routes
.withStrictAcceptContentEncoding() // activate strict␣

→˓content acceptance. return 406 Not Acceptable for unknown content-encoding
.developmentMode()// enable␣

→˓development mode, send error stack trace to the client side as in html
.build();

Trailing Slash Matching

By default, the HOKA server ignores the trailing forward slash at the ends of the request URI.

For example:

• GET | host/hello

• GET | host/hello/

Will link to the same request handler.

This behavior can be deactivated by calling the method
HttpServer#builder()#withTrailingSlashSupport() on the server builder.

Note that host and host/ will link to the same request handler whatever the Trailing Slash
Match is activated or not.

Development Mode

Developmentmodecanbeactivatedby calling HttpServer#builder()#developmentMode()`
.

This will tell the HOKA server to send the exception stack trace to the client.

The stack trace is sent in a plain text response. This is useful when developing the web applica-
tion; otherwise, a “500 Internal Error” response is sent.

Note: when developmentmode is active, internal error page customization is deactivated. The
development mode page is returned instead.

5.14. Libraries 615

MicroEJ Documentation, Revision 32bb132e

Generate Server Self Signed Key and Certificate for HOKAWebServer TLS

This section details the commands and steps to generate a self signed certificate and a DER
formatted key for HOKA server to enable TLS.

Generate Root CA Key & Certificate

To generate a root certificate authority (CA) using openssl, execute the following command and
follow the instructions by filling the certificate information:

openssl req -new -x509 -days 3650 -keyout ca.key -out ca.crt

• ca.key : is the name of the generated root private key in PEM format.

• ca.crt : is the name of the generated root certificate in PEM format.

Generate HOKA Server Private Key

To generate a private key using openssl, execute the following command:

openssl genrsa -out hoka.key 4096

• hoka.key : is the name of the generated private key.

• 4096 : is the length of the private key.

5.14. Libraries 616

MicroEJ Documentation, Revision 32bb132e

Generate HOKA Server Self Signed Public Key

To generate a Self signed public key:

1. Generate a certificate signing request (CSR) using openssl, for that execute the following com-
mandand fill in the information: openssl req -new -sha256 -key hoka.key -out hoka-csr.
pem

2. Use the CSR to generate a self signed certificate using openssl by executing the following com-
mand: openssl x509 -req -days 365 -in hoka-csr.pem -CA ca.crt -CAkey ca.key
-CAcreateserial -out hoka.crt

Convert HOKA Private Key to DER Format

To convert the private key to DER format using openssl execute the following command:

openssl pkcs8 -inform PEM -in hoka.key -topk8 -outform DER -out hoka.der -v1
PBE-SHA1-3DES -passout pass:changeit

Note: In the HOKA SSL example, hoka.key corresponds to the above hoka.der .

5.14. Libraries 617

https://github.com/MicroEJ/ExampleJava-Hoka/tree/master-github/example-https/src/main/resources/https

MicroEJ Documentation, Revision 32bb132e

Handle Encoding

Content And Transfer Encoding

The HTTP protocol specifies how to send the request/response payload (the body) with
a specific encoding. To guarantee that the receiver can understand the encoded stream,
HTTP has specified headers for encoding : content-encoding , transfer-encoding and
accept-encoding . The HttpRequest and HttpResponse classes uses encoding handlers
stored in the EncodingRegistry to, respectively, decode and encode the payloads with
the relevant handler (ContentEncoding or TransferEnCoding). For the response, the
accept-encoding the header value is used to determine the available encoding with the high-
est quality (acceptance value).

By default, the registry contains the “identity” encoding handler and the “chunked” transfer-
coding handlers.

Request And Response Encoding

When parsing the request, HttpRequest wraps the body with the appropriate decoder or, if
not found, sends a “406 Not Acceptable” response. The body-parser will receive the wrapped
(decoded) streamas input tonothave todealwithencodings. The same for HttpResponse uses
the encoder wrapper to write the response into the encoded stream sent to the socket. Also,
when using an input streamwith unknown length as the response’s data, the transfer encoding
used to send the response is “chunked”; otherwise, it is “identity”. When using a String as the
response data, use the HttpResponse#setData(String, String) to specify the encoding of
the string (by default, ISO-8859-1 is used).

URL Encoding

The percent-encoded special characters in the URI and in the query (parameters) are automat-
ically decoded at parsing.

Session

HOKA provides tools to enable session management on the HTTP server.

Here is an example of how to use it.

// create a new session and store the user data in a session
final SessionHandler sessionHandler = new SessionHandler(new SecureRandom());
final Session session = this.sessionHandler.newSession();

// for example from a login request handler
// ... authenticate a user and store it user name into a session attribute
session.setAttribute("username", username);
// add a session cookie to the HttpResponse
response.addCookie("jsessionid", session.getId(), 0, false, true);

// from a protected request handler
// Get the session if from the cookie

(continues on next page)

5.14. Libraries 618

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

String sessionId = request.getCookie("jsessionid");
Session␣
→˓session = this.session.getSession(sessionId); // get the session by it's id
// check if the user exists in the server session.
String username = (String)␣
→˓session.getAttribute("username"); // access the username for example.

HOKA Configuration

The server can be configured by creating a property file in src/main/resources named
hoka.properties

Copyright 2021 MicroEJ Corp. All rights reserved.
Use of this source code␣
→˓is governed by a BSD-style license that can be found with this software.

HOKA Server properties

Use this property to set the logging level of the server.
TRACE, DEBUG, INFO, WARN, ERROR, NONE
the lower level activate all the others.
hoka.logger.level=INFO

use this property to set a custom␣
→˓logger. The custom logger must implement the interface ej.hoka.log.Logger
if not␣
→˓set HOKA use a SimpleLogger implementation that logs to the standard output
Ensure that your logger is kept by␣
→˓the Soar by adding it to *.types.list properties file in the app resources.
#hoka.logger.class=

I/O buffer size used to read/write data from/to request/response
#hoka.buffer.size=4096

This section presents networking libraries.

The following schema shows the overall architecture andmodules:

5.14. Libraries 619

MicroEJ Documentation, Revision 32bb132e

Fig. 38: Network Libraries Overview

• Foundation Libraries

• Add-On Libraries

5.14.4 Bluetooth

This section presents Bluetooth libraries.

5.14. Libraries 620

MicroEJ Documentation, Revision 32bb132e

Bluetooth API Library

Introduction

The Bluetooth API Library provides APIs to use BLE (Bluetooth Low Energy) in an Application.

Usage

The Bluetooth API Library is provided as a Foundation Library.

To use the Bluetooth API Library, add the following to the project build file:

Gradle (build.gradle.kts)

MMM (module.ivy)

implementation("ej.api:bluetooth:2.2.1")

<dependency org="ej.api" name="bluetooth" rev="2.2.1"/>

Building or running an Application which uses the Bluetooth API Library requires the VEE Port
to provide the Bluetooth Pack.

Basic Knowledge and APIs

BLE is very di�erent from TCP/IP networking. Like Wi-Fi, Bluetooth uses UHF radio waves to
communicate over a short range, but it introduces an entirely uniqueprotocol stack. It is impor-
tant to understand how BLE works to develop an e�icient and reliable Bluetooth application.
This section explains the basics of BLE and how they are reified in the Bluetooth API.

Connection APIs

BLE introduces two roles of devices: the Central and Peripheral roles. A Central device scans
nearby Peripheral devices and initiates the connection, while a Peripheral device advertises
(broadcasts) and listens for connection requests. In this regard, a Central device can be thought
of as a Wi-Fi Station while a Peripheral device can be thought of as a Wi-Fi Access Point.

The following sequence explains the typical connection flow between two devices:

• The Peripheral device starts advertising

• The Central device starts scanning

• The Central device initiates a connection with the Peripheral device

5.14. Libraries 621

https://repository.microej.com/modules/ej/api/bluetooth/

MicroEJ Documentation, Revision 32bb132e

Fig. 39: Connection Procedure

A device must always enable its Bluetooth adapter using the BluetoothAdapter.enable()
API before calling any other Bluetooth API. A Peripheral device can call the Blue-
toothAdapter.startAdvertising() API to start advertising. A Central device can call the Blue-
toothAdapter.startScanning() API to start scanning and the BluetoothAdapter.connect()
API to initiate a connection. The BluetoothAdapter.stopAdvertising() and Blue-
toothAdapter.stopScanning() APIs can be called to stop advertising or scanning, however note
that these operations are stopped automatically when a connection is established. A device
must set the connection listener of the adapter in order to be notified of asynchronous connec-

tion events, by calling the BluetoothAdapter.setConnectionListener() API. The ConnectionListener.onScanResult()
hook is called on every scan result and the ConnectionListener.onConnected() hook is called when a connection
is established.

Pairing APIs

Pairing is an optional procedure which allows to authenticate the connection by requesting
a proof of possession (via a PIN code for example). The pairing procedure can be started at
any time during a connection. It is o�en performed upon connecting or when first accessing a
secure GATT service.

Here are the steps of the pairing procedure:

• Either device sends a pairing request or security request to the other device

• Both devices share their I/O capabilities

• If the I/O capabilities of the devices allow to create a connection with protection against MITM
attacks, the Passkey Entry method is used:

– The device with display capability displays a generated passkey on its user interface

– Thedevicewith input capability reads thepasskey from theuser input and sends it to thedevice
with display capability

– The device with display capability checks that the passkey match

• Otherwise, the “JustWorks”method is used and the pairing is complete. Thismethod does not
prevent fromMITM attacks.

A device can call the BluetoothConnection.sendPairRequest() API to initiate pairing. The Con-
nectionListener.onPairRequest() hook is called when the device receives a pairing request. It
can call the BluetoothConnection.sendPairResponse() API to accept or deny the pairing. The

5.14. Libraries 622

https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothAdapter.html#enable--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothAdapter.html#startAdvertising-byte:A-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothAdapter.html#startAdvertising-byte:A-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothAdapter.html#startScanning-ej.bluetooth.BluetoothScanFilter-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothAdapter.html#startScanning-ej.bluetooth.BluetoothScanFilter-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothAdapter.html#connect-ej.bluetooth.BluetoothAddress-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothAdapter.html#stopAdvertising--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothAdapter.html#startScanning-ej.bluetooth.BluetoothScanFilter-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothAdapter.html#startScanning-ej.bluetooth.BluetoothScanFilter-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothAdapter.html#setConnectionListener-ej.bluetooth.listeners.ConnectionListener-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/listeners/ConnectionListener.html#onScanResult-ej.bluetooth.BluetoothAddress-byte:A-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/listeners/ConnectionListener.html#onConnected-ej.bluetooth.BluetoothConnection-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothConnection.html#sendPairRequest--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/listeners/ConnectionListener.html#onPairRequest-ej.bluetooth.BluetoothConnection-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/listeners/ConnectionListener.html#onPairRequest-ej.bluetooth.BluetoothConnection-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothConnection.html#sendPairResponse-boolean-

MicroEJ Documentation, Revision 32bb132e

ConnectionListener.onPasskeyGenerated() hook is called when the device with display capa-
bility has generated a passkey to display. The ConnectionListener.onPasskeyRequest() hook is
called when the device with input capability should provide the passkey. It can call the Blue-
toothConnection.sendPasskeyResponse() API to provide it.

GATT Services APIs

With BLE, devices exchange data through GATT services. BLE specifies standard services (such
as the Current Time Service or the Battery Service) which allow devices to be interoperable,
but BLE also allows to define custom services. Either device (Central or Peripheral or both) can
provide services to the other. A device must discover the services provided by the other device
before it can use them.

Adevice candefine andprovide services using theBluetoothServiceDefinitionbuilder class and
theBluetoothAdapter.addService() API. Once a connection is established, either device can dis-
cover the services of the other device by calling the BluetoothConnection.discoverServices()
API. The ConnectionListener.onDiscoveryResult() hook is called for each service provided by
the other device.

A service provides characteristics, which can be thought of as data channels. A characteris-
tic has property flags, which indicate to the other devices how the characteristic can be used
(whether it can be written, whether it provides notifications, etc.). A characteristic may have
descriptors, which allow to describe or configure the characteristic in a specific way. Every at-
tribute (characteristic or descriptor) has permission flags, which control its access (read-only,
read/write, requires authentication, etc.). Services and attributes are all identified by a 16-bit
UUID. If a service or attribute is standard, the relevant specification indicates its UUID.

Fig. 40: Service Structure

A device can call the getter APIs of BluetoothService, BluetoothCharacteristic, BluetoothDe-
scriptor and BluetoothAttribute to browse the content of a service.

BLE devices use characteristics to transfer data. There are 4 main procedures:

• The Read procedure allows the device which discovered the service to request data. The de-
vice sends a read request and the devicewhich provides the service sends back a read response
with the data.

• The Write procedure allows the device which discovered the service to send data and to re-
quire an acknowledgment. Thedevice sends awrite requestwith thedata and thedevicewhich
provides the service sends back a write response.

• The Write Without Response procedure allows the device which discovered the service to
send data without expecting an acknowledgment. The device just sends a write request with
the data.

5.14. Libraries 623

https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/listeners/ConnectionListener.html#onPasskeyGenerated-ej.bluetooth.BluetoothConnection-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/listeners/ConnectionListener.html#onPasskeyRequest-ej.bluetooth.BluetoothConnection-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothConnection.html#sendPasskeyResponse-boolean-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothConnection.html#sendPasskeyResponse-boolean-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothServiceDefinition.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothAdapter.html#addService-ej.bluetooth.BluetoothServiceDefinition-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothConnection.html#discoverServices--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/listeners/ConnectionListener.html#onDiscoveryResult-ej.bluetooth.BluetoothConnection-ej.bluetooth.BluetoothService-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothService.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothCharacteristic.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothDescriptor.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothDescriptor.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothAttribute.html

MicroEJ Documentation, Revision 32bb132e

• The Notify procedure allows the device which provides the service to send data. The device
sends a notification with the data, and if it requires an acknowledgment, the device which dis-
covered the service sends back an acknowledgment. It is a common practice to send notifica-
tions only to devices which have subscribed to the characteristic (a device can subscribe to a
characteristic by sending a write request on its CCC descriptor).

For the Read procedure, a device can call the BluetoothConnection.sendReadRequest() API to
send a read request. The LocalServiceListener.onReadRequest() hook is called when a device
receives a read request. It can call the BluetoothConnection.sendReadResponse() API to send
a read response with the data. The RemoteServiceListener.onReadCompleted() hook is called
with the data when a device receives a read response.

For theWriteWithout Response and theWrite procedures, a device can call the sendBluetooth-
Connection.sendWriteRequest() API to send awrite request with the data. The LocalServiceLis-
tener.onWriteRequest() hook is called with the data when a device receives a write request. It
can call the BluetoothConnection.sendWriteResponse() API to send a write response (in case
of the write procedure). The RemoteServiceListener.onWriteCompleted() hook is called when
a write request is sent (or when it receives a write response, in case of the write procedure).

For the Notify procedure, a device can call the send BluetoothConnection.sendNotification()
API to send a notification with the data. The RemoteServiceListener.onNotificationReceived()
hook is called with the data when a device receives a notification. The LocalServiceLis-
tener.onNotificationSent() hook is called when a notification is sent (or when it receives the
acknowledgment, if one is required).

Classes Summary

Main classes:

• BluetoothAdapter (singleton): Performs operations not related to a specific device connection
(scan, advertise, connect, provide GATT service)

• BluetoothConnection: Performsoperations related to a specific device connection (disconnect,
pair, discover GATT services, send GATT requests)

• BluetoothService: Represents a GATT service

• ConnectionListener and DefaultConnectionListener: Callbacks for all events not related to a
specific GATT service

• LocalServiceListener andDefaultLocalServiceListener: Callbacks for events related to a specific
provided GATT service

• RemoteServiceListener and DefaultRemoteServiceListener: Callbacks for events related to a
specific discovered GATT service

Stateless and immutable classes:

• BluetoothAddress: Address (BD_ADDR) of a device

5.14. Libraries 624

https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothConnection.html#sendReadRequest-ej.bluetooth.BluetoothAttribute-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/listeners/LocalServiceListener.html#onReadRequest-ej.bluetooth.BluetoothConnection-ej.bluetooth.BluetoothAttribute-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothConnection.html#sendReadResponse-ej.bluetooth.BluetoothAttribute-byte-byte:A-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/listeners/RemoteServiceListener.html#onReadCompleted-ej.bluetooth.BluetoothConnection-ej.bluetooth.BluetoothAttribute-byte-byte:A-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothConnection.html#sendWriteRequest-ej.bluetooth.BluetoothAttribute-byte:A-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothConnection.html#sendWriteRequest-ej.bluetooth.BluetoothAttribute-byte:A-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/listeners/LocalServiceListener.html#onWriteRequest-ej.bluetooth.BluetoothConnection-ej.bluetooth.BluetoothAttribute-byte:A-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/listeners/LocalServiceListener.html#onWriteRequest-ej.bluetooth.BluetoothConnection-ej.bluetooth.BluetoothAttribute-byte:A-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothConnection.html#sendWriteResponse-ej.bluetooth.BluetoothAttribute-byte-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/listeners/RemoteServiceListener.html#onWriteCompleted-ej.bluetooth.BluetoothConnection-ej.bluetooth.BluetoothAttribute-byte-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothConnection.html#sendNotification-ej.bluetooth.BluetoothCharacteristic-byte:A-boolean-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/listeners/RemoteServiceListener.html#onNotificationReceived-ej.bluetooth.BluetoothConnection-ej.bluetooth.BluetoothCharacteristic-byte:A-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/listeners/LocalServiceListener.html#onNotificationSent-ej.bluetooth.BluetoothConnection-ej.bluetooth.BluetoothCharacteristic-boolean-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/listeners/LocalServiceListener.html#onNotificationSent-ej.bluetooth.BluetoothConnection-ej.bluetooth.BluetoothCharacteristic-boolean-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothAdapter.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothConnection.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothService.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/listeners/ConnectionListener.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/listeners/impl/DefaultConnectionListener.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/listeners/LocalServiceListener.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/listeners/impl/DefaultLocalServiceListener.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/listeners/RemoteServiceListener.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/listeners/impl/DefaultRemoteServiceListener.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothAddress.html

MicroEJ Documentation, Revision 32bb132e

• BluetoothScanFilter: Scan result filter used when starting a scan

• BluetoothDataTypes: Data types enumeration used in advertisement payloads

• BluetoothCharacteristic: Represents a GATT characteristic

• BluetoothDescriptor: Represents a GATT descriptor

• BluetoothAttribute: Abstract base class of BluetoothCharacteristic and BluetoothDescriptor

• BluetoothUuid: UUID of a GATT service or GATT attribute

• BluetoothProperties: Properties enumeration used in GATT characteristics

• BluetoothPermissions: Permissions enumeration used when defining a GATT attribute

• BluetoothServiceDefinition: Builder class used when adding a GATT service

• BluetoothStatus: Status code enumeration used when reading/writing a GATT attribute

Use-Cases

Achieving Maximum Throughput

In some use-cases, such as when sending a large file to another device, the throughput must
be as high as possible to decrease the transfer time.

Here are some guidelines to achieve the maximum throughput:

• Change the MTU to the maximum value (512 bytes) instead of the default value (23 bytes)

– Once devices are connected, either device should send aMTU request with themaximumvalue

– When the other device receives the MTU request, it should send a MTU response with the max-
imum value

– Since there is no API for MTU exchange in the Bluetooth API Library, this step has to be per-
formed in the native code

• Use a data transfer procedure which does not require an acknowledgment

– If the service is provided by the device sending the data: use the Notify procedure without re-
questing an acknowledgment

– If the service is discovered by the device sending the data: use the Write Without Response
procedure

• Send the data chunks as fast as possible

– Do not wait for the previous chunk to be delivered before sending the next chunk

– If a chunkcannotbedeliveredbecause theconnection is congested,wait abit and retry sending
the chunk

5.14. Libraries 625

https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothScanFilter.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothDataTypes.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothCharacteristic.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothDescriptor.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothAttribute.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothUuid.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothProperties.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothPermissions.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothServiceDefinition.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/BluetoothStatus.html

MicroEJ Documentation, Revision 32bb132e

Bluetooth Utility Library

Introduction

The Bluetooth Utility Library provides utility methods which can be useful when developing a
Bluetooth Application. It depends on the Bluetooth API Library.

Usage

The Bluetooth Utility Library is provided as an Add-On Library.

To use the Bluetooth Utility Library, add the following to the project build file:

Gradle (build.gradle.kts)

MMM (module.ivy)

implementation("ej.library.iot:bluetooth-util:1.1.0")

<dependency org="ej.library.iot" name="bluetooth-util" rev="1.1.0"/>

Since this library is built on top of the Bluetooth API Library, it inherits its requirements.

Classes Summary

Main classes:

• AdvertisementData: Parses or builds an advertisement payload

• DescriptorHelper: Constants and utility methods related to GATT descriptors

• ServiceHelper: Utility methods related to GATT services

Stateless and immutable classes:

• AdvertisementFlags: Flags enumeration used in advertisement payloads

• AttributeNotFoundException: Exception thrown by ServiceHelper when a GATT attribute is not
found

5.14.5 Date and Time

Introduction

Javadevelopers have longused theDate, Calendar andTimeZoneclasses for handlingdate and
time. Java SE 8 introduced a more advanced and comprehensive Date and Time API that goes
beyond simply replacing Date or Calendar. It provides a complete timemodel for applications.

There are many benefits of using the latest:

• Immutability: types are immutable, making thread-safe code easier to write and less prone to
bugs (due to nomutable state).

• Improved API design: it o�ers an intuitive and developer-friendly design that better addresses
the challenges of date and time manipulation. Application code is also easier to read and un-
derstand.

5.14. Libraries 626

https://repository.microej.com/modules/ej/library/iot/bluetooth-util/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/util/AdvertisementData.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/util/DescriptorHelper.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/util/ServiceHelper.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/util/AdvertisementFlags.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/util/AttributeNotFoundException.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bluetooth/util/ServiceHelper.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/Date.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/Calendar.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/TimeZone.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/Date.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/Calendar.html

MicroEJ Documentation, Revision 32bb132e

• Simplified date and time arithmetic: the API introduces methods for common date and time
operations, simplifying tasks like adding or subtracting days, months, or years.

• Precision: it providesmore precise representations for date and time values, including support
for nanoseconds, which is important for applications requiring high precision.

• Comprehensive timemodel: it introduces new classes that deal with di�erent concepts of time
such as date without a time or time without a date, durations or periods.

In general, it’s a good practice to use the Java Time API when dealing with date, time,
and time zone-related operations because of its convenient features and extensive capa-
bilities. Yet, for straightforward timestamp handling or lightweight applications, System.
currentTimeMillis() can be adequate. One aspect to keep inmind is that the Time API o�ers
better readability and advanced operations, which might be missing when using timestamp
manipulation or older APIs.

Overview

The library introduces di�erent classes for date, time, date-time, and variations for o�set and
time zone. While thismay seem like a lot of classes, most applications can start with only these
types:

• Instant: an instantaneous point on the timeline. It can be used to store timestamps of applica-
tion events.

• LocalDate: stores a date without a specific time or time zone, like 2023-09-26 .

• LocalTime: stores a time without a specific date or time zone, like 15:30 .

• LocalDateTime: stores both a date and time without a specific time zone, like
2023-09-26T15:30 . It combines LocalDate and LocalTime.

• ZonedDateTime: stores both a date and time, including a time zone. This is handy for perform-
ing precise date and time calculations while considering the time zone.

• Duration: a duration of time, measured in hours, minutes, seconds, and nanoseconds.

• Period: a duration of time in terms of years, months, and days.

Note: Working with a time zone can make calculations more complex. In many cases, the application can only
work with LocalDate, LocalTime, and Instant, and then add the time zone at the user interface (UI) level.

TheAPI hasmanymethods, but it remains easy tohandlebecause it sticks to consistentmethod
prefixes:

• of : static factory method.

• get : gets a value.

• is : checks if some condition is true.

• with : equivalent to a setter for immutable objects, returns a copywith the specified argument
set.

• plus : adds an amount to an object.

• minus : subtracts an amount from an object.

• to : converts this object to another type.

• at : combines this object with another.

5.14. Libraries 627

https://repository.microej.com/javadoc/microej_5.x/apis/java/time/Instant.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/time/LocalDate.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/time/LocalTime.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/time/LocalDateTime.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/time/LocalDate.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/time/LocalTime.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/time/ZonedDateTime.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/time/Duration.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/time/Period.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/time/LocalDate.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/time/LocalTime.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/time/Instant.html

MicroEJ Documentation, Revision 32bb132e

Usage

The Date and Time API is provided as an Add-on Library.

To use the time library, add the following to the project build file:

Gradle (build.gradle.kts)

MMM (module.ivy)

implementation("ej.library.eclasspath:time:1.0.0")

<dependency org="ej.library.eclasspath" name="time" rev="1.0.0"/>

Examples

This section presents a series of small, focused examples that demonstrate various aspects of
the Java Date and Time API.

Instant

The Instant class is the closest equivalent of Date. It represents a specific instant in time.

// Creating instants
Instant now = Instant.now(); // now
Instant someInstant␣
→˓= Instant.ofEpochSecond(1695732445L); // September 26, 2023 12:47:25 PM

// Displaying
System.out.println("Seconds elapsed since epoch " + now.getEpochSecond());

// Chaining operations on instants
long␣
→˓secondsUntil = someInstant.plusSeconds(10).until(now, ChronoUnit.SECONDS);
System.out.println(
→˓"Amount of time until another instant in seconds: " + secondsUntil);

LocalDate

LocalDate stores a date without a time. It is called “local” because it isn’t associated with any
specific time zone, similar to a wall clock. It simplifies date operations by dealing only with
dates, making it suitable for scenarios not requiring time zone concerns (e.g., booking systems,
calendars, date validation, etc.).

// Creating LocalDate instances
LocalDate today = LocalDate.now(); // Current date
LocalDate specificDate = LocalDate.of(2023, Month.JULY, 15); // July 15, 2023

// Displaying LocalDate instances
System.out.println("Today's Date: " + today);
System.out.println("Specific Date: " + specificDate);

(continues on next page)

5.14. Libraries 628

https://repository.microej.com/modules/ej/library/eclasspath/time/
https://repository.microej.com/javadoc/microej_5.x/apis/java/time/Instant.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/Date.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/time/LocalDate.html

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

// Performing operations
LocalDate futureDate = today.plusDays(30); // Adding 30 days to today
LocalDate pastDate = today.minusMonths(2); // Subtracting 2 months from today

// Displaying the results of operations
System.out.println("Date 30 days from today: " + futureDate);
System.out.println("Date 2 months ago from today: " + pastDate);

// Comparing LocalDate instances
boolean isAfter␣
→˓= specificDate.isAfter(today); // Check if specificDate is after today

// Displaying comparison results
System.out.println("Is specificDate after today? " + isAfter);

LocalTime

LocalTime stores a particular time of day, focusing only on the time (hour, minute, second,
nanosecond), and doesn’t include date or time zone details. Useful when you only need to
handle time values without dates or time zones (e.g., scheduling events like alarms, stopwatch
and timers, event timing, etc.).

// Creating LocalTime instances
LocalTime now = LocalTime.now(); // Current time
LocalTime specificTime = LocalTime.of(14, 30); // 2:30 PM

// Displaying LocalTime instances
System.out.println("Current Time: " + now);
System.out.println("Specific Time: " + specificTime);

// Performing operations
LocalTime␣
→˓futureTime = now.plusHours(3); // Adding 3 hours to the current time
LocalTime pastTime = now.minusMinutes(15).minusSeconds(29);
→˓ // Subtracting 15 minutes and 29 seconds from the current time

// Displaying the results of operations
System.out.println("Time 3 hours from now: " + futureTime);
System.out.println("Time 15 minutes ago: " + pastTime);

// Displaying time fields
System.out.println("Hour: " + now.getHour());
System.out.println("Minute: " + now.getMinute());
System.out.println("Second: " + now.getSecond());

5.14. Libraries 629

https://repository.microej.com/javadoc/microej_5.x/apis/java/time/LocalTime.html

MicroEJ Documentation, Revision 32bb132e

LocalDateTime

LocalDateTime combines both date and time components and provides a precise timestamp.
This makes it suitable for scenarios where you need to work with both date and time informa-
tion, but without considering time zone conversions (e.g., timestamping, user interfaces, etc.).

// Creating LocalDateTime instances
LocalDateTime now = LocalDateTime.now(); // Current date and time
LocalDateTime specificDateTime␣
→˓= LocalDateTime.of(2023, Month.JULY, 15, 14, 30); // July 15, 2023, 2:30 PM

// Displaying LocalDateTime instances
System.out.println("Current Date and Time: " + now);
System.out.println("Specific Date and Time: " + specificDateTime);

// Performing operations
LocalDateTime futureDateTime␣
→˓= now.plusDays(30).plusHours(3); // Adding 30 days and 3 hours to now
LocalDateTime pastDateTime = now.minusMonths(2).
→˓minusMinutes(15); // Subtracting 2 months and 15 minutes from
␣

→˓ // now
// Displaying the results of operations
System.out.
→˓println("Date and Time 30 days and 3 hours from now: " + futureDateTime);
System.out.println(
→˓"Date and Time 2 months and 15 minutes ago from now: " + pastDateTime);

// Displaying date and time fields
System.out.println("Year: " + now.getYear());
System.out.println("Month: " + now.getMonth());
System.out.println("Day of Month: " + now.getDayOfMonth());
System.out.println("Hour: " + now.getHour());
System.out.println("Minute: " + now.getMinute());
System.out.println("Second: " + now.getSecond());
System.out.println("Day of Year: " + now.get(ChronoField.DAY_OF_YEAR));
System.out.println("Day of Week: " + now.get(ChronoField.DAY_OF_WEEK));

// Displaying comparison results
System.out.println("Is specificDateTime␣
→˓after current date and time? " + specificDateTime.isAfter(now));

Duration

Duration represents a duration of time, typically measured in hours, minutes, seconds, and
nanoseconds. It is used to calculate and work with time intervals, such as the amount of time
between two points in time or the duration of an event. It is suitable for tasks involving precise
timing, such as measuring time elapsed or setting timeouts.

// Creating Duration instances
Duration fiveHours = Duration.ofHours(5); // Duration of 5 hours
Duration thirtyMinutes = Duration.ofMinutes(30); // Duration of 30 minutes

(continues on next page)

5.14. Libraries 630

https://repository.microej.com/javadoc/microej_5.x/apis/java/time/LocalDateTime.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/time/Duration.html

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

Duration twoSeconds = Duration.ofSeconds(2); // Duration of 2 seconds

// Displaying Duration instances
System.out.println("5 Hours: " + fiveHours);
System.out.println("30 Minutes: " + thirtyMinutes);
System.out.println("2 Seconds: " + twoSeconds);

// Performing operations
Duration combinedDuration␣
→˓= fiveHours.plus(thirtyMinutes).plusSeconds(10); // Adding durations
Duration␣
→˓subtractedDuration = fiveHours.minus(twoSeconds); // Subtracting durations

// Displaying the results of operations
System.out.println("Combined Duration: " + combinedDuration);
System.out.println("Subtracted Duration: " + subtractedDuration);

// Displaying duration fields
System.out.println("Hours: " + combinedDuration.toHours());
System.out.println("Minutes: " + combinedDuration.toMinutes());
System.out.println("Seconds: " + combinedDuration.getSeconds());

// Comparing Duration instances
boolean isLonger = fiveHours.compareTo(thirtyMinutes)␣
→˓> 0; // Check if fiveHours is longer than thirtyMinutes
boolean isEqual = fiveHours.
→˓equals(Duration.ofHours(5)); // Check if fiveHours is equal to 5 hours

// Displaying comparison results
System.out.println("Is fiveHours longer than thirtyMinutes? " + isLonger);
System.out.println("Is fiveHours equal to 5 hours? " + isEqual);

Period

Period represents a duration of time in terms of years, months, and days. It is primarily con-
cerned with human-centric time measurements, like the length of a month or a year. It is well-
suited for measuring time intervals within a calendar context. For example, it can represent
periods such as 2 years, 3 months, and 5 days.

// Creating LocalDate instances
LocalDate date1 = LocalDate.of(2021, 6, 15); // June 15, 2021
LocalDate date2 = LocalDate.of(2023, 9, 25); // September 25, 2023

// Calculating the period between two dates
Period period = Period.between(date1, date2);

// Displaying the period
System.
→˓out.println("Period between " + date1 + " and " + date2 + ": " + period);

// Displaying period fields
(continues on next page)

5.14. Libraries 631

https://repository.microej.com/javadoc/microej_5.x/apis/java/time/Period.html

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

System.out.println("Years: " + period.getYears());
System.out.println("Months: " + period.getMonths());
System.out.println("Days: " + period.getDays());

// Creating Period instances using factory methods
Period customPeriod = Period.of(2, 3, 5); // 2 years, 3 months, and 5 days

// Displaying the custom period
System.out.println("Custom Period: " + customPeriod);

// Performing operations on periods
Period addedPeriod = period.plus(customPeriod); // Adding periods
Period subtractedPeriod = period.minus(customPeriod); // Subtracting periods

// Displaying the results of operations
System.out.println("Added Period: " + addedPeriod);
System.out.println("Subtracted Period: " + subtractedPeriod);

// Comparing Period instances
boolean isEqual = customPeriod.equals(Period.of(2,
→˓ 3, 5)); // Check if customPeriod is equal to 2 years, 3 months, and 5 days

// Displaying comparison results
System.out.println(
→˓"Is customPeriod equal to 2 years, 3 months, and 5 days? " + isEqual);

Time Zone Support

The library relies on a time zone rules provider to supply the rules and data required formanag-
ing time zones. The zone rules provider o�ers information about how time zones are defined,
including their o�sets fromCoordinated Universal Time (UTC), daylight saving time (DST) rules
and historical changes.

The Time API introduces multiple types for time zonemanagement:

• ZoneId : represents a time zone identifier (e.g., Africa/Johannesburg).

• ZoneO�set : represents a fixed time zone o�set from Coordinated Universal Time (UTC).

• ZonedDateTime : represents the local time for a specific location.

• ZoneRulesProvider : foundation for supplying time zone rules and data and implementing cus-
tom time zone rules providers.

All the zone-aware classes of the library rely on the underlying time zone rules provider to sup-
ply accurate information about the time zone.

Java SE 8 and higher have a default provider that delivers zone rules for the time zones defined
by IANADatabase. The time library does not use this provider as the default (see Restrictions).
Instead, the library comes with a default provider which is very lightweight and designed to
handle only the time zone rules for the “GMT” (Greenwich Mean Time) zone. This is suitable for
operations on dates and times that do not depend on time zone considerations. Any attempt to
use another zone ID will throw a ZoneRulesException because the ID is unknown. For example,

5.14. Libraries 632

https://repository.microej.com/javadoc/microej_5.x/apis/java/time/ZoneId.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/time/ZoneOffset.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/time/ZonedDateTime.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/time/zone/ZoneRulesProvider.html
https://www.iana.org/time-zones
https://repository.microej.com/javadoc/microej_5.x/apis/java/time/zone/ZoneRulesException.html

MicroEJ Documentation, Revision 32bb132e

// Displaying available time zones - will list a single item: "GMT"
Set<String> timeZones = ZoneId.getAvailableZoneIds();
for (String timeZone : timeZones) {

System.out.println(timeZone);
}

// Creating ZonedDateTime instance - will throw a ZoneRulesException
ZonedDateTime specificDateTime = ZonedDateTime.of(2023, 7, 15, 14,
→˓ 30, 0, 0, ZoneId.of("Europe/Dublin")); // July 15, 2023, 2:30 PM in Dublin

//␣
→˓Creating ZoneId instance from a region ID - will throw a ZoneRulesException
ZoneId tokyoTimeZone = ZoneId.of("Asia/Tokyo");

However, you can define a custom default provider for loading time zone rules. First, create a
class that extends ZoneRulesProvider and defines custom zone rules like in the example a�er:

public class CustomZoneRulesProvider extends ZoneRulesProvider {

@Override
protected Set<String> provideZoneIds() {

Set<String> set = new HashSet<>(1);
set.add("CustomZone");
return set;

}

@Override
protected ZoneRules provideRules(String zoneId, boolean forCaching) {

if ("CustomZone".equals(zoneId)) {
// this custom zone has a fixed offset (+02:00)
return ZoneRules.of(ZoneOffset.ofHours(2));

}
throw new ZoneRulesException("Unknown zone ID");

}

@Override
␣

→˓ protected NavigableMap<String, ZoneRules> provideVersions(String zoneId) {
throw new ZoneRulesException(

→˓"No version history available for this zone ID " + zoneId);
}

}

To make this class the default provider, set the constant java.time.zone.
DefaultZoneRulesProvider to be the Full Qualified name of the custom provider class.

Here is an example of a xxx.constants.list file with the constant in an application:

java.time.zone.DefaultZoneRulesProvider=com.mycompany.CustomZoneRulesProvider

Note: Custom time zone rules providers are usually made for specific needs or to work with non-standard data
sources.

5.14. Libraries 633

https://repository.microej.com/javadoc/microej_5.x/apis/java/time/zone/ZoneRulesProvider.html

MicroEJ Documentation, Revision 32bb132e

Migration Guide

If you’re using the legacy date and time classes (Date, Calendar), it’s a great time to considermi-
grating to the new API. This small migration guidewill help you transition from the old time API
to the Java Date and Time API (java.time). It covers some common date and time operations
and demonstrates how to perform them using both approaches.

Displaying the Current Date

Legacy Time API

New Time API

// Create a Calendar instance representing the current date and time
Calendar calendar = Calendar.getInstance();

// Get date components from the Calendar
int year = calendar.get(Calendar.YEAR);
int month = calendar.get(Calendar.MONTH) + 1; // Months are 0-based
int day = calendar.get(Calendar.DAY_OF_MONTH);

// Display the date
System.out.println("Current Date: " + year + "-" + month + "-" + day);

// Get the current date using LocalDate
LocalDate currentDate = LocalDate.now();

// Display the date
System.out.println("Current Date: " + currentDate);

Calculating a Timestamp from a Date

Legacy Time API

New Time API

// Create a Calendar instance
Calendar calendar = Calendar.getInstance();
calendar.set(2023, 10, 06, 15, 27, 30); // November 06, 2023 3:27:30 PM
long timeInMillis = calendar.getTimeInMillis();

// Create a LocalDateTime instance with the desired date and time
LocalDateTime localDateTime = LocalDateTime.of(2023, 10, 06, 15, 27, 30);

// Convert LocalDateTime to a timestamp from Epoch
long timeInMillis = localDateTime.toInstant(ZoneOffset.UTC).toEpochMilli();

5.14. Libraries 634

https://repository.microej.com/javadoc/microej_5.x/apis/java/util/Date.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/Calendar.html

MicroEJ Documentation, Revision 32bb132e

Calculating Date and Time Di�erences

Legacy Time API

New Time API

public long computeDifference(Date date1, Date date2){
return date1.getTime() - date2.getTime();

}

public long computeDifference(LocalDateTime date1, LocalDateTime date2){
return Duration.between(date1, date2).toMillis();

}

Calculating the Day of the Week

Legacy Time API

New Time API

// Create a Calendar instance
Calendar calendar = Calendar.getInstance();

// Set a date (e.g., October 15, 2023)
calendar.set(2023, Calendar.OCTOBER, 15);

// Get the␣
→˓day of the week as an integer (1 = Sunday, 2 = Monday, ..., 7 = Saturday)
int dayOfWeek = calendar.get(Calendar.DAY_OF_WEEK);

// Create a LocalDate instance for a specific date (October 15, 2023)
LocalDate date = LocalDate.of(2023, 10, 15);

// Get the day of the week as an enum value (DayOfWeek)
DayOfWeek dayOfWeek = date.getDayOfWeek();

Handling Time Zones

Legacy Time API

New Time API

TimeZone timeZone = TimeZone.getTimeZone("America/New_York");
Calendar calendar = Calendar.getInstance(timeZone);
Date dateInNewYork = calendar.getTime();

ZoneId zoneId = ZoneId.of("America/New_York");
ZonedDateTime zonedDateTime = ZonedDateTime.now(zoneId);

5.14. Libraries 635

MicroEJ Documentation, Revision 32bb132e

Restrictions

The library’s goal is to o�er Application developers an API that closely mirrors the one found in
Java SE 8. However, we had to make the library compatible with both pre-Java 8 features and
the constraints found in embedded devices. Here are the itemswhere the backport di�ers from
its Java 8 counterpart:

• Non-ISO chronologies are not present (Hijrah, Japanese, Minguo, ThaiBuddhist). The over-
whelming majority of applications use the ISO calendar system. Applications still have the op-
tion to introduce their own chronologies.

• No formatting or parsing methods (methods parse , format , getDisplayName , ofLocale).

• Thedefault zone-rulesproviderdoesnotuse IANADatabase. Thisprovider loads zone rules from
a local TZDBdatabaseand it consumesa significant amountofRAM.Weplan toadd this support
shortly.

• Removed the method ZoneRulesProvider.registerProvider(ZoneRulesProvider
provider) . The unique provider is defined with the constant java.time.zone.
DefaultZoneRulesProvider .

• Static methods in interfaces are not supported and were removed or moved (see below).

• Default methods in interfaces are not supported and were removed (pulled down in concrete
types).

• Removedstaticmethods TemporalAdjusters.ofDateAdjuster(UnaryOperator<LocalDate>
dateBasedAdjuster) and WeekFields.of(Locale locale) .

• No overflow checks on calculations (removed throws ArithmeticException when relevant).
Excessively checking for overflow in all calculations can impact performance negatively.

• No null checks onmethod arguments. Developers are encouraged to use the Null Analysis tool
to detect null access and adhere to the API javadoc specifications.

Note: For a comprehensive list of restrictions, refer to the README of themodule. If some of the restrictions listed
above are highly limiting and necessary for your application, please contact your MicroEJ sales representative or
our support team.

Static Interface Methods

• ChronoLocalDate.from(TemporalAccessor) : removed

• ChronoLocalDate.timeLineOrder() : use LocalDate.timeLineOrder() instead

• ChronoLocalDateTime.from(TemporalAccessor) : removed

• ChronoLocalDateTime.timeLineOrder() : use LocalDateTime.timeLineOrder() instead

• ChronoZonedDateTime.from(TemporalAccessor) : removed

• ChronoZonedDateTime.timeLineOrder() : use ZonedDateTime.timeLineOrder() instead

• ChronoPeriod.between(ChronoLocalDate, ChronoLocalDate) : removed

• Chronology.from(TemporalAccessor) : use AbstractChronology.
from(TemporalAccessor) instead

• Chronology.getAvailableChronologies() : use AbstractChronology.
getAvailableChronologies() instead

5.14. Libraries 636

https://www.iana.org/time-zones

MicroEJ Documentation, Revision 32bb132e

• Chronology.of(String) : use AbstractChronology.of(String) instead

• Chronology.ofLocale(Locale) : removed

5.14.6 Event Queue

Principle

The Event Queue Foundation Library provides an asynchronous communication interface be-
tween the native world and the Java world based on events.

Functional Description

Overview

The Event Queue Foundation Library allows users to send events from the native world to the
Java world. It is composed of a Java API that provides mechanisms to register specific event
notifications and a C API that allows someone to send events in the queue.

Fig. 41: Event Queue Overview

A FIFOmechanism is implemented on the native side and is system specific. The user can o�er
events to this FIFO by using the C or the Java API.

Eventnotificationsarehandledusingevent listeners (Observerdesignpattern). Theapplication
code has to register event listeners to be notified when new events are coming.

Then the Event Pump automatically retrieves new events pushed in the FIFO and notifies the
event listeners.

5.14. Libraries 637

MicroEJ Documentation, Revision 32bb132e

Architecture

The Event Queue Foundation Library uses a dedicated Java thread to forward and process
events. Application event listener’s calls are done in the context of the Event Queue thread.

Fig. 42: Event Queue Architecture

Events reading operations are done using the SNImechanism. Event Queue Java thread is sus-
pended when the events FIFO is empty and resumed when a new event is sent.

Note: To support sending events from the Interrupt Handler, the VEE Port must provide a compatible implemen-
tation.

Event format

An event is composed of a type and, optionally, data. The type identifies the listener that will
handle the event. The data is application specific and passed to the listener as a raw byte array.

The items stored in the FIFO bu�er are integers (4 bytes). There are two kinds of events that can
be sent over the Event Queue:

• Standard event: an eventwith data that fits on 24 bits. The event is stored in the FIFO as a single
4 bytes item.

• Extended event: an event with data that does not fit on 24 bits. The event is stored in the FIFO
as multiple 4 bytes items.

+---
→˓-----------+----------+---+
| Extended␣

(continues on next page)

5.14. Libraries 638

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

→˓(1) | Type (7) | Data (if Extended==0), Length (if Extended==1) (24) |
+---
→˓-----------+----------+---+
...
+---
→˓--+
| ␣
→˓Extended Data for extended events (32) | (Length bytes)
+---
→˓--+

Format explanation:

• Extended (1 bit): event kind flag (0 for standard event, 1 for extended event).

• Type (7 bits): event type, which allows to find the corresponding event queue listener.

• Length (24 bits): length of the data in bytes (for extended events only).

• Data (24 bits): standard event data (for standard events only).

• Extended data (Length bytes): extended event data (for extended events only).

Event Queue listener

An application can register listeners to the Event Queue. Each listener is registered for a specific
event type. The same listener can be registered several times for di�erent event types, but each
event type can only have one listener.

When the queue receives an event from the FIFO, it will get the event type and check if it is an
extended event. Then it will check if a listener is registered for this event type. If so, it will call
its handle method depending on the extended event flag. It will call the default listener if no
listener corresponds to the event type.

You can create your EventQueue listener by implementing the EventQueueListener interface.
It contains twomethods that are used to handle standard and extended events.

Before registering your listener, you must get a valid unique type using the getNewType()
method from the EventQueue class. Then you can register your listener using the
registerListener(EventQueueListener listener, int type) method from the
EventQueue class.

The unique type your listener uses could be stored on the Java world and passed/stored to the
C world. One way to do it is to create a native method that sends the event type to the C world
during the initialization phase.

To set the default listener, you must use EventQueue.
setDefaultListener(EventQueueListener listener) .

For example:

public static int eventType;

public static void main(String[] args) throws InterruptedException {
EventQueue eventQueue = EventQueue.getInstance();

(continues on next page)

5.14. Libraries 639

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

// Get the unique type to register your listener.
/

→˓/ eventType must be stored if you want to offer an event from the Java API.
eventType = eventQueue.getNewType();

// Create and register a listener.
eventQueue.registerListener(new ExampleListener(), eventType);

// Send eventType to the C world.
initialize(eventType);

}

/**
* This native␣
→˓method will take the event type as an entry and store it in the C world.
*/
public static native void initialize(int type);

Standard event

Standard events are events with data that can be stored on 24 bits.

+-------+----------+-----------+
| 0 (1) | Type (7) | Data (24) |
+-------+----------+-----------+

The first bit equals 0, indicating that this is a standard event.

Then there is the event type stored on 7 bits.

To finish, there is the data that youwant to send to the application event listener. It is stored on
24 bits.

O�er the event

There are two ways to send a standard event through the Event Queue: from the C API or the
Java API.

From C API

To send a standard event through the Event Queue using the C API, you must use the
LLEVENT_offerEvent(int32_t type, int32_t data) method from LLEVENT.h .

For example:

// Assuming that event_type has been passed from␣
→˓the Java world through a native method after registering your listener.
int type = event_type;
int data = 12;

LLEVENT_offerEvent(type, data);

5.14. Libraries 640

MicroEJ Documentation, Revision 32bb132e

From Java API

To send a standard event through the Event Queue using the Java API, you must use the
offerEvent(int type, int data) method from the EventQueue class.

For example:

EventQueue eventQueue = EventQueue.getInstance();

// Assuming that eventType␣
→˓has been stored in the Java world when you registered the listener.
int type = eventType;
int data = 12;

eventQueue.offerEvent(type, data);

Handle the event

To handle a standard event, you must implement your listener handleEvent(int type, int
data) method. You can process the data received by the Event Queue in this method.

First, you have to register your listener as explained Event Queue listener in section.

For example:

EventQueue queue = EventQueue.getInstance();
int type = queue.getNewType();
initialize(type);
queue.registerListener(type, new EventQueueListener() {

@Override
public void handleEvent(int type, int data) {

System.out.println("My data is equal to: " + data);
}
@Override
public␣

→˓void handleExtendedEvent(int type, EventDataReader eventDataReader) {
throw new RuntimeException();

}
});

Extended event

Extended events are events with data that can not be stored on 24 bits.

+-------+----------+-------------+
| 1 (1) | Type (7) | Length (24) |
+-------+----------+-------------+
...
+--------------------------------+
| Extended Data (32) | (Length bytes)
+--------------------------------+

On the first 32 bits of the events, you will have:

5.14. Libraries 641

MicroEJ Documentation, Revision 32bb132e

• First bit is equal to 1, saying that this is an extended event,

• The event type stored on 7 bits,

• The length of the data following the header in bytes stored on 24 bits.

Then you will have the data. The number of bytes of the data depends on the length.

Data Alignment

To process the data from an extended event, youwill use an EventDataReader object. Youwill
see it more in detail in the Handle the event section.

With EventDataReader API, there are two ways to read an event:

• Read the datawith read(byte[] b, int off, int len) or readFully(byte[] b) methods.

– You will get the data in a byte array and can process it on your own in your
handleExtendedEvent(int type, EventDataReader eventDataReader) method.

• Read the data with the methods related to the primitive types such as readBoolean() or
readByte() .

– The reader is designed to parse C-struct data.

– To use the methods, your fields must follow this alignment:

* A boolean (1 byte) will be 1-byte aligned.

* A byte (1 byte) will be 1-byte aligned.

* A char (2 bytes) will be 2-byte aligned.

* A double (8 bytes) will be 8-byte aligned.

* A float (4 bytes) will be 4-byte aligned.

* An int (4 bytes) will be 4-byte aligned.

* A long (8 bytes) will be 8-byte aligned.

* A short (2 bytes) will be 2-byte aligned.

* An unsigned byte (1 byte) will be 1-byte aligned.

* A unsigned short (2 bytes) will be 2-byte aligned.

O�er the event

There are two ways to send an extended event through the Event Queue: from the C API or the
Java API.

5.14. Libraries 642

MicroEJ Documentation, Revision 32bb132e

From C API

To send an extended event through the Event Queue using the C API, you have to use the
LLEVENT_offerExtendedEvent(int32_t type, void* data, int32_t data_length)
method from LLEVENT.h .

For example:

struct accelerometer_data {
int x;
int y;
int z;

}

// Assuming that event_type has been passed from␣
→˓the Java world through a native method after registering your listener.
int type = event_type;

struct accelerometer_data data;
data.x = 42;
data.y = 72;
data.z = 21;

LLEVENT_offerExtendedEvent(type, (void*)&data, sizeof(data));

From Java API

To send an extended event through the Event Queue using the Java API, you must use the
offerExtendedEvent(int type, byte[] data) method from the EventQueue API.

For example:

EventQueue eventQueue = EventQueue.getInstance();

// Assuming that eventType␣
→˓has been stored in the Java world when you registered the listener.
int type = eventType;

// Array of 3 integers. Each integer is stored in 4 bytes.
byte[] accelerometerData = new byte[3*4];

// Write integers into the byte array using ByteArray API.
ByteArray.writeInt(accelerometerData, 0, 42);
ByteArray.writeInt(accelerometerData, 4, 72);
ByteArray.writeInt(accelerometerData, 8, 21);

eventQueue.offerExtendedEvent(type, accelerometerData);

5.14. Libraries 643

MicroEJ Documentation, Revision 32bb132e

Handle the event

To handle an extended event, youmust implement your listener’s handleExtendedEvent(int
type, EventDataReader eventDataReader) method. You can process the data received by
the Event Queue on this method.

It provides an EventDataReader that contains the methods needed to read the data of an ex-
tended event.

First, you have to register your listener as explained Event Queue listener in section.

For example:

EventQueue queue = EventQueue.getInstance();
int type = queue.getNewType();
initialize(type);
queue.registerListener(type, new EventQueueListener() {

@Override
public void handleEvent(int type, int data) {

throw new RuntimeException();
}
@Override
public␣

→˓void handleExtendedEvent(int type, EventDataReader eventDataReader) {
int x = 0;
int y = 0;
int z = 0;
try {

x = eventDataReader.readInt();
y = eventDataReader.readInt();
z = eventDataReader.readInt();

} catch (IOException e) {
System.out.println("IOException␣

→˓while reading accelerometer values from the EventDataReader.");
}
System.out.println(

→˓"Accelerometer values: X = " + x + ", Y = " + y + ", Z = " + z + ".");
}

});

Mock the Event Queue

To simulate event that are normally sent through the C API, use the Event QueueMock API from
your mock.

The Event QueueMock API dependencymust be added to the project build file of your MicroEJ
Mock project.

<dependency org="com.microej.
→˓pack.event" name="event-pack" rev="2.0.0" conf="provided->mockAPI"/>

It provides twomethods:

• EventQueueMock.offerEvent(int type, int data) is the equivalent of
LLEVENT_offerEvent(int32_t type, int32_t data) method from LLEVENT.h .

5.14. Libraries 644

MicroEJ Documentation, Revision 32bb132e

• EventQueueMock.offerExtendedEvent(int type, byte[] data, int dataLength) is
the equivalent of LLEVENT_offerExtendedEvent(int32_t type, void* data, int32_t
data_length) method from LLEVENT.h .

Example of use:

// Assuming that event_type has been passed from␣
→˓your Application through a native method after registering your listener.
int type = event_type;
int data = 12;

EventQueueMock.offerEvent(type, data);

Use

The Event Queue API Modulemust be added to the project build file of the MicroEJ Application
project to use the Event Queue Foundation Library.

Gradle (build.gradle.kts)

MMM (module.ivy)

implementation("ej.api:event:2.0.0")

<dependency org="ej.api" name="event" rev="2.0.0"/>

To use this API, your VEE Port must implement a compatible version. Please refer to the VEE
Porting Guide to port the Event Queue for your project.

5.14.7 JavaScript

MicroEJallows todevelopparts of anapplication in JavaScript. Basically, aMicroEJApplication
boots in Java, then it initializes the JavaScript runtime to run amix of Java and JavaScript code.

5.14. Libraries 645

https://forge.microej.com/artifactory/microej-developer-repository-release/ej/api/event/

MicroEJ Documentation, Revision 32bb132e

Fig. 43: MicroEJ JavaScript Overview

It supports the ECMAScript 5.1 specification, with some limitations. You can start playing with it
by following the Getting Started page.

Getting Started

Let’s walk through the steps required to use Javascript in your MicroEJ application:

• install theMMM CLI (Command Line Interface)

• create your Standalone Application project with the init command:

mmm␣
→˓init -Dskeleton.org=com.is2t.easyant.skeletons -Dskeleton.module=firmware-
→˓singleapp -Dskeleton.rev=1.1.12 -Dproject.org=com.mycompany -Dproject.
→˓module=myproject -Dproject.rev=1.0.0 -Dskeleton.target.dir=myproject

Adapt the properties values to your need. See the MMM CLI init command documentation for
more details.

Javascript is supported in the following Module Natures page: - Add-On Library, - Standalone
Application, - Sandboxed Application.

• add the js dependency in the build file:

Gradle (build.gradle.kts)

MMM (module.ivy)

5.14. Libraries 646

https://262.ecma-international.org/5.1

MicroEJ Documentation, Revision 32bb132e

implementation("com.microej.library.runtime:js:0.13.0")

<dependency org="com.microej.library.runtime" name="js" rev="0.13.0"/>

• add the following lines in your application main class:

import com.microej.js.JsErrorWrapper;
import com.microej.js.JsCode;
import com.microej.js.JsRuntime;

...

JsCode.initJs();
JsRuntime.ENGINE.runOneJob();
JsRuntime.stop();

• create a file named hello.js in the folder src/main/js with the following content:

function hello() {
var message = "MicroEJ Javascript application!";
print("My first", message);

}

hello()

• follow the steps described in the run command documentation

• in a terminal, go to the folder containing the module.ivy file and build the project with the
command:

mmm build

You should see the following message at the end of the build:

BUILD SUCCESSFUL

Total time: 20 seconds

• now that your application is built, you can run it in the simulator with the command:

mmm run

You should see the following output:

My first MicroEJ Javascript application!

You can now go further by exploring the capabilities of the MicroEJ Javascript engine and dis-
covering the commands available in the CLI.

5.14. Libraries 647

MicroEJ Documentation, Revision 32bb132e

Sources Management

JavaScript Sources Location

The JavaScript sources of an application must be located in the project folder src/main/js .
All JavaScript files (*.js) found in this folder, at any level, are processed.

JavaScript Sources Load Order

When several JavaScript files are found in the sources folder, they are loaded in alphabetical
order of their relative path. For example, the following source files:

src
main

js
components

component1.js
component2.js

ui
widgets.js

app.js
feature1.js
feature2.js

are loaded in this order:

1. app.js

2. components/component1.js

3. components/component2.js

4. feature1.js

5. feature2.js

6. ui/widgets.js

JavaScript Sources Load Scope

All the code of the JavaScript source files are loaded in the same scope. It means a variable or
function defined in a source file can be used in another one if it has been loaded first. In this
example:

Listing 8: src/main/js/lib.js

function sum(a, b) {
return a + b;

}

5.14. Libraries 648

MicroEJ Documentation, Revision 32bb132e

Listing 9: src/main/js/main.js

print("5 + 3 = " + sum(5, 3));

the file src/main/js/lib.js is loadedbefore src/main/js/main.js so the function sum can
be used in src/main/js/main.js .

JavaScript Sources Processing

JavaScript sources need to be processed before being executed. This processing is done in the
following cases:

• when building the project withMMM.

• whendeveloping theproject inMicroEJSDK. TheMicroEJSDKdetects any change in JavaScript
sources folder (addition/update/deletion) to trigger the processing.

Examples

This section is intended to provide a set of examples to cover most of the use cases when de-
veloping JavaScript applications with MicroEJ:

Simple Application

Note: Before trying this example, make sure you have theMMM CLI (Command Line Interface) installed.

This example shows the minimal code for a MicroEJ JavaScript application:

• create an Add-On Library project or a Sandboxed Application project

• add the MicroEJ JavaScript dependency in the build file of your project:

Gradle (build.gradle.kts)

MMM (module.ivy)

implementation("com.microej.library.runtime:js:0.13.0")

<dependency org="com.microej.library.runtime" name="js" rev="0.13.0"/>

• init the JavaScript code in your Java application with:

import com.microej.js.JsCode;

...

JsCode.init();

The class com.microej.js.JsCode is the Java class generated from the JavaScript sources.

• ask the MicroEJ JavaScript engine to start processing the job queue with:

5.14. Libraries 649

MicroEJ Documentation, Revision 32bb132e

import com.microej.js.JsRuntime;

...

JsRuntime.ENGINE.run();

This makes the JavaScript engine process the job queue forever until the program is stopped.

• create a file with the js extension in the src/main/js folder (for example app.js) with the
following content:

print("My Simple Application");

• build and execute the application with theMMM CLI:

$ mmm build
$ mmm run

Themessage My Simple Application should be displayed.

Use a Java API in JavaScript

Note: Before trying this example, make sure you have theMMM CLI (Command Line Interface) installed.

It is also recommended to follow the Getting Started page and/or the Simple Application exam-
ple before.

In this example the JavaScript code calls a JavaAPI. The JavaAPI can come fromtheapplication
or from any library used by the application. Let’s create it in the project for this example, in a
class Calculator (src/main/java/com/mycompany/Calculator.java):

public class Calculator {
public int sum(int x, int y) {

return x + y;
}

public int mul(int x, int y) {
return x * y;

}
}

Then in the Java Main class of the application, add the glue to expose the Calculator Java API
to the JavaScript code and init the JavaScript engine:

public static void main(String[] args) throws Exception {
// Add the "getCalculator" function in the JavaScript global object
JsRuntime.JS_GLOBAL_

→˓OBJECT.put("getCalculator", JsRuntime.createFunction(new JsClosure() {
@Override
@Nullable
public␣

→˓Object invoke(Object thisBinding, int argsLength, Object... arguments) {

(continues on next page)

5.14. Libraries 650

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

return new Calculator();
}

}), false);

// Init the JavaScript code
JsCode.initJs();
// Start the JavaScript engine
JsRuntime.ENGINE.run();

}

You can now call the API from the JavaScript code:

var calc = getCalculator();
print(calc.sum(1, 2));
print(calc.mul(5, 3));

As you can see, themethods of the Java API Calculator can be used directly from the JavaScript
code.

Finally, build and execute the application with theMMM CLI:

$ mmm build
$ mmm run

The sum andmultiply results should be displayed.

For more information about communication between Java and JavaScript please refer to the
Communication Between Java and JS page.

Create a JavaScript API from Java

Note: Before trying this example, make sure you have theMMM CLI (Command Line Interface) installed.

It is also recommended to follow the Getting Started page and/or the Simple Application exam-
ple before.

In this example a JavaScript API is exposed from Java. This can be useful when a specific API
must be defined in JavaScript or when adapting an existing Java API to a JavaScript API.

Create a class MyApiHostObject (src/main/java/com/mycompany/MyApiHostObject.java):

public class MyApiHostObject extends JsObject {

public MyApiHostObject(Object thisBinding) {

this.put("count
→˓", new DataPropertyDescriptor(JsRuntime.createFunction(new JsClosure() {

@Override
@Nullable
public Object␣

→˓invoke(@Nullable Object thisBinding, int argsLength, Object... arguments) {
String data = (String) arguments[0];

(continues on next page)

5.14. Libraries 651

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

return Integer.valueOf(data.length());
}

})));

}
}

This class defines a JavaScript object using the MicroEJ JavaScript API by extending the class
JsObject . It also defines a count method which accepts a String parameter and returns its
length.

Then in the Java Main class of the application, add the glue to expose the MyApi object to the
JavaScript code and init the JavaScript engine:

public static void main(String[] args) throws Exception {
// Add the "MyApi" function in the JavaScript global object
JsRuntime.

→˓JS_GLOBAL_OBJECT.put("MyApi", JsRuntime.createFunction(new JsClosure() {
@Override
@Nullable
public␣

→˓Object invoke(Object thisBinding, int argsLength, Object... arguments) {
return new MyApiHostObject(thisBinding);

}
}), false);

// Init the JavaScript code
JsCode.initJs();
// Start the JavaScript engine
JsRuntime.ENGINE.run();

}

You can now call the new API from the JavaScript code:

var myApi = new MyApi();
print(myApi.count("Hello World!"));

Finally, build and execute the application with theMMM CLI:

$ mmm build
$ mmm run

The length of the string Hello World! (12) should be displayed.

For more information about communication between Java and JavaScript please refer to the
Communication Between Java and JS page.

5.14. Libraries 652

MicroEJ Documentation, Revision 32bb132e

API

This page lists the API provided by the MicroEJ JavaScript engine.

Built-in Objects

The built-in objects are the API objects defined by the ECMAScript specification. This section
lists all the JavaScript built-in objects and their support status in theMicroEJ JavaScript engine.
For the complete reference about these built-in objects, consult the ECMAScript 5.1 specifica-
tion.

For a description and usage examples of each method or property, consult a JavaScript docu-
mentation such as Mozilla Developer Reference.

Array

• Array (len)

• isArray (arg)

• toString ()

• [excluded] toLocaleString ()

• concat ([item1 [, item2 [, . . .]]])

• join (separator)

• pop ()

• push ([item1 [, item2 [, . . .]]])

• reverse ()

• shi� ()

• slice (start, end)

• sort (comparefn)

• [excluded] splice (start, deleteCount [, item1 [, item2 [, . . .]]])

• unshi� ([item1 [, item2 [, . . .]]])

• indexOf (searchElement [, fromIndex])

• lastIndexOf (searchElement [, fromIndex])

• every (callbackfn [, thisArg])

• some (callbackfn [, thisArg])

• forEach (callbackfn [, thisArg])

• map (callbackfn [, thisArg])

• filter (callbackfn [, thisArg])

• [excluded] reduce (callbackfn [, initialValue])

• [excluded] reduceRight (callbackfn [, initialValue])

• length

5.14. Libraries 653

https://www.ecma-international.org/ecma-262/5.1/#sec-15
https://www.ecma-international.org/ecma-262/5.1/#sec-15
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects

MicroEJ Documentation, Revision 32bb132e

Boolean

• Boolean (value)

• Boolean.prototype.toString ()

• Boolean.prototype.valueOf ()

Date

• [excluded]

Error

• [excluded]

Function

• [excluded] Function (p1, p2, . . . , pn, body)

• length

• [excluded] toString ()

• apply (thisArg, argArray)

• call (thisArg [, arg1 [, arg2, . . .]])

• [excluded] bind (thisArg [, arg1 [, arg2, . . .]])

• [[Call]]

• [[Construct]]

Global

• NaN

• Infinity

• undefined

• [excluded] eval (x)

• parseInt (string , radix)

• parseFloat (string)

• isNaN (number)

• isFinite (number)

• [excluded] escape (string)

• [excluded] unescape (string)

• [excluded] decodeURI (encodedURI)

• [excluded] decodeURIComponent (encodedURIComponent)

5.14. Libraries 654

MicroEJ Documentation, Revision 32bb132e

• [excluded] encodeURI (uri)

• [excluded] encodeURIComponent (uriComponent)

JSON

• parse (text [, reviver])

• stringify (value , [replacer [, space]])

Math

• E

• LN10

• LN2

• LOG2E

• LOG10E

• PI

• SQRT1_2

• SQRT2

• abs (x)

• acos (x)

• asin (x)

• atan (x)

• atan2 (y, x)

• ceil (x)

• cos (x)

• exp (x)

• floor (x)

• log (x)

• max ([value1 [, value2 [, . . .]]])

• min ([value1 [, value2 [, . . .]]])

• pow (x, y)

• random ()

• round (x)

• sin (x)

• sqrt (x)

• tan (x)

5.14. Libraries 655

MicroEJ Documentation, Revision 32bb132e

Number

• Number (value)

• MAX_VALUE

• MIN_VALUE

• NaN

• NEGATIVE_INFINITY

• POSITIVE_INFINITY

• [excluded] toString ([radix])

• [excluded] toLocaleString()

• valueOf ()

• [excluded] toFixed (fractionDigits)

• [excluded] toExponential (fractionDigits)

• [excluded] toPrecision (precision)

Object

• Object ([value])

• Object.getPrototypeOf (O)

• Object.getOwnPropertyDescriptor (O, P)

• Object.getOwnPropertyNames (O)

• Object.create (O [, Properties])

• Object.defineProperty (O, P, Attributes)

• Object.defineProperties (O, Properties)

• [excluded] Object.seal (O)

• [excluded] Object.freeze (O)

• [excluded] Object.preventExtensions (O)

• Object.isSealed (O)

• Object.isFrozen (O)

• Object.isExtensible (O)

• Object.keys (O)

• toString ()

• [excluded] toLocaleString ()

• valueOf ()

• hasOwnProperty (V)

• isPrototypeOf (V)

• propertyIsEnumerable (V)

5.14. Libraries 656

MicroEJ Documentation, Revision 32bb132e

Regex

• RegExp (pattern, flags)

• exec (string)

• test (string)

• toString ()

String

• String (value)

• fromCharCode ([char0 [, char1 [, . . .]]])

• toString ()

• valueOf ()

• charAt (pos)

• charCodeAt (pos)

• concat ([string1 [, string2 [, . . .]]])

• indexOf (searchString, position)

• lastIndexOf (searchString, position)

• [excluded] localeCompare (that)

• match (regexp)

• replace (searchValue, replaceValue)

• [excluded] search (regexp)

• slice (start, end)

• split (separator, limit)

• [excluded] substr (start [, length])

• substring (start, end)

• toLowerCase ()

• [excluded] toLocaleLowerCase ()

• toUpperCase ()

• [excluded] toLocaleUpperCase ()

• trim ()

• length

• [[GetOwnProperty]] (P)

5.14. Libraries 657

MicroEJ Documentation, Revision 32bb132e

Host Objects

Host objects are not part of the ECMAScript specification, they are additional API provided by
the MicroEJ JavaScript engine.

Global

setTimeout(function[, delay, arg1, arg2, . . .])

• description: sets a timer which executes a function once the timer expires.

• arguments:

– function : the function to execute when the delay expires.

– delay (optional): the time inmilliseconds that the timer must wait before executing the given
function.

– arg1, arg2, ... (optional): additional arguments passed to the given function.

• returns: the timer object. This object can be passed to the function clearTimeout to cancel
the timer.

setInterval(function[, delay, arg1, arg2, . . .])

• description: repeatedly calls a function, with a fixed time delay between each call.

• arguments:

– function : the function to execute when the delay expires.

– delay (optional): the time inmilliseconds that the timermust wait between each execution of
the given function.

– arg1, arg2, ... (optional): additional arguments passed to the given function.

• returns: the timer object. This object can be passed to the function clearInterval to cancel
the timer.

clearTimeout(timer)

• description: cancels the given timer created by a call to setTimeout .

• arguments:

– timer : the timer to cancel.

5.14. Libraries 658

MicroEJ Documentation, Revision 32bb132e

clearInterval(timer)

• description: cancels the given timer created by a call to setInterval .

• arguments:

– timer : the timer to cancel.

print([arg1, arg2, . . .])

• description: prints the given arguments in the standard output. The arguments are concate-
nated and separated by a space. A new line is added at the end.

• arguments:

– arg1, arg2, ... : the list of elements to print.

Communication Between Java and JS

TheMicroEJ engine allows to communicate between Java and JavaScript: Java API canbeused
from JavaScript code and vice-versa.

JavaScript Engine

The JavaScript code is executed in a single-threaded engine, whichmeans only one JavaScript
statement is executed at a given time. Each piece of JavaScript code that must be executed is
pushed in a job queue. It is up to the engine to manage the job queue and execute the jobs.

One consequence of this design is that Java code called from a JavaScript code must not
be blocker. When calling a Java API from a Javascript code, in order to avoid blocking the
JavaScript engine, the Java code must return as quick as possible. Otherwise the JavaScript
engine is stuck and cannot execute other JavaScript jobs. It is especially harmfull when the
Java operation takes time, for example for network or IO operations. In such a case, it is there-
fore recommended to execute it in a new thread and return immediately.

Another consequence of the JavaScript engine design is that JavaScript code must always be
executed by the engine, by the single thread. Therefore, any call to a JavaScript code from a
Java codemust create a job and add it to the job queue.

Calling Java from JavaScript

The MicroEJ engine allows to expose Java objects or methods to the JavaScript code by using
the engine API and creating the adequate JavaScript object.

5.14. Libraries 659

MicroEJ Documentation, Revision 32bb132e

Import Java Types from JavaScript

Java objects can be exposed to JavaScript using the JavaImport mechanism. It takes a Java
fully qualified name as argument and returns an object that gives access to the constructors,
static methods and static fields. All the classes from the project’s classpath can be imported
(project’s own classes and its dependencies).

For instance, the following code imports java.lang.System and prints a string calling Sys-
tem.out.println():

var System = JavaImport("java.lang.System")
System.out.println("foo");

Here we instantiate a Java File object and check that it exists:

var File = JavaImport("java.io.File")
var myFile = new File("myFile.txt")

if (myFile.exists()) {
print("myFile.txt exists")

} else {
print("myFile.txt does not exist")

}

Warning: You cannot instantiate an anonymous class from an interface or an abstract class
with the new keyword and JavaImport . Nevertheless, you can still access to static fields and
methods.

Implement JavaScript Functions in Java

We can also implement JavaScript functions in Java by adding their implementation to the
global object from Java. For example, here is the code to create a JavaScript function named
javaPrint in the global scope:

JsRuntime.JS_
→˓GLOBAL_OBJECT.put("javaPrint", JsRuntime.createFunction(new JsClosure() {

@Override
public Object invoke(Object thisBinding, Object... arguments) {

System.out.println("Print from Java: " + arguments[0]);
return null;

}
}), false);

The function is created with a com.microej.js.objects.JsObjectFunction object created
with the API JsRuntime.createFunction(JsClosure jsClosure) , and injected in the object
JsRuntime.JS_GLOBAL_OBJECT which maps to the JavaScript global scope.

The function javaPrint can then be used in JS:

javaPrint("foo")

5.14. Libraries 660

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/io/PrintStream.html#println--
https://repository.microej.com/javadoc/microej_5.x/apis/java/io/PrintStream.html#println--

MicroEJ Documentation, Revision 32bb132e

This technique can also be used to share any Java object to JavaScript. It is achieved by return-
ing the Java object in the invoke method of the JsClosure object. For example, a Java Date
object can be exposed as follows:

JsRuntime.JS_GLOBAL_
→˓OBJECT.put("getCurrentDate", JsRuntime.createFunction(new JsClosure() {

@Override
public Object invoke(Object thisBinding, Object... arguments) {

return Calendar.getInstance().getTime();
}

}), false);

When a Java object is exposed in JavaScript, all its public methods can be called, therefore the
JavaScript code can then use this Date object and get the time:

var date = getCurrentDate()
var time = date.getTime()
print("Current time: ", time)

for more information on how these called are managed by the MicroEJ JavaScript engine,
please go to the Foreign Function Interface section.

Java objects can also be shared using one of the other Java JS adapter objects. With this so-
lution, the code of the Java object is executed at engine initialisation, contrary to the previous
solution where it is executed only when the JavaScript code is called. For example, here is the
code to expose a Java string named javaString in the JavaScript global scope:

JsRuntime.JS_GLOBAL_OBJECT.put("javaString", "Hello World!", false);

The string javaString can then be used in JS:

var myString = javaString;

The available Java JS adapter objects are:

• com.microej.js.objects.JsObject : exposes a Java object as a JavaScript object

• com.microej.js.objects.JsObjectFunction : exposes a Java “process” as a JavaScript
function (using a JsClosure object)

• com.microej.js.objects.JsObjectString : exposes a Java String as a JavaScript String

• com.microej.js.objects.JsObjectArray : exposes a Java items collection as a JavaScript
Array

• com.microej.js.objects.JsObjectBoolean : exposes a Java Boolean as a JavaScript
Boolean

• com.microej.js.objects.JsObjectNumber : exposes a JavaNumber as a JavaScriptNumber

5.14. Libraries 661

https://repository.microej.com/javadoc/microej_5.x/apis/java/util/Date.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/Date.html

MicroEJ Documentation, Revision 32bb132e

Calling JavaScript from Java

TheMicroEJ JavaScript engine API allows to call JavaScript code from Java code. For example,
given the following JavaScript function in a file in src/main/js :

function sum(a, b) {
print(a + " + " + b + " = " + (a+b));

}

it can be called from a Java piece of code with:

JsObjectFunction␣
→˓functionObject = (JsObjectFunction) JsRuntime.JS_GLOBAL_OBJECT.get("sum");
JsRuntime.ENGINE.addJob(functionObject,
→˓ JsRuntime.JS_GLOBAL_OBJECT, new Integer(5), new Integer(3));

The first line gets the JavaScript function from the global scope. The second line adds a job in
the JavaScript engine queue to execute the function, in the global scope, with the arguments
5 and 3 .

Passing Values Between JavaScript and Java

JavaScript base types are represented by Java objects and not Java base types. The following
table shows the mapping between types in both languages:

JavaScript Java
Number java.lang.Integer or java.lang.Double
Boolean java.lang.Boolean
String java.lang.String
Null null value
Undefined JsRuntime.JS_UNDEFINED_OBJECT singleton

In JavaScript, a Number type is a 64-bits floating-point value. Nevertheless, Kifaru may use
integer values (Integer Java type) when possible for performance reasons. Otherwhise, Double
type will be used.

Note: Prefer passing Integer values as argument to a job added to the JavaScript execution queue, or return
Integer values when implementing a JsClosure instead of Double when possible.

It is not possible to retrieve the returned value of a JavaScript function from Java. For instance,
consider the following JavaScript function:

function sum(a, b) {
return a + b;

}

When calling this function from Java, we have no way to get the result back:

JsObjectFunction␣
→˓functionObject = (JsObjectFunction) JsRuntime.JS_GLOBAL_OBJECT.get("sum");
JsRuntime.ENGINE.addJob(functionObject,
→˓ JsRuntime.JS_GLOBAL_OBJECT, new Integer(5), new Integer(3));

5.14. Libraries 662

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Integer.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Double.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Boolean.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/String.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Integer.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Double.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Integer.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Double.html

MicroEJ Documentation, Revision 32bb132e

A workaround is to modify the JavaScript function so it takes a callback object as argument:

function sum(a, b, callback) {
callback.returnValue(a + b);

}

Here is a possible implementation of the callback object:

public class Callback<T> {

@Nullable
private T value;

private boolean returned;

/**
* Gets the value returned by this callback function when ready.
* <p>
* A call to this method waits for the value to be ready.
*
* @return the value return by the callback
*/

@Nullable
public T getValue() {

synchronized (this) {
while (!this.returned) {

try {
wait();

} catch (InterruptedException e) {
throw new JsErrorWrapper(""); //$NON-NLS-1$

}
}

}

return this.value;
}

/**
* Sets the value to return by this callback function.
*
* @param value
* the value to return
*/

public synchronized void returnValue(@Nullable T value) {
this.value = value;
this.returned = true;
notify();

}
}

We can nowpass the callback to the job. The Java codewill wait on the callback.getValue()
until the result is ready.

5.14. Libraries 663

MicroEJ Documentation, Revision 32bb132e

JsObjectFunction␣
→˓functionObject = (JsObjectFunction) JsRuntime.JS_GLOBAL_OBJECT.get("sum");
Callback<Integer> callback = new Callback<>();
JsRuntime.ENGINE.addJob(functionObject,
→˓ JsRuntime.JS_GLOBAL_OBJECT, new Integer(5), new Integer(3), callback);
Integer returnedValue = callback.getValue();
System.out.println("Result is " + returnedValue);

Tests

JavaScript applications can be tested with tests written in JavaScript. The JavaScript test files
must be located in the project folder src/test/js . All JavaScript files (*.js) found in this
folder, at any level, are considered as test files.

In order to setup JavaScript tests for your application, follow these steps:

• create an Add-On Library project or a Standalone Application project

• define the following configuration in the build file of the project:

Gradle (build.gradle.kts)

MMM (module.ivy)

tasks.test {
filter {

includeTestsMatching("*._JsTest_*Code")
}

}

Add these properties nside the ea:build tag (if the properties already exist, replace them):

<ea:property␣
→˓name="test.run.includes.pattern" value="**/_JsTest_*Code.class"/>
<ea:property␣
→˓name="target.main.classes" value="${basedir}/target~/test/classes"/>

• add the MicroEJ JavaScript dependency in the build file of the project:

Gradle (build.gradle.kts)

MMM (module.ivy)

implementation("com.microej.library.runtime:js:0.13.0")

<dependency org="com.microej.library.runtime" name="js" rev="0.13.0"/>

• define the platform to use to run the tests with one of the options described in Platform Selec-
tion section

• create a file assert.js in the folder src/test/resources with the following content:

var assertionCount = 0;

function assert(value) {
assertionCount++;

(continues on next page)

5.14. Libraries 664

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

if (value == 0) {
print("assert " + assertionCount + " - FAILED");

} else {
print("assert " + assertionCount + " - PASSED");

}
}

This method assert will be available in all tests to do assertions.

• create a file test.js in the folder src/test/js and write your first test:

var a = 5;
var b = 3;
var sum = a + b;
assert(sum === 8);

• build the application in the SDK or in command line with theMMM CLI

The execution of the tests produces a report available in the folder target~/test/html for the
project.

Limitations

The MicroEJ engine supports the version 5.1 of the ECMAScript specification, with the limita-
tions described in this page.

Unsupported Directives

Directives, such as 'use strict' , are not supported and are considered as literal statements.
Literal statements are just ignored.

Unsupported Statements

The following syntaxes are not supported by the MicroEJ JavaScript engine:

• with (x) { } : the with statement is not supported in MicroEJ since its usage is not recom-
mended. See the reference documentation for more information.

Unsupported Built-in Objects

The unsupported built-in objects are listed in the API section.

5.14. Libraries 665

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/with

MicroEJ Documentation, Revision 32bb132e

Troubleshooting

Compilation error cannot be resolved to a type in FFI class

Acompilationerror canbe raisedwhen the classpath containsunexpected classes, for example:

Exception in thread "main" java.lang.Error: Unresolved compilation problems:
ArrayComparisonFailure cannot be resolved to a type
ArrayComparisonFailure cannot be resolved to a type

at java.lang.Throwable.fillInStackTrace(Throwable.java:82)
at java.lang.Throwable.<init>(Throwable.java:37)
at java.lang.Error.<init>(Error.java:18)
at com.microej.js.JsFfi.ffi_toString_0(JsFfi.java:54)
at com.microej.js.JsCode$1$1.invoke(JsCode.java:50)

As described in the FFI section, in order to call Javamethods fromJavaScript code, all themeth-
ods with the given names are searched in the classpath. Since the classpath can contain test
dependencies which are not available at compile time, the generated FFI can contain classes
from these dependencies and therefore fail to compile. The following classes are excluded by
default:

• ej.junit.*

• org.junit.*

• junit.*

• org.hamcrest.*

• java.lang.String

• java.lang.Number

This list can be changed by setting the system property js.ffi.excludes.classes to a
comma-separated list of FQN patterns. For example:

js.ffi.excludes.classes=ej.junit.*,org.junit.*,junit.
→˓*,org.hamcrest.*,java.lang.String,java.lang.Number,com.mycompany.test.*

Warning: Defining this property overwrites the default value, so do not forget to keep the de-
fault excluded classes (unless you knowwhat you are doing).

Internals

JavaScript Sources Processing

The JavaScript code is not executeddirectly, it is first translated in Java code and compiledwith
the Java application code. This transpilation is done by the JavaScript Add-On Processor. This
processor uses theOpenJDKNashorn library (extracted from jre1.8.0_92) to parse the Javascript
files.

The operations performed by this processor are summarized in this diagram:

5.14. Libraries 666

MicroEJ Documentation, Revision 32bb132e

• Parsing: all JavaScript source files located in the folder src/main/js and src/test/js are
parsed by the Nashorn library to provide a JavaScript AST.

• JS Validation: validation on the JavaScript AST to detect unsupported language features (for
example eval).

• Conversion preparation: before actually converting the JavaScript AST to a Java AST, a prepa-
ration operation is done to initialize all the lexical environments (done by JsIrVisitor).

• Conversion: conversion of the JavaScript AST to a Java AST.

• Java AST cleanup/optim: post-conversion step to cleanup and optimize the Java AST. The fol-
lowing operations are done: - fix imports - remove dead code - remove literal statements

• Java sources generation: generation of the Java sources from the Java AST.

Foreign Function Interface

As said in the section Calling Java from JavaScript, a JavaScript code can manipulate Java ob-
jects and call methods on Java objects. This chapter describes how does the call to methods
on Java objets work.

Let getValue() a Java method called from JavaScript on a Java object. As long as the type
of the object is not known at compile-time in the JavaScript code, all the types containing
a method with the same signature are searched in the classpath. Then the JavaScript pre-
processor generates a JsFfi class and a method that dynamically tries to find the type of the
receiver object. So, when the getValue() method is called from JavaScript, this generated
method is called.

Warning: Calling a method whose name is very common could result in a delay while calling
it, and some useless methods embedded.

This example shares a Java Date of the current time:

JsRuntime.JS_GLOBAL_
→˓OBJECT.put("getCurrentDate", JsRuntime.createFunction(new JsClosure() {

@Override
public Object invoke(Object thisBinding, Object... arguments) {

return Calendar.getInstance().getTime();
}

}), false);

The JavaScript can then use this Date to print the current time:

var date = getCurrentDate()
var time = date.getTime()
print("Current time: ", time)

In this case, the generated method in JsFfi looks like:

5.14. Libraries 667

MicroEJ Documentation, Revision 32bb132e

public static Object␣
→˓ffi_getTime_0(Object function, @ej.annotation.Nullable Object this_) {

try {
if (this_ instanceof JsObject || this_ instanceof String)

␣
→˓ return JsRuntime.functionCall(((Reference) function).getValue(), this_);

if (this_ instanceof Calendar) {
return ((Calendar) this_).getTime();

}
if (this_ instanceof Date) {

return new Double(((Date) this_).getTime());
}

} catch (JsErrorWrapper e) {
throw e;

} catch (Throwable t) {
throw new JsErrorWrapper(new JsObjectError.TypeError(

→˓"A Java exception has been thrown in generated FFI code of getTime"), t);
}
throw new JsErrorWrapper(new JsObjectError.TypeError("getTime"));

}

5.15 Development Tools

5.15.1 Event Tracing

Description

Event Tracing allows to record integer based events for debugging and monitoring purposes
without a�ecting execution performance too heavily. Basically, it gives access to Tracer ob-
jects that are named and can produce a limited number of di�erent event types.

A record is an event type identified by an eventID and can have a list of values. It can be a
single event or a period of time with a start and an end.

Event Tracing can be accessed from two APIs:

• A Java API, provided by the Trace APImodule. The following dependencymust be added to the
build file of the MicroEJ Application project:

Gradle (build.gradle.kts)

MMM (module.ivy)

implementation("ej.api:trace:1.1.0")

<dependency org="ej.api" name="trace" rev="1.1.0"/>

• A C API, provided by the Platform header file named LLTRACE_impl.h .

5.15. Development Tools 668

https://repository.microej.com/modules/ej/api/trace/

MicroEJ Documentation, Revision 32bb132e

Event Recording

Events are recorded if and only if:

• the MicroEJ Core Engine trace system is enabled,

• and trace recording is started.

To enable the MicroEJ Core Engine trace system, set the Application Option named core.
trace.enabled to true (see also launch configuration).

Then, multiple ways are available to start and stop the trace recording:

• by setting the Application Option named core.trace.autostart to true to automatically
start at startup (see also launch configuration),

• using the Java API methods ej.trace.Tracer.startTrace() and ej.trace.Tracer.stopTrace(),

• using the C API functions LLTRACE_IMPL_start(void) and LLTRACE_IMPL_stop(void) .

Java API Usage

The detailed Trace API documentation is available here.

First, you need to instantiate a Tracer object by calling its constructor with two parameters.
The first parameter, name , is a String that will represent the Tracer object group’s name. The
second parameter, nbEventTypes , is an integer representing the maximum number of event
types available for the group.

Tracer tracer = new Tracer("MyGroup", 10);

Then, you can record an event by calling the recordEvent(int eventId) method. The event ID
needs to be in the range 0 to nbEventTypes-1 with nbEventTypes the maximum number
of event types set when initializing the Tracer object. Methods named recordEvent(...)
always needs the event ID as the first parameter and can have up to ten integer parameters as
custom values for the event.

To record the end of an event, call the method recordEventEnd(int eventID). It will trace the
durationofaneventpreviously recordedwithoneof the recordEvent(int eventID)methods. The
recordEventEnd(...) method can also have another integer parameter for a customvalue for
the event end. One can use it to trace the returned value of a method.

The Trace API also provides a String constant Tracer.TRACE_ENABLED_CONSTANT_PROPERTY
representing the Constant value of core.trace.enabled option. This constant can be used to
remove at build time portions of code when the trace system is disabled. To do that, just sur-
round tracer record callswith a if statement that checks the constant’s state. When the constant
is set to false , the code inside the if statementwill not be embeddedwith the application and
thus will not impact the performances.

if(Constants.getBoolean(Tracer.TRACE_ENABLED_CONSTANT_PROPERTY)) {
// This␣

→˓code is not embedded if TRACE_ENABLED_CONSTANT_PROPERTY is set to false.
tracer.recordEventEnd(0);

}

Examples:

• Trace a single event:

5.15. Development Tools 669

https://repository.microej.com/javadoc/microej_5.x/apis/ej/trace/Tracer.html#startTrace--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/trace/Tracer.html#stopTrace--
https://repository.microej.com/javadoc/microej_5.x/foundation/ej/trace/Tracer.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/trace/Tracer.html#recordEvent-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/trace/Tracer.html#recordEventEnd-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/trace/Tracer.html#recordEvent-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/trace/Tracer.html#TRACE_ENABLED_CONSTANT_PROPERTY

MicroEJ Documentation, Revision 32bb132e

private static final Tracer tracer = new Tracer("Application", 100);

public static void main(String[] args) {
Tracer.startTrace();
tracer.recordEvent(0);

}

Standard Output:

VM START
[TRACE] [1] Declare group "Application"
[TRACE] [1] Event 0x0

• Trace a method with a start event showing the parameters of the method and an end event
showing the result:

private static final Tracer tracer = new Tracer("Application", 100);

public static void main(String[] args) {
Tracer.startTrace();
int a = 14;
int b = 54;
add(a, b);

}

public static int add(int a, int b) {
tracer.recordEvent(1, a, b);
int result = a + b;
tracer.recordEventEnd(1, result);
return result;

}

Standard Output:

VM START
[TRACE] [1] Declare group "Application"
[TRACE] [1] Event 0x1 (14 [0xE],54 [0x36])
[TRACE] [1] Event End 0x1 (68 [0x44])

Platform Implementation

By default, when enabled, the Trace API displays a message in the standard output for every
recordEvent(...) and recordEventEnd(...) method calls.

It does not print a timestamp when displaying the trace message because it can drastically af-
fect execution performances. It only prints the ID of the recorded event followed by the values
given in parameters.

A Platform can connect its own implementation by overriding the functions defined in the
LLTRACE_impl.h file.

MicroEJ Corp. provides an implementation that redirects the events to SystemView tool, the
real-time recording and visualization tool from Segger. It is perfect for a finer understanding of
the runtime behavior by showing events sequence and duration.

5.15. Development Tools 670

https://www.segger.com/

MicroEJ Documentation, Revision 32bb132e

A implementation example for theNXPOM13098development boardwith SystemView support
is available here.

Please contact our support team for more information about how to integrate this Platform
module.

Advanced Event Tracing

Method invocation can be profiled.

Note: This feature requires Architecture version 7.17.0 or higher and is only available on MicroEJ Core Engine,
not on Simulator.

MicroEJ Corp. provides an implementation on Linux targets to profile an Application and gen-
erate a flamegraph for the Trace Compass tool.

Please contact our support team for more information about how to generate flamegraph.

5.15.2 VEE Debugger Proxy

Principle

The VEE debugger proxy is an implementation of the Java Debug Wire protocol (JDWP) for
debugging Applications executed by MICROEJ VEE. It consists of a TCP server implementing
the JDWP protocol and acting as a proxy between the IDE (debugger) and the Executable (de-
buggee) running on the device.

The debugger proxy allows a postmortem debug from a snapshot of the memory (core dump
file for Linux/QNX targets and Intel Hex file for MCU targets) of a running Executable binary.

Fig. 44: Debugger Proxy Principle

5.15. Development Tools 671

https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc54000-cortex-m4-/lpcxpresso54628-development-board:OM13098
https://developer.microej.com/packages/referenceimplementations/U3OER/2.0.1/OM13098-U3OER-fullPackaging-eval-2.0.1.zip
https://www.eclipse.org/tracecompass/

MicroEJ Documentation, Revision 32bb132e

Warning: The snapshot of the memory (core dump or Intel Hex files) should only be
generated when the Core Engine task is stopped on one of the Core Engine hooks (
LLMJVM_on_OutOfMemoryError_thrown , LLMJVM_on_Runtime_gc_done etc.) or in a native
function. Otherwise, the Core Engine memory dump is not guarranted to be consistent, which
may cause the VEE Debugger to crash abruptly.

Note: This feature requires Architecture version 8.1.0 or higher and works for both Mono-Sandbox and Multi-
Sandbox Executables.

Please contact our support team to get the VEE Debugger Proxy tool
microej-debugger-proxy.jar compatible with your Architecture version.

Debugging Executable for Linux or QNX target

In order to debug an Executable for Linux or QNX target, you need to dump the memory of the
running Executable and then run the VEE Debugger Proxy.

For Linux and QNX target, the memory dumpmust be a core dump file.

Generate a Core Dump File using GDB

Open a shell terminal on the device and enter the following commands:

Instruct the Linux kernel to Dump file-backed private mappings.
echo 0x37 > /proc/self/coredump_filter
Start GDB
gdb ./application.out

The following GDB script can be used to generate a core dump file:

• when the signal SIGUSR1 is received

• or when an out of memory error occurs

• or when an explicit garbage collection (GC) is done.

You can run the script directly in the GDB console.

From GBD documentation:
generate-core-file [file]
Produce a core dump of the inferior process.
The␣
→˓optional argument file specifies the file name where to put the core dump.
If not specified,␣
→˓the file name defaults to 'core.pid', where pid is the inferior process ID.

Generate a core dump when the signal SIGUSR1 is received
catch signal SIGUSR1
commands
silent
generate-core-file

(continues on next page)

5.15. Development Tools 672

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

cont
end

Generate a core dump when an out of memory error occurs
break LLMJVM_on_OutOfMemoryError_thrown
commands
silent
generate-core-file
cont
end

Generate a core dump when an explicit garbage collection (GC) is done
break LLMJVM_on_Runtime_gc_done
commands
silent
generate-core-file
cont
end

Starts executing the Mono-Sandbox Executable under GDB:

In the GDB console:
run

A core dump file will be generated once the Executable reach one of the breaking conditions
described previously.

Run the VEE Debugger Proxy

Open a shell terminal on your workstation and run the following command:

java -DveePortDir=<path to VEE Port directory> \
-Ddebugger.port=<8000> \
-Ddebugger.out.path=<path to the Executable file (application.out)> \
-Ddebugger.features.out.path=<comma-

→˓separated list of the Feature files with debug information (*.fodbg files).
→˓ To be used if you want to debug an installed Sandboxed Application> \

-Ddebugger.out.coredump.path=<path to the core dump file> \
-jar microej-debugger-proxy.jar

Open the SDK and run a Remote Java Application Launch to debug your code.

5.15. Development Tools 673

MicroEJ Documentation, Revision 32bb132e

Debugging Executable for MCU target

The VEE Debugger Proxy for MCU target requires a memory dump of the running Executable in
Intel Hex format. It provides a tool to generate a script for IAR (IAR8 or IAR9) or GDB debugger,
that contains the needed commands to dump the requiredmemory regions in Intel Hex format.

Generate VEEmemory dump script for IAR (IAR8 or IAR9) or GDB debugger

Open a shell terminal on your workstation and run the following command:

java -DveePortDir=<path to VEE Port directory> \
-Ddebugger.out.path=<path to the Executable file (application.out)> \
-cp microej-debugger-proxy.jar com.microej.jdwp.VeeDebuggerCli \
--debugger=IAR8|IAR9|GDB \
--output=<Output directory where the script file will be generated>

A script file named vee-memory-dump.mac (for IAR) or vee-memory-dump.gdb (for GDB) is gen-
erated into the specified output directory.

You can now use this script to dump the memory of the running Executable.

Dump thememory of the running Executable

With IAR Debugger

Note: Youmust use a version of IAR Workbench for which the vee-memory-dump.mac script file is generated.

A script file generated for IAR8 will not work on IAR Workbench 9.x.x and vice versa.

In IAR Embedded Workbench:

• Register the generated vee-memory-dump.mac script file in the debugger project option:

1. Open the Debugger Project optionwindowby clicking on Project > Options... > Debugger
> Setup

2. Check the option Use macro file(s) and browse to the generated vee-memory-dump.mac
file.

3. Click on OK to confirm.

5.15. Development Tools 674

MicroEJ Documentation, Revision 32bb132e

Fig. 45: IAR Debugger Project Option

• Add the macro dumpMemories() as an action expression to a code breakpoint:

1. Open IAR Breakpoints window by clicking on View > Breakpoints

2. Right click on IAR Breakpoints window and select New Breakpoint > Code

3. In the Expression text field, enter dumpMemories() and click on OK

5.15. Development Tools 675

MicroEJ Documentation, Revision 32bb132e

Fig. 46: IAR Breakpoint editor

When the IAR Debugger hits the specified breakpoint, the dumpMemories() macro function is
executed and the memory is dumped into *.hex files.

The *.hex files are generated in the same directory as the vee-memory-dump.mac file.

5.15. Development Tools 676

MicroEJ Documentation, Revision 32bb132e

With GNU Debugger (GDB)

In your GDB console:

• Create a breakpoint at a specific safe point (Core Engine hooks or native function)

E.g. Add breakpoint at LLMJVM_on_Runtime_gc_done hook
break LLMJVM_on_Runtime_gc_done
run

• When the running Executable stops at the Breakpoint, run the vee-memory-dump.gdb script
file to dump the memory.

E.g. Run the GDB memory dump script
source [/path/to]/vee-memory-dump.gdb

The memory is dumped into *.hex files in the same directory as the vee-memory-dump.gdb
file.

Start the VEE Debugger Proxy

Open a shell terminal on your workstation and run the following command:

java -DveePortDir=<path to VEE Port directory> \
-Ddebugger.port=<8000> \
-Ddebugger.out.path=<path to the Executable file (application.out)> \
-Ddebugger.features.out.path=<comma-

→˓separated list of the Feature files with debug information (*.fodbg files).
→˓ To be used if you want to debug an installed Sandboxed Application> \

-Ddebugger.out.hex.path=<comma-separated list of the memory dump files␣
→˓in Intel Hex format or a single file containg all the dumped memory> \

-jar microej-debugger-proxy.jar

Open the SDK and run a Remote Java Application Launch to debug your code.

Note: If you havemultiple *.hex files generated in the previous step, you can if youwantmerge them into a single
*.hex file.

It will be easier to use a single *.hex file than multiple files in the Debugger Proxy command
line.

You can run the following shell script to merge all the *.hex files into a single file called all.
hex for example.

Make sure to move to the directory where *.hex files are generated before running the script.

• OnWindows workstation

set ALL_HEX="all.hex"
rem delete all.hex file if it exists
if exist "%ALL_HEX%" (del /f %ALL_HEX%)
rem merge all the *.hex files
copy /b *.hex %ALL_HEX%

• On Linux workstation

5.15. Development Tools 677

MicroEJ Documentation, Revision 32bb132e

#!/usr/bin/bash
ALL_HEX="all.hex"
#delete all.hex file if it exists
test -f $ALL_HEX && rm $ALL_HEX
#merge all the *.hex files
cat *.hex > $ALL_HEX

Now, use this single all.hex file as value to theDebugger Proxy option -Ddebugger.out.hex.
path

VEE Debugger Proxy Options Summary

• veePortDir: Thepath to the VEEPort directory (must point to the source folder of the VEEPort.).

• debugger.port: The TCP server port, defaults to 8000 .

• debugger.out.path: The Path to the Executable file to debug (application.out).

• debugger.features.out.path: comma-separated list of the Feature files with debug informa-
tion (*.fodbg files). This option must be used if you want to debug an installed Sandboxed
Application. In this case, note that the specifiedExecutable in debugger.out.path optionmust
be the Multi-Sandbox Executable.

• debugger.out.coredump.path: The Path to the core dump file (conflict with debug-
ger.out.hex.path option).

• debugger.out.hex.path: The Path to the memory dump files in Intel Hex format (conflict with
debugger.out.coredump.path option). If you have multiple Intel Hex files, you can either
merge them into a single file or list them with a comma separator, such as [/path/to]/
java_heap.hex,[/path/to]/java_stacks.hex,[/path/to]/vm_instance.hex .

Troubleshooting

You may encounter some command line issues if you try to run the proxy on Windows Power-
shell.

On Windows workstation, we recommend using CMD Command Prompt instead.

5.15.3 Dependency Discoverer

Introduction

DependencyDiscoverer is a tool that lists unresolveddependencies (types,methods and fields)
of a set of Java ARchive (JAR) files and .class files. It is a versatile tool and can be used in other
contexts, for instance, to list every dependency of a JAR file.

It can be used through a command-line interface, with the possibility to output the result in
JSON or XML format, allowing an easy scripting process.

5.15. Development Tools 678

MicroEJ Documentation, Revision 32bb132e

Installation

This tool is available at https://github.com/MicroEJ/Tool-ApiDependencyDiscoverer. A JARand
Windows executable version can be downloaded from the release page. It is also possible to
clone and import the project in the SDK and use it from sources.

Use

For usage information, see https://github.com/MicroEJ/Tool-ApiDependencyDiscoverer/blob/
master/README.md.

5.15.4 MicroEJ Linker

Overview

MicroEJ Linker is a standard linker that is compliant with the Executable and Linkable File for-
mat (ELF).

MicroEJ Linker takes one or several relocatable binary files and generates an image represen-
tation using a description file. The process of extracting binary code, positioning blocks and
resolving symbols is called linking.

Relocatable object files are generated by SOAR and third-party compilers. An archive file is a
container of Relocatable object files.

The description file is called a Linker Specific Configuration file (lsc). It describes what shall be
embedded, and how those things shall be organized in the program image. The linker outputs
:

• An ELF executable file that contains the image and potential debug sections. This file can be di-
rectly used by debuggers or programming tools. Itmay also be converted into a another format
(Intel* hex, Motorola* s19, rawBinary, etc.) using external tools, such as standard GNU binutils
toolchain (objcopy, objdump, etc.).

• Amap file, in XML format, which can be viewed as a database of what has been embedded and
resolved by the linker. It can be easily processed to get a sort of all sizes, call graphs, statistics,
etc.

• The linker is composedwith one ormore library loaders, according to the platform’s configura-
tion.

ELF Overview

An ELF relocatable file is split into several sections:

• allocation sections representing a part of the program

• control sections describing the binary sections (relocation sections, symbol tables, debug sec-
tions, etc.)

An allocation section can hold some image binary bytes (assembler instructions and raw data)
or can refer to an interval of memory which makes sense only at runtime (statics, main stack,
heap, etc.). An allocation section is an atomic block and cannot be split. A section has a name
that by convention, represents the kind of data it holds. For example, .text sections hold
binary instructions, .bss sections hold read-write static data, .rodata hold read-only data,

5.15. Development Tools 679

https://github.com/MicroEJ/Tool-ApiDependencyDiscoverer
https://github.com/MicroEJ/Tool-ApiDependencyDiscoverer/blob/master/README.md
https://github.com/MicroEJ/Tool-ApiDependencyDiscoverer/blob/master/README.md

MicroEJ Documentation, Revision 32bb132e

and .data holds read-write data (initialized static data). The name is used in the .lsc file to
organize sections.

A symbol is an entity made of a name and a value. A symbol may be absolute (link-time con-
stant) or relative to a section: Its value is unknownuntil MicroEJ Linker has assigned adefinitive
position to the target section. A symbol can be local to the relocatable file or global to the sys-
tem. All global symbol names shouldbeunique in the system (thename is the key that connects
an unresolved symbol reference to a symbol definition). A section may need the value of sym-
bols to be fully resolved: the address of a function called, address of a static variable, etc.

Linking Process

The linking process can be divided into three main steps:

1. Symbols and sections resolution. Starting from root symbols and root sections, the linker em-
beds all sections targeted by symbols and all symbols referred by sections. This process is tran-
sitive while new symbols and/or sections are found. At the end of this step, the linker may stop
and output errors (unresolved symbols, duplicate symbols, unknown or bad input libraries,
etc.)

2. Memory positioning. Sections are laid out in memory ranges according tomemory layout con-
straints described by the lsc file. Relocations are performed (in other words, symbol values are
resolved and section contents are modified). At the end of this step, the linker may stop and
output errors (it could not resolve constraints, such as not enoughmemory, etc.)

3. An output ELF executable file andmap file are generated.

A partialmap filemaybe generated at the endof step 2. It provides useful information to under-
standwhy the link phase failed. Symbol resolution is the process of connecting a global symbol
name to its definition, found in one of the linker input units. The order the units are passed to
the linker may have an impact on symbol resolution. The rules are :

• Relocatable object files are loaded without order. Two global symbols defined with the same
name result in an unrecoverable linker error.

• Archive files are loadedondemand. Whenaglobal symbolmust be resolved, the linker inspects
eacharchiveunit in theorder itwaspassed to the linker. Whenanarchive contains a relocatable
object file that declares the symbol, the object file is extracted and loaded. Then the first rule is
applied. It is recommended that you group object files in archives asmuch as possible, in order
to improve load performances. Moreover, archive files are the only way to tie with relocatable
object files that share the same symbols definitions.

• A symbol name is resolved to a weak symbol if - and only if - no global symbol is foundwith the
same name.

Linker Specific Configuration File Specification

Description

A Linker Specific Configuration (Lsc) file contains directives to link input library units. An lsc file
is written in an XML dialect, and its contents can be divided into two principal categories:

• Symbols and sections definitions.

• Memory layout definitions.

5.15. Development Tools 680

MicroEJ Documentation, Revision 32bb132e

Listing 10: Example of Relocation of Runtime Data from FLASH to RAM

<?xml version="1.0" encoding="UTF-8"?>
<!--

An example of linker specific configuration file
-->
<lsc name="MyAppInFlash">

<include name="subfile.lscf"/>
<!--

Define symbols with arithmetical and logical expressions
-->
<defSymbol name="FlashStart" value="0"/>
<defSymbol name="FlashSize" value="0x10000"/>
<defSymbol name="FlashEnd" value="FlashStart+FlashSize-1"/>
<!--

Define FLASH memory interval
-->
<defSection name="FLASH" start="FlashStart" size="FlashSize"/>

<!--
Some memory layout directives

-->
<memoryLayout ranges ="FLASH">

<sectionRef name ="*.text"/>
<sectionRef name ="*.data"/>

</memoryLayout>
</lsc>

File Fragments

An lsc file can be physically divided into multiple lsc files, which are called lsc fragments. Lsc
fragments may be loaded directly from the linker path option, or indirectly using the include
tag in an lsc file.

Lsc fragments start with the root tag lscFragment . By convention the lsc fragments file exten-
sion is .lscf . From here to the end of the document, the expression “the lsc file” denotes the
result of the union of all loaded (directly and indirectly loaded) lsc fragments files.

Symbols and Sections

A new symbol is defined using defSymbol tag. A symbol has a name and an expression value.
All symbols defined in the lsc file are global symbols.

A new section is defined using the defSection tag. A sectionmay be used to define amemory
interval, or define a chunk of the final imagewith the description of the contents of the section.

5.15. Development Tools 681

MicroEJ Documentation, Revision 32bb132e

Memory Layout

A memory layout contains an ordered set of statements describing what shall be embedded.
Memory positioning can be viewed as moving a cursor into intervals, appending referenced
sections in the order they appear. A symbol can be defined as a “floating” item: Its value is the
value of the cursorwhen the symbol definition is encountered. In the example below, themem-
ory layout sets the FLASH section. First, all sections named .text are embedded. Thematch-
ing sections are appended inaundefinedorder. To referencea specific section, the section shall
have a unique name (for example a reset vector is commonly called .reset or .vector , etc.).
Then, the floating symbol dataStart is set to the absolute address of the virtual cursor right

a�er embedded .text sections. Finally all sections named .data are embedded.

Amemory layout can be relocated to amemory interval. The positioning works in parallel with
the layout ranges, as if there were two cursors. The address of the section (used to resolve
symbols) is the address in the relocated interval. Floating symbols can refer either to the layout
cursor (by default), or to the relocated cursor, using the relocation attribute. A relocation
layout is typically used to embed data in a program image that will be used at runtime in a
read-write memory. Assuming the program image is programmed in a read only memory, one
of the first jobs at runtime, before starting themain program, is to copy the data from read-only
memory to RAM , because the symbols targeting the data have been resolved with the address

of the sections in the relocated space. To perform the copy, the program needs both the start address in FLASH
where the data has been put, and the start address in RAM where the data shall be copied.

Listing 11: Example of Relocation of Runtime Data from FLASH to RAM

<memoryLayout ranges="FLASH" relocation="RAM" image="true">
<defSymbol name="DataFlashStart" value="."/>
<defSymbol name="DataRamStart" value=" ." relocation="true"/>
<sectionRef name=".data"/>
<defSymbol name="DataFlashLimit" value="."/>

</memoryLayout>

Note: the symbol DataRamStart is defined to the start address where .data sections will be inserted in RAM
memory.

Tags Specification

Here is the complete syntactical and semantical description of all available tags of the .lsc
file.

Table 22: Linker Specific Configuration Tags
Tags Attributes Description
defSection Defines a new section. A floating section only holds a declared size

attribute. A fixed section declares at least one of the start / end at-
tributes. When this tag is empty, the section is a runtime section, and
must define at least one of the start , end or size attributes. When
this tag is not empty (when it holds a binary description), the section
is an image section.

continues on next page

5.15. Development Tools 682

MicroEJ Documentation, Revision 32bb132e

Table 22 – continued from previous page
Tags Attributes Description

name Name of the section. The section name may not be unique. However,
it is recommended that you define a unique name if the section must
be referred separately for memory positioning.

start Optional. Expression defining the absolute start address of the sec-
tion. Must be resolved to a constant a�er the full load of the lsc file.

end Optional. Expression defining the absolute end address of the section.
Must be resolved to a constant a�er the full load of the lsc file.

size Optional. Expression defining the size in bytes of the section. Invari-
ant: (end-start)+1=size . Must be resolved to a constant a�er the
full load of the lsc file.

align Optional. Expression defining the alignment in bytes of the section.
rootSection Optional. Boolean value. Sets this section as a root section to be em-

bedded even if it is not targeted by any embedded symbol. See also
rootSection tag.

symbolPrefix Optional. Used in collaboration with symbolTags . Prefix of symbols
embedded in the auto-generated section. See Auto-generated Sec-
tions.

symbolTags Optional. Used in collaboration with symbolPrefix . Comma sepa-
rated list of tags of symbols embedded in the auto-generated section.
See Auto-generated Sections.

defSymbol Defines a new global symbol. Symbol name must be unique in the
linker context

name Name of the symbol.
type Optional. Type of symbol usage. Thismay be necessary to set the type

of a symbol when using third party ELF tools. There are three types: -
none : default. No special type of use. - function : symbol describes
a function. - data : symbol describes some data.

value The value "." defines a floating symbol that holds the current cur-
sor position in a memory layout. (This is the only form of this tag that
can be used as a memoryLayout directive) Otherwise value is an ex-
pression. A symbol expression must be resolved to a constant a�er
memory positioning.

relocation Optional. The only allowed value is true . Indicates that the value
of the symbol takes the address of the current cursor in the memory
layout relocation space. Only allowed on floating symbols.

rootSymbol Optional. Boolean value. Sets this symbol as a root symbol that must
be resolved. See also rootSymbol tag.

weak Optional. Boolean value. Sets this symbol as a weak symbol.
group memoryLayout directive. Defines a named group of sections. Group

namemay be used in expressionmacros START , END , SIZE . All mem-
oryLayout directives are allowed within this tag (recursively).

name The name of the group.
include Includes an lsc fragment file, semantically the same as if the fragment

contents were defined in place of the include tag.
name Name of the file to include. When the name is relative, the file sepa-

rator is / , and the file is relative to the directory where the current
lsc file or fragment is loaded. When absolute, the name describes a
platform-dependent filename.

lsc Root tag for an .lsc file.
name Name of the lsc file. The ELF executable output will be {name}.out ,

and the map file will be {name}.map

continues on next page

5.15. Development Tools 683

MicroEJ Documentation, Revision 32bb132e

Table 22 – continued from previous page
Tags Attributes Description
lscFragment Root tag for an lsc file fragment. Lsc fragments are loaded from the

linker path option, or included from a master file using the include
tag.

memoryLayout Describes the organization of a set of memory intervals. The memory
layouts are processed in the order in which they are declared in the
file. The same interval may be organized in several layouts. Each lay-
out starts at the value of the cursor the previous layout ended. The fol-
lowing tags are allowedwithin amemoryLayout directive: defSymbol
(under certain conditions), group , memoryLayoutRef , padding , and
sectionRef .

ranges Exclusivewithdefault. Comma-separatedordered list of fixed sections
to which the layout is applied. Sections represent memory segments.

image Optional. Boolean value. false if not set. If true , the layout de-
scribes a part of the binary image: Only image sections can be embed-
ded. If false , only runtime sections can be embedded.

relocation Optional. Name of the section to which this layout is relocated.
name Exclusive with ranges. Defines a named memoryLayout directive in-

stead of specifying a concrete memory location. May be included in a
parent memoryLayout using memoryLayoutRef.

memoryLayoutRef memoryLayout directive. Provides an extension-point mechanism to
include memoryLayout directives defined outside the current one.

name All directives of memoryLayout defined with the same name are in-
cluded in an undefined order.

padding memoryLayout directive. Append padding bytes to the current cursor.
Either size or align attributes should be provided.

size Optional. Expressionmust be resolved to a constant a�er the full load
of the lsc file. Increment the cursor position with the given size.

align Optional. Expressionmust be resolved to a constant a�er the full load
of the lsc file. Move the current cursor position to thenext address that
matches the given alignment. Warning: when used with relocation,
the relocation cursor is also aligned. Keep in mind this may increase
the cursor position with a di�erent amount of bytes.

address Optional. Expressionmust be resolved to a constant a�er the full load
of the lsc file. Move the current cursor position to the given absolute
address.

fill Optional. Expressionmust be resolved to a constant a�er the full load
of the lsc file. Fill padding with the given value (32 bits).

rootSection References a section name that must be embedded. This tag is not a
definition. It forces the linker to embed all loaded sections matching
the given name.

name Name of the section to be embedded.
rootSymbol References a symbol thatmust be resolved. This tag is not a definition.

It forces the linker to resolve the value of the symbol.
name Name of the symbol to be resolved.

sectionRef Memory layout statement. Embeds all sections matching the given
name starting at the current cursor address.

file Select only sections defined in a linker unit matching the given file
name. The file name is the simple namewithout any file separator, e.g.
bsp.o or mylink.lsc . Link units may be object files within archive
units.

continues on next page

5.15. Development Tools 684

MicroEJ Documentation, Revision 32bb132e

Table 22 – continued from previous page
Tags Attributes Description

name Name of the sections to embed. When the name ends with *, all sec-
tions starting with the given name are embedded (name completion),
except sections that are embedded in another sectionRef using the ex-
act name (without completion).

symbol Optional. Only embeds the section targeted by the given symbol. This
is the only way at link level to embed a specific section whose name is
not unique.

force Optional. Deprecated. Replaced by the rootSection tag. The only
allowed value is true . By default, for compaction, the linker embeds
only what is needed. Setting this attribute will force the linker to em-
bed all sections that appear in all loaded relocatable files, even sec-
tions that are not targeted by a symbol.

sort Optional. Specifies that the sections must be sorted in memory. The
value can be: - order : the sections will be in the same order as the
input files - name : the sections are sorted by their file names - unit
: the sections declared in an object file are grouped and sorted in the
order they are declared in the object file

u4 Binary section statement. Describes the four next raw bytes of the
section. Bytes are organized in the endianness of the target ELF ex-
ecutable.

value Expression must be resolved to a constant a�er the full load of the lsc
file (32 bits value).

fill Binary section statement. Fills the section with the given expression.
Bytes are organized in the endianness of the target ELF executable.

size Expression defining the number of bytes to be filled.
value Expression must be resolved to a constant a�er the full load of the lsc

file (32 bits value).

Expressions

An attribute expression is a value resulting from the computation of an arithmetical and logical
expression. Supported operators are the same operators supported in the Java language, and
follow Java semantics:

• Unary operators: + , - , ~ , !

• Binary operators: + , - , * , / , % , << , >>> , >> , < , > , <= , >= , == , !=
, &, | , ^ , && , ||

• Ternary operator: cond ? ifTrue : ifFalse

• Built-in macros:

– START(name) : Get the start address of a section or a group of sections

– END(name) : Get the end address of a section or a group of sections

– SIZE(name) : Get the size of a section or a group of sections. Equivalent to
END(name)-START(name)

– TSTAMPH() , TSTAMPL() : Get 32 bits linker time stamp (high/low part of system time in mil-
liseconds)

– SUM(name,tag) : Get the sum of an auto-generated section (Auto-generated Sections) column.
The column is specified by its tag name.

5.15. Development Tools 685

MicroEJ Documentation, Revision 32bb132e

An operand is either a sub expression, a constant, or a symbol name. Constantsmay bewritten
in decimal (127) or hexadecimal form (0x7F). There are no boolean constants. Constant value
0 means false , and other constants’ values mean true . Examples of use:

value="symbol+3"
value="((symbol1*4)-(symbol2*3)"

Note: Ternary expressions can be used to define selective linking because they are the only
expressions that may remain partially unresolved without generating an error. Example:

<defSymbol name="myFunction" value="condition ? symb1 : symb2"/>

No error will be thrown if the condition is true and symb1 is defined, or the condition is false
and symb2 is defined, even if the other symbol is undefined.

Auto-generated Sections

The MicroEJ Linker allows you to define sections that are automatically generated with sym-
bol values. This is commonly used to generate tables whose contents depends on the linked
symbols. Symbols eligible to be embedded in an auto-generated section are of the form:
prefix_tag_suffix . An auto-generated section is viewed as a table composed of lines and
columns that organize symbols sharing the same prefix. On the same column appear sym-
bols that share the same tag. On the same line appear symbols that share the same su�ix.
Lines are sorted in the lexical order of the symbol name. The next line defines a section which
will embed symbols starting with zeroinit . The first column refers to symbols starting with

zeroinit_start_ ; the second column refers to symbols starting with zeroinit_end_ .

<defSection
name=".zeroinit"
symbolPrefix="zeroInit"
symbolTags="start,end"

/>

Consider there are four defined symbols named zeroinit_start_xxx , zeroinit_end_xxx ,
zeroinit_start_yyy and zeroinit_end_yyy . The generated section is of the form:

0x00: zeroinit_start_xxx
0x04: zeroinit_end_xxx
0x08: zeroinit_start_yyy
0x0C: zeroinit_end_yyy

If there are missing symbols to fill a line of an auto-generated section, an error is thrown.

Execution

MicroEJ Linker can be invoked through an ANT task. The task is installed by inserting the fol-
lowing code in an ANT script

<taskdef
name="linker"
classname="com.is2t.linker.GenericLinkerTask"
classpath="[LINKER_CLASSPATH]"

/>

5.15. Development Tools 686

MicroEJ Documentation, Revision 32bb132e

[LINKER_CLASSPATH] is a list of path-separated jar files, including the linker and all
architecture-specific library loaders.

The following code shows a linker ANT task invocation and available options.

<linker
doNotLoadAlreadyDefinedSymbol="[true|false]"
endianness="[little|big|none]"
generateMapFile="[true|false]"
ignoreWrongPositioningForEmptySection="[true|false]"
lsc="[filename]"
linkPath="[path1:...pathN]"
mergeSegmentSections="[true|false]"
noWarning="[true|false]"
outputArchitecture="[tag]"
outputName="[name]"
stripDebug="[true|false]"
toDir="[outputDir]"
verboseLevel="[0...9]"

>
<!-- ELF object & archives files using ANT paths / filesets -->
<fileset dir="xxx" includes="*.o">
<fileset file="xxx.a">
<fileset file="xxx.a">

<!-- Properties that will be reported into .map file -->
<property name="myProp" value="myValue"/>

</linker>

5.15. Development Tools 687

MicroEJ Documentation, Revision 32bb132e

Table 23: Linker Options Details
Option Description
doNotLoadAlreadyDefinedSymbol Silently skip the load of a global symbol if it has already

been loaded before. (false by default. Only the first
loaded symbol is taken into account (in the order input
files are declared). This option only a�ects the load se-
mantic for global symbols, and does not modify the se-
mantic for loading weak symbols and local symbols.

endianness Explicitly declare linker endianness [little, big] or
[none] for auto-detection. All input files must declare
the same endianness or an error is thrown.

generateMapFile Generate the .map file (true by default).
ignoreWrongPositioningForEmptySection Silently ignore wrong section positioning for zero size

sections. (false by default).
lsc Provideamaster lsc file. Thisoption ismandatoryunless

the linkPath option is set.
linkPath Provide a set of directories into which to load link file

fragments. Directories are separated with a platform-
path separator. This option ismandatory unless the lsc
option is set.

noWarning Silently skip the output of warning messages.
mergeSegmentSections (experimental). Generate a single section per segment.

Thismay speed up the load of the output executable file
into debuggers or flasher tools. (false by default).

outputArchitecture Set the architecture tag for the output ELF file (ELF ma-
chine id).

outputName Specify the output name of the generated files. By de-
fault, take the name provided in the lsc tag. The output
ELF executable filenamewill be name.out. Themap file-
name will be name.map.

stripDebug Remove all debug information from the output ELF file.
A stripped output ELF executable holds only the binary
image (no remaining symbols, debug sections, etc.).

toDir Specify the output directory in which to store generated
files. Output filenames are in the form: od + separator
+ value of the lsc name attribute + suffix .
By default, without this option, files are generated in the
directory fromwhich the linker was launched.

verboseLevel Print additionalmessages on the standard output about
linking process.

Error Messages

This section lists MicroEJ Linker error messages.

Table 24: Linker-Specific Configuration Tags
Message ID Description
0 The linker has encountered an unexpected internal error. Please contact the support hot-

line.
1 A library cannot be loaded with this linker. Try verbose to check installed loaders.

continues on next page

5.15. Development Tools 688

MicroEJ Documentation, Revision 32bb132e

Table 24 – continued from previous page
2 No lsc file provided to the linker.
3 A file could not be loaded. Check the existence of the file and file access rights.
4 Conflicting input libraries. Aglobal symboldefinitionwith thesamenamehasalreadybeen

loaded from a previous object file.
5 Completion (*) could not be used in association with the force attribute. Must be an exact

name.
6 A required section refers to an unknown global symbol. Maybe input libraries are missing.
7 A library loader has encountered an unexpected internal error. Check input library file in-

tegrity.
8 Floating symbols can only be declared inside memoryLayout tags.
9 Invalid value format. For example, the attribute relocation in defSymbol must be a

boolean value.
10 Missing one of the following attributes: address , size , align .
11 Toomany attributes that cannot be used in association.
13 Negative padding. Memory layout cursor cannot decrease.
15 Not enough space in the memory layout intervals to append all sections that need to be

embedded. Check the output map file to get more information about what is required as
memory space.

16 A block is referenced but has already been embedded. Most likely a block has been espe-
cially embedded using the force attribute and the symbol attribute.

17 A block that must be embedded has nomatching sectionRef statement.
19 An IO error occurred when trying to dump one of the output files. Check the output direc-

tory option and file access rights.
20 size attribute expected.
21 The computed size does not match the declared size.
22 Sections defined in the lsc file must be unique.
23 One of the memory layout intervals refers to an unknown lsc section.
24 Relocation must be done in one and only one contiguous interval.
25 force and symbol attributes are not allowed together.
26 XML char data not allowed at this position in the lsc file.
27 A section which is a part of the program image must be embedded in an image memory

layout.
28 A section which is not a part of the program image must be embedded in a non-image

memory layout.
29 Expression could not be resolved to a link-time constant. Some symbols are unresolved.
30 Sections used in memory layout ranges must be sections defined in the lsc file.
31 Invalid character encountered when scanning the lsc expression.
32 A recursive include cycle was detected.
33 An alignment inconsistency was detected in a relocation memory layout. Most likely one

of the start addresses of the memory layout is not aligned on the current alignment.
34 An error occurs in a relocation resolution. In general, the relocation has a value that is out

of range.
35 symbol and sort attributes are not allowed together.
36 Invalid sort attribute value is not one of order , name , or no .
37 Attribute start or end in defSection tag is not allowedwhendefining a floating section.
38 Autogenerated section can build tables according to symbol names (see Auto-generated

Sections). A symbol is needed to build this section but has not been loaded.
39 Deprecated featurewarning. Remains for backward compatibility. It is recommended that

you use the new indicated feature, because this feature may be removed in future linker
releases.

continues on next page

5.15. Development Tools 689

MicroEJ Documentation, Revision 32bb132e

Table 24 – continued from previous page
40 Unknownoutput architecture. Either the architecture ID is invalid, or the library loader has

not been loaded by the linker. Check loaded library loaders using verbose option.
41. . .43 Reserved.
44 Duplicate group definition. A group name is unique and cannot be defined twice.
45 Invalid endianness. The endianness mnemonic is not one of the expected mnemonics (

little,big,none).
46 Multiple endiannesses detected within loaded input libraries.
47 Reserved.
48 Invalid type mnemonic passed to a defSymbol tag. Must be one of none , function , or

data .
49 Warning. A directory of link path is invalid (skipped).
50 No linker-specific description file could be loaded from the link path. Check that the link

path directories are valid, and that they contain .lsc or .lscf files.
51 Exclusive options (these options cannot be used simultaneously). For example,

-linkFilename and -linkPath are exclusive; either select amaster lsc file or a path from
which to load .lscf files.

52 Name given to a memoryLayoutRef or a memoryLayout is invalid. It must not be empty.
53 A memoryLayoutRef with the same name has already been processed.
54 A memoryLayout must define ranges or the name attribute.
55 Nomemory layout foundmatching the name of the current memoryLayoutRef .
56 A named memoryLayout is declaredwith a relocation directive, but the relocation interval

is incompatible with the relocation interval of the memoryLayout that referenced it.
57 A named memoryLayout has not been referenced. Every declared memoryLayout must

be processed. A named memoryLayout must be referenced by a memoryLayoutRef state-
ment.

58 SUM operator expects an auto-generated section.
59 SUM operator tag is unknown for the targetted auto-generated section.
60 SUM operator auto-generated section name is unknown.
61 An option is set for an unknown extension. Most likely the extension has not been set to

the linker classpath.
62 Reserved.
63 ELF unit flags are inconsistent with flags set using the -forceFlags option.
64 Reserved.
65 Reserved.
66 Found an executable object file as input (expected a relocatable object file).
67 Reserved.
68 Reserved.
69 Reserved.
70 Not enough memory to achieve the linking process. Try to increase JVM heap that is run-

ning the linker (e.g. by adding option -Xmx1024M to the JRE command line).

Map File Interpretor

Themap file interpretor is a tool that allows you to read, classify and displaymemory informa-
tiondumpedby the linkermap file. Themap file interpretor is a graph-oriented tool. It supports
graphs of symbols and allows standard operations on them (union, intersection, subtract, etc.).
It can also dump graphs, compute graph total sizes, list graph paths, etc.

The map file interpretor uses the standard Java regular expression syntax.

It is used internally by the graphicalMemory Map Analyzer tool.

Commands:

5.15. Development Tools 690

MicroEJ Documentation, Revision 32bb132e

• createGraph graphName symbolRegExp ... section=regexp

createGraph all section=.*

Recursively create a graph of symbols from root symbols and sections described as regular ex-
pressions. For example, to extract the complete graph of the application:

• createGraphNoRec symbolRegExp ... section=regexp

The above line is similar to the previous statement, but embeds only declared symbols and
sections (without recursive connections).

• removeGraph graphName

Removes the graph for memory.

• listGraphs

Lists all the created graphs in memory.

• listSymbols graphName

Lists all graph symbols.

• listPadding

Lists the padding of the application.

• listSections graphName

Lists all sections targeted by all symbols of the graph.

• inter graphResult g1 ... gn

Creates a graph which is the intersection of g1/\ ... /\gn .

• union graphResult g1 ... gn

Creates a graph which is the union of g1\/ ...\/ gn .

• substract graphResult g1 ... gn

Creates a graph which is the substract of g1\ ... \ gn .

• reportConnections graphName

Prints the graph connections.

• totalImageSize graphName

Prints the image size of the graph.

• totalDynamicSize graphName

Prints the dynamic size of the graph.

5.15. Development Tools 691

MicroEJ Documentation, Revision 32bb132e

• accessPath symbolName

The above line prints one of the paths from a root symbol to this symbol. This is very useful in
helping you understand why a symbol is embedded.

• echo arguments

Prints raw text.

• exec commandFile

Execute the given commandFile. The path may be absolute or relative from the current com-
mand file.

5.15.5 MicroEJ Test Suite Engine

Introduction

The MicroEJ Test Suite Engine is a generic tool made for validating any development project
using automatic testing.

This section details advanced configuration for users who wish to integrate custom test suites
in their build flow.

The MicroEJ Test Suite Engine allows the user to test any kind of projects within the configura-
tion of a generic Ant file.

The MicroEJ Test Suite Engine is already pre-configured for running test suites on a MicroEJ
Platform (either on Simulator or on Device).

5.15. Development Tools 692

MicroEJ Documentation, Revision 32bb132e

• For Application and Libraries, refer to Test Suite with JUnit section.

• For Foundation Libraries Test Suites, refer to VEE Port Test Suite section.

Using the MicroEJ Test Suite Ant Tasks

Multiple Ant tasks are available in the testsuite-engine.jar provided in the Build Kit:

• testsuite allows the user to run a given test suite and to retrieve an XML report document in
a JUnit format.

• javaTestsuite is a subtask of the testsuite task, used to run a specialized test suite for Java
(will only run Java classes).

• htmlReport is a task which will generate an HTML report from a list of JUnit report files.

The testsuite Task

The following attributes are mandatory:

Table 25: testsuite task mandatory attributes
Attribute Name Description
outputDir The output folder of the test suite. The final report will be generated at [outputDir]/

[label]/[reportName].xml , see the testsuiteReportFileProperty and
testsuiteReportDirProperty attributes.

harnessScript The harness script must be an Ant script and it is the script which will be called for each test
by the test suite engine. It is called with a basedir located at output location of the current
test.

The test suite engine provides the following properties to the harness script giving all the infor-
mations to start the test:

Table 26: harnessScript properties
Attribute Name Description

testsuite.
test.name

The output name of the current test in the report. Default value is the relative path of the
test. It can bemanually set by the user. More details on the output name are available in the
section Specific Custom Properties.

testsuite.
test.path

The current test absolute path in the filesystem.

testsuite.
test.
properties

The absolute path to the custom properties of the current test (see the property
customPropertiesExtension)

testsuite.
common.
properties

The absolute path to the common properties of all the tests (see the property
commonProperties)

testsuite.
report.dir

The absolute path to the directory of the final report.

The following attributes are optional:

5.15. Development Tools 693

MicroEJ Documentation, Revision 32bb132e

Table 27: testsuite task optional attributes
Attribute
Name

Description Default value

timeOut The time in seconds before any test is considerated as un-
known. Set it to 0 to disable the time-out.

60

verboseLevelThe required level to output messages from the test suite.
Can be one of those values: error , warning , info ,
verbose , debug .

info

reportNameThe final report name (without extension). testsuite-report
customPropertiesExtensionThe extension of the custom properties for each test. For in-

stance, if it is set to .options , a test named xxx/Test1.
class will be associated with xxx/Test1.options . If a file
exists for a test, the property testsuite.test.properties
is set with its absolute path and given to the harnessScript
. If the test path references a directory, then the custom
properties path is the concatenation of the test path and the
customPropertiesExtension value.

.properties

commonPropertiesThe properties to apply to every test of the test suite. Those
options might be overridden by the custom properties of
each test. If this option is set and the file exists, the prop-
erty testsuite.common.properties is set to the absolute
path of the harnessScript file.

no common properties

label The build label. timestamp of when the test suite
was invoked.

productNameThe name of the current tested product. TestSuite
jvm The location of your Java VM to start the test suite (the

harnessScript is called as is: [jvm] [...] -buildfile
[harnessScript]).

java.home location if the property
is set, java otherwise.

jvmargs The arguments to pass to the Java VM started for each test. None.
testsuiteReportFilePropertyThe name of the Ant property in which the path of the

final report is stored. Path is [outputDir]/[label]/
[reportName].xml

testsuite.report.file

testsuiteReportDirPropertyThenameof the Ant property inwhich is store the path of the
directory of the final report. Path is [outputDir]/[label] .

testsuite.report.dir

testsuiteResultPropertyThe name of the Ant property in which you want to have the
result of the test suite (true or false), depending if every
tests successfully passed the test suite or not. Ignored tests
do not a�ect this result.

None

Finally, you have to give as nested element the path containing the tests.

Table 28: testsuite task nested elements
Element Name Description
testPath Containing all the file of the tests which will be launched by the test suite.
testIgnoredPath
(optional)

Any test in the intersection between testIgnoredPath and testPath will be executed by
the test suite, but will not appear in the JUnit final report. It will still generate a JUnit re-
port for each test, which will allow the HTML report to let them appears as “ignored” if it is
generated. Mostly used for known bugs which are not considered as failure but still relevant
enough to appears on the HTML report.

5.15. Development Tools 694

MicroEJ Documentation, Revision 32bb132e

Listing 12: Example of test suite task invocation

<!-- Launch the testusite engine -->
<testsuite:testsuite

timeOut="${microej.kf.testsuite.timeout}"
outputDir="${target.test.xml}/testkf"
harnessScript="${com.is2t.easyant.plugins

→˓#microej-kf-testsuite.microej-kf-testsuite-harness-jpf-emb.xml.file}"
commonProperties="${microej.kf.launch.propertyfile}"
testsuiteResultProperty="testkf.result"
testsuiteReportDirProperty="testkf.testsuite.report.dir"
productName="${module.name} testkf"
jvmArgs="${microej.kf.testsuite.jvmArgs}"
lockPort="${microej.kf.testsuite.lockPort}"
verboseLevel="${testkf.verbose.level}"

>
<testPath refid="target.testkf.path"/>

</testsuite:testsuite>

The javaTestsuite Task

This task extends the testsuite task, specializing the test suite to only start real Java class.
This task retrieves the classname of the tests from the classfile and provides new properties to
the harness script:

Table 29: javaTestsuite task properties
Property Name Description

testsuite.
test.class

The classname of the current test. The value of the property testsuite.test.name is also
set to the classname of the current test.

testsuite.
test.
classpath

The classpath of the current test.

Listing 13: Example of javaTestsuite task invocation

<!-- Launch test suite -->
<testsuite:javaTestsuite

verboseLevel="${microej.testsuite.verboseLevel}"
timeOut="${microej.testsuite.timeout}"
outputDir="${target.test.xml}/@{prefix}"
harnessScript="${harness.file}"
commonProperties="${microej.launch.propertyfile}"
testsuiteResultProperty="@{prefix}.result"
testsuiteReportDirProperty="@{prefix}.testsuite.report.dir"
productName="${module.name} @{prefix}"
jvmArgs="${microej.testsuite.jvmArgs}"
lockPort="${microej.testsuite.lockPort}"
retryCount="${microej.testsuite.retry.count}"
retryIf="${microej.testsuite.retry.if}"
retryUnless="${microej.testsuite.retry.unless}"

(continues on next page)

5.15. Development Tools 695

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

>
<testPath refid="target.@{prefix}.path"/>
<testIgnoredPath refid="tests.@{prefix}.ignored.path" />

</testsuite:javaTestsuite>

The htmlReport Task

This task allow the user to transform a given path containing a sample of JUnit reports to an
HTML detailed report. Here is the attributes to fill:

• A nested fileset element containing all the JUnit reports of each test. Take care to exclude
the final JUnit report generated by the test suite.

• A nested element report :

– format : The format of the generated HTML report. Must be noframes or frames . When
noframes format is choosen, a standalone HTML file is generated.

– todir : The output folder of your HTML report.

– The report tag accepts the nested tag param with name and expression attributes. These
tags can pass XSL parameters to the stylesheet. The built-in stylesheets support the following
parameters:

* PRODUCT : the product name that is displayed in the title of the HTML report.

* TITLE : the comment that is displayed in the title of the HTML report.

Note: It is advised to set the format to noframes if your test suite is not a Java test suite. If the format is set to
frames , with a non-JavaMicroEJ Test Suite, the nameof the linkswill not be relevant because of the non-existency
of packages.

5.15. Development Tools 696

MicroEJ Documentation, Revision 32bb132e

Listing 14: Example of htmlReport task invocation

<!-- Generate HTML report -->
<testsuite:htmlReport>

<fileset dir="${@{prefix}.testsuite.report.dir}">
<include name="**/*.xml"/> <!-- include unary reports -->
<exclude name="**/bin/**/*.xml"/> <!-- exclude test bin files -->
<exclude name="*.xml"/> <!-- exclude global report -->

</fileset>
<report format="noframes" todir="${target.test.html}/@{prefix}"/>

</testsuite:htmlReport>

Using the Trace Analyzer

This sectionwill shortly explainshowtouse the Trace Analyzer . TheMicroEJTestSuite comes
with an archive containing the Trace Analyzer which can be used to analyze the output trace
of an application. It can be used from di�erent forms;

• The FileTraceAnalyzer will analyze a file and research for the given tags, failing if the success
tag is not found.

• The SerialTraceAnalyzer will analyze the data from a serial connection.

The TraceAnalyzer Tasks Options

Here is the common options to all TraceAnalyzer tasks:

• successTag : the regular expression which is synonym of success when found (by default .
PASSED.).

• failureTag : the regular expression which is synonym of failure when found (by default .
FAILED.).

• verboseLevel : int value between 0 and 9 to define the verbose level.

• waitingTimeAfterSuccess : waiting time (in s) a�er success before closing the stream (by
default 5).

• noActivityTimeout : timeout (in s) with no activity on the stream before closing the stream.
Set it to 0 to disable timeout (default value is 0).

• stopEOFReached : boolean value. Set to true to stop analyzing when input stream EOF is
reached. If false , continue until timeout is reached (by default false).

• onlyPrintableCharacters : boolean value. Set to true to only dump ASCII printable charac-
ters (by default false).

5.15. Development Tools 697

MicroEJ Documentation, Revision 32bb132e

The FileTraceAnalyzer Task Options

Here is the specific options of the FileTraceAnalyzer task:

• traceFile : path to the file to analyze.

The SerialTraceAnalyzer Task Options

Here is the specific options of the SerialTraceAnalyzer task:

• port : the comm port to open.

• baudrate : serial baudrate (by default 9600).

• databits : databits (5|6|7|8) (by default 8).

• stopBits : stopbits (0|1|3 for (1_5)) (by default 1).

• parity : none | odd | event (by default none).

Appendix

The goal of this section is to explain some tips and tricks that might be useful in your usage of
the test suite engine.

Specific Custom Properties

Some custom properties are specifics and retrieved from the test suite engine in the custom
properties file of a test.

• The testsuite.test.name property is the output name of the current test. Here are the steps
to compute the output name of a test:

– If the custom properties are enabled and a property named testsuite.test.name is find on
the corresponding file, then the output name of the current test will be set to it.

– Otherwise, if the running MicroEJ Test Suite is a Java test suite, the output name is set to the
class name of the test.

– Otherwise, from the path containing all the tests, a commonprefixwill be retrieved. The output
namewill be set to the relative path of the current test from this commonprefix. If the common
prefix equals the name of the test, then the output name will be set to the name of the test.

– Finally, if multiples tests have the same output name, then the current name will be followed
by _XXX , an underscore and an integer.

• The testsuite.test.timeout property allow the user to redefine the time out for each test.
If it is negative or not an integer, then global timeout defined for the MicroEJ Test Suite is used.

5.15. Development Tools 698

MicroEJ Documentation, Revision 32bb132e

5.15.6 Heap Usage Monitoring

Introduction

When building a Standalone Application, the Java heap sizemust be specified as an Application
Option (see Option(text): Java heap size (in bytes)). The value to set in this option depends on
the maximum heap usage, and the developer can estimate it by running the application.

TheCoreEngineprovides a JavaAPI to introspect theheapusageat runtime. Additionally, heap
usage monitoring can be enabled to compute the maximum heap usage automatically.

Here are the descriptions of the di�erent notions related to heap usage:

• Heap:memory area used to store the objects allocated by the application.

• Heap Size: current size of the heap.

• MaximumHeap Size:maximum size of the heap. The heap size cannot exceed this value. See
Option(text): Java heap size (in bytes).

• Heap Usage: the amount of the heap currently being used to store alive objects.

• Garbage Collector (GC): amemory manager in charge of recycling unused objects to increase
free memory.

Fig. 47: Heap Structure Summary

The Java class java.lang.Runtime defines the following methods:

• gc(): Runs the garbage collector. System.gc() is an alternative means of invoking this method.

• freeMemory(): Returns the amount of free memory in the heap. This value does not include
unused objects eligible for garbage collection. Calling the gc() methodmay result in increasing
the value returned by this method.

• totalMemory(): Returns the current size of the heap. The value returned by this method may
vary over time.

• maxMemory(): Returns the maximum size of the heap.

5.15. Development Tools 699

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#gc--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#gc--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#freeMemory--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#gc--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#totalMemory--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#maxMemory--

MicroEJ Documentation, Revision 32bb132e

Heap Usage Introspection

Themethods provided by the Runtime class allow introspecting the heap usage by comparing
the heap size and the freememory size. A garbage collectionmust be executed before comput-
ing the heap usage to recycle all the unused objects and count only alive objects.

The application can compute the current heap usage by executing the following code:

Runtime runtime = Runtime.getRuntime(); // get Runtime instance
runtime.gc(); // Ensure unused objects are recycled
long heapUsage = runtime.totalMemory() - runtime.freeMemory();

This example gives the heap usage at a given point but not the maximum heap usage of the
application.

Note: When heap usage monitoring is disabled, the heap size is fixed, and so totalMemory() and maxMemory()
return the same value.

Automatic Heap Usage Monitoring

Themaximumheap usage of an application’s execution can be computed automatically by en-
abling heap usage monitoring.

Note: This feature is available in the Architecture versions 7.16.0 or higher for the Applications deployed on hard-
ware devices (not on Simulator).

When this option is activated, an initial size for the heapmust be specified, and the Core Engine
increases the heap size dynamically. The value returned by totalMemory() is the current heap
size. maxMemory() returns themaximum size of the heap. A call to gc() decreases the heap size
to the higher value of either the heap usage or the initial heap size.

At any moment, totalMemory() returns the maximum heap usage of the current execution (as-
suming the maximum heap usage is higher than the initial heap size, and gc() has not been
called).

See the sectionOption(checkbox): Enable Javaheapusagemonitoring to enable this option and
configure the initial heap size.

Even if the heap size can vary during time, a memory section of maxMemory() bytes is allo-
cated at link time or during the Core Engine startup. No dynamic allocation is performed when
increasing the heap size.

Warning: A small initial heap size will impact the performances as the GC will be executed
every time the heap size needs to be increased.

Furthermore, the smaller the heap size is, the more frequent the GC will occur. This feature
should be used only for heap usage benchmarking.

5.15. Development Tools 700

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#totalMemory--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#maxMemory--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#totalMemory--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#maxMemory--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#gc--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#totalMemory--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#gc--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#maxMemory--

MicroEJ Documentation, Revision 32bb132e

Heap Usage Analysis

To analyze heap usage and see what objects are alive in the application, use the Heap Dumper
& Heap Analyzer tools (on SDK 6, on SDK 5).

5.15. Development Tools 701

CHAPTER

SIX

VEE PORTING GUIDE

6.1 Introduction

6.1.1 Scope

This document explains how the core features of MicroEJ Architecture are accessed, configured and used by the
MicroEJ Platform builder. It describes the process for creating and augmenting a MicroEJ Architecture. This doc-
ument is concise but attempts to be exact and complete. Semantics of implemented Foundation Libraries are
described in their respective specifications. This document includes an outline of the required low level drivers
(LLAPI) for porting the MicroEJ Architectures to di�erent real-time operating systems (RTOS).

MicroEJ Architecture is state-of-the-art, with embedded MicroEJ runtimes for MCUs. They also provide simulated
runtimes that execute on workstations to allow so�ware development on “virtual hardware.”

6.1.2 Intended Audience

The audience for this document is so�ware engineers who need to understand how to create and configure a Mi-
croEJ Platform using the MicroEJ Platform builder. This document also explains how a MicroEJ Application can
interoperate with C code on the target, and the details of the MicroEJ Architecture modules, including their APIs,
error codes and options.

6.2 MicroEJ Platform

6.2.1 Introduction

A MicroEJ Platform includes development tools and a runtime environment.

The runtime environment consists of:

• A MicroEJ Core Engine.

• Some Foundation Libraries.

• Some C libraries.

The development tools are composed of:

• Java APIs to compile MicroEJ Application code.

• Documentation: this guide, library specifications, etc.

• Tools for development and compilation.

702

MicroEJ Documentation, Revision 32bb132e

• Launch scripts to run the simulation or build the binary file.

• Eclipse plugins.

6.2.2 Build Process

This section summarizes the steps required to build a MicroEJ Platform and obtain a binary file to deploy on a
board.

The following figure shows the overall process. The first three steps are performed within the MicroEJ Platform
builder. The remaining steps are performed within the C IDE.

Fig. 1: Overall Process

6.2. MicroEJ Platform 703

MicroEJ Documentation, Revision 32bb132e

The steps are as follow:

1. Create a new MicroEJ Platform configuration project. This project describes the MicroEJ Platform to build
(MicroEJ Architecture, metadata, etc.).

2. Select which modules provided by the MicroEJ Architecture will be installed in the MicroEJ Platform.

3. Build the MicroEJ Platform according to the choices made in steps 1 and 2.

4. Compile a MicroEJ Application against the MicroEJ Platform in order to obtain an application file to link in
the BSP.

5. Compile the BSP and link it with the MicroEJ Application that was built previously in step 4 to produce a
MicroEJ Firmware.

6. Final step: Deploy MicroEJ Firmware (i.e. the binary application) onto a board.

6.2.3 Concepts

MicroEJ Platform Configuration

A MicroEJ Platform is described by a .platform file. This file is usually called [name].platform , and is stored at
the root of a MicroEJ Platform configuration project called [name]-configuration .

The configuration file is recognized by the MicroEJ Platform builder. The MicroEJ Platform builder o�ers a visual-
ization with two tabs:

6.2. MicroEJ Platform 704

MicroEJ Documentation, Revision 32bb132e

Fig. 2: MicroEJ Platform Configuration Overview Tab

This tab groups the basic platform information used to identify it: its name, its version, etc. These tags can be
updated at any time.

6.2. MicroEJ Platform 705

MicroEJ Documentation, Revision 32bb132e

Fig. 3: MicroEJ Platform Configuration Content Tab

This tab shows all additional modules (see Modules) which can be installed into the platform in order to augment
its features. The modules are sorted by groups and by functionality. When amodule is checked, it will be installed
into the platform during the platform creation.

Modules

The primary mechanism for augmenting the capabilities of a Platform is to addmodules to it.

A MicroEJ module is a group of related files (Foundation Libraries, scripts, link files, C libraries, Simulator, tools,
etc.) that together provide all or part of a platform capability. Generally, these files serve a common purpose. For
example, providing an API, or providing a library implementation with its associated tools.

The list of modules is in the second tab of the platform configuration tab. A module may require a configuration
step to be installed into the platform. The Modules Detail view indicates if a configuration file is required.

6.2. MicroEJ Platform 706

MicroEJ Documentation, Revision 32bb132e

Low Level API Pattern

Principle

Each time the user has to supply the C code that links a platform component to the target hardware, a Low Level
API is defined. There is a standard pattern for the definition and implementation of these APIs. Each interface has
a name and is specified by two header files:

• [INTERFACE_NAME].h specifies the functions that make up the public API of the implementation. In some
cases the user code will never act as a client of the API, and so will never use this file.

• [INTERFACE_NAME]_impl.h specifies the functions that must be coded by the user in the implementation.

The user creates implementations of the interfaces, each captured in a separate C source file. In the simplest form
of this pattern, only one implementation is permitted, as shown in the illustration below.

Fig. 4: Low Level API Pattern (single implementation)

The following figure shows a concrete example of an LLAPI. The Cworld (the board support package) has to imple-
ment a send function andmust notify the library using a receive function.

6.2. MicroEJ Platform 707

MicroEJ Documentation, Revision 32bb132e

Fig. 5: Low Level API Example

Multiple Implementations and Instances

When a Low Level API allows multiple implementations, each implementation must have a unique name. At run-
time there may be one or more instances of each implementation, and each instance is represented by a data
structure that holds information about the instance. The address of this structure is the handle to the instance,
and that address is passed as the first parameter of every call to the implementation.

The illustration below shows this form of the pattern, but with only a single instance of a single implementation.

6.2. MicroEJ Platform 708

MicroEJ Documentation, Revision 32bb132e

Fig. 6: Low Level API Pattern (multiple implementations/instances)

The #define statement in MYIMPL.c specifies the name given to this implementation.

6.3 MicroEJ Architecture

MicroEJ Architecture features the MicroEJ Core Engine built for a specific instructions set (ISA) and compiler.

The MicroEJ Core Engine is a tiny and fast runtime associated with a Scheduler and a Garbage Collector.

MicroEJ Architecture provides implementations of the following Foundation Libraries :

• Embedded Device Configuration (see [EDC]).

• Beyond Profile (see [BON]).

• Simple Native Interface (see [SNI]).

• Kernel & Features (see [KF]).

• Shielded Plug (see [SP]).

The following figure shows the components involved.

6.3. MicroEJ Architecture 709

MicroEJ Documentation, Revision 32bb132e

Fig. 7: MicroEJ Architecture Modules

Three Low Level APIs allow the MicroEJ Architecture to link with (and port to) external code, such as any kind of
RTOS or legacy C libraries:

• Simple Native Interface (see [SNI])

• Low Level MicroEJ Core Engine (see LLMJVM)

• Low Level Shielded Plug (see LLSP)

For further information on Architecture installation and releases, you can check these chapters:

6.3.1 Naming Convention

MicroEJ Architecture files endswith the .xpf extension, and are classified using the following naming convention:

com/microej/architecture/[ISA]/[TOOLCHAIN]/[UID]/[VERSION]/[UID]-[VERSION]-[USAGE].xpf

• ISA : instruction set architecture (e.g. CM4 for Arm® Cortex®-M4, ESP32 for Espressif ESP32, . . .).

• TOOLCHAIN : C compilation toolchain (e.g. CM4hardfp_GCC48).

• UID : Architecture unique ID (e.g. flopi4G25).

• VERSION : module version (e.g. 7.12.0).

• USAGE = eval for evaluation Architectures, prod for production Architectures.

For example, MicroEJ Architecture versions for Arm® Cortex®-M4 microcontrollers compiled with GNU CC
toolchain are available at https://repository.microej.com/modules/com/microej/architecture/CM4/CM4hardfp_
GCC48/flopi4G25/.

6.3. MicroEJ Architecture 710

https://repository.microej.com/modules/com/microej/architecture/CM4/CM4hardfp_GCC48/flopi4G25/
https://repository.microej.com/modules/com/microej/architecture/CM4/CM4hardfp_GCC48/flopi4G25/

MicroEJ Documentation, Revision 32bb132e

See Platform Configuration for usage.

6.3.2 Architectures Changelog

Notation

A line prefixed by [] describes a change that only applies on a specific configuration: [Core Engine Capability/
Instruction Set/C Compiler] :

• Core Engine Capability

– Mono : Mono-Sandbox (default)

– Tiny : Tiny-Sandbox

– Multi : Multi-Sandbox

• Instruction Set

– ARM9 : ARM ARM9

– Cortex-A : ARM Cortex-A

– Cortex-M : ARM Cortex-M

– ESP32 : Espressif ESP32

– RX : Renesas RX

– x86 : Intel x86

• C Compilation Toolchain

– ARMCC5 : Keil ARMCC uVision v5. See also ARM Linker Specific Options.

– Clang : Clang

– GCC : GNU GCC Compiler. See also GNU LD Specific Options.

– IAR : IAR Embedded Workbench for ARM. See also IAR Linker Specific Options.

– QNX65 : BlackBerry QNX 6.5

– QNX70 : BlackBerry QNX 7.0

[8.1.0] - 2023-12-22

This Architecture version update introduces the following main features:

• Updated Feature installation flow to support Code chunks. A Feature can now be installed to ROM without
the need of the Code size in RAM.

• Support for debugging ASLR Executables

• Support for debugging MCU targets

• Support for debugging Multi-Sandbox Executables

• Updated the options to select the Core Engine capability. SeeMigrate Core Engine Capability Configuration.

– Added the VEE Port option com.microej.runtime.capability

– Removed the Multi Applications module from the platform configuration file

6.3. MicroEJ Architecture 711

MicroEJ Documentation, Revision 32bb132e

– Value of the BON constant com.microej.architecture.capability is now mono instead of single
when the Core Engine capability is Mono-Sandbox.

• Support of THALES Sentinel License Manager

• Added a default application for early-stage VEE Port integration without the need of a SDK license.

If you plan to migrate a VEE Port from Architecture 8.0.0 to Architecture 8.1.0 , consider the Architecture 8.0.0
Migration chapter.

Core Engine

• Added option com.microej.runtime.core.gc.markstack.levels.max to configure the maximum number of ele-
ments of the Garbage Collector’s mark stack.

• In sni.h , clarified the behavior of SNI_createVM() , SNI_startVM() , and SNI_destroyVM() when restart-
ing the Core Engine. See also the Core Engine implementation section.

• Fixedmissingdefault initializationof theoptions core.memory.javaheap.sizeand core.memory.immortal.size.

• [Multi] - Added a check when LLKERNEL_IMPL_getFeatureHandle() returns 0 . Corresponding error code
is LLKERNEL_FEATURE_INIT_ERROR_NULL_HANDLE .

• [Multi] - Removed Feature installation in RAM (legacy In-Place Installationmode). SeeMigrate Your LLKERNEL
Implementation.

• [Multi] - Updated Feature installation boot sequence: all Feature handles are now retrievedprior to initializing
them.

• [Multi] -UpdatedcheckofKernelUIDat thebeginningofKernel.install(java.io.InputStream), beforeallocating
Feature sections.

• [Multi] - Updated the specification for LLKERNEL_IMPL_allocateFeature() function to return the handle 0
if the Feature could not be allocated.

• [Multi] - Updated the specification for LLKERNEL_IMPL_getAllocatedFeaturesCount() function to ensure
that it returns a valid result at any time, even if it is only called by the Core Engine during startup.

• [Multi] - Updated the specifications for LLKERNEL_IMPL_getFeatureAddressRAM() and
LLKERNEL_IMPL_getFeatureAddressROM() functions to return NULL when an incorrect index is pro-
vided. This change is only for LLKERNEL TCK purposes, as the Core Engine only invokes thesemethods with
valid indices.

• [Multi] - Added an option to enable RAM Control at VEE Port build (disabled by default).

Foundation Libraries

• Fixed, in BON , ResourceBu�er.readString() which does not increment correctly the position in the bu�er.

• Fixed, in BON , -1 returned by ResourceBu�er.available() instead of 0 when the end of the bu�er is reached.

• Fixed, in BON , invalid value returned by ResourceBu�er.available() on the Simulator.

• Fixed, in BON , potential crash when calling ResourceBu�er.close() several times on a ResourceBuffer
loaded with the External Resources Loader.

6.3. MicroEJ Architecture 712

https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#install-java.io.InputStream-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/ResourceBuffer.html#readString--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/ResourceBuffer.html#available--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/ResourceBuffer.html#available--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/ResourceBuffer.html#close--

MicroEJ Documentation, Revision 32bb132e

Integration

• Updated Architecture End User License Agreement to version SDK 3.1-B .

• Removedwarningmessages related tomissing KF optionswhen running the SOAR or the Simulator inMono-
Sandbox.

Simulator

• Added compatibility with IntelliJ IDEA IDE to debug applications.

• Addedmessage when waiting for a connection in debugmode.

• Fixed debugger verbose mode.

• Removed bootstrap thread from the debugger vision.

• Fixed debugger suspend count on threads handling.

• Fixed stop issue on static method entry breakpoint.

SOAR

• Fixed trimming of leading or trailing spaces in immutable strings

• [Multi] - Fixed integration of the bytecode verifier in Feature mode.

• [Multi] - Improved the errormessage thrownwhen no Feature definition file is found and displayed the class-
path to better guide developers in identifying potential causes.

Tools

• Updated SOAR and VMModel Readers

– Addedsupport to retrieve theCoreEnginememory regions (usedby theVEEDebuggerProxy togenerate
a memory dump script (see Generate VEEmemory dump script))

– Added an API to relink the SOARModel objects, i.e. change their associated addresses (used by the VEE
Debugger Proxy to support ASLR Executables debug)

– Added new APIs to load Kernel and Features SOAR Model objects (used by the VEE Debugger Proxy to
support Multi-Sandbox Executable debug)

• [ARMCC5] - Fixed SOARDebug Infos Post Linker tool to throwadedicated errorwhen the SOARobject file does
not contain the debug section.

• [Multi] - Fixed missing first null entry in the symbol table generated by the Firmware Stripper.

6.3. MicroEJ Architecture 713

MicroEJ Documentation, Revision 32bb132e

[8.0.0] - 2023-06-27

Note: This Architecture requires SDK version 5.7.0 or higher (see SDK Version).

This major Architecture version update introduces the following main features:

• Added compatibility with dynamic linkers enabling Address Space Layout Randomization (ASLR).

• Added Feature build on device. For that, the SOARhas been deeply redesigned and split intomultiple phases.
The most noticeable change is about the SOAR Information File that is now composed of 3 files.

• Added Feature portability. The same .fo file can now be installed:

– On any Executable built from the same Kernel Application (microejapp.o). The VEE Port C code can
bemodified and relinked without requiring to rebuild the .fo file anymore.

– On di�erent Kernel Applications provided some conditions are met. Basically, a .fo built on Kernel
1 can be installed on Kernel 2 if the exposed Kernel APIs are le� unchanged. See Feature Portability
Control for more details.

• Redesigned Feature installation flow. A Feature can now be installed in any byte-addressable memory
mapped to the CPU’s address space, including ROM. For that, LLKERNEL Low Level APIs have been fully
rewritten. See Feature installation for more details. Former Feature installation in RAM is preserved and is
now called In-Place Installation. Former static Feature installed by the SDK (using the Firmware Linker tool)
is removed in favor of Feature persistency at boot.

If you plan tomigrate a VEE Port fromArchitecture 7.x to Architecture 8.x , consider the Architecture 7.x Migration
chapter.

Core Engine

• Renamed Core Engine sections to fully respect the ELF standard naming convention.

• Removed check when passing a non-immortal array in SNI if VEE Port option core.sni.nonimmortal.
access was set to false .

• Removed LLBSP_isInReadOnlyMemory in Core Engine Abstraction Layer (LLBSP.h file).

• Clarified LLMJVM_IMPL_getCurrentTime API contract in Core Engine Abstraction Layer (LLMJVM_impl.h
file).

• Updated Trace C library from version 1.0.0 to 2.0.0 . SeeMigrate Trace C Library Usage.

– Renamed header file trace.h into LLTRACE.h to avoid filename conflicts.

– Renamed C functions TRACE_xxx into LLTRACE_xxx .

• Fixed potential crash when Core Engine is restarted a�er a call to System.exit(int).

• [Multi] - Added option com.microej.runtime.kernel.dynamicfeatures.max to configure the maximum number
of Features that can be dynamically installed.

• [Multi] - Added option com.microej.runtime.kf.waitstop.delay to configure the maximum time allowed for a
Feature to stop.

• [Multi] - Fixedmissing release of allocated Feature bu�ers a�er Core Engine exits (In-Place Installationmode).

6.3. MicroEJ Architecture 714

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#exit-int-

MicroEJ Documentation, Revision 32bb132e

Foundation Libraries

• Updated KF to version 1.7 :

– Added heap memory control: Module.getAllocatedMemory(), Kernel.setReservedMemory() and Fea-
ture.setMemoryLimit() methods.

– Added load of a Feature resource (Feature.getResourceAsStream() method).

• Updated KF dynamic loader to support the new Feature installation flow.

• Removed Foundation Libraries API Jars and Javadoc.

• Removed Unknown product - Unknown version comment in auto-generated Low Level API header files.

• Removed the Serial Communication modules group, including the Foundation Libraries ECOM and
ECOM-COMM . SeeMigrate ECOM-COMMModule.

• Removed the deprecated Device Information module group, including the Foundation Library Device .
SeeMigrate Device Module.

• Fixed Option(checkbox): Embed UTF-8 encoding defaults to true when building a Standalone Application
using MMM.

• Fixed KF to call the registeredThread.UncaughtExceptionHandlerwhenanexception is thrown in FeatureEn-
tryPoint.stop().

• Fixedunexpected java.lang.NullPointerException thrownby the skip methodof an InputStreamreturnedby
Class.getResourceAsStream(). This error only occurswith a resource loadedby the External Resource Loader.

• Fixed the behavior of available , read , skip , mark , reset and close methods of an InputStream
returned by Class.getResourceAsStream() and previously closed.

• Fixed the LLEXT_RES_read() Low Level API specification (the bu�er passed cannot be null).

• [Mono] Fixed an unexpected FeatureFinalizer exception or infinite loop when a Standalone Application
touches a KF API in some cases.

• [Tiny] Fixed an unexpected SOAR error when a Standalone Application touches a KF API.

• [Multi] Fixed exception thrown when calling Kernel.removeConverter().

• [Multi] Fixed an unexpected NullPointerException thrown by ej.kf.Kernel.<clinit> method in some
cases.

• [Multi] Fixed KF watchdogs not triggered correctly when several expire at the same time.

Integration

• Added support for resolving Front Panel in Workspace before the included Front Panel.

• Added Memory Map Scripts for Eclasspath Math , Formatter and DateFormat .

• Updated default value of VEE Port configuration option vendorURL .

• Updated Memory Map Scripts for MicroVG library.

• Updated Memory Map Scripts for Eclasspath Executor library.

• Updated output Map file location to soar/[application_main_class].map (formerly named SOAR.map).

• Removed unused SOAR.o file. It is available at bsp/microejapp.o .

• Renamed MicroEJ launch Build dynamic Feature to Build Feature .

6.3. MicroEJ Architecture 715

https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Module.html#getAllocatedMemory--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#setReservedMemory-long-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Feature.html#setMemoryLimit-long-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Feature.html#setMemoryLimit-long-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Feature.html#getResourceAsStream-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Thread.UncaughtExceptionHandler.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/FeatureEntryPoint.html#stop--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/FeatureEntryPoint.html#stop--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/NullPointerException.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#getResourceAsStream-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#getResourceAsStream-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#removeConverter-ej.kf.Converter-

MicroEJ Documentation, Revision 32bb132e

• [Multi] Fixed the SOARoutput files frombeingdeletedwhen the Clean intermediate files option is enabled.

Simulator

• AddedMock debugmode.

• Added missing default values for the properties s3.slow , console.logs.period , and s3.hil.timeout
when launching the Simulator from the command line.

• Added a check for unsupported access to the Class instance of a primitive type (e.g. byte.class).

• Added HIL Engine debug logs when verbose option is enabled.

• Added log of the Mock classpath when verbose option is enabled.

• Added log of Mock resolution errors (class or method not found).

• Added support for mark/reset on an InputStream returned by Class.getResourceAsStream().

• Fixed “Internal limits” error in HIL engine when toomany array arguments are used at the same time by one
or several native methods.

• Fixed slow readingwith anarray of bytes of the input stream returnedbyClass.getResourceAsStream(String).

• Fixed configuration of the Java heap size using Option(text): Java heap size (in bytes). The legacy core.
memory.javaheapsum.size option is not more supported.

• Fixed Option(text): Immortal heap size (in bytes) default value when running a Standalone Application using
MMM.

• Fixed stop of the HIL Engine if Simulator was terminated before the connection is established.

• Fixed load of the Mock classes in the classpath order (le�-to-right).

• Fixed the missing error check when loading an immutable file referencing an external object id (the
importObject directive is required).

• Fixed initialization of transparent images in the Front Panel when the initial color is not fully opaque. (intro-
duced in version 7.11.0)

• [Multi] Fixed the computation of object sizes. The 4-byte KF header was missing.

SOAR

• Added support for Resource alignment constraint.

• Added a check for legacy .system.properties files in the Application Classpath. The build process is
stopped and an error is reported. SeeMigrate Legacy System Properties Files.

• Added a check for unsupported access to the Class instance of a primitive type (e.g. byte.class).

6.3. MicroEJ Architecture 716

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#getResourceAsStream-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#getResourceAsStream-java.lang.String-

MicroEJ Documentation, Revision 32bb132e

Tools

• Updated the serial PC connector to JSSC 2.9.4 , including support for macOS aarch64 (M1 chip).

• Removed Test Suite Engine. If needed, the Test Suite Engine is available in the Build Kit.

• Removed Immutables NLS library. Use Binary NLS add-on library instead.

• Fixed an incorrect generation of a debug file beside the memory file when launching the Heap Dumper.

• [Multi] Added Heap Dumper support for dynamically installed Features.

[7.20.1] - 2023-04-10

Foundation Libraries

• Fixed Float.parseFloat(. . .) and Double.parseDouble(. . .) that don’t throw a NumberFormatException when
the given string is empty.

• Fixed float and double to string conversions that contain an unecessary + sign in the exponent.

[7.20.0] - 2023-04-04

Known Issues

• Float.parseFloat(. . .) and Double.parseDouble(. . .) don’t throw a NumberFormatException when the given
string is empty.

• Float and double to string conversions contain an unecessary + sign in the exponent.

Core Engine

• Added the capability to customize implementation of the function that performs an atomic exchange opera-
tion.

• [ESP32] - Remove default implementation of the function that performs an atomic exchange opera-
tion. The Core Engine abstraction layer implementation has to implement the C function int32_t
LLBSP_IMPL_atomic_exchange(int32_t* ptr, int32_t value) .

Foundation Libraries

• Fixed uninitialized pointer access in the External Resources Loader, which can cause a system crash when
reading data from a resource.

6.3. MicroEJ Architecture 717

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Float.html#parseFloat-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Double.html#parseDouble-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/NumberFormatException.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Float.html#parseFloat-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Double.html#parseDouble-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/NumberFormatException.html

MicroEJ Documentation, Revision 32bb132e

[7.19.0] - 2023-02-16

Known Issues

• Float.parseFloat(. . .) and Double.parseDouble(. . .) don’t throw a NumberFormatException when the given
string is empty.

• Float and double to string conversions contain an unecessary + sign in the exponent.

Core Engine

• Added thecapability to customize implementationof the functions that convert strings to float/double values
and vice-versa.

• [Cortex-A/Clang] - Fixed wrong float/double arguments passed to the SNI natives.

Tools

• Removed dependency on GNU ar program to create microejruntime.a archive file.

[7.18.1] - 2022-10-26

Integration

• Fixed License Manager issue with JDK 8u351 or higher ([M65] - License check failed [tampered (3)].
).

[7.18.0] - 2022-09-14

Integration

• Added support for Windows 11.

• Added License Manager support for macOS aarch64 (M1 chip).

• Removed warning when launching Applications or Tools with JDK 11 (Warning: Nashorn engine is planned to
be removed from a future JDK release).

SOAR

• Added grouping of all immutables objects in a single ELF section.

6.3. MicroEJ Architecture 718

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Float.html#parseFloat-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Double.html#parseDouble-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/NumberFormatException.html

MicroEJ Documentation, Revision 32bb132e

[7.17.0] - 2022-06-13

Core Engine

• Fixedpotential premature evaluation timeoutwhenCore Engine is not started at the same timeas thedevice.

• Fixedpotential crashduring the call of LLMJVM_dump whenprinting information about theGarbageCollector.

• Added new functions to Low Level API LLMJVM_MONITOR_impl.h (see Advanced Event Tracing):

– void LLMJVM_MONITOR_IMPL_on_invoke_method(void* method) : called by the Core Enginewhen an
method is invoked.

– void LLMJVM_MONITOR_IMPL_on_return_method(void* method) : called by the Core Engine when a
method returns.

• [Cortex-M] - Added support forMCU configurationwith unaligned access traps enabled (UNALIGN_TRP bit set
in CCR register).

Foundation Libraries

• Updated KF to version 1.6 :

– Added Kernel.canUninstall() method.

Integration

• Fixed some Architecture tools compatibility issues with SDKs running on JDK 11.

• Fixed missing default value for ShieldedPlug server port when running it with MMM (10082).

• Updated Memory Map Scripts for ej.microvg library.

• Updated Architecture End User License Agreement to version SDK 3.1-A .

Simulator

• Added class file major version check (<=51). Classes must be compiled for Java 7 or lower. Set the options
property S3.DisableClassFileVersionCheck to false to disable this verification.

• Added native method signature in the stack trace of the UnsatisfiedLinkError thrown when a native method
is missing.

• Fixed HIL engine method NativeInterface.getResourceContent() that generates a runtime error in the
Simulator.

• Fixed error “Internal limits reached . . . S3 internal heap is full” when repeatedly loading a resource that is
available in the classpath but not referenced in a .resources.list file.

• Fixed OutOfMemoryError when loading a large resource with Class.getResourceAsStream().

• Fixed A[].class.isAssignableFrom(B[].class) returning false instead of true when B is a subclass
of A .

• Fixed potential “Internal limits reached” error when an OutOfMemoryError is thrown.

• Fixed error “Cannot pin objects anymore” when passing repeatedly immutable objects to a native method.

6.3. MicroEJ Architecture 719

https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#canUninstall-ej.kf.Feature-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/UnsatisfiedLinkError.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/OutOfMemoryError.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#getResourceAsStream-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/OutOfMemoryError.html

MicroEJ Documentation, Revision 32bb132e

• Fixed properties not passed correctly to themocks when the Virtual Device is executed from a path that con-
tains spaces.

• [Multi] - Fixed an unexpected error when kernel.kf file is missing and KF library is used: “Please specify a
‘kernel.kf’ file to enable Kernel & Features semantics.”

• [Multi] - Fixed type double[] not recognized in kernel.api file.

SOAR

• Fixed internal error when using a BON constant in an if statement at the end of a try block.

• Fixed internal error when a try block ends with an assert expression while assertions are disabled.

• [Multi] - Raise a warning instead of an error when duplicated .kf files are detected in the Kernel classpath.
Usual classpath resolution order is used to load the file (seeMicroEJ Classpath).

• [Multi] - Fixed SOAR error when building a Feature that uses an array of basetypes that is not explicitly de-
clared in the kernel.api file of the Kernel.

• [Multi] - Optimized “Build Dynamic Feature” scripts speed by removing unnecessary steps.

[7.16.3] - 2022-04-06

Core Engine

• [Cortex-M/IAR] Fix unaligned stack pointer when calling SNI native functions in ARM IAR architectures.

[7.16.2] - 2021-11-10

Core Engine

• [Cortex-M/GCC/ARMCC5] Fix unaligned stack pointer when calling SNI native functions in ARM GCC and
ARMCC architectures with non-ASM Core Engines.

[7.16.1] - 2021-07-16

Core Engine

• [GCC] Fixedwrong inlined extern symbol access (a�ects only someGCC architectures until version 6.x). This
produces an unexpected java.lang.OutOfMemoryError: Stacks space exception at boot time.

[7.16.0] - 2021-06-24

Known Issues

• [Multi] - SOARmay fail to build a Feature with the following message:

1 : KERNEL/FEATURE ERROR
[M25] - Type double[] is expected to be owned by the Kernel but is not embedded.

Workaround is to explicitly declare each array of basetypes in your kernel.api file:

6.3. MicroEJ Architecture 720

MicroEJ Documentation, Revision 32bb132e

<type name="int[]"/>
<type name="long[]"/>
<type name="short[]"/>
<type name="double[]"/>
<type name="float[]"/>
<type name="byte[]"/>
<type name="char[]"/>
<type name="boolean[]"/>

Notes

The Device module providedby the Architecture is deprecated andwill be removed in a future version. It has been
moved to the Device Pack. Please update your VEE Ports.

Core Engine

• Added a dedicated error code LLMJVM_E_INITIALIZE_ERROR (-23) when LLMJVM_IMPL_initialize()
, LLMJVM_IMPL_vmTaskStarted() , or LLMJVM_IMPL_shutdown() fails. Previously the generic error code
LLMJVM_E_MAIN_THREAD_ALLOC (-5) was returned.

• Added automatic heap consumption fing when option com.microej.runtime.debug.heap.monitoring.
enabled is set to true

• Fixed some parts of LLMJVM_checkIntegrity() code were embedded even if not called

• [Multi] - Fixedpotential crashduring the call of LLMJVM_checkIntegrity() whenanalyzing a corrupted Java
stack (make this function robust to object references with an invalid memory address)

Foundation Libraries

• Added source code for KF , SCHEDCONTROL , SNI , SP implementations

• Updated KF API with annotations for Null analysis

• Updated SNI API with annotations for Null analysis

• Updated SP API with annotations for Null analysis

• Updated ResourceManager implementation with annotations for Null analysis

• Updated KF implementation:

– Addedmissing Kernel.getAllFeatureStateListeners() method

– Updated code for correct Null analysis detection

– Fixed Feature.getCriticality() to throw IllegalStateException if it is in state UNINSTALLED (instead of re-
turning NORM_CRITICALITY)

– Fixed potential race condition between Kernel.addResourceControlListener() and Ker-
nel.removeResourceControlListener(). Adding a new listener may not register it if another one is
removed at the same time.

6.3. MicroEJ Architecture 721

https://repository.microej.com/modules/com/microej/pack/device/device-pack/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#getAllFeatureStateListeners--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Feature.html#getCriticality--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/IllegalStateException.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#addResourceControlListener-ej.kf.ResourceControlListener-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#removeResourceControlListener-ej.kf.ResourceControlListener-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#removeResourceControlListener-ej.kf.ResourceControlListener-

MicroEJ Documentation, Revision 32bb132e

Integration

• Added a new task in ELF Utils library allowing to update the content of an ELF section:

– Declaration:

<taskdef classpath="${platform.dir}/tools/elfutils.jar" classname="com.is2t.elf.
→˓utils.AddSectionTask" name="addSection" />

– Usage:

<addSection file="${executable.file}" sectionFile="${section.file}" sectionName="$
→˓{section.name}" sectionAlignment="${section.alignment}" outputDir="${output.dir}"␣
→˓outputName="${output.name}" />

• Updated Architecture End User License Agreement to version SDK 3.0-C

• Updated copyright notice of Low Level APIs header files to latest SDK default license

• Updated Architecture module with required files and configurations for correct publication in a module
repository (README.md , LICENSE.txt , and CHANGELOG.md)

Simulator

• Added an option (com.microej.simulator.hil.frame.size) to configure the HIL engine max frame size

• Fixed load of an immutable byte field (sign extension)

• Fixed java.lang.String constructors String(byte[] bytes, ...) when passing characters in the range
[0x80,0xFF] using default ISO-8859-1 encoding

• Fixed potential crash in debugmodewhen a breakpoint is set on a field access (introduced in version 7.13.0
)

• Fixed wrong garbage collection of an object only referenced by an immortal object

SOAR

• Fixed the following compilation issues in if statement with BON constant:

– too many codemay be removed when the block contains a while loop

– potential Stacks merging coherence error may be thrown when the block contains a nested
try-catch statement

– potential Stacks merging coherence error when declaring a ternary expression with Con-
stants.getBoolean() in condition expression

• Fixed assert statement removal when it is located at the end of a then block: the else block may be
executed instead of jumping over

• Removed names of arrays of basetype unless soar.generate.classnames option is set to true

• [Multi] - Fixed potential link exception when a Feature use one of the ej_bon_ByteArray methods (e.g. ej.
kf.InvalidFormatException: code=51:ON_ej_bon_ByteArray_method_readUnsignedByte_AB_I_I)

• [Multi] - Fixed SOAR error (Invalid SNI method) when one of the ej.bon.Constants.getXXX() methods is
declared in a kernel.api file. This issue was preventing from using BON Constants in Feature code.

6.3. MicroEJ Architecture 722

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/String.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Constants.html#getBoolean-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Constants.html#getBoolean-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Constants.html

MicroEJ Documentation, Revision 32bb132e

Tools

• Updated Code Coverage Analyzer report generation:

– Automatically configure src/main/java source directory beside a /bin directory if available

– Added an option (cc.src.folders) to specify the source directory (require SDK 5.4.1 or higher)

– Removed the analysis of generated code for synchronized statements

– Fixed crash when loading source code with annotations

• Fixed Memory Map scripts: ClassNames groupmay contain duplicate sections with Types group

• Fixed load of an ELF executable when a section overlaps a segment (updated ELF Utils, Kernel Packager and
Firmware Linker)

• Fixed Firmware Linker to generate output executable file at the same location than the input executable file

[7.15.1] - 2021-02-19

SOAR

• [Multi] - Fixed potential VM crash when declaring a Proxy class which is abstract .

[7.15.0] - 2020-12-17

Core Engine

• Added support for applying Feature relocations

Foundation Libraries

• Updated KF implementation to apply Feature relocations using the Core Engine. The former Java im-
plementation is deprecated but can still be enabled using the option com.microej.runtime.kf.link.
relocations.java.enabled .

Integration

• Updated the Architecture naming convention: the usage level is prod instead of dev .

• Fixed generation of temporary properties file with a .properties.list extension instead of deprecated
.system.properties extension.

6.3. MicroEJ Architecture 723

MicroEJ Documentation, Revision 32bb132e

SOAR

• Fixed crash when declaring a clinit dependency rule on a class that is loaded but not embedded.

Tools

• Fixed Memory Map Script All graph creation to prevent slow opening of large .map file in Memory Map
Analyzer.

[7.14.1] - 2020-11-30

Core Engine

• [Multi/x86/QNX7] - Fixed missing multi-sandbox version

Tools

• Fixed categories for class names and SNI library in Memory Map Scripts

[7.14.0] - 2020-09-25

Notes

The following set of Architecture properties are automatically provided as BON constants:

• com.microej.architecture.capability=[tiny|single|multi]

• com.microej.architecture.name=[architecture_uid]

• com.microej.architecture.level=[eval|prod]

• com.microej.architecture.toolchain=[toolchain_uid]

• com.microej.architecture.version=7.14.0

Note: Starting from Architecture 8.1.0, com.microej.architecture.capability constant is set to mono instead
of single when the Core Engine capability is Mono-Sandbox.

The following set of VEE Port properties (customer defined) are automatically provided as BON constants:

• com.microej.platform.hardwarePartNumber

• com.microej.platform.name

• com.microej.platform.provider

• com.microej.platform.version

• com.microej.platform.buildLabel

6.3. MicroEJ Architecture 724

MicroEJ Documentation, Revision 32bb132e

Foundation Libraries

• Updated EDC UTF-8 encoder to support Unicode code points as supplementary characters

• Fixed java.lang.NullPointerException thrown when java.util.WeakHashMap.put() method is called with a
null key (introduced in version 7.11.0)

Integration

• Added all options starting with com.microej. prefix as BON constants

• Added all properties defined in architecture.properties as options prefixed by com.microej.
architecture.

• Added all properties defined in release.properties as options prefixed by com.microej.platform.

• Added all properties defined in script/mjvm.properties as options prefixed by com.microej.
architecture.

• Added an option (com.microej.library.edc.supplementarycharacter.enabled) to enable support for
supplementary characters (enabled by default)

• Updated Memory Map Scripts to extract Java static fields in a dedicated group named Statics

• Updated Memory Map Scripts to extract Java types in a dedicated group named Types

• Fixed generated Feature filename (unexpanded ${feature.output.basename} variable, introduced in ver-
sion 7.13.0)

• Fixed definition of missing default values for memory options (same values than launcher default ones)

• [Tiny,Multi] - Added display of the Core Engine capability when launching SOAR

SOAR

• [Multi] - Added a new attribute named api in Kernel soar.xml file indicating which types, methods and
static fields are exposed as Kernel APIs

• [Multi] - Fixed potential link error when calling Object.clone() method on an array in Feature mode

Tools

• Updated the serial PC connector to JSSC 2.9.2 (COM port could not be open on Windows 10 using a JRE
8u261 or higher)

[7.13.3] - 2020-09-18

Core Engine

• [QNX70] - Embedmethod names and line numbers information in the application

• [Cortex-A/QNX70] - Fixed wrong float/double arguments passed to the SNI natives (introduced in version
7.12.0)

6.3. MicroEJ Architecture 725

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/NullPointerException.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/WeakHashMap.html#put-K-V-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Object.html#clone--

MicroEJ Documentation, Revision 32bb132e

Simulator

• Fixed unnecessary stacktrace dump on Long.parseLong(. . .) error

• Fixed UTF-8 encoded Strings not correctly printed

Tools

• Updated Memory Map Scripts for ej.library.runtime.basictool library

[7.13.2] - 2020-08-14

Core Engine

• [ARM9/QNX65] - Fixed custom convention call

• [x86/QNX70] - Fixed SIGFPE raised when overflow occurs on division

• [x86/QNX70] - Fixed issue with NaN conversion to int or long

Tools

• Fixed Feature build script for SDK 5.x (introduced in version 7.13.0)

• Updated Memory Map Scripts for MicroUI 3 and Service libraries

[7.13.1] - 2020-07-20

Core Engine

• [ESP32] - Fixed potential PSRAM access faults by rebuilding using esp-idf v3.3.0 toolchain (simikou2)

[7.13.0] - 2020-07-03

Core Engine

• Added SNI-1.4 support, with the following new LLSNI.h Low Level APIs:

– Added function SNI_registerResource()

– Added function SNI_unregisterResource()

– Added function SNI_registerScopedResource()

– Added function SNI_unregisterScopedResource()

– Added function SNI_getScopedResource()

– Added function SNI_retrieveArrayElements()

– Added function SNI_flushArrayElements()

– Added function SNI_isResumePending()

– Added function SNI_clearCurrentJavaThreadPendingResumeFlag()

6.3. MicroEJ Architecture 726

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Long.html#parseLong-java.lang.String-
https://github.com/espressif/esp-idf/commit/ff29e3e7a24a715bc7f5ba453c83d694ba0ec1e2

MicroEJ Documentation, Revision 32bb132e

– Added define SNI_VERSION

– Added define SNI_IGNORED_RETURNED_VALUE

– Added define SNI_ILLEGAL_ARGUMENT

– Updated the documentation of some functions to clarify the behavior

• Added a message to IllegalArgumentException thrown in an SNI call when passing a non-immortal array in
SNI (only in case the VEE Port is configured to disallow the use of non-immortal arrays in SNI native calls)

• Added function LLMJVM_CheckIntegrity() to LLMJVM.h Low Level API to perform heap and internal struc-
tures integrity check

• Updated KF implementation to use SNI-1.4 to close native resources when the Feature is stopped (ej.
lang.ResourceManager is now deprecated)

• Updated LLMJVM_dump() output with the following new information related to SNI-1.4 native resource
management:

– Last native method called (per thread)

– Current native method being invoked (per thread)

– Last native resource close hook called (per thread)

– Current native resource close hook being invoked (per thread)

– Pending Native Exception (per thread)

– Pending SNI Scoped Resource to close (per thread)

– Current GarbageCollector state: (running or not, last scannedobject address, last scannedobject class)

– LLMJVM schedule request (global and per thread)

• Updated non-immortal array access from SNI default behavior (now allowed by default)

• Fixed thread state displayed by LLMJVM_dump for threads in SLEEP state

• Fixed sni.h header file function prototypes using the SNI_callback typedef

• Fixed crash when an OutOfMemoryError is thrown while creating a native exception in SNI

• [Multi] - Fixed runtime exceptions that can be implicitly thrown (such as NullPointerException) which were
not automatically exposed by the Kernel

• [Multi] - Fixed passing Kernel array parameters through a shared interface method call. These parameters
were passed by copy instead of by reference as specified by KF specification

• [Multi] - Fixed execution context when jumping in a catch block of a ej.kf.Proxy method (the catch block was
executed in the Kernel context instead of the Feature context)

• [ARMCC5] - Fixed linkerror Undefined symbol _java_Ljava_lang_OutOfMemoryError_field_OOMEMethodAddr_I
with ARM Compiler 5 linker (introduced in version 7.12.0)

6.3. MicroEJ Architecture 727

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/IllegalArgumentException.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/OutOfMemoryError.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/NullPointerException.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Proxy.html

MicroEJ Documentation, Revision 32bb132e

Foundation Libraries

• Updated SNI to version 1.4

• Updated internal library Resource-Manager-1.0 as deprecated. Use SNI-1.4 native resources instead

• Updated Thread.getId() method implementation to return the same value than
SNI_getCurrentJavaThreadID() function

• Optimized SNI.toCString() method by removing a useless temporary bu�er copy

• Fixed EDC implementation of String(byte[],int,int) constructor which could allocate a too large temporary
bu�er

• Fixed EDC implementation of Thread.interrupt() method to throw a java.lang.SecurityException when the
interrupted thread cannot be modified by the the current thread

• Fixed EDC implementation to remove remaining references to java.util.SecurityManager class when it is dis-
abled

• Fixed EDC implementation of Thread.interrupt() method that was declared final

• Fixed EDC API of Thread.interrupt() to clarify the behavior of the method

• Fixed EDC API of java.util.Calendar method to specify that non-lenient mode is not supported

• Fixed EDC API of java.io.FilterInputStream.in field to be marked @Nullable

Integration

• Updated Architecture End User License Agreement to version SDK 3.0-B

Simulator

• Added SNI-1.4 support, with the following new HIL engine APIs:

– Addedmethods NativeInterface.suspendStart() and NativeInterface.suspendStop() tonotify
the simulator that a native is suspended so that it can schedule a thread with a lower priority

• Added KF support to dynamically install Features (.fs3 files)

• Added the capability to specify the Kernel UID froman option (see options in Simulator > Kernel > Kernel
UID)

• Added object size in generated .heap dump files

• Optimized file accesses from the Application

• Fixed crash in debugmodewhenpausedonabreakpoint in SDKandhovering a Java variablewith themouse

• Fixed potential crash in debug mode when putting a breakpoint in the SDK on a line of code declared in an
inner class

• Fixedpotential crash in debugmode (java.lang.NullPointerException)whenabreakpoint set on a field access
is hit

• Fixed potential crash in debugmode (ArrayIndexOutOfBoundsException)

• Added support for JDWP commands DisableCollection / EnableCollection in the debugger

• Fixed invalid heap dump generation in debugmode.

6.3. MicroEJ Architecture 728

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Thread.html#getId--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/sni/SNI.html#toCString-java.lang.String-byte:A-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/String.html#String-byte:A-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Thread.html#interrupt--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/SecurityException.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/SecurityManager.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Thread.html#interrupt--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Thread.html#interrupt--
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/Calendar.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/io/FilterInputStream.html#in
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/NullPointerException.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/ArrayIndexOutOfBoundsException.html

MicroEJ Documentation, Revision 32bb132e

• Fixed crash when a Mockup implements com.is2t.hil.StartListener and this implementation throws
an uncaught exception in the clinit

• Fixed verbose of missing resource only when a resource is available in the classpath but not declared in a
.resources.list file

• Fixed heap consumption simulation for objects instances of classes declaring fields of type float or double

• Fixed Device UID not displayed in the Front Panel window title (introduced in version 7.11.0)

• Fixed loading of a resource from a JAR when the path starts with /

• Fixed potential deadlock on Front Panel startup in some cases

• Fixed Thread.getState() returning TERMINATED whereas the thread is running

• Fixed Simulator which may not stop properly when closing the Front Panel window

• Fixed Front Panel which stops sending widget events when dragging out of a widget

• [Multi] - Fixed monitor that may not be released when an exception occurs in a synchronized block (intro-
duced in version 7.10.0)

• [Multi] - Fixed invalid heap dump generation that causes heap analyzer crash

• [Multi] - Fixed potential crash (java.lang.NullPointerException) in debug mode when debugging an Applica-
tion (introduced in version 7.10.0)

• [Multi] - Fixed error when using KF library without defining a kernel.kf file in the Kernel (introduced in
version 7.10.0)

SOAR

• Added anoption (soar.bytecode.verifier) to enable or disable the bytecode verifier (disabled by default)

• Removed size related limits in Architecture Evaluation version

Tools

• Added SNI-1.4 support to HIL engine

• UpdatedHeapDumper to verbose information about thememory sectionwhen an overlap is detected in the
HEX file

• Updated Memory Map Scripts (Security, DTLS, Device)

• FixedLicenseManager (Evaluation) randomcrashonWindows 10whenaVEEPort isbuilt using Build Module
button

• Fixed License Manager (Evaluation) wrong UID computation a�er reboot when Windows 10 Hyper-V feature
is enabled

• Fixed HIL engine to exit as soon as the Simulator is disconnected (avoid remaining detached processes)

• Fixed ELF to Map generating symbol addresses di�erent from the ELF symbol addresses (introduced in ver-
sion 7.11.0)

• Fixed Heap Dumper crash when a wrong object header is encountered

• Fixed Heap Dumper failure when amemory dump is larger than the heap section

• Fixed Heap Dumper crash when loading an Intel HEX file that contains lines of type 02

6.3. MicroEJ Architecture 729

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Thread.html#getState--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/NullPointerException.html

MicroEJ Documentation, Revision 32bb132e

[7.12.0] - 2019-10-16

Core Engine

• Updated implementation of internal OutOfMemoryError thrown with the maximum number of frames that
can be dumped

• Updated LLMJVM_dump() output with the following new information:

– Maximum number of alive threads

– Total number of created threads

– Maximum number of stack blocks used

– Current number of stack blocks used

– Objects referenced by each stack frame: address, type, length (in case of arrays), string content (in case
of String objects)

– [Multi] - Kernel stale references with the name of the Feature stopped

Foundation Libraries

• Fixed EDC implementation of Throwable.getStackTrace() when called on a OutOfMemoryError thrown by
CoreEngineorSimulator (either the returnedstack tracearraywasemptyora java.lang.NullPointerException
was thrown)

• [Tiny] - Fixed EDC implementation of StackTraceElement.toString() (removed the character . before the
type)

• [Multi] - Fixed KF implementationof Feature.start() to throwanExceptionInInitializerErrorwhenanexception
is thrown in a Feature clinit method

Simulator

• Updated implementation of internal OutOfMemoryError thrown with more than one frames dumped per
thread

– By default the 20 top frames per thread are dumped. This can be modified using S3.
OutOfMemoryErrorNbFrames system property

• Fixed wrong parsing of an array of long when an element is declared with only 2 digits (e.g. 25 was parsed
as 2)

• Fixed error parsing of an array of byte when an element is declaredwith the unsigned hexadecimal notation
(e.g. 0xFF) (introduced in version 7.10.0)

• Fixed crash when ResourceBu�er.readString() is called on a String greater than 63 characters (introduced in
version 7.10.0)

• Fixed code coverage .cc generation of classpath directories

• Fixed crash during a GC when computing the references map of a complex method (an error message is
dumped with the involved method name and suggest to increase the internal stack using S3.JavaMemory.
ThreadStackSize system property)

• [Multi] - Added validity check of Shared Interface declaration files (.si) according to KF specification

• [Multi] - Fixed processing of Resource Bu�ers declared in Feature classpath

6.3. MicroEJ Architecture 730

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/OutOfMemoryError.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Throwable.html#getStackTrace--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/OutOfMemoryError.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/NullPointerException.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/StackTraceElement.html#toString--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Feature.html#start--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/ExceptionInInitializerError.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/OutOfMemoryError.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/ResourceBuffer.html#readString--

MicroEJ Documentation, Revision 32bb132e

SOAR

• Added a newoption core.memory.oome.nb.frames to configure themaximumnumber of stack frames that
can be dumped when an internal OutOfMemoryError is thrown by Core Engine

Tools

• Updated Heap Dumper to verbose detected object references that are outside the heap

• Updated Heap Dumper to throw a dedicated error when an object reference does not target the beginning of
an object (most likely a corrupted heap)

• Updated Heap Dumper to dump .heap.error partial file when a crash occurred during heap processing

• Fixed Heap Dumper crash when processing an object owned by a Feature which type is also owned by the
Feature (was working before only when the type is owned by the Kernel)

• Fixed Firmware Linker potential negative o�set generation when some sections do not appear in the same
order in the ELF file than in their associated LOAD segment

• Fixed Code Coverage Analyzer potential generated empty report (wrong load of classfiles from JAR files)

[7.11.0] - 2019-06-24

Important Notes

• Java assertions execution is now disabled by default. If you experience any runtime trouble when migrat-
ing from a previous Architecture, please enable Java assertions execution both on Simulator and on Device
(maybe the application code requires Java assertions to be executed).

• Calls to Security Manager are now disabled by default. If you are using the Security Manager, it must be
explicitly enabled using the optiondescribedbelow (likely the casewhenbuilding aMulti-Sandbox Firmware
and its associated Virtual Device).

• Front Panel framework is now provided by the Architecture instead of the UI Pack. This allow to build a VEE
Port with a Front Panel (splash screen, basic I/O, . . .), even if it does not provide a MicroUI port. Moreover,
the Front Panel framework API has been redesigned and is nowdistributed using the ej.tool.frontpanel.
framework module instead of the legacy Eclipse classpath variable.

Known Issues

• SOAR Internal SOAR error or Stacks merging coherence error thrownwhen an if statement (being
removed) is declared at the end of a try block:

try {
...
if (Constants.getBoolean(XXX)) { // constant resolved to false

... // code being removed
}

} catch (Exception e) {
...

}

6.3. MicroEJ Architecture 731

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/OutOfMemoryError.html

MicroEJ Documentation, Revision 32bb132e

Core Engine

• Added EDC-1.3 support for daemon threads

• Added BON support for ej.bon.Util.newArray(T[],int)

• [Multi/ARMCC5] - Fixed unused undefined symbol that prevent Keil MDK-ARM to link properly

Foundation Libraries

• Updated EDC to version 1.3 (see EDC-1.3 API Changelog)

– Updated the implementation code for correct Null analysis detection (added assertions, extractedmul-
tiple field accesses into a local)

– Fixed PrintStream.PrintStream(OutputStream, boolean) writer initialization

– Removed useless String literals in java.lang.Throwable

• Updated UTF-8 decoder to support Unicode code points

• Updated BON to version 1.4 (see BON-1.4 API Changelog)

• Updated TRACE to version 1.1

– Added ej.trace.Tracer.getGroupID()

– Added a BON Constant (core.trace.enabled) to remove trace related code when tracing is disabled

• Fixed KF to call the registered Thread.UncaughtExceptionHandler when an exception is thrown by the first
Feature thread

Integration

• Added new options for Java assertions execution in category Runtime (core.assertions.sim.enabled
and core.assertions.emb.enabled). By default, Java assertions execution is disabled both on Simulator
and on Device.

• Updated options categories (options property names le� unchanged)

– Added a new category named Runtime

– Renamed Target to Device

– Moved Embed All type names option from Core Engine to Runtime

– Moved Core Engine under Device

– Removed category Target > Debug andmoved Trace options to Runtime

– Removed category Debug andmoved all sub categories under Simulator

– Renamed category JDWP to Debug

• Addedanoption (com.microej.library.edc.securitymanager.enabled) toenableSecurityManager run-
time checks (disabled by default)

6.3. MicroEJ Architecture 732

https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Util.html#newArray-java.lang.Class-int-
https://repository.microej.com/5/artifacts/ej/api/edc/1.3.0/CHANGELOG-1.3.0.md
https://repository.microej.com/javadoc/microej_5.x/apis/java/io/PrintStream.html#PrintStream-java.io.OutputStream-boolean-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Throwable.html
https://repository.microej.com/5/artifacts/ej/api/bon/1.4.0/CHANGELOG-1.4.0.md
https://repository.microej.com/javadoc/microej_5.x/apis/ej/trace/Tracer.html#getGroupID--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Thread.UncaughtExceptionHandler.html

MicroEJ Documentation, Revision 32bb132e

Simulator

• Added a cache to speed-up classfile loading in JARs

• Added EDC-1.3 support for daemon threads

• Added BON-1.4 support for compile-time constants (load of .constants.list resources)

• Added BON-1.4 support for ej.bon.Util.newArray()

• Added Front Panel framework

• Updated error message when reaching Simulator limits

• Removed the Bootstrapping a Smart Software Simulator message when verbose mode in enabled

• Fixed Object.clone() on an immutable object to return a new (mutable) object instead of an immutable one

• Fixed Object.clone() crash when an OutOfMemory occurs

• Fixed potential crash when calling an abstract method (some interfaces of the hierarchy were not taken into
account - introduced in version 7.10.0)

• Fixed OutOfMemory errors even if the heap is not full (resources loaded from Class.getResourceAsStream()
and ResourceBu�er creation were taken into account in simulated heap memory - introduced in version
7.10.0)

• Fixed potential crash when a GC occurs while a ResourceBu�er is opened (introduced in version 7.10.0)

• Fixed potential debugger hangs when an exception was thrown but not caught in the samemethod

• [Multi] - Fixed wrong class loading in some cases

• [Multi] - Fixed wrong immutable loading in some cases

SOAR

• Added BON-1.4 support for compile-time constants (load of .constants.list resources)

• Added bytecode removal for Java assertions (when option is disabled)

• Added bytecode removal for if(ej.bon.Constants.getBoolean()) pattern

– then or else block is removed depending on the boolean condition

– WARNING: Current limitation: the ``if`` statement cannot wrap or be nested in a ``try-catch-finally``
statement

• Added an option for grouping all the methods by type in a single ELF section

– com.microej.soar.groupMethodsByType.enabled (false by default)

– WARNING: this option avoids to reach themaximumnumber of ELF sections (65536) when building a large
application, but a�ects the application code size (especially inlinemethods are embedded even if they are
not used)

• Added an error message when microejapp.o cannot be generated because the maximum number of ELF
sections (65536) is reached

6.3. MicroEJ Architecture 733

https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Util.html#newArray-java.lang.Class-int-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Object.html#clone--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Object.html#clone--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#getResourceAsStream-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/ResourceBuffer.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/ResourceBuffer.html

MicroEJ Documentation, Revision 32bb132e

Tools

• Updated License Manager (Production) to debug dongle recognition issues from command line (see Check
Activation with the Command Line Tool).

• Updated License Manager (Production) to support dongle recognition onmacOS 10.14 (Mojave)

• Fixed ELF To Map to produce correct sizes from an executable generated by IAR Embedded Workbench for
ARM

• Fixed Firmware Linker .ARM.exidx section generation (missing section link content)

• Updated deployment files policy for VEE Ports in Workspace, in order to be more flexible depending on the
C project layout. This also allows to deploy to the same C project di�erent Applications built with di�erent
VEE Ports

– VEE Port configuration: in bsp/bsp.properties , a new option output.dir indicates where the files
are deployed by default

* Application (microejapp.o) andRuntime library (microejruntime.a) aredeployed to ${output.
dir}/lib . Architecture header files (*.h) are deployed to ${output.dir}/inc/

* When this option is not set, the legacy behavior is le� unchanged (project.file option in collab-
oration with augmentCProject scripts)

– Launch configuration: Device > Deploy options allow to override the default VEE Port configuration
in order to deploy each file into a separate folder.

• Fixed wrong ELF file generation when a section included in a LOAD segment was generated before one of
the sections included in a LOAD segment declared before the first one (integrated in ELF Utils and Firmware
Linker)

• FixedwrongELF filegenerationwhenasection included inaLOADsegmenthadanaddresswhichwasoutside
its LOAD segment virtual address space (integrated in ELF Utils and Firmware Linker)

[7.10.1] - 2019-04-03

Simulator

• Fixed Object.getClass() may return a Class instance owned by a Feature for type owned by the Kernel

[7.10.0] - 2019-03-29

Core Engine

• Added internal memories checks at startup: heaps and statics memories are not allowed to overlap with
LLBSP_IMPL_isInReadOnlyMemory()

• [Multi] - Updated Feature Kill implementation to prepare future RAM Control (fully managed by Core Engine)

• [Multi] - Updated implementation of ej.kf.Kernel: all APIs taking a Feature argument now will throw a
java.lang.IllegalStateException when the Feature is not started

6.3. MicroEJ Architecture 734

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Object.html#getClass--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/IllegalStateException.html

MicroEJ Documentation, Revision 32bb132e

Foundation Libraries

• Updated KF library in syncwith Core Engine Kill related fixes and Simulator with Kernel & Features semantic

• Updated BON libraryonSimulator (nowuses the same implementation than theoneusedby theCoreEngine)

Integration

• Added generation of architecture.properties file when building a VEE Port. (Used by SDK 5.x when
manipulating VEE Ports & Virtual Devices)

Simulator

• Added Embed all types names option for Simulation

• Addedmemory size simulation for Java Heap and Immortal Heap (Enabling Use target characteristics
option is nomore required)

• Added Kernel & Features semantic, as defined in the KF-1.4 specification

– Fully implemented:

* Ownership for types, object and thread execution context

* Kernel mode

* Context Local Static Field References

– Partially implemented:

* Kernel API (Type grained only)

* Shared Interfaces are binded using direct reference links (no Proxy execution)

* Feature.stop() does not perform the safe kill. The application cannot be stopped unless it has cor-
rectly removed all its shared references.

– Not implemented:

* Dynamic Feature installation from Kernel.install(java.io.InputStream)

* Execution Rules Runtime checks

Tools

• Updated Memory Map Scripts (Bluetooth, MWT, NLS, Rcommand and AllJoyn libraries)

• Fixed Kernel Packager internal limits error when the ELF executable does not contains a .debug.soar
section

• FixedwrongELF file generationwhensegment file size isdi�erent than thememsize (integrated in ELF Utils
and Firmware Linker)

• Fixed Simulator COMportmapping default value (set to disabled instead of UART<->UART in order to avoid
an error when launch configuration is just created)

• Fix ELF To Map: the total sections size were not equal to the segments size

6.3. MicroEJ Architecture 735

https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Feature.html#stop--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#install-java.io.InputStream-

MicroEJ Documentation, Revision 32bb132e

[7.9.1] - 2019-01-08

Tools

• Fixed ELF objcopy generation when ELF executable file contains 0 size segments

• Fixed Stack Trace Reader error when ELF executable file contains relocation sections

[7.9.0] - 2018-09-20

Core Engine

• Fixed OutOfMemoryError thrown when allocating an object of the size of free memory in immortals heap

SOAR

• Optimized SOAR processing (up to 50% faster on applications with tens of classpath entries)

[7.8.0] - 2018-08-01

Tools

• [ARMCC5] - Updated SOAR Debug Infos Post Linker tool to generate the full ELF executable file

[7.7.0] - 2018-07-19

Core Engine

• Added a permanent hook LLMJVM_on_Runtime_gc_done called a�er an explicit java.lang.Runtime.gc()

• Updated internal heap header for memory dump

SOAR

• Added check for the maximum number of allowed concrete types (avoids a Core Engine link error)

Tools

• Added Heap Dumper tool

6.3. MicroEJ Architecture 736

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/OutOfMemoryError.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#gc--

MicroEJ Documentation, Revision 32bb132e

[7.6.0] - 2018-06-29

Foundation Libraries

• [Multi] - Updated BON library: a Timer owned by the Kernel can execute a TimerTask owned by a Feature

[7.5.0] - 2018-06-15

Internal Release - COTS Architecture le� unchanged.

[7.4.0] - 2018-06-13

Core Engine

• Removed partial support of ej.bon.Util.throwExceptionInThread() (deprecated)

• [Multi/Linux] - Updated default configuration to always embedmethod names

• [Multi/Cortex-M] - Optimized KF checks execution for array & field accesses

Foundation Libraries

• Updated ej.bon.Timer to schedule ej.bon.TimerTask owned bymultiple Features

Simulator

• Fixed implementation of Class.getResourceAsStream() to throw an IOException when the stream is closed

SOAR

• [GCC] - Fixed microejapp.o link with GCC 6.3

Tools

• Added a retry mechanism in the Testsuite Engine

• Added a message to suggest increasing the JVM heap when an OutOfMemoryError occurs in the Firmware
Linker tool

• Fixed generation of LL header files for all cross compilation toolchains (file separator for included paths is /
)

• [Cortex-A/ARMCC5] - Fixed SNI convention call issue

• [ESP32,RX] - Fixed Firmware Linker tool internal limit

6.3. MicroEJ Architecture 737

https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Timer.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/TimerTask.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#getResourceAsStream-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/io/IOException.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/OutOfMemoryError.html

MicroEJ Documentation, Revision 32bb132e

[7.3.0] - 2018-03-07

Simulator

• Added an option for the IDE to customize the mockups classpath

• Fixed Deadlock in Shielded Plug remote client when interrupting a thread that waits for block modification

[7.2.0] - 2018-03-02

Core Engine

• [Multi] - Enabled quantum counter computation only when Feature quota is set

• [Cortex-M/IAR] - Updated compilation flags to -Oh

Simulator

• Added a hook in the mockup that is automatically called during the HIL engine startup

• Added dump of loaded classes when verbose option is enabled

• Fixed Runtime.freeMemory() call freeze when Emb Characteristics option is enabled

• Fixed ShieldedPlug server error a�er interrupting a thread that is waiting for a database block

• Fixed crash Access to a wrong reference in some cases

• Fixed java.lang.NullPointerException when interrupting a thread that has not been started

• Fixed crash when closing an HIL engine connection in some cases

• [Multi] - Fixed KF &Watchdog library link when Emb Characteristics option is enabled

• [Multi] - Fixed XML Parsing error when Emb Characteristics option is enabled

[7.1.2] - 2018-02-02

SOAR

• Fixed SNI library was added in the classpath in some cases

[maintenance/6.18.0] - 2017-12-15

Core Engine

• [Multi] - Enabled quantum counter computation only when Feature quota is set

• [Cortex-M/IAR] - Updated compilation flags to -Oh

6.3. MicroEJ Architecture 738

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#freeMemory--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/NullPointerException.html

MicroEJ Documentation, Revision 32bb132e

Simulator

• Fixed Runtime.freeMemory() call freeze when Emb Characteristics option is enabled

• [Multi] - Fixed KF &Watchdog library link when Emb Characteristics option is enabled

• [Multi] - Fixed XML Parsing error when Emb Characteristics option is enabled

Tools

• Updated Kernel API Generator tool with classes filtering

[7.1.1] - 2017-12-08

Tools

• [Multi/RX] - Fixed Firmware Linker tool

[7.1.0] - 2017-12-08

Core Engine

• [Multi/RX] - Added KF support

Integration

• Fixed SNI-1.3 library name

SOAR

• [RX] - Added support for ELF symbol prefix _

Tools

• Updated Kernel API generator tool with classes filtering

[7.0.0] - 2017-11-07

Core Engine

• Added SNI-1.3 support

• SNI_suspendCurrentJavaThread() is not interruptible via Thread.interrupt() anymore

6.3. MicroEJ Architecture 739

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#freeMemory--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Thread.html#interrupt--

MicroEJ Documentation, Revision 32bb132e

Foundation Libraries

• Updated to SNI-1.3

[6.17.2] - 2017-10-26

Simulator

• Fixed deadlock during bootstrap in some cases

[6.17.1] - 2017-10-25

Core Engine

• Fixed conversion of -0.0 into a positive value

[6.17.0] - 2017-10-10

Tools

• Updated Memory Map Scripts for TRACE library

[6.16.0] - 2017-09-27

Core Engine

• Fixed External Resource Loader link error (introduced in version 6.13.0)

[6.15.0] - 2017-09-12

Core Engine

• Added a new option to configure the maximum number of monitors that can be owned per thread (8 per
thread by default, as it was fixed before)

Foundation Libraries

• Fixed ECOM-COMM internal heap calibration

6.3. MicroEJ Architecture 740

MicroEJ Documentation, Revision 32bb132e

SOAR

• Added log of the class loading cause

[6.14.2] - 2017-08-24

Tools

• Fixed Firmware Linker tool script (load activity.xml from the wrong folder)

• Fixed load of symbol _java_Ljava_io_EOFException that can be required by some linkers even if this sym-
bol is not touched

[6.14.1] - 2017-08-02

Simulator

• Fixed Device Mockup too long initialization that may block the Front Panel Mockup

Foundation Libraries

• Fixed BON .types.list potential conflicts with KF

Tools

• Modified Firmware Linker internal scripts structure for new Virtual Devices tools

[6.13.0] - 2017-07-21

Core Engine

• Added support for ej.bon.ResourceBu�er

Foundation Libraries

• Updated to BON-1.3

SOAR

• Added support for *.resourcesext.list (resources excluded from the firmware)

6.3. MicroEJ Architecture 741

https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/ResourceBuffer.html

MicroEJ Documentation, Revision 32bb132e

Tools

• Added BON Resource Bu�er generator

[6.12.0] - 2017-07-07

Core Engine

• Added a trace when IllegalMonitorStateException is thrown on a monitorexit

Tools

• Added property skip.mergeLibraries for Platform Builder.

• Updated the serial PC connector to JSSC 2.8.0 .

Simulator

• Fixed unexpexted java.lang.NullPointerException in some cases

[6.11.0] - 2017-06-13

Integration

• Fixed useless watchdog library copied in root folder

[6.11.0-beta1] - 2017-06-02

Core Engine

• Added an option to enable execution traces

• Added Low Level API LLMJVM_MONITOR_impl.h

• Added Low Level API LLTRACE_impl.h

Foundation Libraries

• Added TRACE-1.0

6.3. MicroEJ Architecture 742

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/IllegalMonitorStateException.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/NullPointerException.html

MicroEJ Documentation, Revision 32bb132e

[6.10.0] - 2017-06-02

Core Engine

• Optimized java.lang.Runtime.gc() (removed useless heap compaction in some cases)

[6.9.2] - 2017-06-02

Integration

• Fixed missing properties in release.properties (introduced in version v6.9.1)

• Fixed artifacts build dependencies to private dependencies

[6.9.1] - 2017-05-29

SOAR

• [Multi] - Fixed selected methods list in report generation (removed Kernel related method)

[6.9.0] - 2017-03-15

Base version, included into SDK 4.1.

6.3.3 Release Notes

Foundation Libraries

The following table describes Foundation Libraries API versions implemented in MicroEJ Architectures.

Table 1: Architecture API Implementation
Architecture Range EDC BON KF SNI SP Trace Device ECOM-

COMM
8.0.0 1.3 1.4 1.7 1.4 2.0 1.1 N/A1 N/A2

[7.17.0-7.20.1] 1.3 1.4 1.6 1.4 2.0 1.1 1.0 1.1
[7.13.0-7.16.0] 1.3 1.4 1.5 1.4 2.0 1.1 1.0 1.1
[7.11.0-7.12.0] 1.3 1.4 1.5 1.3 2.0 1.1 1.0 1.1
[7.10.0-7.10.1] 1.2 1.3 1.5 1.3 2.0 1.0 1.0 1.1
[7.0.0-7.9.1] 1.2 1.3 1.4 1.3 2.0 1.0 1.0 1.1
[6.13.0-6.18.0] 1.2 1.3 1.4 1.2 2.0 1.0 1.0 1.1
[6.11.0-6.12.0] 1.2 1.2 1.4 1.2 2.0 1.0 1.0 1.1
[6.9.0-6.10.0] 1.2 1.2 1.4 1.2 2.0 N/A 1.0 1.1

1 SeeMigrate Device Module.
2 SeeMigrate ECOM-COMMModule.

6.3. MicroEJ Architecture 743

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Runtime.html#gc--
https://repository.microej.com/modules/ej/api/edc/1.3.5/
https://repository.microej.com/modules/ej/api/bon/1.4.3/
https://repository.microej.com/modules/ej/api/kf/1.7.0/
https://repository.microej.com/modules/ej/api/sni/1.4.3/
https://repository.microej.com/modules/ej/api/sp/2.0.4/
https://repository.microej.com/modules/ej/api/trace/1.1.1/
https://repository.microej.com/modules/ej/api/edc/1.3.5/
https://repository.microej.com/modules/ej/api/bon/1.4.3/
https://repository.microej.com/modules/ej/api/kf/1.6.1/
https://repository.microej.com/modules/ej/api/sni/1.4.3/
https://repository.microej.com/modules/ej/api/sp/2.0.4/
https://repository.microej.com/modules/ej/api/trace/1.1.1/
https://repository.microej.com/modules/ej/api/device/1.0.2/
https://repository.microej.com/modules/ej/api/ecom-comm/1.1.4/
https://repository.microej.com/modules/ej/api/edc/1.3.5/
https://repository.microej.com/modules/ej/api/bon/1.4.3/
https://repository.microej.com/modules/ej/api/kf/1.5.1/
https://repository.microej.com/modules/ej/api/sni/1.4.3/
https://repository.microej.com/modules/ej/api/sp/2.0.4/
https://repository.microej.com/modules/ej/api/trace/1.1.1/
https://repository.microej.com/modules/ej/api/device/1.0.2/
https://repository.microej.com/modules/ej/api/ecom-comm/1.1.4/
https://repository.microej.com/modules/ej/api/edc/1.3.5/
https://repository.microej.com/modules/ej/api/bon/1.4.3/
https://repository.microej.com/modules/ej/api/kf/1.5.1/
https://repository.microej.com/modules/ej/api/sni/1.3.1/
https://repository.microej.com/modules/ej/api/sp/2.0.4/
https://repository.microej.com/modules/ej/api/trace/1.1.1/
https://repository.microej.com/modules/ej/api/device/1.0.2/
https://repository.microej.com/modules/ej/api/ecom-comm/1.1.4/
https://repository.microej.com/modules/ej/api/edc/1.2.3/
https://repository.microej.com/modules/ej/api/bon/1.3.0/
https://repository.microej.com/modules/ej/api/kf/1.5.1/
https://repository.microej.com/modules/ej/api/sni/1.3.1/
https://repository.microej.com/modules/ej/api/sp/2.0.4/
https://repository.microej.com/modules/ej/api/trace/1.0.0/
https://repository.microej.com/modules/ej/api/device/1.0.2/
https://repository.microej.com/modules/ej/api/ecom-comm/1.1.4/
https://repository.microej.com/modules/ej/api/edc/1.2.3/
https://repository.microej.com/modules/ej/api/bon/1.3.0/
https://repository.microej.com/modules/ej/api/kf/1.4.4/
https://repository.microej.com/modules/ej/api/sni/1.3.1/
https://repository.microej.com/modules/ej/api/sp/2.0.4/
https://repository.microej.com/modules/ej/api/trace/1.0.0/
https://repository.microej.com/modules/ej/api/device/1.0.2/
https://repository.microej.com/modules/ej/api/ecom-comm/1.1.4/
https://repository.microej.com/modules/ej/api/edc/1.2.3/
https://repository.microej.com/modules/ej/api/bon/1.3.0/
https://repository.microej.com/modules/ej/api/kf/1.4.4/
https://repository.microej.com/modules/ej/api/sni/1.2.5/
https://repository.microej.com/modules/ej/api/sp/2.0.4/
https://repository.microej.com/modules/ej/api/trace/1.0.0/
https://repository.microej.com/modules/ej/api/device/1.0.2/
https://repository.microej.com/modules/ej/api/ecom-comm/1.1.4/
https://repository.microej.com/modules/ej/api/edc/1.2.3/
https://repository.microej.com/modules/ej/api/bon/1.2.3/
https://repository.microej.com/modules/ej/api/kf/1.4.4/
https://repository.microej.com/modules/ej/api/sni/1.2.5/
https://repository.microej.com/modules/ej/api/sp/2.0.4/
https://repository.microej.com/modules/ej/api/trace/1.0.0/
https://repository.microej.com/modules/ej/api/device/1.0.2/
https://repository.microej.com/modules/ej/api/ecom-comm/1.1.4/
https://repository.microej.com/modules/ej/api/edc/1.2.3/
https://repository.microej.com/modules/ej/api/bon/1.2.3/
https://repository.microej.com/modules/ej/api/kf/1.4.4/
https://repository.microej.com/modules/ej/api/sni/1.2.5/
https://repository.microej.com/modules/ej/api/sp/2.0.4/
https://repository.microej.com/modules/ej/api/device/1.0.2/
https://repository.microej.com/modules/ej/api/ecom-comm/1.1.4/

MicroEJ Documentation, Revision 32bb132e

6.4 MicroEJ Packs

6.4.1 Overview

On top of a MicroEJ Architecture can be imported MicroEJ Packs which provide additional features such as:

• Serial Communications,

• Graphical User Interface,

• Networking,

• File System,

• etc.

Each MicroEJ Pack is optional and can be selected on demand during theMicroEJ Platform configuration step.

6.4.2 Naming Convention

MicroEJ Packs are distributed in two packages:

• MicroEJ Architecture Specific Pack under the com/microej/architecture/* organization.

• MicroEJ Generic Pack under the com/microej/pack/* organization.

See Pack Import for usage.

Architecture Specific Pack

MicroEJ Architecture Specific Packs contain compiled libraries archives and are thus dependent on the MicroEJ
Architecture and toolchain used in the MicroEJ Platform.

MicroEJ Architecture Specific Packs files ends with the .xpfp extension and are classified using the following
naming convention:

com/microej/architecture/[ISA]/[TOOLCHAIN]/[UID]-[NAME]-pack/[VERSION]/[UID]-[NAME]-pack-
→˓[VERSION].xpfp

• ISA : instruction set architecture (e.g. CM4 for Arm® Cortex®-M4, ESP32 for Espressif ESP32, . . .).

• TOOLCHAIN : C compilation toolchain (e.g. CM4hardfp_GCC48).

• UID : Architecture unique ID (e.g. flopi4G25).

• NAME : pack name (e.g. ui).

• VERSION : pack version (e.g. 13.0.4).

For example, MicroEJ Architecture Specific Pack UI versions for Arm® Cortex®-M4 microcontrollers compiled
with GNU CC toolchain are available at https://repository.microej.com/modules/com/microej/architecture/CM4/
CM4hardfp_GCC48/flopi4G25-ui-pack/.

6.4. MicroEJ Packs 744

https://repository.microej.com/modules/com/microej/architecture
https://repository.microej.com/modules/com/microej/pack/
https://repository.microej.com/modules/com/microej/architecture/CM4/CM4hardfp_GCC48/flopi4G25-ui-pack/
https://repository.microej.com/modules/com/microej/architecture/CM4/CM4hardfp_GCC48/flopi4G25-ui-pack/

MicroEJ Documentation, Revision 32bb132e

Generic Pack

MicroEJ Generic Packs can be imported on top of any MicroEJ Architecture.

They are classified using the following naming convention:

com/microej/pack/[NAME]/[NAME]-pack/[VERSION]/

• NAME : pack name (e.g. bluetooth).

• VERSION : pack version (e.g. 2.1.0).

For example, MicroEJ Generic Pack Bluetooth versions are available at https://repository.microej.com/modules/
com/microej/pack/bluetooth/bluetooth-pack/.

Legacy Generic Pack

Legacy MicroEJ Generic Packs files end with the .xpfp extension. These Packs contain one or more Platform
modules. SeePlatformModule Configuration for their configuration. They are classified using the following naming
convention:

com/microej/pack/[NAME]/[VERSION]/[NAME]-[VERSION].xpfp

• NAME : pack name (e.g. net).

• VERSION : pack version (e.g. 9.2.3).

For example, the Legacy MicroEJ Generic Pack NET version 9.2.3 is available at https://repository.microej.com/
modules/com/microej/pack/net/9.2.3/net-9.2.3.xpfp.

6.5 Platform Creation

This sectiondescribes the steps to createanewMicroEJPlatform in theSDK, andoptions to connect it toanexternal
Board Support Package (BSP) as well as a third-party C toolchain.

Note: The creation of a Platform with this guide requires at least the version 5.4.0 of the SDK.

Note: If you own a legacy Platform, you can either create your Platform again from scratch, or follow the Former
PlatformMigration chapter.

6.5.1 Architecture Selection

The first step is to select aMicroEJ Architecture compatible with your device instructions set and C compiler.

MicroEJ Corp. provides MicroEJ Evaluation Architectures for most common instructions sets and compilers at
https://repository.microej.com/modules/com/microej/architecture.

Please refer to the chapter Architectures MCU / Compiler for the details of ABI and compiler options.

If the requested MicroEJ Architecture is not available for evaluation or to get a MicroEJ Production Architecture,
please contact your MicroEJ sales representative or our support team.

6.5. Platform Creation 745

https://repository.microej.com/modules/com/microej/pack/bluetooth/bluetooth-pack/
https://repository.microej.com/modules/com/microej/pack/bluetooth/bluetooth-pack/
https://repository.microej.com/modules/com/microej/pack/net/9.2.3/net-9.2.3.xpfp
https://repository.microej.com/modules/com/microej/pack/net/9.2.3/net-9.2.3.xpfp
https://repository.microej.com/modules/com/microej/architecture

MicroEJ Documentation, Revision 32bb132e

6.5.2 Platform Configuration

The next step is to create a MicroEJ Platform configuration project:

• Select File > New > Project. . . > General > Project ,

• Enter a Project name . The name is arbitrary and can be changed later. The usual convention is
[PLATFORM_NAME]-configuration ,

• Click on Finish button. A new empty project is created,

• Install the latest PlatformConfiguration Additions by following instructions described at https://github.com/
MicroEJ/VEEPortQualificationTools/blob/master/framework/platform/README.rst.

– Files within the content-sdk-5 folder must be copied to the configuration project folder.

– Files within the content-architecture-7 must be copied to the configuration project folder only if
you are using an Architecture version 7.x . If you are using an Architecture version 8.x , the files are
already included andmust not be copied.

You should get a MicroEJ Platform configuration project that looks like:

Fig. 8: MicroEJ Platform Configuration Project Skeleton

Note: The version of installed Platform Configuration Additions is indicated in the CHANGELOG file.

• Edit theModule Description File module.ivy to declare the MicroEJ Architecture dependency:

<dependencies>

<dependency org="com.microej.architecture.[ISA].[TOOLCHAIN]" name="[UID]" rev=
→˓"[VERSION]">

<artifact name="[UID]" m:classifier="[USAGE]" ext="xpf"/>
</dependency>

</dependencies>

6.5. Platform Creation 746

https://github.com/MicroEJ/VEEPortQualificationTools/blob/master/framework/platform/
https://github.com/MicroEJ/VEEPortQualificationTools/blob/master/framework/platform/README.rst
https://github.com/MicroEJ/VEEPortQualificationTools/blob/master/framework/platform/README.rst
https://github.com/MicroEJ/VEEPortQualificationTools/blob/master/framework/platform/content-sdk-5/build/CHANGELOG.md

MicroEJ Documentation, Revision 32bb132e

Thenameof themoduledependencyneeded for yourPlatformcanbe found in the chapterArchitecturesMCU
/ Compiler. Check the table of your corresponding Architecture and follow the link in the Module Name
column.

For example, to declare the MicroEJ Evaluation Architecture version 7.14.0 for Arm® Cortex®-M4microcon-
trollers compiled with GNU CC toolchain:

<dependencies>

<dependency org="com.microej.architecture.CM4.CM4hardfp_GCC48" name="flopi4G25" rev=
→˓"7.14.0">

<artifact name="flopi4G25" m:classifier="eval" ext="xpf"/>
</dependency>

</dependencies>

And the module for this Architecture is located in the Central Repository at https://repository.microej.
com/modules/com/microej/architecture/CM4/CM4hardfp_GCC48/flopi4G25/7.14.0/.

Note: The Platform Configuration Additions allow to select the Architecture USAGE using
the option com.microej.platformbuilder.architecture.usage . Edit the file module.
properties to set the property to prod to use a Production Architecture and to eval to
use an Evaluation Architecture.

6.5.3 Pack Import

MicroEJ Pack provides additional features on top of the MicroEJ Architecture such as Graphical User Interface or
Networking.

Note: MicroEJ Packs are optional. You can skip this section if you intend to integrate MicroEJ runtime only with
custom libraries.

To declare a MicroEJ Pack dependency, edit theModule Description File module.ivy as follows:

<dependencies>
<!-- MicroEJ Architecture Specific Pack -->
<dependency org="com.microej.architecture.[ISA].[TOOLCHAIN]" name="[UID]-[NAME]-pack"␣

→˓rev="[VERSION]"/>

<!-- MicroEJ Generic Pack -->
<dependency org="com.microej.pack.[NAME]" name="[NAME]-pack" rev="[VERSION]"/>

<!-- Legacy MicroEJ Generic Pack -->
<dependency org="com.microej.pack" name="[NAME]" rev="[VERSION]"/>

</dependencies>

For example, todeclare theMicroEJArchitectureSpecific PackUI version 13.0.4 forMicroEJArchitecture flopi4G25
on Arm® Cortex®-M4microcontrollers compiled with GNU CC toolchain:

6.5. Platform Creation 747

https://repository.microej.com/modules/com/microej/architecture/CM4/CM4hardfp_GCC48/flopi4G25/7.14.0/
https://repository.microej.com/modules/com/microej/architecture/CM4/CM4hardfp_GCC48/flopi4G25/7.14.0/
https://repository.microej.com/modules/com/microej/architecture/CM4/CM4hardfp_GCC48/flopi4G25-ui-pack/13.0.4/

MicroEJ Documentation, Revision 32bb132e

<dependencies>
<!-- MicroEJ Architecture Specific Pack -->
<dependency org="com.microej.architecture.CM4.CM4hardfp_GCC48" name="flopi4G25-ui-pack"␣

→˓rev="13.0.4"/>

</dependencies>

To declare the MicroEJ Generic Pack Bluetooth version 2.1.0:

<dependencies>
<!-- MicroEJ Generic Pack -->
<dependency org="com.microej.pack.bluetooth" name="bluetooth-pack" rev="2.1.0"/>

</dependencies>

And to declare the Legacy MicroEJ Generic Pack Net version 9.2.3:

<dependencies>
<!-- Legacy MicroEJ Generic Pack -->
<dependency org="com.microej.pack" name="net" rev="9.2.3"/>

</dependencies>

Warning: MicroEJ Architecture Specific Packs and LegacyMicroEJ Generic Packs provide Platformmodules that
are not installed by default. See PlatformModule Configuration section for more details.

6.5.4 Platform Build

TheMicroEJ Platform can be built either from the SDK or from theMMMCLI. To build theMicroEJ Platform from the
SDK, perform a regularModule Build:

• Right-click on the Platform Configuration project,

• Select Build Module .

To build the MicroEJ Platform from the MMM CLI:

• Set the eclipse.home property to the path of your SDK, using -Declipse.home=<path> in the command
line or using the Shared configuration.

By default, the SDK’s path is one of the following directories:

– on Windows: C:\Program Files\MicroEJ\MicroEJ-SDK-<YY.MM>\rcp

– on Linux: /home/<user>/MicroEJ/MicroEJ-SDK-<YY.MM>/rcp

– on macOS: /Applications/MicroEJ/MicroEJ-SDK-<YY.MM>/rcp/MicroEJ-SDK-<YY.MM>.app/
Contents/Eclipse

• From the Platform Configuration project, execute the command: mmm

In both cases, the build starts and the build logs are redirected to the integrated console. Once the build is termi-
nated, you should get the following message:

6.5. Platform Creation 748

https://repository.microej.com/modules/com/microej/pack/bluetooth/bluetooth-pack/2.1.0/
https://repository.microej.com/modules/com/microej/pack/net/9.2.3/

MicroEJ Documentation, Revision 32bb132e

module-platform:report:
[echo] ␣

→˓==
[echo] Platform has been built in this directory 'C:\tmp\mydevice-Platform-

→˓[TOOLCHAIN]-0.1.0'.
[echo] To import this project in your MicroEJ SDK workspace (if not already␣

→˓available):
[echo] - Select 'File' > 'Import...' > 'General' > 'Existing Projects into␣

→˓Workspace' > 'Next'
[echo] - Check 'Select root directory' and browse 'C:\tmp\mydevice-Platform-

→˓[TOOLCHAIN]-0.1.0' > 'Finish'
[echo] ␣

→˓==

BUILD SUCCESSFUL

Total time: 43 seconds

Then, import the Platform directory to your SDKworkspace asmentioned in the report. You should get a ready-to-
useMicroEJ Platformproject in theworkspace available for theMicroEJ Application project to run on. You can also
check the MicroEJ Platform availability in: Window > Preferences > MicroEJ > Platforms in workspace .

6.5. Platform Creation 749

MicroEJ Documentation, Revision 32bb132e

Fig. 9: MicroEJ Platform Project

This step is only required the first time the Platform is built, or if the Platform properties have changed (i.e, name,
version). When the same Platform is built again, the Platform project should be automatically refreshed a�er a few
seconds. In case of any doubt, right-click on the Platform project and select Refresh to get the new content.

6.5.5 PlatformModule Configuration

A Platformmodule is the minimal unit that can extend a MicroEJ Architecture with additional features such as:

• Runtime Capability (e.g. Multi-Sandbox, External Resources Loader) ,

• Foundation Library Implementation (e.g. MicroUI, NET),

• Simulator (e.g. Front Panel Mock),

• Tool (e.g. MicroEJ Java H).

Platformmodules provided byMicroEJ Generic Packs are automatically installed during the Platform build and do
not require extra configuration. They are not displayed in the Platform Editor.

6.5. Platform Creation 750

MicroEJ Documentation, Revision 32bb132e

PlatformmodulesprovidedbyMicroEJArchitectures,MicroEJArchitectureSpecificPacksandLegacyMicroEJGeneric
Packs are not installed by default. They must be enabled and configured using the Platform Editor.

Before opening the Platform Editor, the Platformmust have been built once to letMicroEJModuleManager resolve
and download MicroEJ Architecture and Packs locally. Then import them in the SDK as follows:

• Select File > Import > MicroEJ > Architectures ,

• Browse myplatform-configuration/target~/dependencies folder (contains .xpf and .xpfp files once the
Platform is built),

• Check the I agree and accept the above terms and conditions. . . box to accept the license,

• Click on Finish button. This may take some time.

Once imported, double-click on the default.platform file to open the Platform Editor.

From the Platform Editor, select the Content tab to access the modules selection. Platform modules can be
selected/deselected from the Modules frame.

Platform modules are organized in groups. When a group is selected, by default all its modules are selected. To
view all themodulesmaking up a group, click on the Expand All icon on the top-right of the frame. This will let you
select/deselect on a per-module basis. Note that individual module selection is not recommended and that it is
only available when the module has been imported.

The description and contents of an item (group or module) are displayed next to the list when an item is selected.

All the selected Platformmodules will be installed in the Platform.

Fig. 10: MicroEJ Platform Configuration Modules Selection

Each selectedPlatformmodule canbe customizedby creating a [module] folder (nameda�er themodulename),

next to the .platform file definition. It may contain:

• A [module].properties file named a�er the module name. These properties will be injected in the execu-
tion context prefixed by the module name. Some properties might be needed for the configuration of some
modules. Please refer to the modules documentation for more information.

• A bsp.xml file which provides additional information about the BSP implementation of Low Level APIs.

This file must start with the node <bsp> . It can contain several lines like this one:
<nativeName="A_LLAPI_NAME" nativeImplementation name="AN_IMPLEMENTATION_NAME"/>

6.5. Platform Creation 751

MicroEJ Documentation, Revision 32bb132e

where:

– A_LLAPI_NAME refers to a Low Level API native name. It is specific to the MicroEJ C library which pro-
vides the Low Level API.

– AN_IMPLEMENTATION_NAME refers to the implementation name of the Low Level API. It is specific to the
BSP; and more specifically, to the C file which does the link between the MicroEJ C library and the C
driver.

These files will be converted into an internal format during the MicroEJ Platform build.

• Optional module specific files and folders

Modifying one of these files requires to build the Platform again.

Note: It is possible to quickly rebuild the Platform from the Platform Editor if only the Platform module configu-
ration has changed. Click on the Build Platform link on the Overview tab of the Platform Editor.

6.5.6 Platform Customization

The configurationproject (theprojectwhich contains the .platform file) can contain anoptional dropins folder.
The full content of this folderwill be copied in the Platformduring the build. This feature allows to add or overwrite
libraries, tools, etc. into the Platform.

The dropins folder organization should respect the Platform files and folders organization. For instance, the tools
are located in the sub-folder tools . Launch a Platform build without the dropins folder to see how the Platform
files and folders are organized. Then fill the dropins folder with additional features and build again the Platform to
get a customized Platform.

Files in the dropins folder have priority. If one file has the same path and name as a file already installed in the
Platform, the file from the dropins folder will be selected first.

Platform build can also be customized by updating the configuration.xml file next to the .platform file. This
Ant script can extend one or several of the extension points available. By default, you should not have to change
the default configuration script.

Modifying one of these files requires to build the Platform again.

6.5.7 Platform Publication

The publication of the built Platform to amodule repository is disabled by default. It can be enabled by setting the
skip.publish property to false in the module.properties file of the Platform configuration project .

The publication is kept disabled by default in the project sources because developers usually use the locally built
platform in the workspace. However, the publication is required in a Continuous Integration environment. This
can be done by leaving the skip.publish property to true in the project sources and by overwriting it in the
command launched by the Continuous Integration environment, for example:

mmm publish shared -Dskip.publish=false

If the Platform is configured with Full BSP connection, the build script can be launched to validate that the BSP
successfully compiles and links before the Platform is published. It can be enabled by setting the com.microej.
platformbuilder.bsp.build.enabled property to true in the module.properties file of the Platform config-
uration project (defaults to false if not set).

6.5. Platform Creation 752

MicroEJ Documentation, Revision 32bb132e

6.5.8 BSP Connection

Principle

Using a MicroEJ Platform, the user can compile a MicroEJ Application on that Platform. The result of this compila-
tion is a microejapp.o file.

This file has to be linked with the MicroEJ Platform runtime file (microejruntime.a) and a third-party C project,
called the Board Support Package (BSP), to obtain the final binary file (the Executable). For more information,
please consult theMicroEJ build process overview.

The BSP connection can be configured by defining 4 folders where the following files are located:

• MicroEJ Application file (microejapp.o).

• MicroEJ Platform runtime file (microejruntime.a , also available in the Platform lib folder).

• MicroEJ Platform header files (*.h , also available in the Platform include folder).

• BSP project build script file (build.bat or build.sh).

Once the MicroEJ Application file (microejapp.o) is built, the files are then copied to these locations and the
build.bat or build.sh file is executed to produce the Executable (application.out).

Note: The final build stage to produce the Executable canbedoneoutside of the SDK, and thus theBSP connection
configuration is optional.

BSP connection configuration is only required in the following cases:

• Use the SDK to produce the Executable of a Mono-Sandbox Application (recommended).

• Use the SDK to run aMicroEJ Test Suite on device.

• Build a the Executable of a Multi-Sandbox Application.

MicroEJ provides a flexible way to configure the BSP connection to target any kind of projects, teams organizations
and company build flows. To achieve this, the BSP connection can be configured either at MicroEJ Platform level
or at MicroEJ Application level (or a mix of both).

The 3 most common integration cases are:

• Case 1: No BSP connection

The MicroEJ Platform does not know the BSP at all.

BSP connection can be configured when building the MicroEJ Application (absolute locations).

Fig. 11: MicroEJ Platform with no BSP connection

6.5. Platform Creation 753

MicroEJ Documentation, Revision 32bb132e

This case is recommended when:

– the Executable is built outside the SDK.

– the same MicroEJ Platform is intended to be reused on multiple BSP projects which do not share the
same structure.

• Case 2: Partial BSP connection

The MicroEJ Platform knows how the BSP is structured.

BSP connection is configuredwhenbuilding theMicroEJ Platform (relative locationswithin theBSP), and the
BSP root location is configured when building the MicroEJ Application (absolute directory).

Fig. 12: MicroEJ Platform with partial BSP connection

This case is recommended when:

– the MicroEJ Platform is used to build one MicroEJ Application on top of one BSP.

– the Application and BSP are slightly coupled, thusmaking a change in the BSP just requires to build the
Executable again.

• Case 3: Full BSP connection

The MicroEJ Platform includes the BSP.

BSP connection is configured when building the Platform (relative locations within the BSP), as well as the
BSP root location (absolute directory). No BSP connection configuration is required when building the Mi-
croEJ Application.

6.5. Platform Creation 754

MicroEJ Documentation, Revision 32bb132e

Fig. 13: MicroEJ Platform with full BSP connection

This case is recommended when:

– the MicroEJ Platform is used to build various MicroEJ Applications.

– the MicroEJ Platform is validated using MicroEJ test suites.

– the MicroEJ Platform and BSP are delivered as a single standalonemodule (same versioning), perhaps
subcontracted to a team or a company outside the application project(s).

Options

BSP connection options can be specified as Platform options or as Application options or a mix of both.

The following table describes the Platform options, which can be set in the bsp/bsp.properties file of the Plat-
form configuration project.

Table 2: MicroEJ Platform Options for BSP Connection
Option
Name

Description Example

microejapp.
relative.
dir

The path relative to BSP root.dir where to deploy the Mi-
croEJ Application file (microejapp.o).

MicroEJ/lib

microejlib.
relative.
dir

The path relative to BSP root.dir where to deploy the Mi-
croEJ Platform runtime file (microejruntime.a).

MicroEJ/lib

microejinc.
relative.
dir

The path relative to BSP root.dir where to deploy the Mi-
croEJ Platform header files (*.h).

MicroEJ/inc

microejscript.
relative.
dir

The path relative to BSP root.dir where to execute the BSP
build script file (build.bat or build.sh).

Project/MicroEJ

root.
dir

The 3rd-party BSP project absolute directory, to be included
to the Platform.

c:\\Users\\user\\mybsp on
Windows systems or /home/user/
bsp on Unix systems.

6.5. Platform Creation 755

MicroEJ Documentation, Revision 32bb132e

The following table describes the Application options, which can be set as regularMicroEJ Application Options.

Table 3: MicroEJ Application Options for BSP Connection
Option Name Description

deploy.bsp.
microejapp

Deploy the MicroEJ Application file (microejapp.o) to the location defined by the Platform
(defaults to true when Platform option microejapp.relative.dir is set).

deploy.bsp.
microejlib

Deploy the MicroEJ Platform runtime file (microejruntime.a) to the location defined by
the Platform (defaults to true when Platform option microejlib.relative.dir is set).

deploy.bsp.
microejinc

Deploy the MicroEJ Platform header files (*.h) to the location defined by the Platform (de-
faults to true when Platform option microejinc.relative.dir is set).

deploy.bsp.
microejscript

Execute the BSP build script file (build.bat or build.sh) at the location specified by the
Platform. (defaults to false and requires microejscript.relative.dir Platform option
to be set).

deploy.bsp.
root.dir

The 3rd-party BSP project absolute directory. This option is required if at least one the 4
options described above is set to true and the Platform does not include the BSP.

deploy.dir.
microejapp

Absolute path to the directory where to deploy the MicroEJ Application file (microejapp.o
). An empty value means no deployment.

deploy.dir.
microejlib

Absolute path to the directory where to deploy the MicroEJ Platform runtime file (
microejruntime.a) to this absolute directory. An empty value means no deployment.

deploy.dir.
microejinc

Absolute path to the directory where to deploy the MicroEJ Platform header files (*.h) to
this absolute directory. An empty value means no deployment.

deploy.dir.
microejscript

Absolutepath to thedirectory that contains theBSPbuild script file (build.bat or build.sh
). An empty value means no build script execution.

Note: It is also possible to configure the BSP root directory by setting the build option toolchain.dir , instead of
the application option deploy.bsp.root.dir . This allows to build the Executable by specifying both the Platform
(using the target.platform.dir option) and the BSP at build level, without having to modify the application
options files.

For each Platform BSP connection case, here is a summary of the options to set:

• No BSP connection, Executable built outside the SDK

Platform Options:
[NONE]

Application Options:
[NONE]

• No BSP connection, Executable built using the SDK

Platform Options:
[NONE]

Application Options:
deploy.dir.microejapp=[absolute_path]
deploy.dir.microejlib=[absolute_path]
deploy.dir.microejinc=[absolute_path]
deploy.dir.microejscript=[absolute_path]

• Partial BSP connection, Executable built outside the SDK

6.5. Platform Creation 756

MicroEJ Documentation, Revision 32bb132e

Platform Options:
microejapp.relative.dir=[relative_path]
microejlib.relative.dir=[relative_path]
microejinc.relative.dir=[relative_path]

Application Options:
deploy.bsp.root.dir=[absolute_path]

• Partial BSP connection, Executable built using the SDK

Platform Options:
microejapp.relative.dir=[relative_path]
microejlib.relative.dir=[relative_path]
microejinc.relative.dir=[relative_path]
microejscript.relative.dir=[relative_path]

Application Options:
deploy.bsp.root.dir=[absolute_path]
deploy.bsp.microejscript=true

• Full BSP connection, Executable built using the SDK

Platform Options:
microejapp.relative.dir=[relative_path]
microejlib.relative.dir=[relative_path]
microejinc.relative.dir=[relative_path]
microejscript.relative.dir=[relative_path]
root.dir=[absolute_path]

Application Options:
deploy.bsp.microejscript=true

Build Script File

TheBSPbuild script file is used to invoke the third-partyC toolchain (compiler and linker) toproduce theExecutable
(application.out).

The build script must comply with the following specification:

• OnWindows operating system, it is a Windows batch file named build.bat .

• On macOS or Linux operating systems, it is a shell script named build.sh , with execution permission en-
abled.

• On error, the script must end with a non zero exit code.

• On success

– TheExecutablemust be copied to a file named application.out in the directory fromwhere the script
has been executed.

– The script must end with zero exit code.

Many build script templates are available formost commonly used C toolchains in the PlatformQualification Tools
repository.

The build script can also be launched before the Platform publication, see Platform Publication for more details.

6.5. Platform Creation 757

https://github.com/MicroEJ/VEEPortQualificationTools/tree/master/framework/platform/scripts
https://github.com/MicroEJ/VEEPortQualificationTools/tree/master/framework/platform/scripts

MicroEJ Documentation, Revision 32bb132e

Note: The Executable must be an ELF executable file. On Unix, the command file(1) can be use to check the
format of a file. For example:

~$ file application.out
ELF 32-bit LSB executable

Run Script File

This script is required only for Platforms intended to run aMicroEJ Testsuite on device.

The BSP run script is used to invoke a third-party tool to upload and start the Executable on device.

The run script must comply with the following specification:

• OnWindows operating system, it is a Windows batch file named run.bat .

• OnmacOSor Linux operating systems, it is a shell script named run.sh , with execution permission enabled.

• The Executable filename is passed as first script parameter if there is one, otherwise it is the application.
out file located in the directory fromwhere the script has been executed.

• On error, the script must end with a non zero exit code.

• On success:

– The Executable (application.out) has been uploaded and started on the device

– The script must end with zero exit code.

The run script can optionally redirect execution traces. If it does not implement execution traces redirection, the
testsuite must be configured with the following Standalone Application Options in order to take its input from a
TCP/IP socket server, such as Serial to Socket Transmitter.

testsuite.trace.ip=localhost
testsuite.trace.port=5555

6.5.9 Platform API Documentation

The Platform API documentation provides a comprehensive HTML Javadoc that combines all the Foundation Li-
brary APIs.

It can be built using the following steps:

• Create a newmodule repository project.

• Enable module repository javadoc generation (see Generate Javadoc).

• Go to your Platform build directory and browse source/javaLibs and source/MICROJVM/javaLibs
directories. You will find Foundation Libraries implementations JAR files in the following pattern:
<module_name>-<major>.<minor>.jar .

Example: EDC-1.3.jar : module_name = edc , major = 1 , minor = 3 .

• For each Foundation Library your want to include,

– Retrieve its apimodule in either theCentral Repository,Developer Repository or your custom repository.
Most of the Foundation Library APIs provided by MicroEJ are available under the ej.api organization.

Example: EDC is on the Central Repository (https://repository.microej.com/modules/ej/api/edc/)

6.5. Platform Creation 758

https://repository.microej.com/modules/ej/api/edc/

MicroEJ Documentation, Revision 32bb132e

– Get the latest available patch version corresponding to your <major>.<minor> version. This allows to
benefit from the latest javadoc fixes and updates for the corresponding version.

Example: ej.api#edc#1.3.5 : patch``=``5

– Declare a dependency line in the module repository.

<dependency conf="artifacts->*" transitive="false" org="<org>" name="<module_name>
→˓" rev="<major>.<minor>.<patch>" />

Example:

<dependency conf="artifacts->*" transitive="false" org="ej.api" name="edc" rev="1.
→˓3.5" />

• Build the module repository.

The Platform API documentation is available in <module_repository_project>/target~/artifacts/
<module_repository_name>-javadoc.zip .

6.5.10 Link-Time Option

It is possible to define custom Application options that can be passed to the BSP through an ELF symbol defined at
link-time, hence the term link-timeoption. This allows toprovideconfigurationoptions to theApplicationdeveloper
without the need to rebuild the BSP source code.

To define a link-time option, first choose an option name with only alphanumeric characters (
[a-zA-Z][a-zA-Z0-9]* without spaces).

Proceed with the following steps by replacing [my_option] with your option name everywhere:

• Create a folder inside your Platform Customization part (e.g: [platform]-configuration/dropins/
scripts/init-[my_option])

• Create an init script file and put it inside (e.g: [platform]-configuration/dropins/scripts/
init-[my_option]/init-[my_option].xml file). Here is the init script file template content:

<project name="[my_option]-init">
<target name="init/execution/[my_option]" extensionOf="init/execution" if="onBoard">
<!-- Set option default value -->
<property name="[my_option]" value="0"/>

<!-- Create tmp dir -->
<local name="link.files.dir"/>
<microejtempfile deleteonexit="true" prefix="link[my_option]" property="link.files.

→˓dir"/>
<mkdir dir="${link.files.dir}"/>
<!-- Get tmp link file name -->
<local name="link.[my_option]"/>
<property name="link.[my_option]" value="${link.files.dir}/[my_option].lscf" />
<echoxml file="${link.[my_option]}" append="false">
<lscFragment>
<defSymbol name="[my_option]" value="${[my_option]}" rootSymbol="true"/>

</lscFragment>
</echoxml>
<!-- Add link file in linker's link files path -->

(continues on next page)

6.5. Platform Creation 759

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

<augment id="partialLink.lscf.path">
<path location="${link.files.dir}"/>
<path location="${jpf.dir}/link"/>

</augment>
</target>

</project>

• In your BSP source code, define an ELF symbol [my_option] can then be used inside C files in your BSPwith:

// Declare the symbol as an extern global
extern int [my_option];

void my_func(void){
// Get the symbol value
int [my_option]_value = ((int)(&[my_option]));

// Get the symbol value
if([my_option]_value == 1){
...

}
else{
...

}
}

Warning: A Link-time option should avoid to be set to 0 . Some third-party linkers consider such symbols as
undefined, even if they are declared.

6.6 VEE Port Qualification

6.6.1 Introduction

A VEE Port integrates one or more Foundation Libraries with their respective Abstraction Layers.

VEE Port Qualification is the process of validating the conformance of the Abstraction Layer that implements the
Low Level APIs of a Foundation Library.

6.6. VEE Port Qualification 760

MicroEJ Documentation, Revision 32bb132e

Fig. 14: VEE Port Qualification Overwiew

For each Low Level API, an Abstraction Layer implementation is required. The validation of the Abstraction Layer
implementation is performed by running tests at two-levels:

• In C, by calling Low Level APIs (usually manually).

• In Java, by calling Foundation Library APIs (usually automatically using VEE Port Test Suite).

The following figure depicts an example for the FS Pack:

6.6. VEE Port Qualification 761

MicroEJ Documentation, Revision 32bb132e

Fig. 15: VEE Port Qualification Example for FS Pack

MicroEJ provides a set of tools and pre-defined projects aimed at simplifying the steps for validating VEE Ports in
the form of the VEE Port Qualification Tools (PQT).

6.6.2 VEE Port Qualification Tools Overview

The VEE Port Qualification Tools provide the following components:

• Platform Configuration Additions (PCA):

– Used to:

* Manage Architecture, Packs dependencies and the VEE Port build with the MicroEJ Module Man-
ager.

* Configure the BSP connection to call the build and run scripts.

– Added when creating a VEE Port (see Platform Creation or check the tutorial Create a MicroEJ Firmware
From Scratch).

• Build and Run Scripts examples:

– Used to generate and deploy an Executable on a device by invoking a third-party toolchain for the BSP.

– Added when integrating the BSP to the VEE Port (see Build Script File and Run Script File or check the
tutorial Create MicroEJ Platform Build and Run Scripts).

• C and Java Test Suites:

– Used to validate the Low Level APIs implementations.

6.6. VEE Port Qualification 762

https://github.com/MicroEJ/VEEPortQualificationTools

MicroEJ Documentation, Revision 32bb132e

– Validated during the BSP development andwhenever an Abstraction Layer implementation is added or
changed (see VEE Port Test Suite or check the tutorial Run a Test Suite on a Device).

Please refer to the VEE Port Qualification Tools README for more details and the location of the components.

6.6.3 VEE Port Test Suite

The purpose of a VEE Port Test Suite is to validate the Abstraction Layer that implements the Low Level APIs of a
Foundation Libraries by automatically running Java tests on the device.

TheMicroEJ Test Suite Engine is used for building, running a Test Suite, and providing a report.

A Test Suite contains one or more tests. For each test, the Test Suite Engine will:

1. Build an Executable for the test.

2. Run the Executable onto the device.

3. Retrieve the execution traces.

4. Analyze the traces to determine whether the test has PASSED or FAILED .

5. Append the result to the Test Report.

6. Repeat until all tests of the Test Suite have been executed.

Fig. 16: VEE Port Test Suite on Device Overview

6.6. VEE Port Qualification 763

https://github.com/MicroEJ/VEEPortQualificationTools

MicroEJ Documentation, Revision 32bb132e

6.6.4 Create a VEE Port Test Suite

A VEE Port Test Suite is composed of two projects:

• the Test Suite module: the project that contains test cases. Test cases are written in Junit. When this project
is built, it produces a versionned library. See Test Suite Versioning for available Test Suite modules for the
most common Packs provided by MicroEJ Corp.

• the Test Suite runner: the project that contains the configuration for its execution on a VEE Port. When this
project is built, it runs the Test Suite on a Device and generates the Test Suite report.

Note: Creating a VEE Port Test Suite requires SDK 5.6.0 or higher.

Create the Test Suite Module

The Test Suite module contains the tests of the Foundation Library to be qualified.

Create the Test Suite Module Project

A new Test Suite module is created using the microej-javaimpl Skeleton (see Foundation Library Implementa-
tion).

To create the Test Suite module, click on: File > New > Project. . . then select MicroEJ > Module Project

Fill up the following fields of the form:

• Project name (e.g: myFoundationLib-testsuite).

• Organization (e.g: com.mycompany).

• Module (e.g: myFoundationLib-testsuite).

• Revision (version of your Test Suite module).

• Select the Skeleton: microej-javaimpl .

Then, create two test source folders:

• Right-click on your project.

• Click on: New > Source Folder .

• Fill up the Folder name field of the form with: src/test/java and for the second folder: src/test/
resources .

You should get a Foundation Library Test Suite project that looks like:

6.6. VEE Port Qualification 764

MicroEJ Documentation, Revision 32bb132e

Fig. 17: Foundation Library Test Suite Project Skeleton

Your Test Suite module project is created and ready to be setup.

Configure the Test Suite Module Project

Open the module.ivy file and follow steps below:

• Edit the module ivy-module > info > ea:build node to update rip.printableName :

<ea:build organisation="com.is2t.easyant.buildtypes" module="build-microej-javaimpl"␣
→˓microej.lib.name="myFoundationLib-testsuite-1.0" rip.printableName="myFoundationLib␣
→˓Test Suite Impl" revision="5.2.+">

• Add the following properties in the ivy-module > info node:

<ea:property name="skip.test" value="set"/>
<ea:property name="target.main.classes" value="${basedir}/target~/test/classes"/>
<ea:property name="addon-processor.src.test.java.path.ref.name" value="src.java.path"/>

• Update the JUnit dependency to:

<dependency org="ej.library.test" name="junit" rev="1.7.1" conf="default;test->*"/>

• Add a module.ant file at the root of the Test Suite project with the following content:

<project>
<target name="BuildTestTarget" extensionOf="abstract-compile:compile-ready"␣

→˓depends="resources-std:copy-test-resources">
<augment id="src.java.path">

<path location="${basedir}/src/test/java" />
<path location="${target}/adpgenerated/src-adpgenerated/junit/

→˓java"/>
</augment>

</target>
</project>

6.6. VEE Port Qualification 765

MicroEJ Documentation, Revision 32bb132e

Note: An error on module.ant file can occurred with message Target resources-std:copy-test-resources
does not exist in this project . Please ignore it.

Create a New Test Case

Right click on src/test/java , then click on New > Class . Fill Name: with the MyTest and then click on
Finish . Copy/paste the following example in MyTest.java file:

import org.junit.Assert;
import org.junit.Test;

public class MyTest {

@Test
public static void Test() {

Assert.assertTrue(true);
}

}

The console output on the Simulator for this test should be:

=============== [Initialization Stage] ===============
=============== [Launching on Simulator] ===============
OK: Test
PASSED: 1
=============== [Completed Successfully] ===============

SUCCESS

Build the Test Suite Module

Once the test cases are implemented, you can build themodule. The next step is to create a Test Suite Runner. The
Test Suite Runner will fetch the Test Suite Module dependency.

6.6. VEE Port Qualification 766

MicroEJ Documentation, Revision 32bb132e

Create the Test Suite Runner

The Test Suite runner project contains configuration files for running a Test Suite module on a Device using a VEE
Port.

Create the Test Suite Runner Project

• To create the Test Suite runner project, click on: File > New > Other. . . > MicroEJ > Module Project
.

• Fill up the following fields of the form:

– Project name

– Organization

– Module

– Revision (version of your Test Suite module)

– Select the Skeleton: microej-testsuite

• Inside the module.ivy file, add the dependency to the Test Suite module as following:

<dependency org="com.mycompany" name="myFoundationLib-testsuite" rev="0.1.0" conf="test-
→˓>default;provided->provided"/>

• Inside the module.ant , add the following ANT target to configure trace redirection options :

<target name="tracefile:init" extensionOf="abstract-test:test-ready">
<!-- Set the launch.test.trace.file when the testsuite.trace.ip properties is␣

→˓not set -->
<condition property="microej.testsuite.properties.launch.test.trace.file">

<not>
<isset property="microej.testsuite.properties.testsuite.trace.ip

→˓" />
</not>

</condition>
</target>

• Create the file override.module.ant at the root of the project. Add the following content to configure the
load of testsuite options:

<project name="myFoundationlib.testsuite.override" xmlns:ac="antlib:net.sf.antcontrib">
<!-- Load options from 'local.properties' beside this file -->
<ac:if>

<available file="local.properties" type="file"/>
<ac:then>

<property file="local.properties"/>
</ac:then>

</ac:if>
<!-- Load options from 'config.properties' beside this file -->
<property file="config.properties"/>

</project>

• Create the following .properties files:

6.6. VEE Port Qualification 767

MicroEJ Documentation, Revision 32bb132e

– {PROJECT_LOC}/validation/microej-testsuite-common.properties : see microej-testsuite-
common.properties template.

– {PROJECT_LOC}/config.properties : see config.properties template.

Note: {PROJECT_LOC} refers here to the location of your Test Suite runner project.

Configure and Run the Test Suite

Follow the Run a Test Suite on a Device tutorial to configure your VEE Port and run the Test Suite on your Device.

6.6.5 Test Suite Versioning

FoundationLibrariesare integrated inaVEEPortusingPacks (seePack Import). Use theTestSuiteversioncompliant
with the API version provided by the Foundation Library to validate the Abstraction Layer implementation. For
example, the Test Suite FS module 3.0.3 should be used to validate the Abstraction Layer implementation of the
Low Level API FS provided by the FS Pack 5.1.2.

Note: A Pack can provide several Foundation Libraries.

Core Engine

Table 4: Core Engine Validation
Architecture Test Suite
7.0.0 or higher Core Engine Test Suite

UI Pack

Table 5: UI Validation
UI Pack C Test Suite
13.0.0 or higher (UI3) Graphical User Interface Test Suite
[6.0.0-12.1.5] (UI2) Graphical User Interface Test Suite

FS Pack

Table 6: FS API Implementation and Validation
FS Pack FS API Java Test Suite
[6.0.0-6.1.0[2.1.1 3.0.8
[5.1.2-5.2.0[2.0.6 3.0.3
[4.0.0-4.1.0[2.0.6 On demand1

1 Test Suite available on demand, please contactMicroEJ Support.

6.6. VEE Port Qualification 768

https://github.com/MicroEJ/VEEPortQualificationTools/blob/2.9.0/tests/core/java-testsuite-runner-core/validation/microej-testsuite-common.properties
https://github.com/MicroEJ/VEEPortQualificationTools/blob/2.9.0/tests/core/java-testsuite-runner-core/validation/microej-testsuite-common.properties
https://github.com/MicroEJ/VEEPortQualificationTools/blob/2.9.0/tests/core/java-testsuite-runner-core/config.properties.tpl
https://repository.microej.com/modules/com/microej/pack/fs/fs-testsuite/3.0.3/
https://repository.microej.com/modules/com/microej/pack/fs/5.1.2/
https://github.com/MicroEJ/VEEPortQualificationTools/tree/master/tests/core
https://github.com/MicroEJ/VEEPortQualificationTools/blob/master/tests/ui/ui3
https://github.com/MicroEJ/VEEPortQualificationTools/blob/master/tests/ui/ui2
https://repository.microej.com/modules/ej/api/fs/2.1.1/
https://repository.microej.com/modules/com/microej/pack/fs/fs-testsuite/3.0.8/
https://repository.microej.com/modules/ej/api/fs/2.0.6/
https://repository.microej.com/modules/com/microej/pack/fs/fs-testsuite/3.0.3/
https://repository.microej.com/modules/ej/api/fs/2.0.6/

MicroEJ Documentation, Revision 32bb132e

BLUETOOTH Pack

Table 7: BLUETOOTH API Implementation and Validation
BLUETOOTH Pack BLUETOOTH API Java Test Suite
2.1.0 2.1.0 2.0.0
2.0.1 2.0.0 2.0.0

NET Pack

Table 8: NET, SSL and SECURITY APIs Implementations and Validations
NET Pack NET API SSL API SECU-

RITY
API

NET Java Test
Suite

SSL Java Test
Suite

SECURITY Java
Test Suite

[8.1.2-8.2.0] 1.1.0 2.1.0 N/A 3.4.0 (On de-
mandPage 768, 1)

3.0.1 (On de-
mandPage 768, 1)

N/A

9.0.0 1.1.0 2.2.0 1.3.1 3.4.0 (On de-
mandPage 768, 1)

3.1.4 (On de-
mandPage 768, 1)

1.1.0 (On de-
mandPage 768, 1)

[9.0.1-9.4.1] 1.1.1 2.2.0 1.3.1 3.5.2 (On de-
mandPage 768, 1)

3.1.4 (On de-
mandPage 768, 1)

1.1.0 (On de-
mandPage 768, 1)

[10.0.0-10.5.0] 1.1.4 2.2.3 1.4.2 4.1.1 4.0.1 1.3.1
[11.0.1-11.0.2] 1.1.4 2.2.3 1.4.2 4.1.1 4.0.2 1.3.1

EVENT QUEUE Pack

Table 9: EVENT QUEUE API Implementation and Validation
EVENT QUEUE Pack EVENT QUEUE API Java Test Suite
2.0.1 2.0.0 2.0.0

6.7 Core Engine

The Core Engine is the core component of the Architecture. It executes at runtime the Application code.

6.7. Core Engine 769

https://repository.microej.com/modules/ej/api/bluetooth/2.1.0/
https://repository.microej.com/modules/com/microej/pack/bluetooth/bluetooth-testsuite/2.0.0/
https://repository.microej.com/modules/ej/api/bluetooth/2.0.0/
https://repository.microej.com/modules/com/microej/pack/bluetooth/bluetooth-testsuite/2.0.0/
https://repository.microej.com/modules/ej/api/net/1.1.0/
https://repository.microej.com/modules/ej/api/ssl/2.1.0/
https://repository.microej.com/modules/ej/api/net/1.1.0/
https://repository.microej.com/modules/ej/api/ssl/2.2.0/
https://repository.microej.com/modules/ej/api/security/1.3.1/
https://repository.microej.com/modules/ej/api/net/1.1.1/
https://repository.microej.com/modules/ej/api/ssl/2.2.0/
https://repository.microej.com/modules/ej/api/security/1.3.1/
https://repository.microej.com/modules/ej/api/net/1.1.4/
https://repository.microej.com/modules/ej/api/ssl/2.2.3/
https://repository.microej.com/modules/ej/api/security/1.4.2/
https://repository.microej.com/modules/com/microej/pack/net/net-1_1-testsuite/4.1.1/
https://repository.microej.com/modules/com/microej/pack/net/net-ssl-2_2-testsuite/4.0.1/
https://repository.microej.com/modules/com/microej/pack/security/security-1_4-testsuite/1.3.1/
https://repository.microej.com/modules/ej/api/net/1.1.4/
https://repository.microej.com/modules/ej/api/ssl/2.2.3/
https://repository.microej.com/modules/ej/api/security/1.4.2/
https://repository.microej.com/modules/com/microej/pack/net/net-1_1-testsuite/4.1.1/
https://repository.microej.com/modules/com/microej/pack/net/net-ssl-2_2-testsuite/4.0.2/
https://repository.microej.com/modules/com/microej/pack/security/security-1_4-testsuite/1.3.1/
https://forge.microej.com/artifactory/microej-developer-repository-release/ej/api/event/2.0.0/
https://forge.microej.com/artifactory/microej-developer-repository-release/com/microej/pack/event/event-testsuite/2.0.0/

MicroEJ Documentation, Revision 32bb132e

6.7.1 Block Diagram

Fig. 18: Core Engine Block Diagram

6.7.2 Link Flow

The following diagram shows the overall build flow. Application development is performed within MICROEJ SDK.
The remaining steps are performed within the C third-party IDE.

6.7. Core Engine 770

MicroEJ Documentation, Revision 32bb132e

Fig. 19: Core Engine Flow

1. Step 1 consists in writing an Application against a set of Foundation Libraries available in the VEE Port.

2. Step 2 consists in compiling the Application code and the required libraries in an ELF library, using the SOAR.

3. Step 3 consists in linking the previous ELF file with the Core Engine library and a third-party BSP (OS, drivers,
etc.). This step requires a third-party linker provided by a C toolchain.

6.7.3 Architecture

The Core Engine and its components have been compiled for one specific CPU architecture and for use with a
specific C compiler.

The Core Engine implements a green thread architecture. It runs in a single RTOS task.

In the following explanations the term“RTOS task” refers to the tasks scheduledby theunderlyingOS; and the term
“MicroEJ thread” refers to the Java threads scheduled by the Core Engine.

6.7. Core Engine 771

MicroEJ Documentation, Revision 32bb132e

Fig. 20: A Green Threads Architecture Example

The activity of the Core Engine is defined by the Application. When the Application is blocked (i.e., when all the
MicroEJ threads sleep), the RTOS task running the Core Engine sleeps.

6.7.4 Capabilities

The Core Engine defines 3 exclusive capabilities:

• Mono-Sandbox: capability to produce a monolithic Executable (default one).

• Multi-Sandbox: capability to produce a extensible Executable onwhich new applications can be dynamically
installed. See sectionMulti-Sandbox.

• Tiny-Sandbox: capability to produce a compacted Executable (optimized for size). See section Tiny-Sandbox.

All the Core Engine capabilities may not be available on all architectures. Refer to section Supported MicroEJ Core
Engine Capabilities by Architecture Matrix for more details.

To select the Core Engine capability, create the property file mjvm/mjvm.properties in the Platform configuration
project and define the property com.microej.runtime.capability with one of the following values:

• mono for Mono-Sandbox (default value)

• multi for Multi-Sandbox

• tiny for Tiny-Sandbox

If the property com.microej.runtime.capability is not defined, the Mono-Sandbox Core Engine capability is
used.

6.7. Core Engine 772

MicroEJ Documentation, Revision 32bb132e

6.7.5 Implementation

The Core Engine implements the [SNI] specification. It is created and initialized with the C function SNI_createVM
. Then it is started and executed in the current RTOS task by calling SNI_startVM . The function SNI_startVM
returns when the Application exits or if an error occurs (see section Error Codes). The function SNI_destroyVM
handles the Core Engine termination andmust be called a�er the return of the function SNI_startVM .

Only one instance of the Core Engine can be created in the system, and both SNI_createVM and SNI_destroyVM
should only be called once. When restarting the Core Engine, don’t call SNI_createVM or SNI_destroyVM before
calling SNI_startVM again. For more information, refer to the Restart the Core Engine section.

The file LLMJVM_impl.h that comeswith the Architecture defines the API to be implemented. See section LLMJVM:
MicroEJ Core Engine.

Initialization

The Low Level Core Engine API deals with two objects: the structure that represents the Core Engine, and the RTOS
task that runs the Core Engine. Two callbacks allow engineers to interact with the initialization of both objects:

• LLMJVM_IMPL_initialize : Called once the structure representing the Core Engine is initialized.

• LLMJVM_IMPL_vmTaskStarted : Called when the Core Engine starts its execution. This function is called
within the RTOS task of the Core Engine.

Scheduling

To support the green thread round-robin policy, the Core Engine assumes there is an RTOS timer or some other
mechanism that counts (down) and fires a call-back when it reaches a specified value. The Core Engine initializes
the timer using the LLMJVM_IMPL_scheduleRequest function with one argument: the absolute time at which the
timer should fire. When the timer fires, it must call the LLMJVM_schedule function, which tells the Core Engine to
execute a green thread context switch (which gives another MicroEJ thread a chance to run).

When several MicroEJ threads with the same priority are eligible for execution, the round-robin algorithm will
automatically switch between these threads a�er a certain amount of time, called the time slice. The time slice
is expressed in milliseconds, and its default value is 20 ms. It can be configured at link time with the symbol
_java_round_robin_period , defined in the linker configuration file linkVMConfiguration.lscf located in the
VEE Port folder /MICROJVM/link/ . To override the content of this file, create, in the VEE Port configuration project,
a folder named /dropins/MICROJVM/link/ , and copy into this folder the file linkVMConfiguration.lscf re-
trieved from an existing VEE Port. Since a symbol cannot be null, the actual time slice value in milliseconds is
_java_round_robin_period - 1 . Set the symbol to 1 (i.e., time slice to 0) to disable the round-robin scheduling.

Warning: Modifying the time slice value is an advanced configuration that can impact the performances.

Decreasing the time slice will increase the number of context switches. Therefore scheduler will use more CPU
time.

Increasing the time slice can create a latency with intensive threads monopolizing the CPU.

6.7. Core Engine 773

MicroEJ Documentation, Revision 32bb132e

Idle Mode

When the Core Engine has no activity to execute, it calls the LLMJVM_IMPL_idleVM function, which is assumed to
put the Core Engine RTOS task into a sleep state. LLMJVM_IMPL_wakeupVM is called to wake up the Core Engine
RTOS task. When the Core Engine RTOS task really starts to execute again, it calls the LLMJVM_IMPL_ackWakeup
function to acknowledge the restart of its activity.

Time

The Core Engine defines two di�erent times:

• the application time: the di�erence,measured inmilliseconds, between the current time andmidnight, Jan-
uary 1, 1970, UTC.

• the monotonic time: this time always moves forward and is not impacted by application timemodifications
(NTP or Daylight Savings Time updates). It can be implemented by returning the running time since the start
of the device.

The Core Engine relies on the following C functions to provide those times to the Application:

• LLMJVM_IMPL_getCurrentTime : must return the monotonic time in milliseconds if the given parameter
is 1 , otherwise must return the application time in milliseconds. This function is called by the method
java.lang.System.currentTimeMillis() It is also used by the Core Engine scheduler, and should be imple-
mented e�iciently.

• LLMJVM_IMPL_getTimeNanos : must return a monotonic time in nanoseconds.

• LLMJVM_IMPL_setApplicationTime : must set the di�erence between the current time and midnight, Jan-
uary 1, 1970, UTC. Implementations may apply this time to the whole underlying system or only to the Core
Engine (i.e., the value returned by LLMJVM_IMPL_getCurrentTime(0)).

Error Codes

The C function SNI_createVM returns a negative value if an error occurred during the Core Engine initialization or
execution. The file LLMJVM.h defines the Core Engine error code constants. The following table describes these
error codes.

6.7. Core Engine 774

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#currentTimeMillis--

MicroEJ Documentation, Revision 32bb132e

Table 10: Core Engine Error Codes
Error Code Meaning
0 The Application ended normally (i.e., all the

non-daemon threads are terminated or System.
exit(exitCode) has been called). See section Exit
Codes.

-1 The microejapp.o produced by SOAR is not compat-
ible with the Core Engine (microejruntime.a). The
object file has been built from another Architecture.

-2 Internal error. Invalid link configuration in the Archi-
tecture or the VEE Port.

-3 Evaluation version limitations reached: termination of
the application. See section Limitations.

-5 Not enough resources to start the very first MicroEJ
thread that executes main method. See section Op-
tion(text): Java heap size (in bytes).

-12 Number of threads limitation reached. See sections
Limitations and Option(text): Number of threads.

-13 Fail to start the Application because the specified
managed heap is too large or too small. See section
Option(text): Java heap size (in bytes).

-14 Invalid Application stack configuration. The stack start
or end is not eight-byte aligned, or stack block size is
too small. See section Option(text): Number of blocks
in pool.

-16 The Core Engine cannot be restarted.
-17 The Core Engine is not in a valid state because of one

of the following situations:
• SNI_startVM called before SNI_createVM .
• SNI_startVM called while the Appplication is
running.

• SNI_createVM called several times.

-18 The memory used for the managed heap or immor-
tal heap does not work properly. Read/Write mem-
ory checks failed. This may be caused by an invalid
external RAM configuration. Verify _java_heap and
_java_immortals sections locations.

-19 Thememory used for the Application static fields does
not work properly. Read/Write memory checks failed.
This may be caused by an invalid external RAM config-
uration. Verify .bss.soar section location.

-20 KF configuration internal error. Invalid link configura-
tion in the Architecture or the VEE Port.

-21 Number of monitors per thread limitation reached.
See sections Limitations and Options .

-22 Internal error. Invalid FPU configuration in the Archi-
tecture.

-23 The function LLMJVM_IMPL_initialize defined in
the Abstraction Layer implementation returns an er-
ror.

-24 The function LLMJVM_IMPL_vmTaskStarted defined
in theAbstraction Layer implementation returns aner-
ror.

-25 The function LLMJVM_IMPL_shutdown defined in the
Abstraction Layer implementation returns an error.

6.7. Core Engine 775

MicroEJ Documentation, Revision 32bb132e

Example

The following example shows how to create and launch the Core Engine from the C world. This function (
microej_main) should be called from a dedicated RTOS task.

#include <stdio.h>
#include "microej_main.h"
#include "LLMJVM.h"
#include "sni.h"

#ifdef __cplusplus
extern "C" {

#endif

/**
* @brief Creates and starts a MicroEJ instance. This function returns when the MicroEJ␣
→˓execution ends.
* @param argc arguments count
* @param argv arguments vector
* @param app_exit_code_ptr pointer where this function stores the application exit code or␣
→˓0 in case of error in the Core Engine. May be null.
* @return the Core Engine error code in case of error, or 0 if the execution ends without␣
→˓error.
*/
int microej_main(int argc, char **argv, int* app_exit_code_ptr) {

void* vm;
int core_engine_error_code = -1;
int32_t app_exit_code = 0;
// create Core Engine
vm = SNI_createVM();

if (vm == NULL) {
printf("MicroEJ initialization error.\n");

} else {
printf("MicroEJ START\n");

// Error codes documentation is available in LLMJVM.h
core_engine_error_code = (int)SNI_startVM(vm, argc, argv);

if (core_engine_error_code < 0) {
// Error occurred
if (core_engine_error_code == LLMJVM_E_EVAL_LIMIT) {

printf("Evaluation limits reached.\n");
} else {

printf("MicroEJ execution error (err = %d).\n", (int) core_
→˓engine_error_code);

}
} else {

// Core Engine execution ends normally
app_exit_code = SNI_getExitCode(vm);
printf("MicroEJ END (exit code = %d)\n", (int) app_exit_code);

}

(continues on next page)

6.7. Core Engine 776

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

// delete Core Engine
SNI_destroyVM(vm);

}

if(app_exit_code_ptr != NULL){
*app_exit_code_ptr = (int)app_exit_code;

}

return core_engine_error_code;
}

#ifdef __cplusplus
}

#endif

Restart the Core Engine

The Core Engine supports the restart of the Application a�er the end of its execution. The application stops when
all non-daemon threads are terminated or when System.exit(exitCode) is called. When the application ends,
the C function SNI_startVM returns.

To restart the application, call again the SNI_startVM function (see the following pattern).

// create Core Engine (called only once)
vm = SNI_createVM();
...
// start a new execution of the Application at each iteration of the loop
while(...){

...
core_engine_error_code = SNI_startVM(vm, argc, argv);
...
// Get exit status passed to System.exit()
app_exit_code = SNI_getExitCode(vm);
...

}
...
// delete Core Engine (called before stopping the whole system)
SNI_destroyVM(vm);

Note: Please note that while the Core Engine supports restart, MicroUI does not. Attempting to restart the Appli-
cation on a VEE Port with UI support may result in undefined behavior.

6.7. Core Engine 777

MicroEJ Documentation, Revision 32bb132e

Dump the States of the Core Engine

The internal Core Engine function called LLMJVM_dump allows you to dump the state of all MicroEJ threads: name,
priority, stack trace, etc. This function must only be called from the MicroJvm virtual machine thread context and
only from a native function or callback. Calling this function from another context may lead to undefined behavior
and should be done only for debug purpose.

This is an example of a dump:

=================================== VM Dump ====================================
Java threads count: 3
Peak java threads count: 3
Total created java threads: 3
Last executed native function: 0x90035E3D
Last executed external hook function: 0x00000000
State: running
--
Java Thread[1026]
name="main" prio=5 state=RUNNING max_java_stack=456 current_java_stack=184

java.lang.MainThread@0xC0083C7C:
at (native) [0x90003F65]
at com.microej.demo.widget.main.MainPage.getContentWidget(MainPage.java:95)

Object References:
- com.microej.demo.widget.main.MainPage@0xC00834E0
- com.microej.demo.widget.main.MainPage$1@0xC0082184
- java.lang.Thread@0xC0082194
- java.lang.Thread@0xC0082194

at com.microej.demo.widget.common.Navigation.createRootWidget(Navigation.java:104)
Object References:

- com.microej.demo.widget.main.MainPage@0xC00834E0
at com.microej.demo.widget.common.Navigation.createDesktop(Navigation.java:88)

Object References:
- com.microej.demo.widget.main.MainPage@0xC00834E0
- ej.mwt.stylesheet.CachedStylesheet@0xC00821DC

at com.microej.demo.widget.common.Navigation.main(Navigation.java:40)
Object References:

- com.microej.demo.widget.main.MainPage@0xC00834E0
at java.lang.MainThread.run(Thread.java:855)

Object References:
- java.lang.MainThread@0xC0083C7C

at java.lang.Thread.runWrapper(Thread.java:464)
Object References:

- java.lang.MainThread@0xC0083C7C
at java.lang.Thread.callWrapper(Thread.java:449)

--
Java Thread[1281]
name="UIPump" prio=5 state=WAITING timeout(ms)=INF max_java_stack=120 current_java_stack=117
external event: status=waiting

java.lang.Thread@0xC0083628:
at ej.microui.MicroUIPump.read(Unknown Source)

Object References:
- ej.microui.display.DisplayPump@0xC0083640

(continues on next page)

6.7. Core Engine 778

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

at ej.microui.MicroUIPump.run(MicroUIPump.java:176)
Object References:

- ej.microui.display.DisplayPump@0xC0083640
at java.lang.Thread.run(Thread.java:311)

Object References:
- java.lang.Thread@0xC0083628

at java.lang.Thread.runWrapper(Thread.java:464)
Object References:

- java.lang.Thread@0xC0083628
at java.lang.Thread.callWrapper(Thread.java:449)

--
Java Thread[1536]
name="Thread1" prio=5 state=READY max_java_stack=60 current_java_stack=57

java.lang.Thread@0xC0082194:
at java.lang.Thread.runWrapper(Unknown Source)

Object References:
- java.lang.Thread@0xC0082194

at java.lang.Thread.callWrapper(Thread.java:449)
==

============================== Garbage Collector ===============================
State: Stopped
Last analyzed object: null
Total memory: 15500
Current allocated memory: 7068
Current free memory: 8432
Allocated memory after last GC: 0
Free memory after last GC: 15500
==

=============================== Native Resources ===============================
Id CloseFunc Owner Description
--
==

See Stack Trace Reader for additional info related to working with VM dumps.

Dump The State Of All MicroEJ Threads From A Fault Handler

It is recommended to call the LLMJVM_dump API as a last resort in a fault handler. Calling LLMJVM_dump is undefined
if the VM is not paused. The call to LLMJVM_dump MUST be done last in the fault handler.

6.7. Core Engine 779

MicroEJ Documentation, Revision 32bb132e

Trigger VM Dump From Debugger

To trigger a VM dump from the debugger, set the PC register to the LLMJVM_dump physical memory address.

The symbol for the LLMJVM_dump API is defined in the header file LLMJVM.h . Search for this symbol in the appro-
priate C toolchain .map file.

Note: LLMJVM_dump (in LLMJVM.h) needs to be called explicitly. A linker optimization may remove the symbol if
it is not used anywhere in the code.

Requirements:

• Embedded debugger is attached and the processor is halted in an exception handler.

• A way to read stdout (usually UART).

Check Internal Structure Integrity

The internal Core Engine function called LLMJVM_checkIntegrity checks the internal structure integrity of the
MicroJvm virtual machine and returns its checksum.

• If an integrity error is detected, the LLMJVM_on_CheckIntegrity_error hook is called and this method re-
turns 0 .

• If no integrity error is detected, a non-zero checksum is returned.

This functionmust onlybe called fromtheMicroJvmvirtualmachine threadcontext andonly fromanative function
or callback. Calling this function multiple times in a native function must always produce the same checksum. If
the checksums returned are di�erent, a corruption must have occurred.

Please note that returning a non-zero checksum does not mean the MicroJvm virtual machine data has not been
corrupted, as it is not possible for the MicroJvm virtual machine to detect the complete memory integrity.

MicroJvmvirtualmachine internal structures allowed tobemodifiedbyanative functionarenot taken intoaccount
for the checksum computation. The internal structures allowed are:

• basetype fields in Java objects or content of Java arrays of base type,

• internal structuresmodified by a LLMJVM function call (e.g. set a pending Java exception, suspendor resume
the Java thread, register a resource, . . .).

This function a�ects performance and should only be used for debug purpose. A typical use of this API is to verify
that a native implementation does not corrupt the internal structures:

void Java_com_mycompany_MyClass_myNativeFunction(void) {
int32_t crcBefore = LLMJVM_checkIntegrity();
myNativeFunctionDo();

int32_t crcAfter = LLMJVM_checkIntegrity();
if(crcBefore != crcAfter){

// Corrupted MicroJVM virtual machine internal structures
while(1);

}
}

6.7. Core Engine 780

MicroEJ Documentation, Revision 32bb132e

6.7.6 Generic Output

The System.err stream is connected to the System.out print stream. See below for how to configure the destination
of these streams.

6.7.7 Link

Several sections are defined by the Core Engine. Each section must be linked by the third-party linker. Read-Only
(RO) sections can be placed in writablememories. In such cases, it is the responsibility of the BSP to prevent these
sections from being written.

Starting from Architecture 8.0.0, sections have been renamed to follow the standard ELF naming convention.

Linker Sections (Architecture 8.x)

Linker Sections (Architecture 7.x)

Section name Aim Loca-
tion

Align-
ment
(in
bytes)

.bss.microej.heap Application heap RW 4

.bss.microej.immortals Application immortal heap RW 4

.bss.microej.stacks Application threads stack blocks RW1 8

.bss.microej.statics Application static fields RW 8
.rodata.microej.

resource.*
Application resources (one section per resource) RO 16

.rodata.microej.soar Application and library code RO 16

.bss.microej.runtime Core Engine internal structures RWPage 781, 18

.text.__icetea__* Core Engine generated code RX ISA
Spe-
cific

.bss.microej.kernel Core Engine Multi-Sandbox section (Feature code chunk) RW 4

Note: During its startup, the Core Engine automatically zero-initializes the sections .bss.microej.runtime , .
bss.microej.heap , and .bss.microej.immortals .

1 Among all RW sections, those should be always placed into internal RAM for performance purpose.

6.7. Core Engine 781

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#err
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#out

MicroEJ Documentation, Revision 32bb132e

Section name Aim Loca-
tion

Align-
ment
(in
bytes)

_java_heap Application heap RW 4
_java_immortals Application immortal heap RW 4
.bss.vm.stacks.java Application threads stack blocks RW1 8
.bss.soar Application static fields RW 8
.rodata.resources Application resources RO 16
.text.soar Application and library code RO 16
ICETEA_HEAP Core Engine internal structures RWPage 781, 18
.text.__icetea__* Core Engine generated code RX ISA

Spe-
cific

Note: During its startup, the Core Engine automatically zero-initializes the sections ICETEA_HEAP , _java_heap ,
and _java_immortals .

6.7.8 Dependencies

The Core Engine requires an implementation of its low level APIs in order to run. Refer to the chapter Implementa-
tion for more information.

6.7.9 Installation

The Core Engine and its components are mandatory. By default, it is configured with Mono-Sandbox capability.
See the Capabilities section to update the Core Engine with Multi-Sandbox or Tiny-Sandbox capability.

6.7.10 Abstraction Layer

Core Engine Abstraction Layer implementations can be found on MicroEJ Github for several RTOS.

6.7.11 Memory Considerations

Thememory consumption of main Core Engine runtime elements are described in the table below.

Table 11: Memory Considerations
Runtime ele-
ment

Mem-
ory

Size in bytes (Mono-
sandbox)

Size in bytes (Multi-
Sandbox)

Size in bytes (Tiny-
Sandbox)

Object Header RW 4 8 (+4) 4
Thread RW 168 192 (+24) 168
Stack Frame
Header

RW 12 20 (+8) 12

Class Type RO 32 36 (+4) 32
Interface Type RO 16 24 (+8) 16

6.7. Core Engine 782

https://github.com/orgs/MicroEJ/repositories?q=AbstractionLayer-Core&type=all&language=&sort=

MicroEJ Documentation, Revision 32bb132e

Note: To get the full size of an Object, search for the type in the SOAR Information File and read the attribute
instancesize (this includes the Object header).

Note: To get the full size of a Stack Frame, search for themethod in the SOAR Information File and read the attribute
stacksize (this includes the Stack Frame header).

6.7.12 Use

Refer to theMicroEJ Runtime documentation.

6.8 Advanced Event Tracing

6.8.1 Principle

MicroEJ Core Engine allows method execution to be profiled. The following two new hooks functions are used for
that:

• LLMJVM_MONITOR_IMPL_on_invoke_method called at the start of the method invocation.

• LLMJVM_MONITOR_IMPL_on_return_method called when returning from the invokedmethod.

Calling these functions each time amethod is invokedwill slowdown the application execution, so these functions
are not called by default when event tracing is enabled and started.

Note: This feature requires Architecture version 7.17.0 or higher and is only available on MicroEJ Core Engine,
not on Simulator.

To activate them, you need to follow these steps:

• Enable and start the trace see here

• Tell the third-party linker program to redirect all calls to LLMJVM_invoke_method and
LLMJVM_return_method symbols to respectively LLMJVM_invoke_method_with_trace and
LLMJVM_return_method_with_trace symbols.

6.8.2 Platforms using GNU LD linker

Add the following options to the LD linker command line:

--require-defined=LLMJVM_invoke_method_with_trace
--defsym=LLMJVM_invoke_method=LLMJVM_invoke_method_with_trace
--require-defined=LLMJVM_return_method_with_trace
--defsym=LLMJVM_return_method=LLMJVM_return_method_with_trace

6.8. Advanced Event Tracing 783

MicroEJ Documentation, Revision 32bb132e

6.8.3 Platforms using IAR ILINK linker

Pass the following options to the ILINK linker program

--redirect LLMJVM_invoke_method=LLMJVM_invoke_method_with_trace
--redirect LLMJVM_return_method=LLMJVM_return_method_with_trace

6.9 Multi-Sandbox

6.9.1 Principle

TheMulti-Sandboxcapability of theCoreEngineallowsamainapplication (calledStandaloneApplication) to install
and execute at runtime additional applications (called Sandboxed Applications).

The Core Engine implements the [KF] specification. A Kernel is a Standalone Application generated on a Multi-
Sandbox-enabled VEE Port. A Feature is a Sandboxed Application generated against a specific Kernel.

6.9.2 Functional Description

The Multi-Sandbox process extends the overall process described in the overview of the platform process.

Fig. 21: Multi-Sandbox Process

OnceaKernelhasbeengenerated, additionalSandboxedApplicationcode (Feature) canbebuilt against theKernel.
The binary file produced (the .fo file) can be installed on the Kernel on which it was generated.

Formoredetails on thebuild flow, please refer toMulti-SandboxKernel link andSandboxedApplication link sections.

6.9. Multi-Sandbox 784

MicroEJ Documentation, Revision 32bb132e

6.9.3 Memory Considerations

Multi-Sandboxmemory overhead of Core Engine runtime elements are described inMemory Considerations table.

6.9.4 Dependencies

• LLKERNEL_impl.h implementation (see Feature Installation section).

6.9.5 Installation

Multi-Sandbox is an option disabled by default. To enable the Multi-Sandbox capability of the Core Engine, set the
property com.microej.runtime.capability to multi in mjvm/mjvm.properties file. See the example below:

com.microej.runtime.capability=multi

Note: Before Architecture 8.1.0, to enable the Multi-Sandbox capability of the Core Engine, select the
Multi Applications module in the platform configuration file.

6.9.6 Use

The KF API Module must be added to themodule.ivy of the Application project to use [KF] library.

<dependency org="ej.api" name="kf" rev="1.4.4"/>

This library provides a set of options. Refer to the chapter Standalone Application Options which lists all available
options.

6.9.7 Feature Installation

Introduction

Feature installation is triggered by a call to the Kernel.install(InputStream) method. It consists of the following
steps:

• loading Feature’s content from .fo file,

• linking Feature’s code with the Kernel,

• storing Feature’s content into the target memory.

A Feature .fo file is composed of the following elements:

• Code: Application code (methods, types, . . .) as well as built-in objects (strings and immutables),

• RO Data: Application Resources that do not require content modification,

• RW Data: Reservedmemory for Feature execution (Application static fields and Feature internal structures),

• Metadata: Temporary information required during the installation phase, such as code relocations.

6.9. Multi-Sandbox 785

https://repository.microej.com/modules/ej/api/kf/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#install-java.io.InputStream-

MicroEJ Documentation, Revision 32bb132e

Fig. 22: Feature .fo File Content

Feature installation flow allows to install Features in any byte-addressable memory mapped to the CPU’s address
space. The Feature content is read chunk-by-chunk from the InputStream and progressively transferred to the tar-
get memory. Only a small amount of RAM is required. The LLKERNEL_impl.h Abstraction Layer interface provides
Low Level APIs for allocating and transferring Feature content in di�erent memory areas, including ROM.

Installation Flow

The RO Data (Application Resources) is directly transferred to the target location. The Code is divided into chunks.
Each chunk is temporarily copied to RAM to be relocated. Then it is transferred to the target location.

A minimum amount of RAM is required:

• A temporary bu�er is allocated in the Java heap for reading bytes from the InputStream,

• Metadata is allocated in the Java heap,

• Code chunk is temporarily copied in a memory area to be relocated (see more details below).

6.9. Multi-Sandbox 786

MicroEJ Documentation, Revision 32bb132e

Fig. 23: Feature Installation Steps

The Abstraction Layer implementation is responsible for providing the following elements:

• the location where the Feature will be installed,

• the implementation to copy a chunk of bytes to the target location.

The detailed installation flow is described in the following sequence diagram:

6.9. Multi-Sandbox 787

MicroEJ Documentation, Revision 32bb132e

Fig. 24: Feature Installation Flow

The detailed uninstallation flow is described in the following sequence diagram:

6.9. Multi-Sandbox 788

MicroEJ Documentation, Revision 32bb132e

Fig. 25: Feature Uninstallation Flow

Feature Persistency

Feature Persistency is the ability of the Core Engine to gather installed Features fromprior executions of the Kernel
upon start up. This means that the Kernel will boot with a set of available Features that were already installed. To
ensure that the Features remain available even a�er the device restarts, youwill have to implement an Abstraction
Layer that stores the Features into a Read-Only memory.

6.9. Multi-Sandbox 789

MicroEJ Documentation, Revision 32bb132e

Fig. 26: Feature Installation Boot Flow

Note: Features are available in the INSTALLED state. It is the responsibility of the Kernel to manually start the
desired Features.

Advanced Options

Code Chunk Size

Feature .fo Code section is divided into chunks that are temporary copied toRAM tobe relocated. TheCode chunk
size can be configured with the following option:

Option Name: com.microej.soar.kernel.featurecodechunk.size

Default Value: 65536 (bytes)

A small numberwill reduce theRAMconsumptionbutwill increase the .fo size andwill a�ect the installation time.

6.9. Multi-Sandbox 790

MicroEJ Documentation, Revision 32bb132e

InputStream Transfer Bu�er Size

When calling theKernel.install(InputStream)method, the Feature .fo bytes are read from the InputStreamusing a
temporary byte array allocated in the Java Heap. The size of this array can be configuredwith the following option:

Option Name: com.microej.runtime.kf.link.transferbuffer.size

Default Value: 512 (bytes)

Relocation Process Yield

When a Feature file has a large amount of code, it may appear that the Core Engine blocks while applying relo-
cations during the Feature installation. The number of relocations to apply in batch can be configured with the
following option:

Option Name: com.microej.runtime.kf.link.chunk.relocations.count

Default Value: 128

Once the Core Engine has processed the given number of relocations, the thread that called the Ker-
nel.install(InputStream)method yields the execution to other threads. A small number will givemore smooth exe-
cution for threadsbut a slowest installation execution. A largenumberwillmake theCore Engineblock for applying
relocations but a faster installation execution.

Determining the Amount of Required Memory

The amount of memory required for installing a .fo file is determined by analyzing the sizes of the ELF sections.

Sections can be dumped using the standard binutils readelf tool:

readelf -WS application.fo
There are 8 section headers, starting at offset 0x34:

Section Headers:
[Nr] Name Type Addr Off Size ES Flg Lk Inf Al
[0] NULL 00000000 000000 000000 00 0 0 0
[1] .soar.rel LOPROC+0 00000000 000174 000bcc 00 6 0 4
[2] .strtab STRTAB 00000000 000d40 000063 00 0 0 1
[3] .symtab SYMTAB 00000000 000da4 000050 10 2 1 4
[4] .bss.soar.feature NOBITS 00000000 000df4 000050 00 A 0 0 4
[5] .rodata.microej.resources PROGBITS 00000000 000e00 079080 00 A 0 0 64
[6] .rodata PROGBITS 00000000 079e80 001974 00 A 0 0 16
[7] .shstrtab STRTAB 00000000 07b7f4 000059 00 0 0 1

The following table summarizes the sections and their content:

6.9. Multi-Sandbox 791

https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#install-java.io.InputStream-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#install-java.io.InputStream-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#install-java.io.InputStream-

MicroEJ Documentation, Revision 32bb132e

Section Description Temporary Memory Lo-
cation

Target Memory Loca-
tion

.soar.rel Metadata Java Heap None

.strtab Metadata Java Heap None

.symbtab Metadata Java Heap None

.bss.soar.feature RW Data None Features RAM area
.rodata.microej.

resources
RO Data None Features ROM area

.rodata Code chunk RAM Features ROM area

.shstrtab Metadata Java Heap None

In-Place Installation

Note: This section describes the legacy Feature installation flow, based on a malloc/free implementation in
RAM. It is deprecated and available up to Architecture 8.0.0.

SeeMigrate Your LLKERNEL Implementation for migrating to the latest installation flow.

Feature content is installed in RAM. The required memory is allocated in the Kernel Working Bu�er. This includes
code, resources, static fields, and internal structures. When the Feature is uninstalled, allocated memory is re-
claimed. When the Core Engine or the device restarts, the Kernel Working Bu�er is reset; thus there is no persistent
Feature.

Fig. 27: In-Place Feature Installation Overview

The In-Place installation flow is described in the following sequence diagram:

6.9. Multi-Sandbox 792

MicroEJ Documentation, Revision 32bb132e

Fig. 28: In-Place Feature Installation Flow

The In-Place uninstallation flow is described in the following sequence diagram:

Fig. 29: In-Place Feature Uninstallation Flow

6.9. Multi-Sandbox 793

MicroEJ Documentation, Revision 32bb132e

6.9.8 RAM Control

Note: This feature requires Architecture 8.1.0 or higher.

In a Multi-Sandbox environment, RAM Control automatically stops less critical Features when a more critical Fea-
ture cannot allocate new objects. See the RAM Control: Feature Criticality section of the Kernel & Features Specifi-
cation for more details.

By default, RAM Control is disabled in the Core Engine. To enable it, set the property com.microej.runtime.kf.
ramcontrol.enabled to true when building the VEE Port. This can be done by defining this property in the file
mjvm/mjvm.properties of your VEE Port configuration project:

com.microej.runtime.kf.ramcontrol.enabled=true

When RAM Control is enabled, all Foundation Libraries must declare their native resources using SNI (see sni.h
header file). This is necessary for the automatic release of native resources when the Core Engine abruptly stops a
Feature to recoverheapmemory. FoundationLibraries canno longer registernative resourcesusing thedeprecated
class ej.lang.ResourceManager . Attempting to do so will result in an exception being thrown.

6.10 Tiny-Sandbox

6.10.1 Principle

The Tiny-Sandbox capability of the Core Engine allows to build a Standalone Application optimized for size. This
capability is suitable for environments requiring a small memory footprint.

6.10.2 Installation

Tiny-Sandbox is an option disabled by default. To enable the Tiny-Sandbox capability of the Core Engine, set the
property com.microej.runtime.capability to tiny in mjvm/mjvm.properties file. See the example below:

com.microej.runtime.capability=tiny

Note: Before Architecture 8.1.0, enabling the Tiny-Sandbox capability was done by setting the property mjvm.
standalone.configuration in the configuration.xml file as follows:

<property name="mjvm.standalone.configuration" value="tiny"/>

See section Platform Customization for more info on the configuration.xml file.

6.10. Tiny-Sandbox 794

MicroEJ Documentation, Revision 32bb132e

6.10.3 Limitations

In addition to general Limitations:

• The maximum application code size (classes and methods) cannot exceed 256KB . This does not include
application resources, immutable objects and internal strings which are not limited.

• The option SOAR > Debug > Embed all type names has no e�ect. Only the fully qualified names of
types marked as required types are embedded.

• Incompatible with dynamic linkers enabling Address Space Layout Randomization (ASLR).

6.11 Native Interface Mechanisms

TheMicroEJ Core Engine provides twoways to link MicroEJ Application code with native C code. The twoways are
fully complementary, and can be used at the same time.

6.11.1 Simple Native Interface (SNI)

Principle

[SNI] specification defines how to cross the barrier between the Java world and the native world:

• Call a C function from Java.

• Pass parameters to the C function.

• Return a value from the C world to the Java world.

• Manipulate (read & write) sharedmemory both in Java and C: the immortal space.

6.11. Native Interface Mechanisms 795

MicroEJ Documentation, Revision 32bb132e

Functional Description

The following illustration shows both Java and C code accesses to shared objects in the immortal space, while also
accessing their respective memory.

Fig. 30: [SNI] Processing

Example

package example;

import java.io.IOException;

/**
* Abstract class providing a native method to access sensor value.
* This method will be executed out of virtual machine.
*/
public abstract class Sensor {

(continues on next page)

6.11. Native Interface Mechanisms 796

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

public static final int ERROR = -1;

public int getValue() throws IOException {
int sensorID = getSensorID();
int value = getSensorValue(sensorID);
if (value == ERROR) {

throw new IOException("Unsupported sensor");
}
return value;

}

protected abstract int getSensorID();

public static native int getSensorValue(int sensorID);
}

class Potentiometer extends Sensor {

protected int getSensorID() {
return Constants.POTENTIOMETER_ID; // POTENTIOMETER_ID is a static final

}
}

// File providing an implementation of native method using a C function
#include <sni.h>
#include <potentiometer.h>

#define SENSOR_ERROR (-1)
#define POTENTIOMETER_ID (3)

jint Java_example_Sensor_getSensorValue(jint sensor_id){

if (sensor_id == POTENTIOMETER_ID)
{

return get_potentiometer_value();
}
return SENSOR_ERROR;

}

Synchronization

A call to a native function uses the same RTOS task as the RTOS task used to run all Java green threads. So during
this call, the MicroEJ Core Engine cannot schedule other Java threads.

[SNI] defines C functions that provide controls for the green threads’ activities:

• int32_t SNI_suspendCurrentJavaThread(int64_t timeout) : Suspends the execution of the Java thread
that initiated the current C call. This function does not block theC execution. The suspension is e�ective only
at the end of the native method call (when the C call returns). The green thread is suspended until either an
RTOS task calls SNI_resumeJavaThread , or the specified number of milliseconds has elapsed.

• int32_t SNI_getCurrentJavaThreadID(void) : Permits retrieval of the IDof the current Java threadwithin
the C function (assuming it is a “native Java to C call”). This IDmust be given to the SNI_resumeJavaThread

6.11. Native Interface Mechanisms 797

MicroEJ Documentation, Revision 32bb132e

function in order to resume execution of the green thread.

• int32_t SNI_resumeJavaThread(int32_t id) : Resumes the green thread with the given ID. If the thread
is not suspended, the resume stays pending.

Fig. 31: Green Threads and RTOS Task Synchronization

The above illustration shows a green thread (GT3) which has called a native method that executes in C. The C code
suspends the thread a�er having provisioned its ID (e.g. 3). Another RTOS task may later resume the Java green
thread.

Dependencies

No dependency.

Installation

The [SNI] library is a built-in feature of the Architecture, so there is no additional dependency to call native code
from Java. In the Platform configuration file, check Java to C Interface > SNI API to install the additional Java
APIs in order to manipulate the data arrays.

Use

The SNI API module must be added to themodule.ivy of the Application project to use the [SNI] library.

<dependency org="ej.api" name="sni" rev="1.3.1"/>

6.11. Native Interface Mechanisms 798

https://repository.microej.com/modules/ej/api/sni/

MicroEJ Documentation, Revision 32bb132e

6.11.2 Shielded Plug (SP)

Principle

The Shielded Plug (SP) library provides data segregation with a clear publish-subscribe API. The data-sharing be-
tween modules uses the concept of shared memory blocks, with introspection. The database is made of blocks:
chunks of RAM.

Fig. 32: A Shielded Plug Between Two Application (Java/C) Modules.

Documentation Link
Java APIs https://repository.microej.com/javadoc/microej_5.x/apis/ej/sp/

package-summary.html
Specification https://repository.microej.com/packages/ESR/ESR-SPE-0014-SP-2.0-B.pdf
Module https://repository.microej.com/modules/ej/api/sp/

Functional Description

The usage of the Shielded Plug (SP) starts with the definition of a database. The implementation uses an XML file
description to describe the database; the syntax follows the one proposed by the [SP] specification.

Once this database is defined, it can be accessedwithin theMicroEJ Application or the C application. The SP Foun-
dation Library is accessible from the [SP] API Module. This library contains the classes and methods to read and
write data in the database. The C header file sp.h available in the MicroEJ Platform source/include folder
contains the C functions for accessing the database.

To embed the database in your binary file, the XML file description must be processed by the SP compiler. This
compiler generates a binary file (.o) that will be linked to the overall application by the linker. It also generates
twodescriptions of the block ID constants, one in Java andone in C. These constants can be used by either the Java
or the C application modules.

Shielded Plug Compiler

AMicroEJ tool is available to launch the compiler. The tool name is Shielded Plug Compiler . It outputs:

• A description of the requested resources of the database as a binary file (.o) that will be linked to the over-
all application by the linker. It is an ELF format description that reserves both the necessary RAM and the
necessary Flash memory for the Shielded Plug database.

• Twodescriptions, one in Javaandone inC, of theblock ID constants tobeusedbyeither JavaorCapplication
modules.

6.11. Native Interface Mechanisms 799

https://repository.microej.com/javadoc/microej_5.x/apis/ej/sp/package-summary.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/sp/package-summary.html
https://repository.microej.com/packages/ESR/ESR-SPE-0014-SP-2.0-B.pdf
https://repository.microej.com/modules/ej/api/sp/
https://repository.microej.com/packages/ESR/ESR-SPE-0014-SP-2.0-B.pdf

MicroEJ Documentation, Revision 32bb132e

Fig. 33: Shielded Plug Compiler Process Overview

Example

Below is an example of using adatabase. The code that publishes thedata iswritten in C, and the code that receives
the data is written in Java. The data is transferred using two memory blocks. TEMP is a scalar value, THERMOSTAT
is a boolean.

Database Description

The database is described as follows:

<shieldedPlug>
<database name="Forecast" id="0" immutable="true" version="1.0.0">

<block id="1" name="TEMP" length="4" maxTasks="1"/>
<block id="2" name="THERMOSTAT" length="4" maxTasks="1"/>

</database>
</shieldedPlug>

Java Code

From the database description we can create an interface.

public interface Forecast {
public static final int ID = 0;
public static final int TEMP = 1;
public static final int THERMOSTAT = 2;

}

Below is the task that reads the published temperature and controls the thermostat.

public void run(){
ShieldedPlug database = ShieldedPlug.getDatabase(Forecast.ID);
while (isRunning) {

//reading the temperature every 30 seconds
//and update thermostat status
try {

int temp = database.readInt(Forecast.TEMP);

(continues on next page)

6.11. Native Interface Mechanisms 800

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

print(temp);
//update the thermostat status
database.writeInt(Forecast.THERMOSTAT,temp>tempLimit ? 0 : 1);

}
catch(EmptyBlockException e){

print("Temperature not available");
}
sleep(30000);

}
}

C Code

Here is a C header that declares the constants defined in the XML description of the database.

#define Forecast_ID 0
#define Forecast_TEMP 1
#define Forecast_THERMOSTAT 2

Below, the code shows the publication of the temperature and thermostat controller task.

void temperaturePublication() {
ShieldedPlug database = SP_getDatabase(Forecast_ID);
int32_t temp = temperature();
SP_write(database, Forecast_TEMP, &temp);

}

void thermostatTask(){
int32_t thermostatOrder;
ShieldedPlug database = SP_getDatabase(Forecast_ID);
while(1){

SP_waitFor(database, Forecast_THERMOSTAT);
SP_read(database, Forecast_THERMOSTAT, &thermostatOrder);
if(thermostatOrder == 0) {

thermostatOFF();
}
else {

thermostatON();
}

}
}

6.11. Native Interface Mechanisms 801

MicroEJ Documentation, Revision 32bb132e

Dependencies

• LLSP_impl.h implementation (see LLSP: Shielded Plug).

Installation

The [SP] library and its relative tools are an optional feature of the platform. In the platform configuration file,
check Java to C Interface > Shielded Plug to install the library and its relative tools.

Use

The Shielded Plug API Module must be added to themodule.ivy of the Application project.

<dependency org="ej.api" name="sp" rev="2.0.2"/>

This library provides a set of options. Refer to the chapter Standalone Application Options which lists all available
options.

6.11.3 MicroEJ Java H

Principle

This MicroEJ tool is useful for creating the skeleton of a C file, to which some Java native implementation func-
tions will later be written. This tool helps prevent misses of some #include files, and helps ensure that function
signatures are correct.

Functional Description

MicroEJ Java H tool takes as input one or several Java class files (*.class) fromdirectories and / or JAR files. It looks
for Java native methods declared in these class files, and generates a skeleton(s) of the C file(s).

Fig. 34: MicroEJ Java H Process

6.11. Native Interface Mechanisms 802

https://repository.microej.com/modules/ej/api/sp/

MicroEJ Documentation, Revision 32bb132e

Dependencies

No dependency.

Installation

This is an additional tool. In the platform configuration file, check Java to C Interface > MicroEJ Java H to
install the tool.

Use

This chapter explains the MicroEJ tool options.

6.12 External Resources Loader

6.12.1 Functional Description

The External Resources Loader is an optional module. When not installed, only internal resources are available for
the MicroEJ Application. When the External Resources Loader is installed, the MicroEJ Core Engine tries first to
retrieve the expected resource from its available list of internal resources, before asking the BSP to load it (using
LLEXT_RES_impl.h functions).

See Application Resources for more information on how to declare external resources depending on its kind (raw
resources, images, fonts, NLS).

6.12.2 Implementations

External Resources Loader module provides some Low Level API (LLEXT_RES) to let the BSP manage the external
resources.

Open a Resource

The LLAPI to implement in the BSP are listed in the header file LLEXT_RES_impl.h . First, the framework tries to
open an external resource using the open function. This function receives the resources path as a parameter. This
path is the absolute path of the resource from the MicroEJ Application classpath (the MicroEJ Application source
base directory). For example, when the resource is located here: com.mycompany.myapplication.resource.
MyResource.txt , the given path is: com/mycompany/myapplication/resource/MyResource.txt .

The external resources loader implementation should, when possible, lock the resource when it is opened. Any
modification of an opened resource may not be properly handled by the application.

6.12. External Resources Loader 803

MicroEJ Documentation, Revision 32bb132e

Resource Identifier

This open function has to return a unique ID (positive value) for the external resource, or returns an error code
(negative value). This ID will be used by the framework to manipulate the resource (read, seek, close, etc.).

Several resources can be opened at the same time. The BSP does not have to return the same identifier for two
resources living at the same time. However, it can return this ID for a new resource as soon as the old resource is
closed.

Resource O�set

The BSP must hold an o�set for each opened resource. This o�set must be updated a�er each call to read and
seek .

Resource Inside the CPU Address Space Range

An external resource can be programmed inside the CPU address space range. This memory (or a part of memory)
is not managed by the SOAR and so the resources inside are considered as external.

Most of time the content of an external resource must be copied in a memory inside the CPU address space range
in order to be accessible by the MicroEJ algorithms (draw an image etc.). However, when the resource is already
inside the CPU address space range, this copy is useless. The function LLEXT_RES_getBaseAddress must return
a valid CPU memory address in order to avoid this copy. The MicroEJ algorithms are able to target the external
resource bytes without using the other LLEXT_RES APIs such as read , mark etc.

6.12.3 External Resources Folder

The External Resource Loader module provides an option (MicroEJ launcher option) to specify a folder for the ex-
ternal resources. This folder has two roles:

• It is the output folder used by some extra generators during the MicroEJ Application build. All output files
generated by these tools will be copied into this folder. This makes it easier to retrieve the exhaustive list of
resources to program on the board.

• This folder is taken into considerationby theSimulator inorder to simulate theavailability of these resources.
When the resources are located in another computer folder, the Simulator is not able to load them.

If not specified, this folder is created (if it does not already exist) in the MicroEJ project specified in the MicroEJ
launcher. Its name is externalResources .

6.12.4 Dependencies

• LLEXT_RES_impl.h implementation (see LLEXT_RES: External Resources Loader).

6.12. External Resources Loader 804

MicroEJ Documentation, Revision 32bb132e

6.12.5 Installation

The External Resources Loader is an additional module. In the platform configuration file, check
External Resources Loader to install this module.

6.12.6 Use

The External Resources Loader is automatically used when the MicroEJ Application tries to open an external re-
source.

6.13 Serial Communications

MicroEJprovides someFoundationLibraries to instantiate somecommunicationswith external devices. Each com-
municationmethod has its own library. A global library called ECOM provides support for abstract communication
streams (communication framework only), and a generic devices manager.

6.13.1 ECOM

Warning: This chapter describes the Foundation Library ECOM-1.1 .

ECOM-1.1 is discontinued since Architecture 8.0.0.

Principle

The Embedded COMmunication Foundation Library (ECOM) is a generic communication library with abstract com-
munication stream support (a communication framework only). It allows you to open and use streams on commu-
nication devices such as a COMM port.

This libraryalsoprovidesadevicemanager, includingagenericdevice registryandanotificationmechanism,which
allows plug&play-based applications.

This library does not provide APIs to manipulate some specific options for each communication method, but it
does provide some generic APIs which abstract the communication method. A�er the opening step, the MicroEJ
Application can use every communications method (COMM, USB etc.) as generic communication in order to easily
change the communication method if needed.

Functional Description

The diagram below shows the overall process to open a connection on a hardware device.

6.13. Serial Communications 805

MicroEJ Documentation, Revision 32bb132e

Fig. 35: ECOM Flow

1. Step 1 consists of opening a connection on a hardware device. The connection kind and its configuration are
fixed by the String parameter of the method Connector.open(String).

2. Step 2 consists of opening an InputStream on the connection. This stream allows the MicroEJ Application to
access the “RX” feature of the hardware device.

3. Step 3 consists of using the InputStream APIs to receive in the MicroEJ Application all hardware device data.

4. Step 4 consists of opening an OutputStream on the connection. This stream allows the MicroEJ Application
to access the “TX” feature of the hardware device.

5. Step 5 consists of using the OutputStream APIs to transmit some data from the MicroEJ Application to the
hardware device.

Note that steps 2 and 4may be performed in parallel, and do not depend on each other.

Device Management API

A device is defined by implementing ej.ecom.Device. It is identified by a name and a descriptor
(ej.ecom.HardwareDescriptor), which is composed of a set of MicroEJ properties. A device can be regis-
tered/unregistered in the ej.ecom.DeviceManager.

A device registration listener is defined by implementing ej.ecom.RegistrationListener. When a device is registered
to or unregistered from the device manager, listeners registered for the device type are notified. The notification
mechanism is done in a dedicated Java thread. Themechanism can be enabled or disabled (see Standalone Appli-
cation Options).

6.13. Serial Communications 806

https://repository.microej.com/javadoc/microej_5.x/apis/ej/ecom/io/Connector.html#open-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/io/InputStream.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/io/InputStream.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/io/OutputStream.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/io/OutputStream.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/ecom/Device.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/ecom/HardwareDescriptor.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/ecom/DeviceManager.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/ecom/RegistrationListener.html

MicroEJ Documentation, Revision 32bb132e

Dependencies

No dependency.

Installation

ECOMFoundation Library is an additional library. In the platform configuration file, check Serial Communication
> ECOM to install the library.

Use

The ECOM API Modulemust be added to themodule.ivy of the MicroEJ Application project to use the ECOM library.

<dependency org="ej.api" name="ecom" rev="1.1.4"/>

This FoundationLibrary is always requiredwhendevelopingaMicroEJApplicationwhich communicateswith some
external devices. It is automatically embedded as soon as a sub communication library is added in the classpath.

6.13.2 ECOM Comm

Warning: This chapter describes the Foundation Library ECOM-COMM-1.1 .

ECOM-COMM-1.1 is deprecated in favor of ECOM-COMM-2.0 and has been removed from Architecture 8.0.0. See
Migrate ECOM-COMMModule for more details.

Principle

The ECOM Comm Java library provides support for serial communication. ECOM Comm extends ECOM to allow
stream communication via serial communication ports (typically UARTs). In the MicroEJ Application, the connec-
tion is establishedusing theConnector.open()method. The returned connection is a ej.ecom.io.CommConnection,
and the input and output streams can be used for full duplex communication.

The use of ECOM Comm in a custom platform requires the implementation of an UART driver. There are two di�er-
ent modes of communication:

• In Bu�ered mode, ECOM Commmanages so�ware FIFO bu�ers for transmission and reception of data. The
driver copies data between the bu�ers and the UART device.

• In Custom mode, the bu�ering of characters is not managed by ECOM Comm. The driver has to manage its
own bu�ers to make sure no data is lost in serial communications because of bu�er overruns.

This ECOM Comm implementation also allows dynamic add or remove of a connection to the pool of available
connections (typically hot-plug of a USB Comm port).

6.13. Serial Communications 807

https://repository.microej.com/modules/ej/api/ecom/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/ecom/io/Connector.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/ecom/io/CommConnection.html

MicroEJ Documentation, Revision 32bb132e

Functional Description

The ECOM Comm process respects the ECOM process. Please refer to the illustration “ECOM flow”.

Component Architecture

The ECOMCommCmodule relies on a native driver to performactual communication on the serial ports. Each port
can be bound to a di�erent driver implementation, but most of the time, it is possible to use the same implemen-
tation (i.e. same code) for multiple ports. Exceptions are the use of di�erent hardware UART types, or the need for
di�erent behaviors.

Five C header files are provided:

• LLCOMM_impl.h

Defines the set of functions that the driver must implement for the global ECOM comm stack, such as syn-
chronization of accesses to the connections pool.

• LLCOMM_BUFFERED_CONNECTION_impl.h

Defines the set of functions that the driver must implement to provide a Bu�ered connection

• LLCOMM_BUFFERED_CONNECTION.h

Defines the set of functions provided by ECOM Comm that can be called by the driver (or other C code) when
using a Bu�ered connection

• LLCOMM_CUSTOM_CONNECTION_impl.h

Defines the set of functions that the driver must implement to provide a Custom connection

• LLCOMM_CUSTOM_CONNECTION.h

Defines the set of functions provided by ECOM Comm that can be called by the driver (or other C code) when
using a Custom connection

The ECOM Comm drivers are implemented using standard LLAPI features. The diagram below shows an example
of the objects (both Java and C) that exist to support a Bu�ered connection.

Fig. 36: ECOM Comm components

The connection is implemented with three objects1 :

• The Java object used by the application; an instance of ej.ecom.io.CommConnection

• The connection object within the ECOM CommCmodule

• The connection object within the driver
1 This is aconceptualdescription toaidunderstanding - the reality is somewhatdi�erent, although that is largely invisible to the implementor

of the driver.

6.13. Serial Communications 808

https://repository.microej.com/javadoc/microej_5.x/apis/ej/ecom/io/CommConnection.html

MicroEJ Documentation, Revision 32bb132e

Each driver implementation provides one or more connections. Each connection typically corresponds to a physi-
cal UART.

CommPort Identifier

Each serial port available for use in ECOM Comm can be identified in three ways:

• An application port number. This identifier is specific to the application, and should be used to identify the
data stream that the port will carry (for example, “debug traces” or “GPS data”).

• A platform port number. This is specific to the platform, andmay directly identify a hardware device2.

• A platform port name. This is mostly used for dynamic connections or on platforms having a file-system
based device mapping.

When the Comm Port is identified by a number, its string identifier is the concatenation of “com” and the number
(e.g. com11).

Application Port Mapping

The mapping from application port numbers to platform ports is done in the application launch configuration.
This way, the application can refer only to the application port number, and the data stream can be directed to the
matching I/O port on di�erent versions of the hardware.

Ultimately, the application port number is only visible to the application. The platform identifier will be sent to the
driver.

Opening Sequence

The following flow chart explains Comm Port opening sequence according to the given Comm Port identifier.

Fig. 37: Comm Port Open Sequence
2 Some drivers may reuse the same UART device for di�erent ECOM ports with a hardware multiplexer. Drivers can even treat the platform

port number as a logical id andmap the ids to various I/O channels.

6.13. Serial Communications 809

MicroEJ Documentation, Revision 32bb132e

Dynamic Connections

The ECOMCommstack allows to dynamically add and remove connections from theDriver API. When a connection
is added, it can be immediately open by the application. When a connection is removed, the connection cannot be
open anymore and java.io.IOException is thrown in threads that are using it.

In addition, adynamic connection canbe registeredandunregistered inECOMdevicemanager (seeDeviceManage-
ment API). The registration mechanism is done in dedicated thread. It can be enabled or disabled, see Standalone
Application Options.

A removed connection is alive until it is closed by the application and, if enabled, unregistered from ECOM device
manager. A connection is e�ectively uninstalled (and thus eligible to be reused) only when it is released by the
stack.

The following sequence diagram shows the lifecycle of a dynamic connection with ECOM registration mechanism
enabled.

Fig. 38: Dynamic Connection Lifecycle

6.13. Serial Communications 810

https://repository.microej.com/javadoc/microej_5.x/apis/java/io/IOException.html

MicroEJ Documentation, Revision 32bb132e

Java API

Opening a connection is done using ej.ecom.io.Connector.open(String url). The connection string (the url pa-
rameter)must start with “comm:”, followed by the Commport identifier, and a semicolon-separated list of options.
Options are the baudrate, the parity, the number of bits per character, and the number of stop bits:

• baudrate=n (9600 by default)

• bitsperchar=n where n is in the range 5 to 9 (8 by default)

• stopbits=n where n is 1, 2, or 1.5 (1 by default)

• parity=x where x is odd, even or none (none by default)

All of these are optional. Illegal or unrecognized parameters cause an IllegalArgumentException.

Driver API

The ECOM Comm Low Level API is designed to allowmultiple implementations (e.g. drivers that support di�erent
UART hardware) and connection instances (see Low Level API Pattern chapter). Each ECOM Commdriver defines a
data structure that holds information about a connection, and functions take an instance of this data structure as
the first parameter.

The name of the implementation must be set at the top of the driver C file, for example3:

#define LLCOMM_BUFFERED_CONNECTION MY_LLCOMM

This defines the name of this implementation of the LLCOMM_BUFFERED_CONNECTION interface to be MY_LLCOMM .

The data structure managed by the implementation must look like this:

typedef struct MY_LLCOMM{
struct LLCOMM_BUFFERED_CONNECTION header;
// extra data goes here

} MY_LLCOMM;

void MY_LLCOMM_new(MY_LLCOMM* env);

In this example the structure contains only the default data, in the header field. Note that the header must be the
first field in the structure. The name of this structure must be the same as the implementation name (MY_LLCOMM
in this example).

The driver must also declare the “new” function used to initialize connection instances. The name of this function
must be the implementation namewith _new appended, and it takes as its sole argument a pointer to an instance
of the connection data structure, as shown above.

The driver needs to implement the functions specified in the LLCOMM_impl.h file and for each kind of connection,
the LLCOMM_BUFFERED_CONNECTION_impl.h (or LLCOMM_CUSTOM_CONNECTION_impl.h) file.

The driver defines the connections it provides by adding connection objects using LLCOMM_addConnection
. Connections can be added to the stack as soon as the LLCOMM_initialize function is called. Connec-
tions added during the call of the LLCOMM_impl_initialize function are static connections. A static con-
nection is registered to the ECOM registry and cannot be removed. When a connection is dynamically added
outside the MicroJVM task context, a suitable reentrant synchronization mechanism must be implemented (see
LLCOMM_IMPL_syncConnectionsEnter and LLCOMM_IMPL_syncConnectionsExit).

3 The following examples use Bu�ered connections, but Custom connections follow the same pattern.

6.13. Serial Communications 811

https://repository.microej.com/javadoc/microej_5.x/apis/ej/ecom/io/Connector.html#open-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/IllegalArgumentException.html

MicroEJ Documentation, Revision 32bb132e

Whenopening a port from theMicroEJ Application, each connection declared in the connections poolwill be asked
about its platform port number (using the getPlatformId method) or its name (using the getName method)
depending on the requested port identifier. The first matching connection is used.

The life of a connection starts with the call to getPlatformId() or getName() method. If the the connection
matches the port identifier, the connectionwill be initialized, configured and enabled. Notifications and interrupts
are then used to keep the stream of data going. When the connection is closed by the application, interrupts are
disabled and the driver will not receive any more notifications. It is important to remember that the transmit and
receive sides of the connection are separate Java stream objects, thus, theymay have a di�erent life cycle and one
side may be closed long before the other.

The Bu�ered CommStream

InBu�eredmode, twobu�ers areallocatedby thedriver for sendingand receivingdata. TheECOMCommCmodule
will fill the transmit bu�er, and get bytes from the receive bu�er. There is no flow control.

When the transmit bu�er is full, an attempt to write more bytes from the MicroEJ Application will block the Java
thread trying to write, until some characters are sent on the serial line and space in the bu�er is available again.

When the receive bu�er is full, characters coming from the serial line will be discarded. The driver must allocate a
bu�er big enough to avoid this, according to the UART baudrate, the expected amount of data to receive, and the
speed at which the application can handle it.

The Bu�ered Cmodule manages the characters sent by the application and stores them in the transmit bu�er. On
notification of available space in the hardware transmit bu�er, it handles removing characters from this bu�er and
putting them in the hardware bu�er. On the other side, the driver notifies the C module of data availability, and
the Cmodule will get the incoming character. This character is added to the receive bu�er and stays there until the
application reads it.

The driver should take care of the following:

• Setting up interrupt handlers on reception of a character, and availability of space in the transmit bu�er. The
Cmodulemaymask these interruptswhen it needs exclusive access to the bu�ers. If no interrupt is available
from the hardware or underlying so�ware layers, it may be faked using a polling thread that will notify the C
module.

• Initialization of the I/O pins, clocks, and other things needed to get the UART working.

• Configuration of the UART baudrate, character size, flow control and stop bits according to the settings given
by the Cmodule.

• Allocation of memory for the transmit and receive bu�ers.

• Getting the state of the hardware: is it running, is there space le� in the TX and RX hardware bu�ers, is it busy
sending or receiving bytes?

The driver is notified on the following events:

• Opening and closing a connection: the driver must activate the UART and enable interrupts for it.

• A newbyte is waiting in the transmit bu�er and should be copied immediately to the hardware transmit unit.
The Cmodulemakes sure the transmit unit is not busy before sending the notification, so it is not needed to
check for that again.

The driver must notify the Cmodule on the following events:

• Data has arrived that should be added to the receive bu�er (using the
LLCOMM_BUFFERED_CONNECTION_dataReceived function)

• Space available in the transmit bu�er (using the LLCOMM_BUFFERED_CONNECTION_transmitBufferReady
function)

6.13. Serial Communications 812

MicroEJ Documentation, Revision 32bb132e

The Custom CommStream

In custommode, the ECOMCommCmodulewill not doanybu�ering. Readandwrite requests from theapplication
are immediately forwarded to the driver.

Since there is no bu�er on the C module side when using this mode, the driver has to define a strategy to store
received bytes that were not handed to the C module yet. This could be a fixed or variable side FIFO, the older
received but unread bytesmay be dropped, or amore complex priority arbitration could be set up. On the transmit
side, if the driver does not do any bu�ering, the Java thread waiting to send something will be blocked and wait
for the UART to send all the data.

In Custom mode flow control (eg. RTS/CTS or XON/XOFF) can be used to notify the device connected to the serial
line and so avoid losing characters.

BSP File

The ECOMCommCmodule needs to know,when theMicroEJ Application is built, the nameof the implementation.
This mapping is defined in a BSP definition file. The name of this file must be bsp.xml andmust be written in the
ECOM comm module configuration folder (near the ecom-comm.xml file). In previous example the bsp.xml file
would contain:

Listing 1: ECOM CommDriver Declaration (bsp.xml)

<bsp>
<nativeImplementation

name="MY_LLCOMM"
nativeName="LLCOMM_BUFFERED_CONNECTION"

/>
</bsp>

where nativeName is the name of the interface, and name is the name of the implementation.

XML File

The Java platform has to know the maximum number of Comm ports that can be managed by the ECOM Comm
stack. It also has to know each Commport that can bemapped from an application port number. Such Commport
is identified by its platform port number and by an optional nickname (The port and its nicknamewill be visible in
the MicroEJ launcher options, see Standalone Application Options).

A XML file is so required to configure the Java platform. The name of this file must be ecom-comm.xml . It has to be
stored in the module configuration folder (see Installation).

This file must start with the node <ecom> and the sub node <comms> . It can contain several time this kind of line:
<comm platformId="A_COMM_PORT_NUMBER" nickname="A_NICKNAME"/> where:

• A_COMM_PORT_NUMBER refers the Comm port the Java platform user will be able to use (see Application Port
Mapping).

• A_NICKNAME is optional. It allows to fix a printable name of the Comm port.

The maxConnections attribute indicates the maximum number of connections allowed, including static and dy-
namic connections. This attribute is optional. By default, it is the number of declared Comm Ports.

Example:

6.13. Serial Communications 813

MicroEJ Documentation, Revision 32bb132e

Listing 2: ECOM CommModule Configuration (ecom-comm.xml)

<ecom>
<comms maxConnections="20">

<comm platformId="2"/>
<comm platformId="3" nickname="DB9"/>
<comm platformId="5"/>

</comms>
</ecom>

First Comm port holds the port 2, second “3” and last “5”. Only the second Comm port holds a nickname “DB9”.

ECOM CommMock

In the simulation environment, no driver is required. The ECOM Comm mock handles communication for all the
serial ports and can redirect each port to one of the following:

• An actual serial port on the host computer: any serial port identified by your operating system can be used.
The baudrate and flow control settings are forwarded to the actual port.

• A TCP socket. You can connect to a socket on the local machine and use netcat or telnet to see the output, or
you can forward the data to a remote device.

• Files. You can redirect the input and output each to a di�erent file. This is useful for sending precomputed
data and looking at the output later on for o�line analysis.

When using the socket and file modes, there is no simulation of an UART baudrate or flow control. On a file, data
will always be available for reading and will be written without any delay. On a socket, you can reach the maximal
speed allowed by the network interface.

Dependencies

• ECOM (see Serial Communications).

• LLCOMM_impl.h and LLCOMM_xxx_CONNECTION_impl.h implmentations (see LLCOMM: Serial Communica-
tions).

Installation

ECOM-CommJava library is an additional library. In the platform configuration file, check Serial Communication
> ECOM-COMM to install it. When checked, the xml file ecom-comm/ecom-comm.xml is required during platform
creation to configure the module (see XML File).

6.13. Serial Communications 814

MicroEJ Documentation, Revision 32bb132e

Use

The ECOM CommAPI Module must be added to themodule.ivy of the MicroEJ Application project to use the ECOM
Comm library.

<dependency org="ej.api" name="ecom-comm" rev="1.1.4"/>

This FoundationLibrary is always requiredwhendevelopingaMicroEJApplicationwhich communicateswith some
external devices using the serial communication mode.

This library provides a set of options. Refer to the chapter Standalone Application Options which lists all available
options.

6.14 Graphical User Interface

Note: This chapter describes the current Graphical User Interface version 3 , provided by UI Pack version 14.0.0
or higher. The UI Pack Changelog and aMigration Guide are provided at the end of this chapter.

• If you are using the former Graphical User Interface version 3 provided by MicroEJ UI Pack version 13.x ,
please refer to this MicroEJ Documentation Archive.

• If you are using the former Graphical User Interface version 2 provided by MicroEJ UI Pack version up to
12.1.x , please refer to this MicroEJ Documentation Archive.

6.14.1 Principle

TheUser Interface Extension features one of the fastest graphics engines, associatedwith a unique int-based event
management system.

This chapter describes theUI3 notions, available since MicroEJ Architecture UI pack 13.0.0 and higher: MicroUI 3.0,
Front Panel v6, Abstraction Layer APIs LLUI_xxx , etc.

The diagram below shows a simplified view of the components involved in the provisioning of User Interface Ex-
tension.

6.14. Graphical User Interface 815

https://repository.microej.com/modules/ej/api/ecom-comm/
https://docs.microej.com/_/downloads/en/20240215/pdf/
https://docs.microej.com/_/downloads/en/20201009/pdf/

MicroEJ Documentation, Revision 32bb132e

Fig. 39: Overview

The modules responsible to manage the Display, the Input and the LED are respectively called Display module,
Input module and LED module. These three low-level parts connect MicroUI library to the user-supplied drivers
code (coded in C). The drivers can use hardware accelerators like DMA and GPU to perform specific actions (bu�ers
copy, drawings, etc.).

TheMicroEJSimulator provides all features ofMicroUI library. The threemodules are grouped together in amodule
called Front Panel. The Front Panel is supplied with a set of so�ware widgets that generically support a range of
input devices such as buttons, joysticks and touchscreens, and output devices such as displays and LEDs. With the
help of the Front Panel Designer tool that forms part of the MicroEJ Workbench the user must define a Front Panel
mock-up using these widgets.

The Displaymodule alsomanages fonts and images. The fonts and images are pre-processed before compiling the
application. The following diagram depicts the components involved in its design, along with the provided tools:

6.14. Graphical User Interface 816

MicroEJ Documentation, Revision 32bb132e

Fig. 40: The User Interface Extension Components along with a VEE Port

6.14.2 UI Port

This chapter summarizesall the steps toport theUIPack: fromtheVEEPortConfigurationproject tomoreadvanced
features like using a GPU. This chapter only introduces the concepts and references the following chapters. The
concepts are overviewed and incomplete (only the typical case is described).

It is recommended to follow the steps in this order:

1. Edit the VEE Port Configuration project to add the UI Pack dependency and configuration,

2. Create the Simulator extension project,

3. Port the minimal implementation of the BSP,

4. Extend the implementation by connecting a GPU.

6.14. Graphical User Interface 817

MicroEJ Documentation, Revision 32bb132e

UI Port Configuration

Principle

The first step is to update the VEE Port Configuration project (o�en named xxx-configuration): this project holds
the Module Description File (module.ivy). This update is done in several steps, described in the sections below.
Some steps are optional, depending on the capabilities of the hardware.

Warning: This chapter assumes that a valid VEE Port has been created (as described in the chapter Platform
Creation).

UI Pack Selection

TheUI Pack bundles severalmodules, including the Graphics Engine. The Graphics Engine is a library already com-
piled for anMCUandaC compiler. TheMicroEJCentral Repository providesUI Packs for a set ofMCU/Compiler pairs
(like for MicroEJ Architectures).

Refer to the chapter Pack Import to add the required UI Pack. As an example, the module dependency to add for a
Cortex-M4 and GCC toolchain would be:

<dependencies>
<!-- MicroEJ Architecture Specific Pack -->
<dependency org="com.microej.architecture.CM4.CM4hardfp_GCC48" name="flopi4G25-ui-pack"␣

→˓rev="13.5.1"/>
</dependencies>

UI Pack Modules

The following sections describe eachmodule that comes with the UI Pack (purpose and configuration).

Themodules provided by the UI Pack are not installed by default. When amodule is required, it has to be enabled
and configured using the VEE Port Editor.

Fig. 41: UI Pack Modules

Refer to the chapter PlatformModule Configuration to add the UI Pack modules.

6.14. Graphical User Interface 818

MicroEJ Documentation, Revision 32bb132e

Module MicroUI

MicroUI is a Foundation Library that defines a Low Level UI framework (refer to the chapter MicroUI for more in-
formation). Themandatory module MicroUI (it must be checked in the VEE Port configuration file) provides the
MicroUI implementation library. It requires a static initialization step to specify what MicroUI features are available
for the application layer:

1. Create the file [VEE Port Configuration project]/microui/microui.xml

2. Edit the file as described here: Static Initialization.

<microui>

<display name="DISPLAY"/>

<eventgenerators>
<command name="COMMANDS"/>
<buttons name="BUTTONS" extended="3"/>
<buttons name="JOYSTICK" extended="5"/>
<touch name="TOUCH" display="DISPLAY"/>

</eventgenerators>

<fonts>

</fonts>

</microui>

Module LEDs

MicroUI provides some API to manipulate the LEDs. This module allows the UI Port to drive the LEDs. Refer to the
chapter LED to have more information.

Thismodule is optional: whennot selected, a stub implementation isused, and theUIPort doesnotneed toprovide
one.

Modules Image Decoders

Note: This chapter only applies when the device has a display.

This module adds an internal image decoder: it allows the application to embed an encoded image (e.g., PNG or
BMPMonochrom) and let the Graphics Engine decode it at runtime. Both decoders (PNG andBMPMonochrom) are
optional and canbe selected (or not) independently. Refer to the chapterEncoded Image to havemore information.

Thismodule is optional: when no image decoder is embedded, the Graphics Engine relies on the UI Port (thanks to
Abstraction Layer API) to decode the images.

6.14. Graphical User Interface 819

MicroEJ Documentation, Revision 32bb132e

Module Image Generator

Note: This chapter only applies when the device has a display.

This module allows decoding the application’s images at compile-time. The application’s images are decoded and
stored in a binary format compatible with the Graphics Engine. The memory footprint of the application is higher,
but the image loading time at runtime is very low. Refer to the chapter Image Generator to havemore information.

This module is optional: when not selected, the application cannot embed generated images compatible with the
Graphics Engine.

Module Font Generator

Note: This chapter only applies when the device has a display.

This module allows for embedding the MicroEJ bitmap fonts of the application. The application’s fonts (EJF files)
aredecodedandstored inabinary format compatiblewith theGraphicsEngine. Refer to thechapterFontGenerator
to have more information.

This module is optional: when not selected, the application cannot embed fonts compatible with the Graphics
Engine.

Module Display

Note: This chapter only applies when the device has a display.

This chapter takes the concepts described in chapter Display. The first step is determining the kind of display: size,
pixel format, and constraints. This informationwill be used later by theUI Port configuration project, the Simulator
extension project, and the BSP.

Size

The size is expressed in pixels, o�en 320x240 or 480x272. This size defines the area the application can target; it
can retrieve this size by calling Display.getWidth() and Display.getHeight() . It is always a rectangular area,
even for the rounded displays (a square area frames a rounded display).

The display size is fixed for a display: retrieve this size in the board’s datasheet.

6.14. Graphical User Interface 820

MicroEJ Documentation, Revision 32bb132e

Pixel Format

The display pixel format (or pixel structure) gives two notions: the number of bits-per-pixel and the organization of
color components in these bits.

The number of bits-per-pixel (bpp) is an integer value among this list: 1, 2, 4, 8, 16, 24, or 32.

The color components organization defines how the color components (Red, Green, and Blue) are distributed in
the pixel. The greater the display pixel format (in bits), the better is the definition. This format also indicates the
number of bits-per-pixel. For instance, the format RGB565 is a 16-BPP format, indicating that the five MSB bits are
for the Red color component, the six next bits are for the Green component, and the five LSB bits are for the Blue
component. This pixel format can be symbolized by RRRRRGGGGGGBBBBB or RRRR RGGG GGGB BBBB .

The display pixel format is o�en fixed by the display itself (its capabilities) and by the memory bus between the
MCU and the LCDmodule. However, the display pixel format is o�en configurable by the LCD controller. Note that
the number of bits-per-pixel and the display size fix the required memory to allocate: memory_size = width x
height x bpp / 8 . Consequently, the pixel formatmay be less precise than the display capabilities depending on
the memory available on the device. For instance, the RGB565 format may be used whereas the display is a 24-bit
display (RGB888).

Constraints

The hardware constraints (display, bus, memory, etc.) may drive the configuration:

• The pixel format: Some hardware cannot use another pixel format other than the one of the display. This
format may be standard or custom. See Pixel Structure.

• The size of the bu�ers: The available memory may be limited. This limitation can drive the chosen pixel
format.

• Memory alignment: Some LCD controllers require a memory alignment on the display bu�er (alignment on
64 bits, for instance).

• Bu�erwidth alignment: Some LCD controllers also require an alignment for each line. The line size (in pixels)
in memory may be larger than the display line size (width): this is the stride. The alignment constraint may
be expressed in pixels or bytes. The required memory to allocate becomes: memory_size = stride (in
pixels) x height x bpp / 8 .

Configuration

In the VEE Port Configuration project, create and fill the file display.properties :

1. Create the file [VEE Port Configuration project]/display/display.properties

2. Fill the file as described here: Installation, according to the pixel format and the display constraints.

bpp=rgb565
imageBuffer.memoryAlignment=32
memoryLayout=line
byteLayout=line

6.14. Graphical User Interface 821

MicroEJ Documentation, Revision 32bb132e

VEE Port Build

Oncemodules are selected and configured, the VEE Port can be built again; see Platform Build.

Simulation

Principle

The simulation part of the UI port requires the creation (or extension) of a Front Panel project which is compatible
with the UI Pack.

First, if no Front Panel project exists, follow the steps described here: Front Panel Mock. Then, follow the next
chapters to extend the Front Panel project with UI Pack notions.

Project Extension

The Front Panel project must depend on the UI Pack. Add the following dependency to the Front Panel ivy file:

<dependency org="com.microej.pack.ui" name="ui-pack" rev="[UI Pack version]">
<artifact name="frontpanel" type="jar"/>

</dependency>

See Simulation for more information about the Front Panel project dependencies.

LEDs

When the VEE Port Configuration project LEDsmodule is checked, the Front Panel project should add awidget LED
for each led.

1. With an image editor, create an image for the LED o� and an image for the LED on. Both images must have
the same size.

2. Create a couple of images for each LED.

3. In the Front Panel description file, add this line for each LED:

<ej.fp.widget.LED label="0" x="170" y="753" ledOff="Led-0.png" ledOn="Led-GREEN.png" overlay=
→˓"false"/>

The label must have an integer value from 0 to NUMBER_OF_LEDS - 1 . The ej.microui.led.Leds class uses this
value as the LED identifier in setLedOff(int ledId) , setLedOn(int ledId) , and other methods of the class.

Buttons

The widget Button can simulate any hardware button.

1. With an image editor, create an image for the button released and an image for the button pressed. Both
images must have the same size.

2. Create a couple of images for each button.

3. In the Front Panel description file, add this line for each button:

6.14. Graphical User Interface 822

MicroEJ Documentation, Revision 32bb132e

<ej.fp.widget.Button label="0" x="316" y="769" skin="W-U-0.png" pushedSkin="W-U-1.png"/>

The label must have an integer value from 0 to NUMBER_OF_BUTTONS - 1 . The label is used by the application to
listen to the button.

By default, the widget sends a MicroUI Button event to the Buttons Event Generator whose name is BUTTONS and
whose identifier is the button’s label. To target another Buttons Event Generator, refer to the chapter Inputs Exten-
sions.

Widget Button Code

public static class ButtonListenerToButtonEvents implements ButtonListener {

@Override
public void press(Button widget) {

EventButton.sendPressedEvent(getMicroUIGeneratorTag(), widget.getID());
}

@Override
public void release(Button widget) {

EventButton.sendReleasedEvent(getMicroUIGeneratorTag(), widget.getID());
}

/**
* Gets the MicroUI Buttons events generator tag. This generator has to match the generator␣
→˓set during the
* VEE Port build in <code>microui/microui.xml</code>
*
* @return a MicroUI Buttons events generator tag
*/
protected String getMicroUIGeneratorTag() {

return EventButton.COMMON_MICROUI_GENERATOR_TAG;
}

Application Code

To listen to the button, two ways are possible:

• Bydefault, the current Displayable receivesall events. The subclasshas to implement themethod boolean
handleEvent(int event); .

• A class must extend the interface EventHandler , and this class must be set as the handler of the event
generators Buttons:

Buttons[] buttonsHandlers = (Buttons[]) EventGenerator.get(Buttons.class);
for (EventGenerator buttonsHandler : generators) {

buttonsHandler.setEventHandler(this);
}

Here is an example of a handler:

6.14. Graphical User Interface 823

MicroEJ Documentation, Revision 32bb132e

@Override
public boolean handleEvent(int event) {

// get the event's data
int data = Event.getData(event);

String state = null;

// print its state(s)
if (Buttons.isPressed(data)) {

state = "pressed ";
}
if (Buttons.isReleased(data)) {

state = "released ";
}
if (Buttons.isRepeated(data)) {

state = "repeated ";
}
if (Buttons.isLong(data)) {

state = "long ";
}
if (Buttons.isClicked(data)) {

state = "clicked ";
}
if (Buttons.isDoubleClicked(data)) {

state = "double-clicked ";
}

if (state != null) {
System.out.print("button\t\t");

// get the button's id
int id = Buttons.getButtonId(data);
System.out.print(id+" ");
System.out.println(state);

}

return true;
}

Button to Command Event

A recommended approach is to favor Command events over Buttons events. MicroUI Command events are more
generic because not they are not tied to a hardware component like a physical button. Command events make
the application code more flexible to hardware changes. For instance, instead of reacting to Button event 0, the
application will respond to Command event Enter or Up . The application does not care about the source of the
Command event: it may be the button 0, 1, 10, or any other input device.

To map a MicroUI Command on the widget Button:

1. Update the widget description by adding a listenerClass .

6.14. Graphical User Interface 824

MicroEJ Documentation, Revision 32bb132e

<ej.fp.widget.Button label="0" x="316" y="769" skin="W-U-0.png" pushedSkin="W-U-1.png"␣
→˓listenerClass="com.is2t.microej.fp.Button2Command"/>

2. In the Front Panel project, create the class com.is2t.microej.fp.Button2Command , for instance:

public class Button2Command implements ej.fp.widget.Button.ButtonListener {

public int getCommand(int buttonId) {
// same command as EmbJPF (see buttons_listener.c)
switch (buttonId) {
default:
case 0:

return EventCommand.ESC;
case 1:

return EventCommand.MENU;
}

}

@Override
public void press(Button widget) {

EventCommand.sendEvent(getCommand(widget.getID()));
}

@Override
public void release(Button widget) {

// nothing to send
}

}

The application code becomes:

// [...]

Command[] commandHandlers = (Command[]) EventGenerator.get(Command.class);
for (EventGenerator commandHandler : generators) {

commandHandler.setEventHandler(this);
}

// [...]

@Override
public boolean handleEvent(int event) {

// get the event's data
int data = Event.getData(event);

switch (data) {
case Command.ESC:

System.out.println("ESC");
break;

case Command.BACK:
System.out.println("BACK");
break;

(continues on next page)

6.14. Graphical User Interface 825

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

// [...]
}

Touch Panel

Contrary to the other input devices, no image is required because a touch panel covers the display area.

1. Retrieve the display size in pixels.

2. In the Front Panel description file, add this line:

<ej.fp.widget.Pointer x="185" y="395" width="480" height="272" touch="true"/>

By default, the widget sends a MicroUI Pointer event to the Pointer Event Generator, whose name is TOUCH (a
touch panel is considered a Pointer with only dragged events). To target another Pointer Event Generator, refer to
the chapter Inputs Extensions.

A snippet of application code that handles Pointer events:

// [...]

Pointer[] pointerHandlers = (Pointer[]) EventGenerator.get(Pointer.class);
for (EventGenerator pointerHandler : generators) {

pointerHandler.setEventHandler(this);
}

// [...]

@Override
public boolean handleEvent(int event) {

Pointer pointer = (Pointer) Event.getGenerator(event);
int x = pointer.getX();
int y = pointer.getY();
System.out.println("(" + x + "," + y + ")");

}

Display

The widget Display features a lot of options to simulate the hardware specificities.

1. Retrieve the display size in pixels.

2. In the Front Panel description file, add this line:

<ej.fp.widget.Display x="185" y="395" width="480" height="272"/>

For more information, refer to the java-doc of the widget Display and the chapter Display Widget.

6.14. Graphical User Interface 826

MicroEJ Documentation, Revision 32bb132e

Build

Once the Front Panel project is created ormodified, the VEE Portmust be built again (the front panel is built simul-
taneously with the VEE Port; see Platform Build).

BSP Port

Principle

TheBSPPort (or EmbeddedPort) involves implementing someAbstractionLayerAPIs (low-level APIs: LLAPI). There
are several kinds of LLAPI:

• Themandatory LLAPI to manipulate the LEDs,

• Themandatory LLAPI to send the input events,

• Themandatory LLAPI to initialize, use and flush the drawings to the display,

• The optional LLAPI to customize the Graphics Engine to be compatible with the display constraints,

• The optional LLAPI to manipulate the optional display features (backlight, contrast, etc.),

• The optional LLAPI to add some features as new image decoders,

• The optional LLAPI to use a GPU.

The following chapters describe each group of Abstraction Layer APIs, except the GPU acceleration (see the dedi-
cated section GPU Port).

MicroUI C Module

The UI Pack requires theMicroUI C module. This C module

• implements some MicroUI native functions,

• manages the drawings synchronization with the Graphics Engine,

• features an image heap allocator,

• features an input events decoder.

Before all, install the MicroUI C Module:

1. Find the correct version of the Cmodule according to the UI Pack version; see C Modules.

2. Unzip it in the BSP project.

3. Add the mandatory files to the list of the BSP project’s compiled files: LLDW_PAINTER_impl.c ,
LLUI_PAINTER_impl.c , ui_drawing_stub.c , ui_drawing.c and ui_image_drawing.c .

4. Add the optional files in the BSP project (if their associated feature is used/needed):

• LLUI_DISPLAY_HEAP_impl.c : to use another image heap allocator,

• LLUI_INPUT_LOG_impl.c and microui_event_decoder.c : to decode theMicroUI event (input events
and MicroUI internal events).

5. Add the C Module’s include folder to the BSP project’s include directories list.

6.14. Graphical User Interface 827

MicroEJ Documentation, Revision 32bb132e

LEDs

As soon as the VEE Port Configuration project LEDs module is checked, the VEE Port features the header file LLAPI
LLUI_LED_impl.h . This header must be implemented. The mandatory functions to implement are:

• LLUI_LED_IMPL_initialize : initialize the LED driver (if required) and return the available number of LEDs.

• LLUI_LED_IMPL_getIntensity : return, if possible, the LED intensity.

• LLUI_LED_IMPL_setIntensity : set the LED intensity.

Refer to Abstraction Layer API to have more information. Refer too to the C-doc in the header file itself.

Inputs

The VEE Port always features the header file LLAPI LLUI_INPUT_impl.h . This header must be implemented even
if there is no input device: the critical sectionmanagement is required by the MicroUI library itself. Themandatory
functions to implement are:

• LLUI_INPUT_IMPL_initialize : can be empty if nothing is to initialize.

• LLUI_INPUT_IMPL_getInitialStateValue : empty if there is no State Event Generator.

• LLUI_INPUT_IMPL_enterCriticalSection : disableall inputevents (disable inputdevices interruptsand/or
disable the OS scheduling).

• LLUI_INPUT_IMPL_leaveCriticalSection : re-enable all inputs events.

Refer to Abstraction Layer API to have more information. Refer too to the C-doc in the header file itself.

Display

As soonas the VEEPort Configurationproject Displaymodule is checked, the VEEPort features theheader file LLAPI
LLUI_DISPLAY_impl.h . This header must be implemented. The mandatory functions to implement are:

• LLUI_DISPLAY_IMPL_initialize : fill the given structure LLUI_DISPLAY_SInitData (display size, bu�er
address, etc.).

• LLUI_DISPLAY_IMPL_binarySemaphoreTake : takes the given semaphore.

• LLUI_DISPLAY_IMPL_binarySemaphoreGive : gives the given semaphore.

• LLUI_DISPLAY_IMPL_flush : copy/send the bu�er content to the LCD.

Refer to Abstraction Layer API to have more information. Refer to the C-doc in the header file itself too.

Display: LCD Constraints

According to the LCD constraints (see UI Port Configuration), some additional LLAPI must be implemented:

• LLUI_DISPLAY_IMPL_convertARGBColorToDisplayColor and LLUI_DISPLAY_IMPL_convertDisplayColorToARGBColor
: required when the pixel format is custom (not standard, see Dependencies).

• LLUI_DISPLAY_IMPL_prepareBlendingOfIndexedColors : requiredwhen the display bu�er is a LUT bu�er,
not a pixel bu�er.

• LLUI_DISPLAY_IMPL_isDoubleBuffered : the default implementation returns always true ; only useful as
information for the application.

6.14. Graphical User Interface 828

MicroEJ Documentation, Revision 32bb132e

• LLUI_DISPLAY_IMPL_isColor : the default implementation always returns true when the BPP is higher
than 8; only useful as information for the application.

• LLUI_DISPLAY_IMPL_getNumberOfColors : the default implementation returns always 1 << BPP ; only
useful as information for the application.

Display: Optional Features

Several kinds of features can be implemented.

Hardware features:

• LLUI_DISPLAY_IMPL_setContrast and LLUI_DISPLAY_IMPL_getContrast : to configure the display con-
trast.

• LLUI_DISPLAY_IMPL_hasBacklight , LLUI_DISPLAY_IMPL_setBacklight and
LLUI_DISPLAY_IMPL_getBacklight : to turn on or o� the display backlight.

Runtime Image Decoders

The BSP can add some runtime image decoders with the runtime decoders selected in the VEE Port configuration
project (modules PNG and BMPMonochrom decoders).

• LLUI_DISPLAY_IMPL_decodeImage : called by MicroUI to decode an image whose format is unknown by the
internal runtime image decoders.

Image Heap Management

By default, a best-fit allocator manages the image heap. To add another allocator, implement these functions:

• LLUI_DISPLAY_IMPL_imageHeapInitialize : initialize the allocator.

• LLUI_DISPLAY_IMPL_imageHeapAllocate : allocates the expected bu�er.

• LLUI_DISPLAY_IMPL_imageHeapFree : frees the given bu�er.

MicroUI Image Management

These three functions are only helpful for compatibility with a GPU; see GPU Port.

• LLUI_DISPLAY_IMPL_getNewImageStrideInBytes

• LLUI_DISPLAY_IMPL_adjustNewImageCharacteristics

• LLUI_DISPLAY_IMPL_initializeNewImage

Test Suite

The Port Qualification Toolkit (PQT) provides a UI test suite to validate the UI Port (see VEE Port Test Suite to have
more information). This test suitemust be executed to validate the UI Port and a�er each modification on this UI
Port (for instance, a�er changes to improve performances).

The UI Port test suite is available here: https://github.com/MicroEJ/VEEPortQualificationTools/tree/master/tests/
ui/ui3.

The test suite is constituted of two blocks:

• The minimal Display test suite: a simple application test (with source code) to validate the mandatory func-
tions to implement to target a Display.

• An extendedDisplay test suite: a library that tests several MicroUI drawings. This test suite only applies when
the BSP uses a GPU to perform the drawings. See GPU Port.

6.14. Graphical User Interface 829

https://github.com/MicroEJ/VEEPortQualificationTools/tree/master/tests/ui/ui3
https://github.com/MicroEJ/VEEPortQualificationTools/tree/master/tests/ui/ui3

MicroEJ Documentation, Revision 32bb132e

The test suite does not check all UI Port features. However, some example projects are available inMicroEJ GitHub:

• LED: refer to the application https://github.com/MicroEJ/Example-Standalone-Foundation-Libraries/tree/
master/microui.led.

• Input: refer to the application https://github.com/MicroEJ/Example-Standalone-Foundation-Libraries/tree/
master/microui.input

Some other example projects are also available in MicroEJ GitHub and can be used to check if the UI Port is valid:

• Hello World: https://github.com/MicroEJ/Example-Standalone-Foundation-Libraries/tree/master/microui.
helloworld

• Use of images: https://github.com/MicroEJ/Example-Standalone-Foundation-Libraries/tree/master/
microui.image

GPU Port

Principle

MicroUI and MicroUI C module are designed to be extended using a GPU hardware drawing acceleration. This ac-
celeration is optional and should be performed a�er the mandatory operations (see BSP Port).

A GPU can be used to draw shapes and/or images. Most of the time, the minimal implementation consists of fill-
ing the rectangles and drawing the images. The MicroUI C module is designed to let the BSP implement only the
GPU features. When a drawing is not implemented over a GPU, the so�ware implementation is automatically used
instead. No extra code should be added to the BSP to use the so�ware algorithms.

The main advantages of using a GPU are:

• the drawing is rendered faster than using the so�ware algorithms,

• the drawing is performed asynchronously, allowing the MCU to perform other actions (no need to wait until
the end of the drawing).

Existing C Modules

SomeCModules are available on theMicroEJ Repository. These Cmodules already implement compatible features
with a GPU. Add the mandatory files to the list of the BSP project’s compiled files to use the associated GPU (and
add the C Module’s include folder to the BSP project’s include directories list). Refer to C Modules to have more
information.

Port a GPU

Drawing Function

As described in Painter Abstraction Layer API, the idea of the implementation of LLUI_PAINTER_impl.h (and
LLDW_PAINTER_impl.h) is first to manage the synchronization with the Graphics Engine and then, to dis-
patch the drawing itself to a third party implementation through the header file ui_drawing.h . The files
LLUI_PAINTER_impl.c and LLDW_PAINTER_impl.c available in the MicroUI C module already perform this op-
eration for all MicroUI drawings. Consequently, only the drawing itself should be implemented in the BSP.

For example:

6.14. Graphical User Interface 830

https://github.com/MicroEJ/Example-Standalone-Foundation-Libraries/tree/master/microui.led
https://github.com/MicroEJ/Example-Standalone-Foundation-Libraries/tree/master/microui.led
https://github.com/MicroEJ/Example-Standalone-Foundation-Libraries/tree/master/microui.input
https://github.com/MicroEJ/Example-Standalone-Foundation-Libraries/tree/master/microui.input
https://github.com/MicroEJ/Example-Standalone-Foundation-Libraries/tree/master/microui.helloworld
https://github.com/MicroEJ/Example-Standalone-Foundation-Libraries/tree/master/microui.helloworld
https://github.com/MicroEJ/Example-Standalone-Foundation-Libraries/tree/master/microui.image
https://github.com/MicroEJ/Example-Standalone-Foundation-Libraries/tree/master/microui.image

MicroEJ Documentation, Revision 32bb132e

DRAWING_Status UI_DRAWING_fillRectangle(MICROUI_GraphicsContext* gc, jint x1, jint y1, jint␣
→˓x2, jint y2) {

// TODO
}

The drawing function has to take into account these properties:

• the color: the structure MICROUI_GraphicsContext gives the shape color (always fully opaque),

• the clip: the LLUI_DISPLAY.h file provides some functions to retrieve the current
MICROUI_GraphicsContext ’s clip,

• the bu�er destination address by calling the LLUI_DISPLAY_getBufferAddress function,

• the shape bounds: the drawing function parameters.

The drawing functionmust return the drawing status. This status indicates to theGraphics Engine the kind of draw-
ing:

• synchronous drawing: the drawing is performed by the GPU and entirely performed before returning. In that
case, the drawing function has to return DRAWING_DONE .

• asynchronous drawing: the drawing is started, maybe processed by the GPU before returning. In that case,
the drawing function has to return DRAWING_RUNNING .

As explained above, the second case should be the rule. That means that the Graphics Engine cannot
ask for another drawing (accelerated or not) before the end of the drawing currently performed by the
GPU. To unlock the Graphics Engine, the GPU interrupt routine must call the Graphics Engine function
LLUI_DISPLAY_notifyAsynchronousDrawingEnd to notify the end of the drawing. The Graphics Engine manages
the synchronization alone; no extra support in the BSP is mandatory.

Note: The end of the asynchronous drawing may occur before the end of the drawing function execution (before
returning). The Graphics Engine also manages this use case, and the BSP implementation does not need to check
this use case.

Fallback

A GPU may not be able to manage all the drawing functions. For instance, it cannot manage all image formats, or
it cannot manage all rotation angles, etc. In that case, the drawing function can call the so�ware drawing function
instead.

DRAWING_Status UI_DRAWING_fillRectangle(MICROUI_GraphicsContext* gc, jint x1, jint y1, jint␣
→˓x2, jint y2) {

DRAWING_Status ret;
if (!compatible_drawing(gc, x1, y1, x2, y2)) {

UI_DRAWING_SOFT_fillRectangle(gc, x1, y1, x2, y2);
ret = DRAWING_DONE;

}
else {

gpu_fill_rect(LLUI_DISPLAY_getBufferAddress(&gc->image), x1, y1, x2, y2);
ret = DRAWING_RUNNING;

}
return ret;

}

6.14. Graphical User Interface 831

MicroEJ Documentation, Revision 32bb132e

Image Constraints

The GPUmay have strong requirements on the images:

• the pixels bu�er start address alignment,

• an image stride di�erent than the image width.

These constraints a�ect the compile-time images (ImageGenerator) and the runtime images (decoded images and
MicroUI Bu�eredImage).

Address Alignment

In the VEE Port Configuration project, specify the property imageBuffer.memoryAlignment in the display.
properties file. The value is the alignment in bits. This value will be taken into account by the compile-time
images (Image Generator) and the runtime images.

Note: For the runtime images, this alignment value may be customized thanks to the function
LLUI_DISPLAY_IMPL_adjustNewImageCharacteristics .

Stride (Compile-time Images)

The stride is dynamic, o�en depending on the image format and width. Consequently, the stride cannot be set as
a property in the display.properties file for example.

For the compile-time images (Image Generator), a specific extension of the ImageGenerator is required.

1. See Extended Mode to create the ImageGenerator extension project.

2. Create a class that implements BufferedImageLoader . The value to be returned is expressed in pixels.

public class MicroUIGeneratorExtension extends BufferedImageLoader{

private static final int ALIGNMENT_PIXELS = 16;

@Override
public int getStride(int defaultStride) {

return (getWidth() + ALIGNMENT_PIXELS - 1) & ~(ALIGNMENT_PIXELS - 1);
}

}

3. Create the file /META-INF/services/com.microej.tool.ui.generator.
MicroUIRawImageGeneratorExtension

4. Fill it with the class name:

my.package.MicroUIGeneratorExtension

5. Build the project and copy the result in the VEE Port Configuration project, subfolder dropins/tools .

6. Rebuild the VEE Port.

6.14. Graphical User Interface 832

MicroEJ Documentation, Revision 32bb132e

Stride (Runtime Images)

For thecompile-time images, theBSPhas to implement theLLAPI LLUI_DISPLAY_IMPL_getNewImageStrideInBytes
(the value to be returned is expressed in bytes):

uint32_t UI_DRAWING_getNewImageStrideInBytes(jbyte image_format, uint32_t image_width,␣
→˓uint32_t image_height, uint32_t default_stride) {

uint32_t bpp = DISPLAY_UTILS_get_bpp((MICROUI_ImageFormat)image_format);
return (bpp >= (uint32_t)8) ? ALIGN(image_width, (uint32_t)16) * (bpp / (uint32_t)8) :␣

→˓ALIGN(image_width, (uint32_t)8);
}

Test Suite

As described here, the Port Qualification Toolkit (PQT) provides a UI test suite to validate the UI Port. The second
block of the UI test suite (extended Display test suite) uses a library that tests several MicroUI drawings. This test
suitemust be executed to validate the UI Port over a GPU and a�er eachmodification on this UI Port (for instance,
a�er changes to improve performances).

6.14.3 MicroUI

Principle

MicroUI library defines a Low Level UI framework for embedded devices. This module allows the creation of basic
Human-Machine-Interfaces (HMI), with output on a pixel-based screen.

Architecture

MicroUI library is the entry point to perform somedrawings on a display and to interactwith user input events. This
library contains only a minimal set of basic APIs. High-level libraries can be used to have more expressive power,
such asMWT (Micro Widget Toolkit). In addition to this restricted set of APIs, the MicroUI implementation has been
designed so that the EDC and BON footprint is minimal.

At application startup all MicroUI objects relative to the I/O devices are created and accessible. The following Mi-
croUI methods allow you to access these objects:

• Display.getDisplay() : returns the instance of the display which drives the main display screen.

• Leds.getNumberOfLeds(): returns the numbers of available LEDs.

MicroUI is not a standalone library. It requires a configuration step and several extensions to drive I/O devices
(display, inputs, LEDs).

First, MicroUI requires a configuration step in order to create these internal objects before the call to the main()
method. The chapter Static Initialization explains how to perform the configuration step.

Note: This configuration step is the same for both embedded and simulated VEE Ports.

The embedded VEE Port requires some additional C libraries to drive the I/O devices. Each C library is dedicated to
a specific kind of I/O device. A specific chapter is available to explain each kind of I/O device.

6.14. Graphical User Interface 833

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#getDisplay--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/led/Leds.html#getNumberOfLeds--

MicroEJ Documentation, Revision 32bb132e

Table 12: MicroUI C libraries
I/O devices Extension Name Chapter
Graphical / pixel-based display Display Display
Inputs (buttons, joystick, touch, pointers, etc.) Input Input
LEDs LED LED

The simulation VEE Port uses a mock which simulates all I/O devices. Refer to the chapter Simulation.

Library ej.api.Drawing

This Foundation Library provides additional drawing APIs. This library is fully integrated in Displaymodule.

Thread

Principle

TheMicroUI implementation for MicroEJ uses one internal thread. This thread is created during theMicroUI initial-
ization step, and is started by a call to MicroUI.start().

Role

This thread has several roles:

• It manages all display events (requestRender(), requestShow(), etc.).

• It reads the I/O devices inputs and dispatches them into the event generators’ listeners. See input section:
Input.

• It allows to run some piece of code using the callSerially() method.

Memory

The thread is always running. The user has to count it to determine the number of concurrent threads the MicroEJ
Core Engine can run (seeMemory options in Standalone Application Options).

Exceptions

The thread cannot be stopped with a Java exception: the exceptions are always checked by the framework.

When an exception occurs in a user method called by the internal thread (for instance render()), the current
UncaughtExceptionHandler receives the exception. When no exception handler is set, a default handler prints
the stack trace.

6.14. Graphical User Interface 834

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/MicroUI.html#start--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#requestRender--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#requestShow-ej.microui.display.Displayable-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/MicroUI.html#callSerially-java.lang.Runnable-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Displayable.html#render-ej.microui.display.GraphicsContext-

MicroEJ Documentation, Revision 32bb132e

Native Calls

TheMicroUI implementation for MicroEJ uses nativemethods to perform some actions (read input devices events,
perform drawings, turn on LEDs, etc.). The library implementation has been designed to not use blocking native
methods (wait input devices, wait end of drawing, etc.) which can lock the full MicroEJ Core Engine execution.

The specification of the native methods is to perform the action as fast as possible. The action execution may be
sequential or parallel because an action is able to use a third-party device (so�ware or hardware). In this case,
some callbacks are available to notify the end of this kind of parallel actions.

However some actions have to wait the end of a previous parallel action. By consequence the caller thread is
blocked until the previous action is done; in other words, until the previous parallel action has called its callback.
In this case, only the current Java thread is locked (because it cannot continue its execution until both actions are
performed). All other Java threads can run, even a thread with a lower priority than current thread. If no thread
has to be run, MicroEJ Core Engine goes in sleepmode until the native callback is called.

Antialiasing

MicroUI provides several policies to use the antialiasing. These policies depend on several factors, including the
kind of drawing and the display pixel rendering format. The main concept is that MicroUI does not allow you to
draw something with a transparency level di�erent from 255 (fully opaque). There are two exceptions: the images
and the fonts.

For each pixel to draw, the antialiasing process blends the foreground color with a background color. This back-
ground color can be specified or not by the application:

• specified: The background color is fixed by the application (GraphicsContext.setBackgroundColor()).

• not specified: The background color is the original color of the destination pixel (a “read pixel” operation is
performed for each pixel).

Images

Drawing an image (a pre-generated image or an image decoded at runtime) which contains some transparency
levels does not depend on the display pixel rendering format. During the image drawing, each pixel is converted
into 32 bits by pixel format.

This pixel format contains 8 bits to store the transparency level (alpha). This byte is used to merge the foreground
pixel (image transparent pixel) with the background pixel (bu�er opaque pixel). The formula to obtain the pixel is:

𝛼𝑀𝑢𝑙𝑡 = (𝛼𝐹𝐺 * 𝛼𝐵𝐺)/255

𝛼𝑂𝑢𝑡 = 𝛼𝐹𝐺+ 𝛼𝐵𝐺− 𝛼𝑀𝑢𝑙𝑡

𝐶𝑂𝑢𝑡 = (𝐶𝐹𝐺 * 𝛼𝐹𝐺+ 𝐶𝐵𝐺 * 𝛼𝐵𝐺− 𝐶𝐵𝐺 * 𝛼𝑀𝑢𝑙𝑡)/𝛼𝑂𝑢𝑡

The destination bu�er is always opaque, so:

𝐶𝑂𝑢𝑡 = (𝐶𝐹𝐺 * 𝛼𝐹𝐺+ 𝐶𝐵𝐺 * (255− 𝛼𝑀𝑢𝑙𝑡))/255

where:

• 𝛼FG is the alpha level of the foreground pixel (layer pixel),

• 𝛼BG is the alpha level of the background pixel (working bu�er pixel),

• Cxx is a color component of a pixel (Red, Green or Blue),

• 𝛼Out is the alpha level of the final pixel.

6.14. Graphical User Interface 835

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html#setBackgroundColor-int-

MicroEJ Documentation, Revision 32bb132e

Fonts

A font holds only a transparency level (alpha). This fixed alpha level is defined during the pre-generation of a font
(see Fonts).

• 1 means 2 levels are managed: fully opaque and fully transparent.

• 2 means 4 levels are managed: fully opaque, fully transparent and 2 intermediate levels.

• 4 means 16 levels are managed: fully opaque, fully transparent and 14 intermediate levels.

• 8 means 256 levels are managed: fully opaque, fully transparent and 254 intermediate levels.

Note: The antialiasing mode for the fonts concerns only the fonts with more than 1 bit per pixel (see Font Genera-
tor).

Installation

The MicroUI library is an additional module. In the VEE Port configuration file, check UI > MicroUI to install
the library. When checked, the XML file microui/microui.xml is required during VEE Port creation in order to
configure the module. This configuration step is used to extend the MicroUI library. Refer to the chapter Static
Initialization for more information about the MicroUI Initialization step.

Use

SeeMicroUI chapter in Application Developer Guide.

6.14.4 Static Initialization

Principle

The MicroUI implementation for MicroEJ requires a configuration step (also called extension step) to customize
itself before application startup (see Architecture). This configuration step uses an XML file. In order to save both
runtime execution time and flash memory, the file is processed by the Static MicroUI Initializer tool, avoiding the
need to process the XML configuration file at runtime. The tool generates appropriate initialized objects directly
within the MicroUI library, as well as Java and C constants files for sharing MicroUI event generator IDs.

This XML file (also called the initialization file) defines:

• The MicroUI event generators that will exist in the application in relation to low-level drivers that provide
data to these event generators (see Input).

• Whether the application has a display; and if so, it provides its logical name.

• Which fonts will be provided to the application.

The next chapters describe succinctly the XML file. For more information about grammar, please consult appendix
MicroUI Static Initializer.

6.14. Graphical User Interface 836

MicroEJ Documentation, Revision 32bb132e

Functional Description

The Static MicroUI Initializer tool takes as entry point the initialization file which describes the MicroUI library ex-
tension. This tool is automatically launched during the VEE Port build (see Installation).

The Static MicroUI Initializer tool is able to generate two files:

• A Java library which extends MicroUI library. This library is automatically added to the MicroEJ Application
classpathwhenMicroUI API library is fetched. This library is used at MicroUI startup to create all instances of
I/O devices (Display, EventGenerator, etc.) and contains the fonts described into the configuration file (these
fonts are also called “system fonts”).

Warning: This MicroUI extension library is always generated andMicroUI library cannot runwithout this exten-
sion.

• A C header file (*.h). This header file contains some IDs which are used to make a link between an input
device (buttons, touch) and its MicroUI event generator (see Input).

Note: The Front Panel project does not need a configuration file (like C header file for embedded VEE Port).

Fig. 42: Static MicroUI Initializer Process

XML File

The XML file must be created in VEE Port configuration project, in folder microui and called microui.xml .

Fig. 43: Static MicroUI Initializer XML File

The XML file grammar is detailed here. The following list gives a short description of each element:

• Root element: The initialization file root element is <microui> and contains component-specific elements.

6.14. Graphical User Interface 837

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/EventGenerator.html

MicroEJ Documentation, Revision 32bb132e

<microui>
[component specific elements]

</microui>

• Display element: The display element augments the initialization file with the configuration of the display.
The following snippet is an example of display element:

<display name="DISPLAY"/>

• Fonts element: The fonts element augments the initialization file with the fonts that are implicitly embed-
ded within the application (also called system fonts). Applications can also embed their own fonts.

Note: The system fonts are optional, in which case application has to provide some fonts to be
able to draw characters.

The following snippet is an example of fonts element:

<fonts>

<range name="LATIN" sections="0-2"/>
<customrange start="0x21" end="0x3f"/>

</fonts>

• Event generators element: The eventgenerators element augments the initialization file with:

– the configuration of the predefined MicroUI EventGenerator: Command, Buttons, States,
Pointer and Touch.

– the configuration of the generic MicroUI EventGenerator.

The following snippet is an example of eventgenerators element:

<eventgenerators>
<!-- Generic Event Generators -->
<eventgenerator name="GENERIC" class="foo.bar.Zork">

<property name="PROP1" value="3"/>
<property name="PROP2" value="aaa"/>

</eventgenerator>

<!-- Predefined Event Generators -->
<command name="COMMANDS"/>
<buttons name="BUTTONS" extended="3"/>
<buttons name="JOYSTICK" extended="5"/>
<pointer name="POINTER" width="1200" height="1200"/>
<touch name="TOUCH" display="DISPLAY"/>
<states name="STATES" numbers="NUMBERS" values="VALUES"/>

</eventgenerators>

<array name="NUMBERS">
<elem value="3"/>
<elem value="2"/>

(continues on next page)

6.14. Graphical User Interface 838

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/EventGenerator.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Command.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Buttons.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/States.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Pointer.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/EventGenerator.html

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

<elem value="5"/>
</array>

<array name="VALUES">
<elem value="2"/>
<elem value="0"/>
<elem value="1"/>

</array>

XML File Example

This common MicroUI initialization file initializes MicroUI with:

• a Display,

• a Command event generator,

• a Buttons event generator which targets n buttons (3 first buttons having extended features),

• a Buttons event generator which targets the buttons of a joystick,

• a Pointer event generator which targets a touch panel,

• a Font whose path is relative to this file.

<microui>

<display name="DISPLAY"/>

<eventgenerators>
<command name="COMMANDS"/>
<buttons name="BUTTONS" extended="3"/>
<buttons name="JOYSTICK" extended="5"/>
<touch name="TOUCH" display="DISPLAY"/>

</eventgenerators>

<fonts>

</fonts>

</microui>

Dependencies

No dependency.

6.14. Graphical User Interface 839

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Command.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Buttons.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Buttons.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Pointer.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Font.html

MicroEJ Documentation, Revision 32bb132e

Installation

The Static Initialization tool is part of the MicroUI module (see MicroUI). Install the MicroUI module to install the
Static Initialization tool and fill all properties in MicroUI module configuration file (whichmust specify the name of
the initialization file).

Use

The Static MicroUI Initializer tool is automatically launched during the VEE Port build.

6.14.5 Abstraction Layer API

Principle

The MicroUI implementation for MicroEJ requires an Abstraction Layer implementation. This Abstraction Layer
implementation finalizes theMicroUI implementation startedwith the static initialization step (see Static Initializa-
tion) for a given VEE Port.

The Abstraction Layer implementation consists in a set of headers files to implement in C to target the hardware
drivers. Some functionsaremandatory, others arenot. Someotherheaders files arealsoavailable to callUI engines
internal functions.

For the simulator, some Front Panel interfaces and classes allow to specify the simulated VEE Port characteristics.

Embedded VEE Port

Fig. 44: MicroUI Embedded Abstraction Layer API

The specification of header files names is:

• Name starts with LLUI_ .

• Second part name refers the UI engine: DISPLAY , INPUT , LED .

• Files whose name ends with _impl list functions to implement over hardware.

6.14. Graphical User Interface 840

MicroEJ Documentation, Revision 32bb132e

• Files whose name has no su�ix list internal UI engines functions.

There are some exceptions :

• LLUI_PAINTER_impl.h and LLDW_PAINTER_impl.h list a subpart of UI Graphics Engine functions to imple-
ment (all MicroUI native drawing methods).

• ui_drawing_soft.h and dw_drawing_soft.h list all drawing methods implemented by the Graphics En-
gine.

• microui_constants.h is the file generated by the MicroUI Static Initializer (see Static Initialization).

TheMicroUI C module provides a default implementation of the UI Pack Abstraction Layer API:

• LLUI_PAINTER_impl.c and LLDW_PAINTER_impl.c manage the synchronization with the Graphics Engine
and redirect all drawings to ui_drawing.h and ui_image_drawing.h .

• ui_drawing.h and ui_image_drawing.h list all drawing methods the VEE Port can implement.

• ui_drawing.c and ui_image_drawing.c are the default implementation of ui_drawing.h and
ui_image_drawing.h that redirects all drawings to ui_drawing_soft.h and dw_drawing_soft.h .

The BSP has to implement LLUI_xxx header files and optionally ui_drawing.h and ui_image_drawing.h (to
draw using a GPU and/or to draw in a custom Bu�eredImage).

All header files and their aims are described in next UI engines chapters: LED, Input and Display.

Simulator

Fig. 45: MicroUI Simulator Abstraction Layer API

In the simulator the three UI engines are grouped in a mock called Front Panel. The Front Panel comes with a set
of classes and interfaces which are the equivalent of headers file (*.h) of Embedded VEE Port.

The specification of class names is:

• Package are the same than the MicroUI library (ej.microui.display, ej.microui.event, ej.microui.led).

• Name start with LLUI .

• The second part of the name refers the UI engine: Display , Input , Led .

• Files whose name ends with Impl list methods to implement like in the embedded VEE Port.

• Files whose name has no su�ix list internal UI engine functions.

There are some exceptions :

6.14. Graphical User Interface 841

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/package-summary.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/package-summary.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/led/package-summary.html

MicroEJ Documentation, Revision 32bb132e

• LLUIPainter.java and LLDWPainter.java list a subpart ofUI Graphics Engine functions (allMicroUI native
drawing methods).

• UIDrawing.java and DWDrawing.java list all drawing methods the VEE Port can implement (and already
implemented by the Graphics Engine).

• EventXXX list methods to create input events compatible with MicroUI implementation.

All files and their aims are described in Simulation.

6.14.6 LED

Principle

The LED module contains the C part of the MicroUI implementation which manages LED devices. This module
is composed of only one element: an implementation of the Abstraction Layer APIs for the LEDs which must be
provided by the BSP (see LLUI_LED: LEDs).

Functional Description

The LED module implements the MicroUI Leds framework. LLUI_LED specifies the Abstraction Layer APIs that
receive orders from the Java world.

The Abstraction Layer APIs are the same for the LED which is connected to a GPIO (0 or 1), to a PWM , to a bus (
I2C , SPI), etc. The BSP has the responsibility of interpreting the application parameter intensity .

Typically, when the LED is connected to a GPIO , the intensity “0”means “OFF”, and all other values “ON”. When
the LED is connected via a PWM , the intensity “0”means “OFF”, and all other valuesmust configure the PWM duty
cycle signal.

The BSP should be able to return the state of an LED. If it is not able to do so (for example GPIO is not accessible
in read mode), the BSP has to save the LED state in a global variable. If not, the returned value may be wrong and
the application may not be able to know the LEDs states.

Abstraction Layer API

The LEDmodule provides Abstraction Layer APIs that allow theBSP tomanage the LEDs. TheBSPhas to implement
these Abstraction Layer APIs, making the link between the MicroUI library and the BSP LEDs drivers.

The Abstraction Layer APIs to implement are listed in the header file LLUI_LEDS_impl.h . First, in the initialization
function, the BSP must return the available number of LEDs the board provides. The other functions are used to
turn the LEDs on and o�.

6.14. Graphical User Interface 842

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/led/Leds.html

MicroEJ Documentation, Revision 32bb132e

Fig. 46: Led Abstraction Layer API

When there is no LED on the board, a stub implementation of C library is available. This C library must be linked by
the third-party C IDE when the MicroUI module is installed in the VEE Port. This stub library does not provide any
Abstraction Layer API files.

Typical Implementation

This chapter helps towrite a basic LLUI_LEDS_impl.h implementation. This implementationmanages some two-
state LEDs: on or o�.

The pseudo-code calls external functions such as LEDS_DRIVER_xxx to symbolize the use of external drivers.

static void get_led_port_and_pin(int32_t ledID, int32_t* port, int32_t* pin)
{

switch(ledID)
{

/* TODO */
*port = ...;
*pin = ...;

}
}

jint LLUI_LED_IMPL_getIntensity(jint ledID)
{

int32_t port;
int32_t pin;
get_led_port_and_pin(ledID, &port, &pin);

(continues on next page)

6.14. Graphical User Interface 843

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

return GPIO_ReadPin(port, pin) == GPIO_PIN_RESET ? LLUI_LED_MAX_INTENSITY : LLUI_LED_MIN_
→˓INTENSITY;
}

jint LLUI_LED_IMPL_initialize(void)
{

return DRIVER_LEDS_Init(); // return the available number of leds
}

void LLUI_LED_IMPL_setIntensity(jint ledID, jint intensity)
{

int32_t port;
int32_t pin;
get_led_port_and_pin(ledID, &port, &pin);

GPIO_WritePin(port, pin, 0 == intensity ? GPIO_PIN_RESET : GPIO_PIN_SET);
}

Dependencies

• MicroUI module (seeMicroUI).

• LLUI_LED_impl.h implementation if standard implementation is chosen (see Functional Description and
LLUI_LED: LEDs).

Installation

LEDs is a sub-part of MicroUI library. When the MicroUI module is installed, the LED module must be installed in
order to be able to connect physical LEDs with VEE Port. If not installed, the stubmodule will be used.

In the VEE Port configuration file, check UI > LEDs to install LEDs.

Use

The MicroUI LEDs APIs are available in the class ej.microui.led. Leds.

6.14.7 Input

Principle

The Input module contains the C part of the MicroUI implementation which manages input devices. This module
is composed of two elements:

• the C part of MicroUI input API (a built-in C archive) called Input Engine,

• an implementation of Abstraction Layer APIs for the input devices that must be provided by the BSP (see
LLUI_INPUT: Input).

6.14. Graphical User Interface 844

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/led/Leds.html

MicroEJ Documentation, Revision 32bb132e

Functional Description

The Input module implements the MicroUI int -based event generators’ framework. LLUI_INPUT specifies the
Abstraction Layer APIs that send events to the Java world.

Drivers for input devices must generate events that are sent, via a MicroUI Event Generator, to the application.
An event generator accepts notifications from devices, and generates an event in a standard format that can be
handled by the application. Depending on the MicroUI configuration, there can be several di�erent types of event
generator in the system, and one or more instances of each type.

Each MicroUI Event Generator represents one side of a pair of collaborative components that communicate using
a shared bu�er:

• The producer: the C driver connected to the hardware. As a producer, it sends its data into the communica-
tion bu�er.

• The consumer: the MicroUI Event Generator. As a consumer, it reads (and removes) the data from the com-
munication bu�er.

Fig. 47: Drivers and MicroUI Event Generators Communication

The LLUI_INPUT API allowsmultiple pairs of <driver - event generator> to use the samebu�er, andassociates
drivers and event generators using an int ID. The ID used is the event generator ID held within the MicroUI global
registry. Apart fromsharing the IDused to “connect”onedriver’sdata to its respectiveeventgenerator, bothentities
are completely decoupled.

The MicroUI thread waits for data to be published by drivers into the “input bu�er”, and dispatches to the correct
(according to the ID) event generator to read the received data. This “driver-specific-data” is then transformed into
MicroUI events by event generators and sent to objects that listen for input activity.

6.14. Graphical User Interface 845

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/EventGenerator.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/EventGenerator.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/EventGenerator.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/MicroUI.html

MicroEJ Documentation, Revision 32bb132e

Fig. 48: MicroUI Events Framework

Driver Listener

Drivers may either interface directly with event generators, or they can send their notifications to a Listener, also
written in C, and the listener passes the notifications to the event generator. This decoupling has twomajor bene-
fits:

• The drivers are isolated from the MicroEJ libraries – they can even be existing code.

• The listener can translate the notification; so, for example, a joystick could generate pointer events.

Static Initialization

The event generators available onMicroUI startup (a�er the call toMicroUI.start()) are the event generators listed in
the MicroUI description file (XML file). This file is a part of the MicroUI Static Initialization step (Static Initialization).

Theorderof eventgeneratorsdefines theunique identifier for eacheventgenerator. These identifiers aregenerated
in a header file called microui_constants.h . The input driver (or its listener) has to use these identifiers to target
a specific event generator.

If an unknown identifier is used or if two identifiers are swapped, the associated event may be never received by
the application or may bemisinterpreted.

6.14. Graphical User Interface 846

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/MicroUI.html#start--

MicroEJ Documentation, Revision 32bb132e

Standard Event Generators

MicroUI provides a set of standard event generators: Command, Buttons, Pointer and States. For each standard
generator, the Input Engine proposes a set of functions to create and send an event to this generator.

Static Initialization proposes an additional event generator: Touch . A touch event generator is a Pointer event
generator whose area size is the display size where the touch panel is placed. Furthermore, contrary to a pointer,
a press action is required to be able to have amove action (and so a drag action). The Input Engine proposes a set
of functions to target a touch event generator (equal to a pointer event generator but with some constraints). The
touch event generator is identified as a standard Pointer event generator, by consequence the Java application has
to use the Pointer API to deal with a touch event generator.

According to the event generator, one or several parameters are required. The parameter format is event generator
dependant. For instance a Pointer X-coordinate is encoded on 16 bits (0-65535 pixels).

Note: Pointer and Touch origin (point 0,0) is the top-le� point.

Generic Event Generators

MicroUI provides an abstract class GenericEventGenerator (package ej.microui.event). The aim of a generic
event generator is to be able to send custom events from native world to the application. These events may be
constituted by only one 32-bit word or by several 32-bit words (maximum 255).

On the application side, a subclassmust be implementedby clientswhowant to define their ownevent generators.
Two abstract methods must be implemented by subclasses:

• eventReceived : The event generator received an event from a C driver through the Abstraction Layer API
sendEvent function.

• eventsReceived : The event generator received an event made of several int s.

The event generator is responsible for converting incoming data into a MicroUI event and sending the event to its
listener. It should be defined during MicroUI Static Initialization step (in the XML file, see Static Initialization). This
allows the MicroUI implementation to instantiate the event generator on startup.

If the event generator is not available in the application classpath, a warning is thrown (with a stack trace) and the
application continues. In this case, all events sent by BSP to this event generator are ignored because no event
generator is able to decode them.

Abstraction Layer API

The implementation of the MicroUI Event Generator APIs provides some Abstraction Layer APIs. The BSP has to
implement these Abstraction Layer APIs, making the link between the MicroUI C library inputs and the BSP input
devices drivers.

The Abstraction Layer APIs to implement are listed in the header file LLUI_INPUT_impl.h . It allows events to be
sent to the MicroUI implementation. The input drivers are allowed to add events directly using the event genera-
tor’s unique ID (see Static Initialization). The drivers are fully dependent on the MicroEJ framework (a driver or a
driver listener cannot be developed without MicroEJ because it uses the header file generated during the MicroUI
initialization step).

To send an event to the application, the driver (or its listener) has to call one of the event engine function, listed in
LLUI_INPUT.h . These functions take as parameter the MicroUI EventGenerator to target and the data. The event
generator is represented by a unique ID. The data depends on the type of the event. To run correctly, the event
engine requires an implementation of functions listed in LLUI_INPUT_impl.h . When an event is added, the event
engine notifies MicroUI library.

6.14. Graphical User Interface 847

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Command.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Buttons.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Pointer.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/States.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Pointer.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Pointer.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Pointer.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/GenericEventGenerator.html

MicroEJ Documentation, Revision 32bb132e

Fig. 49: Input Abstraction Layer API

When there is no input device on the board, a stub implementation of C library is available. This C library must
be linked by the third-party C IDE when the MicroUI module is installed in the VEE Port. This stub library does not
provide any Abstraction Layer API files.

Typical Implementation

This chapter helps to write a basic LLUI_INPUT_impl.h implementation. This implementation should be divided
into several files:

• LLUI_INPUT_impl.c : implements LLUI_INPUT_imp.h and receives the input devices interrupts / callbacks
(button press, touchmove, etc.).

• xxx_helper.c : one helper per kind of input device (group of buttons, touch, etc.). It links the input device
hardware status and the so�ware status (MicroUI event status).

• event_generator.c : converts the input device hardware events in MicroUI events.

The pseudo-code calls external functions such as BUTTONS_DRIVER_xxx or TOUCH_DRIVER_xxx to symbolize the
use of external drivers.

6.14. Graphical User Interface 848

MicroEJ Documentation, Revision 32bb132e

LLUI_INPUT_impl.c

Its main aim is to synchronize the Input Engine with the input devices. The Input Engine holds a circular FIFO
to store the input devices’ events. The use of this FIFO must be performed under the critical section. The con-
current actions “an input device adds a new event in the Input Engine” and “the Input Engine reads an event
from the FIFO” must not be performed simultaneously. The implementation does not need to manage the con-
currency: the Input Engine automatically calls the functions LLUI_INPUT_IMPL_enterCriticalSection and
LLUI_INPUT_IMPL_leaveCriticalSection when an event is added or read.

• If the input devices add events under interrupt, the critical section must disable and re-enable the input
devices’ interrupts.

• If the input devices addevents fromanOS task, the critical sectionmust use a semaphore toprevent schedul-
ing.

• If both modes are used (typical use case), the critical section must be designed in consequence.

The following pseudo-code shows a typical implementation with:

• buttons under interrupt.

• touch panel from an OS task.

static xSemaphoreHandle _sem_input;

void LLUI_INPUT_IMPL_initialize(void)
{

_sem_input = xSemaphoreCreateBinary();
xSemaphoreGive(g_sem_input); // first take must pass

BUTTONS_DRIVER_initialize();
TOUCH_DRIVER_initialize();

}

jint LLUI_INPUT_IMPL_getInitialStateValue(jint stateMachinesID, jint stateID)
{

// no state on this BSP
return 0;

}

void LLUI_INPUT_IMPL_enterCriticalSection()
{

if (MICROEJ_FALSE == interrupt_is_in())
{

xSemaphoreTake(_sem_input, portMAX_DELAY);
BUTTONS_DRIVER_disable_interrupts();

}
// else: already in secure state (under interrupt)

}

void LLUI_INPUT_IMPL_leaveCriticalSection()
{

if (MICROEJ_FALSE == interrupt_is_in())
{

BUTTONS_DRIVER_enable_interrupts();
xSemaphoreGive(_sem_input);

(continues on next page)

6.14. Graphical User Interface 849

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

}
// else: already in secure state (under interrupt)

}

The other aim of this implementation is to receive the input devices’ hardware events and to redirect these events
to the dedicated helper.

// called by the touch panel dedicated task
void TOUCH_DRIVER_callback(uint8_t pressed, int32_t x, int32_t y)
{

if (pressed)
{

// here, pen is down for sure
TOUCH_HELPER_pressed(x, y);

}
else
{

// here, pen is up for sure
TOUCH_HELPER_released();

}
}

void GPIO_IRQHandler(int32_t button, uint32_t port, uint32_t pin)
{

if (GPIO_PIN_SET == GPIO_ReadPin(port, pin))
{

// GPIO == 1 means "pressed"
BUTTONS_HELPER_pressed(button);

}
else
{

// GPIO == 0 means "released"
BUTTONS_HELPER_released(button);

}
}

buttons_helper.c

The Input Engine’s FIFO might be full. In such a case, a new input device event cannot be added. Consequently, a
button release event should not be added to the FIFO if the previous button press event had not been added. This
helper keeps the so�ware state: the input device’s state seen by the application.

Note: This helper does not convert the hardware event into aMicroUI event. It lets event_generator.c performs
this job.

static uint8_t buttons_pressed[NUMBER_OF_BUTTONS];

void BUTTONS_HELPER_initialize(void)
{

(continues on next page)

6.14. Graphical User Interface 850

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

for(uint32_t i = 0; i < NUMBER_OF_BUTTONS; i++)
{

buttons_pressed[i] = MICROEJ_FALSE;
}

}

void BUTTONS_HELPER_pressed(int32_t buttonId)
{

// button is pressed

if (MICROEJ_TRUE == buttons_pressed[buttonId])
{

// button was pressed => repeat event (don't care if event is lost)
EVENT_GENERATOR_button_repeated(buttonId);

}
else
{

// button was released => press event
if (LLUI_INPUT_OK == EVENT_GENERATOR_button_pressed(buttonId))
{

// the event has been managed: we can store the new button state
// button is pressed now
buttons_pressed[buttonId] = MICROEJ_TRUE;

}
// else: event has been lost: stay in "release" state

}
}

void BUTTONS_HELPER_repeated(int32_t buttonId)
{

// manage this repeat event like a press event to check "software" button state
BUTTONS_HELPER_pressed(buttonId);

}

void BUTTONS_HELPER_released(int32_t buttonId)
{

// button is now released

if (MICROEJ_TRUE == buttons_pressed[buttonId])
{

// button was pressed => release event
if (LLUI_INPUT_OK == EVENT_GENERATOR_button_released(buttonId))
{

// the event has been managed: we can store the new button state
// button is released now
buttons_pressed[buttonId] = MICROEJ_FALSE;

}
// else: event has been lost: stay in "press" state

}
// else: already released

}

6.14. Graphical User Interface 851

MicroEJ Documentation, Revision 32bb132e

touch_helper.c

The Input Engine’s FIFO might be full. In such a case, a new input device event cannot be added. Consequently, a
touch move / drag event should not be added to the FIFO if the previous touch press event had not been added.
This helper keeps the so�ware state: the input device’s state seen by the application.

This helper also filters the touch panel events. It uses two defines FIRST_MOVE_PIXEL_LIMIT and
MOVE_PIXEL_LIMIT to reduce the number of events sent to the application (values are expressed in pixels).

Note: This helper does not convert the hardware event in theMicroUI event. It lets event_generator.c performs
this job.

// Number of pixels to generate a move after a press
#ifndef FIRST_MOVE_PIXEL_LIMIT
#error "Please set the define FIRST_MOVE_PIXEL_LIMIT (in pixels)"
#endif

// Number of pixels to generate a move after a move
#ifndef MOVE_PIXEL_LIMIT
#error "Please set the define MOVE_PIXEL_LIMIT (in pixels)"
#endif

#define DIFF(a,b) ((a) < (b) ? (b-a) : (a-b))
#define KEEP_COORD(p,n,limit) (DIFF(p,n) <= limit ? MICROEJ_FALSE : MICROEJ_TRUE)
#define KEEP_PIXEL(px,x,py,y,limit) (KEEP_COORD(px,x,limit) || KEEP_COORD(py,y,limit))
#define KEEP_FIRST_MOVE(px,x,py,y) (KEEP_PIXEL(px,x,py,y, FIRST_MOVE_PIXEL_LIMIT))
#define KEEP_MOVE(px,x,py,y) (KEEP_PIXEL(px,x,py,y, MOVE_PIXEL_LIMIT))

static uint8_t touch_pressed = MICROEJ_FALSE;
static uint8_t touch_moved = MICROEJ_FALSE;
static uint16_t previous_touch_x, previous_touch_y;

void TOUCH_HELPER_pressed(int32_t x, int32_t y)
{

// here, the pen is down for sure

if (MICROEJ_TRUE == touch_pressed)
{

// pen was down => move event

// keep pixel according first "move" event or not
int keep_pixel;
if(MICROEJ_TRUE == touch_moved)
{

keep_pixel = KEEP_MOVE(previous_touch_x, x, previous_touch_y, y);
}
else
{

keep_pixel = KEEP_FIRST_MOVE(previous_touch_x, x, previous_touch_y, y);
}

if (MICROEJ_TRUE == keep_pixel)

(continues on next page)

6.14. Graphical User Interface 852

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

{
// store the new pixel
previous_touch_x = x;
previous_touch_y = y;
touch_moved = MICROEJ_TRUE;

// send a MicroUI touch event (don't care if event is lost)
EVENT_GENERATOR_touch_moved(x, y);

}
// else: same position; no need to send an event

}
else
{

// pen was up => press event
if (LLUI_INPUT_OK == EVENT_GENERATOR_touch_pressed(x, y))
{

// the event has been managed: we can store the new touch state
// touch is pressed now
previous_touch_x = x;
previous_touch_y = y;
touch_pressed = MICROEJ_TRUE;
touch_moved = MICROEJ_FALSE;

}
// else: event has been lost: stay in "release" state

}
}

void TOUCH_HELPER_moved(int32_t x, int32_t y)
{

// manage this move like a press event to check "software" touch state
TOUCH_HELPER_pressed(x, y);

}

void TOUCH_HELPER_released(void)
{

// here, the pen is up for sure

if (MICROEJ_TRUE == touch_pressed)
{

// pen was down => release event
if (LLUI_INPUT_OK == EVENT_GENERATOR_touch_released())
{

// the event has been managed: we can store the new touch state
// touch is released now
touch_pressed = MICROEJ_FALSE;

}
// else: event has been lost: stay in "press | move" state

}
// else: the pen was already up

}

6.14. Graphical User Interface 853

MicroEJ Documentation, Revision 32bb132e

event_generator.c

This file aims to convert the events (received by LLUI_INPUT_impl.c and then filtered by xxx_helper.c) to the
application through the Input Engine.

This C file should be the only C file to include the header file microui_constants.h . This header file has been
generated during the VEE Port build (see Static Initialization). It holds some defines that describe the available list
of MicroUI Event Generators. Each MicroUI Event Generator has its identifier: 0 to n-1.

A button event is o�en converted in the MicroUI Command event. That allows the application to be button-
independent: the application is not waiting for button 0 or button 1 events but MicroUI Command ESC or LEFT for
instance. The following pseudo-code converts the buttons events in MicroUI Command events.

Note: Each hardware event can be converted into another kind of MicroUI event. For instance, a joystick can
simulate a MicroUI Pointer; a touch panel can be reduced to a set of MicroUI Commands (le�, right, top, le�), etc.

#include "microui_constants.h"

static uint32_t _get_button_command(int32_t button_id)
{

switch (button_id)
{
default:
case BUTTON_WAKEUP_ID:

return LLUI_INPUT_COMMAND_ESC;
case BUTTON_TAMPER_ID:

return LLUI_INPUT_COMMAND_MENU;
}

}

int32_t EVENT_GENERATOR_button_pressed(int32_t buttonId)
{

return LLUI_INPUT_sendCommandEvent(MICROUI_EVENTGEN_COMMANDS, _get_button_
→˓command(buttonId));
}

int32_t EVENT_GENERATOR_button_repeated(int32_t buttonId)
{

return LLUI_INPUT_sendCommandEvent(MICROUI_EVENTGEN_COMMANDS, _get_button_
→˓command(buttonId));
}

int32_t EVENT_GENERATOR_button_released(int32_t buttonId)
{

// do not send a Command event on the release event
return LLUI_INPUT_OK; // the event has been managed

}

int32_t EVENT_GENERATOR_touch_pressed(int32_t x, int32_t y)
{

return LLUI_INPUT_sendTouchPressedEvent(MICROUI_EVENTGEN_TOUCH, x, y);
}

(continues on next page)

6.14. Graphical User Interface 854

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

int32_t EVENT_GENERATOR_touch_moved(int32_t x, int32_t y)
{

return LLUI_INPUT_sendTouchMovedEvent(MICROUI_EVENTGEN_TOUCH, x, y);
}

int32_t EVENT_GENERATOR_touch_released(void)
{

return LLUI_INPUT_sendTouchReleasedEvent(MICROUI_EVENTGEN_TOUCH);
}

Event Bu�er

MicroUI is using a circular bu�er to manage the input events. As soon as an event is added, re-
moved, or replaced in the queue, the event engine calls the associated Abstraction Layer API (LLAPI)
LLUI_INPUT_IMPL_log_queue_xxx() . This LLAPI allows the BSP to log this event to dump it later thanks to a
call to LLUI_INPUT_dump() .

Note: When the functions LLUI_INPUT_IMPL_log_queue_xxx() are not implemented, a call to
LLUI_INPUT_dump() has no e�ect (there is no default logger).

The following steps describe how the logger is called:

1. On startup, MicroUI calls LLUI_INPUT_IMPL_log_queue_init() : it gives the event bu�er. The implementa-
tion should prepare its logger.

2. TheBSP adds or replaces an event in the queue, the event engine calls LLUI_INPUT_IMPL_log_queue_add()
or LLUI_INPUT_IMPL_log_queue_replace() . The implementation should store the eventmetadata: bu�er
index, event size, etc.

3. If the event cannot be added because the queue is full, the event engine calls
LLUI_INPUT_IMPL_log_queue_full() . The implementation can print a warning, throw an error, etc.

4. MicroUI reads an event, the event engine calls LLUI_INPUT_IMPL_log_queue_read() . The implementation
has to update its metadata (if required).

The following steps describe how the dump is performed:

1. The BSP calls LLUI_INPUT_dump() : the event engine starts a dump of the event bu�er.

2. First, the event engine dumps the older events. It calls LLUI_INPUT_IMPL_log_dump() for each old event.
The log type value is 0 ; it means that all logs are the events or events’ data already consumed (past events),
and the first log is the latest event or data stored in the queue.

3. Then, the event engine dumps the future events (events not consumed yet by MicroUI). It calls
LLUI_INPUT_IMPL_log_dump() for each new event. The log type value is 1 ; it means that all logs are the
events or data not consumed yet (future events).

4. The future events can target a MicroUI object (a Displayable for a requestRender event, a Runnable for
a callSerially event, etc.). The event engine notifies the logger to print the MicroUI objects by calling
LLUI_INPUT_IMPL_log_dump() with 2 as log type value.

5. Finally, the event engine notifies the logger about the end of the dump by calling
LLUI_INPUT_IMPL_log_dump() with 3 as log type value.

6.14. Graphical User Interface 855

MicroEJ Documentation, Revision 32bb132e

Warning: The dump of MicroUI objects linked to the future events is only available with the MicroEJ Architec-
tures 7.16 and higher. With older MicroEJ Architectures, nothing is dumped.

An implementation is available on theMicroUI C module. This logger is constituted with two files:

• LLUI_INPUT_LOG_impl.c : this file holds some metadata for each event. When the event en-
gine calls LLUI_INPUT_IMPL_log_dump() , the logger retrieves the event metadata and calls
microui_event_decoder.c functions. To enable this logger, set the define MICROUIEVENTDECODER_ENABLED
in microui_event_decoder_conf.h .

• microui_event_decoder.c : this file describes the MicroUI events. It has to be customized with the MicroUI
event generators identifiers. See microui_event_decoder_conf.h .

Example of a dump:

============================== MicroUI FIFO Dump ===============================
---------------------------------- Old Events ----------------------------------
[27: 0x00000000] garbage
[28: 0x00000000] garbage
[...]
[99: 0x00000000] garbage
[00: 0x08000000] Display SHOW Displayable (Displayable index = 0)
[01: 0x00000008] Command HELP (event generator 0)
[02: 0x0d000000] Display REPAINT Displayable (Displayable index = 0)
[03: 0x07030000] Input event: Pointer pressed (event generator 3)
[04: 0x009f0063] at 159,99 (absolute)
[05: 0x07030600] Input event: Pointer moved (event generator 3)
[06: 0x00aa0064] at 170,100 (absolute)
[07: 0x02030700] Pointer dragged (event generator 3)
[08: 0x0d000000] Display REPAINT Displayable (Displayable index = 0)
[09: 0x07030600] Input event: Pointer moved (event generator 3)
[10: 0x00b30066] at 179,102 (absolute)
[11: 0x02030700] Pointer dragged (event generator 3)
[12: 0x0d000000] Display REPAINT Displayable (Displayable index = 0)
[13: 0x07030600] Input event: Pointer moved (event generator 3)
[14: 0x00c50067] at 197,103 (absolute)
[15: 0x02030700] Pointer dragged (event generator 3)
[16: 0x0d000000] Display REPAINT Displayable (Displayable index = 0)
[17: 0x07030600] Input event: Pointer moved (event generator 3)
[18: 0x00d00066] at 208,102 (absolute)
[19: 0x02030700] Pointer dragged (event generator 3)
[20: 0x0d000000] Display REPAINT Displayable (Displayable index = 0)
[21: 0x07030100] Input event: Pointer released (event generator 3)
[22: 0x00000000] at 0,0 (absolute)
[23: 0x00000008] Command HELP (event generator 0)
---------------------------------- New Events ----------------------------------
[24: 0x0d000000] Display REPAINT Displayable (Displayable index = 0)
[25: 0x07030000] Input event: Pointer pressed (event generator 3)
[26: 0x002a0029] at 42,41 (absolute)
--------------------------- New Events' Java objects ---------------------------
[java/lang/Object[2]@0xC000FD1C

[0] com/microej/examples/microui/mvc/MVCDisplayable@0xC000BAC0
[1] null

==

6.14. Graphical User Interface 856

MicroEJ Documentation, Revision 32bb132e

Notes:

• The event 24 holds an object in the events objects array (a Displayable); its object index is 0 .

• An object is null when the memory slot has been used during the application execution but freed at the
dump time.

• The object array’ size is the maximum of non-null objects reached during application execution.

• The indices of old events are out-of-date: the memory slot is now null or reused by a newer event.

• The event 25 targets the event generator 3 ; the identifier is available in microui_constants.h (created
during the VEE Port build, see Static Initialization).

• The events 27 to 99 cannot be identified (nometadata or partial event content due to circular queueman-
agement).

• Refers to the implementation on the MicroUI C module to have more information about the format of the
event; this implementation is always up-to-date with the MicroUI implementation.

Dependencies

• MicroUI module (seeMicroUI)

• Static MicroUI initialization step (see Static Initialization). This step generates a header file which contains
some unique event generator IDs. These IDs must be used in the BSP to make the link between the input
devices drivers and the MicroUI Event Generator s.

• LLUI_INPUT_impl.h implementation (see LLUI_INPUT: Input).

• TheMicroUI C module to optionally use the default input logger.

Installation

Inputmodule is a sub-part of the MicroUI library. The Inputmodule is installed at same time thanMicroUImodule.

Use

The MicroUI Input APIs are available in the classes of packages ej.microui.event and ej.microui.event.
generator .

6.14.8 Display

Principle

The Display module contains the C part of the MicroUI implementation which manages graphical displays. This
module is composed of three elements:

• the C part of MicroUI Display API (a built-in C archive) called Graphics Engine,

• an implementation of Abstraction Layer APIs for the displays (LLUI_DISPLAY) that the BSPmust provide (see
LLUI_DISPLAY: Display),

• an implementation of Abstraction Layer APIs for MicroUI drawings.

6.14. Graphical User Interface 857

MicroEJ Documentation, Revision 32bb132e

TheDisplaymodule implements theMicroUI graphics framework. This framework is constitutedof several notions:
the display characteristics (size, format, backlight, contrast, etc.), the drawing state machine (render, flush, wait
flush completed), the images life cycle, the fonts and drawings. Themain part of the Displaymodule is provided by
abuilt-inCarchive calledGraphics Engine. This librarymanages thedrawing statemachinemechanism, the images
and fonts. The display characteristics and the drawings are managed by the LLUI_DISPLAY implementation.

The Graphics Engine is designed to let the BSP use an optional graphics processor unit (GPU) or an optional third-
party drawing library. Each drawing can be implemented independently. If no extra framework is available, the
Graphics Engine performs all drawings in so�ware. In this case, the BSP has to perform a very simple implementa-
tion (four functions) of the Graphics Engine Abstraction Layer.

MicroUI library also gives the possibility to perform some additional drawings which are not available as API in
MicroUI library. The Graphics Engine gives a set of functions to synchronize the drawings between them, to get the
destination (and sometimes source) characteristics, to call internal so�ware drawings, etc.

Front Panel (simulator Graphics Engine part) gives the same possibilities. Same constraints can be applied, same
drawings can be overridden or added, same so�ware drawing rendering is performed (down to the pixel).

Chapters Organization

Formore convenience, this chapter only describes howadisplay deviceworks and how to connect it to theMicroUI
Graphics Engine. Dedicated chapters deal with related concepts:

• Bu�er Refresh Strategy: how the display bu�er is refreshed.

• Drawings: how the drawings are performed, the use of a GPU, etc.

• Images: how the images are generated and drawn.

• Fonts: how the fonts are generated and drawn.

• C Modules: how the BSP extends the Graphics Engine.

• Simulation: how the Graphics Engine is simulated.

Display Configuration

The Graphics Engine provides a number of di�erent configurations. The appropriate configuration should be se-
lected depending on the capabilities of the screen and other related hardware, such as display controllers.

The policies can vary in four ways:

• the display device connection to the Graphics Engine,

• the number of bu�ers,

• pixel format or depth,

• the memory layout of the pixels.

6.14. Graphical User Interface 858

MicroEJ Documentation, Revision 32bb132e

Display Connection

Adisplay is alwaysassociatedwithamemorybu�erwhich sizedependson thedisplaypanel size (widthandheight)
and the number of bits per pixel. This memory bu�er holds all the pixels the display panel has to show. The dis-
play panel continuously refreshes its content by reading the data from amemory bu�er. This refreshing cannot be
stopped; otherwise, the image fades away. Most of the time, a new frame o�en appears every 16.6ms (60Hz).

Fig. 50: Display Continuous Refresh

There are two types of connection with the MCU: Serial and Parallel.

Serial

The MCU sends the data to show (the pixels) to the display module through a serial bus (SPI, DSI). The display
module holds its memory and fills it with the received data. It continuously refreshes its content by reading the
data from this memory. This memory is usually not accessible to the MCU: the MCU can only write into it with the
right macro (SPI or DSI). This is the notion of unmappedmemory.

Fig. 51: Display Serial Connection

Parallel

The MCU features an LCD controller that sends the content of an MCU’s bu�er to the display module. The display
module doesn’t hold its memory. The LCD controller continuously updates the display panel’s content by reading
the MCU memory data. By definition, this memory is addressed by the MCU: the MCU can write (and read) into it
(the memory is in the MCU addresses range). This is the notion ofmappedmemory.

Fig. 52: Display Parallel Connection

6.14. Graphical User Interface 859

MicroEJ Documentation, Revision 32bb132e

Bu�er Policy

Overview

The notion of bu�er policy depends on the available number of bu�ers allocated in the MCU memory and on the
display connection. The Graphics Engine does not depend on the type of bu�er policy and it manipulates these
bu�ers in two steps:

1. It renders the application drawings into a MCU bu�er.

2. It flushes the bu�er’s content to the display panel.

The implementation of Display.flush() calls the Abstraction Layer API LLUI_DISPLAY_IMPL_flush to let the BSP to
update the display data.

Decision Tree

The following flow chart provides a handy guide to pick the bu�er policy suited to the hardware configuration.

Serial Connection

Fig. 53: Bu�er Policies for Serial Connection

Parallel Connection

Fig. 54: Bu�er Policies for Parallel Connection

Chapter Sum-up

The following table redirects to the right chapter according to the display bu�er policy:

6.14. Graphical User Interface 860

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#flush--

MicroEJ Documentation, Revision 32bb132e

Table 13: Display Connections
Connection Nb MCU Bu�ers Chapters
Serial partial Partial
Serial 1 Single
Serial 2 Copy and Swap
Parallel 1 Direct
Parallel 1 + partial Partial
Parallel 2 Swap Double or Single
Parallel 3 Swap Triple or Copy and Swap

Swap Double Bu�er (parallel)

To prevent flickering in the display panel, the BSP should provide another MCU bu�er (the same size as the first
bu�er) where the drawings are performed. The first bu�er, for its part, is dedicated to the refreshing of the display
panel. Double bu�ering avoids flickering and inconsistent rendering: it is well suited to high quality animations.
This is the notion of double bu�er. This new bu�er is usually called back bu�er, and the first bu�er is usually
called frame bu�er or front bu�er. The two bu�ers in MCU memory alternately play the role of the back bu�er
and the frame bu�er. The display panel address is alternatively changed from one bu�er to the other.

The flush step consists in switching (or swapping) the two bu�ers: the frame bu�er becomes the back bu�er and
the back bu�er becomes the frame bu�er.

Fig. 55: Swap Double Bu�er

This swap may not be atomic and may be done asynchronously: the display panel o�en fully refreshes an entire
framebeforechanging itsbu�eraddress. During this time, the framebu�er isused (thedisplaypanel refreshes itself
on it), and the back bu�er is locked (reserved for the next frame to show). Consequently, the application cannot
draw again: the swappingmust be performed before. As soon as the swap is done, both bu�ers are switched. Now,
the application can draw in the new back bu�er (previously the frame bu�er).

Swap Triple Bu�er (parallel)

When the display is large, it is possible to introduce a third mapped bu�er. This third bu�er saves fromwaiting the
end of the swapping before starting a new drawing. The bu�ers are usually called back bu�er 1, back bu�er 2 and
back bu�er 3.

The flush step consists in swapping two bu�ers and to let the application draw in the third bu�er:

• The back bu�er 1 is the frame bu�er: it is currently used by the LCD controller to refresh the display panel.

• The back bu�er 2 is the next frame bu�er: the drawings have been done and a flush is requested.

• The back bu�er 3 is not used: the application can immediately draw into it without waiting the swapping
between the back bu�ers 1 & 2.

• When the drawings are done in the back bu�er 3, this bu�er becomes the next frame bu�er, the back bu�er
2 is the frame bu�er and the back bu�er 1 is free.

6.14. Graphical User Interface 861

MicroEJ Documentation, Revision 32bb132e

Fig. 56: Swap Triple Bu�er

Direct Bu�er (parallel)

There is only one bu�er and the display panel continuously refreshes its content on this MCUbu�er. Consequently,
the display panel can show incomplete frames and partial drawings since the drawings can be done during the
refresh cycle of the display panel. This is the notion of direct bu�er. This bu�er policy is recommended for static
display-based applications and/or to save memory.

In this policy, the flush step has nomeaning (there is only one bu�er).

Fig. 57: Direct Bu�er

Single Bu�er

Serial Connection

For the display connection serial, there are two distinct bu�ers: the bu�er where the drawings are rendered is
usually called back bu�er, and the display module bu�er frame bu�er or front bu�er. As long as only the back
bu�er is stored in theMCUmappedmemory (the framebu�er is stored in the displaymodule unmappedmemory),
there is only one bu�er to allocate. This is the notion of single bu�er.

The flush step consists in sending the data through the right bus (SPI, DSI).

Fig. 58: Single Bu�er (serial)

Thedisplay panel only shows complete frames; it cannot showpartial drawings because the flush step is performed
a�er all the drawings. The application cannot draw in the back bu�er while the data is sent to the frame bu�er. As
soon as the data is fully sent, the application can draw again in the back bu�er.

The time to send the data from the back bu�er to the frame bu�er may be long. During this time, no drawing can
be anticipated and the global framerate is reduced.

6.14. Graphical User Interface 862

MicroEJ Documentation, Revision 32bb132e

Parallel Connection

When the swap policy is not possible (the display panel is mapped on a fixed MCU memory address), the policy
single bu�er can be used. Like swap policy, this double bu�ering avoids flickering and inconsistent rendering: it
is well suited to high quality animations.

The flush step consists in copying the back bu�er content to the frame bu�er (o�en by using a DMA).

Fig. 59: Single Bu�er (parallel)

When the swap policy can be used, the single bu�er policy can be also used. However there are some di�erences:

• In Swap Double policy, the new frame bu�er data is available instantly. As soon as the LCD controller has
updated its framebu�er address, thedata is ready tobe sent to theLCD. InCopy policy, theprocessof copying
the data to the display bu�er occurs while the LCD controller is reading it. Therefore, the bu�er copy has to
be faster than the LCD controller reading. If this requirement is not met, the LCD controller will send amix of
new and old data (because the bu�er copy is not completely finished).

• In Swap Double policy, the synchronization with the LCD controller is more e�ortless. An interrupt is thrown
as soon as the LCD controller has updated its frame bu�er address. In Copy policy, the copy bu�er process
should be synchronized with the LCD tearing signal.

• In Single policy, during the copy, the destination bu�er (the frame bu�er) is used by the copy bu�er process
(DMA, memcopy, etc.) and by the LCD controller. Both masters are using the same RAM section. This same
RAM section switches inWritemode (copy bu�er process) and Readmode (LCD controller).

Copy and Swap Bu�er

Serial Connection

When the time to send to the data from the back bu�er to the frame bu�er is too long, a second bu�er can be
allocated in the MCUmemory. This bu�er can be used by the application while the first bu�er is sent. This allows
to anticipate the drawings even if the first drawings are not fully sent. This is the notion of copy and swap bu�er.
The bu�ers are usually called back bu�er 1 and back bu�er 2 (the display module’s bu�er is the frame bu�er).

The flush step consists in sending the back bu�er data to the display module memory and swapping both back
bu�ers:

• The back bu�er 1 is used as sending bu�er.

• Thebackbu�er 2 is not used: the application can immediately draw into itwithoutwaiting for thebackbu�er
1 to be sent.

• At the end of the drawings in the back bu�er 2, the back bu�er 2 takes the role of the sending bu�er and the
back bu�er 1 is free.

6.14. Graphical User Interface 863

MicroEJ Documentation, Revision 32bb132e

Fig. 60: Copy and Swap (serial)

Parallel Connection

When the time to copy the data from the back bu�er to the frame bu�er is too long, a third bu�er can be allocated
in the MCU memory. This bu�er can be used by the application during the copy of the first bu�er. This allows to
anticipate the drawings even if the first drawings are not fully copied. This is the notion of copy and swap bu�er.
The bu�ers are usually called back bu�er 1 and back bu�er 2 (the third bu�er in is the frame bu�er). The flush
step consists in copying the back bu�er data to the frame bu�er and swapping both back bu�ers.

• The back bu�er 1 is used as copying bu�er.

• Thebackbu�er 2 is not used: the application can immediately draw into itwithoutwaiting for thebackbu�er
1 to be copied.

• At the end of the drawings in the back bu�er 2, the back bu�er 2 takes the role of the copying bu�er and the
back bu�er 1 is free.

Fig. 61: Copy and Swap (parallel)

Partial Bu�er

When RAM usage is not a constraint, the back bu�er is sized to store all the pixel data of the screen. But when the
RAM available on the device is very limited, a partial bu�er can be used instead. In that case, the bu�er is smaller
and can only store a part of the screen (one third for example).

When this technique is used, the application draws in the partial bu�er. To flush the drawings, the content of the
partial bu�er is copied to the display (to its internal memory or to a complete bu�er fromwhich the display reads).

If the display does not have its own internal memory and if the device does not have enough RAM to allocate a
complete bu�er, then it is not possible to use a partial bu�er. In that case, only the direct bu�er policy can be used.

6.14. Graphical User Interface 864

MicroEJ Documentation, Revision 32bb132e

Workflow

A partial bu�er of the desired size has to be allocated in RAM. If the display does not have its own internal memory,
a complete bu�er also has to be allocated in RAM, and the display has to be configured to read from the complete
bu�er.

The implementation should follow these steps:

1. First, the application draws in the partial bu�er.

2. Then, to flush the drawings on the screen, the data of the partial bu�er is sent to the display (either copied
to its internal memory or to the complete bu�er in RAM).

3. Finally, a synchronization is required before starting the next drawing operation.

Dual Partial Bu�er

A second partial bu�er can be used to avoid the synchronization delay before between two drawing cycles. While
one of the two partial bu�ers is being copied to the display, the application can start drawing in the second partial
bu�er.

This technique is interesting when the copy time is long. The downside is that it either requires more RAM or it
requires to reduce the size of the partial bu�ers.

Using a dual partial bu�er has no impact on the application code.

Application Limitations

Using a partial bu�er rather than a complete bu�ermay require adapting the code of the application, since render-
ing a graphical element may require multiple passes. If the application uses MWT, a custom render policy has to be
used.

Besides, the GraphicsContext.readPixel() and the GraphicsContext.readPixels() APIs can not be used on the graph-
ics context of the display in partial bu�er policy. Indeed, we cannot rely on the current content of the back bu�er
as it doesn’t contain what is seen on the screen.

Likewise, the Painter.drawDisplayRegion() API can not be used in partial bu�er policy. Indeed, this API reads the
content of the back bu�er in order to draw a region of the display. Instead of relying on the drawings which were
performed previously, this API should be avoided and the drawings should be performed again.

Using a partial bu�er can have a significant impact on animation performance. Refer to Animations for more infor-
mation on the development of animations in an application.

Implementation Example

The partial bu�er demo provides an example of partial bu�er implementation. This example explains how to im-
plement partial bu�er support in the BSP and how to use it in an application.

6.14. Graphical User Interface 865

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html#readPixel-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html#readPixels-int:A-int-int-int-int-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Painter.html
https://github.com/MicroEJ/Demo-PartialBuffer

MicroEJ Documentation, Revision 32bb132e

Pixel Structure

Principle

The Display module provides pre-built display configurations with standard pixel memory layout. The layout of
the bits within the pixel may be standard or driver-specific. When installing the Display module, a property bpp is
required to specify the kind of pixel representation (see Installation).

Standard

When the value is one among this list: ARGB8888 | RGB888 | RGB565 | ARGB1555 | ARGB4444 | C4 | C2 | C1
, the Display module considers the pixels representation as standard. All standard representations are internally
managed by the Displaymodule, by the Front Panel and by the Image Generator. No specific support is required as
long as a VEE Port is using a standard representation. It can:

• generate at compile-time RAW images in the same format than display pixel format,

• convert at runtime MicroUI 32-bit colors in display pixel format,

• simulate at runtime the display pixel format.

Note: The custom implementations of the image generator, some Abstraction Layer APIs, and Front Panel APIs are
ignored by the Display module when a standard pixel representation is selected.

According to the chosen format, some color data can be lost or cropped.

• ARGB8888: the pixel uses 32 bits-per-pixel (alpha[8], red[8], green[8] and blue[8]).

u32 convertARGB8888toLCDPixel(u32 c){
return c;

}

u32 convertLCDPixeltoARGB8888(u32 c){
return c;

}

• RGB888: the pixel uses 24 bits-per-pixel (alpha[0], red[8], green[8] and blue[8]).

u32 convertARGB8888toLCDPixel(u32 c){
return c & 0xffffff;

}

u32 convertLCDPixeltoARGB8888(u32 c){
return 0

| 0xff000000
| c
;

}

• RGB565: the pixel uses 16 bits-per-pixel (alpha[0], red[5], green[6] and blue[5]).

u32 convertARGB8888toLCDPixel(u32 c){
return 0

(continues on next page)

6.14. Graphical User Interface 866

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

| ((c & 0xf80000) >> 8)
| ((c & 0x00fc00) >> 5)
| ((c & 0x0000f8) >> 3)
;

}

u32 convertLCDPixeltoARGB8888(u32 c){
return 0

| 0xff000000
| ((c & 0xf800) << 8)
| ((c & 0x07e0) << 5)
| ((c & 0x001f) << 3)
;

}

• ARGB1555: the pixel uses 16 bits-per-pixel (alpha[1], red[5], green[5] and blue[5]).

u32 convertARGB8888toLCDPixel(u32 c){
return 0

| (((c & 0xff000000) == 0xff000000) ? 0x8000 : 0)
| ((c & 0xf80000) >> 9)
| ((c & 0x00f800) >> 6)
| ((c & 0x0000f8) >> 3)
;

}

u32 convertLCDPixeltoARGB8888(u32 c){
return 0

| ((c & 0x8000) == 0x8000 ? 0xff000000 : 0x00000000)
| ((c & 0x7c00) << 9)
| ((c & 0x03e0) << 6)
| ((c & 0x001f) << 3)
;

}

• ARGB4444: the pixel uses 16 bits-per-pixel (alpha[4], red[4], green[4] and blue[4]).

u32 convertARGB8888toLCDPixel(u32 c){
return 0

| ((c & 0xf0000000) >> 16)
| ((c & 0x00f00000) >> 12)
| ((c & 0x0000f000) >> 8)
| ((c & 0x000000f0) >> 4)
;

}

u32 convertLCDPixeltoARGB8888(u32 c){
return 0

| ((c & 0xf000) << 16)
| ((c & 0xf000) << 12)
| ((c & 0x0f00) << 12)
| ((c & 0x0f00) << 8)

(continues on next page)

6.14. Graphical User Interface 867

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

| ((c & 0x00f0) << 8)
| ((c & 0x00f0) << 4)
| ((c & 0x000f) << 4)
| ((c & 0x000f) << 0)
;

}

• C4: the pixel uses 4 bits-per-pixel (grayscale[4]).

u32 convertARGB8888toLCDPixel(u32 c){
return (toGrayscale(c) & 0xff) / 0x11;

}

u32 convertLCDPixeltoARGB8888(u32 c){
return 0xff000000 | (c * 0x111111);

}

• C2: the pixel uses 2 bits-per-pixel (grayscale[2]).

u32 convertARGB8888toLCDPixel(u32 c){
return (toGrayscale(c) & 0xff) / 0x55;

}

u32 convertLCDPixeltoARGB8888(u32 c){
return 0xff000000 | (c * 0x555555);

}

• C1: the pixel uses 1 bit-per-pixel (grayscale[1]).

u32 convertARGB8888toLCDPixel(u32 c){
return (toGrayscale(c) & 0xff) / 0xff;

}

u32 convertLCDPixeltoARGB8888(u32 c){
return 0xff000000 | (c * 0xffffff);

}

Driver-Specific

The Display module considers the pixel representation as driver-specificwhen the value is one among this list: 1
| 2 | 4 | 8 | 16 | 24 | 32 . Thismode is o�en usedwhen the pixel representation is not ARGB or RGB but BGRA
or BGR instead. This mode can also be used when the number of bits for a color component (alpha, red, green, or
blue) is not standard or when the value does not represent a color but an index in a CLUT. Thismode requires some
specific support in the VEE Port:

• An extension of the image generator is mandatory: see Extended Mode to convert MicroUI’s standard 32-bit
ARGB colors to display pixel format.

• The Front Panel widget Display requires an extension to convert the MicroUI 32-bit colors in display pixel
format and vice-versa, see Display Widget.

• The driver must implement functions that convert MicroUI’s standard 32-bit ARGB colors to display pixel for-
mat and vice-versa: see Color Conversions.

6.14. Graphical User Interface 868

MicroEJ Documentation, Revision 32bb132e

The followingexample illustrates theuseof specific formatBGR565 (thepixeluses 16bits-per-pixel (alpha[0], red[5],
green[6] and blue[5]):

1. Configure the VEE Port:

• Create or open the VEE Port configuration project file display/display.properties :

bpp=16

2. Image Generator:

• Create a project as described here.

• Create the class com.microej.graphicalengine.generator.MicroUIGeneratorExtension
that extends the class com.microej.tool.ui.generator.BufferedImageLoader .

• Fill the method convertARGBColorToDisplayColor() :

public class MicroUIGeneratorExtension extends BufferedImageLoader {
@Override
public int convertARGBColorToDisplayColor(int color) {

return ((color & 0xf80000) >> 19) | ((color & 0x00fc00) >> 5) | ((color &␣
→˓0x0000f8) << 8);

}
}

• Configure the ImageGenerator’ service loader: add the file /META-INF/services/com.microej.
tool.ui.generator.MicroUIRawImageGeneratorExtension :

com.microej.graphicalengine.generator.MicroUIGeneratorExtension

• Build the module (click on the blue button).

• Copy the generated jar file (imageGeneratorMyPlatform.jar) in the VEE Port configuration
project: /dropins/tools/ .

2. Simulator (Front Panel):

• Create the class com.microej.fp.MyDisplayExtension that implements the interface ej.fp.
widget.Display.DisplayExtension :

public class MyDisplayExtension implements DisplayExtension {

@Override
public int convertARGBColorToDisplayColor(Display display, int color) {

return ((color & 0xf80000) >> 19) | ((color & 0x00fc00) >> 5) | ((color &␣
→˓0x0000f8) << 8);

}

@Override
public int convertDisplayColorToARGBColor(Display display, int color) {

return ((color & 0x001f) << 19) | ((color & 0x7e00) << 5) | ((color & 0xf800) >>␣
→˓8) | 0xff000000;

}

@Override
public boolean isColor(Display display) {

return true;
(continues on next page)

6.14. Graphical User Interface 869

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

}

@Override
public int getNumberOfColors(Display display) {

return 1 << 16;
}

}

• Configure the widget Display in the .fp file by referencing the display extension:

<ej.fp.widget.Display x="41" y="33" width="320" height="240" extensionClass="com.
→˓microej.fp.MyDisplayExtension"/>

3. Build the VEE Port as usual

4. Update the LLUI_DISPLAY implementation by adding the following functions:

uint32_t LLUI_DISPLAY_IMPL_convertARGBColorToDisplayColor(uint32_t color)
{

return ((color & 0xf80000) >> 19) | ((color & 0x00fc00) >> 5) | ((color & 0x0000f8) <
→˓< 8);
}

uint32_t LLUI_DISPLAY_IMPL_convertDisplayColorToARGBColor(uint32_t color)
{
return ((color & 0x001f) << 19) | ((color & 0x7e00) << 5) | ((color & 0xf800) >> 8) |␣

→˓0xff000000;
}

CLUT

The Display module allows to target a display which uses a pixel indirection table (CLUT). This kind of display is
considered as generic but not standard (see Pixel Structure). It consists in storin color indices in image memory
bu�er instead of colors themselves.

Color Conversion

The driver must implement functions that convert MicroUI’s standard 32-bit ARGB colors (see LLUI_DISPLAY: Dis-
play) to display color representation. For each application ARGB8888 color, the display driver has to find the cor-
responding color in the table. The Graphics Engine will store the index of the color in the table instead of using the
color itself.

When an application color is not available in the display driver table (CLUT), the display driver can try to find the
closest color or return a default color. First solution is o�en quite di�icult to write and can cost a lot of time at
runtime. That’s why the second solution is preferred. However, a consequence is that the application has only to
use a range of colors provided by the display driver.

6.14. Graphical User Interface 870

MicroEJ Documentation, Revision 32bb132e

Alpha Blending

MicroUI and the Graphics Engine use blending when drawing some texts or anti-aliased shapes. For each pixel to
draw, the display stack blends the current application foreground colorwith the targetedpixel current color orwith
the current application background color (when enabled). This blending creates some intermediate colors which
are managed by the display driver.

Most of time the intermediate colors do not match with the palette. The default color is so returned and the
rendering becomes wrong. To prevent this use case, the Graphics Engine o�ers a specific Abstraction Layer API
LLUI_DISPLAY_IMPL_prepareBlendingOfIndexedColors(void* foreground, void* background) .

This API is only used when a blending is required and when the background color is enabled. The Graphics Engine
calls the API just before the blending and gives as parameter the pointers on the both ARGB colors. The display
driver should replace the ARGB colors by the CLUT indices. Then the Graphics Engine will only use between both
indices.

For instance, when the returned indices are 20 and 27 , the display stack will use the indices 20 to 27 , where all
indices between 20 and 27 target some intermediate colors between both the original ARGB colors.

This solution requires several conditions:

• Background color is enabled and it is an available color in the CLUT.

• Application can only use foreground colors provided by the CLUT. The VEE Port designer should give to the
application developer the available list of colors the CLUTmanages.

• The CLUT must provide a set of blending ranges the application can use. Each range can have its own size
(di�erent number of colors between two colors). Each range is independent. For instance if the foreground
color RED (0xFFFF0000) can be blended with two background colors WHITE (0xFFFFFFFF) and BLACK (
0xFF000000), two ranges must be provided. Both the ranges have to contain the same index for the color
RED .

• Application can only use blending ranges provided by the CLUT. Otherwise the display driver is not able to
find the range and the default color will be used to perform the blending.

• Rendering of dynamic images (images decoded at runtime) may be wrong because the ARGB colors may be
out of CLUT range.

Memory Layout

For the displaywith a number of bits-per-pixel (BPP) higher or equal to 8, the Graphics Engine supports the line-by-
linememory organization: pixels are laid out from le� to right within a line, starting with the top line. For a display
with 16 bits-per-pixel, the pixel at (0,0) is stored at memory address 0, the pixel at (1,0) is stored at address 2, the
pixel at (2,0) is stored at address 4, and so on.

Table 14: Memory Layout for BPP >= 8
BPP @ + 0 @ + 1 @ + 2 @ + 3 @ + 4
32 pixel 0 [7:0] pixel 0 [15:8] pixel 0 [23:16] pixel 0 [31:24] pixel 1 [7:0]
24 pixel 0 [7:0] pixel 0 [15:8] pixel 0 [23:16] pixel 1 [7:0] pixel 1 [15:8]
16 pixel 0 [7:0] pixel 0 [15:8] pixel 1 [7:0] pixel 1 [15:8] pixel 2 [7:0]
8 pixel 0 [7:0] pixel 1 [7:0] pixel 2 [7:0] pixel 3 [7:0] pixel 4 [7:0]

For the display with a number of bits-per-pixel (BPP) lower than 8, the Graphics Engine supports the bothmemory
organizations: line by line (pixels are laid out from le� to right within a line, starting with the top line) and column
by column (pixels are laid out from top to bottomwithin a line, starting with the le� line). These byte organizations
concern until 8 consecutive pixels (seeByte Layout). When installing theDisplaymodule, a property memoryLayout
is required to specify the kind of pixels representation (see Installation).

6.14. Graphical User Interface 871

MicroEJ Documentation, Revision 32bb132e

Table 15: Memory Layout ‘line’ for BPP < 8 and byte layout ‘line’
BPP @ + 0 @ + 1 @ + 2 @ + 3 @ + 4
4 (0,0) to (1,0) (2,0) to (3,0) (4,0) to (5,0) (6,0) to (7,0) (8,0) to (9,0)
2 (0,0) to (3,0) (4,0) to (7,0) (8,0) to (11,0) (12,0) to (15,0) (16,0) to (19,0)
1 (0,0) to (7,0) (8,0) to (15,0) (16,0) to (23,0) (24,0) to (31,0) (32,0) to (39,0)

Table 16: Memory Layout ‘line’ for BPP < 8 and byte layout ‘column’
BPP @ + 0 @ + 1 @ + 2 @ + 3 @ + 4
4 (0,0) to (0,1) (1,0) to (1,1) (2,0) to (2,1) (3,0) to (3,1) (4,0) to (4,1)
2 (0,0) to (0,3) (1,0) to (1,3) (2,0) to (2,3) (3,0) to (3,3) (4,0) to (4,3)
1 (0,0) to (0,7) (1,0) to (1,7) (2,0) to (2,7) (3,0) to (3,7) (4,0) to (4,7)

Table 17: Memory Layout ‘column’ for BPP < 8 and byte layout ‘line’
BPP @ + 0 @ + 1 @ + 2 @ + 3 @ + 4
4 (0,0) to (1,0) (0,1) to (1,1) (0,2) to (1,2) (0,3) to (1,3) (0,4) to (1,4)
2 (0,0) to (3,0) (0,1) to (3,1) (0,2) to (3,2) (0,3) to (3,3) (0,4) to (3,4)
1 (0,0) to (7,0) (0,1) to (7,1) (0,2) to (7,2) (0,3) to (7,3) (0,4) to (7,4)

Table 18: Memory Layout ‘column’ for BPP < 8 andbyte layout ‘column’
BPP @ + 0 @ + 1 @ + 2 @ + 3 @ + 4
4 (0,0) to (0,1) (0,2) to (0,3) (0,4) to (0,5) (0,6) to (0,7) (0,8) to (0,9)
2 (0,0) to (0,3) (0,4) to (0,7) (0,8) to (0,11) (0,12) to (0,15) (0,16) to (0,19)
1 (0,0) to (0,7) (0,8) to (0,15) (0,16) to (0,23) (0,24) to (0,31) (0,32) to (0,39)

Byte Layout

This chapter concerns only display with a number of bits-per-pixel (BPP) smaller than 8. For this kind of display, a
byte contains several pixels and the Graphics Engine allows to customize how to organize the pixels in a byte.

Two layouts are available:

• line: The byte contains several consecutive pixels on same line. When the end of line is reached, a padding is
added in order to start a new line with a new byte.

• column: The byte contains several consecutive pixels on same column. When the end of column is reached,
a padding is added in order to start a new column with a new byte.

When installing the Displaymodule, a property byteLayout is required to specify the kind of pixels representation
(see Installation).

Table 19: Byte Layout: line
BPP MSB LSB
4 pixel 1 pixel 0
2 pixel 3 pixel 2 pixel 1 pixel 0
1 pixel 7 pixel 6 pixel 5 pixel 4 pixel 3 pixel 2 pixel 1 pixel 0

6.14. Graphical User Interface 872

MicroEJ Documentation, Revision 32bb132e

Table 20: Byte Layout: column
BPP 4 2 1
MSB pixel 1 pixel 3 pixel 7

pixel 6
pixel 2 pixel 5

pixel 4
pixel 0 pixel 1 pixel 3

pixel 2
pixel 0 pixel 1

LSB pixel 0

Display Synchronization

Overview

TheGraphics Engine is designed tobe synchronizedwith thedisplay refresh rate bydefining somepoints in the ren-
dering timeline. It is optional; however it ismainly recommended. This chapter explains why to use display tearing
signal and its consequences. Some chronograms describe several use cases: with and without display tearing sig-
nal, long drawings, long flush time, etc. Times are in milliseconds. To simplify chronograms views, the display
refresh rate is every 16ms (62.5Hz).

Captions definition:

• UI: It is the UI task which performs the drawings in the back bu�er. At the end of the drawings, the examples
consider that the UI thread calls Display.flush() 1 millisecond a�er the end of the drawings. At this moment,
a flush can start (the call to Display.flush() is symbolized by a simple peak in chronograms).

• Flush: In single bu�er policy, it is the time to transfer the content of the back bu�er to the display bu�er. In
double or triple policy, it is the time to swap back and display bu�ers (the instruction is o�en instantaneous
but the action is o�en performed at the beginning of the next display refresh rate). During this time, the back
bu�er is in use and UI task has to wait the end of swap before starting a new drawing.

• Tearing: The peaks show the tearing signals.

• Rendering frequency: the frequency between the start of a drawing to the end of flush.

Tearing Signal

In this example, the drawing time is 7ms, the time between the end of drawing and the call to Display.flush() is
1ms and the flush time is 6ms. So the expected rendering frequency is 7 + 1 + 6 = 14ms (71.4Hz). Flush starts just
a�er the call to Display.flush() and the next drawing starts just a�er the end of flush. Tearing signal is not taken in
consideration. By consequence the display content is refreshed during the display refresh time. The content can
be corrupted: flickering, glitches, etc. The rendering frequency is faster than display refresh rate.

In this example, the timesare identical topreviousexample. The tearing signal isused tostart the flush in respecting
the display refreshing time. The rendering frequency becomes smaller: it is cadenced on the tearing signal, every

6.14. Graphical User Interface 873

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#flush--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#flush--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#flush--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#flush--

MicroEJ Documentation, Revision 32bb132e

16ms (62.5Hz). During 2ms, the CPU can schedule other tasks or goes in idle mode. The rendering frequency is
equal to display refresh rate.

In this example, the drawing time is 14ms, the time between the end of drawing and the call to Display.flush() is
1ms and the flush time is 6ms. So the expected rendering frequency is 14 + 1 + 6 = 21ms (47.6Hz). Flush starts just
a�er the call to Display.flush() and the next drawing starts just a�er the end of flush. Tearing signal is not taken in
consideration.

In this example, the timesare identical topreviousexample. The tearing signal isused tostart the flush in respecting
the display refreshing time. The drawing time + flush time is higher than display tearing signal period. So the flush
cannot start at every tearing peak: it is cadenced on two tearing signals, every 32ms (31.2Hz). During 11ms, the CPU
can schedule other tasks or goes in idle mode. The rendering frequency is equal to display refresh rate divided by
two.

Additional Bu�er

Some devices take a lot of time to send the back bu�er content to the display bu�er. The following examples
demonstrate the consequence on rendering frequency. The use of an additional bu�er optimizes this frequency,
however it uses a lot of RAMmemory.

In this example, the drawing time is 7ms, the time between the end of drawing and the call to Display.flush() is
1ms and the flush time is 12ms. So the expected rendering frequency is 7 + 1 + 12 = 20ms (50Hz). Flush starts just
a�er the call to Display.flush() and the next drawing starts just a�er the end of flush. Tearing signal is not taken in
consideration. The rendering frequency is cadenced on drawing time + flush time.

Asmentioned above, the idea is to use two back bu�ers. First, UI task is drawing in the back bu�er A . Just a�er the
call to Display.flush(), the flush can start. During the flush time (copy of the back bu�er A to the display bu�er), the

6.14. Graphical User Interface 874

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#flush--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#flush--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#flush--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#flush--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#flush--

MicroEJ Documentation, Revision 32bb132e

back bu�er B can be used by UI task to continue the drawings. When the drawings in the back bu�er B are done
(and a�er the call to Display.flush()), the application cannot start a third frame by drawing into the back bu�er A
because the flush is using it. As soon as the flush is done, a new flush (of the back bu�er B) can start. The rendering
frequency is cadenced on flush time, i.e. 12ms (83.3Hz).

The previous example doesn’t take in consideration the display tearing signal. With tearing signal and only one
back bu�er, the frequency is cadenced on two tearing signals (see above). With two back bu�ers, the frequency is
now cadenced on only one tearing signal, despite the long flush time.

Time Sum-up

The following table resumes the previous examples times:

• It consider the display frequency is 62.5Hz (16ms).

• Drawing time is the time let to the application to perform its drawings and call Display.flush(). In our exam-
ples, the time between the last drawing and the call to Display.flush() is 1ms.

• FPS and CPU load are calculated from examples times.

• Max drawing time is the maximum time let to the application to perform its drawings, without overlapping
next display tearing signal (when tearing is enabled).

Tear-
ing

Nb
bu�ers

Drawing time
(ms)

Flush time
(ms)

FPS
(Hz)

CPU load
(%)

Max drawing time
(ms)

no 1 7+1 6 71.4 57.1
yes 1 7+1 6 62.5 50 10
no 1 14+1 6 47.6 71.4
yes 1 14+1 6 31.2 46.9 20
no 1 7+1 12 50 40
yes 1 7+1 12 31.2 25 8
no 2 7+1 12 83.3 66.7
yes 2 7+1 12 62.5 50 16

6.14. Graphical User Interface 875

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#flush--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#flush--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#flush--

MicroEJ Documentation, Revision 32bb132e

Abstraction Layer API

Overview

Fig. 62: Display Abstraction Layer API

• MicroUI library calls the BSP functions through the Graphics Engine and header file LLUI_DISPLAY_impl.h .

• Implementation of LLUI_DISPLAY_impl.h can call Graphics Engine functions through LLUI_DISPLAY.h .

• To perform some drawings, MicroUI uses LLUI_PAINTER_impl.h functions.

• The MicroUI C module provides a default implementation of the drawing native functions of
LLUI_PAINTER_impl.h and LLDW_PAINTER_impl.h :

– It implements the synchronization layer, then redirects drawings implementations to ui_drawing.h .

– ui_drawing.h is already implementedbybuilt-in so�warealgorithms (libraryprovidedby theUIPack).

– It is possible to implement some of the ui_drawing.h functions in the BSP to provide a custom imple-
mentation (for instance, a GPU).

– Custom implementation is still allowed to call so�ware algorithms declared in ui_drawing_soft.h
and dw_drawing_soft.h .

Display Size

The Abstraction Layer distinguishes between the display virtual size and the display physical size (in pixels).

• The display virtual size is the size of the area where the drawings are visible. Virtual memory size is:
lcd_width * lcd_height * bpp / 8 .

• The display physical size is the requiredmemory size where the virtual area is located. On some devices, the
memory width (in pixels) is higher than the virtual width. In this way, the graphics bu�er memory size is:
memory_width * memory_height * bpp / 8 .

6.14. Graphical User Interface 876

MicroEJ Documentation, Revision 32bb132e

Note: The physical size may not be configured; in that case, the Graphics Engine considers the virtual size os
physical size.

Semaphores

The Graphics Engine requires two binary semaphores to synchronize its internal states. These semaphores are
reserved for the Graphics Engine. The LLUI_DISPLAY_impl.h implementation is not allowed to use these
semaphores to synchronize the function LLUI_DISPLAY_IMPL_flush() with the display driver (or for any other
synchronization actions). The implementationmust create its semaphores in addition to these dedicated Graphics
Engine’s semaphores.

The binary semaphores must be configured in a state such that the semaphore must first be given before it can be
taken (this initialization must be performed in LLUI_DISPLAY_IMPL_initialize function).

Required Abstraction Layer API

Four Abstraction Layer APIs are required to connect the Graphics Engine to the display driver. The functions are
listed in LLUI_DISPLAY_impl.h .

• LLUI_DISPLAY_IMPL_initialize : The initialization function is called when the application is calling Mi-
croUI.start(). Before this call, the display is useless and don’t need to be initialized. This function consists
in initializing the LCD driver and in filling the given structure LLUI_DISPLAY_SInitData . This structure has
to contain pointers on the two binary semaphores, the back bu�er address (see Display Configuration), the
display virtual size in pixels (lcd_width and lcd_height) and optionally the display physical size in pixels
(memory_width and memory_height).

• LLUI_DISPLAY_IMPL_binarySemaphoreTake and LLUI_DISPLAY_IMPL_binarySemaphoreGive : Two dis-
tinct functions have to be implemented to take and give a binary semaphore.

• LLUI_DISPLAY_IMPL_flush : According thedisplaybu�erpolicy (seeDisplayConfiguration), the flush func-
tion has to be implemented. This function must not be blocking and not performing the copy directly. An-
other OS task or a dedicated hardware must be configured to perform the bu�er copy.

Optional Abstraction Layer API

Several optional Abstraction Layer API are available in LLUI_DISPLAY_impl.h . They are already implemented as
weak functions in the Graphics Engine and return no error. These optional features concern the display backlight
and constrast, display characteristics (is colored display, double bu�er), colors conversions (seePixel Structure and
CLUT), etc. Refer to each function comment to have more information about the default behavior.

Painter Abstraction Layer API

All MicroUI drawings (available in Painter class) are calling a native function. The MicroUI native drawing functions
are listed in LLUI_PAINTER_impl.h . The principle of implementing a MicroUI drawing function is described in the
chapter Drawings.

6.14. Graphical User Interface 877

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/MicroUI.html#start--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/MicroUI.html#start--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Painter.html

MicroEJ Documentation, Revision 32bb132e

Graphics Engine API

The Graphics Engine provides a set of functions to interact with the C archive. The functions allow to retrieve some
drawing characteristics, synchronize drawings between them, notify the end of flush and drawings, etc.

The functions are available in LLUI_DISPLAY.h .

Typical Implementations

This chapter helps towrite somebasic LLUI_DISPLAY_impl.h implementationsaccording thedisplaybu�erpolicy
(seeDisplay Configuration). The pseudo-code calls external function such as LCD_DRIVER_xxx or DMA_DRIVER_xxx
to symbolize the use of external drivers.

Note: The pseudo code does not use the const ui_rect_t areas[] bounds to simplify the reading.

Common Functions

The three functions LLUI_DISPLAY_IMPL_initialize , LLUI_DISPLAY_IMPL_binarySemaphoreTake and
LLUI_DISPLAY_IMPL_binarySemaphoreGive are o�en the same. The following example shows an implementa-
tion over FreeRTOS.

void LLUI_DISPLAY_IMPL_initialize(LLUI_DISPLAY_SInitData* init_data)
{

// create the Graphics Engine's binary semaphores
g_sem_copyLaunch = xSemaphoreCreateBinary();
g_sem_taskTest = xSemaphoreCreateBinary();

// fill the LLUI_DISPLAY_SInitData structure
init_data->binary_semaphore_0 = (void*)xSemaphoreCreateBinary();
init_data->binary_semaphore_1 = (void*)xSemaphoreCreateBinary();
init_data->lcd_width = LCD_DRIVER_get_width();
init_data->lcd_height = LCD_DRIVER_get_height();

}

void LLUI_DISPLAY_IMPL_binarySemaphoreTake(void* sem)
{

xSemaphoreTake((xSemaphoreHandle)sem, portMAX_DELAY);
}

void LLUI_DISPLAY_IMPL_binarySemaphoreGive(void* sem, bool under_isr)
{

if (under_isr)
{

portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE;
xSemaphoreGiveFromISR((xSemaphoreHandle)sem, &xHigherPriorityTaskWoken);
if(xHigherPriorityTaskWoken != pdFALSE)
{

// Force a context switch here.
portYIELD_FROM_ISR(xHigherPriorityTaskWoken);

}

(continues on next page)

6.14. Graphical User Interface 878

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

}
else
{

xSemaphoreGive((xSemaphoreHandle)sem);
}

}

Direct Policy

This policy considers the application and the LCD driver share the same bu�er. In other words, all drawings made
by the application are immediately shown on the display. This particular case is the easiest to write because the
flush() stays empty:

void LLUI_DISPLAY_IMPL_initialize(LLUI_DISPLAY_SInitData* init_data)
{

// [...]

// use same buffer between the LCD driver and the Graphics Engine
LCD_DRIVER_initialize(lcd_buffer);
init_data->back_buffer_address = lcd_buffer;

}

void LLUI_DISPLAY_IMPL_flush(MICROUI_GraphicsContext* gc, uint8_t flush_identifier, const ui_
→˓rect_t areas[], size_t length)
{

// nothing to send to the LCD, just have to unlock the Graphics Engine by giving the same␣
→˓buffer address

LLUI_DISPLAY_setDrawingBuffer(flush_identifier, LLUI_DISPLAY_getBufferAddress(&gc->image),
→˓ false);
}

Serial Display

A display connected to the CPU through a serial bus (DSI, SPI, etc.) requires the single bu�er policy: the application
uses abu�er toperform its drawingsand thebu�er’s contenthas tobe sent to thedisplaywhen theGraphics Engine
is calling the flush() function.

The specification of the flush() function is to be not blocker (atomic). Its aim is to prepare / configure the serial
bus and data to send and then, to start the asynchronous copy (data sent). The flush() function has to return as
soon as possible.

Before executing the next application drawing a�er a flush, the Graphics Engine automatically waits the end
of the serial data sent: the drawing bu�er (currently used by the serial device) is not updated until the end of
data sent. The serial device driver has the responsibility to unlock the Graphics Engine by calling the function
LLUI_DISPLAY_setDrawingBuffer() at the end of the copy.

There are two use cases:

Hardware

The serial data sent is performed in hardware. In that case, the serial driver must configure an interrupt to be
notified about the end of the copy.

6.14. Graphical User Interface 879

MicroEJ Documentation, Revision 32bb132e

static uint8_t _flush_identifier;

void LLUI_DISPLAY_IMPL_initialize(LLUI_DISPLAY_SInitData* init_data)
{

// [...]

LCD_DRIVER_initialize();
init_data->back_buffer_address = back_buffer;

// initialize the serial driver & device: GPIO, etc.
SERIAL_DRIVER_initialize();

}

void LLUI_DISPLAY_IMPL_flush(MICROUI_GraphicsContext* gc, uint8_t flush_identifier, const ui_
→˓rect_t areas[], size_t length)
{

// store the identifier of the flush used to unlock the Graphics Engine later
_flush_identifier = flush_identifier;

// configure the serial device to send n bytes
// srcAddr == back_buffer
SERIAL_DRIVER_prepare_sent(srcAddr, LCD_WIDTH * LCD_HEIGHT * LCD_BPP / 8);

// configure the "end of copy" interrupt
SERIAL_DRIVER_enable_interrupt(END_OF_COPY);

// start the copy
SERIAL_DRIVER_start();

}

void SERIAL_DEVICE_IRQHandler(void)
{

SERIAL_DRIVER_clear_interrupt();
SERIAL_DRIVER_disable_interrupt(END_OF_COPY);

// end of copy, unlock the Graphics Engine without changing the back buffer address
LLUI_DISPLAY_setDrawingBuffer(_flush_identifier, back_buffer, true); // true: called␣

→˓under interrupt
}

So�ware

The copy (serial data sent) cannot be performed in hardware or require a so�ware loop to send all data. This sent
must not be performed in the flush() function (see above). A dedicated OS task is required to perform this sent.

static void* _copy_task_semaphore;
static uint8_t _flush_identifier;

static void _task_flush(void *p_arg)
{

while(1)
{

// wait until the Graphics Engine gives the order to copy

(continues on next page)

6.14. Graphical User Interface 880

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

LLUI_DISPLAY_IMPL_binarySemaphoreTake(_copy_task_semaphore);

// send data
SERIAL_DRIVER_send_data(back_buffer, LCD_WIDTH * LCD_HEIGHT * LCD_BPP / 8);

// end of copy, unlock the Graphics Engine without changing the back buffer address
LLUI_DISPLAY_setDrawingBuffer(_flush_identifier, back_buffer, false); // false: called␣

→˓outside interrupt
}

}

void LLUI_DISPLAY_IMPL_initialize(LLUI_DISPLAY_SInitData* init_data)
{

// [...]

LCD_DRIVER_initialize();
init_data->back_buffer_address = back_buffer;

// create a "flush" task and a dedicated semaphore
_copy_task_semaphore = (void*)xSemaphoreCreateBinary();
xTaskCreate(_task_flush, "FlushTask", 1024, NULL, 12, NULL);

}

void LLUI_DISPLAY_IMPL_flush(MICROUI_GraphicsContext* gc, uint8_t flush_identifier, const ui_
→˓rect_t areas[], size_t length)
{

// store the identifier of the flush used to unlock the Graphics Engine later
_flush_identifier = flush_identifier;

// unlock the copy task
LLUI_DISPLAY_IMPL_binarySemaphoreGive(_copy_task_semaphore, false);

}

Parallel Display: Copy Policy (Tearing Disabled)

Note: This policy should synchronize the copy bu�er process with the LCD tearing signal. However, this notion is
sometimes not available. This chapter describes the copy bu�er process without using the tearing signal (see next
chapter).

This bu�er policy requires twobu�ers inRAM. The first bu�er is usedby the application (backbu�er) and the second
bu�er is used by the LCD controller to send data to the display (frame bu�er). The content of the frame bu�ermust
be updated with the content of the back bu�er when the Graphics Engine is calling the flush() function.

The specification of the flush() function is to be not blocker (atomic, see above). Its aim is to prepare / configure
the copy bu�er process and then, to start the asynchronous copy. The flush() function has to return as soon as
possible.

Before executing the next application drawing a�er a flush, the Graphics Engine automatically waits the end of
the copy bu�er process: the back bu�er (currently used by the copy bu�er process) is not updated until the
end of the copy. The copy driver has the responsibility to unlock the Graphics Engine by calling the function
LLUI_DISPLAY_setDrawingBuffer() at the end of the copy.

6.14. Graphical User Interface 881

MicroEJ Documentation, Revision 32bb132e

There are two use cases:

Hardware

The copy bu�er process is performed in hardware (DMA). In that case, the DMA driver must configure an interrupt
to be notified about the end of the copy.

static uint8_t _flush_identifier;

void LLUI_DISPLAY_IMPL_initialize(LLUI_DISPLAY_SInitData* init_data)
{

// [...]

// use two distinct buffers between the LCD driver and the Graphics Engine
LCD_DRIVER_initialize(frame_buffer);
init_data->back_buffer_address = back_buffer;

// initialize the DMA driver: GPIO, etc.
DMA_DRIVER_initialize();

}

void LLUI_DISPLAY_IMPL_flush(MICROUI_GraphicsContext* gc, uint8_t flush_identifier, const ui_
→˓rect_t areas[], size_t length)
{

// store the identifier of the flush used to unlock the Graphics Engine later
_flush_identifier = flush_identifier;

// configure the DMA to send n bytes
// back_buffer == LLUI_DISPLAY_getBufferAddress(&gc->image)
DMA_DRIVER_prepare_sent(frame_buffer, back_buffer, LCD_WIDTH * LCD_HEIGHT * LCD_BPP / 8);␣

→˓// dest / src / size

// configure the "end of copy" interrupt
DMA_DRIVER_enable_interrupt(END_OF_COPY);

// start the copy
DMA_DRIVER_start();

}

void DMA_IRQHandler(void)
{

DMA_DRIVER_clear_interrupt();
DMA_DRIVER_disable_interrupt(END_OF_COPY);

// end of copy, unlock the Graphics Engine without changing the back buffer address
LLUI_DISPLAY_setDrawingBuffer(_flush_identifier, back_buffer, true); // true: called␣

→˓under interrupt
}

So�ware

The copy bu�er process cannot be performed in hardware or require a so�ware loop to send all data (DMA linked
list). This copy bu�er process must not be performed in the flush() function. A dedicated OS task is required to
perform this copy.

6.14. Graphical User Interface 882

MicroEJ Documentation, Revision 32bb132e

static void* _copy_task_semaphore;
static uint8_t _flush_identifier;

static void _task_flush(void *p_arg)
{

while(1)
{

int32_t size = LCD_WIDTH * LCD_HEIGHT * LCD_BPP / 8;
uint8_t* dest = frame_buffer;
uint8_t* src = back_buffer;

// wait until the Graphics Engine gives the order to copy
LLUI_DISPLAY_IMPL_binarySemaphoreTake(_copy_task_semaphore);

// copy data
while(size)
{

int32_t s = min(DMA_MAX_SIZE, size);
DMA_DRIVER_send_data(dest, src, s); // dest / src / size
dest += s;
src += s;
size -= s;

}

// end of copy, unlock the Graphics Engine without changing the back buffer address
LLUI_DISPLAY_setDrawingBuffer(_flush_identifier, back_buffer, false); // false: called␣

→˓outside interrupt
}

}

void LLUI_DISPLAY_IMPL_initialize(LLUI_DISPLAY_SInitData* init_data)
{

// [...]

// use two distinct buffers between the LCD driver and the Graphics Engine
LCD_DRIVER_initialize(frame_buffer);
init_data->back_buffer_address = back_buffer;

// create a "flush" task and a dedicated semaphore
_copy_task_semaphore = (void*)xSemaphoreCreateBinary();
xTaskCreate(_task_flush, "FlushTask", 1024, NULL, 12, NULL);

}

void LLUI_DISPLAY_IMPL_flush(MICROUI_GraphicsContext* gc, uint8_t flush_identifier, const ui_
→˓rect_t areas[], size_t length)
{

// store the identifier of the flush used to unlock the Graphics Engine later
_flush_identifier = flush_identifier;

// unlock the copy task
LLUI_DISPLAY_IMPL_binarySemaphoreGive(_copy_task_semaphore, false);

}

6.14. Graphical User Interface 883

MicroEJ Documentation, Revision 32bb132e

Parallel Display: Copy Policy (Tearing Enabled)

This bu�er policy is the same thanprevious chapter but it uses the LCD tearing signal to synchronize the LCD refresh
rate with the copy bu�er process. The copy bu�er process should not start during the call of flush() but should
wait the next tearing signal to start the copy.

There are two use cases:

Hardware

static uint8_t _start_DMA;
static uint8_t _flush_identifier;

void LLUI_DISPLAY_IMPL_initialize(LLUI_DISPLAY_SInitData* init_data)
{

// [...]

// use two distinct buffers between the LCD driver and the Graphics Engine
LCD_DRIVER_initialize(frame_buffer);
init_data->back_buffer_address = back_buffer;

// enable the tearing interrupt
_start_DMA = 0;
TE_enable_interrupt();

// initialize the DMA driver: GPIO, etc.
DMA_DRIVER_initialize();

}

void LLUI_DISPLAY_IMPL_flush(MICROUI_GraphicsContext* gc, uint8_t flush_identifier, const ui_
→˓rect_t areas[], size_t length)
{

// store the identifier of the flush used to unlock the Graphics Engine later
_flush_identifier = flush_identifier;

// configure the DMA to send n bytes
// back_buffer == LLUI_DISPLAY_getBufferAddress(&gc->image)
DMA_DRIVER_prepare_sent(frame_buffer, back_buffer, LCD_WIDTH * LCD_HEIGHT * LCD_BPP / 8);␣

→˓// dest / src / size

// configure the "end of copy" interrupt
DMA_DRIVER_enable_interrupt(END_OF_COPY);

// unlock the job of the tearing interrupt
_start_DMA = 1;

}

void TE_IRQHandler(void)
{

TE_clear_interrupt();

if (_start_DMA)
{

_start_DMA = 0;

(continues on next page)

6.14. Graphical User Interface 884

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

// start the copy
DMA_DRIVER_start();

}
}

void DMA_IRQHandler(void)
{

DMA_DRIVER_clear_interrupt();
DMA_DRIVER_disable_interrupt(END_OF_COPY);

// end of copy, unlock the Graphics Engine without changing the back buffer address
LLUI_DISPLAY_setDrawingBuffer(_flush_identifier, back_buffer, true); // true: called␣

→˓under interrupt
}

So�ware

static void* _copy_task_semaphore;
static uint8_t _start_copy;
static uint8_t _flush_identifier;

static void _task_flush(void *p_arg)
{

while(1)
{

// wait until the Graphics Engine gives the order to copy
LLUI_DISPLAY_IMPL_binarySemaphoreTake(_copy_task_semaphore);

int32_t size = LCD_WIDTH * LCD_HEIGHT * LCD_BPP / 8;
uint8_t* dest = frame_buffer;
uint8_t* src = back_buffer;

// copy data
while(size)
{

int32_t s = min(DMA_MAX_SIZE, size);
DMA_DRIVER_send_data(dest, src, s); // dest / src / size
dest += s;
src += s;
size -= s;

}

// end of copy, unlock the Graphics Engine without changing the back buffer address
LLUI_DISPLAY_setDrawingBuffer(_flush_identifier, back_buffer, false); // false: called␣

→˓outside interrupt
}

}

void LLUI_DISPLAY_IMPL_initialize(LLUI_DISPLAY_SInitData* init_data)
{

// [...]

(continues on next page)

6.14. Graphical User Interface 885

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

// use two distinct buffers between the LCD driver and the Graphics Engine
LCD_DRIVER_initialize(frame_buffer);
init_data->back_buffer_address = back_buffer;

// create a "flush" task and a dedicated semaphore
_copy_task_semaphore = (void*)xSemaphoreCreateBinary();
xTaskCreate(_task_flush, "FlushTask", 1024, NULL, 12, NULL);

// enable the tearing interrupt
_start_copy = 0;
TE_enable_interrupt();

}

void LLUI_DISPLAY_IMPL_flush(MICROUI_GraphicsContext* gc, uint8_t flush_identifier, const ui_
→˓rect_t areas[], size_t length)
{

// store the identifier of the flush used to unlock the Graphics Engine later
_flush_identifier = flush_identifier;

// unlock the job of the tearing interrupt
_start_copy = 1;

}

void TE_IRQHandler(void)
{

TE_clear_interrupt();

if (_start_copy)
{

_start_copy = 0;

// unlock the copy task
LLUI_DISPLAY_IMPL_binarySemaphoreGive(_copy_task_semaphore, true);

}
}

Parallel Display: Swap Policy

This bu�er policy requires two bu�ers in RAM. The first bu�er is used by the application (bu�er A) and the second
bu�er is used by the LCD controller to send data to the display (bu�er B). The LCD controller is reconfigured to use
the bu�er A when the Graphics Engine is calling the flush() function.

Before executing the next application drawing a�er a flush, the Graphics Engine automatically waits the end
of the copy bu�er process: the bu�er B (currently used by the LDC controller) is not updated until the end
of the swap. The LCD driver has the responsibility to unlock the Graphics Engine by calling the function
LLUI_DISPLAY_setDrawingBuffer() at the end of the swap.

static uint8_t* buffer_A;
static uint8_t* buffer_B;
static uint8_t _flush_identifier;

(continues on next page)

6.14. Graphical User Interface 886

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

void LLUI_DISPLAY_IMPL_initialize(LLUI_DISPLAY_SInitData* init_data)
{

// [...]

// use two distinct buffers between the LCD driver and the Graphics Engine
LCD_DRIVER_initialize(buffer_B);
init_data->back_buffer_address = buffer_A;

}

void LLUI_DISPLAY_IMPL_flush(MICROUI_GraphicsContext* gc, uint8_t flush_identifier, const ui_
→˓rect_t areas[], size_t length)
{

// store the identifier of the flush used to unlock the Graphics Engine later
_flush_identifier = flush_identifier;

// change the LCDC address (executed at next LCD refresh loop)
LCDC_set_address(LLUI_DISPLAY_getBufferAddress(&gc->image));

}

// only called when reloading a new LCDC address
void LCDC_RELOAD_IRQHandler(void)
{

LCDC_DRIVER_clear_interrupt();

// end of swap, unlock the Graphics Engine, updating the back buffer address
uint8_t* new_back_buffer = (LCDC_get_address() == buffer_A) ? buffer_B : buffer_A;
LLUI_DISPLAY_setDrawingBuffer(_flush_identifier, new_back_buffer, true); // true: called␣

→˓under interrupt
}

Dependencies

• MicroUI module (seeMicroUI)

• LLUI_DISPLAY_impl.h implementation if standard or custom implementation is chosen (see Dependencies
and LLUI_DISPLAY: Display).

• TheMicroUI C module.

Installation

The Display module is a sub-part of the MicroUI library. When the MicroUI module is installed, the Display module
must be installed in order to be able to connect the physical display with the VEE Port. If not installed, the stub
module will be used.

In the VEE Port configuration file, check UI > Display to install the Displaymodule. When checked, the proper-
ties file display/display.properties is required during VEE Port creation to configure themodule. This config-
uration step is used to choose the kind of implementation (see Dependencies).

The properties file must / can contain the following properties:

6.14. Graphical User Interface 887

MicroEJ Documentation, Revision 32bb132e

• bpp [mandatory]: Defines the number of bits per pixels the display device is using to render a pixel. Expected
value is one among these both list:

Standard formats:

– ARGB8888 : Alpha 8 bits; Red 8 bits; Green 8 bits; Blue 8 bits,

– RGB888 : Alpha 0 bit; Red 8 bits; Green 8 bits; Blue 8 bits (fully opaque),

– RGB565 : Alpha 0 bit; Red 5 bits; Green 6 bits; Blue 5 bits (fully opaque),

– ARGB1555 : Alpha 1 bit; Red 5 bits; Green 5 bits; Blue 5 bits (fully opaque or fully transparent),

– ARGB4444 : Alpha 4 bits; Red 4 bits; Green 4 bits; Blue 4 bits,

– C4 : 4 bits to encode linear grayscale colors between 0x�000000 and 0x���� (fully opaque),

– C2 : 2 bits to encode linear grayscale colors between 0x�000000 and 0x���� (fully opaque),

– C1 : 1 bit to encode grayscale colors 0x�000000 and 0x���� (fully opaque).

Custom formats:

– 32 : up to 32 bits to encode Alpha, Red, Green and Blue (in any custom arrangement),

– 24 : up to 24 bits to encode Alpha, Red, Green and Blue (in any custom arrangement),

– 16 : up to 16 bits to encode Alpha, Red, Green and Blue (in any custom arrangement),

– 8 : up to 8 bits to encode Alpha, Red, Green and Blue (in any custom arrangement),

– 4 : up to 4 bits to encode Alpha, Red, Green and Blue (in any custom arrangement),

– 2 : up to 2 bits to encode Alpha, Red, Green and Blue (in any custom arrangement),

– 1 : 1 bit to encode Alpha, Red, Green or Blue.

All other values are forbidden (throw a generation error).

• byteLayout [optional, default value is “line”]: Defines the pixels data order in a byte the display device is
using. A byte can contain several pixels when the number of bits-per-pixels (see ‘bpp’ property) is lower than
8. Otherwise this property is useless. Two modes are available: the next bit(s) on the same byte can target
the next pixel on the same line or on the same column. In first case, when the end of line is reached, the next
byte contains the first pixels of next line. In second case, when the end of column is reached, the next byte
contains the first pixels of next column. In both cases, a new line or a new column restarts with a new byte,
even if it remains some free bits in previous byte.

– line : the next bit(s) on current byte contains the next pixel on same line (x increment),

– column : the next bit(s) on current byte contains the next pixel on same column (y increment).

Note:

– Default value is ‘line’.

– All other modes are forbidden (throw a generation error).

– When thenumberof bits-per-pixels (see ‘bpp’ property) is higheror equal than8, this property is useless
and ignored.

• memoryLayout [optional, default value is “line”]: Defines the pixels data order inmemory the display device
is using. This option concerns only the display with a bpp lower than 8 (see ‘bpp’ property). Two modes are
available: when the bytememory address is incremented, the next targeted group of pixels is the next group
on the same line or the next group on same column. In first case, when the end of line is reached, the next

6.14. Graphical User Interface 888

MicroEJ Documentation, Revision 32bb132e

group of pixels is the first group of next line. In second case, when the end of column is reached, the next
group of pixels is the first group of next column.

– line : the next memory address targets the next group of pixels on same line (x increment),

– column : the next memory address targets the next group of pixels on same column (y increment).

Note:

– Default value is ‘line’.

– All other modes are forbidden (throw a generation error).

– When thenumberof bits-per-pixels (see ‘bpp’ property) is higheror equal than8, this property is useless
and ignored.

• imageBuffer.memoryAlignment [optional, default value is “4”]: Defines the image memory alignment to
respect when creating an image. This notion is useful when images drawings are performed by a third party
hardware accelerator (GPU): it can require some constraints on the image to draw. This value is used by the
Graphics Engine when creating a dynamic image and by the image generator to encode a RAW image. See
GPU Format Support and CustomizeMicroEJ Standard Format. Allowed values are 1, 2, 4, 8, 16, 32, 64, 128 and
256.

• imageHeap.size [optional, default value is “not set”]: Defines the images heap size. Useful to fix a VEE Port
heap size when building a firmware in command line. When using a MicroEJ launcher, the size set in this
launcher has priority over the VEE Port value.

Use

The MicroUI Display APIs are available in the class ej.microui.display.Display.

6.14.9 Bu�er Refresh Strategy

Overview

The Bu�er Refresh Strategy (BRS) ensures that the display bu�er (front bu�er) contains all the drawings before
letting the display driver to flush this bu�er to the display panel. The drawings are the drawings made since last
flush and the past. The past symbolizes the drawings made before the last flush and that has not been altered by
the new drawings.

Table 21: Automatic Refresh
Drawing Steps Back Bu�er Front Bu�er

Startup

Draw “background”

Draw “A”

Flush (swap)

Draw “B”

Refresh the past

Flush (swap)

6.14. Graphical User Interface 889

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html

MicroEJ Documentation, Revision 32bb132e

This refreshing avoids running again all drawings algorithms (and layout) to fill the back bu�er (here: the entire
background, the “A” green background and the “A”). Without this refreshing, the display will show the incomplete
frame Draw “B”:

Table 22: Missing Refresh
Drawing Steps Back Bu�er Front Bu�er

Startup

Draw “background”

Draw “A”

Flush (swap)

Draw “B”

Flush (swap)

When the new drawings overlap the past, it is useless to refresh the past:

Table 23: Useless Refresh
Drawing Steps Back Bu�er Front Bu�er

Draw “C”

Flush (swap)

Draw “D”

Flush (swap)

Timeline

Basic Principle

The basic principle of the Graphics Engine’s timeline can be symbolized by this illustration:

• drawing(s) symbolizes one or several drawings in the back bu�er.

6.14. Graphical User Interface 890

MicroEJ Documentation, Revision 32bb132e

• flush symbolizes the call to the LLAPI LLUI_DISPLAY_IMPL_flush() that allows the display driver to update
the display panel content according to the display connection (serial or parallel).

• post-flush symbolizes themoment between the end of flush (end of swap, send or copy) and the unlocking of
the Graphics Engine (the call to LLUI_DISPLAY_setDrawingBuffer()). Before this call, the Graphics Engine
is not allowed to draw in the bu�er.

Note: The time between the post-flush and drawing(s) depends on the application: the first drawing a�er a flush
can occur immediately a�er the post-flush or later.

Additional Hooks

The Graphics Engine provides some hooks (through dedicated LLAPI) to be notified of further details:

• new region symbolizes that the following drawing(s) will draw in another region than the previous drawings.

• refresh symbolizes that the last drawing has been done and a call to LLUI_DISPLAY_IMPL_flush() will be
performed just a�er.

During these two new steps, the implementation can render into the back bu�er (to restore the past), prepare the
next flush (store the regions to flush), etc.

6.14. Graphical User Interface 891

MicroEJ Documentation, Revision 32bb132e

Implicit Region

A region is considered as a new implicit region as soon as theMicroUI clip is updated and a drawing is performed. As
soon as a clip is considered as an implicit region, a call to the LLAPI LLUI_DISPLAY_IMPL_newDrawingRegion(...)
is performed. The following sequence illustrates when the LLAPI is called:

Application Calls LLAPI
1 gc.setClip(...)
21 Painter.drawXX(...)

LLUI_DISPLAY_IMPL_newDrawingRegion(...,
true)

LLUI_PAINTER_IMPL_drawXX(...)

32 Painter.drawYY(...) LLUI_PAINTER_IMPL_drawYY(...)
43 gc.setClip(...)
5 gc.setClip(...)
6 Painter.drawZZ(...)

LLUI_DISPLAY_IMPL_newDrawingRegion(...,
true)

LLUI_PAINTER_IMPL_drawZZ(...)

Note: The very first drawing’s region a�er a flush is systematically considered as implicit.

Explicit Region

The application can explicitly call the LLAPI LLUI_DISPLAY_IMPL_newDrawingRegion(...) by calling the API
GraphicsContext.notifyDrawingRegion() . The LLAPI parameters are:

• the region is the current MicroUI clip,

• the argument drawing_now is valued to false : this means no drawing will follow this call (explicit region).

Declaring explicit regions ismainly useful when it is performed before the very first drawing. It indicates to the BRS
that several regions will be altered before the next flush. These regions don’t need to be restored with the past
(their content will change).

1 The LLAPI argument drawing_now is valued to true : this means a call to a drawing action will be call just a�er (implicit region).
2 The second drawing uses the same region as first one: the region is not notified again.
3 The clip is not recognized as an implicit region because no drawing is performed just a�er.

6.14. Graphical User Interface 892

MicroEJ Documentation, Revision 32bb132e

Application Calls LLAPI
1 gc.setClip(...)
24 gc.notifyDrawingRegion(...) LLUI_DISPLAY_IMPL_newDrawingRegion(...,

false)
35 Painter.drawXX(...)

LLUI_DISPLAY_IMPL_newDrawingRegion(...,
true)

LLUI_PAINTER_IMPL_drawXX(...)

4 Painter.drawYY(...) LLUI_PAINTER_IMPL_drawYY(...)
56 gc.notifyDrawingRegion(...) LLUI_DISPLAY_IMPL_newDrawingRegion(...,

true)
67 Painter.drawZZ(...) LLUI_PAINTER_IMPL_drawZZ(...)

Flush vs Refresh

The Graphics Engine does not store the regions (implicit or explicit). The BRS has the responsibility to implements
the LLAPI (the hooks, see above) and to manage these regions.

When the application calls Display.flush() , the Graphics Engine immediately calls the LLAPI
LLUI_DISPLAY_IMPL_refresh() . This call allows the BRS:

• to finalize (if required) the back bu�er (no drawing will be performed into the bu�er until the next call to
LLUI_DISPLAY_setDrawingBuffer()),

• and to call the LCD driver flush function LLUI_DISPLAY_IMPL_flush() by giving the region(s) to update on
the display panel.

Strategies

Several strategies are available according to di�erent considerations:

• the display connection (serial or parallel),

• the bu�er policy (swap bu�ers, send or copy bu�er),

• if the past has to be restored,

• if the past is systematically restored,

• when the past is restored,

• etc.

The following chapters describe the strategies:

• For the single bu�er policy, the restoration is useless; the recommended strategy is Strategy: Single.

• For the multiple bu�ers policy, the recommended strategy is Strategy: Predraw.

• The strategies Strategy: Default, Strategy: Custom and Strategy: Legacy can be used for other use-cases.
4 The LLAPI is immediately called.
5 The step 2 doesn’t change the flow of the implicit region: a call to LLUI_DISPLAY_IMPL_newDrawingRegion(..., true) is always per-

formed even if a call to LLUI_DISPLAY_IMPL_newDrawingRegion(..., false) is performed just before.
6 The clip has not changed but the LLAPI is explicitly called again.
7 The clip has not changed so the implicit region is not notified.

6.14. Graphical User Interface 893

MicroEJ Documentation, Revision 32bb132e

Strategy: Single

Note: This chapter uses thedisplay connection serial todescribe the flowbut it is similar for thedisplay connection
parallel (copy instead of send).

Principle

This strategy considers that the drawings are always performed in the same back bu�er (single bu�er policy). In
this case, the restoration is useless because the bu�er always contains the past.

The principle of this strategy is to cumulate the drawing regions. The refresh consists in sending these regions (a list
of rectangles) that have beenmodified since the last flush (or a unique rectangle that encapsulates all the regions)
to the LCD driver through the LLAPI LLUI_DISPLAY_IMPL_flush() .

The implicit and explicit regions have the samemeaning: a dirty region to send to the display bu�er.

Behavior

The following table illustrates how the strategy works:

6.14. Graphical User Interface 894

MicroEJ Documentation, Revision 32bb132e

Table 24: Strategy “Single”
Drawing Steps Strategy Work Drawing

Bu�er
Display

Startup

Implicit region back-
ground

Store the region full-screen

Draw “background”

Implicit region A The region A is included in the region full-screen:
nothing to do

Draw “A”

Refresh

Call LLUI_DISPLAY_IMPL_flush() (send the
region full-screen)
Clear the list of regions

Implicit region B Store the region B

Draw “B”

Implicit region C Store the region C

Draw “C”

Refresh

Call LLUI_DISPLAY_IMPL_flush() (send the
regions B and C)
Clear the list of regions

Note: This illustration considers that the clip changes before each drawing and fits the drawing’s bounds

Use

Here are the steps around the strategy describing how to use it:

1. Some drawings are performed in the back bu�er.

2. A Display.flush() is asked, the Graphics Engine calls LLUI_DISPLAY_IMPL_refresh() .

3. The strategy calls LLUI_DISPLAY_IMPL_flush() .

4. The display driver has to implement LLUI_DISPLAY_IMPL_flush() that consists in sending the back bu�er
data to the display frame bu�er.

5. As soon as the sent is performed, the BSP has to notify the Graphics Engine by calling
LLUI_DISPLAY_setDrawingBuffer() , giving the same back bu�er address (there is only one bu�er).

6. The Graphics Engine is now unlocked and a new drawing can start in the back bu�er.

6.14. Graphical User Interface 895

MicroEJ Documentation, Revision 32bb132e

Strategy: Predraw

Principle

This strategy considers that the drawings are always performed in a bu�er and a swapwith another bu�er is made
by the implementation of LLUI_DISPLAY_IMPL_flush() . In this case, the restoration is mandatory because the
new back bu�er must contain the past before the bu�er swapping.

The principle of this strategy is to cumulate the drawing regions and to restore them just before the very first draw-
ing a�er a flush. The refresh just consists in calling the LLAPI LLUI_DISPLAY_IMPL_flush() that will swap the
bu�ers.

Some regions to restore are updatedor removedaccording to the implicit andexplicit regionsgivenbefore the very
first drawing a�er a flush. These regions are the regions which will be altered by the application, so it is useless to
restore them. For instance, if the very first drawing a�er a flush fully fills the bu�er (erase the bu�er), the past is not
restored.

The implicit and explicit regions a�er the very first drawing have the same signification: a dirty region to restore
before the very first drawing a�er the next flush.

Behavior

The following table illustrates how the strategy works:

6.14. Graphical User Interface 896

MicroEJ Documentation, Revision 32bb132e

Table 25: Strategy “Predraw”
Drawing Steps Strategy Work Back Bu�er Front Bu�er

Startup

Implicit region back-
ground

Store the region full-screen

Draw “background”

Implicit region A The region A is included in the region full-screen:
nothing to do

Draw “A”

Refresh Call LLUI_DISPLAY_IMPL_flush() (swap the
bu�ers)

Implicit region B

Restore the region full-screen expect the region B
Clear the list of regions
Store the region B

Draw “B”

Refresh Call LLUI_DISPLAY_IMPL_flush() (swap the
bu�ers)

Implicit region C Nothing to restore because the region B equals
the region C

Draw “C”

Refresh Call LLUI_DISPLAY_IMPL_flush() (swap the
bu�ers)

Note: This illustration considers that the clip changes before each drawing and fits the drawing’s bounds

Read the Display

Before the very first drawing a�er a flush, the content of the back bu�er does not contain the past (the
restoration has not been performed). By consequence, the first read actions (GraphicsContext.readPixel()
, Painter.drawDisplayRegion() , etc.) cannot use the back bu�er as source bu�er. The algorithm has to call
LLUI_DISPLAY_getSourceImage() to retrieve a pointer to the frame bu�er address.

6.14. Graphical User Interface 897

MicroEJ Documentation, Revision 32bb132e

Use (Swap Double Bu�er)

Here are the steps around the strategy describing how to use it in double bu�er policy (the two bu�ers have the
same role alternatively, back bu�er and frame bu�er):

1. Some drawings are performed in the back bu�er.

2. A Display.flush() is asked, the Graphics Engine calls LLUI_DISPLAY_IMPL_refresh() .

3. The strategy calls LLUI_DISPLAY_IMPL_flush() .

4. The display driver has to implement LLUI_DISPLAY_IMPL_flush() that consists in swapping the drawing
bu�ers (back and frame bu�ers).

5. As soon as the display uses the new frame bu�er (the new back bu�er is now freed), the BSP has to notify
the Graphics Engine by calling LLUI_DISPLAY_setDrawingBuffer() , giving the new back bu�er address
(== previous frame bu�er).

6. The Graphics Engine is now unlocked.

7. Before the very first drawing, this strategy copies the regions to restore from the previous back bu�er to the
new back bu�er.

8. A new drawing can start in the new back bu�er.

Use (Swap Triple Bu�er)

Here are the steps around the strategy describing how to use it in triple bu�er policy. The three bu�ers have the
same role alternatively: back bu�ers (A and B) and frame bu�er (C). On startup, the LCD bu�er is mapped on the
bu�er (C), the bu�er (A) is the back bu�er and the bu�er (B) is not used yet:

• bu�er (A): the application’s drawing bu�er

• bu�er (B): free

• bu�er (C): LCD driver’s bu�er

1. Some drawings are performed in the drawing bu�er (A).

2. A Display.flush() is asked, the Graphics Engine calls LLUI_DISPLAY_IMPL_refresh() .

3. The strategy calls LLUI_DISPLAY_IMPL_flush() .

4. The display driver has to implement LLUI_DISPLAY_IMPL_flush() that consists in swapping the drawing
bu�ers: the new LCD refresh task will read the data from bu�er (A), the next drawings will be done in bu�er
(B) but the bu�er (C) is still in use (the LCD driver keeps using this bu�er to refresh the LCD).

• bu�er (A): next LCD driver’s bu�er

• bu�er (B): new the application’s drawing bu�er

• bu�er (C): current LCD driver’s bu�er

5. The bu�er (B) is immediately available (free): the BSP has to notify the Graphics Engine by calling
LLUI_DISPLAY_setDrawingBuffer() , giving the bu�er (B)’s address.

6. The Graphics Engine is now unlocked.

7. Before the very first drawing, this strategy copies the regions to restore from the previous back bu�er (A) to
the new back bu�er (B).

8. Some drawings are performed in the drawing bu�er (B).

9. A second Display.flush() is asked, the Graphics Engine calls LLUI_DISPLAY_IMPL_refresh() .

6.14. Graphical User Interface 898

MicroEJ Documentation, Revision 32bb132e

10. The strategy calls LLUI_DISPLAY_IMPL_flush() .

11. The system is locked: the LCD driver does not use the bu�er (A) as source bu�er yet.

12. As soon as the LCD driver uses the bu�er (A) (the LCD driver keeps using this bu�er to refresh the LCD), the
bu�er (C) becomes available (free).

• bu�er (A): current LCD driver’s bu�er

• bu�er (B): application’s drawing bu�er

• bu�er (C): free

13. The bu�er (C) will be now used for the next drawings. Go to step 5.

Use (Copy and Swap Bu�er)

Note: This chapter uses thedisplay connection serial todescribe the flowbut it is similar for thedisplay connection
parallel (copy instead of send).

Here are the steps around the strategy describing how to use it in copy and swapbu�er policy. The twobu�ers have
the same role alternatively: back bu�er and sending bu�er. On startup, the sending bu�er is not used yet.

In this policy, the implementation of LLUI_DISPLAY_IMPL_flush() consists in swapping the back bu�ers and to
send the content of the back bu�er to the display bu�er (SPI, DSI, etc.). This subtlety allows to reuse the same back
bu�er a�er the end of the sending: this prevents to restore the past.

1. Some drawings are performed in the back bu�er.

2. A Display.flush() is asked, the Graphics Engine calls LLUI_DISPLAY_IMPL_refresh() .

3. The strategy calls LLUI_DISPLAY_IMPL_flush() .

4. The display driver has to implement LLUI_DISPLAY_IMPL_flush() that consists in starting the sending of
the back bu�er content to LCD device’s bu�er and to swap the both bu�ers (back and sending bu�ers).

5. The new back bu�er is immediately available (free), the BSP has to notify the Graphics Engine by calling
LLUI_DISPLAY_setDrawingBuffer() , giving the new back bu�er address (== previous sending bu�er).

6. The Graphics Engine is now unlocked.

7. Before the very first drawing, this strategy copies the regions to restore from the previous back bu�er to the
new back bu�er.

8. Some drawings are performed in the back bu�er.

9. A second Display.flush() is asked, the Graphics Engine calls LLUI_DISPLAY_IMPL_refresh() .

10. The strategy calls LLUI_DISPLAY_IMPL_flush() .

11. The system is locked: the LCD driver has not finished yet to send the sending bu�er data to the LCD device’s
bu�er.

12. As soon as the sending is done, the BSP has to notify the Graphics Engine by calling
LLUI_DISPLAY_setDrawingBuffer() , giving the new back bu�er address (== previous sending bu�er).

13. The application is sleeping (doesn’t want to draw in the back bu�er)

Hint: Optimization: As soonas the sending to the LCDdevice’s bu�er is done, theBSP should call again
LLUI_DISPLAY_setDrawingBuffer() by giving the sending bu�er (which is now free). If no drawing

6.14. Graphical User Interface 899

MicroEJ Documentation, Revision 32bb132e

has started yet in the back bu�er, the Graphics Enginewill reuse this sending bu�er as new back bu�er
instead of using the other one: the restoration becomes useless.

14. The BSP should notify again the Graphics Engine by calling LLUI_DISPLAY_setDrawingBuffer() , giving the
sending bu�er address: the Graphics Engine will reuse this bu�er for the future drawings and the strategy
will not need to restore anything.

Strategy: Default

Principle

This strategy is the default strategy used when no explicit strategy is selected. This strategy is implemented in the
Graphics Engine and its behavior is minimalist. However, this strategy can be used for the direct bu�er policy.

This strategy considers that thedrawings are alwaysperformed in the samebackbu�er. In this case, the restoration
is useless because the bu�er always contains the past. Furthermore, as the LCD driver uses the same bu�er to
refresh the display panel, this strategy has nothing to do.

Behavior

The following table illustrates how the strategy works:

Table 26: Strategy “Direct”
Drawing Steps Strategy Work Display Bu�er

Startup

Implicit region background

Draw “background”

Implicit region A

Draw “A”

Refresh Call LLUI_DISPLAY_IMPL_flush() (nothing to do)

Note: This illustration considers that the clip changes before each drawing and fits the drawing’s bounds

Use

Here are the steps around the strategy describing how to use it:

1. Some drawings are performed in the bu�er.

2. A Display.flush() is asked, the Graphics Engine calls LLUI_DISPLAY_IMPL_refresh() .

3. The strategy calls LLUI_DISPLAY_IMPL_flush() .

4. Thedisplaydriverhas to implement LLUI_DISPLAY_IMPL_flush() : at least, enable theLCD refresh interrupt
to wait the end of the refresh (or use a so�ware task).

6.14. Graphical User Interface 900

MicroEJ Documentation, Revision 32bb132e

5. In the LCD refresh interrupt (here, the display panel shows the latest frame for sure), the BSP has to notify the
Graphics Engine by calling LLUI_DISPLAY_setDrawingBuffer() , giving the same bu�er address.

6. The Graphics Engine is now unlocked.

7. Some drawings are performed in the back bu�er.

Strategy: Custom

Principle

This strategy symbolizes the strategy implemented by the BSP (the other strategies are implemented in the Mi-
croUI C Module or in the Graphics Engine). This strategy is useful to map a specific behavior according to a specific
application, the number of bu�ers, how the display panel is mapped, etc.

The BSP has the responsibility to implement the following functions (in addition with
LLUI_DISPLAY_IMPL_flush()):

• LLUI_DISPLAY_IMPL_newDrawingRegion()

• LLUI_DISPLAY_IMPL_refresh()

Warning: Both functions are already implemented as weak functions in the Graphics Engine (see Strategy:
Default)

Behavior

The following table illustrates how the strategy works:

Table 27: Strategy “Custom”
Drawing Steps Strategy Work Drawing Bu�er

Startup

Implicit region background Implement LLUI_DISPLAY_IMPL_newDrawingRegion()

Draw “background”

Implicit region A Implement LLUI_DISPLAY_IMPL_newDrawingRegion()

Draw “A”

Refresh Implement LLUI_DISPLAY_IMPL_refresh()

Note: This illustration considers that the clip changes before each drawing and fits the drawing’s bounds

6.14. Graphical User Interface 901

MicroEJ Documentation, Revision 32bb132e

Use

Here are the steps around the strategy describing how to use it:

1. Some drawings are performed in the bu�er.

2. A Display.flush() is asked, the Graphics Engine calls LLUI_DISPLAY_IMPL_refresh() .

3. The strategy has to implement LLUI_DISPLAY_IMPL_refresh() and call LLUI_DISPLAY_IMPL_flush() .

4. The display driver has to implement LLUI_DISPLAY_IMPL_flush() .

5. When the display panel shows the latest frame, the BSP has to notify the Graphics Engine by calling
LLUI_DISPLAY_setDrawingBuffer() , giving the a bu�er address.

6. The Graphics Engine is now unlocked.

7. Some drawings are performed in the bu�er.

Strategy: Legacy

Principle

This strategy is the strategy thatmimics the behavior of the specification of the UI Pack 13.x, dedicated to themulti-
bu�ers policies.

The specification consisted in:

1. swapping the back bu�er and the display frame bu�er at flush time,

2. letting the BSP restore itself the back bu�er with the content of the previous drawings (the past) before un-
locking the Graphics Engine a�er a flush.

By consequence, the past was always available before making the very first drawing a�er a flush.

The strategy Legacy is useful to keep the behavior of the VEE Ports made for UI Pack 13.x without updating
them (except the signature of the LLAPI LLUI_DISPLAY_IMPL_flush()). This strategy merges all drawing re-
gions to only one rectangle (that includes all drawing regions). This single rectangle is given to the function
LLUI_DISPLAY_IMPL_flush() .

Note: For the single bu�er policy, it is recommended to migrate to the strategy single.

Behavior

The following table illustrates how the strategy works:

6.14. Graphical User Interface 902

MicroEJ Documentation, Revision 32bb132e

Table 28: Strategy “Legacy”
Drawing Steps Strategy Work Back Bu�er Front Bu�er

Startup

Implicit region back-
ground

Store the region full-screen

Draw “background”

Implicit region A Calculate the bounding box of the regions full-
screen and A

Draw “A”

Refresh Call LLUI_DISPLAY_IMPL_flush() : swap the
bu�ers and restore the past

Implicit region B Store the region B

Draw “B”

Refresh Call LLUI_DISPLAY_IMPL_flush() : swap the
bu�ers and restore the past

Note: This illustration considers that the clip changes before each drawing and fits the drawing’s bounds

Use

Here are the steps around the strategy describing how to use it:

1. Some drawings are performed in the bu�er.

2. A Display.flush() is asked, the Graphics Engine calls LLUI_DISPLAY_IMPL_refresh() .

3. The strategy calls LLUI_DISPLAY_IMPL_flush() .

4. The display driver has to implement LLUI_DISPLAY_IMPL_flush() : swap the back bu�er and the frame
bu�er.

5. As soon as the display uses the new display frame bu�er (the new back bu�er is now freed), the BSP has to
launch a copy of the new frame bu�er to the new back bu�er (use the bounding box).

6. At soon as the copy is done (the copy may be asynchronous), the BSP has to notify the Graphics Engine by
calling LLUI_DISPLAY_setDrawingBuffer() , giving the new back bu�er address.

7. The Graphics Engine is now unlocked.

8. Some drawings are performed in the back bu�er.

6.14. Graphical User Interface 903

MicroEJ Documentation, Revision 32bb132e

MicroUI C Module

Principle

The MicroUI C module features some Bu�er Refresh Strategies. To select a strategy, configure the define
UI_DISPLAY_BRS in the configuration file ui_display_brs_configuration.h :

• Set UI_DISPLAY_BRS_SINGLE to select the strategy Single.

• Set UI_DISPLAY_BRS_PREDRAW to select the strategy Predraw.

• Set UI_DISPLAY_BRS_LEGACY to select the strategy Legacy.

• Unset the define UI_DISPLAY_BRS to select the strategy Default or to implement a Custom strategy.

Options

Somestrategies require someoptions to configure them. Theoptions (somedefines) are sharedbetween the strate-
gies:

• UI_DISPLAY_BRS_DRAWING_BUFFER_COUNT (ui_display_brs_configuration.h): configures the available
number of drawing bu�ers. Used by:

– Predraw: allowed values are 1 , 2 or 3 (1 is valid but this strategy is not optimized for this use case).
See the comment of the define UI_DISPLAY_BRS_PREDRAW to increase this value.

– Single: allowed value is 1 (sanity check).

• UI_DISPLAY_BRS_FLUSH_SINGLE_RECTANGLE (ui_display_brs_configuration.h): configures the num-
ber of rectangles that the strategy gives to the implementation of LLUI_DISPLAY_IMPL_flush() . If not set,
the number or regions depends on the strategy. If set, only one region is given: the bounding box of all draw-
ing regions. Used by:

– Predraw: the list of regions is o�en useless (the LCD driver has just to swap the back and frame bu�ers),
however this list can be used for the bu�er policy Copy and Swap Bu�er. Calculating the bounding box
uses takes a bit of memory and time; if the bounding box is useless, it is recommended to not enable
this option.

– Single: the list of regions can be useful to refresh small parts of the display panel.

– Legacy: this option is never used and the bounding box of all drawing regions is given to the implemen-
tation of LLUI_DISPLAY_IMPL_flush() .

• UI_RECT_COLLECTION_MAX_LENGTH (ui_rect_collection.h): configures the size of the arrays that hold a
list of regions (ui_rect_collection_t). Default value is 8 , when the collection is full, the strategy replaces
all the regions by the bounding box of all regions. Used by:

– Predraw: number of regions to restore per back bu�er.

– Single: number of regions that the LCD driver has to send to the display bu�er.

6.14. Graphical User Interface 904

MicroEJ Documentation, Revision 32bb132e

Weak Functions

Some strategies use the function UI_DISPLAY_BRS_restore() to copy a region from a bu�er to another bu�er. A
default implementation of this function is available in the C file ui_display_brs.c . This implementation uses the
standard memcpy . Override this function to use a GPU for instance.

Debug Traces

The strategies log some events; see Debug Traces (see “[BRS]” comments).

Simulation

Principle

The Display widget in the Front Panel is able to simulate the bu�er refresh strategy. It also simulates the Bu�er
Policy.

The default values are:

• Swap Double Bu�er for the bu�er policy.

• Predraw for the bu�er refresh strategy.

Usage

The bu�er policy and the refresh strategy can be configured by adding an attribute to the Display widget in the
.fp file. The value of these attributes is the fully qualified name of the class implementing the bu�er policy or the
refresh strategy. The attributes are:

• bufferPolicyClass to set the bu�er policy.

• refreshStrategyClass to set the refresh strategy.

Example:

<ej.fp.widget.Display
x="0" y="0" width="480" height="272"
bufferPolicyClass="ej.fp.widget.display.buffer.

→˓SwapTripleBufferPolicy"
refreshStrategyClass="ej.fp.widget.display.brs.PredrawRefreshStrategy"

/>

Available Implementations

The available bu�er policies are:

• Swap Double Bu�er: ej.fp.widget.display.buffer.SwapDoubleBufferPolicy .

• Swap Triple Bu�er: ej.fp.widget.display.buffer.SwapTripleBufferPolicy .

• Direct Bu�er: ej.fp.widget.display.buffer.DirectBufferPolicy .

• Single Bu�er: ej.fp.widget.display.buffer.SingleBufferPolicy .

• Copy and Swap Bu�er: ej.fp.widget.display.buffer.CopySwapBufferPolicy .

6.14. Graphical User Interface 905

MicroEJ Documentation, Revision 32bb132e

The available refresh strategies are:

• Single: ej.fp.widget.display.brs.SingleRefreshStrategy .

• Predraw: ej.fp.widget.display.brs.PredrawRefreshStrategy .

• Legacy: ej.fp.widget.display.brs.LegacyRefreshStrategy .

Custom Implementation

It is possible to create a new bu�er policy by implementing ej.fp.widget.display.buffer.
DisplayBufferPolicy .

The bu�er policy is responsible of:

• Allocating the necessary bu�ers, usually in setDisplayProperties(Widget, int, int, int) :

FrontPanel.getFrontPanel().newImage(width, height, initialColor, false);

• Giving access to the back bu�er (the bu�er used to draw) in getBackBuffer() .

• Giving access to the front bu�er (the bu�er displayed in the Display widget) in getFrontBuffer() .

• Flushing the set of modified rectangles from the drawing bu�er to the display bu�er in
flush(DisplayBufferManager, Rectangle[]) and requesting the display widget to be refreshed.

this.displayWidget.repaint();

It is possible to create a new refresh strategy by implementing ej.fp.widget.display.brs.
BufferRefreshStrategy .

The refresh strategy is responsible of:

• Restoring the past to ensure that the content of the display is correct by calling DisplayBufferManager.
restore(Rectangle) .

• Refreshing the display with what has been modified by calling DisplayBufferManager.
flush(Rectangle[]) in refresh(DisplayBufferManager) .

It is notified of the modified regions in newDrawingRegion(DisplayBufferManager, Rectangle, boolean) .

6.14.10 Drawings

Abstraction Layer

All MicroUI drawings (available in the Painter class) call a native function. These native functions are already im-
plemented (in the MicroUI C Module for the Embedded VEE Port and in the Front Panel for the Simulator). These
implementations use the Graphics Engine’s so�ware algorithms to perform the drawings.

Each drawing can be overwritten independently in the VEE Port:

• to use another so�ware algorithm (custom algorithm, no third-party library, etc.),

• to use a GPU to perform the operation,

• to target a destination whose format is di�erent from the display bu�er format,

• etc.

6.14. Graphical User Interface 906

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Painter.html

MicroEJ Documentation, Revision 32bb132e

The MicroUI native drawing functions are listed in LLUI_PAINTER_impl.h and LLDW_PAINTER_impl.h (for the
Drawing library) for the Embedded VEE Port and, respectively, LUIPainter.java and LLDWPainter.java for the
Simulation VEE Port.

The implementationmust handlemany constraints: synchronization between drawings, Graphics Engine notifica-
tion,MicroUIGraphicsContext clipandcolors, dirty flusharea, etc. Theprincipleof implementingaMicroUIdrawing
function is described in the chapter Custom Drawing.

Destination Format

SinceMicroUI 3.2, thedestinationbu�er of thedrawings canbedi�erent than thedisplaybu�er format (seeMicroEJ
Format: Display). This destination bu�er format can be a standard format (ARGB8888, A8, etc.) or a custom format.

SeeBu�ered Image formore informationabouthow to createbu�ered imageswith another format than thedisplay
format and how to draw in them.

Graphics Engine So�ware Algorithms

The Graphics Engine features a so�ware implementation for each MicroUI and Drawing libraries drawing. These
so�ware algorithms respect the MicroUI GraphicsContext clip and use the current MicroUI GraphicsContext fore-
ground color and optional background color.

The Graphics Engine provides a header file ui_drawing_soft.h (emb), and an implementation instance of
UIDrawing that can be retrieved with ej.microui.display.LLUIDisplay.getUIDrawerSoftware() (sim) to let
the VEE Port use these algorithms. For instance, a GPUmay be able to draw an image whose format is RGB565 but
not ARGB1555. For this image format, BSP implementation can call the UI_DRAWING_SOFT_drawImage function.

Warning: These so�ware algorithms only target bu�ers whose format is the display bu�er format.

MicroUI C Module

Principle

An implementation of LLUI_PAINTER_impl.h is already available on the MicroUI C module. This implementation
respects the synchronization between drawings and the Graphics Engine notification and reduces (when possible)
the MicroUI GraphicsContext clip constraints.

This implementation does not perform the drawings; it only calls the equivalent of drawing available in
ui_drawing.h . This allows simplifying how to use a GPU (or a third-party library) to perform a drawing: the
ui_drawing.h implementation just has to take into consideration the MicroUI GraphicsContext clip and colors.
Synchronization with the Graphics Engine is already performed.

In addition to the implementation of LLUI_PAINTER_impl.h , an implementation of ui_drawing.h is already
available in MicroUI C module (in weak mode). This allows to implement only the functions the GPU can per-
form. For a given drawing, the weak function implementation is calling the equivalent of the drawing available
in ui_drawing_soft.h (this file lists all drawing functions implemented by the Graphics Engine in so�ware).

Note: More details are available in LLUI_PAINTER_impl.h , ui_drawing.h , LLUI_Display.h , and
LLUI_Display_impl.h files.

6.14. Graphical User Interface 907

https://repository.microej.com/modules/ej/api/drawing
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html

MicroEJ Documentation, Revision 32bb132e

Default Implementation

The default implementation is the most used. It takes into account:

• there is only one destination format (the display bu�er format),

• no drawing is overwritten in the BSP (no GPU, third-party library, etc.),

• non-standard images cannot be used as a source.

TheMicroUI C module is designed to simplify the UI VEE Port:

• just need to add the Cmodule in the BSP (no extra code is needed),

• flash footprint is reduced (no extra table to manage several destination formats and several sources),

• functions indirections are limited (the so�ware drawing algorithm is called as faster as possible).

The following graph illustrates the steps to perform a shape drawing (not an image):

6.14. Graphical User Interface 908

MicroEJ Documentation, Revision 32bb132e

[MicroUI]
Painter.drawXXX();

[LLUI_PAINTER_impl.h]
LLUI_PAINTER_IMPL_drawXXX();

[Graphics Engine]

[LLUI_PAINTER_impl.c]
LLUI_PAINTER_IMPL_drawXXX();

[ui_drawing.h]
UI_DRAWING_drawXXX();

[ui_drawing.c]
weak UI_DRAWING_drawXXX();

[ui_drawing_soft.h]
UI_DRAWING_SOFT_drawXXX();

LLUI_PAINTER_IMPL_drawLine (available in MicroUI C Module)

6.14. Graphical User Interface 909

MicroEJ Documentation, Revision 32bb132e

void LLUI_PAINTER_IMPL_drawLine(MICROUI_GraphicsContext* gc, jint startX, jint startY, jint␣
→˓endX, jint endY) {

// Synchronize the native function of MicroUI Painter.drawLine() with the Graphics Engine
if (LLUI_DISPLAY_requestDrawing(gc, (SNI_callback)&LLUI_PAINTER_IMPL_drawLine)) {

// Call ui_drawing.h function
DRAWING_Status status = UI_DRAWING_drawLine(gc, startX, startY, endX, endY);
// Update the status of the Graphics Engine
LLUI_DISPLAY_setDrawingStatus(status);

}
}

The Graphics Engine requires synchronization between the drawings. Doing that requires a call to
LLUI_DISPLAY_requestDrawing at the beginning of native function implementation. This function takes as
a parameter the MicroUI GraphicsContext and the pointer on the native function itself. This pointer must be cast
in a SNI_callback .

UI_DRAWING_drawLine (available in MicroUI C Module)

#define UI_DRAWING_DEFAULT_drawLine UI_DRAWING_drawLine

The function name is set thanks to a define . This name redirection is useful when the VEE Port features multiple
destination formats (not the use-case here).

UI_DRAWING_DEFAULT_drawLine (available in MicroUI C Module)

// Use the preprocessor 'weak'
__weak DRAWING_Status UI_DRAWING_DEFAULT_drawLine(MICROUI_GraphicsContext* gc, jint startX,␣
→˓jint startY, jint endX, jint endY) {

// Default behavior: call the Graphics Engine's software algorithm
return UI_DRAWING_SOFT_drawLine(gc, startX, startY, endX, endY);

}

Implementing the weak function only consists in calling the Graphics Engine’s so�ware algorithm. This so�ware
algorithmwill respect the GraphicsContext color and clip.

Custom Implementation

The custom implementation helps connect a GPU or a third-party library. It takes into account:

• there is only one destination format (the display bu�er format),

• non-standard images cannot be used as a source.

TheMicroUI C module is designed to simplify the adding of third-party drawers:

• just need to add the Cmodule in the BSP,

• overwrite only the expected drawing(s),

• a drawing implementation has just to respect the clip and color (synchronization with the Graphics Engine
already done),

• flash footprint is reduced (no extra table to manage several destination formats and several sources),

• functions indirections are limited (the drawing algorithm is called as faster as possible).

The following graph illustrates the steps to perform a shape drawing (not an image):

6.14. Graphical User Interface 910

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html

MicroEJ Documentation, Revision 32bb132e

[MicroUI]
Painter.drawXXX();

[LLUI_PAINTER_impl.h]
LLUI_PAINTER_IMPL_drawXXX();

[Graphics Engine][GPU]

[LLUI_PAINTER_impl.c]
LLUI_PAINTER_IMPL_drawXXX();

[ui_drawing.h]
UI_DRAWING_drawXXX();

Function implemented?

[ui_drawing_soft.h]
UI_DRAWING_SOFT_drawXXX();

[ui_drawing_gpu.c]
UI_DRAWING_drawXXX();

GPU compatible?

[GPU driver]

[ui_drawing.c]
weak UI_DRAWING_drawXXX();

yes no

noyes

6.14. Graphical User Interface 911

MicroEJ Documentation, Revision 32bb132e

Take the sameexample as thedefault implementation (drawa line): theBSP just has tooverwrite theweak function
UI_DRAWING_drawLine :

UI_DRAWING_drawLine (to write in the BSP)

#define UI_DRAWING_GPU_drawLine UI_DRAWING_drawLine

The function name should be set thanks to a define . This name redirection is useful when the VEE Port features
multiple destination formats (not the use-case here).

UI_DRAWING_GPU_drawLine (to write in the BSP)

// Contrary to the MicroUI C Module, this function is not "weak"
DRAWING_Status UI_DRAWING_GPU_drawLine(MICROUI_GraphicsContext* gc, jint startX, jint startY,
→˓ jint endX, jint endY) {

DRAWING_Status status;

if (is_gpu_compatible(xxx)) {
// Can use the GPU to draw the line

// Retrieve the destination buffer address
uint8_t* destination_address = LLUI_DISPLAY_getBufferAddress(&gc->image);

// Configure the GPU clip
gpu_set_clip(startX, startY, endX, endY);

// Draw the line
gpu_draw_line(destination_address, startX, startY, endX, endY, gc->foreground_color);

// GPU is running: set the right status for the Graphics Engine
status = DRAWING_RUNNING;

}
else {

// Default behavior: call the Graphics Engine's software algorithm (like "weak"␣
→˓function)

status = UI_DRAWING_SOFT_drawLine(gc, startX, startY, endX, endY);
}
return status;

}

First, the drawing function must ensure the GPU can render the expected drawing. If not, the drawing function
must perform the same thing as the default weak function: calls the Graphics Engine so�ware algorithm.

The GPU drawing function usually requires the destination bu�er address: the drawing function calls
LLUI_DISPLAY_getBufferAddress(&gc->image); .

The drawing function has to respect the GraphicsContext clip The MICROUI_GraphicsContext structure holds
the clip, and the drawer cannot perform a drawing outside this clip (otherwise, the behavior is unknown). Note
the bottom-right coordinates might be smaller than the top-le� (in x and/or y) when the clip width and/or height
is null. The clip may be disabled (when the current drawing fits the clip); this allows to reduce runtime. See
LLUI_DISPLAY_isClipEnabled() .

6.14. Graphical User Interface 912

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html

MicroEJ Documentation, Revision 32bb132e

Note: Several clip functions are available in LLUI_DISPLAY.h to check if a drawing fits the clip.

Finally, a�er thedrawing, thedrawing functionhas to return thedrawing status. Most of the time, theGPUperforms
asynchronous drawings: the drawing is started but not completed. To notify the Graphics Engine, the status to
return is DRAWING_RUNNING . In case of the drawing is done a�er the call to gpu_draw_line() , the status to return
is DRAWING_DONE .

Warning: If thedrawing status is not set to theGraphicsEngine, theglobal VEEexecution is locked: theGraphics
Engine waits indefinitely for the status and cannot perform the next drawing.

GPU Synchronization

When a GPU is used to perform a drawing, the caller (MicroUI painter native method) returns immediately. This
allows the application to perform other operations during the GPU rendering. However, as soon as the application
is trying to perform another drawing, the previous drawing made by the GPU must be done. The Graphics Engine
is designed to be synchronized with the GPU asynchronous drawings by defining some points in the rendering
timeline. It is not optional: MicroUI assumes that a drawing is fully donewhen it starts a newone. The end of a GPU
drawing must notify the Graphics Engine calling LLUI_DISPLAY_notifyAsynchronousDrawingEnd() .

Extended C Modules

Several C Modules are available on the MicroEJ Repositories. These modules are compatible with the MicroUI C
module (they follow the rules described above) and use one GPU (a C Module per GPU). These C Modules should
be fetched in the VEE Port in addition to the MicroUI C Module; it avoids re-writing the GPU port.

Simulation

Principle

This is the same principle asMicroUI C Module for the Embedded side:

• The drawing primitive natives called the matching method in LLUIPainter .

• The LLUIPainter synchronizes the drawings with the Graphics Engine and dispatches the drawing itself to
an implementation of the interface UIDrawing .

• The Front Panel provides a so�ware implementation of UIDrawing available by calling ej.microui.
display.LLUIDisplay.getUIDrawerSoftware() .

• The DisplayDrawer implements UIDrawing and is used to draw in the display bu�er and the images with
the same format.

These classes are available in the UI Pack extension of the Front Panel Mock.

Note: More details are available in LLUIPainter , UIDrawing , LLUIDisplay , and LLUIDisplayImpl files.

6.14. Graphical User Interface 913

MicroEJ Documentation, Revision 32bb132e

Default Implementation

The default implementation is the most used. It considers that:

• there is only one destination format (the display bu�er format),

• no drawing is overwritten in the BSP (no third-party library),

• non-standard images cannot be used as a source.

The UI Pack extension is designed to simplify the UI VEE Port:

• Simply add the dependency to the UI Pack extension in the VEE Port Front Panel project.

• Function indirections are limited (the so�ware drawing algorithm is called as fast as possible).

The following graph illustrates the steps to perform a shape drawing (not an image):

6.14. Graphical User Interface 914

MicroEJ Documentation, Revision 32bb132e

[MicroUI]
Painter.drawXXX();

[FrontPanel]
LLUIPainter.drawXXX();

[Graphics Engine]

[FrontPanel]
getUIDrawer().drawXXX();

[FrontPanel]
DisplayDrawer.drawXXX();

[FrontPanel]
getUIDrawerSoftware()

.drawXXX();

LLUIPainter.drawLine (available in UI Pack extension)

public static void drawLine(byte[] target, int x1, int y1, int x2, int y2) {

// Retrieve the Graphics Engine instance
LLUIDisplay graphicalEngine = LLUIDisplay.Instance;

(continues on next page)

6.14. Graphical User Interface 915

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

// Synchronize the native function of MicroUI Painter.drawLine() with the Graphics Engine
synchronized (graphicalEngine) {

// Retrieve the Front Panel instance of the MicroUI GraphicsContext (the destination)
MicroUIGraphicsContext gc = graphicalEngine.mapMicroUIGraphicsContext(target);

// Ask to the Graphics Engine if a drawing can be performed on the target
if (gc.requestDrawing()) {

// Retrieve the drawer for the GraphicsContext (by default: DisplayDrawer)
UIDrawing drawer = getUIDrawer(gc);

// Call UIDrawing function
drawer.drawLine(gc, x1, y1, x2, y2);

}
}

}

The Graphics Engine requires synchronization between the drawings. To do that, the drawing is synchronized on
the instance of the Graphics Engine itself.

The target (theFrontPanel object thatmaps theMicroUIGraphicsContext) is retrieved in thenativedrawingmethod
by asking the Graphics Engine tomap the byte array (returned by GraphicsContext.getSNIContext()). Like the
embedded side, this object holds a clip, and the drawer cannot perform a drawing outside of this clip (otherwise,
the behavior is unknown).

DisplayDrawer.drawLine (available in UI Pack extension)

@Override
public void drawLine(MicroUIGraphicsContext gc, int x1, int y1, int x2, int y2) {

LLUIDisplay.Instance.getUIDrawerSoftware().drawLine(gc, x1, y1, x2, y2);
}

The implementation of DisplayDrawer simply calls the Graphics Engine’s so�ware algorithm. This so�ware algo-
rithmwill use the GraphicsContext color and clip.

Custom Implementation

The custom implementation helps connect a third-party library or to simulate the same constraints as the embed-
ded side (the same GPU constraints). It considers that:

• there is only one destination format (the display bu�er format),

• non-standard images cannot be used as a source.

The UI Pack extension is designed to simplify the adding of third-party drawers:

• Add the dependency to the UI Pack extension in the VEE Port Front Panel project.

• Create a subclass of DisplayDrawer (implementation of the interface UIDrawing).

• Overwrite only the desired drawing(s).

– Each drawing implementation must comply with the clip and color (synchronization with the
Graphics Engine already done).

– Function indirections are limited (the drawing algorithm is called as fast as possible).

6.14. Graphical User Interface 916

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html

MicroEJ Documentation, Revision 32bb132e

• Register this drawer in place of the default display drawer.

The following graph illustrates the steps to perform a shape drawing (not an image):

6.14. Graphical User Interface 917

MicroEJ Documentation, Revision 32bb132e

[MicroUI]
Painter.drawXXX();

[FrontPanel]
LLUIPAINTER.drawXXX();

[Graphics Engine]

[Third-party lib]

[FrontPanel]
getUIDrawer().drawXXX();

[FrontPanel]
DisplayDrawer.drawXXX();

[FrontPanel]
getUIDrawerSoftware()

.drawXXX();

[VEE Port FP]
DisplayDrawerExtension

.drawXXX();

can draw algo?

method overridden?

no

yes

yesno

6.14. Graphical User Interface 918

MicroEJ Documentation, Revision 32bb132e

Let’s use the same example as the previous section (draw line function): the Front Panel project has to create its
drawer based on the default drawer:

MyDrawer (to write in the Front Panel project)

public class MyDrawer extends DisplayDrawer {

@Override
public void drawLine(MicroUIGraphicsContext gc, int x1, int y1, int x2, int y2) {

if (isCompatible(xxx)) {
// Can use the GPU to draw the line on the embedded side: can use another algorithm␣

→˓than the software algorithm

// Retrieve the AWT Graphics2D
Graphics2D src = (Graphics2D)((BufferedImage)gc.getImage().getRAWImage()).

→˓getGraphics();

// Draw the line using AWT (have to respect clip & color)
src.setColor(new Color(gc.getRenderingColor()));
src.drawLine(x1, y1, x2, x2);

}
else {

// Default behavior: call the Graphics Engine's software algorithm
super.drawLine(gc, x1, y1, x2, y2);

}
}

}

The Front Panel framework is running over AWT. The method gc.getImage() returns a ej.fp.Image . It is the
representation of a MicroUI Image in the Front Panel framework. The method gc.getImage().getRAWImage()
returns the implementation of the Front Panel image on the J2SE framework: an AWT Bu�eredImage. The AWT
graphics 2D can be retrieved from this bu�ered image.

The MicroUI color (gc.getRenderingColor()) is converted to an AWT color.

The method behavior is exactly the same as the embedded side; see:ref:section_drawings_cco_custom.

This newly created drawermust now replace the default display drawer. There are two possible ways to register it:

• Declare it as a UIDrawing service.

• Declare it programmatically.

UIDrawing Service

• Create a new file in the resources of the Front Panel project named META-INF/services/ej.microui.
display.UIDrawing and write the fully qualified name of the previously created drawer:

com.mycompany.MyDrawer

Programmatically

• Create an empty widget to invoke the new implementation:

6.14. Graphical User Interface 919

https://docs.oracle.com/javase/7/docs/api/java/awt/image/BufferedImage.html

MicroEJ Documentation, Revision 32bb132e

@WidgetDescription(attributes = { })
public class Init extends Widget{

@Override
public void start() {

super.start();
LLUIDisplay.Instance.registerUIDrawer(new MyDrawer());

}
}

• Invoke this widget in the .fp file:

<frontpanel xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="https://developer.
→˓microej.com" xsi:schemaLocation="https://developer.microej.com .widget.xsd">

<device name="STM32429IEVAL" skin="Board-480-272.png">
<com.is2t.microej.fp.Init/>
[...]

</device>
</frontpanel>

Custom Drawing

Principle

MicroUIallowsaddingsomecustomdrawings (drawingsnot listed in theMicroUIPainter classes). A customdrawing
has to respect the samerulesas theMicroUIdrawings toavoidcorrupting theMicroUI execution (flickering,memory
corruption, unknown behavior, etc.).

As explained above, MicroUI implementation provides an Abstraction Layer that lists all MicroUI Painter drawing
native functions and their implementations (MicroUI C Module and Simulation). The implementation of MicroUI
Painter drawings should be used as a model to implement the custom drawings.

Application Method

// Application drawing method
protected void render(GraphicsContext gc) {

// [...]

// Set the GraphicsContext color
gc.setColor(Colors.RED);
// Draw a red line
Painter.drawLine(gc, 0, 0, 10, 10);
// Draw a red custom drawing
drawCustom(gc.getSNIContext(), 5, 5);

// [...]
}

// Custom drawing native method
private static native void drawCustom(byte[] graphicsContext, int x, int y);

6.14. Graphical User Interface 920

MicroEJ Documentation, Revision 32bb132e

All native functions must have a MicroUI GraphicsContext as a parameter (o�en the first parameter) that iden-
tifies the destination target. The application retrieves this target by calling the method GraphicsContext.
getSNIContext() . This method returns a byte array to give as-is to the drawing native method.

BSP Implementation

The native drawing function implementation pattern is:

void Java_com_mycompany_MyPainterClass_drawCustom(MICROUI_GraphicsContext* gc, jint x, jint␣
→˓y) {

// Tell the Graphics Engine if the drawing can be performed
if (LLUI_DISPLAY_requestDrawing(gc, (SNI_callback)&Java_com_mycompany_MyPainterClass_

→˓drawCustom)) {
DRAWING_Status status;

// Perform the drawing (respecting clip if not disabled)
status = custom_drawing(LLUI_DISPLAY_getBufferAddress(&gc->image), x, y);

// Set drawing status
LLUI_DISPLAY_setDrawingStatus(status);

}
// Else: refused drawing

}

The target (the MicroUI GraphicsContext) is retrieved in the native drawing function by mapping the
MICROUI_GraphicsContext structure in MicroUI native drawing function declaration.

This implementation has to follow the same rules as the custom MicroUI drawings implementation: see Custom
Implementation.

Simulation

Note: This chapter considers the VEE Port Front Panel project already features a custom drawer that replaces the
default drawer DisplayDrawer . See Custom Implementation.

The native drawing function implementation pattern is as follows (see below for the explanations):

public static void drawCustom(byte[] target, int x, int y) {

// Retrieve the Graphics Engine instance
LLUIDisplay graphicalEngine = LLUIDisplay.Instance;

// Synchronize the native function with the Graphics Engine
synchronized (graphicalEngine) {

// Retrieve the Front Panel instance of the MicroUI GraphicsContext (the destination)
MicroUIGraphicsContext gc = graphicalEngine.mapMicroUIGraphicsContext(target);

// Ask to the Graphics Engine if a drawing can be performed on the target
if (gc.requestDrawing()) {

(continues on next page)

6.14. Graphical User Interface 921

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

// Retrieve the drawer for the GraphicsContext (by default: DisplayDrawer)
UIDrawing drawer = getUIDrawer(gc);

// Call UIDrawing function
MyDrawer.Instance.drawSomething(gc, x, y);

}
}

}

This implementation has to follow the same rules as the custom MicroUI drawings implementation: see Custom
Implementation.

Drawing Logs

When performing drawing operations, the programmay fail or encounter an incident of some kind. MicroUI o�ers
a mechanism allowing the VEE Port to report such incidents to the application through the use of flags.

Usage Overview

When an incident occurs, the VEE Port can report it to the application by setting the drawing log flags stored in the
graphics context. The flags will then be made available to the application. See Drawing Logs for more information
on reading the flags in the application.

Without an intervention from theapplication, thedrawing log flags retain their values throughevery call to drawing
functions and are cleared when a flush is performed.

Note: The clearing of drawing log flags can be disabled at build time by the application developer.

Incidents are split into two categories:

• Non-critical incidents, or warnings, are incidents that the application developer may ignore. The flags are
made available for the application to check, but without an explicit statement in the application, these inci-
dents will be ignored silently.

• Critical incidents, or errors, are failures significant enough that the application developer should not ignore
them. As for warnings, the application may check the drawing log flags explicitly. However, when flushing
the display, the application checks the flags and throws an exception if an error has been reported.

Warning: As this behavior can be disabled at build time, the drawing log flags are meant to be used as a de-
bugging hint when the application does not display what the developer expects. The VEE Port must not rely
on applications throwing an exception if an error was reported or on the drawing log flags being reset a�er the
display is flushed.

Note: Any incident may be either a warning or an error. They are di�erentiated with the special flag
DRAWING_LOG_ERROR .

6.14. Graphical User Interface 922

MicroEJ Documentation, Revision 32bb132e

Available Constants

MicroUI o�ers a set of flag constants to report incidents to the application. They are defined and documented in
LLUI_PAINTER_impl.h (for embedded targets) and LLUIPainter (for front panels).

Refer to the application documentation for the exhaustive list of drawing logs.

Hint: Sometimes, incidents may match more than one flag constant. In such cases, the VEE Port may report the
incident with multiple flags by combining them with the bitwise OR operator (|), just like any other flags. For
example, an out-of-memory incident occurring in an underlying drawing library may be reported with the value
DRAWING_LIBRARY_INCIDENT | DRAWING_OUT_OF_MEMORY .

Embedded Targets

MicroUI exposes two functions to be used in the VEE Port. Both functions are declared in LLUI_DISPLAY.h , and
their documentation is available in that file.

• LLUI_DISPLAY_reportWarning reports a warning to the application. It will set the flags passed as an argu-
ment in the graphics context. It will not reset the previous flag values, thus retaining all reported incidents
until the application clears the flags.

• LLUI_DISPLAY_reportError reports an error to the application. It behaves similarly to
LLUI_DISPLAY_reportWarning , except it will additionally set the flag DRAWING_LOG_ERROR . This spe-
cial flag will cause an exception to be thrown in the application the next time the application checks the
flags.

For example, if the VEE Port contains a custom implementation to draw a line that may cause an out-of-memory
error, it could report this error this way:

void LLUI_PAINTER_IMPL_drawLine(MICROUI_GraphicsContext* gc, jint startX, jint startY, jint␣
→˓endX, jint endY) {

// This could cause an out-of-memory error.
unsigned int result = custom_line_drawing();

// Check if an error occurred.
if (result == OUT_OF_MEMORY) {

// If an error occurred, set the corresponding flag.
LLUI_DISPLAY_reportError(gc, DRAWING_LOG_OUT_OF_MEMORY);

}
}

Simulator

Similarly, MicroUI exposes two functions to set drawing log flags in the front panel implementation. Both functions
are declared as methods of the interface MicroUIGraphicsContext and are documented there. The graphics
engine provides an implementation for these methods.

• MicroUIGraphicsContext.reportWarning behaves like LLUI_DISPLAY_reportWarning and reports a
warning to the application.

• MicroUIGraphicsContext.reportError behaves like LLUI_DISPLAY_reportError and reports an error
to the application.

6.14. Graphical User Interface 923

MicroEJ Documentation, Revision 32bb132e

The front panel version of the previous example that reported an out-of-memory error would look like this:

public static void drawLine(byte[] target, int startX, int startY, int endX, int endY) {
LLUIDisplay engine = LLUIDisplay.Instance;

synchronized (engine) {
MicroUIGraphicsContext gc = engine.mapMicroUIGraphicsContext(target);

// This could cause an out-of-memory error.
int result = CustomDrawings.drawLine();

// Check if an error occurred.
if (result == Constants.OUT_OF_MEMORY) {

// If an error occurred, set the corresponding flag.
gc.reportError(gc, DRAWING_LOG_OUT_OF_MEMORY);

}
}

}

6.14.11 Images

Overview

Principle

The Image Engine is designed to make the distinction between three kinds of MicroUI images:

• the images which can be used by the application without a loading step: class Image,

• the images which requires a loading step before being usable by the application: class ResourceImage,

• the bu�ered images where the application can draw into: class Bu�eredImage.

The first kind of image requires the Image Engine to be able to use (get, read and draw) an image referenced by
its path without any loading step. The open step should be very fast: just have to find the image in the application
resources list and create an Image object which targets the resource. No RAMmemory to store the image pixels is
required: the Image Engine directly uses the resource address (o�en in FLASHmemory). And finally, closing step is
useless because there is nothing to free (except Image object itself, via the garbage collector).

The second kind of image requires the Image Engine to be able to use (load, read and draw) an image referenced
by its path with or without any loading step. When the image is understandable by the Image Engine without any
loading step, the image is considered like the first kind of image (fast open step, no RAM memory, useless closing
step). When a loading step is required (dynamic decoding, external resource loading, image format conversion),
the open state becomes longer and a bu�er in RAM is required to store the image pixels. By consequence a closing
step is required to free the bu�er when image becomes useless.

The third kind of image requires, by definition, a bu�er to store the image data. Image Engine must be able to use
(create, read and draw) this kind of image. The open state consists in creating a bu�er. By consequence a closing
step is required to free the bu�er when the image becomes useless. Contrary to the other kinds of images, the
application will be able to draw into this image.

6.14. Graphical User Interface 924

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Image.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/ResourceImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/BufferedImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Image.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Image.html

MicroEJ Documentation, Revision 32bb132e

Functional Description

The Image Engine is composed of:

• An “Image Generator” module, for converting images into a MicroEJ format (known by the Image Engine
Renderer) or into a VEE Port binary format (cannot be used by the Image Engine Renderer), before runtime
(pre-generated images).

• The “Image Loader” module, for loading, converting and closing the images.

• A set of “Image Decoder” modules, for converting standard image formats into a MicroEJ format (known by
the Image Renderer) at runtime. Each Image Decoder is an additional module of the main module “Image
Loader”.

• The “Image Renderer” module, for reading and drawing the images in MicroEJ format.

6.14. Graphical User Interface 925

MicroEJ Documentation, Revision 32bb132e

Input Files
(png, xxx)

Image Generator

png | xxx

Flash
(internal ROM, NOR)

png | xxx

External Flash
(SDCard etc.)

png | xxx

png | xxx | mej | binpng | xxx | mej | bin

Image Loader

PNG Decoder

png

XXX Decoder

xxx

MEJ Converter

mej

RAM

mejmej

Image Renderer

BSP

mej

Software
Algorithms

Memory Buffer

mej

png | xxx | mej (to convert)

mej

bin

mej

png | xxx | mej

mej (byte @)

bin

GPU

mej mej | bin

• Colors:

– blue: o�-board elements (tools, files).

– green: hardware elements (memory, processor).

6.14. Graphical User Interface 926

MicroEJ Documentation, Revision 32bb132e

– orange: on-board Graphics Engine elements.

– gray: BSP.

• Line labels:

– png : symbolizes all standard image input formats (PNG, JPG, etc.).

– xxx : symbolizes a non-standard input format.

– mej : symbolizes the MicroEJ output format (MicroEJ Format: Standard).

– bin : symbolizes a VEE Port binary format (Binary Format).

Process overview:

1. The user specifies the pre-generated images to embed (see Image Generator) and / or the images to embed
as regular resources (see Encoded Image).

2. The files are embedded as resources with the application. The files’ data are linked into the FLASHmemory.

3. When the application creates aMicroUI Image object, the Image Loader loads the image, calling the right sub
Image Engine module (see Image Generator and Encoded Image) to decode the specified image.

4. When the application draws this MicroUI Image on the display (or on bu�ered image), the decoded image
data is used, and nomore decoding is required, so the decoding is done only once.

5. When the MicroUI Image is no longer needed, it must be closed explicitly by the application. The Image
Engine Core asks the right sub Image Engine module (see Image Generator and Encoded Image) to free the
image working area.

Dependencies

• MicroUI module (seeMicroUI),

• Displaymodule (see Display): the characteristics of the target display are used to configure the Image Gener-
ator.

Image Format

The Image Engine makes the distinction between:

• The input format: the format of the original image.

• The output format: the image format used by the Image Renderer.

Several formats are managed in input: PNG, JPEG, BMP, etc. A specific VEE Port can support additional input for-
mats.

Several formats are managed in output: the MicroEJ formats and the binary format. The output format can be:

• Generated from the input format using the o�-board tool Image Generator at application compile-time.

• Generated from the input format by using a runtime decoder of the Image Loader at application run-time.

• Dynamically created when using a Bu�eredImage.

The Image Renderer manages only the MicroEJ formats (MicroEJ Format: Standard, MicroEJ Format: Display, and
MicroEJ Format: Custom).

The following table lists all the formats and their usage.

6.14. Graphical User Interface 927

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/BufferedImage.html

MicroEJ Documentation, Revision 32bb132e

Format Input Output Bu�eredImage
Display no yes yes
Standard no yes yes1

Grayscale no yes yesPage 928, 1

RLE no yes no
Custom no not yet yes1

Binary no yes no
Original yes no no

The following sections list all the formats and their usage.

MicroEJ Format: Display

The display bu�er holds a pixel encoding which is:

• standard: see Standard Output Formats,

• grayscale: see Grayscale Output Formats,

• non-standard: see Display Output Format and Pixel Structure.

The non-standard display format can be customized to encode the pixel in the same encoding as the display. The
number of bits per pixel and the pixel bit organization is asked during theMicroEJ format generation andwhen the
drawImage algorithms are running. If the image to encode contains some transparent pixels, the output file will
embed the transparency according to the display’s implementation capacity. When all pixels are fully opaque, no
extra information will be stored in the output file to free up somememory space.

Notes:

• From the Image Engine point of view, the non-standard display format stays a MicroEJ format, readable by
the Image Renderer.

• The required memory to encode an image with a non-standard display format is similar to MicroEJ Format:
Standard.

• When the display format is standard or grayscale, the encoded image format is replaced by the related stan-
dard format.

• TheGraphics Engine’s drawing so�warealgorithmsonly target (areonly compatiblewith) thebu�ered images
whose format is the same as the display format (standard or non-standard).

MicroEJ Format: Standard

See Standard Output Formats.

This format requires a small header (around 20 bytes) to store the image size (width, height), format, flags
(is_transparent, etc.), row stride, etc. The required memory also depends on the number of bits per pixel of the
MicroEJ format:

required_memory = header + (image_width * image_height) * bpp / 8;

The pixel array is stored a�er the MicroEJ image file header. A padding between the header and the pixel array is
added to force to start the pixel array at a memory address aligned on the number of bits-per-pixels.

1 Need some support in the VEE Port to support formats di�erent than the display one (see Bu�ered Image).

6.14. Graphical User Interface 928

MicroEJ Documentation, Revision 32bb132e

Here are the conversions of 32-bit to each format:

• ARGB8888: 32-bit format, 8 bits for transparency, 8 per color.

u32 convertARGB8888toRAWFormat(u32 c){
return c;

}

• ARGB4444: 16-bit format, 4 bits for transparency, 4 per color.

u32 convertARGB8888toRAWFormat(u32 c){
return 0

| ((c & 0xf0000000) >> 16)
| ((c & 0x00f00000) >> 12)
| ((c & 0x0000f000) >> 8)
| ((c & 0x000000f0) >> 4)
;

}

• ARGB1555: 16-bit format, 1 bit for transparency, 5 per color.

u32 convertARGB8888toRAWFormat(u32 c){
return 0

| (((c & 0xff000000) == 0xff000000) ? 0x8000 : 0)
| ((c & 0xf80000) >> 9)
| ((c & 0x00f800) >> 6)
| ((c & 0x0000f8) >> 3)
;

}

• RGB888: 24-bit format, 8 per color.

u32 convertARGB8888toRAWFormat(u32 c){
return c & 0xffffff;

}

• RGB565: 16-bit format, 5 for red, 6 for green, 5 for blue.

u32 convertARGB8888toRAWFormat(u32 c){
return 0

| ((c & 0xf80000) >> 8)
| ((c & 0x00fc00) >> 5)
| ((c & 0x0000f8) >> 3)
;

}

• A8: 8-bit format, only transparency is encoded.

u32 convertARGB8888toRAWFormat(u32 c){
return 0xff - (toGrayscale(c) & 0xff);

}

• A4: 4-bit format, only transparency is encoded.

6.14. Graphical User Interface 929

MicroEJ Documentation, Revision 32bb132e

u32 convertARGB8888toRAWFormat(u32 c){
return (0xff - (toGrayscale(c) & 0xff)) / 0x11;

}

• A2: 2-bit format, only transparency is encoded.

u32 convertARGB8888toRAWFormat(u32 c){
return (0xff - (toGrayscale(c) & 0xff)) / 0x55;

}

• A1: 1-bit format, only transparency is encoded.

u32 convertARGB8888toRAWFormat(u32 c){
return (0xff - (toGrayscale(c) & 0xff)) / 0xff;

}

The pixel order follows this rule:

pixel_offset = (pixel_Y * image_width + pixel_X) * bpp / 8;

MicroEJ Format: Grayscale

See Grayscale Output Formats.

This format requires a small header (around 20 bytes) to store the image size (width, height), format, flags
(is_transparent, etc.), row stride, etc. The required memory also depends on the number of bits per pixel of the
MicroEJ format:

required_memory = header + (image_width * image_height) * bpp / 8;

• AC44: 4 bits for transparency, 4 bits with grayscale conversion.

u32 convertARGB8888toRAWFormat(u32 c){
return 0

| ((color >> 24) & 0xf0)
| ((toGrayscale(color) & 0xff) / 0x11)
;

}

• AC22: 2 bits for transparency, 2 bits with grayscale conversion.

u32 convertARGB8888toRAWFormat(u32 c){
return 0

| ((color >> 28) & 0xc0)
| ((toGrayscale(color) & 0xff) / 0x55)
;

}

• AC11: 1 bit for transparency, 1 bit with grayscale conversion.

u32 convertARGB8888toRAWFormat(u32 c){
return 0

| ((c & 0xff000000) == 0xff000000 ? 0x2 : 0x0)

(continues on next page)

6.14. Graphical User Interface 930

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

| ((toGrayscale(color) & 0xff) / 0xff)
;

}

• C4: 4 bits with grayscale conversion.

u32 convertARGB8888toRAWFormat(u32 c){
return (toGrayscale(c) & 0xff) / 0x11;

}

• C2: 2 bits with grayscale conversion.

u32 convertARGB8888toRAWFormat(u32 c){
return (toGrayscale(c) & 0xff) / 0x55;

}

• C1: 1 bit with grayscale conversion.

u32 convertARGB8888toRAWFormat(u32 c){
return (toGrayscale(c) & 0xff) / 0xff;

}

The pixel order follows this rule:

pixel_offset = (pixel_Y * image_width + pixel_X) * bpp / 8;

MicroEJ Format: RLE Compressed

See Compressed Output Formats.

MicroEJ Format: Custom

A custom format embeds a bu�er whose data are VEE Port specific. This data may be:

• a pixel bu�er whose encoding is di�erent than the formats proposed before,

• a bu�er that is not a pixel bu�er.

This format is identified by a specific format value between 0 and 7: see custom formats.

Images with a custom format can be used as any other image. For that, it requires some support at di�erent levels
depending on their usage:

• To convert an image to this format at compile-time and embed it, an extension of the image generator is
necessary; see VEE Port MicroEJ Custom Format.

• To create a new one at runtime, some native extension is necessary; see Bu�ered Image.

• To use it as a source (to draw the image in another bu�er), some native extension is necessary; see Custom
Format Support.

• To use it as a destination (to draw into the image), some native extension is necessary; see Bu�ered Image.

6.14. Graphical User Interface 931

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Format.html#CUSTOM_0

MicroEJ Documentation, Revision 32bb132e

Binary Format

This format is not compatiblewith the ImageRenderer andMicroUI. It canbeusedbyMicroUI addon librarieswhich
provide their imagemanagement procedures.

Advantages:

• Encoding is known by VEE Port.

• Compression is inherent to the format itself.

Disadvantages:

• This format cannot target a MicroUI Image (unsupported format).

Original Input Format

See Unspecified Output Format.

An image can be embedded without any conversion/compression. This allows embedding the resource as it is to
keep the source image characteristics (compression, bpp, etc.). This option produces the same result as specifying
an image as a resource in the MicroEJ launcher.

The following table lists the original formats that can be decoded at run-time and/or compile-time:

• Image Generator: the o�-board tool that converts an image into an output format. All AWT ImageIO default
formats are supported and always enabled.

• Front Panel: the decoders embedded by the simulator part. All AWT ImageIO default formats are supported
but disabled by default.

• Runtime Decoders: the decoders embedded by the embedded part.

Table 29: Original Image Formats
Type Image Generator Front Panel Runtime Decoders
Graphics Interchange Format (GIF) yes yes2 no7

Joint Photographic Experts Group (JPEG) yes yes2 no7

Portable Network Graphics (PNG) yes yes3 yes3

Windows bitmap (BMP) yes yes4 yes/no4

Web Picture (WebP) yes5 yes5 yes6

2 The formats are disabled by default; see:ref:fp_ui_decoder.
7 The UI-pack does not provide some runtime decoders for these formats, but a BSP can add its decoders (see Encoded Image).
3 The PNG format is supported when the module PNG is selected in the VEE Port configuration file (see Encoded Image).
4 The Monochrome BMP is supported when themodule BMPM is selected in the VEE Port configuration file (see Encoded Image); the colored

BMP format is only supported by the Front Panel (disabled by default, see Image Decoders).
5 Install the tool com.microej.tool#imageio-webp-1.0.1 from the Developer Repository in the VEE Port to support the WEBP format (see

Service Image Loader and Image Decoders).
6 Install the C component com.microej.clibrary.thirdparty#libwebp-1.0.1 in the BSP to support the WEBP format at runtime.

6.14. Graphical User Interface 932

https://docs.oracle.com/javase/7/docs/api/javax/imageio/ImageIO.html
https://docs.oracle.com/javase/7/docs/api/javax/imageio/ImageIO.html

MicroEJ Documentation, Revision 32bb132e

GPU Format Support

TheMicroEJ formats display, standard and grayscalemay be customized to be compatiblewith the hardware (usu-
ally GPU). It can be extended by one or several restrictions on the pixels array:

• Its start address has to be aligned on a higher value than the number of bits-per-pixels.

• A padding has to be added a�er each line (row stride).

• The MicroEJ format can hold a VEE Port-dependent header between the MicroEJ format header (start of file)
and the pixel array. The MicroEJ format is designed to let the VEE Port encode and decode this additional
header. This header is unnecessary and never used for Image Engine so�ware algorithms.

Note: From the Image Engine point of view, the format stays a MicroEJ format, readable by the Image Engine
Renderer.

Advantages:

• The GPU recognizes encoding.

• Drawing an image is o�en very fast.

• Supports opacity encoding.

Disadvantages:

• No compression: the image size in bytes is proportional to the number of pixels. The required memory is
similar toMicroEJ Format: Standard when no custom header exists.

When the MicroEJ format holds another header (called custom_header), the required memory is:

required_memory = header + custom_header + (image_width * image_height) * bpp / 8;

The row stride allows adding somepadding at the end of each line to start the next line at an addresswith a specific
memory alignment; it is o�en required by hardware accelerators (GPU). The row stride is, by default, a value in
relation to the image width: row_stride_in_bytes = image_width * bpp / 8 . Thanks to the Abstraction
Layer API LLUI_DISPLAY_IMPL_getNewImageStrideInBytes , it can be customized at image bu�er creation. The
required memory becomes:

required_memory = header + custom_header + row_stride * image_height;

Image Generator

Principle

The Image Generator module is an o�-board tool that generates image data that is ready to be displayed without
needing additional runtimememory. The twomain advantages of this module are:

• A pre-generated image is already encoded in the format known by the Image Renderer (MicroEJ format) or
by the VEE Port (custom binary format). The time to create an image is very fast and does not require any
RAM (Image Loader is not used).

• No extra support is needed (no runtime Image Decoder).

6.14. Graphical User Interface 933

MicroEJ Documentation, Revision 32bb132e

Functional Description

Fig. 63: Image Generator Principle

Process overview (see too Functional Description)

1. The user defines, in a text file, the images to load.

2. The Image Generator outputs a binary file for each image to convert.

3. The raw files are embedded as (hidden) resources within the MicroEJ Application. The binary files’ data are
linked into the FLASHmemory.

4. When the application creates aMicroUI Image object which targets a pre-generated image, the Image Engine
has only to create a link from the MicroUI image object to the data in the FLASH memory. Therefore, the
loading is very fast; only the image data from the FLASH memory is used: no copy of the image data is sent
to the RAM first.

5. When the MicroUI Image is no longer needed, it is garbage-collected by the VEE Port, which just deletes the
useless link to the FLASHmemory.

The image generator can run in twomodes:

• Standalone mode: the image to convert (input files) are standard (PNG, JPEG, etc.), the generated binary
files are inMicroEJ format and do not depend on VEE Port characteristics or restrictions (seeMicroEJ Format:
Standard).

• Extendedmode: the image to convert (input files)may be custom, the generated binary files can be encoded
in customized MicroEJ format (can depend on several VEE Port characteristics and restrictions, see MicroEJ
Format: Display, GPU Format Support and MicroEJ Format: Custom) or the generated files are encoded in
another format than MicroEJ format (binary format, see Binary Format).

6.14. Graphical User Interface 934

MicroEJ Documentation, Revision 32bb132e

Structure

The Image Generator module is constituted from several parts, the core part and services parts:

• “Core” part: it takes an images list file as entry point and generates a binary file (no specific format) for each
file. To read a file, it redirects the reading to the available service loaders. To generate a binary file, it redirects
the encoding to the available service encoders.

• “Service API” part: it provides some APIs used by the core part to load input files and to encode binary files.
It also provides some APIs to customize the MicroEJ format.

• “Standard input format loader” part: this service loads standard image files (PNG, JPEG, etc.).

• “MicroEJ format generator” part: this service encodes an image in MicroEJ format.

Standalone Mode

The standalone Image Generator embeds all parts described above. By consequence, once installed in a VEE Port,
the standalone image generator does not need any extended module to generate MicroEJ files from standard im-
ages files.

Extended Mode

To increase the capabilities of ImageGenerator, the extensionmust bebuilt andadded in theVEEPort. Asdescribed
above this extension will be able to:

• readmore input image file formats,

• extend the MicroEJ format with VEE Port characteristics,

• encode images in a third-party binary format.

To do that the Image Generator provides some services to implement. This chapter explain how to create and
include this extension in the VEE Port. Next chapters explain the aim of each service.

1. Create a std-javalib project. The module namemust start with the prefix imageGenerator (for instance
imageGeneratorMyPlatform).

2. Add the dependency:

<dependency org="com.microej.pack.ui" name="ui-pack" rev="x.y.z">
<artifact name="imageGenerator" type="jar"/>

</dependency>

Where x.y.z is the UI pack version used to build the VEE Port (minimum 13.0.0). The module.ivy should
look like:

<ivy-module version="2.0" xmlns:ea="http://www.easyant.org" xmlns:m="http://www.easyant.
→˓org/ivy/maven" xmlns:ej="https://developer.microej.com" ej:version="2.0.0">

<info organisation="com.microej.microui" module="imageGeneratorMyPlatform" status=
→˓"integration" revision="1.0.0">

<ea:build organisation="com.is2t.easyant.buildtypes" module="build-std-javalib"␣
→˓revision="2.+"/>

</info>

(continues on next page)

6.14. Graphical User Interface 935

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

<configurations defaultconfmapping="default->default;provided->provided">
<conf name="default" visibility="public" description="Runtime dependencies to␣

→˓other artifacts"/>
<conf name="provided" visibility="public" description="Compile-time dependencies␣

→˓to APIs provided by the VEE Port"/>
<conf name="documentation" visibility="public" description="Documentation related␣

→˓to the artifact (javadoc, PDF)"/>
<conf name="source" visibility="public" description="Source code"/>
<conf name="dist" visibility="public" description="Contains extra files like␣

→˓README.md, licenses"/>
<conf name="test" visibility="private" description="Dependencies for test␣

→˓execution. It is not required for normal use of the application, and is only␣
→˓available for the test compilation and execution phases."/>

</configurations>

<publications/>

<dependencies>
<dependency org="com.microej.pack.ui" name="ui-pack" rev="[UI Pack version]">

<artifact name="imageGenerator" type="jar"/>
</dependency>

</dependencies>
</ivy-module>

3. Create the folder META-INF/services in source folder src/main/resources (this folder will be filled in
later).

4. When a service is added (see next chapters), build the easyant project.

5. Copy the generated jar: target~/artifacts/imageGeneratorMyPlatform.jar in the VEE Port configura-
tion project folder: MyPlatform-configuration/dropins/tools/

6. Rebuild the platform.

Advanced: Test the Extension Project

To quickly test an extension project without rebuilding the VEE Port ormanually exporting the project, add the Ap-
plication Option ej.imagegenerator.extension.project to the absolute path of an Image Generator Extension
project (e.g. c:\mycompany\myimagegeneratorextension). The Image Generator will use the specified Image
Generator Extension project instead of the one included in the VEE Port. This feature is useful for locally testing
certain changes in the Image Generator Extension project.

-Dej.imagegenerator.extension.project=${project_loc:myimagegeneratorextension}

Warning: This feature only works if the VEE Port has been built with the Image Generator module enabled.

The VEE Port will not actually contain the changes until a newVEE Port is built: the VEE Port dropins foldermust
be updated a�er any changes to the Image Generator Extension project.

6.14. Graphical User Interface 936

MicroEJ Documentation, Revision 32bb132e

Warning: Using this feature automatically disables the image cache.

Service Image Loader

The standalone Image Generator is not able to load all images formats, for instance SVG format. The service
loader can be used to add this feature in order to generate an image file in MicroEJ format. There are two
ways to populate the service loader: create a custom implementation of com.microej.tool.ui.generator.
MicroUIRawImageGeneratorExtension or javax.imageio.spi.ImageReaderSpi .

MicroUIRawImageGeneratorExtension

This service allows to add a custom image reader.

1. Open image generator extension project.

2. Create an implementation of interface com.microej.tool.ui.generator.
MicroUIRawImageGeneratorExtension .

3. Create the file META-INF/services/com.microej.tool.ui.generator.
MicroUIRawImageGeneratorExtension and open it.

4. Note down the name of created class, with its package and classname.

5. Rebuild the image generator extension, copy it in VEE Port configuration project (dropins/tools/) and
rebuild the VEE Port (see above).

Note: The class com.microej.tool.ui.generator.BufferedImageLoader already implements the interface.
This implementation is used to load standard images. It can be sub-classed to add some behavior.

ImageReaderSpi

This extension is part of AWT ImageIO. By default, the ImageIO class only manages the standard image formats
JPG, PNG, BMP and GIF. It allows to add some image readers by adding some implementations of the service
javax.imageio.spi.ImageReaderSpi.

Since UI Pack 13.2.0, the Image Generator automatically includes new image decoders (new ImageIO services, see
the class com.microej.tool.ui.generator.BufferedImageLoader), compiled in JAR files that follow this con-
vention:

1. The JAR contains the service declaration /META-INF/services/javax.imageio.spi.ImageReaderSpi ,

2. The JAR filename’s prefix is imageio-,

3. The JAR location is the VEE Port configuration project’s dropins/tools/ directory.

Note: The same JAR is used by the Image Generator and by the Front Panel.

6.14. Graphical User Interface 937

https://docs.oracle.com/javase/7/docs/api/javax/imageio/ImageIO.html

MicroEJ Documentation, Revision 32bb132e

Customize MicroEJ Standard Format

As mentioned above (MicroEJ Format: Display and GPU Format Support), the MicroEJ format can be extended by
notions specific to the VEE Port (and o�en to the GPU the VEE Port is using). The generated file stays a MicroEJ file
format, usable by the Image Renderer. Additionally, the file becomes compatible with the VEE Port constraints.

1. Open image generator extension project.

2. Create a subclass of com.microej.tool.ui.generator.BufferedImageLoader (to be able to load
standard images) or create an implementation of interface com.microej.tool.ui.generator.
MicroUIRawImageGeneratorExtension (to load custom images).

3. Override method convertARGBColorToDisplayColor(int) if the VEE Port’s display pixel encoding is not
standard (see Pixel Structure).

4. Override method getStride(int) if a padding must be added a�er each line.

5. Override method getOptionalHeader() if an additional header must be added between the MicroEJ file
header and pixels array. The header size is also used to align image memory address (custom header is
aligned on its size).

6. Create the file META-INF/services/com.microej.tool.ui.generator.
MicroUIRawImageGeneratorExtension and open it.

7. Note down the name of created class, with its package and classname.

8. Rebuild the image generator extension, copy it in VEEPort configuration project and rebuild the VEEPort (see
above).

If the only constraint is the pixels array alignment, the Image Generator extension is not useful:

1. Open VEE Port configuration file display/display.properties .

2. Add the property imageBuffer.memoryAlignment .

3. Build again the VEE Port.

This alignment will be used by the Image Generator and also by the Image Loader.

VEE Port MicroEJ Custom Format

The Image Generator does not yet provide a service for generating the MicroEJ Format: Custom. A custom image
can only be created at runtime, see Bu�ered Image.

VEE Port Binary Format

The Image Generator can generate a binary file compatible with the VEE Port (and not with the Image Renderer).
This is very usefulwhen a VEEPort features a foundation library that can use other kinds of images than theMicroUI
library. The binary file can be encoded according to the user’s options in the images list file.

1. Open image generator extension project.

2. Create an implementation of the interface com.microej.tool.ui.generator.ImageConverter .

3. Create the file META-INF/services/com.microej.tool.ui.generator.ImageConverter and open it.

4. Note the name of the created class, with its package and class name.

5. Rebuild the image generator extension, copy it into the VEE Port configuration project, and rebuild the VEE
Port (see above).

6.14. Graphical User Interface 938

MicroEJ Documentation, Revision 32bb132e

The binary file can have two kinds of formats (see the API OutputFileType getType()):

• A simple resource: the binary output file is embedded as a resource; the application (or the library) can re-
trieve the file by using an API like getResourceAsStream() .

• An immutable file: the output file contains one or several immutable objects; the application (or the library)
can retrieve the objects by using the Beyond Profile (BON) library.

Configuration File

The Image Generator uses a configuration file (also called the “list file”) for describing images that need to be pro-
cessed. The list file is a text file in which each line describes an image to convert. The image is described as a
resource path, and should be available from the application classpath.

Note: The list file must be specified in the application launcher (see Standalone Application Options). However, all
the files in the application classpath with su�ix .images.list are automatically parsed by the Image Generator
tool.

Each line can add optional parameters (separated by a ‘:’) which define and/or describe the output file format (raw
format). When no option is specified, the image is not converted and embedded as well.

Note: See Configuration File to understand the list file grammar.

• MicroEJ standard output format: to encode the image in a standard MicroEJ format, specify the MicroEJ
format:

Listing 3: Standard Output Format Examples

image1:ARGB8888
image2:RGB565
image3:A4

• MicroEJ “Display” output format: to encode the image in the same format as the display (generic display or
custom display, see Pixel Structure), specify display as output format:

Listing 4: Display Output Format Example

image1:display

• MicroEJ “GPU” output format: this format declaration is identical to standard format. It is a format that is
also supported by the GPU.

Listing 5: GPU Output Format Examples

image1:ARGB8888
image2:RGB565
image3:A4

• MicroEJARGB1565_RLEoutput format (formerlyRLE1): toencode the image inARGB1565_RLE format, specify
ARGB1565_RLE as output format:

6.14. Graphical User Interface 939

MicroEJ Documentation, Revision 32bb132e

Listing 6: ARGB1565_RLE Output Format Example

image1:ARGB1565_RLE
image1:RLE1 # Deprecated

• Without Compression: to keep original file, do not specify any format:

Listing 7: Unchanged Image Example

image1

• Binary format: to encode the image in a format only known by the VEE Port, refer to the VEE Port documen-
tation to knowwhich format are available.

Listing 8: Binary Output Format Example

image1:XXX

Linker File

In addition to images binary files, the Image Generator module generates a linker file (*.lscf). This linker file
declares an image section called .rodata.images . This section follows the next rules:

• The files are always listed in same order between two application builds.

• The section is aligned on the value specified by the Display module property imageBuffer.
memoryAlignment (32 bits by default).

• Each file is aligned on section alignment value.

External Resources

The ImageGeneratormanages twoconfiguration fileswhen theExternal Resources Loader is enabled. The first con-
figuration file lists the images which will be stored as internal resources with the MicroEJ Application. The second
file lists the images the Image Generator must convert and store in the External Resource Loader output directory.
It is the BSP’s responsibility to load the converted images into an external memory.

• Refer to the chapter Images to have more details how to use this kind of resources.

• Refer to the chapter External Resource to have more details how the Image Engine manages this kind of re-
sources.

Installation

The Image Generator is an additional module for the MicroUI library. When the MicroUI module is installed, also
install this module in order to be able to target pre-generated images.

In the VEE Port configuration file, check UI > Image Generator to install the Image Generator module. When
checked, the properties file imageGenerator/imageGenerator.properties is required to specify the Image Gen-
erator extension project. When no extension is required (standalone mode only), this property is useless.

6.14. Graphical User Interface 940

MicroEJ Documentation, Revision 32bb132e

Use

The MicroUI Image APIs are available in the class ej.microui.display.Image ant its subclasses. There are no specific
APIs that use a pre-generated image. When an image has been pre-processed, the MicroUI Image APIs getImage
and loadImage will get/load the images.

Refer to the chapter Standalone Application Options (Libraries > MicroUI > Image) for more information
about specifying the image configuration file.

Image Loader

Principle

The Image Loader is a module of the MicroUI runtime that:

• retrieves image data that is ready to be displayed without needing additional runtimememory,

• retrieves image data that is required to be converted into the format known by the Image Renderer (MicroEJ
format),

• retrieves image in external memories (External Resource loader),

• converts images in MicroEJ format,

• creates a runtime bu�er to manage MicroUI Bu�ered Image,

• manages dynamic images life cycle.

Note: The Image Loader is managing images to be compatible with Image Renderer. It does manage image in
custom format (see Binary Format)

Functional Description

1. The application is using one of three ways to create a MicroUI Image object.

2. The Image Loader creates the image according the MicroUI API, image location, image input format and im-
age output format to be compatible with Image Renderer.

3. When the application closes the image, the Image Loader frees the RAMmemory.

Images Heap

There are several ways to create a MicroUI Image. Except few specific cases, the Image Loader requires some RAM
memory to store the image content in MicroEJ format. This format requires a small header as explained here:
MicroEJ Format: Standard. It can be GPU compatible as explained here: GPU Format Support.

The heap size is application dependant. In the application launcher, set its size in Libraries > MicroUI >
Images heap size (in bytes) . It will declare a section whose name is .bss.microui.display.imagesHeap .

By default, the Image Loader uses an internal best fit allocator to allocate the image bu�ers (internal Graphics En-
gine’s allocator). Some specific Abstraction Layer API (LLAPI) are available to override this default implementation.
These LLAPIs may be helpful to control the bu�ers allocation, retrieve the remaining space, etc. When not imple-
mented by the BSP, the default internal Graphics Engine’s allocator is used.

6.14. Graphical User Interface 941

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Image.html

MicroEJ Documentation, Revision 32bb132e

External Resource

Principle

An image is retrieved by its path (except for Bu�eredImage). The path describes a location in the application class-
path. The resourcemaybegeneratedat the same timeas theapplication (internal resource) or beexternal (external
resource). The Image Loader can load some images located outside the CPU addresses’ space range. It uses the
External Resource Loader.

When an image is located in such memory, the Image Loader copies it into RAM (into the CPU addresses’ space
range). Then it considers the image as an internal resource: it can continue to load the image (see following chap-
ters). TheRAM section used to load the external image is automatically freedwhen the Image Loader does not need
it again.

The imagemay be located in externalmemory but be available in CPUaddresses’ space ranges (byte-addressable).
In this case, the Image Loader considers the image as internal and does not need to copy its content in RAM.

Configuration File

Like internal resources, the ImageGeneratorusesa configuration file (alsocalled the “list file”) fordescribing images
that need to be processed. The list file must be specified in the application launcher (see Standalone Application
Options). However, all the files in the application classpath with the su�ix .imagesext.list are automatically
parsed by the Image Generator tool.

Process

This chapter describes the steps to setup the loading of an external resource from the application:

1. Add the image to the application project resources (typically in the source folder src/main/resources and
in the package images).

2. Create / open the configuration file (e.g. application.imagesext.list).

3. Add the relative path of the image and its output format (e.g. /images/myImage.png:RGB565 see Images).

4. Build the application: the ImageGenerator converts the image in RAW format in the external resources folder
([application_output_folder]/externalResources).

5. Deploy the external resources to the external memory (SDCard, flash, etc.) of the device.

6. (optional) Configure the External Resources Loader to load from this source.

7. Build the application and run it on the device.

8. The application loads the external resource using ResourceImage.loadImage(String).

9. The image loader looks for the image and copies it in the images heap (no copy if the external memory is
byte-addressable).

10. (optional) The imagemay be decoded (for instance: PNG), and the source image is removed from the images
heap.

11. The external resource is immediately closed: the image’s bytes have been copied in the images heap, or the
image’s bytes are always available (byte-addressable memory).

12. The application can use the image.

13. The application closes the image: the image is removed from the image heap.

6.14. Graphical User Interface 942

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/BufferedImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/ResourceImage.html#loadImage-java.lang.String-

MicroEJ Documentation, Revision 32bb132e

Simulation

The Simulator automatically manages the external resources like internal resources. All images listed in *.
imagesext.list files are copied in the external resources folder, and this folder is added to the Simulator’s class-
path.

Image in MicroEJ Format

An imagemay be pre-processed (Image Generator) and so already in the format compatible with Image Renderer:
MicroEJ format.

• When application is loading an imagewhich is in such format andwithout specifying another output format,
the Image Loader has just to make a link between the MicroUI Image object and the resource location. No
more runtime decoder or converter is required, and so nomore RAMmemory.

• When application specifies another output format thanMicroEJ format encoded in the image, Image Loader
has to allocate a bu�er in RAM. It will convert the image in the expected MicroEJ format.

• When application is loading an image in MicroEJ format stored as External Resource, the Image Loader has
to copy the image into RAMmemory to be usable by Image Renderer.

Encoded Image

An image can be encoded (PNG, JPEG, etc.). In this case Image Loader asks to its Image Decoders module if a
decoder is able to decode the image. The source image is not copied in RAM (expect for images stored as External
Resource). ImageDecoder allocates the decoded image bu�er in RAM first and then inflates the image. The image is
encoded inMicroEJ format specified by the application, when specified. When not specified, the image in encoded
in the default MicroEJ format specified by the Image Decoder itself.

The UI extension provides two internal Image Decoders modules:

• PNG Decoder: a full PNG decoder that implements the PNG format (https://www.w3.org/Graphics/PNG).
Regular, interlaced, indexed (palette) compressions are handled.

• BMPMonochromeDecoder: .bmp format files that embedonly 1 bit per pixel canbedecodedby this decoder.

Some additional decoders can be added. Implement the function LLUI_DISPLAY_IMPL_decodeImage to add a
new decoder. The implementation must respect the following rules:

• Fills the MICROUI_Image structure with the image characteristics: width, height and format.

Note: The output image format might be di�erent than the expected format (given as argument). In this
way, the Displaymodule will perform a conversion a�er the decoding step. During this conversion, an out of
memory error can occur because the final RAW image cannot be allocated.

• Allocates the RAW image data calling the function LLUI_DISPLAY_allocateImageBuffer . This functionwill
allocates the RAW image data space in the display working bu�er according the RAW image format and size.

• Decodes the image in the allocated bu�er.

• Waiting the end of decoding step before returning.

6.14. Graphical User Interface 943

MicroEJ Documentation, Revision 32bb132e

Installation

The ImageDecodersmodules are someadditionalmodules to theDisplaymodule. The decoders belong to distinct
modules, and either or several may be installed.

In the VEE Port configuration file, check UI > Image PNG Decoder to install the runtime PNG decoder. Check

UI > Image BMP Monochrome Decoder to install the runtime BMPmonochrom decoder.

Use

The MicroUI Image APIs are available in the class ej.microui.display.Image. There is no specific API that uses
a runtime image. When an image has not been pre-processed (see Image Generator), the MicroUI Image APIs
createImage* will load this image.

Image Renderer

Principle

The Image Renderer is a module of the MicroUI runtime that reads and draws the images (see Image Format). It
calls Abstraction Layer APIs to draw and transform the images (rotation, scaling, deformation, etc.). It also includes
so�ware algorithms to perform the rendering.

Functional Description

All MicroUI image drawings are redirected to a set of Abstraction Layer APIs. All Abstraction Layer APIs are imple-
mented by weak functions, which call so�ware algorithms. The BSP can override this default behavior for each
Abstraction Layer API independently. Furthermore, the BSP can override an Abstraction Layer API for a specific
MicroEJ format (for instance ARGB8888) and call the so�ware algorithms for all other formats.

Destination Format

SinceMicroUI 3.2, thedestinationbu�erof thedrawings canbedi�erent fromthedisplaybu�er format (seeMicroEJ
Format: Display). This destination bu�er format can be a standard format (ARGB8888, A8, etc.) or a custom format.

SeeBu�ered Image formore informationabouthow to createbu�ered imageswith another format than thedisplay
format and how to draw in them.

Input Formats

Standard

The Image Renderer is by default able to draw all standard formats. No extra support in the VEE Port is required to
draw this kind of image.

The image drawing resembles a shape drawing. The drawing is performed by default by the Graphics Engine So�-
ware Algorithms and can be overridden to use a third-party library or a GPU.

6.14. Graphical User Interface 944

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Image.html

MicroEJ Documentation, Revision 32bb132e

Custom

AMicroEJ Format: Custom image can be:

• an image with a pixel bu�er but whose pixel organization is not standard,

• an image with a data bu�er: an image encoded with a third-party encoder (proprietary format or not),

• an imagewith a “command” bu�er: instead of performing the drawings on pixels, the image stores the draw-
ing actions to replay them later,

• etc.

The VEE Port must extend the Image Renderer to support the drawing of these images. This extension can consist
in:

• decoding the image at runtime to draw it,

• using a compatible GPU to draw it,

• using a command interpreter to perform some shape drawings,

• etc.

To draw the custom images, the Image Renderer introduces the notion of custom image drawer. This drawer is an
engine that has the responsibility to draw the image. Each custom image format (0 to 7) has its own imagedrawer.

Each drawing of a custom image is redirected to the associated image drawer.

Note: A custom image drawer can call the UI Shapes Drawing API to draw its elements in the destination.

The implementation is not the same between the Embedded side and the Simulation. However, the concepts are
the same and are described in dedicated chapters.

MicroUI C Module

Principle

As described above, an image drawer allows drawing the images whose format is custom. The MicroUI C module
is designed to manage the notion of drawers: it does not support the custom formats but allows adding some
additional drawers.

This support uses several weak functions and tables to redirect the image drawings. When this support is not used
(when the VEE Port does not need to support custom images), this support can be removed to reduce the footprint
(by removing the indirection tables) and improve the performances (by reducing the number of runtime function
calls).

6.14. Graphical User Interface 945

MicroEJ Documentation, Revision 32bb132e

Standard Formats Only (Default)

The default implementation can only draw images with a standard format. In other words, the application cannot
draw a custom image. This is the most frequent use case, the only one available with MicroUI before version 3.2.

Hint: To select this implementation (to disable the custom format support), the define
LLUI_IMAGE_CUSTOM_FORMATS must be unset.

The following graph illustrates the drawing of an image:

6.14. Graphical User Interface 946

MicroEJ Documentation, Revision 32bb132e

[MicroUI]
Painter.drawXXX();

[LLUI_PAINTER_impl.h]
LLUI_PAINTER_IMPL_drawXXX();

[Graphics Engine]

[GPU]

-

[LLUI_PAINTER_impl.c]
LLUI_PAINTER_IMPL_drawXXX();

[ui_drawing.h]
UI_DRAWING_drawXXX();

algo implemented?

[ui_drawing_soft.h]
UI_DRAWING_SOFT_drawXXX();

[ui_drawing_stub.h]
UI_DRAWING_STUB_drawXXX();

[ui_drawing_stub.c]
UI_DRAWING_STUB_drawXXX();

[ui_image_drawing.h]
UI_IMAGE_DRAWING_drawXXX();

[ui_image_drawing.c]
UI_IMAGE_DRAWING_drawXXX();

standard image?

[ui_drawing_gpu.c]
UI_DRAWING_drawXXX();

GPU compatible?

[GPU driver]

[ui_drawing.c]
weak UI_DRAWING_drawXXX();

yes no

noyes

yes no

6.14. Graphical User Interface 947

MicroEJ Documentation, Revision 32bb132e

LLUI_PAINTER_IMPL_drawImage (available in MicroUI C Module)

Similar to LLUI_PAINTER_IMPL_drawLine , seeMicroUI C Module.

UI_DRAWING_drawImage

// Available in MicroUI C Module
#define UI_DRAWING_DEFAULT_drawImage UI_DRAWING_drawImage

// To write in the BSP (optional)
#define UI_DRAWING_GPU_drawImage UI_DRAWING_drawImage

The function names are set thanks to some define . These name redirections are helpful when the VEE Port fea-
tures more than one destination format (not the use-case here).

UI_DRAWING_GPU_drawImage (to write in the BSP)

Similar to UI_DRAWING_GPU_drawLine (seeMicroUI CModule), but lets the imagedrawermanage the image instead
of calling the so�ware drawer directly.

// Unlike the MicroUI C Module, this function is not "weak".
DRAWING_Status UI_DRAWING_GPU_drawImage(MICROUI_GraphicsContext* gc, MICROUI_Image* img,␣
→˓jint regionX, jint regionY, jint width, jint height, jint x, jint y, jint alpha) {

DRAWING_Status status;

if (is_gpu_compatible(xxx)) {

// See chapter "Drawings"
// [...]

}
else {

// Let the image drawer manages the image (available in the C module)
status = UI_IMAGE_DRAWING_draw(gc, img, regionX, regionY, width, height, x, y, alpha);

}
return status;

}

UI_DRAWING_DEFAULT_drawImage (available in MicroUI C Module)

// Use the preprocessor 'weak'
__weak DRAWING_Status UI_DRAWING_DEFAULT_drawImage(MICROUI_GraphicsContext* gc, MICROUI_
→˓Image* img, jint regionX, jint regionY, jint width, jint height, jint x, jint y, jint␣
→˓alpha) {
#if !defined(LLUI_IMAGE_CUSTOM_FORMATS)

return UI_DRAWING_SOFT_drawImage(gc, img, regionX, regionY, width, height, x, y, alpha);
#else

return UI_IMAGE_DRAWING_draw(gc, img, regionX, regionY, width, height, x, y, alpha);
#endif
}

The define LLUI_IMAGE_CUSTOM_FORMATS is not set, so the implementation of the weak function only consists in
calling the Graphics Engine’s so�ware algorithm.

6.14. Graphical User Interface 948

MicroEJ Documentation, Revision 32bb132e

Custom Format Support

In addition to the standard formats, this implementation allows drawing images with a custom format. This ad-
vanced use case is available only with MicroUI 3.2 or higher.

Hint: To select this implementation, the define LLUI_IMAGE_CUSTOM_FORMATS must be set (no specific value).

TheMicroUI Cmodule uses some tables to redirect the imagemanagement to the expected extension. There is one
table per Image Abstraction Layer API (draw, copy, region, rotate, scale, flip) to embed only necessary algorithms
(a table and its functions are only embedded in the final binary file if and only if the MicroUI drawing method is
called).

Each table contains ten elements:

static const UI_IMAGE_DRAWING_draw_t UI_IMAGE_DRAWING_draw_custom[] = {
&UI_DRAWING_STUB_drawImage,
&UI_DRAWING_SOFT_drawImage,
&UI_IMAGE_DRAWING_draw_custom0,
&UI_IMAGE_DRAWING_draw_custom1,
&UI_IMAGE_DRAWING_draw_custom2,
&UI_IMAGE_DRAWING_draw_custom3,
&UI_IMAGE_DRAWING_draw_custom4,
&UI_IMAGE_DRAWING_draw_custom5,
&UI_IMAGE_DRAWING_draw_custom6,
&UI_IMAGE_DRAWING_draw_custom7,

};

• UI_DRAWING_STUB_drawImage is thedrawing functioncalledwhen thedrawing function is not implemented,

• UI_DRAWING_SOFT_drawImage is the drawing function that redirects the drawing to theGraphics Engine So�-
ware Algorithms,

• UI_IMAGE_DRAWING_draw_customX (0 to 7) are the drawing functions for each custom format.

The MicroUI C Module retrieves the table index according to the image format.

The following graph illustrates the drawing of an image:

6.14. Graphical User Interface 949

MicroEJ Documentation, Revision 32bb132e

[MicroUI]
Painter.drawXXX();

[LLUI_PAINTER_impl.h]
LLUI_PAINTER_IMPL_drawXXX();

[Graphics Engine]

[GPU]

-

[custom drawing]

[ui_drawing.h]
@see Simple Flow (chapter Drawings)

optional
 (drawShapes)

[LLUI_PAINTER_impl.c]
LLUI_PAINTER_IMPL_drawXXX();

[ui_drawing.h]
UI_DRAWING_drawXXX();

algo implemented?

[ui_drawing_soft.h]
UI_DRAWING_SOFT_drawXXX();

[ui_drawing_stub.h]
UI_DRAWING_STUB_drawXXX();

[ui_drawing_stub.c]
UI_DRAWING_STUB_drawXXX();

[ui_image_drawing.h]
UI_IMAGE_DRAWING_drawXXX();

[ui_image_drawing.c]
UI_IMAGE_DRAWING_drawXXX();

[ui_drawing_gpu.c]
UI_DRAWING_drawXXX();

GPU compatible?

standard image?

[ui_image_drawing.c]
table[x] = UI_IMAGE_DRAWING_draw_customX()

implemented?

[ui_image_x.c]
UI_IMAGE_DRAWING_draw_customX()

[GPU driver]

[ui_drawing.c]
weak UI_DRAWING_drawXXX();

[ui_image_drawing.c]
weak UI_IMAGE_DRAWING_draw_customX();

yes no

noyes

yes no

yes no

6.14. Graphical User Interface 950

MicroEJ Documentation, Revision 32bb132e

Take the same example as the Standard Formats Only implementation (draw an image):

UI_DRAWING_DEFAULT_drawImage (available in MicroUI C Module)

// Use the preprocessor 'weak'
__weak DRAWING_Status UI_DRAWING_DEFAULT_drawImage(MICROUI_GraphicsContext* gc, MICROUI_
→˓Image* img, jint regionX, jint regionY, jint width, jint height, jint x, jint y, jint␣
→˓alpha) {
#if !defined(LLUI_IMAGE_CUSTOM_FORMATS)

return UI_DRAWING_SOFT_drawImage(gc, img, regionX, regionY, width, height, x, y, alpha);
#else

return UI_IMAGE_DRAWING_draw(gc, img, regionX, regionY, width, height, x, y, alpha);
#endif
}

The define LLUI_IMAGE_CUSTOM_FORMATS is set so the implementation of the weak function redirects the image
drawing to the image drawers manager (ui_image_drawing.h).

UI_IMAGE_DRAWING_draw (available in MicroUI C Module)

static const UI_IMAGE_DRAWING_draw_t UI_IMAGE_DRAWING_draw_custom[] = {
&UI_DRAWING_STUB_drawImage,
&UI_DRAWING_SOFT_drawImage,
&UI_IMAGE_DRAWING_draw_custom0,
&UI_IMAGE_DRAWING_draw_custom1,
&UI_IMAGE_DRAWING_draw_custom2,
&UI_IMAGE_DRAWING_draw_custom3,
&UI_IMAGE_DRAWING_draw_custom4,
&UI_IMAGE_DRAWING_draw_custom5,
&UI_IMAGE_DRAWING_draw_custom6,
&UI_IMAGE_DRAWING_draw_custom7,

};

DRAWING_Status UI_IMAGE_DRAWING_draw(MICROUI_GraphicsContext* gc, MICROUI_Image* img, jint␣
→˓regionX, jint regionY, jint width, jint height, jint x, jint y, jint alpha){

return (*UI_IMAGE_DRAWING_draw_custom[_get_table_index(gc, img)])(gc, img, regionX,␣
→˓regionY, width, height, x, y, alpha);
}

The implementation in theMicroUI Cmodule redirects the drawing to the expected drawer. The drawer is retrieved
thanks to its format (function _get_table_index()):

• the format is standard but the destination is not the display format: index 0 is returned,

• the format is standard and the destination is the display format: index 1 is returned,

• the format is custom: index 2 to 9 is returned,

UI_IMAGE_DRAWING_draw_custom0 (available in MicroUI C Module)

// Use the preprocessor 'weak'
__weak DRAWING_Status UI_IMAGE_DRAWING_draw_custom0(MICROUI_GraphicsContext* gc, MICROUI_
→˓Image* img, jint regionX, jint regionY, jint width, jint height, jint x, jint y, jint␣
→˓alpha){

(continues on next page)

6.14. Graphical User Interface 951

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

return UI_DRAWING_STUB_drawImage(gc, img, regionX, regionY, width, height, x, y, alpha);
}

The default implementation of UI_IMAGE_DRAWING_draw_custom0 (same behavior for 0 to 7) consists in calling
the stub implementation.

UI_DRAWING_STUB_drawImage (available in MicroUI C Module)

DRAWING_Status UI_DRAWING_STUB_drawImage(MICROUI_GraphicsContext* gc, MICROUI_Image* img,␣
→˓jint regionX, jint regionY, jint width, jint height, jint x, jint y, jint alpha){
// Set the drawing log flag "not implemented"
LLUI_DISPLAY_reportError(gc, DRAWING_LOG_NOT_IMPLEMENTED);
return DRAWING_DONE;

}

The implementation only consists in setting the Drawing log flag DRAWING_LOG_NOT_IMPLEMENTED to notify the
application that the drawing has not been performed.

Simulation

Principle

The simulation behavior is similar to theMicroUI C Module for the Embedded side.

The Front Panel defines support of the drawers based on Java service loader.

Standard Formats Only (Default Implementation)

The default implementation can draw images with a standard format.

The following graph illustrates the drawing of an image:

6.14. Graphical User Interface 952

MicroEJ Documentation, Revision 32bb132e

[MicroUI]
Painter.drawXXX();

[FrontPanel]
LLUIPainter.drawXXX();

[Graphics Engine]

[Third-party lib]

-

[FrontPanel]
getUIDrawer().drawXXX();

[FrontPanel]
DisplayDrawer.drawXXX();

[FrontPanel]
getUIDrawerSoftware()

.drawXXX();

[FrontPanel]
getUIImageDrawer()

.drawXXX();

standard image?

[VEE Port FP]
DisplayDrawerExtension

.drawXXX();

can draw algo?

[FrontPanel]
no op

method overridden?

no

yes

yesno

yes no

6.14. Graphical User Interface 953

MicroEJ Documentation, Revision 32bb132e

It is possible to override the image drawers for the standard format in the same way as the custom formats.

Custom Format Support

It is possible to draw imageswith a custom format by implementing the UIImageDrawing interface. This advanced
use case is available only with MicroUI 3.2 or higher.

The UIImageDrawing interface contains onemethod for each image drawing primitive (draw, copy, region, rotate,
scale, flip). Only the necessarymethods can be implemented. Each non-implementedmethodwill result in calling
the stub implementation.

The method handledFormat() must be implemented and returns the managed format.

Once created, the UIImageDrawing implementation must be registered as a service.

The following graph illustrates the drawing of an image:

6.14. Graphical User Interface 954

MicroEJ Documentation, Revision 32bb132e

[MicroUI]
Painter.drawXXX();

[FrontPanel]
LLUIPainter.drawXXX();

[Graphics Engine]

[Third-party lib]

- [custom drawing]

[FrontPanel]
getUIDrawer().drawXXX();

@see Simple Flow (chapter Drawings)

optional
(drawShapes)

[FrontPanel]
getUIDrawer().drawXXX();

[FrontPanel]
DisplayDrawer.drawXXX();

[FrontPanel]
getUIDrawerSoftware()

.drawXXX();

[FrontPanel]
getUIImageDrawer()

.drawXXX();

standard image?

[VEE Port FP]
DisplayDrawerExtension

.drawXXX();

can draw algo?

[FrontPanel]
no op

[VEE Port Fp]
CustomImageDrawing.draw()

method overridden?

no

yes

yesno

yes

available image drawer
and method implemented?

no

no yes

6.14. Graphical User Interface 955

MicroEJ Documentation, Revision 32bb132e

Let’s implement the image drawer for the CUSTOM_0 format.

public class MyCustomImageDrawer implements UIImageDrawing {

@Override
public MicroUIImageFormat handledFormat() {

return MicroUIImageFormat.MICROUI_IMAGE_FORMAT_CUSTOM_0;
}

@Override
public void draw(MicroUIGraphicsContext gc, MicroUIImage img, int regionX, int regionY,␣

→˓int width, int height,
int x, int y, int alpha) {

MyCustomImage customImage = (MyCustomImage) img.getImage().getRAWImage();
customImage.drawOn(gc, regionX, regionY, width, height, x, y, alpha);

}

}

Now, this drawer needs to be registered as a service. This can be achieved by creating a file in the resources of the
Front Panel project named META-INF/services/ej.microui.display.UIImageDrawing . And its content con-
taining the fully qualified name of the previously created image drawer.

com.mycompany.MyCustomImageDrawer

It is also possible to declare it programmatically (see where a drawer is registered in the drawing custom section):

LLUIDisplay.Instance.registerUIImageDrawer(new MyCustomImageDrawer());

Image Pixel Conversion

Overview

The Graphics Engine is built for a dedicated display pixel format (see Pixel Structure). For this pixel format, the
Graphics Enginemust be able to draw images with or without alpha blending and with or without transformation.
In addition, it must be able to read all image formats.

The applicationmay not use all MicroUI image drawing options andmay not use all images formats. It is not possi-
ble to detect what the application needs, so no optimization can be performed at application compiletime. How-
ever, for a given application, the VEE Port can be built with a reduced set of pixel support.

All pixel format manipulations (read, write, copy) are using dedicated functions. It is possible to remove some
functions or to use generic functions. The advantage is to reduce the memory footprint. The inconvenient is that
some features are removed (the application should not use them) or some features are slower (generic functions
are slower than the dedicated functions).

6.14. Graphical User Interface 956

MicroEJ Documentation, Revision 32bb132e

Functions

There are five pixel conversionmodes:

• Draw an image without transformation and without global alpha blending: copy a pixel from a format to the
destination format (display format).

• Drawan imagewithout transformationandwithglobal alphablending: copyapixelwith alphablending from
a format to the destination format (display format).

• Draw an imagewith transformation andwith or without alpha blending: draw an ARGB8888 pixel in destina-
tion format (display format).

• Load a ResourceImage with an output format: convert an ARGB8888 pixel to the output format.

• Read a pixel from an image (Image.readPixel() or to draw an image with transformation or to convert an
image): read any pixel format and convert it to ARGB8888.

Table 30: Pixel Conversion
Nb input formats Nb output formats Number of combinations

Draw image without global alpha 22 1 22
Draw image with global alpha 22 1 22
Draw image with transformation 2 1 2
Load a ResourceImage 1 6 6
Read an image 22 1 22

There are 22x1 + 22x1 + 2x1 + 1x6 + 22x1 = 74 functions. Each function takes between 50 and 200 bytes
depending on its complexity and the C compiler.

Linker File

All pixel functions are listed in a VEE Port linker file. It is possible to edit this file to remove some features or to share
some functions (using generic function).

How to get the file:

1. Build VEE Port as usual.

2. Copy VEEPort file [platform]/source/link/display_image_x.lscf in the VEEPort configuration project:
[VEE Port configuration project]/dropins/link/ . Where x is a number that characterizes the display
pixel format (see Pixel Structure). See next warning.

3. Perform some changes into the copied file (see a�er).

4. Rebuild the VEE Port: the file in the dropins folder is copied in the VEE Port instead of the original one.

Warning: When the display format in [VEE Port configuration project]/display/display.properties
changes, the linker file su�ix changes too. Perform again all the operations in the new file with the new su�ix.

The linker file holds five tables, one for each use case, respectively IMAGE_UTILS_TABLE_COPY ,
IMAGE_UTILS_TABLE_COPY_WITH_ALPHA , IMAGE_UTILS_TABLE_DRAW , IMAGE_UTILS_TABLE_SET and
IMAGE_UTILS_TABLE_READ . For each table, a comment describes how to remove an option (when possible)
or how to replace an option by a generic function (if available).

6.14. Graphical User Interface 957

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/ResourceImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Image.html#readPixel-int-int-

MicroEJ Documentation, Revision 32bb132e

Installation

The Image Renderermodule is part of theMicroUImodule andDisplaymodule. Install them to be able to use some
images.

Use

The MicroUI image APIs are available in the class ej.microui.display.Image.

Bu�ered Image

Overview

MicroUI application can create an image it candraw into: theMicroUI ej.microui.display.Bu�eredImage. The format
of this kind of image is Display (default), Standard, or Custom (see following chapters).

Warning: The output format Standard and Custom depends on the VEE Port capabilities.

To create this kind of image, the Image Loader has to create a bu�er in the images heapwhose size depends on the
image data size (see Image Creation).

Drawer

A bu�ered image requires a drawer. A drawer is an engine that has the responsibility to:

• allow the application to create Standard and Custom bu�ered images,

• draw into these images.

The implementation is not the same between the Embedded side and the Simulation. However, the concepts are
the same and are described in dedicated chapters.

Formats

Display

This is the format used by default when no format is specified when creating a MicroUI BufferedImage .

The image format is the same as the display bu�er format; in other words, its number of bits-per-pixel and its pixel
bits organization are the same (see chapterMicroEJ Format: Display).

• Image creation: the Graphics Engine provides the capacity to create this kind of image; no specific support is
required in the VEE Port.

• Draw into the image: the rules to draw into this kind of bu�ered image are the same as in the display bu�er;
see:ref:section_drawings.

• Draw the image: the rules to draw this kind of bu�ered image are described in the chapter image renderer
standard.

6.14. Graphical User Interface 958

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Image.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/BufferedImage.html

MicroEJ Documentation, Revision 32bb132e

Standard

A MicroUI BufferedImage can be created specifying a MicroEJ Format: Standard or MicroEJ Format: Grayscale
format.

Note: When the display format is the same as the standard format used to create the bu�ered image, the rules to
create the image, to draw into it and to draw it are the same as the Display format. This chapter describes the use
case when the format di�ers from the display format.

Unlike the display format, the VEE Port must feature a drawer for each standard format.

• Image creation: the drawer allows the creation of this kind of bu�ered image; if the VEE Port does not feature
a drawer for a specific format, the MicroUI BufferedImage cannot be created, and an exception is thrown at
runtime.

• Draw into the image: the drawer can implement all MicroUI drawings or just a reduced set; when a drawing
is not implemented, a stub implementation (that does nothing) is used.

• Draw the image: the image is standard, so its rendering is standard also; the rules todraw this kindof bu�ered
image are described in the chapter image renderer standard (no extra support needed in the VEE Port).

Custom

A MicroUI BufferedImage can be created specifying aMicroEJ Format: Custom formats.

Like standard formats, the VEE Port must feature a drawer for each custom format. It must also feature an image
allocator.

• Image creation: the allocator and drawer allow to create of this kind of bu�ered image; if the VEE Port does
not feature an allocator and a drawer for a specific format, the MicroUI BufferedImage cannot be created,
and an exception is thrown at runtime.

• Draw into the image: the drawer can implement all MicroUI drawings or just a reduced set; when a drawing
is not implemented, a stub implementation (that does nothing) is used.

• Draw the image: the image is custom, so its rendering is custom also; the rules to draw this kind of bu�ered
image are described in the chapter image renderer custom.

MicroUI C Module

Drawer

As described above, a drawer allows to create and draw into bu�ered imageswhose format di�ers from the display
format. The MicroUI C module is designed to manage the notion of drawers: it does not support the other formats
than display format, but it allows to add some additional drawers.

This supportuses severalweak functionsand tables to redirect the imagecreationanddrawings. When this support
is not used (when the VEE Port does not need to support extra images), this support can be removed to reduce the
footprint (by removing the indirection tables) and increase the performances (by reducing the number of runtime
function calls).

In addition to the Display, Standard, and Custom formats, the MicroUI C module implementation introduces the
notion of Single andMultiple formats, more specifically Single Format Implementation andMultiple Formats Imple-
mentation.

6.14. Graphical User Interface 959

MicroEJ Documentation, Revision 32bb132e

Single Format Implementation (Default Implementation)

This MicroUI Bu�eredImage implementation can only target images with the display format. In other words, the
application cannot create aMicroUI Bu�eredImagewith a format di�erent than the display format. This is themost
frequent use case, the only one available with MicroUI before version 3.2.

Hint: To select this implementation (to disable the multi formats support), the define
LLUI_GC_SUPPORTED_FORMATS must be unset or lower than 2 .

This is the default implementation.

Multiple Formats Implementation

This MicroUI Bu�eredImage implementation allows the creation of a MicroUI Bu�eredImage whose format di�ers
from the display format. This advanced use case is available only with MicroUI 3.2 or higher.

Hint: To select this implementation, the define LLUI_GC_SUPPORTED_FORMATS must be set to 2 ormore. Its value
defines the available number of extra formats the VEE Port features.

The MicroUI C module uses some tables to redirect the image management to the expected drawer. There is one
table per Abstraction Layer API not to embed all algorithms (a table and its functions are only embedded in the
final binary file if and only if theMicroUI drawingmethod is called). The tables size is dimensioned according to the
define value.

To manipulate the tables, the C module uses 0-based index whose value is di�erent from the image format value.
For instance, according to the VEE Port capabilities, the support image format ARGB8888 can have the index 1 for
a given VEE Port and 2 for another one. This di�erentiation reduces the size of the tables: when the VEE Port does
not support a format, no extra size in the tables is used (no empty cell).

Note: The index 0 is reserved for the display format.

A tableholdsa list of functions for agivenalgorithm. For instance, the following tableallows redirecting thedrawing
writePixel to the drawers 0 to 2 :

static const UI_DRAWING_writePixel_t UI_DRAWER_writePixel[] = {
&UI_DRAWING_writePixel_0,
&UI_DRAWING_writePixel_1,

#if (LLUI_GC_SUPPORTED_FORMATS > 2)
&UI_DRAWING_writePixel_2,

#endif
};

• UI_DRAWING_writePixel_0 is the drawing function called when the image format is the display format,

• UI_DRAWING_writePixel_1 and UI_DRAWING_writePixel_2 are the drawing functions called for the im-
ages whose format are respectively identified by the index 1 and 2 (see Image Creation below).

By default, the Cmodule onlymanages up to 3 formats: the display format (index 0) and twoother formats. To add
another format, the Cmodule must be customized: look for everywhere the define LLUI_GC_SUPPORTED_FORMATS
is used and add a new cell in the tables.

6.14. Graphical User Interface 960

MicroEJ Documentation, Revision 32bb132e

Custom Format

A MicroUI Bu�eredImage can have a custom format once the Multiple Formats Implementation is selected. How-
ever, third-party support is required to render this kind of image.

Hint: In addition to the #define LLUI_GC_SUPPORTED_FORMATS , the #define LLUI_IMAGE_CUSTOM_FORMATS
must be set. This is the same define used to render custom RAW images: see Custom Format Support.

Image Creation

Overview

Creating an image consists of several steps. The Graphics Enginemanages these steps, which calls four Abstraction
Layer APIs. The MicroUI C Module already implements these four LLAPI.

According to the support of multiple drawers, the C module redirects or not these LLAPI to some ui_drawing.h
functions. The image creation steps are briefly described below; refer to the following chapters for more details.

1. The application asks for the creation of a bu�ered image.

2. The Graphics Engine calls the LLAPI LLUI_DISPLAY_IMPL_getDrawerIdentifier() : this function allows
to get a drawer index related to the image format. The index 0 indicates to use the default drawer: the
display drawer. A positive value indicates a drawer index for all other formats than the display format. A
negative index indicates that theVEEPort doesnot support the image format (in that case, the image creation
is refused, and an exception is thrown in the application).

3. Depending on the image format, the Graphics Engine calculates the minimal stride of the image. This
stride can be customized to fit the GPU constraint (see GPU Format Support) by implementing the LLAPI
LLUI_DISPLAY_IMPL_getNewImageStrideInBytes() .

4. TheGraphics Enginedetermines the imagebu�er size according to the image format, size (width andheight),
and stride (see previous step). This size and the bu�er alignment can be adjusted thanks to the LLAPI
LLUI_DISPLAY_IMPL_adjustNewImageCharacteristics() . The bu�er size should be larger or equal to that
calculated by the Graphics Engine. If smaller, the Graphics Engine will use the initial value. For a custom im-
age, the initial value is 0: the VEE Portmust set a positive value; otherwise, the image creation is refused, and
an exception is thrown in the application.

5. The Graphics Engine allocates the image bu�er according to the values adjusted before (size and alignment).

6. Finally, the Graphics Engine calls the LLAPI LLUI_DISPLAY_IMPL_initializeNewImage() that allows the
VEE Port to initialize the image bu�er (o�en only useful for custom images).

Single Format Implementation

The MicroUI C module implements the four LLAPI to create only MicroUI Bu�eredImages with the display format.

• LLUI_DISPLAY_IMPL_getDrawerIdentifier() : the C module checks if the image format is the display for-
mat. If yes, it returns the index 0 indicating the Graphics Engine to use the default drawer. If not, it returns a
negative index: the image creation is refused.

• It redirects the three last LLAPI to some ui_drawing.h functions. These ui_drawing.h functionsarealready
implemented as weak functions, which allows the VEE Port to implement only the required functions:

– Implementation of LLUI_DISPLAY_IMPL_getNewImageStrideInBytes() calls
UI_DRAWING_getNewImageStrideInBytes() , the weak function returns the stride given as parameter.

6.14. Graphical User Interface 961

MicroEJ Documentation, Revision 32bb132e

– Implementation of LLUI_DISPLAY_IMPL_adjustNewImageCharacteristics() calls
UI_DRAWING_adjustNewImageCharacteristics() , the weak function does nothing.

– Implementation of LLUI_DISPLAY_IMPL_initializeNewImage() calls
UI_DRAWING_initializeNewImage() , the weak function does nothing.

Multiple Formats Implementation

The MicroUI C module implements the four LLAPI to create a MicroUI Bu�eredImage with any format.

• LLUI_DISPLAY_IMPL_getDrawerIdentifier() : the C module checks if the image format is the display for-
mat. If yes, it returns the index 0``indicating the Graphics Engine to use the default drawer. If
not, it calls the function ``UI_DRAWING_is_drawer_1() and then UI_DRAWING_is_drawer_2() .
The VEE Port has the responsibility to implement at least one function. The index 1 or 2 will be assigned to
the image format according to the VEE Port capabilities. The image creation is refused if no drawer is found
for the given format.

• It redirects the three last LLAPI to the associated tables:

– Implementation of LLUI_DISPLAY_IMPL_getNewImageStrideInBytes() calls the functions of the ta-
ble UI_DRAWER_getNewImageStrideInBytes[] , the weak functions return the stride given as param-
eter.

– Implementation of LLUI_DISPLAY_IMPL_adjustNewImageCharacteristics() calls the functions of
the table UI_DRAWER_adjustNewImageCharacteristics[] , the weak functions do nothing.

– Implementation of LLUI_DISPLAY_IMPL_initializeNewImage() calls the functions of the table
UI_DRAWER_initializeNewImage[] , the weak functions do nothing.

Display and Standard Image

For this kind of image, the implementation of the functions getNewImageStrideInBytes ,
adjustNewImageCharacteristics and initializeNewImage is optional: it mainly depend on the GPU
support.

Custom Image

For the custom images, the implementation of the function getNewImageStrideInBytes is optional but the im-
plementation of the functions adjustNewImageCharacteristics and initializeNewImage is mandatory:

• adjustNewImageCharacteristics has to set the imagebu�er size (thedefault value is 0 , which is an invalid
size); the Graphics Engine will use this value to allocate the image bu�er.

• initializeNewImage must initialize the custom image bu�er.

6.14. Graphical User Interface 962

MicroEJ Documentation, Revision 32bb132e

Image Closing

The BSP has the responsibility to free the third-party resources associated with an im-
age. Most of the time, the resources are allocated and initialized in the implementation of
LLUI_DISPLAY_IMPL_initializeNewImage() (see above). When the Graphics Engine closes an image, it
calls the function LLUI_DISPLAY_IMPL_freeImageResources() . Depending on whether multiple drawers are
supported, the Cmodule may redirect this LLAPI to some ui_drawing.h functions.

Single Format Implementation

The MicroUI C module provides an implementation of the LLAPI. By default, no third-party resources are asso-
ciated with bu�ered images. Therefore, LLUI_DISPLAY_IMPL_freeImageResources() calls the weak function
UI_DRAWING_freeImageResources() that does nothing.

If the function UI_DRAWING_initializeNewImage() has been implemented in the BSP, the function
UI_DRAWING_freeImageResources() should be implemented too.

Multiple Formats Implementation

The MicroUI C module implements the LLAPI to let each image manager close the image resources.
The implementation of LLUI_DISPLAY_IMPL_freeImageResources() calls the functions of the table
UI_DRAWER_freeImageResources[] , which have default weak implementations that do nothing.

Display and Standard Image

For this kind of image, implementing the function freeImageResources is optional: itmainly depends on theGPU
support.

Custom Image

For the custom images, the implementation of the function freeImageResources is optional, but o�en required
to free the third-party resources.

Draw into the Image: Display Format

Overview

Todraw into abu�ered imagewith thedisplay format, the sameconcepts to draw in thedisplay bu�er are used: the
MicroUI Abstraction Layer drawings are redirected to the ui_drawing.h functions (seeDrawings formore details).

The MicroUI C module already implements all ui_drawing.h functions, and the drawings are redirected to the
Graphics Engine So�ware Algorithms. However the function names are UI_DRAWING_DEFAULT_drawX() and not
UI_DRAWING_drawX() . Thanks to thedefine LLUI_GC_SUPPORTED_FORMATS , the functionnames are redefinedwith
C macros. This compile-time redirection allows using the same implementation (UI_DRAWING_DEFAULT_drawX()
) when the multiple formats support is disabled or enabled (when the target is an image with the same format as
the display).

The weak implementation of the function UI_DRAWING_DEFAULT_drawX() calls Graphics Engine So�ware Algo-
rithms . This implementation allows a GPUor a third-party drawer to perform the rendering (seeDrawings formore
details).

6.14. Graphical User Interface 963

MicroEJ Documentation, Revision 32bb132e

Single Format Implementation

The define LLUI_GC_SUPPORTED_FORMATS is unset or lower than 2 ; the compile-time redirection is:

#define UI_DRAWING_DEFAULT_writePixel UI_DRAWING_writePixel

Multiple Formats Implementation

For the images whose format is the display format (index 0 , see Multiple Formats Implementation), the compile-
time redirection is:

#define UI_DRAWING_DEFAULT_writePixel UI_DRAWING_writePixel_0

Draw into the Image: Non-Display Format

To draw into a bu�ered imagewith a format di�erent than the display format, theMultiple Formats Implementation
must be selected.

For the images whose format is not the display format (index 1 and 2), the Cmodule provides weak implementa-
tions that do nothing.

The following graph illustrates the drawing of a shape (not an image, see Draw the Image: Multiple Formats Imple-
mentation):

6.14. Graphical User Interface 964

MicroEJ Documentation, Revision 32bb132e

[MicroUI]
Painter.drawXXX();

[LLUI_PAINTER_impl.h]
LLUI_PAINTER_IMPL_drawXXX();

[Graphics Engine][GPU]

[custom drawing]

-

[LLUI_PAINTER_impl.c]
LLUI_PAINTER_IMPL_drawXXX();

[ui_drawing.h]
UI_DRAWING_drawXXX();

[ui_drawing.c]
UI_DRAWING_drawXXX();

[ui_drawing_soft.h]
UI_DRAWING_SOFT_drawXXX();

[ui_drawing_stub.h]
UI_DRAWING_STUB_drawXXX();

[ui_drawing_stub.c]
UI_DRAWING_STUB_drawXXX();

GC format?

[ui_drawing.c]
table[0] = UI_DRAWING_drawXXX_0()

function implemented?

[ui_drawing.c]
table[1] = UI_DRAWING_drawXXX_1()

function implemented?

[ui_drawing_gpu.c]
UI_DRAWING_drawXXX_0();

GPU compatible?

[ui_drawing_yyy.c]
UI_DRAWING_drawXXX_1();

[GPU driver]

[ui_drawing.c]
weak UI_DRAWING_drawXXX_0();

[ui_drawing.c]
weak UI_DRAWING_drawXXX_1();

yes no

noyes

display format other format

yes no

6.14. Graphical User Interface 965

MicroEJ Documentation, Revision 32bb132e

LLUI_PAINTER_IMPL_drawLine (available in MicroUI C Module)

SeeMicroUI C Module.

UI_DRAWING_drawLine (available in MicroUI C Module)

static const UI_DRAWING_drawLine_t UI_DRAWER_drawLine[] = {
&UI_DRAWING_drawLine_0,
&UI_DRAWING_drawLine_1,

#if (LLUI_GC_SUPPORTED_FORMATS > 2)
&UI_DRAWING_drawLine_2,

#endif
};

DRAWING_Status UI_DRAWING_drawLine(MICROUI_GraphicsContext* gc, jint startX, jint startY,␣
→˓jint endX, jint endY){
// Table redirection according to the drawer index
return (*UI_DRAWER_drawLine[gc->drawer])(gc, startX, startY, endX, endY);

}

The implementation in theMicroUI Cmodule redirects thedrawing to the expecteddrawer. Thedrawer is identified
by the index stored in the MICROUI_GraphicsContext (index fixed during the image creation).

UI_DRAWING_drawLine_0 (available in MicroUI C Module)

#define UI_DRAWING_DEFAULT_drawLine UI_DRAWING_drawLine_0

The index 0 is reserved for drawing into the image whose format is the display format (see above). The function
name is set thanks to a define to reuse the same code between Single and Multiple Formats Implementations.

The behavior a�er this function is similar to Custom Implementation.

UI_DRAWING_drawLine_1 (available in MicroUI C Module)

// use the preprocessor 'weak'
__weak DRAWING_Status UI_DRAWING_drawLine_1(MICROUI_GraphicsContext* gc, jint startX, jint␣
→˓startY, jint endX, jint endY){

// Default behavior: call the stub implementation
return UI_DRAWING_STUB_drawLine(gc, startX, startY, endX, endY);

}

The implementation of the weak function only consists in calling the stub implementation.

UI_DRAWING_STUB_drawLine (available in MicroUI C Module)

DRAWING_Status UI_DRAWING_STUB_drawLine(MICROUI_GraphicsContext* gc, jint startX, jint␣
→˓startY, jint endX, jint endY){
// Set the drawing log flag "not implemented"
LLUI_DISPLAY_reportError(gc, DRAWING_LOG_NOT_IMPLEMENTED);
return DRAWING_DONE;

}

The implementation only consists in setting the Drawing log DRAWING_LOG_NOT_IMPLEMENTED to notify the appli-
cation that the drawing has not been performed.

6.14. Graphical User Interface 966

MicroEJ Documentation, Revision 32bb132e

UI_DRAWING_drawLine_1 (to write in the BSP)

// this drawer has the index 1
#define UI_DRAWING_IDENTIFIER_A8_FORMAT 1
#define UI_DRAWING_A8_is_drawer CONCAT(UI_DRAWING_is_drawer_, UI_DRAWING_IDENTIFIER_A8_
→˓FORMAT)
#define UI_DRAWING_A8_drawLine CONCAT(UI_DRAWING_drawLine_, UI_DRAWING_IDENTIFIER_A8_FORMAT)

This example illustrates how to implement the drawLine function for an image with the format A8
. The drawer should be written in its file. However, the MicroUI C module advises not to use directly
the name UI_DRAWING_drawLine_1 but to use this mechanism to redirect at compile-time the call to
UI_DRAWING_A8_drawLine .

• The define UI_DRAWING_IDENTIFIER_A8_FORMAT assignes the index to the A8 drawer, here 1 .

• The define UI_DRAWING_A8_is_drawer sets at compile-time the name of the is_drawer function, here:
UI_DRAWING_is_drawer_1 .

• The define UI_DRAWING_A8_drawLine sets at compile-time the name of the drawLine function, here:
UI_DRAWING_drawLine_1 .

UI_DRAWING_A8_is_drawer (to write in the BSP)

bool UI_DRAWING_A8_is_drawer(jbyte image_format) {
return MICROUI_IMAGE_FORMAT_A8 == (MICROUI_ImageFormat)image_format;

}

This function (actually UI_DRAWING_is_drawer_1 thanks to the define, see above) answers true when the appli-
cation tries to open a MicroUI Bu�eredImage with the format A8 .

UI_DRAWING_A8_drawLine (to write in the BSP)

DRAWING_Status UI_DRAWING_A8_drawLine(MICROUI_GraphicsContext* gc, jint startX, jint startY,␣
→˓jint endX, jint endY){

// Retrieve the destination buffer address
uint8_t* destination_address = LLUI_DISPLAY_getBufferAddress(&gc->image);

// Configure the GPU clip
THIRD_PARTY_DRAWER_set_clip(startX, startY, endX, endY);

// Draw the line
THIRD_PARTY_DRAWER_draw_line(destination_address, startX, startY, endX, endY, (gc->

→˓foreground_color & 0xff) /* Use the blue component as opacity level */),

// Here, consider the drawing as done (not an asynchronous drawing).
return DRAWING_DONE;

}

This function (actually UI_DRAWING_drawLine_1 thanks to the define, see above) performs the drawing. It is very
similar to Custom Implementation.

6.14. Graphical User Interface 967

MicroEJ Documentation, Revision 32bb132e

Draw the Image: Single Format Implementation

By definition, the image is a standard image (only display format is allowed), so its drawing is redirected to
ui_image_drawing.h , see Standard Formats Only (Default).

Draw the Image: Multiple Formats Implementation

Unlike the Single Format Implementation, the destinationmay be another format than the display format. Conse-
quently, the drawer must check the image format and the destination format.

The following graph illustrates the drawing of an image (draw, rotate, or scale) in another image or display bu�er
(to draw a shape, see Draw into the Image: Non-Display Format). This graph gathers both draw in a custom image
and render a custom image.

6.14. Graphical User Interface 968

MicroEJ Documentation, Revision 32bb132e

[MicroUI]
Painter.drawXXX();

[LLUI_PAINTER_impl.h]
LLUI_PAINTER_IMPL_drawXXX();

[Graphics Engine]

[GPU]

[custom drawing]

-

[custom drawing]

[ui_drawing.h]
@see Multiple Output Formats;

optional
(drawShapes)

[LLUI_PAINTER_impl.c]
LLUI_PAINTER_IMPL_drawXXX();

[ui_drawing.h]
UI_DRAWING_drawXXX();

[ui_drawing.c]
UI_DRAWING_drawXXX();

[ui_drawing_soft.h]
UI_DRAWING_SOFT_drawXXX();

[ui_drawing_stub.h]
UI_DRAWING_STUB_drawXXX();

[ui_drawing_stub.c]
UI_DRAWING_STUB_drawXXX();

[ui_image_drawing.h]
UI_IMAGE_DRAWING_drawXXX();

[ui_image_drawing.c]
UI_IMAGE_DRAWING_drawXXX();

GC format?

[ui_drawing.c]
table[0] = UI_DRAWING_drawXXX_0()

algo implemented?

[ui_drawing.c]
table[1] = UI_DRAWING_drawXXX_1()

implemented?

[ui_drawing_gpu.c]
UI_DRAWING_drawXXX_0();

GPU compatible?

[ui_drawing_yyy.c]
UI_DRAWING_drawXXX_1();

image compatible?

standard image?

[ui_image_drawing.c]
table[x] = UI_IMAGE_DRAWING_draw_customX()

implemented?

[ui_image_x.c]
UI_IMAGE_DRAWING_draw_customX()

gc compatible?

[GPU driver]

[ui_drawing.c]
weak UI_DRAWING_drawXXX_0();

[ui_drawing.c]
weak UI_DRAWING_drawXXX_1();

[ui_image_drawing.c]
weak UI_IMAGE_DRAWING_draw_customX();

yes no

noyes

display format other format

yesno

yesno

no

GC format?

yes

display

other

yes no

yes

can draw shapes?

no

noyes

6.14. Graphical User Interface 969

MicroEJ Documentation, Revision 32bb132e

The following description considers that both previous graphs (draw in a custom image and render a custom im-
age) have been read and understood. It only describes the final use-case: draw a custom image in an unknown
destination (unknown destination format):

UI_IMAGE_DRAWING_draw_custom4 (to write in the BSP)

// This image drawer manages the custom format 4
#define UI_IMAGE_IDENTIFIER_CMD_FORMAT 4
#define UI_IMAGE_DRAWING_CMD_draw CONCAT(UI_IMAGE_DRAWING_draw_custom_, UI_IMAGE_IDENTIFIER_
→˓CMD_FORMAT)

// Macro to map a custom struct "cmd_image_t*" on the MicroUI Image buffer
#define MAP_CMD_ON_IMAGE(image) ((cmd_image_t*) LLUI_DISPLAY_getBufferAddress(image))

DRAWING_Status UI_IMAGE_DRAWING_CMD_draw(MICROUI_GraphicsContext* gc, MICROUI_Image* img,␣
→˓jint regionX, jint regionY, jint width, jint height, jint x, jint y, jint alpha){

// Retrieve the commands list
cmd_image_t* cmd = MAP_CMD_ON_IMAGE(img);

for(int i = 0; i < cmd->size; i++) {
switch (cmd->list[i].kind) {

case COMMAND_LINE: {

// Change the graphics context color
gc->foreground_color = cmd->list[i].color;

// Draw a line as usual
UI_DRAWING_drawLine(gc, x + cmd->list[i].args[0], y + cmd->list[i].args[1], x + cmd->

→˓list[i].args[2], y + cmd->list[i].args[3]);

break;
}

// All others commands
// [...]

}
}

// Restore the original color
gc->foreground_color = original_color;

return DRAWING_DONE;
}

This drawer manages a custom image with a commands bu�er (a list of drawings). The image drawing consists in
decoding the commands list and calling the standard shapes drawings. This drawer does not need to recognize the
destination: the drawing of the shapes will do it.

Thanks to the define UI_IMAGE_IDENTIFIER_CMD_FORMAT , this drawer uses the custom format 4 .

UI_IMAGE_DRAWING_draw_custom6 (to write in the BSP)

6.14. Graphical User Interface 970

MicroEJ Documentation, Revision 32bb132e

// This image drawer manages the custom format 6
#define UI_IMAGE_IDENTIFIER_PROPRIETARY_FORMAT 6
#define UI_IMAGE_DRAWING_PROPRIETARY_draw CONCAT(UI_IMAGE_DRAWING_draw_custom_, UI_IMAGE_
→˓IDENTIFIER_PROPRIETARY_FORMAT)

DRAWING_Status UI_IMAGE_DRAWING_PROPRIETARY_draw(MICROUI_GraphicsContext* gc, MICROUI_Image*␣
→˓img, jint regionX, jint regionY, jint width, jint height, jint x, jint y, jint alpha){

DRAWING_Status ret;

// Can only draw in an image with the same format as display
if (LLUI_DISPLAY_isDisplayFormat(gc->image.format)) {
// Call a third-party library
THIRD_PARTY_LIB_draw_image([...]);
ret = DRAWING_DONE; // or DRAWING_RUNNING

}
else {
// Cannot draw the image: call stub implementation
ret = UI_DRAWING_STUB_drawImage(gc, img, regionX, regionY, width, height, x, y, alpha);

}

return ret;
}

This drawer manages an image whose format is proprietary . This example considers that the third-party library
can only draw the image in a bu�er with the display format. Otherwise, the drawing is canceled, and the stub
implementation is used.

Thanks to the define UI_IMAGE_IDENTIFIER_PROPRIETARY_FORMAT , this drawer uses the custom format 6 .

Extended C Modules

MicroVG enables a custom format for the Bu�ered Vector Image. It uses themechanisms described above and can
be used as an example. See C Modules.

The drawings in the custom format BVI are implemented into the file ui_drawing_bvi.c .

Simulation

The simulation behavior is similar to theMicroUI C Module for the Embedded side.

Drawer

It is possible to draw in images with a format di�erent than the display one by implementing the UIDrawing inter-
face.

This interface contains onemethod for eachdrawingprimitive. Only thenecessarymethodsneedbe implemented.
Each non-implementedmethod will result in calling the stub implementation.

The method handledFormat() must be implemented and returns the managed format.

Once created, the UIDrawing implementation must be registered as a service.

6.14. Graphical User Interface 971

MicroEJ Documentation, Revision 32bb132e

Creating an image with a standard format (di�erent from the display one) is supported in the Front Panel as long
as a UIDrawing is defined for this format.

Creating an image with a custom format also requires implementing the image creation in the VEE Port.

Image Creation

Creating images with a custom format is possible by implementing the BufferedImageProvider interface.

This interface extends UIDrawing and UIImageDrawing and contains a method newBufferedImage() . This
method needs to be implemented to create the custom image. It must return an object representing the image.
This object will be available in the drawing methods (Drawer).

The method handledFormat() must be implemented and returns the managed format.

Once created, the BufferedImageProvider implementation must be registered as a service.

Draw into the Image: Non-Display Format

The following graph illustrates the drawing of a shape (not an image, see Draw the Image: Multiple Formats Imple-
mentation):

6.14. Graphical User Interface 972

MicroEJ Documentation, Revision 32bb132e

[MicroUI]
Painter.drawXXX();

[FrontPanel]
LLUIPainter.drawXXX();

[Graphics Engine]

[Third-party lib]

[custom drawing]-

[FrontPanel]
getUIDrawer().drawXXX();

GC format?

[FrontPanel]
getUIDrawerSoftware()

.drawXXX();

[FrontPanel]
DisplayDrawer.drawXXX();

method overridden?

[VEE Port FP]
DisplayDrawerExtension

.drawXXX();

can draw algo?

[Graphics Engine]
StubDrawer.drawXXX();

[VEE Port FP]
CustomDrawer.drawXXX();

no

yes

yesno

display format

available drawer and
method implemented?

other format

no yes

6.14. Graphical User Interface 973

MicroEJ Documentation, Revision 32bb132e

Standard Format

Let’s implement the drawer for the ARGB8888 format (with only the draw line primitive).

public class MyARGB8888ImageDrawer implements UIDrawing {

@Override
public MicroUIImageFormat handledFormat() {

return MicroUIImageFormat.MICROUI_IMAGE_FORMAT_ARGB8888;
}

@Override
public void drawLine(MicroUIGraphicsContext gc, int x1, int y1, int x2, int y2) {
Image image = gc.getImage();
image.drawLine(x1, y1, x2, y2, gc.getMicroUIColor());

}

}

Now, this drawer needs to be registered as a service. This can be achieved by creating a file in the resources of the
Front Panel project named META-INF/services/ej.microui.display.UIDrawing . And its content containing
the fully qualified name of the previously created image drawer.

com.mycompany.MyARGB8888ImageDrawer

It is also possible to declare it programmatically (see where a drawer is registered in the drawing custom section):

LLUIDisplay.Instance.registerUIDrawer(new MyARGB8888ImageDrawer());

Custom Format

Let’s implement the bu�ered image provider for the CUSTOM_0 format (with only the draw line primitive).

public class MyCustom0ImageProvider implements BufferedImageProvider {

@Override
public MicroUIImageFormat handledFormat() {

return MicroUIImageFormat.MICROUI_IMAGE_FORMAT_CUSTOM_0;
}

@Override
public Object newBufferedImage(int width, int height)
// Create the image.
return new CustomImage(width, height);

}

@Override
public void drawLine(MicroUIGraphicsContext gc, int x1, int y1, int x2, int y2) {
// Draw in the image.
CustomImage customImage = (CustomImage) gc.getImage().getRAWImage();
customImage.drawLine(x1, y1, x2, y2, gc.getMicroUIColor());

}

(continues on next page)

6.14. Graphical User Interface 974

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

@Override
public void draw(MicroUIGraphicsContext gc, MicroUIImage img, int regionX, int regionY,␣

→˓int width, int height,
int x, int y, int alpha) {

// Draw the image in another buffer.
MyCustomImage customImage = (MyCustomImage) img.getImage().getRAWImage();
customImage.drawOn(gc, regionX, regionY, width, height, x, y, alpha);

}
}

Now, this bu�ered image provider needs to be registered as a service. This can be achieved by creating a file in the
resources of the Front Panel project named META-INF/services/ej.microui.display.BufferedImageProvider
. And its content containing the fully qualified name of the previously created bu�ered image provider.

com.mycompany.MyCustom0ImageProvider

It is also possible to declare it programmatically (see where a drawer is registered in the drawing custom section):

LLUIDisplay.Instance.registerBufferedImageProvider(new MyCustom0ImageProvider());

Draw the Image: Multiple Formats Implementation

The following graph illustrates the drawing of an image (draw, rotate, or scale) in another image or display bu�er
(to draw a shape, see Draw into the Image: Non-Display Format). This graph gathers both graphs draw in a custom
image and render a custom image.

6.14. Graphical User Interface 975

MicroEJ Documentation, Revision 32bb132e

[MicroUI]
Painter.drawXXX();

[FrontPanel]
LLUIPainter.drawXXX();

[Graphics Engine]

[Third-party lib] [custom drawing]

-

[custom drawing]

[FrontPanel]
getUIDrawer().drawXXX();

@see Multiple Output Formats;

optional
(drawShapes)

[FrontPanel]
getUIDrawer().drawXXX();

GC format?

[FrontPanel]
getUIDrawerSoftware()

.drawXXX();

[FrontPanel]
no op

[FrontPanel]
getUIImageDrawer()

.drawXXX();

standard image?

[FrontPanel]
DisplayDrawer.drawXXX()

method overridden?

[VEE Port FP]
DisplayDrawerExtension

.drawXXX();

can draw image?

no

yes

yes no

display format

available drawer and
method implemented?

other format

no image compatible?

yes

yesno

GC format?

yes

available image drawer
and method implemented?

no

display

other no

gc compatible?

yes

yes

can draw shapes?

no

no yes

6.14. Graphical User Interface 976

MicroEJ Documentation, Revision 32bb132e

Dependencies

• MicroUI module (seeMicroUI),

• Display module (see Display).

Installation

The Bu�eredImagemodule is part of the MicroUI module and Display module. Install them to be able to use some
bu�ered images.

Use

The MicroUI image APIs are available in the class ej.microui.display.Bu�eredImage.

6.14.12 Fonts

Overview

Principle

The Font Engine is composed of:

• A “Font Designer”module: a graphical tool which runs within the MicroEJ IDE used to build and edit MicroUI
fonts; it stores fonts in a VEE Port-independent format. See Font Designer.

• A “Font Generator” module, for converting fonts from the VEE Port-independent format into a VEE Port-
dependent format.

• The “Font Renderer” module which decodes and renders at application runtime the VEE Port-dependent
fonts files generated by the “Font Generator”.

The three modules are complementary: a MicroUI font must be created and edited with the Font Designer before
being integratedas a resourceby theFontGenerator. Finally the FontRenderer uses the generated fonts at runtime.

6.14. Graphical User Interface 977

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/BufferedImage.html

MicroEJ Documentation, Revision 32bb132e

Functional Description

Fig. 64: Font Generation

Process overview:

1. User uses the Font Designer module to create a new font, and imports characters from system fonts (*.ttf
files) and / or user images (*.png , *.jpg , *.bmp , etc.).

2. Font Designer module saves the font as a MicroEJ Font (*.ejf file).

3. The user defines, in a text file, the fonts to load.

4. The Font Generator outputs a raw file for each font to convert (the raw format is display device-dependent).

5. The raw files are embedded as (hidden) resources within the MicroEJ Application. The raw files’ data are
linked into the FLASHmemory.

6. When the application creates a MicroUI Font object which targets a pre-generated image, the Font Engine
Core only has to link from theMicroUI Font object to the data in the FLASHmemory. Therefore, the loading is
very fast; only the font data from the FLASHmemory is used: no copy of the font data is sent to RAMmemory
first.

Dependencies

• MicroUI module (seeMicroUI),

• Display module (see Display).

Font Characteristics

Font Format

The Font Engine provides fonts that conform to the Unicode Standard. The .ejf files hold font properties:

• Identifiers: Fonts hold at least one identifier that can be one of the predefined Unicode scripts (see o�icial
Unicode website) or a user-specified identifier. The intention is that an identifier indicates that the font con-
tains a specific set of character codes, but this is not enforced.

6.14. Graphical User Interface 978

MicroEJ Documentation, Revision 32bb132e

• Font height andwidth, in pixels. A font has a fixed height. This height includes thewhite pixels at the top and
bottom of each character, simulating line spacing in paragraphs. A monospace font is a font where all char-
acters have the same width; for example, a ‘!’ representation has the same width as a ‘w’. In a proportional
font, ‘w’ will be wider than a ‘!’. No width is specified for a proportional font.

Fig. 65: Font Height

• Baseline, in pixels. All characters have the same baseline, which is an imaginary line on top of which the
characters seem to stand. Characters can be partly under the line, for example ‘g’ or ‘}’. The number of pixels
specified is the number of pixels above the baseline.

Fig. 66: Font baseline

• Space character size, in pixels. For proportional fonts, the Space character (0x20) is a specific character
because it has no filled pixels, and so its width must be specified. For monospace, the space size is equal to
the font width (and hence the same as all other characters).

• Styles: A font holds either a combination of these styles: BOLD, ITALIC, or is said to be PLAIN.

• When the selected font does not have a graphical representation of the required character, the first character
in font is drawn instead.

Multiple filters may apply at the same time, combining their transformations on the displayed characters.

Pixel Transparency

The Font Renderer renders the font according the the value stored for each pixel. If the value is 0, the pixel is not
rendered. If the value is themaximumvalue (for example the value 3 for 2 bits-per-pixel), the pixel is renderedusing
the current foreground color, completely overwriting the current value of the destination pixel. For other values,
the pixel is rendered by blending the selected foreground color with the current color of the destination.

If n is the number of bits-per-pixel, then the maximum value of a pixel (pmax) is 2^n – 1 . The value of each color
component of the final pixel is equal to:

𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 * 𝑝𝑖𝑥𝑒𝑙𝑉 𝑎𝑙𝑢𝑒/𝑝𝑚𝑎𝑥+ 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 * (𝑝𝑚𝑎𝑥− 𝑝𝑖𝑥𝑒𝑙𝑉 𝑎𝑙𝑢𝑒)/𝑝𝑚𝑎𝑥

6.14. Graphical User Interface 979

MicroEJ Documentation, Revision 32bb132e

Language

Supported Languages

The Font Renderermanages theUnicodebasicmultilingual languages, whose characters are encodedon 16-bit, i.e.
Unicodes from0x0000 to0xFFFF. It allows to render le�-to-rightor right-to-le�writing systems: Latin (English, etc.),
Arabic, Chinese, etc. are somesupported languages. Note that the rendering is alwaysperformed le�-to-right, even
if the stringarewritten right-to-le�. There is no support for top-to-bottomwriting systems. Some languages require
diacritics and contextual letters; the Font Renderer manages simple rules in order to combine several characters.

Arabic Support

The Font Renderer manages the ARABIC font specificities: the diacritics and contextual letters.

To render an Arabic text, the Font Renderer requires several points:

• To determinate if a character has to overlap the previous character, the Font Renderer uses a specific range
of ARABIC characters: from 0xfe70 to 0xfefc . All other characters (ARABIC or not) outside this range are
considered classic and no overlap is performed. Note that several ARABIC characters are available outside
this range, but the same characters (same representation) are available inside this range.

• The application strings must use the UTF-8 encoding. Furthermore, in order to force the use of characters in
the range 0xfe70 to 0xfefc , the string must be filled with the following syntax: ‘ \ufee2\ufedc\ufe91\
u0020\ufe8e\ufe92\ufea3\ufeae\ufee3 ’; where \uxxxx is the UTF-8 character encoding.

• The application string and its rendering are always performed from le� to right. However the string contents
are managed by the application itself, and so can be filled from right to le�. To write the text:

the string charactersmust be : ‘ \ufee2\ufedc\ufe91\u0020\ufe8e\ufe92\ufea3\ufeae\ufee3 ’. The Font
Renderer will first render the character ‘ \ufee2 ’, then ‘ \ufedc ,’ and so on.

• Each character in the font (in the ejf file) must have a rendering compatible with the character position.
The character will be rendered by the Font Renderer as-is. No support is performed by the Font Renderer to
obtain a linear text.

Font Generator

Principle

The Font Generator module is an o�-board tool that generates fonts ready to be displayed without the need for
additional runtimememory. It outputs a raw file for each converted font.

6.14. Graphical User Interface 980

MicroEJ Documentation, Revision 32bb132e

Functional Description

Fig. 67: Font Generator Principle

Process overview:

1. The user defines, in a text file, the fonts to load.

2. The Font Generator outputs a raw file for each font to convert.

3. The raw files are embedded as (hidden) resourceswithin theMicroEJ Application. The raw file’s data is linked
into the FLASHmemory.

4. When the application draws text on the display (or on an image), the font data comes directly from the FLASH
memory (the font data is not copied to the RAMmemory first).

Pixel Transparency

Asmentionedabove, eachpixelof eachcharacter inan .ejf filehasoneof256di�erentgray-scalevalues. However
RAWfiles canhave 1, 2, 4or8bits-per-pixel (respectively 2, 4, 16or 256gray-scale values). The requiredpixel depth is
defined in the configuration file (see next chapter). The Font Generator compresses the input pixels to the required
depth.

The following tables illustrates the conversion “grayscale to transparency level”. The grayscale value ‘0x00’ is black
whereas value ‘0x�’ is white. The transparency level ‘0x0’ is fully transparent whereas level ‘0x1’ (bpp == 1), ‘0x3’
(bpp == 2) or ‘0xf’ (bpp == 4) is fully opaque.

Table 31: Font 1-BPP RAW Conversion
Grayscale Ranges Transparency Levels
0x00 to 0x7f 0x1
0x80 to 0x� 0x0

Table 32: Font 2-BPP RAW Conversion
Grayscale Ranges Transparency Levels
0x00 to 0x1f 0x3
0x20 to 0x7f 0x2
0x80 to 0xdf 0x1
0xe0 to 0x� 0x0

6.14. Graphical User Interface 981

MicroEJ Documentation, Revision 32bb132e

Table 33: Font 4-BPP RAW Conversion
Grayscale Ranges Transparency Levels
0x00 to 0x07 0xf
0x08 to 0x18 0xe
0x19 to 0x29 0xd
0x2a to 0x3a 0xc
0x3b to 0x4b 0xb
0x4c to 0x5c 0xa
0x5d to 0x6d 0x9
0x6e to 0x7e 0x8
0x7f to 0x8f 0x7
0x90 to 0xa0 0x6
0xa1 to 0xb1 0x5
0xb2 to 0xc2 0x4
0xc3 to 0xd3 0x3
0xd4 to 0xe4 0x2
0xe5 to 0xf5 0x1
0xf6 to 0x� 0x0

For 8-BPP RAW font, a transparency level is equal to 255 - grayscale value .

Configuration File

The Font Generator uses a configuration file (called the “list file”) for describing fonts that must be processed. The
list file is a basic text file where each line describes a font to convert. The font file is described as a resource path,
and should be available from the application classpath.

Note: The list file must be specified in the application launcher (see Standalone Application Options). However, all
files in application classpath with su�ix .fonts.list are automatically parsed by the Font Generator tool.

Each line can have optional parameters (separated by a ‘:’) which define some ranges of characters to embed in the
final raw file, and the required pixel depth. By default, all characters available in the input font file are embedded,
and the pixel depth is 1 (i.e 1 bit-per-pixel).

Note: See Configuration File to understand the list file grammar.

Selecting only a specific set of characters to embed reduces the memory footprint. There are two ways to specify
a character range: the custom range and the known range. Several ranges can be specified, separated by “;”.

Below is an example of a list file for the Font Generator:

Listing 9: Fonts Configuration File Example

myfont
myfont1:latin
myfont2:latin:8
myfont3::4

6.14. Graphical User Interface 982

MicroEJ Documentation, Revision 32bb132e

External Resources

The Font Generator manages two configuration files when the External Resources Loader is enabled. The first con-
figuration file lists the fonts whichwill be stored as internal resourceswith theMicroEJ Application. The second file
lists the fonts the Font Generator must convert and store in the External Resource Loader output directory. It is the
BSP’s responsibility to load the converted fonts into an external memory.

• Refer to the chapter Fonts to have more details how to use this kind of resources.

• Refer to the chapter External Resources to have more details how the Font Engine manages this kind of re-
sources.

Installation

The Font Generator module is an additional tool for MicroUI library. When the MicroUI module is installed, install
this module in order to be able to embed some additional fonts with the application.

If the module is not installed, the platform user will not be able to embed a new font with his/her application.
He/shewill be only able to use the system fonts specified during theMicroUI initialization step (see Static Initializa-
tion).

In the VEE Port configuration file, check UI > Font Generator to install the Font Generator module.

Use

In order to be able to embed ready-to-be-displayed fonts, youmust activate the fonts conversion feature and spec-
ify the fonts configuration file.

Refer to the chapter Standalone Application Options (Libraries > MicroUI > Font) formore information about
specifying the fonts configuration file.

Font Loader

Principle

The Font Loader is a module of the MicroUI runtime that loads font data (precomputed bitmaps of glyphs) ready
to be displayed. The font data must be stored as a resource (in EJF raw format). Typically, these resources are
generated by the Font Generator and embedded as internal resources or loaded from external memories (External
Resources loader).

External Resources

Memory Management

The Font Renderer is able to load some fonts located outside the CPU addresses’ space range. It uses the External
Resource Loader.

When a font is located in such memory, the Font Renderer copies a very short part of the resource (the font file)
into a RAMmemory (into CPU addresses space range): the font header. This header stays located in RAM until the
application is using the font. As soon as the application uses another external font, new font replaces the old one.
Then, on application demand, the Font Renderer loads some extra information from the font into the RAMmemory

6.14. Graphical User Interface 983

MicroEJ Documentation, Revision 32bb132e

(the fontmeta data, the font pixels, etc.). This extra information is automatically unloaded fromRAMwhen the Font
Renderer no longer needs them.

This extra information is stored into a RAM section called .bss.microui.display.externalFontsHeap . Its size
is automatically calculated according to the external fonts used by the firmware. However it is possible to change
this value by setting the application property ej.microui.memory.externalfontsheap.size . This option is very
useful when building a kernel: the kernel may anticipate the section size required by the features.

Warning: When this size is smaller than the size required by an external font, some characters may be not
drawn.

Configuration File

Like internal resources, the Font Generator uses a configuration file (also called the “list file”) for describing fonts
that need to be processed. The list file must be specified in the application launcher (see Standalone Application
Options). However, all the files in the application classpath with the su�ix .fontsext.list are automatically
parsed by the Font Generator tool.

Process

This chapter describes the steps to setup the loading of an external resource from the application:

1. Add the font to the application project resources (typically in the source folder src/main/resources and in
the package fonts).

2. Create / open the configuration file (e.g. application.fontsext.list).

3. Add the relative path of the font and, at least, its output format (e.g. /fonts/myFont.ejf::4 , see Fonts).

4. Build the application: the Font Generator converts the font in RAW format in the external resources folder (
[application_output_folder]/externalResources).

5. Deploy the external resources to the external memory (SDCard, flash, etc.) of the device.

6. (optional) Configure the External Resources Loader to load from this source.

7. Build the application and run it on the device.

8. The application loads the external resource using Font.getFont(String).

9. The font loader looks for the font and only reads the font header.

10. (optional) The external resource is closed if the external resource is inside the CPU addresses’ space range.

11. The application can use the font.

12. The external resource is never closed: the font’s bytes are copied in RAM on demand (drawString, etc.).

6.14. Graphical User Interface 984

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Font.html#getFont-java.lang.String-

MicroEJ Documentation, Revision 32bb132e

Simulation

The Simulator automatically manages the external resources like internal resources. All images listed in *.
fontsext.list files are copied in the external resources folder, and this folder is added to the Simulator’s class-
path.

Backward Compatibility

As explained here, the notion of Dynamic styles and the style UNDERLINED are not supported anymore by MicroUI
3. However, an external font may have been generated with an older version of the Font Generator; consequently,
the generated file can hold the Dynamic style. The Font Renderer can load these old versions of fonts. However,
there are some runtime limitations:

• The Dynamic styles are ignored. The font is drawn without any dynamic algorithm.

• The font style (the style returned by Font.isBold() and Font.isItalic()) is the Dynamic style. For instance, when
a font holds the style bold as dynamic style and the style italic as built-in style, the font is considered as bold
+ italic; even if the style bold is not rendered.

Installation

The Font Renderer is part of the MicroUI module and Display module. You must install them in order to be able to
use some fonts.

Use

The MicroUI font APIs are available in the class ej.microui.display.Font.

Font Renderer

Principle

The Font Renderer is a module of the MicroUI runtime that reads and draws the fonts.

Functional Description

The Graphics Engine redirects all MicroUI font drawings to the internal so�ware algorithms. There is no indirection
to a set of Abstraction Layer API.

6.14. Graphical User Interface 985

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Font.html#isBold--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Font.html#isItalic--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Font.html

MicroEJ Documentation, Revision 32bb132e

Painter API

Graphics Engine

Software Algorithms

hardware

Installation

The Font Renderer is part of the MicroUI module and Display module. You must install them in order to be able to
use some fonts.

Use

The MicroUI font APIs are available in the class ej.microui.display.Font.

6.14.13 C Modules

Principle

Several C modules implement the UI Pack’s Abstraction Layer APIs. Some are generic, and some are VEE Port de-
pendent (more precisely: GPU-dependent). The generic modules provide header files to be implemented by the
specificmodules. The generic Cmodules are available on the Central Repository and the specific Cmodules on the
Developer Repository.

The picture below illustrates the available C modules, and the following chapters explain the aim and relations of
each Cmodule.

6.14. Graphical User Interface 986

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Font.html

MicroEJ Documentation, Revision 32bb132e

Note: It is a simplified view: all sources and headers files of each Cmodule are not visible.

Fig. 68: MicroUI C Modules

UI Pack

The UI Pack provides a header file to implement the MicroUI drawings: LLUI_PAINTER_impl.h . See the UI Pack
chapter to have more information.

The UI Pack and its header files are available on the Central Repository: https://repository.microej.com/modules/
com/microej/pack/ui/ui-pack/.

CModule: MicroUI

This C module is divided in several parts and each part provides an implementation of some MicroUI Abstraction
Layer APIs. This C module ismandatory to use the UI Pack (the C files must be compiled in the BSP) but some C
files are optional.

This C module is available on the Central Repository: com.microej.clibrary.llimpl#microui.

Drawings

Overview

The aim of this part is to facilitate the MicroUI Painter classes implementation:

1. It manages the synchronization with the Graphics Engine (see LLUI_DISPLAY_requestDrawing()).

2. It checks the drawing parameters: clip, opacity, thickness, fade, image status, etc.

3. It logs the drawings (see Debug Traces).

4. It deports the rendering to ui_drawing.h .

The implementation of ui_drawing.h depends on several options:

• Whether the BSP provides a renderer (so�ware and / or hardware as a GPU),

6.14. Graphical User Interface 987

https://repository.microej.com/modules/com/microej/pack/ui/ui-pack/
https://repository.microej.com/modules/com/microej/pack/ui/ui-pack/
https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui/

MicroEJ Documentation, Revision 32bb132e

• Whether the BSP is configured to handle several destination formats,

• Whether the BSP is configured to handle custom image formats.

Files

• Implements: LLUI_PAINTER_impl.h and LLDW_PAINTER_impl.h .

• C files: LLUI_PAINTER_impl.c , LLDW_PAINTER_impl.c , ui_drawing_stub.c , ui_drawing.c and
ui_image_drawing.c .

• Status: mandatory.

Usage

1. Add all C files in the BSP project.

Images Heap

Overview

This part is optional since the MicroUI Graphics Engine already includes an Images Heap allocator. Like MicroUI
Graphics Engine’s images heap allocator, the Cmodule’s images allocator is a best-fit allocator. This kind of alloca-
tor has the following constraints:

• It requires a header at the beginning of heap section.

• It adds a header and a footer for each allocated block.

• It producesmemory fragmentation: it may not allow to allocate a block with a size equal to the freememory
size.

Unlike the Graphics Engine’s allocator, the C module’s allocator adds some utility functions to get information
about the heap:

• total size,

• free size,

• number of allocated blocks.

This allocator and the one in the Graphics Engine can be replaced by a third-party allocator.

Files

• Implements the functions of LLUI_DISPLAY_impl.h with LLUI_DISPLAY_IMPL_imageHeap prefix.

• C file: LLUI_DISPLAY_HEAP_impl.c .

• Status: optional.

6.14. Graphical User Interface 988

MicroEJ Documentation, Revision 32bb132e

Usage

1. To use the Graphics Engine’s allocator, do not add the file LLUI_DISPLAY_HEAP_impl.c in the BSP project.

2. To use the Cmodule’s allocator, add the file LLUI_DISPLAY_HEAP_impl.c in the BSP project.

3. To use a third-party allocator, do not add the file LLUI_DISPLAY_HEAP_impl.c in the BSP project and imple-
ment the LLUI_DISPLAY_IMPL_imageHeapXXX functions.

Events Logger

Overview

This part is only mandatory when the BSP calls LLUI_INPUT_dump() (see Event Bu�er). If not included, the call to
LLUI_INPUT_dump() performs nothing. Its aim is to log the MicroUI events and to provide an events dumper.

The logger adds some metadata to each MicroUI event in a dedicated array. When the BSP is calling
LLUI_INPUT_dump() , the logger is using its data to decode the events. Then it uses an implementation of
microui_event_decoder.h to describe the events.

Files

• Implements the functions of LLUI_INPUT_impl.h with LLUI_INPUT_IMPL_log_ prefix.

• C files: LLUI_INPUT_LOG_impl.c and microui_event_decoder.c .

• Status: optional.

Usage (to enable the events logger)

1. Add all C files in the BSP project.

2. Configure the options in microui_event_decoder_conf.h (by default, the logger is disabled).

Bu�er Refresh Strategy

Overview

This part provides three Bu�er Refresh Strategies (BRS): predraw , single and legacy . Refer to the chapterBu�er
Refresh Strategy to havemore information about these strategies. These strategies are optional. When no strategy
is selected, the BSP should provide its own strategy. If no strategy is selected or provided, a default strategy will be
used; this is a minimal, naive strategy, which should only be used when using the Direct Bu�er mode.

Some strategies require an implementation of UI_DISPLAY_BRS_restore() (see ui_display_brs.h). A weak
implementation is available; this implementation uses the function memcpy() .

6.14. Graphical User Interface 989

MicroEJ Documentation, Revision 32bb132e

Files

• Implements the functions of LLUI_DISPLAY_impl.h related to the Bu�er Refresh Strategy:
LLUI_DISPLAY_IMPL_refresh() and LLUI_DISPLAY_IMPL_newDrawingRegion() .

• C files: ui_display_brs_legacy.c , ui_display_brs_predraw.c , ui_display_brs_single.c ,
ui_display_brs.c and ui_rect_util.c .

• Status: optional.

Usage

1. Add all C files in the BSP project (whatever the strategy).

2. Configure the options in ui_display_brs_configuration.h .

3. Comment the line #error [...]" .

4. (optional) Implement UI_DISPLAY_BRS_restore() (using a GPU, for instance).

CModule: MicroUI Over DMA2D

Overview

This C module is a specific implementation of the C module MicroUI over STM32 DMA2D (Chrom-ART Graphics
Accelerator):

• It implements a set of drawings using the o�icial Chrom-ART Graphics Accelerator API.

• It is compatible with several STM32 MCU: STM32F4XX` , STM32F7XX` and STM32H7XX` .

• It manages several configurations of memory cache.

• It is compatible with themultiple destination formatsmodule (but can only handle one destination format).

• It is compatible with the Bu�er Refresh Strategies (BRS) predraw , single and legacy (switch).

This C module is available on the Central Repository: com.microej.clibrary.llimpl#display-dma2d.

Files

• Implements some functions of ui_drawing.h (see above).

• C file: ui_drawing_dma2d.c .

• Status: optional.

6.14. Graphical User Interface 990

https://repository.microej.com/modules/com/microej/clibrary/llimpl/display-dma2d/

MicroEJ Documentation, Revision 32bb132e

Usage

1. Add the C file in the BSP project.

2. Add the BSP global define DRAWING_DMA2D_BPP to specify the destination format: 16, 24 or 32 respectively
DMA2D_RGB565 , DMA2D_RGB888 and DMA2D_ARGB8888 .

3. Call UI_DRAWING_DMA2D_initialize() from LLUI_DISPLAY_IMPL_initialize() .

Drawings

The following table describes the accelerated drawings:

Feature Comment
Fill rectangle
Draw image ARGB8888, RGB888, RGB565, ARGB1555, ARGB4444, A8, A41

Cache

Some STM32 MCU use a memory cache.

This cache must be cleared before using the DMA2D:

• Before the call to HAL_DMA2D_Start_IT() .

• Before the call to HAL_DMA2D_BlendingStart_IT() .

Usage

1. Check the configuration of the define DRAWING_DMA2D_CACHE_MANAGEMENT in
ui_drawing_dma2d_configuration.h .

Bu�er Refresh Strategy “Predraw”

This strategy requires to copy some regions from the LCD frame bu�er to the back bu�er on de-
mand (function UI_DISPLAY_BRS_restore() , see above). To perform these copies, this CCO uses the
UI_DRAWING_DMA2D_xxx_memcpy() functions.

Usage

1. The function UI_DRAWING_DMA2D_IRQHandler() must be called from the DMA2D IRQ routine.

2. The function UI_DRAWING_DMA2D_memcpy_callback() should not be implemented (useless).
1 The first and last odd columns are drawn in so�ware due to GPUmemory alignment constraints.

6.14. Graphical User Interface 991

MicroEJ Documentation, Revision 32bb132e

Example of Implementation

void LLUI_DISPLAY_IMPL_flush(MICROUI_GraphicsContext* gc, uint8_t flush_identifier, const ui_
→˓rect_t regions[], size_t length) {

// store the flush identifier
g_current_flush_identifier = flush_identifier;

// change the LCD buffer address
HAL_LTDC_SetAddress(&hLtdcHandler, (uint32_t)LLUI_DISPLAY_getBufferAddress(&gc->image),␣

→˓LTDC_ACTIVE_LAYER);

// ask an interrupt for next LCD tick
lcd_enable_interrupt();

}

void LTDC_IRQHandler(LTDC_HandleTypeDef *hltdc) {
// LTDC register reload
__HAL_LTDC_ENABLE_IT(hltdc, LTDC_IT_RR);

// notify the MicroUI Graphics Engine
uint8_t* buffer = (uint8_t*)(BACK_BUFFER == LTDC_Layer->CFBAR ? FRAME_BUFFER : BACK_

→˓BUFFER);
LLUI_DISPLAY_setDrawingBuffer(g_current_flush_identifier, buffer, from_isr);

}

void DMA2D_IRQHandler(void) {
// call CCO DMA2D function
UI_DRAWING_DMA2D_IRQHandler();

}

Bu�er Refresh Strategy “Single”

Usually, this strategy is used when the LCD frame bu�er cannot bemapped dynamically: the same bu�er is always
used as back bu�er. However, the LCD frame bu�er can bemapped on amemory bu�er that is in the CPU address
range. In that case, the UI_DRAWING_DMA2D_xxx_memcpy() functions can be used to copy the content of the back
bu�er to the LCD frame bu�er.

Usage

1. The function UI_DRAWING_DMA2D_configure_memcpy() must be called from the implementation of
LLUI_DISPLAY_IMPL_flush() .

2. The function UI_DRAWING_DMA2D_start_memcpy() must be called from the LCD controller IRQ routine.

3. The function UI_DRAWING_DMA2D_IRQHandler() must be called from the DMA2D IRQ routine.

4. The function UI_DRAWING_DMA2D_memcpy_callback() mustbe implemented tounlock theMicroUIGraphics
Engine.

6.14. Graphical User Interface 992

MicroEJ Documentation, Revision 32bb132e

Example of Implementation

void LLUI_DISPLAY_IMPL_flush(MICROUI_GraphicsContext* gc, uint8_t flush_identifier, const ui_
→˓rect_t regions[], size_t length) {

// store the flush identifier
g_current_flush_identifier = flush_identifier;

// configure the copy to launch at next LCD tick
UI_DRAWING_DMA2D_configure_memcpy(LLUI_DISPLAY_getBufferAddress(&gc->image), (uint8_

→˓t*)LTDC_Layer->CFBAR, regions[0].x1, regions[0].y1, regions[0].x2, regions[0].y2,␣
→˓RK043FN48H_WIDTH, &dma2d_memcpy);

// ask an interrupt for next LCD tick
lcd_enable_interrupt();

}

void LTDC_IRQHandler(LTDC_HandleTypeDef *hltdc) {
// clear interrupt flag
LTDC->ICR = LTDC_IER_FLAG;

// launch the copy from back buffer to frame buffer
UI_DRAWING_DMA2D_start_memcpy(&dma2d_memcpy);

}

void DMA2D_IRQHandler(void) {
// call CCO DMA2D function
UI_DRAWING_DMA2D_IRQHandler();

}

void UI_DRAWING_DMA2D_memcpy_callback(bool from_isr) {
// notify the MicroUI Graphics Engine
LLUI_DISPLAY_setDrawingBuffer(g_current_flush_identifier, (uint8_t*)BACK_BUFFER, from_

→˓isr);
}

Bu�er Refresh Strategy “Legacy”

This strategy requires to copy the previous drawings from the LCD frame bu�er to the back bu�er before unlocking
theMicroUIGraphicsEngine. Toperformthis copy, thisCCOuses the UI_DRAWING_DMA2D_xxx_memcpy() functions.
At the end of the copy, the MicroUI Graphics Engine is unlocked: a new drawing can be performed in the new back
bu�er.

6.14. Graphical User Interface 993

MicroEJ Documentation, Revision 32bb132e

Usage

1. The function UI_DRAWING_DMA2D_configure_memcpy() must be called from the implementation of
LLUI_DISPLAY_IMPL_flush() .

2. The function UI_DRAWING_DMA2D_start_memcpy() must be called from the LCD controller IRQ routine.

3. The function UI_DRAWING_DMA2D_IRQHandler() must be called from the DMA2D IRQ routine.

4. The function UI_DRAWING_DMA2D_memcpy_callback() mustbe implemented tounlock theMicroUIGraphics
Engine.

Example of Implementation

void LLUI_DISPLAY_IMPL_flush(MICROUI_GraphicsContext* gc, uint8_t flush_identifier, const ui_
→˓rect_t regions[], size_t length) {

// store the flush identifier
g_current_flush_identifier = flush_identifier;

// configure the copy to launch at next LCD tick
UI_DRAWING_DMA2D_configure_memcpy(LLUI_DISPLAY_getBufferAddress(&gc->image), (uint8_

→˓t*)LTDC_Layer->CFBAR, regions[0].x1, regions[0].y1, regions[0].x2, regions[0].y2,␣
→˓RK043FN48H_WIDTH, &dma2d_memcpy);

// change the LCD buffer address
HAL_LTDC_SetAddress(&hLtdcHandler, (uint32_t)LLUI_DISPLAY_getBufferAddress(&gc->image),␣

→˓LTDC_ACTIVE_LAYER);

// ask an interrupt for next LCD tick
lcd_enable_interrupt();

}

void HAL_LTDC_ReloadEventCallback(LTDC_HandleTypeDef *hltdc) {
// LTDC register reload
__HAL_LTDC_ENABLE_IT(hltdc, LTDC_IT_RR);

// launch the copy from new frame buffer to new back buffer
UI_DRAWING_DMA2D_start_memcpy(&dma2d_memcpy);

}

void DMA2D_IRQHandler(void) {
// call CCO DMA2D function
UI_DRAWING_DMA2D_IRQHandler();

}

void UI_DRAWING_DMA2D_memcpy_callback(bool from_isr) {
// notify the MicroUI Graphics Engine
uint8_t* buffer = (uint8_t*)(BACK_BUFFER == LTDC_Layer->CFBAR ? FRAME_BUFFER : BACK_

→˓BUFFER);
LLUI_DISPLAY_setDrawingBuffer(g_current_flush_identifier, buffer, from_isr);

}

6.14. Graphical User Interface 994

MicroEJ Documentation, Revision 32bb132e

C Module: MicroUI Over VGLite

Overview

This C module is a specific implementation of the Cmodule MicroUI over the VGLite library 3.0.15_rev7:

• It implements a set of drawings over the o�icial VGLite library 3.0.15_rev7.

• It is compatible with themultiple destination formatsmodule.

This Cmodule also provides a set of header files (and their implementations) tomanipulate someMicroUI concepts
over the VGLite library: imagemanagement, path format, etc.: ui_vglite.h and ui_drawing_vglite_path.h .

This C module is available on the Developer Repository: com.microej.clibrary.llimpl#microui-vglite.

Files

• Implements some functions of ui_drawing.h (see above).

• C files: ui_drawing_vglite_path.c , ui_drawing_vglite_process.c , ui_drawing_vglite.c and
ui_vglite.c .

• Status: optional.

Usage

1. Add the C files in the BSP project.

2. Call UI_VGLITE_init() from LLUI_DISPLAY_IMPL_initialize() .

3. Configure the options in ui_vglite_configuration.h .

4. Comment the line #error [...]" .

5. Call UI_VGLITE_IRQHandler() during the GPU interrupt routine.

6. Set the VGLite library’s preprocessor define VG_DRIVER_SINGLE_THREAD .

7. The VGLite library must be patched to be compatible with this C module:

cd [...]/sdk/middleware/vglite
patch -p1 < [...]/3.0.15_rev7.patch

8. In the file vglite_window.c , add the function VGLITE_CancelSwapBuffers() and its prototype in
vglite_window.h :

void VGLITE_CancelSwapBuffers(void) {
fb_idx = fb_idx == 0 ? (APP_BUFFER_COUNT - 1) : (fb_idx) - 1;

}

6.14. Graphical User Interface 995

https://forge.microej.com/artifactory/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/

MicroEJ Documentation, Revision 32bb132e

Options

This C module provides some drawing algorithms that are disabled by default.

• The rendering time of a simple shape with the GPU (time in the VGLite library + GPU setup time + rendering
time) is longer than with so�ware rendering. To enable the hardware rendering for simple shapes, uncom-
ment the definition of VGLITE_USE_GPU_FOR_SIMPLE_DRAWINGS in ui_vglite_configuration.h .

• The rendering time of an RGB565 image into an RGB565 bu�er without applying an opacity (alpha ==
0x�) is longer than with so�ware rendering (as this kind of drawing consists in performing a mere
memory copy). To enable the hardware rendering for RGB565 images, uncomment the definition of
VGLITE_USE_GPU_FOR_RGB565_IMAGES in ui_vglite_configuration.h .

• ARGB8888, ARGB1555, and ARGB4444 transparent imagesmay not be compatible with some revisions of the
VGLite GPU. Older GPU revisions do not render transparent images correctly because the pre-multiplication
of the pixel opacity is not propagated to the pixel color components. To force the hardware rendering for
non-premultiplied transparent images when the VGLite GPU is not compatible, uncomment the definition
of VGLITE_USE_GPU_FOR_TRANSPARENT_IMAGES in ui_vglite_configuration.h . Note that this limitation
does not concern the VGLite GPU compatible with non-premultiplied transparent images and the A8/A4 for-
mats.

Drawings

The following table describes the accelerated drawings:

6.14. Graphical User Interface 996

MicroEJ Documentation, Revision 32bb132e

Feature Comment
Draw line Disabled by default (see above)
Fill rectangle Disabled by default (see above)
Draw rounded rect-
angle

Disabled by default (see above)

Fill rounded rectan-
gle
Draw circle arc Disabled by default (see above)
Fill circle arc
Draw ellipse arc Disabled by default (see above)
Fill ellipse arc
Draw ellipse arc Disabled by default (see above)
Fill ellipse arc
Draw circle Disabled by default (see above)
Fill circle
Draw image ARGB8888_PRE, ARGB1555_PRE, ARGB4444_PRE, RGB565, A8, A4 ARGB8888,

ARGB1555, ARGB4444 (see above)
Draw thick faded
point

Only with fade <= 1

Draw thick faded
line

Only with fade <= 1

Draw thick faded cir-
cle

Only with fade <= 1

Draw thick faded cir-
cle arc

Only with fade <= 1

Draw thick faded el-
lipse

Only with fade <= 1

Draw thick line
Draw thick circle
Draw thick circle arc
Draw thick ellipse
Draw flipped image See draw image
Draw rotated image See draw image
Draw scaled image See draw image

Compatibility With MCU i.MX RT595

UI Pack 13

The versions of the C Module Over VGLite (before 7.0.0) included an implementation of the Low-Level API
LLUI_DISPLAY_impl.h . This support has been extracted into a dedicated C Module since the version 7.0.0 . The
dedicated CModule is available on the Developer Repository: com.microej.clibrary.llimpl#microui-mimxrt595-evk.

Only the C Module com.microej.clibrary.llimpl#microui-vglite is useful to target the Vivante VGLite GPU to perform
the MicroUI and MicroVG drawings. The C Module com.microej.clibrary.llimpl#microui-mimxrt595-evk only gives
an example of an implementation compatible with the MCU i.MX RT595 MCU.

Note: For more information, see themigration notes.

6.14. Graphical User Interface 997

https://forge.microej.com/artifactory/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-mimxrt595-evk/
https://forge.microej.com/artifactory/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/
https://forge.microej.com/artifactory/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-mimxrt595-evk/

MicroEJ Documentation, Revision 32bb132e

UI Pack 14

Since UI Pack 14, this C module is not compatible anymore and not maintained.

CModule: MicroUI Over NemaGFX

Overview

This C module is a specific implementation of the Cmodule MicroUI over the Think Silicon NemaGFX:

• It implements a set of drawings over the o�icial Think Silicon NemaGFX.

• It is compatiblewith themultiple destination formatsmodule (but it can only handle one destination format).

This C module is available on the Developer Repository: com.microej.clibrary.llimpl#microui-nemagfx.

Files

• Implements some functions of ui_drawing.h (see above).

• C file: ui_drawing_nema.c .

• Status: optional.

Usage

1. Add the C file in the BSP project.

2. Call UI_DRAWING_NEMA_initialize() from LLUI_DISPLAY_IMPL_initialize() .

3. Configure the options in ui_drawing_nema_configuration.h .

4. Comment the line #error [...]" .

5. Choose between interrupt mode and task mode (see Implementation).

Implementation

The MicroUI Graphics Engine waits the end of the asynchronous drawings (performed by the GPU). The VEE Port
must unlock this waiting by using one of these two solutions:

• Interrupt mode: the GPU interrupt routine has to call the function UI_DRAWING_NEMA_post_operation()
(the GPU interrupt routine is o�en written in the same file as the implementation of nema_sys_init()).

• Taskmode: the VEE Port has to add a dedicated task that will wait the end of the drawings.

The interrupt mode is enabled by default. To use the task mode, comment the define NEMA_INTERRUPT_MODE in
ui_drawing_nema_configuration.h

Note: You will find more details in the #define NEMA_INTERRUPT_MODE documentation.

6.14. Graphical User Interface 998

https://forge.microej.com/artifactory/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-nemagfx/

MicroEJ Documentation, Revision 32bb132e

Options

This C module provides some drawing algorithms that are disabled by default.

• The rendering time of a simple shape with the GPU (time in the NemaGFX library + GPU setup time + ren-
dering time) is longer than with so�ware rendering. To enable the hardware rendering for simple shapes,
uncomment the definition of ENABLE_SIMPLE_LINES in ui_drawing_nema_configuration.h .

• The rendering of thick faded lines with the GPU is disabled by default: the quality of the ren-
dering is too random. To enable it, uncomment the definition of ENABLE_FADED_LINES in
ui_drawing_nema_configuration.h .

• To draw a shape, the GPU uses the commands list. For rectangular shapes (draw/fill rectangles and images),
the maximum list size is fixed (around 300 bytes). For the other shapes (circle, etc.) the list increases ac-
cording to the shape size (dynamic shape): several blocks of 1024 bytes and 40 bytes are allocated and never
freed. By default, the dynamic shapes are disabled and the so�ware algorithms are used instead. To en-
able the hardware rendering for dynamic shapes, uncomment the definition of ENABLE_DYNAMIC_SHAPES in
ui_drawing_nema_configuration.h .

• Some GPU might not be able to render the images in specific memories. Comment the define
ENABLE_IMAGE_ROTATION in ui_drawing_nema_configuration.h to not use the GPU to render the rotated
images.

Drawings

The following table describes the accelerated drawings:

Feature Comment
Draw line
Draw horizontal line Disabled by default (see above: ENABLE_SIMPLE_LINES)
Draw vertical line Disabled by default (see above: ENABLE_SIMPLE_LINES)
Draw rectangle Disabled by default (see above: ENABLE_SIMPLE_LINES)
Fill rectangle
Draw rounded rectangle Disabled by default (see above: ENABLE_DYNAMIC_SHAPES)
Fill rounded rectangle Disabled by default (see above: ENABLE_DYNAMIC_SHAPES)
Draw circle Disabled by default (see above: ENABLE_DYNAMIC_SHAPES)
Fill circle Disabled by default (see above: ENABLE_DYNAMIC_SHAPES)
Draw image ARGB8888, RGB565, A8
Draw thick faded line Only with fade <= 1
Draw thick faded circle Only with fade <= 1, disabled by default (see above: ENABLE_DYNAMIC_SHAPES)
Draw thick line Disabled by default (see above: ENABLE_FADED_LINES)
Draw thick circle Disabled by default (see above: ENABLE_DYNAMIC_SHAPES)
Draw rotated image See draw image
Draw scaled image See draw image

6.14. Graphical User Interface 999

MicroEJ Documentation, Revision 32bb132e

Compatibility

The compatibility between the components (Packs, C modules, and Libraries) is described in the C Modules.

6.14.14 Simulation

Principle

The graphical user interface uses the Front Panel mock (see Front Panel Mock) and some extensions (widgets) to
simulate the user interactions. It is the equivalent of the three embeddedmodules (Display, Input and LED) of the
VEE Port (seeMicroUI).

The Front Panel enhances the development environment by allowing User Interface applications to be designed
and tested on the computer rather than on the target device (whichmay not yet be built). Themock interacts with
the user’s computer in two ways:

• output: LEDs, graphical displays

• input: buttons, joystick, touch, haptic sensors

Note: This chapter completes the notions described in Front Panel Mock chapter.

Module Dependencies

The Front Panel project is a regular MicroEJ Module project. Its module.ivy file should look like this example:

<ivy-module version="2.0" xmlns:ea="http://www.easyant.org" xmlns:ej="https://developer.
→˓microej.com" ej:version="2.0.0">

<info organisation="com.mycompany" module="examplePanel" status="integration" revision="1.
→˓0.0"/>

<configurations defaultconfmapping="default->default;provided->provided">
<conf name="default" visibility="public" description="Runtime dependencies to other␣

→˓artifacts"/>
<conf name="provided" visibility="public" description="Compile-time dependencies to␣

→˓APIs provided by the platform"/>
</configurations>

<dependencies>
<dependency org="ej.tool.frontpanel" name="framework" rev="1.1.1"/>
<dependency org="ej.tool.frontpanel" name="widget" rev="4.0.0"/>

</dependencies>
</ivy-module>

Bydefault, the project depends on the Front Panel Frameworkwhich only contains the Front Panel core classes and
whichdoes not provide any Front PanelWidgets (seeModuleDependencies). To add interactive Front PanelWidgets
(typically a simulateddisplay and input devices), add the library that provides compatible Front PanelWidgetswith
the Graphics Engine:

<dependency org="ej.tool.frontpanel" name="widget" rev="4.0.0"/>

6.14. Graphical User Interface 1000

MicroEJ Documentation, Revision 32bb132e

Note: The life cycle of this library is di�erent than the UI pack’s one, see Front Panel API.

Source code for Front Panel Widgets is available by expanding the library from the project view.

Fig. 69: Front Panel Widgets

To implement UI Pack extensions for the simulator (customwidgets compatible with the Graphics Engine, custom
drawings, etc.), add the Front Panel extension API from the UI Pack (set the version used by the VEE Port):

<dependencies>
<dependency org="com.microej.pack.ui" name="ui-pack" rev="[UI Pack version]">

<artifact name="frontpanel" type="jar"/>
</dependency>

</dependencies>

Warning: This extension is built for each UI Pack version. By consequence, a Front Panel project is done for
a VEE Port built with the same UI Pack. When the UI Pack mismatch, some errors may occur during the Front
Panel project export step, during the VEE Port build, and/or during the application runtime. The latest current
pack version is 14.0.0.

MicroUI Implementation

As described here, the Front Panel uses an equivalent of embedded side’s header files that implement MicroUI
native methods.

This setof classesand interfaces is available in themodulecom.microej.pack.ui#ui-pack. It o�ers thesamecapacity
to override some built-in drawing algorithms (internal Graphics Engine drawing algorithms), to add some custom

6.14. Graphical User Interface 1001

https://repository.microej.com/modules/com/microej/pack/ui/ui-pack/

MicroEJ Documentation, Revision 32bb132e

drawing algorithms, to manipulate the MicroUI concepts (GraphicsContext, Image, etc.) in the Front Panel project,
etc.

• The interface ej.microui.display.LLUIDisplay represents the MicroUI Graphics Engine (MicroUI frame-
work). It provides methods to map MicroUI byte arrays in MicroUI Graphics Context objects, manipulate Mi-
croUI colors, clip, etc. An instance of this framework is available via the field Instance .

• The interface ej.microui.display.LLUIDisplayImpl all methods required by MicroUI implementation to
be compatible with the MicroUI Display class implementation. See Display Widget.

• The class ej.microui.display.LLUIPainter implements all MicroUI drawing natives. It defines some in-
terfaces and classes to manipulate the MicroUI concepts (GraphicsContext, Image, etc.) in the Front Panel
project. Like the embedded side, this class manages the synchronization with the Graphics Engine and del-
egates the drawing to the interface ej.microui.display.UIDrawing .

• The interface ej.microui.display.UIDrawing defines all the drawing methods available in MicroUI.
The default implementation of the methods involving images calls the matching method in ej.microui.
display.UIImageDrawing . The default implementation of the other methods reports the error that the
drawing is not done.

• The interface ej.microui.display.UIImageDrawing defines all the methods that draw an image. The de-
fault implementation of the methods reports the error that the drawing is not done.

• The class ej.microui.display.DisplayDrawer implements ej.microui.display.UIDrawing that draws
using the Graphics Engine so�ware algorithms.

• The classes in the package ej.drawing implement the native of the MicroUI extended library: Drawing

• The classes in the package ej.microui.event manage the input events, see Inputs Extensions.

• The classes in the package ej.microui.led manage the LEDs.

Display Widget

The Display widget implements the interface ej.microui.display.LLUIDisplayImpl to be compatible with
the implementation of the MicroUI class Display.

Features

• Display bu�er policy and bu�er refresh strategy: simulates the display bu�er policy and the bu�er refresh
strategy.

• LCD refresh rate: simulates the time between two visible frames on the hardware device.

• LCD flush time: simulates the time to send the frame content to the hardware device.

• Backlight (enabled by default): backlightFeature=true|false .

• Non-rectangular displays: filter="xxx.png" . Some displays can have another appearance (for instance:
circular).

• Standard pixel formats.

• Driver-specific pixel formats: extensionClass="xxx" . This class must be added in the Front Panel project
and implement the interface ej.fp.widget.Display.DisplayExtension .

6.14. Graphical User Interface 1002

https://repository.microej.com/modules/ej/api/drawing/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html

MicroEJ Documentation, Revision 32bb132e

Refresh Rate

Usually a LCD is cadenced around 50-60Hz. Thatmeans the LCD can display a new frame every 16-20ms. By default
this widget displays a new frame as soon as possible. It can be configured to reduce this time to simulate the
hardware device.

In the widget declaration, set the attribute refreshRate="xxx" with a value in Hertz. A zero or negative value
disables the feature.

The application can substitute the VEE Port’s value by setting the property -Dej.fp.widget.display.
refreshRate=xxx in the application launcher.

Flush Time

Onahardwaredevice, the time tosend the framedata fromthebackbu�ermemory to theLCD isnotnull. According
to the hardware device technology, this time varies between 3-4 ms to 10-15ms. In SPI mode, this time may be
higher, around 50ms, even more. By default this widget copies the content of back bu�er as faster as possible. It
can be configured to reduce this time to simulate the hardware device.

In thewidget declaration, set the attribute flushTime="xxx" with a value inmilliseconds. A zero or negative value
disables the feature.

The application can substitute the VEE Port’s value by setting the property -Dej.fp.widget.display.
flushTime=xxx in the application launcher.

Non-rectangular Display

The Front Panel can simulate using a filter (seeWidget). This filter defines the pixels inside and outside the whole
display area. The filter image must have the same size as the rectangular display area. A display pixel at a given
position will not be rendered if the pixel at the same position in the mask is fully transparent.

Note: Usually the touch panel over the display uses the same filter to reduce the touch panel area.

Example of non-rectangular display and touch:

<ej.fp.widget.Display x="41" y="33" width="392" height="392" filter="mask_392.png" />
<ej.fp.widget.Pointer x="41" y="33" width="392" height="392" filter="mask_392.png" touch=
→˓"true"/>

Inputs Extensions

The input device widgets (button, joystick, touch, etc.) require a listener to know how to react on input events
(press, release, move, etc.). The aim of this listener is to generate an event compatible with MicroUI Event Gener-
ator. Thereby, a button press action can become a MicroUI Buttons press event or a Command event or anything
else.

AMicroUI EventGenerator is knownby its name. This name is fixedduring theMicroUI static initialization (seeStatic
Initialization). To generate an event to a specific event generator, the widget has to use the event generator name
as identifier.

A Front Panel widget can:

6.14. Graphical User Interface 1003

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/EventGenerator.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/EventGenerator.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Buttons.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Command.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/EventGenerator.html

MicroEJ Documentation, Revision 32bb132e

• Force the behavior of an input action: the associated MicroUI Event Generator type is hardcoded (Buttons,
Pointer, etc.), the event is hardcoded (for instance: widget button press action may be hardcoded on event
generator Buttons and on the event pressed). Only the event generator name (identifier) should be editable
by the Front Panel extension project.

• Propose a default behavior of an input action: contrary to first point, the Front Panel extension project is able
to change the default behavior. For instance a joystick can simulate a MicroUI Pointer.

• Do nothing: the widget requires the Front Panel extension project to give a listener. This listener will receive
all widgets action (press, release, etc.) and will have to react on it. The action should be converted on a
MicroUI Event Generator event or might be dropped.

This choice of behavior is widget dependant. Please refer to the widget documentation to have more information
about the chosen behavior.

Heap Simulation

GraphicsEngine isusing twodedicatedheaps: for the images (see ImagesHeap) and theexternal fonts (seeExternal
Resources). Front Panel partly simulates the heaps usage.

• Images heap: Front Panel simulates the heap usage when the application is creating a Bu�eredImage, when
it loads and decodes an image (PNG, BMP, etc.) which is not a raw resource and when it converts an image
in MicroEJ format in another MicroEJ format. However it does not simulate the external image copy in heap
(see External Resource).

• External fonts heap: Front Panel does not simulate this heap (see External Resources). There is no rendering
limitation when application is using a font which is located outside CPU addresses ranges.

Image Decoders

Front Panel uses its own internal image decoders when the associated modules have been selected (see internal
image decoders). Some additional decoders can be added like the C-side for the embedded VEE Port (see external
image decoders). Front Panel uses the Java AWT ImageIO API to load the encoded images.

Generic Image Decoders

The Java AWT ImageIO class holds a limited list of additional decoders. To be compliant with the em-
bedded side, these decoders are disabled by default. To add an additional decoder, specify the property
hardwareImageDecoders.list in Front Panel configuration properties file (see Installation) with one or several
property values:

Table 34: Front Panel Additional Image Decoders
Type Property value
Graphics Interchange Format (GIF) gif
Joint Photographic Experts Group (JPEG) jpeg or jpg
Portable Network Graphics (PNG) png
Windows bitmap (BMP) bmp

The decoders list is comma (,) separated. Example:

hardwareImageDecoders.list=jpg,bmp

6.14. Graphical User Interface 1004

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/EventGenerator.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Buttons.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Pointer.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Buttons.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Pointer.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/EventGenerator.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/BufferedImage.html
https://docs.oracle.com/javase/7/docs/api/javax/imageio/ImageIO.html
https://docs.oracle.com/javase/7/docs/api/javax/imageio/ImageIO.html

MicroEJ Documentation, Revision 32bb132e

Custom Image Decoders

Additionally, the Java AWT ImageIO class o�ers the possibility to add some custom image decoders by using the
service javax.imageio.spi.ImageReaderSpi .

Since UI Pack 13.2.0, Front Panel automatically includes new image decoders (new ImageIO services, see the
method LLUIDisplayImpl.decode()), compiled in JAR files that follow this convention:

1. The JAR contains the service declaration /META-INF/services/javax.imageio.spi.ImageReaderSpi ,

2. The JAR filename’s prefix is imageio-,

3. The JAR location is the VEE Port configuration project’s dropins/tools/ directory.

Note: The same JAR is used by the Front Panel and by the Image Generator.

Drawings

Front Panel is designed to modify the default behavior for performing drawings.

Image Rendering

Front Panel is designed to add the support of custom images.

Bu�ered Image

FrontPanel is designed toadd the support ofMicroUIBu�eredImagewitha formatdi�erent fromthedisplay format.

Classpath

A standardmock is running on the same JVM than the HIL Engine (seeMock chapter). It shares the same classpath.
When the application is not using theMicroUI library (i.e., it is not anUI application, whether the VEE Port holds the
MicroEJ Graphics Engine or not), the Front Panel mock runs a standard mock. When the application is using the
MicroUI library, the Front Panel UI mock runs on the same JVM than the MicroEJ Simulator. In this case, the other
mocks don’t share the same classpath than the Front Panelmock. As a consequence, an othermock than the Front
Panel mock can not send input events to MicroUI, the object created in the standard mocks’s class loader are not
available in the Front Panel UI’s class loader (and vice versa), etc.

Since the UI Pack 13.2.0, it is possible to force to run the Front Panel UI mock in the same classpath than the HIL
Engine by adding the property -Dej.fp.hil=true in the application JRE tab. Note that this option only works
when the version of the MicroEJ Architecture used to build the VEE Port is 7.17.0 or higher.

6.14. Graphical User Interface 1005

https://docs.oracle.com/javase/7/docs/api/javax/imageio/ImageIO.html

MicroEJ Documentation, Revision 32bb132e

Dependencies

• MicroUI module (seeMicroUI),

• Display module (see Display): This module gives the characteristics of the graphical display that are useful
for configuring the Front Panel.

Installation

Front Panel is an additional module for MicroUI library. When the MicroUI module is installed, install this module
in order to be able to simulate UI drawings on the Simulator. See Installation to install the module.

The properties file can additional properties:

• hardwareImageDecoders.list [optional, default value is “” (empty)]: Defines the available list of additional
image decoders provided by the hardware (see Image Decoders). Use comma (‘,’) to specify several decoders
among this list: bmp, jpg, jpeg, gif, png. If empty or unspecified, no image decoder is added.

Use

Launch a MicroUI application on the Simulator to run the Front Panel.

6.14.15 Release Notes

MicroEJ Architecture Compatibility Version

The current UI Pack version is 14.0.0. The following tables describe the compatibility ranges between MicroEJ UI
Packs and MicroEJ Architectures.

Standard Versions

UI Pack Range Architecture Range Comment
[13.5.0-14.0.0] [7.16.0-9.0.0[Compatibility with Architecture 8
[13.0.0-13.4.1] [7.16.0-8.0.0[SNI 1.3
[12.0.0-12.1.5] [7.11.0-8.0.0[Move Front Panel in MicroEJ Architecture
[11.0.0-11.2.0] [7.0.0-8.0.0[SNI Callback feature
[9.3.1-10.0.2] [6.13.0-7.0.0[LLEXT link error with Architecture 6.13+ and UI 9+
[9.2.0-9.3.0] [6.12.0-6.13.0[SOAR can exclude some resources
[9.1.0-9.1.2] [6.8.0-6.12.0[Internal scripts
[8.0.0-9.0.2] [6.4.0-6.12.0[Manage external memories like byte addressable memories
[6.0.0-7.4.7] [6.1.0-6.12.0[

6.14. Graphical User Interface 1006

MicroEJ Documentation, Revision 32bb132e

Maintenance Versions

UI Pack Version UI Pack Base Version Architecture Range Comment
(maint) 8.0.0 7.4.7 [7.0.0-8.0.0[SNI Callback feature

Foundation Libraries

The following table describes Foundation Libraries API versions implemented in MicroEJ UI Packs.

Table 35: MicroUI API Implementation
UI Pack Range MicroUI Drawing
14.0.0 3.5.0 1.0.4
[13.7.0-13.7.2] 3.4.0 1.0.4
[13.6.0-13.6.2] 3.3.0 1.0.4
[13.5.0-13.5.1] 3.2.0 1.0.4
[13.2.0-13.4.1] 3.1.1 1.0.4
13.1.0 3.1.0 1.0.3
[13.0.4-13.0.7] 3.0.3 1.0.2
13.0.3 3.0.2 1.0.1
[13.0.1-13.0.2] 3.0.1 1.0.0
13.0.0 3.0.0 1.0.0
[12.1.0-12.1.5] 2.4.0
[11.1.0-11.2.0] 2.3.0
[9.2.0-11.0.1] 2.2.0
[9.1.1-9.1.2] 2.1.3
9.1.0 2.1.2
[9.0.0-9.0.2] 2.0.6
[6.0.0-8.1.0] 2.0.0

Abstraction Layer Interface

The following sectionsbriefly describesAbstractionLayer interface changes. Formoredetails, refer to theMigration
Guide.

6.14. Graphical User Interface 1007

https://repository.microej.com/modules/ej/api/microui/3.5.0/
https://repository.microej.com/modules/ej/api/drawing/1.0.4/
https://repository.microej.com/modules/ej/api/microui/3.4.0/
https://repository.microej.com/modules/ej/api/drawing/1.0.4/
https://repository.microej.com/modules/ej/api/microui/3.3.0/
https://repository.microej.com/modules/ej/api/drawing/1.0.4/
https://repository.microej.com/modules/ej/api/microui/3.2.0/
https://repository.microej.com/modules/ej/api/drawing/1.0.4/
https://repository.microej.com/modules/ej/api/microui/3.1.1/
https://repository.microej.com/modules/ej/api/drawing/1.0.4/
https://repository.microej.com/modules/ej/api/microui/3.1.0/
https://repository.microej.com/modules/ej/api/drawing/1.0.3/
https://repository.microej.com/modules/ej/api/microui/3.0.3/
https://repository.microej.com/modules/ej/api/drawing/1.0.2/
https://repository.microej.com/modules/ej/api/microui/3.0.1/
https://repository.microej.com/modules/ej/api/drawing/1.0.0/
https://repository.microej.com/modules/ej/api/microui/3.0.0/
https://repository.microej.com/modules/ej/api/drawing/1.0.0/
https://repository.microej.com/modules/ej/api/microui/2.4.0/
https://repository.microej.com/modules/ej/api/microui/2.3.0/
https://repository.microej.com/modules/ej/api/microui/2.2.0/
https://repository.microej.com/modules/ej/api/microui/2.0.6/

MicroEJ Documentation, Revision 32bb132e

Display

UI Pack Range Changes
14.0.0 Signature of LLUI_DISPLAY_IMPL_flush() changed.
[13.0.0-13.7.2] UI3 format: implement LLUI_DISPLAY_impl.h :

• void LLUI_DISPLAY_IMPL_initialize([...
]);

• void LLUI_DISPLAY_IMPL_binarySemaphoreTake([.
..]);

• void LLUI_DISPLAY_IMPL_binarySemaphoreGive([.
..]);

• uint8_t* LLUI_DISPLAY_IMPL_flush([...
]);

[10.0.0-12.1.5] Remove:
• int32_t LLDISPLAY_IMPL_getWorkingBufferStartAddress([.
..]);

• int32_t LLDISPLAY_IMPL_getWorkingBufferEndAddress([.
..]);

[8.0.0-9.4.1] Merge in LLDISPLAY_impl.h :
• LLDISPLAY_SWITCH_impl.h
• LLDISPLAY_COPY_impl.h
• LLDISPLAY_DIRECT_impl.h

[6.0.0-7.4.7] UI2 format: implement one of header file:
• LLDISPLAY_SWITCH_impl.h
• LLDISPLAY_COPY_impl.h
• LLDISPLAY_DIRECT_impl.h

6.14. Graphical User Interface 1008

MicroEJ Documentation, Revision 32bb132e

Input

UI Pack Range Changes
[13.0.0-14.0.0] UI3 format: implement LLUI_INPUT_impl.h :

• void LLUI_INPUT_IMPL_initialize([...]);
• jint LLUI_INPUT_IMPL_getInitialStateValue([.
..]);

• void LLUI_INPUT_IMPL_enterCriticalSection([.
..]);

• void LLUI_INPUT_IMPL_leaveCriticalSection([.
..]);

[6.0.0-12.1.5] UI2 format: implement LLINPUT_impl.h
• void LLINPUT_IMPL_initialize([...]);
• int32_t LLINPUT_IMPL_getInitialStateValue([.
..]);

• void LLINPUT_IMPL_enterCriticalSection([.
..]);

• void LLINPUT_IMPL_leaveCriticalSection([.
..]);

LED

UI Pack Range Changes
[13.0.0-13.7.2] UI3 format: implement LLUI_LED_impl.h :

• jint LLUI_LED_IMPL_initialize([...]);
• jint LLUI_LED_IMPL_getIntensity([...]);
• void LLUI_LED_IMPL_setIntensity([...]);

[6.0.0-12.1.5] UI2 format: implement LLLEDS_impl.h
• int32_t LLLEDS_IMPL_initialize([...]);
• int32_t LLLEDS_IMPL_getIntensity([...
]);

• void LLLEDS_IMPL_setIntensity([...]);

Front Panel API

The Front Panel project must fetch the widgets compatible with the MicroEJ UI Pack fetched in the VEE Port con-
figuration project:

• Before MicroEJ UI Pack 12.0.0 , the Front Panel project must depend on the classpath variable
FRONTPANEL_WIDGETS_HOME .

• For the UI Packs 12.x.x , the Front Panel project must fetch the module ej.tool.frontpanel.widget-microui.

• Since MicroEJ UI Pack 13.0.0 , the Front Panel project must depend on themodule com.microej.pack.ui.ui-
pack(frontpanel) (the module version is the MicroEJ Generic UI Pack version, that is always aligned with the
MicroEJ UI Packs specific for MCUs).

6.14. Graphical User Interface 1009

https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/ej/tool/frontpanel/widget-microui/
https://repository.microej.com/modules/com/microej/pack/ui/ui-pack/
https://repository.microej.com/modules/com/microej/pack/ui/ui-pack/

MicroEJ Documentation, Revision 32bb132e

UI Pack Range Module Version
[13.0.0-14.0.0] com.microej.pack.ui.ui-pack(frontpanel) [13.0.0-14.0.0]
[12.0.0-12.1.5] ej.tool.frontpanel.widget-microui 1.0.0
[6.0.0-11.2.0] n/a n/a

The widget module ej.tool.frontpanel.widget provides some widgets compatible with the Graphics Engine. This
module fetches by transitivity the module com.microej.pack.ui.ui-pack(frontpanel). When the Front Panel project
does not require/use the latest Front Panel UI API, it can only fetch the widget module.

Note: This module has beenmoved from the MicroEJ Central Repository to the MicroEJ Developer Repository.

Widget Module Range UI Pack Compatibility Range Repository
4.0.0 14.0.0 Developer
3.0.0 [13.5.1-10-13.7.2] Developer
2.2.0 [13.1.0-13.7.2] Developer
[2.1.0-2.1.1] [13.1.0-13.7.2] Central
2.0.0 [13.0.0-13.7.2] Central
1.0.1 [12.0.0-12.1.5] Developer

To use the latest functionalities provided by the UI Pack 13.0.0 and higher, the Front Panel project must depend
on the same version of the UI Pack as the VEE Port configuration project. However, if the Front Panel project does
not require/use the latest Front Panel UI API, it can fetch a version of the UI Pack older than the version fetched in
the VEE Port configuration project.

Image Generator API

Since MicroEJ UI Pack 13.0.0 , the Image Generator extension project must depend on module
com.microej.pack.ui.ui-pack(imagegenerator). The module version is the MicroEJ Generic UI Pack version,
that is always aligned with the MicroEJ UI Packs specific for MCUs.

UI Pack Range Module Version
[13.0.0-14.0.0] com.microej.pack.ui.ui-pack(imagegenerator) [13.0.0-14.0.0]

Note: Before MicroEJ UI Pack 13.0.0 , the Image Generator extension project must depend on classpath variable
IMAGE-GENERATOR-x.x .

CModules

MicroUI C Module

The MicroUI C module com.microej.clibrary.llimpl(microui) is available on MicroEJ Central Repository, see C Mod-
ules. The following table describes the compatibility versions between the MicroEJ UI Packs and the Cmodules:

6.14. Graphical User Interface 1010

https://repository.microej.com/modules/com/microej/pack/ui/ui-pack/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/ej/tool/frontpanel/widget-microui/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/ej/tool/frontpanel/widget/
https://repository.microej.com/modules/com/microej/pack/ui/ui-pack/
https://repository.microej.com/modules/ej/tool/frontpanel/widget/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/ej/tool/frontpanel/widget/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/ej/tool/frontpanel/widget/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/ej/tool/frontpanel/widget/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/ej/tool/frontpanel/widget/
https://repository.microej.com/modules/ej/tool/frontpanel/widget/
https://repository.microej.com/modules/ej/tool/frontpanel/widget/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/ej/tool/frontpanel/widget/
https://repository.microej.com/modules/com/microej/pack/ui/ui-pack/
https://repository.microej.com/modules/com/microej/pack/ui/ui-pack/
https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui/

MicroEJ Documentation, Revision 32bb132e

UI Pack Range C Module Range Comment
14.0.0 4.0.0 bu�er refresh strategies
[13.7.0-13.7.2] 3.1.0 free image resources
[13.5.0-13.6.2] 3.0.0 multiple Graphics Context output formats
[13.3.0-13.4.1] [2.0.0-2.0.1] copy and draw image
[13.1.0-13.2.0] [1.1.0-1.1.1] image heap, events queue, drawing limits
[13.0.0-13.1.0] [1.0.0-1.0.3]

Extended C Modules

Some C modules extend the main MicroUI C module. They override the default implementation to use a GPU to
perform some drawings. Contrary to the main MicroUI C module, they are optional: when they are not available,
the default implementation of drawings is used. The default implementations use the Graphics Engine so�ware
algorithms.

STM32 Chrom-ART

The DMA2D Cmodule targets the STM32 CPU that provides the Chrom-ART accelerator.

The following table describes the version compatibility between the MicroEJ UI Packs and the Cmodules:

UI Pack Range C Module Range Comment
14.0.0 5.0.0 bu�er refresh strategies
[13.7.0-13.7.2] 4.1.0 free image resources
[13.5.0-13.6.2] 4.0.0 multiple Graphics Context output formats
[13.3.0-13.4.1] [3.0.0-3.0.2] copy and draw image
[13.1.0-13.2.0] [2.0.0-2.1.0] drawing limits
[13.0.0-13.0.7] [1.0.6-1.0.8]

Vivante VGLite

The VGLite Cmodule targets the NXP CPU that provides the Vivante VGLite accelerator.

The following table describes the version compatibility between the MicroEJ UI Packs and the Cmodules:

UI Pack Range Cmodule Range Comment
14.0.0 8.0.0 bu�er refresh strategies
[13.7.0-13.7.2] 7.2.0 free image resources
[13.5.0-13.6.2] [6.0.0-7.1.0] multiple Graphics Context output formats
[13.3.0-13.4.1] [3.0.0-5.0.1] copy and draw image
[13.1.0-13.2.0] [1.0.0-2.0.0]

The following table describes the version compatibility between the C module and the VGLite libraries (o�icially
supported):

C Module Range VGLite Libraries Range
[7.1.0-7.2.0] 3.0.15_rev4 and 3.0.15_rev7
[4.0.0-7.0.0] 3.0.15_rev4
[2.0.0-3.0.0] 3.0.11_rev3
1.0.0 3.0.4_rev2 and 3.0.4_rev4

Think Silicon NemaGFX

6.14. Graphical User Interface 1011

MicroEJ Documentation, Revision 32bb132e

The NemaGFX Cmodule targets the CPU that provides the NemaGFX accelerator.

The following table describes the version compatibility between the MicroEJ UI Packs and the Cmodules:

UI Pack Range Cmodule Range Comment
14.0.0 2.0.0 bu�er refresh strategies
[13.7.0-13.7.2] [1.1.0-1.2.0] free image resources
[13.5.0-13.6.2] 1.0.0

6.14.16 Changelog

14.0.0 (2024-02-14)

MicroUI

• Implement MicroUI API 3.5.0.

Added

• Add GraphicsContext.notifyDrawingRegion() that allows the notification of a future altered region.

• Add Format.getSNIContext() and OutputFormat.getSNIContext() to identify the format in the native
world.

Changed

• Change the semantic of the content of the drawing bu�er a�er a flush: thepast is not systematically restored.

• Clarify themessagewhenageneric eventgenerator specified in theVEEPort isnotavailable in theapplication
classpath.

Fixed

• Fix the drawing of thick faded circle arcs.

• Fix some linker issues on some Architectures:

– Fix invalid linker issues (when MicroUI is not used or if another allocator is used).

– Fix custom LCD format on VEE Port with ASLRmode (example: X86 with -pie option).

– Remove some absolute symbols.

– Replace sections .text by .rodata .

Front Panel

Added

• Add new APIs to manage several display bu�er policies and refresh strategies (BRS):

– Add LLUIDisplay.getSource() .

– Add LLUIDisplayImpl.newDrawingRegion() .

– Add LLUIDisplayImpl.getCurrentDrawingBuffer() .

– Add MicroUIImage.requestReading()

Changed

6.14. Graphical User Interface 1012

https://repository.microej.com/modules/ej/api/microui/3.5.0/

MicroEJ Documentation, Revision 32bb132e

• Remove force parameter in LLUIDisplay.requestFlush()

• Remove all parameters in LLUIDisplayImpl.flush() and LLUIDisplayImpl.waitFlush()

• Extract MicroUIImageFormat and MicroUIImage and MicroUIGraphicsContext from LLUIPainter .

Fixed

• Fix clip and drawn area computing in flush visualizer.

Removed

• Remove MicroUIGraphicsContext.setDrawingLimits() .

LLAPIs

Added

• Add the possibility to log external events in the MicroUI event group.

• Add some functions in LLUI_DISPLAY.h and LLUI_DISPLAY_impl.h to manage the display bu�er refresh
strategy (BRS):

– LLUI_DISPLAY_getSourceImage() .

– LLUI_DISPLAY_getImageBPP() and LLUI_DISPLAY_getFormatBPP() .

– LLUI_DISPLAY_IMPL_refresh() .

– LLUI_DISPLAY_IMPL_newDrawingRegion() .

– LLUI_DISPLAY_setDrawingBuffer() : it replaces LLUI_DISPLAY_flushDone() .

Changed

• Change the signature of the function LLUI_DISPLAY_requestFlush() : remove the boolean force (not
backward compatible).

• Change the signature of the function LLUI_DISPLAY_IMPL_flush() : give a list of rectangles and a flush
identifier.

Removed

• Remove the function LLUI_DISPLAY_flushDone() : replaced by LLUI_DISPLAY_setDrawingBuffer() .

• Remove the function LLUI_DISPLAY_setDrawingLimits() .

• Remove the functions LLUI_DISPLAY_logDrawingStart() and LLUI_DISPLAY_logDrawingEnd() : use
standard logger instead.

CModule MicroUI

• New version: C Module MicroUI 4.0.0.

Added

• Add the possibility to log external events in the MicroUI event group.

• Add the bu�er refresh strategies (BRS) Legacy, Single and Predraw.

• Add some utility functions to manipulate rectangles and collections of rectangles.

6.14. Graphical User Interface 1013

https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui/4.0.0/

MicroEJ Documentation, Revision 32bb132e

C Module DMA2D

• New version: C Module DMA2D 5.0.0.

Added

• Add the compatibility with UI Pack 14.0.

• Add the function UI_DRAWING_DMA2D_memcpy_callback() to be notified about the endof thememory copy.

• Add the support of the display Bu�er Refresh Strategies (BRS) PREDRAW and SINGLE .

• Add a configuration version in ui_drawing_dma2d_configuration (1).

CModule VGLite

• New version: C Module VGLite 8.0.0.

• Compatible with VGLite library 3.0.15_rev7 .

Added

• Add the compatibility with UI Pack 14.0.

Removed

• Remove the compatibility with the VGLite library 3.0.15_rev4 .

CModule NemaGFX

• New version: C Module NemaGFX 2.0.0.

Added

• Add the compatibility with UI Pack 14.0.

Fixed

• Fix nema_draw_line() y1 argument.

13.7.2 (2023-12-21)

MicroUI

Fixed

• Fix the drawing of thick faded circle arcs.

6.14. Graphical User Interface 1014

https://repository.microej.com/modules/com/microej/clibrary/llimpl/display-dma2d/5.0.0/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/8.0.0/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-nemagfx/2.0.0/

MicroEJ Documentation, Revision 32bb132e

C Module NemaGFX

• New version: C Module NemaGFX 1.2.0.

Changed

• Disable the rendering of thick faded line with the GPU by default (see option ENABLE_FADED_LINES).

• Increase the version of the configuration file (2).

Fixed

• Fix the drawing status when a thick line is out-of-clip (results in an infinite loop).

13.7.0 (2023-10-23)

MicroUI

• Implement MicroUI API 3.4.0.

Added

• Add the pre-multiplied image formats ARGB8888_PRE , ARGB1555_PRE and ARGB4444_PRE .

• Add the possibility to free third-party resources associated with images.

• Add some traces when debugging the SNI resources.

Front Panel

Added

• Add the pre-multiplied image formats ARGB8888_PRE , ARGB1555_PRE and ARGB4444_PRE .

Image Generator

Changed

• Do not enable the cache when generating external resources.

Fixed

• Do not use cached images when there is no .images.list file.

• Do not use cached images when a VEE Port property has changed.

• Fix the handling of backslashes in list files.

• Remove debug log in script.

6.14. Graphical User Interface 1015

https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-nemagfx/1.2.0/
https://repository.microej.com/modules/ej/api/microui/3.4.0/

MicroEJ Documentation, Revision 32bb132e

Font Generator

Changed

• Do not enable the cache when generating external resources.

Fixed

• Do not use cached fonts when a VEE Port property has changed.

• Fix the handling of backslashes in list files.

CModule MicroUI

• New version: C Module MicroUI 3.1.1.

Added

• Add the compatibility with UI Pack 13.7.

CModule DMA2D

• New version: C Module DMA2D 4.1.0.

Added

• Add the compatibility with UI Pack 13.7.

CModule VGLite

• New version: C Module VGLite 7.2.0.

• Compatible with VGLite libraries 3.0.15_rev4 and 3.0.15_rev7 .

Added

• Add the pre-mulitplied image formats: ARGB8888_PRE , ARGB4444_PRE and ARGB1555_PRE .

• Add UI_VGLITE_need_to_premultiply() to find out whether a color must be pre-multiplied according to
the GPU’s capabilities.

Fixed

• Fix the use of power quad when not available.

CModule NemaGFX

• New version: C Module NemaGFX 1.1.0.

Added

• Add the compatibility with UI Pack 13.7.

6.14. Graphical User Interface 1016

https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui/3.1.1/
https://repository.microej.com/modules/com/microej/clibrary/llimpl/display-dma2d/4.1.0/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/7.2.0/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-nemagfx/1.1.0/

MicroEJ Documentation, Revision 32bb132e

[13.6.2] (2023-09-20)

Image Generator

Fixed

• Fix handling zip/jar file entries in the cache.

Font Generator

Fixed

• Fix handling zip/jar file entries in the cache.

CModule VGLite

• New version: C Module VGLite 7.1.0.

• Compatible with VGLite libraries 3.0.15_rev4 and 3.0.15_rev7 .

Added

• Add the compatibility with VGLite 3.0.15_rev7 (add a .patch file).

Fixed

• Fix the use of the define VG_BLIT_WORKAROUND (useless).

• Fix the GPU deactivation when a drawing is not performed for any reason.

• VGLite 3.0.15_rev4 : Fix the bounding box of the vg_lite_blit() given to the MicroEJ Graphics Engine
when the define VG_BLIT_WORKAROUND is set (the function vg_lite_blit() is not used by default).

[13.6.1] (2023-07-26)

MicroUI

Fixed

• Fix creating a Bu�eredImage when traces are enabled.

[13.6.0] (2023-07-17)

MicroUI

• Implement MicroUI API 3.3.0.

Added

• Add a flag stating that an undefined character was drawn.

Fixed

• Fix the Java compiler version used to build the MicroUI extension class to be compatible with the JDK 11.

• Fix the drawing of faded arcs and ellipses.

6.14. Graphical User Interface 1017

https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/7.1.0/
https://repository.microej.com/modules/ej/api/microui/3.3.0/

MicroEJ Documentation, Revision 32bb132e

Front Panel

Added

• Add thedrawing log flag DRAWING_LOG_MISSING_CHARACTER , stating that anundefined characterwasdrawn.

Image Generator

Changed

• Use a cache to avoid generating images for each launch.

Font Generator

Changed

• Use a cache to avoid generating fonts for each launch.

CModule VGLite

• New version: C Module VGLite 7.0.0.

• Compatible with VGLite library 3.0.15_rev4 .

• Several additions, changes and fixes are available. Refer to the C Module VGLite 7.0.0 changelog for more
information.

• The C Module has been divided in two parts to extract the NXP i.MX RT500 specific support from the generic
C Module for VGLite:

– NXP i.MX RT500 Display management: C Module RT500 7.0.0

– Drawing over VGLite: C Module VGLite 7.0.0

CModule NemaGFX

• New CModule: C Module NemaGFX 1.0.0.

• Compatible with UI Pack 13.5.x and 13.6.0.

[13.5.1] (2023-06-08)

MicroUI

Fixed

• Fix the compatibility with MicroEJ Architecture 8 (SOAR error with internal MicroUI system properties file).

6.14. Graphical User Interface 1018

https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/7.0.0/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/7.0.0/
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus/i-mx-rt500-crossover-mcu-with-arm-cortex-m33-dsp-and-gpu-cores:i.MX-RT500
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus/i-mx-rt500-crossover-mcu-with-arm-cortex-m33-dsp-and-gpu-cores:i.MX-RT500
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-mimxrt595-evk/7.0.0
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/7.0.0/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-nemagfx/1.0.0/

MicroEJ Documentation, Revision 32bb132e

Front Panel

Fixed

• Fix consecutive calls to LLUIDisplay.newMicroUIImage() throwing an exception.

• Allow overriding the display drawer with a service or in a Front Panel widget.

CModule VGLite

• New version: C Module VGLite 6.0.1.

• Compatible with VGLite library 3.0.15_rev4 .

Fixed

• Fix performing drawings when the clip is disabled.

[13.5.0] (2023-05-03)

MicroUI

• Implement MicroUI API 3.2.0.

Added

• Addmulti Bu�eredImage image formats management.

• Add custom RAM Image image formats management.

• Add drawing logs flags management.

Fixed

• Fix ellipse fading.

Drawing

Fixed

• Fix the position of arc caps.

Front Panel

Added

• Add a service to decode immutable images with a custom format.

• Add a service to create mutable images with a custom format.

• Add a service to draw into mutable images with a format di�erent than the display format.

• Add somemethods to manage the MicroUI Drawing Log flags.

• Add somemethods to change the MicroUI clip and colors.

Changed

• Merge DWDrawing in UIDrawing .

6.14. Graphical User Interface 1019

https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/6.0.1/
https://repository.microej.com/modules/ej/api/microui/3.2.0/

MicroEJ Documentation, Revision 32bb132e

• Turn UIDrawing as a service to handle drawings for a specific format.

• Change the mechanism to get the so�ware drawer.

• Change the MicroUI image format MICROUI_IMAGE_FORMAT_LCD by MICROUI_IMAGE_FORMAT_DISPLAY .

Removed

• Remove the interfaces UIDrawingDefault and DWDrawingDefault (implement the interface UIDrawing
instead).

Image Generator

Added

• Add compatibility with Architecture 8.

LLAPIs

Added

• Add some functions in LLUI_DISPLAY.h to manage the MicroUI Drawing Log flags.

• Add some functions in LLUI_DISPLAY.h to change the MicroUI clip and colors.

• Add the notion of “drawer” to identify the available drawer for a given MicroUI Image format.

Changed

• Change the MicroUI image format MICROUI_IMAGE_FORMAT_LCD by MICROUI_IMAGE_FORMAT_DISPLAY .

• Change the signature of xx_drawing_soft.h : all functions return a drawing status.

Removed

• Remove ui_drawing.h and dw_drawing.h (move them in MicroUI C Module).

CModule MicroUI

• New version: C Module MicroUI 3.0.0.

Added

• Add support for multiple Graphics Context output formats.

• Add support for multiple Image input formats.

• Add stub implementations for all MicroUI and Drawing libraries algorithms.

6.14. Graphical User Interface 1020

https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui/3.0.0/

MicroEJ Documentation, Revision 32bb132e

C Module DMA2D

• New version: C Module DMA2D 4.0.0.

Added

• Add theconfiguration file drawing_dma2d_configuration.h toenableornot thecachemanagement (cache
invalidate and clean).

• Add the compatibility with multiple Graphics Context output formats.

Fixed

• Fix the problems with reading memory back a�er a DMA2D transfer on cache-enabled CPUs.

• Fix an include directive for case-sensitive filesystems.

CModule VGLite

• New version: C Module VGLite 6.0.0.

• Compatible with VGLite library 3.0.15_rev4 .

Added

• Add the compatibility with multiple Graphics Context output formats.

• Add (or move) some utility functions in display_vglite .

• Add incident reporting with drawing log flags.

Fixed

• Set the appropriate format for the destination bu�er.

• Fix the drawing of horizontal lines.

Removed

• Remove the notion of vg_drawer and the define VGLITE_USE_MULTIPLE_DRAWERS (replaced by multiple
Graphics Context output formats).

[13.4.1] (2023-02-06)

Drawing

Fixed

• Fix thick lines drawing (when thickness is larger than length).

• Fix circle and ellipse drawing (when the diameter/axis has an even length).

6.14. Graphical User Interface 1021

https://repository.microej.com/modules/com/microej/clibrary/llimpl/display-dma2d/4.0.0/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/6.0.0/

MicroEJ Documentation, Revision 32bb132e

Front Panel

Changed

• Increase the speed of RAW image decoding step.

Image Generator

Fixed

• Fix the VEE Port’s memory alignment constraint.

CModule VGLite

• New version: C Module VGLite 5.0.1.

• Compatible with VGLite library 3.0.15_rev4 .

• Several additions, changes and fixes are available. Refer to the C Module VGLite 5.0.1 changelog for more
information.

[13.4.0] - 2022-12-13

MicroUI

Fixed

• Fix the unexpected resuming of the pumpJava threadwhen anewevent is added to the queue if it is an other
component than the MicroUI queue that has suspended the pump Java thread.

• Fix the flush bounds of drawCircleArc and drawEllipseArc.

Front Panel

Added

• Add some checks to not perform a drawing when it is unnecessary.

Fixed

• Fix the Front Panel representation of a Bu�eredImage: it is always opaque.

Image Generator

Added

• Add the image format A8_RLE.

Changed

• Rename RLE1 format in ARGB1565_RLE (keep RLE1 for backward compatibility).

Fixed

• Fix the non-generation of external images for the features.

6.14. Graphical User Interface 1022

https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/5.0.1/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/5.0.1/

MicroEJ Documentation, Revision 32bb132e

Font Generator

Fixed

• Fix the external fonts output folder for the features.

CModule MicroUI

• New version: C Module MicroUI 2.0.1.

Changed

• Do not draw thick shapes when thickness and fade are equal to zero.

CModule DMA2D

• New version: C Module DMA2D 3.0.2.

Fixed

• Fix the flush bounds when drawing an image (must be set before calling
LLUI_DISPLAY_notifyAsynchronousDrawingEnd()).

CModule VGLite

• New version: C Module VGLite 4.0.0.

• Compatible with VGLite library 3.0.15_rev4 .

• Several additions, changes and fixes are available. Refer to the C Module VGLite 4.0.0 changelog for more
information.

[13.3.1] - 2022-09-09

Image Generator

Added

• Add an Application Option to quickly test an Image Generator Extension project.

Changed

• Increase logs when application verbosity is enabled.

• Check the stridedefinedby the ImageGenerator Extensionproject (throwanerror if the value is incompatible
with the memory alignment).

Fixed

• Fix the external resource generation: they were no longer generated (UI pack 13.3.0 regression).

• Fix the duplicate generation (as internal and external resources) of the custom .list file images (consider
only custom .list file images as external resources when the prefix of the list file extension starts with
extern).

• Fix the internal limit error when converting images with BPP lower than 8 bits (for platforms that define a
rule for the image stride through an Image Generator Extension project).

6.14. Graphical User Interface 1023

https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui/2.0.1/
https://repository.microej.com/modules/com/microej/clibrary/llimpl/display-dma2d/3.0.2/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/4.0.0/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/4.0.0/

MicroEJ Documentation, Revision 32bb132e

[13.3.0] - 2022-09-02

MicroUI

Fixed

• Fix the Cx (x == 1 | 2 | 4) Graphics Engine’s whenmemory layout is “column”.

• Fix the consistency between Image.getImage() and Font.getFont() about starting MicroUI.

Front Panel

Added

• Add custom image formats and a service to prepare for future MicroUI functionality.

Image Generator

Fixed

• Fix the stride stored in the image when the Graphics Engine’s memory layout is “column”.

LLAPIs

Added

• Add custom image formats to prepare for future MicroUI functionality.

• Add LLAPI to adjust new image characteristics (size and alignment).

• Add API: UI_DRAWING_copyImage and UI_DRAWING_drawRegion .

• Add the LLUI version (== UI Pack version) in header files.

Changed

• Use type jbyte to identify an image format instead of MICROUI_ImageFormat (prevent C compiler optimiza-
tion).

Removed

• Remove the MicroUI’s native functions declaration with macros (not backward compatible).

CModule MicroUI

• New version: C Module MicroUI 2.0.0.

Changed

• Improve drawImage : identify faster use cases (copy an image and draw a region with overlap).

• Use new UI Pack LLAPI: UI_DRAWING_copyImage and UI_DRAWING_drawRegion .

• Use newMicroUI’s native functions declaration (not backward compatible).

6.14. Graphical User Interface 1024

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Image.html#getImage-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Font.html#getFont-java.lang.String-
https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui/2.0.0/

MicroEJ Documentation, Revision 32bb132e

C Module DMA2D for UI Pack 13.2.0 (maintenance)

• New version: C Module DMA2D 2.1.0.

Added

• Add the compatibility with the STM32H7 series.

Changed

• Manage the overlapping (draw an image on the same image).

Fixed

• Fix the limitation of UI Pack 13.x in checking the MicroUI GraphicsContext clip before filling a rectangle.

CModule DMA2D for UI Pack 13.3.0

• New version: C Module DMA2D 3.0.0.

Added

• Add the implementation of UI_DRAWING_drawRegion .

Removed

• Remove the so�ware implementation of “image overlap” (already available in UI Pack 13.3.0).

CModule VGLite

• New version: C Module VGLite 3.0.0.

• Compatible with VGLite library 3.0.11_rev3 .

• Several additions, changes and fixes are available. Refer to the C Module VGLite 3.0.0 changelog for more
information.

[13.2.0] - 2022-05-05

Integration

Changed

• Update to the latest SDK license notice.

MicroUI

• Implement MicroUI API 3.1.1.

Changed

• Use .rodata sections instead of .text sections.

Fixed

• Clean KF stale references when killing a feature without display context switch.

• Make sure to wait the end of an asynchronous drawing before killing a KF feature.

6.14. Graphical User Interface 1025

https://repository.microej.com/modules/com/microej/clibrary/llimpl/display-dma2d/2.1.0/
https://repository.microej.com/modules/com/microej/clibrary/llimpl/display-dma2d/3.0.0/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/3.0.0/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/3.0.0/
https://repository.microej.com/modules/ej/api/microui/3.1.1/

MicroEJ Documentation, Revision 32bb132e

• Redirect the events sent to the pump to the pump’s handler instead of to the event generator’s handler.

• Fix the drawing of antialiased arc: caps are drawn over the arc itself (rendering issue when the GraphicsCon-
text’s background color is set).

• Fix the drawing of antialiased arc: arc is not fully drawn when (int)startAngle == (int)((startAngle + arcAngle)
% 360)).

• Fix the input queue size when not already set by the application launcher.

• Fix the use of a negative scanLength in GraphicsContext.readPixels() and Image.readPixels().

Drawing

• Compatible with Drawing API 1.0.4.

Front Panel

Added

• Add the property -Dej.fp.hil=true in the application launcher to force to run the Front Panel with the
Graphics Engine as a standard HIL mock (requires MicroEJ Architecture 7.17.0 or higher).

• Add LLUIDisplayImpl.decode() : the Front Panel project is able to read encoded image like the embedded
side.

• Include automatically the AWT ImageIO services.

• Add MicroUIImage.readPixel() to read an image’s pixel color.

Fixed

• Fix the “display context switch” and the loading of feature’s font.

• Fix OOM (Java heap space) when opening/closing several hundreds of big RAW Images.

• Fix the synchronization with the Graphics Engine when calling GraphicsContext.setColor() or GraphicsCon-
text.enableEllipsis().

Image Generator

Added

• Include automatically the AWT ImageIO services.

• Allow to a custom image converter to generate a file other than a binary resource.

• Allow to a custom image converter to specify the supported .list files.

6.14. Graphical User Interface 1026

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html#readPixel-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Image.html#readPixel-int-int-
https://repository.microej.com/modules/ej/api/drawing/1.0.4/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html#setColor-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html#enableEllipsis-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html#enableEllipsis-int-

MicroEJ Documentation, Revision 32bb132e

LLAPIs

Added

• Add LLUI_DISPLAY_readPixel to read an image’s pixel color.

CModule DMA2D

• New version: C Module DMA2D 1.0.8 for UI Pack 13.0.x (maintenance).

• New version: C Module DMA2D 2.0.0 for UI Pack 13.1.0 and UI Pack 13.2.0.

Fixed

• Fix the use of returned code when drawing images with the DMA2D.

• Clean cache before each DMA2D transfer (no-op on STM32 CPU without cache).

CModule VGLite

• New CModule: C Module VGLite 2.0.0.

• Compatible with VGLite library 3.0.11_rev3 .

Added

• Provides the VGLite Cmodule 2.0.0 to target the NXP CPU that provides the Vivante VGLite accelerator.

BSP

Fixed

• Fix the IAR Embedded Workbench warnings during debug session.

[13.1.0] - 2021-08-03

MicroUI API

Removed

• Remove MicroUI and Drawing API from UI pack.

MicroUI Implementation

• Implement MicroUI API 3.1.0.

Changed

• Check Immortals heapminimal size required by MicroUI implementation.

• Change the EventGenerator Pointer event format.

• Do no systematically use the GPU to draw intermediate steps of a shape.

Fixed

• EventGenerator’s event has not to be sent to the Display’s handler when EventGenerator’s handler is null.

6.14. Graphical User Interface 1027

https://repository.microej.com/modules/com/microej/clibrary/llimpl/display-dma2d/1.0.8/
https://repository.microej.com/modules/com/microej/clibrary/llimpl/display-dma2d/2.0.0/
https://repository.microej.com/modules/ej/api/microui/3.1.0/

MicroEJ Documentation, Revision 32bb132e

• Fill rounded rectangle: fix rendering when corner radius is higher than rectangle height.

• An external image is closed twice when the application only checks if the image is available.

• RLE1 image rendering when platform requires image pixels address alignment.

• Manage the system fonts when the Font Generator is not embedded in the platform.

• Have to wait the end of current drawing before closing an image.

Drawing Implementation

• Compatible with Drawing API 1.0.3.

Front Panel

Added

• Add MicroUIImage.getImage(int) : apply a rendering color on Ax images.

• Add LLUIDisplay.convertRegion() : convert a region according image format restrictions.

• Add LLUIDisplayImpl.waitFlush() : can manage an asynchronous flush.

Changed

• Compatible with new EventGenerator Pointer event format.

Fixed

• Fix OutputFormat A8 when loading an image (path or stream) or converting a RAW image.

• Fix OOM (Java heap space) when opening/closing several hundreds of MicroUI Images.

• Simulates the image data alignment.

LLAPIs

Added

• Add LLUI_DISPLAY_convertDisplayColorToARGBColor() .

• Add LLAPI to manage theMicroUI Image heap.

• Add LLAPI to dump theMicroUI Events queue.

Changed

• Change signature of LLUI_DISPLAY_setDrawingLimits() : remove MICROUI_GraphicsContext* to be able
to call this function from GPU callback method.

6.14. Graphical User Interface 1028

https://repository.microej.com/modules/ej/api/drawing/1.0.3/

MicroEJ Documentation, Revision 32bb132e

C Module MicroUI

• New version: C Module MicroUI 1.1.0.

Added

• Add a MicroUI events logger (optional).

• Add a MicroUI images heap allocator (optional).

Fixed

• Fix comments in LLUI_PAINTER_impl.c and LLDW_PAINTER_impl.c .

• Ignore a drawing when at least one scaling factor is equal to zero.

[13.0.7] - 2021-07-30

MicroUI Implementation

Fixed

• Allow to open a font in format made with UI Pack 12.x (but cannot manage Dynamic styles).

• Display.flush() method is called once when MicroUI pump thread has a higher priority than the caller of Dis-
play.requestFlush().

• Display.requestFlush() is only executed once from a feature (UI deadlock).

Misc

Fixed

• Fix MMM dependencies: do not fetch the MicroEJ Architecture.

[13.0.6] - 2021-03-29

LLAPIs

Fixed

• Size of the typedef MICROUI_Image : do not depend on the size of the enumeration MICROUI_ImageFormat
(LLUI_PAINTER_impl.h).

[13.0.5] - 2021-03-08

MicroUI Implementation

Removed

• Remove ResourceManager dependency.

Fixed

• A feature was not able to call Display.callOnFlushCompleted().

6.14. Graphical User Interface 1029

https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui/1.1.0/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#flush--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#requestFlush--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#requestFlush--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#requestFlush--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#callOnFlushCompleted-java.lang.Runnable-

MicroEJ Documentation, Revision 32bb132e

• Stop feature: prevent NullPointerException when a kernel’s EventGenerator is removed from event genera-
tors pool.

• Filter DeadFeatureException in MicroUI pump.

• Drawing of thick arcs which represent an almost full circle.

• Drawing of thick faded arcs which pass by 0° angle.

Front Panel

Fixed

• Front Panel memory management: reduce simulation time.

[13.0.4] - 2021-01-15

MicroUI API

Changed

• [Changed] Include MicroUI API 3.0.3.

• [Changed] Include MicroUI Drawing API 1.0.2.

MicroUI Implementation

Fixed

• Fix each circle arc cap being drawn on both sides of an angle.

• Fix drawing of rounded caps of circle arcs when fade is 0.

• Cap thickness and fade in thick drawing algorithms.

• Clip is not checked when filling arcs, circles and ellipsis.

• Image path when loading an external image (LLEXT).

• InternalLimitsError when calling MicroUI.callSerially() from a feature.

Drawing Implementation

Fixed

• Draw deformed image is not rendered.

6.14. Graphical User Interface 1030

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/NullPointerException.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/DeadFeatureException.html
https://repository.microej.com/modules/ej/api/microui/3.0.3/
https://repository.microej.com/modules/ej/api/drawing/1.0.2/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/MicroUI.html#callSerially-java.lang.Runnable-

MicroEJ Documentation, Revision 32bb132e

Image Generator

Changed

• Compatible with com.microej.pack.ui#ui-pack(imageGenerator)#13.0.4.

Fixed

• NullPointerException when trying to convert an unknown image.

• Restore external resources option in MicroEJ launcher.

[13.0.3] - 2020-12-03

MicroUI API

Changed

• [Changed] Include MicroUI API 3.0.2.

• [Changed] Include MicroUI Drawing API 1.0.1.

MicroUI Implementation

Fixed

• Reduce Java heap usage.

• Fix empty images heap.

• Draw image algorithm does not respect image stride in certain circumstances.

• Fix flush limits of drawThickFadedLine, drawThickEllipse and drawThickFadedEllipse.

CModule MicroUI

• New version: C Module MicroUI 1.0.3.

CModule DMA2D

• New version: C Module DMA2D 1.0.6.

[13.0.2] - 2020-10-02

• Use new naming convention: com.microej.architecture.[toolchain].[architecture]-ui-pack .

Fixed

• [ESP32] - Potential PSRAM access faults by rebuilding using esp-idf v3.3.0 toolchain - simikou2 .

6.14. Graphical User Interface 1031

https://repository.microej.com/modules/com/microej/pack/ui/ui-pack/13.0.4/
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/NullPointerException.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/drawing/ShapePainter.html#drawThickFadedLine-ej.microui.display.GraphicsContext-int-int-int-int-int-int-ej.drawing.ShapePainter.Cap-ej.drawing.ShapePainter.Cap-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/drawing/ShapePainter.html#drawThickEllipse-ej.microui.display.GraphicsContext-int-int-int-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/drawing/ShapePainter.html#drawThickFadedEllipse-ej.microui.display.GraphicsContext-int-int-int-int-int-int-
https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui/1.0.3/
https://repository.microej.com/modules/com/microej/clibrary/llimpl/display-dma2d/1.0.6/

MicroEJ Documentation, Revision 32bb132e

C Module DMA2D

• New version: C Module DMA2D 1.0.5.

Changed

• De-init the DMA2D before re-initializing it, to reset the context at HAL level.

• Manipulate the drawing limits a�er being sure the DMA2D job is finished.

[13.0.1] - 2020-09-22

MicroUI API

Changed

• Include MicroUI API 3.0.1.

MicroUI Implementation

Fixed

• Throw an exception when there is no display.

• Antialiased circle may be cropped.

• FillRoundedRectangle can give invalid arguments to FillRectangle.

• Flush bounds may be invalid.

• Reduce memory footprint (java heap and immortal heap).

• No font is loaded when an external font is not available.

• A8 color is cropped to display limitation too earlier on simulator.

Front Panel

Fixed

• Cannot use an external image decoder on Front Panel.

• Missing an API to check the overlapping between source and destination areas.

Image Generator

Fixed

• Cannot build a platform with Image Generator and without Front Panel.

6.14. Graphical User Interface 1032

https://repository.microej.com/modules/ej/api/microui/3.0.1/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Painter.html#fillRoundedRectangle-ej.microui.display.GraphicsContext-int-int-int-int-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Painter.html#fillRectangle-ej.microui.display.GraphicsContext-int-int-int-int-

MicroEJ Documentation, Revision 32bb132e

LLAPIs

Fixed

• Missing a LLAPI to check the overlapping between source and destination areas.

CModule MicroUI

• New version: C Module MicroUI 1.0.2.

Changed

• Changemodule organization.

CModule DMA2D

• New version: C Module DMA2D 1.0.3.

Changed

• Remove/replace notion of LLDISPLAY .

• Changemodule organization.

Fixed

• Fix file names.

[13.0.0] - 2020-07-30

• Integrate SDK 3.0-B license.

Architecture

Changed

• Compatible with Architecture 7.16.0 or higher (SNI 1.3).

MicroUI API

Changed

• [Changed] Include MicroUI API 3.0.0.

• [Changed] Include MicroUI Drawing API 1.0.0.

6.14. Graphical User Interface 1033

https://repository.microej.com/modules/ej/api/microui/3.0.0/
https://repository.microej.com/modules/ej/api/drawing/1.0.0/

MicroEJ Documentation, Revision 32bb132e

MicroUI Implementation

Added

• Manage image data (pixels) address alignment (not more fixed to 32-bits word alignment).

Changed

• Reduce EDC dependency.

• Merge DisplayPump and InputPump : only one thread is required by MicroUI.

• Use a bss section to load characters from an external font instead of using java heap.

Removed

• Dynamic fonts (dynamic bold, italic, underline and ratios).

Fixed

• Lock only current thread when waiting end of flush or end of drawing (and not all threads).

• Draw anti-aliased ellipse issue (vertical line is sometimes drawn).

• Screenshot on platform whose physical size is higher than virtual size.

Known issue

• Render of draw/fill arc/circle/ellipse with an even diameter/edge is one pixel too high (center is 1/2 pixel too
high).

Front Panel

Added

• Able to override MicroUI drawings algorithms like embedded platform.

Changed

• Compatible with com.microej.pack.ui#ui-pack(frontpanel)#13.0.0.

• SeeMigration notes that describe the available changes in Front Panel API.

Removed

• ej.tool.frontpanel#widget-microui has been replaced by com.microej.pack.
ui#ui-pack(frontpanel) .

Image Generator

Added

• Redirects source image reading to the Image Generator extension project in order to increase the number of
supported image formats in input.

• Redirects destination image generation to the Image Generator extension project in order to be able to en-
code an image in a custom RAW format.

• Generates a linker file in order to always link the resources in same order between two launches.

Changed

• Compatible with com.microej.pack.ui#ui-pack(imageGenerator)#13.0.0.

6.14. Graphical User Interface 1034

https://repository.microej.com/modules/com/microej/pack/ui/ui-pack/13.0.0/
https://repository.microej.com/modules/com/microej/pack/ui/ui-pack/13.0.0/

MicroEJ Documentation, Revision 32bb132e

• SeeMigration notes that describe the available changes in Image Generator API.

• Uses a service loader to loads the Image Generator extension classes.

• Manages image data (pixels) address alignment.

Removed

• Classpath variable IMAGE-GENERATOR-x.x : Image generator extension project has to use ivy dependency
com.microej.pack.ui#ui-pack(imageGenerator) instead.

Font Generator

Changed

• Used a dedicated bss section to load characters from an external font instead of using the java heap.

LLAPIs

Added

• Some new functions are mandatory: see header files list, tagmandatory.

• Some new functions are optional: see header files list, tag optional.

• Some header files list the libraries ej.api.microui and ej.api.drawing natives. Provided by Abstraction
Layer implementation module com.microej.clibrary.llimpl#microui.

• Some header files list the drawing algorithms the platform can implement; all algorithms are optional.

• Some header files list the internal Graphics Engine so�ware algorithms the platform can call.

Changed

• All old header files and functions have been renamed or shared.

• SeeMigration notes that describe the available changes in LLAPI.

CModules

Added

• Provides the C Module MicroUI 1.0.1 that extends the UI Pack 13.0.0.

• Provides the C Module DMA2D 1.0.2 that targets the STM32 CPU that provides the Chrom-ART accelerator.

• SeeMicroUI C module.

[12.1.5] - 2020-10-02

• Use new naming convention: com.microej.architecture.[toolchain].[architecture]-ui-pack .

Fixed

• [ESP32] - Potential PSRAM access faults by rebuilding using esp-idf v3.3.0 toolchain - simikou2 .

6.14. Graphical User Interface 1035

https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui
https://repository.microej.com/modules/com/microej/pack/ui/ui-pack/13.0.0/

MicroEJ Documentation, Revision 32bb132e

[12.1.4] - 2020-03-10

MicroUI Implementation

Fixed

• Obsolete references on Java heap are used (since MicroEJ UI Pack 12.0.0).

[12.1.3] - 2020-02-24

MicroUI Implementation

Fixed

• Caps are not used when drawing an anti-aliased line.

[12.1.2] - 2019-12-09

MicroUI Implementation

Fixed

• Fix Graphics Engine empty clip (empty clip had got a size of 1 pixel).

• Clip not respected when clip is set “just a�er or before” graphics context drawable area: first (or last) line (or
column) of graphics context was rendered.

[12.1.1] - 2019-10-29

MicroUI Implementation

Fixed

• Fix Graphics Engine clip (cannot be outside graphics context).

[(maint) 8.0.0] - 2019-10-18

• Based on UI Pack 7.4.7.

Architecture

Changed

• Compatible with Architecture 7.0.0 or higher (Use SNI callback feature).

6.14. Graphical User Interface 1036

MicroEJ Documentation, Revision 32bb132e

MicroUI Implementation

Fixed

• Pending flush cannot be added a�er an OutOfEventException .

[12.1.0] - 2019-10-16

MicroUI API

Changed

• Include MicroUI API 2.4.0.

MicroUI Implementation

Changed

• Prepare inlining of get X/Y/W/Hmethods.

• Reduce number of strings embedded by MicroUI library.

Fixed

• Pending flush cannot be added a�er an OutOfEventException .

• Display.isColor() returns an invalid value.

• Draw/fill circle/ellipse arc is not drawn when angle is negative.

[12.0.2] - 2019-09-23

MicroUI Implementation

Changed

• Change CM4hardfp_IAR83 compiler flags.

• Remove RAW images from cache as soon as possible to reduce java heap usage.

• Do not cache RAW images with their paths to reduce java heap usage.

Fixed

• Remove useless exception in SystemInputPump.

[12.0.1] - 2019-07-25

MicroUI Implementation

Fixed

• Physical size is not taken in consideration.

6.14. Graphical User Interface 1037

https://repository.microej.com/modules/ej/api/microui/2.4.0/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#isColor--

MicroEJ Documentation, Revision 32bb132e

Front Panel

Fixed

• Increase native implementation execution time.

[12.0.0] - 2019-06-24

Architecture

Changed

• Compatible with Architecture 7.11.0 or higher (Move Front Panel in Architecture).

MicroUI Implementation

Added

• Trace MicroUI events and log them on SystemView.

Changed

• Manage the Graphics Context clip on native side.

• Use java heap to store images metadata instead of using icetea heap (remove option “max o�screen”).

• Optimize retrieval of all fonts.

• Ensure user bu�er size is larger than LCD size.

• Use java heap to store flying images metadata instead of using icetea heap (remove option “max flying im-
ages”).

• Use java heap to store fill polygon algorithm’s objects instead of using icetea heap (remove option “max
edges”).

• SecurityManager enabled as a boolean constant option (footprint removal by default).

• Remove FlyingImage feature using BON constants (option to enable it).

Fixed

• Wrong rendering of a fill polygon on emb.

• Wrong rendering of image overlaping on C1/2/4 platforms.

• Wrong rendering of a LUT image with more than 127 colors on emb.

• Wrong rendering of an antialiased arc with 360 angle.

• Debug option com.is2t.microui.log=true fails when there is a flying image.

• Gray scale between gray and white makes magenta.

• Minimal size of some bu�ers set by user is never checked.

• The format of a RAW image using “display” format is wrong.

• Dynamic image width for platform C1/2/4 may be wrong.

• Wrong pixel address when reading from a C2/4 display.

• getDisplayColor() can return a color with transparency (spec is 0x00RRGGBB).

6.14. Graphical User Interface 1038

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#getDisplayColor-int-

MicroEJ Documentation, Revision 32bb132e

• A fully opaque image is tagged as transparent (ARGB8888 platform).

Front Panel

Added

• Simulate flush time (add JRE property -Dfrontpanel.flush.time=8).

Fixed

• A pixel read on an image is always truncated.

Front Panel Plugin

Removed

• Front Panel version 5: Move Front Panel from MicroEJ UI Pack to Architecture (not backward compatible);
Architecture contains now Front Panel version 6.

[11.2.0] - 2019-02-01

MicroUI Implementation

Added

• Manage extended UTF16 characters (> 0x��).

Fixed

• IOException thrown instead of an OutOfMemory when using external resource loader.

Tools

Removed

• Remove Font Designer from pack (useless).

[11.1.2] - 2018-08-10

MicroUI Implementation

Fixed

• Fix drawing bug in thick circle arcs.

6.14. Graphical User Interface 1039

MicroEJ Documentation, Revision 32bb132e

[11.1.1] - 2018-08-02

• Internal release.

[11.1.0] - 2018-07-27

• Merge 10.0.2 and 11.0.1.

MicroUI API

Changed

• Include MicroUI API 2.3.0.

MicroUI Implementation

Added

• LLDisplay : prepare round LCD.

Fixed

• Fillrect throws a hardfault on 8bpp platform.

• Rendering of a LUT image is wrong when using so�ware algorithm.

[11.0.1] - 2018-06-05

• Based on UI Pack 11.0.0.

MicroUI Implementation

Fixed

• Image rendering may be invalid on custom display.

• Render a dynamic image on custom display is too slow.

• LRGB888 image format is always fully opaque.

• Number of colors returned when it is a custom display may be wrong.

[10.0.2] - 2018-02-15

• Based on UI Pack 10.0.1.

6.14. Graphical User Interface 1040

https://repository.microej.com/modules/ej/api/microui/2.3.0/

MicroEJ Documentation, Revision 32bb132e

MicroUI Implementation

Fixed

• Number of colors returned when it is a custom display may be wrong.

• LRGB888 image format is always fully opaque.

• Render a dynamic image on custom display is too slow.

• Image rendering may be invalid on custom display.

[11.0.0] - 2018-02-02

• Based on UI Pack 10.0.1.

Architecture

Changed

• Compatible with Architecture 7.0.0 or higher (Use SNI callback feature).

MicroUI Implementation

Changed

• SNI Callback feature in the VM to remove the SNI retry pattern (not backward compatible).

[10.0.1] - 2018-01-03

MicroUI Implementation

Fixed

• Hard fault when using custom display stack.

[10.0.0] - 2017-12-22

Architecture

Changed

• Compatible with Architecture 6.13.0 or higher (LLEXT link error with Architecture 6.13+ and UI Pack 9+).

6.14. Graphical User Interface 1041

MicroEJ Documentation, Revision 32bb132e

MicroUI Implementation

Changed

• Improve TOP-LEFT anchor checks.

Fixed

• Subsequent renderings may not be correctly flushed.

• Rendering of display on display was not optimized.

Front Panel

Changed

• Check the allocated memory when creating a dynamic image (not backward compatible).

Misc

Added

• Option in platform builder to images heap size.

[9.4.1] - 2017-11-24

Image Generator

Fixed

• Missing some files in Image Generator module.

[9.4.0] - 2017-11-23

• Deprecated: use UI Pack 9.4.1 instead.

MicroUI Implementation

Added

• LUT imagemanagement.

Changed

• Optimize character encoding removing first vertical line when possible.

Fixed

• Memory leak when an OutOfEventException is thrown.

• A null Java object is not checked when using a font.

6.14. Graphical User Interface 1042

MicroEJ Documentation, Revision 32bb132e

[9.3.1] - 2017-09-28

MicroUI Implementation

Fixed

• Returned X coordinates when drawing a string was considered as an error code.

• Exception when loading a font from an application.

• LLEXT link error with Architecture 6.13+ and UI 9+.

[9.3.0] - 2017-08-24

MicroUI Implementation

Fixed

• Ellipsis must not drawn when text anchor is a “manual” TOP-RIGHT .

Front Panel

Fixed

• Do not create an AWT window for each image.

• Error when trying to play with an unknown led.

[9.2.1] - 2017-08-14

Front Panel

Added

• Provide function to send a Long Button event.

• “flush” debug option.

Fixed

• Mock startup is too long.

[9.2.0] - 2017-07-21

• Merge UI Packs 9.1.2 and 9.0.2.

6.14. Graphical User Interface 1043

MicroEJ Documentation, Revision 32bb132e

Architecture

Changed

• Compatible with Architecture 6.12.0 or higher (SOAR can exclude some resources).

MicroUI API

Changed

• Include MicroUI API 2.2.0.

MicroUI Implementation

Added

• Provide function to send a Long Button event (emb only).

Changed

• Use font format v5.

• A signature on RAW files.

• Allow to open a raw image with Image.createImage(stream) .

• Improve Image.createImage(stream) when stream is a memory input stream.

Fixed

• Draw region of the display on the display does not support overlap.

• Unspecified exception while loading an image with an empty name.

• Display.flush(): ymax can be higher than display.height.

Image Generator

Fixed

• Generic displays must be able to generate standard images.

Misc

Changed

• SOAR can exclude some resources (update llext output folder).

Fixed

• RI build: reduce Front Panel dependency.

6.14. Graphical User Interface 1044

https://repository.microej.com/modules/ej/api/microui/2.2.0/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#flush--

MicroEJ Documentation, Revision 32bb132e

[9.0.2] - 2017-04-21

• Based on UI Pack 9.0.1.

MicroUI Implementation

Fixed

• Rendering of a RAW image on grayscale display is wrong.

Image Generator

Fixed

• An Ax imagemay be fully opaque.

[9.1.2] - 2017-03-16

• Based on UI Pack 9.1.1.

MicroUI API

Changed

• Include MicroUI API 2.1.3.

MicroUI Implementation

Added

• Renderable strings.

Changed

• Draw string: improve time to perform it.

• Optimize antialiased circle arc drawing when fade=0.

Fixed

• ImageScale bugs.

• Draw string: some errors are not thrown.

• Font.getWidth() and getHeight() don’t use ratio factor.

• Draw antialiased circle arc render issue.

• Draw antialiased circle arc render bug with 45° angles.

• MicroUI lib expects the dynamic image decoder default format.

• Wrong error code is returned when converting an image.

6.14. Graphical User Interface 1045

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Font.html#getHeight--

MicroEJ Documentation, Revision 32bb132e

Image Generator

Fixed

• Use the application classpath.

• An Ax imagemay be fully opaque.

[9.0.1] - 2017-03-13

• Based on UI Pack 9.0.0.

MicroUI Implementation

Fixed

• Hardfault when filling a rectangle on an odd image.

• Pixel rendering on non-standard LCD is wrong.

• RZ hardware accelerator: RAW images have to respect an aligned size.

• Use the classpath when invoking the fonts and images generators.

Front Panel

Fixed

• Wrong rendering of A8 images.

Front Panel Plugin

Fixed

• Manage display mask on preview.

• Respect initial background color set by user on preview.

• Preview does not respect the real size of display.

[9.1.1] - 2017-02-14

• Based on UI Pack 9.1.0.

Misc

Fixed

• RI build: Several custom event generators in same microui.xml file are not embedded.

6.14. Graphical User Interface 1046

MicroEJ Documentation, Revision 32bb132e

[9.1.0] - 2017-02-13

• Based on UI Pack 9.0.0.

Architecture

Changed

• Compatible with Architecture 6.8.0 or higher (Internal scripts).

MicroUI API

Changed

• Include MicroUI API 2.1.2.

MicroUI Implementation

Added

• G2D hardware accelerator.

• Hardware accelerator: add flip feature.

Fixed

• Hardfault when filling a rectangle on an odd image.

• Pixel rendering on non-standard LCD is wrong.

• RZ hardware accelerator: RAW images have to respect an aligned size.

• Use the classpath when invoking the fonts and images generators.

• Exception when flipping an image out of display bounds.

• Flipped image is translated when clip is modified.

Front Panel

Fixed

• Wrong rendering of A8 images.

Front Panel Plugin

Fixed

• Manage display mask on preview.

• Respect initial background color set by user on preview.

• Preview does not respect the real size of display.

6.14. Graphical User Interface 1047

MicroEJ Documentation, Revision 32bb132e

[9.0.0] - 2017-02-02

MicroUI API

Changed

• Include MicroUI API 2.0.6.

MicroUI Implementation

Changed

• Update MicroUI to use watchdogs in KF implementation.

Fixed

• Display linker file is required even if there is no display on platform.

• MicroUI on KF: NPE when changing app quickly (in several threads).

• MicroUI on KF: NPE when stopping a Feature and there’s no eventHandler in a generator.

• MicroUI on KF: Remaining K->F link when there is no default event handler registered by the Kernel.

MWT

Removed

• Remove MWT fromMicroEJ UI Pack (not backward compatible).

Front Panel

Added

• Optional mask on display.

Changed

• Display Device UID if available in the window title.

Tools

Changed

• Front Panel plugin: Update icons.

• Font Designer plugin: Update icons.

• Font Designer and Generator: use Unicode 9.0.0 specification.

6.14. Graphical User Interface 1048

https://repository.microej.com/modules/ej/api/microui/2.0.6/

MicroEJ Documentation, Revision 32bb132e

Misc

Fixed

• Remove obsolete documentations from Front Panel And Font Designer plugins.

[8.1.0] - 2016-12-24

MicroUI Implementation

Changed

• Improve image drawing timings.

• Runtime decoders can force the output RAW image’s fully opacity.

MWT

Fixed

• With two panels, the paint is done but the screen is not refreshed.

• Widget show notify method is called before the panel is set.

• Widget still linked to panel when lostFocus() is called.

Front Panel

Added

• Can add an additional screen on simulator.

[8.0.0] - 2016-11-17

Architecture

Changed

• Compatible with Architecture 6.4.0 or higher (Manage external memories like byte addressable memories).

MicroUI Implementation

Added

• RZ UI acceleration.

• External image decoders.

• Manage external memories like internal memories.

• Custom display stacks (hardware acceleration).

Changed

• Merge stacks DIRECT/COPY/SWITCH (not backward compatible).

6.14. Graphical User Interface 1049

MicroEJ Documentation, Revision 32bb132e

Fixed

• add KF rule: a thread cannot enter in a feature code while it owns a kernel monitor.

• automatic flush is not waiting the end of previous flush.

• Invalid image rotation rendering.

• Do not embed Images & Fonts.list of kernel API classpath in appmode.

• Invalid icetea heap allocation.

• microui image: invalid “defaultformat” and “format” fields values.

MWT

Fixed

• possible to create an inconsistent hierarchy.

Front Panel

Added

• Can decode additional image formats.

Fixed

• Cannot set initial value of StateEventGenerator.

[7.4.7] - 2016-06-14

MicroUI Implementation

Fixed

• Do not create all fonts derivations of built-in styles.

• A bold font is not flagged as bold font.

• Wrong A4 image rendering.

Front Panel

Fixed

• Cannot convert an image.

6.14. Graphical User Interface 1050

MicroEJ Documentation, Revision 32bb132e

[7.4.2] - 2016-05-25

MicroUI Implementation

Fixed

• invalid image drawing for column display.

[7.4.1] - 2016-05-10

MicroUI Implementation

Fixed

• Restore stack 1, 2 and 4 BPP.

[7.4.0] - 2016-04-29

MicroUI Implementation

Fixed

• image A1’s width is sometimes invalid.

Front Panel

Added

• Restore stack 1, 2 and 4 BPP.

[7.3.0] - 2016-04-25

MicroUI Implementation

Added

• Stack 8BPP with LUT support.

[7.2.1] - 2016-04-18

Misc

Fixed

• Remove java keyword in workbench extension.

6.14. Graphical User Interface 1051

MicroEJ Documentation, Revision 32bb132e

[7.2.0] - 2016-04-05

Tools

Added

• Preprocess *.xxx.list files.

[7.1.0] - 2016-03-02

MicroUI Implementation

Added

• Manage several images RAW formats.

[7.0.0] - 2016-01-20

Misc

Changed

• Remove @jpf.property.header@ prefix to Application options (not backward compatible).

[6.0.1] - 2015-12-17

MicroUI Implementation

Fixed

• A negative clip throws an exception on simulator.

[6.0.0] - 2015-11-12

• Compatible with Architecture 6.1.0 or higher.

MicroUI Implementation

Changed

• LLDisplay for UIv2 (not backward compatible).

6.14. Graphical User Interface 1052

MicroEJ Documentation, Revision 32bb132e

6.14.17 Migration Guide

From 13.7.x to 14.0.0

Front Panel

• Fetch Front Panel Widgets 4.0.0 (it fetches by transitivity the UI Pack 14.0.0):

<dependency org="ej.tool.frontpanel" name="widget" rev="4.0.0"/>

• Re-organize imports of all Java classes (classes MicroUIImageFormat , MicroUIImage and
MicroUIGraphicsContext have been extracted from LLUIPainter).

• The doubleBufferFeature attribute has been removed from the Display widget. It is replaced by the
bufferPolicyClass (see Bu�er Refresh Strategy on the Simulator).

<ej.fp.widget.Display x="0" y="0" width="480" height="272" bufferPolicyClass="ej.fp.
→˓widget.display.buffer.SwapDoubleBufferPolicy"/>

• The FlushVisualizerDisplay widget has beenmergedwith the Display widget. To use this functionality,
use the Display widget instead of the FlushVisualizerDisplay widget in the Front Panel .fp file and set
the option ej.fp.display.flushVisualizer=true in the options of the application launcher.

BSPWithout GPU

• [VEE Port configuration project]

– Fetch the C Module MicroUI 4.0.0.

• [BSP project]

– Delete the VEE Port include folder (o�en /platform/inc).

– Delete the properties file cco_microui.properties .

– In the C project configuration, include the newC files ui_display_brs.c , ui_display_brs_legacy.c
, ui_display_brs_predraw.c , ui_display_brs_single.c and ui_rect_util.c .

– Read the documentation about the display Bu�er Refresh Strategy; then configure the C module by
setting the right configuration in ui_display_brs_configuration.h .

– Comment the line #error "This header must [...]" .

– The next actions depend on the available numbers of bu�ers allocated in the MCUmemories and if the
LCD frame bu�er is mapped on a MCU’s bu�er (if not, that means the LCD device owns a bu�er). The
following table redirects the next steps according to the display connection with the MCU:

Table 36: Copy and / or Swap actions
Bu�ers Mapped Next Actions
2 (1+1) no [Display “Copy”]
2 yes [Display “Swap double bu�er”]
3 yes [Display “Swap triple bu�er”]
3 (2+1) no [Display “Copy and Swap”]

• [Display “Copy”]

– Set the value of the define UI_DISPLAY_BRS : UI_DISPLAY_BRS_SINGLE .

6.14. Graphical User Interface 1053

https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/ej/tool/frontpanel/widget/4.0.0/
https://repository.microej.com/modules/com/microej/pack/ui/ui-pack/14.0.0/
https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui/4.0.0/

MicroEJ Documentation, Revision 32bb132e

– Set the value of the define UI_DISPLAY_BRS_DRAWING_BUFFER_COUNT : 1 .

– Uncomment the define UI_DISPLAY_BRS_FLUSH_SINGLE_RECTANGLE .

– Change the signature and the implementation of the function flush: void
LLUI_DISPLAY_IMPL_flush(MICROUI_GraphicsContext* gc, uint8_t flush_identifier,
const ui_rect_t regions[], size_t length)

* Store (in a static field) the rectangle to flush (the array contains only one rectangle).

* Store (in a static field) the flush identifier.

* Unlock (immediately or wait the LCD tearing signal interrupt) the copy task (hardware of so�ware)
that will send (or copy) the back bu�er data to the LCD frame bu�er.

* Remove the returned value (the back bu�er address).

– At the end of the copy (in an interrupt or at the end of the so�ware copy task), replace the call to
LLUI_DISPLAY_flushDone() by LLUI_DISPLAY_setDrawingBuffer() : it will unlock the Graphics En-
gine. Give the back bu�er address (same address as at start-up) and the flush identifier.

• [Display “Swap double bu�er”]

– Set the value of the define UI_DISPLAY_BRS : UI_DISPLAY_BRS_PREDRAW .

– Set the value of the define UI_DISPLAY_BRS_DRAWING_BUFFER_COUNT : 2 .

– Change the signature and the implementation of the function flush: void
LLUI_DISPLAY_IMPL_flush(MICROUI_GraphicsContext* gc, uint8_t flush_identifier,
const ui_rect_t regions[], size_t length)

* Store (in a static field) the back bu�er address (LLUI_DISPLAY_getBu�erAddress(&gc->image)).

* Store (in a static field) the flush identifier.

* Unlock (immediately or wait the LCD tearing signal interrupt) the swap task (hardware of so�ware)
that will swap the back bu�er and the LCD frame bu�er.

* Remove the static fields ymin and ymax (now useless).

* Remove the returned value (the back bu�er address).

– Case of hardware swap (LCD swap interrupt): change the implementation of the LCD swap interrupt:

– Remove all the code concerning the post-flush restoration (remove the copy task or the use of a DMA).
In both cases, the call to LLUI_DISPLAY_flushDone() is removed.

– Unlock the Graphics Engine by calling LLUI_DISPLAY_setDrawingBuffer() , giving the new back
bu�er address and the flush identifier.

– Case of so�ware swap (dedicated swap task): change the task actions:

* Swap back and frame bu�ers.

* Wait for the end of bu�ers swap: ensure the LCD driver does not use anymore the old LCD frame
bu�er.

– Remove all the code concerning the post-flush restoration (the call to memcpy or the use of a DMA). In
both cases, the call to LLUI_DISPLAY_flushDone() is removed.

– Unlock the Graphics Engine by calling LLUI_DISPLAY_setDrawingBuffer() , giving the new back
bu�er address and the flush identifier.

• [Display “Swap triple bu�er”]

– Set the value of the define UI_DISPLAY_BRS : UI_DISPLAY_BRS_PREDRAW .

6.14. Graphical User Interface 1054

MicroEJ Documentation, Revision 32bb132e

– Set the value of the define UI_DISPLAY_BRS_DRAWING_BUFFER_COUNT : 3 .

– Change the signature and the implementation of the function flush: void
LLUI_DISPLAY_IMPL_flush(MICROUI_GraphicsContext* gc, uint8_t flush_identifier,
const ui_rect_t regions[], size_t length)

* Store (in a static field) the back bu�er address (LLUI_DISPLAY_getBu�erAddress(&gc->image)).

* Store (in a static field) the flush identifier.

* Unlock (immediately or wait the LCD tearing signal interrupt) the swap task that will swap the
bu�ers.

* Remove the static fields ymin and ymax (now useless).

* Remove the returned value (the back bu�er address).

– In the swap task: change the task actions:

* Swap bu�ers.

– Remove all the code concerning the post-flush restoration (the call to memcpy or the use of a DMA). In
both cases, the call to LLUI_DISPLAY_flushDone() is removed.

– Unlock the Graphics Engine by calling LLUI_DISPLAY_setDrawingBuffer() , giving the new back
bu�er address and the flush identifier (the Graphics Engine can be unlocked immediately because a
bu�er is freed for sure).

– Wait for the end of bu�ers swap: ensure the LCD driver does not use anymore the old LCD frame bu�er.

• [Display “Copy and Swap”]

– Set the value of the define UI_DISPLAY_BRS : UI_DISPLAY_BRS_PREDRAW .

– Set the value of the define UI_DISPLAY_BRS_DRAWING_BUFFER_COUNT : 2 .

– Uncomment the define UI_DISPLAY_BRS_FLUSH_SINGLE_RECTANGLE .

– Change the signature and the implementation of the function flush: void
LLUI_DISPLAY_IMPL_flush(MICROUI_GraphicsContext* gc, uint8_t flush_identifier,
const ui_rect_t regions[], size_t length)

* Store (in a static field) the rectangle to flush (the array contains only one rectangle).

* Store (in a static field) the back bu�er address (LLUI_DISPLAY_getBu�erAddress(&gc->image)).

* Store (in a static field) the flush identifier.

* Unlock (immediately or wait the LCD tearing signal interrupt) the copy & swap task that will send
(or copy) the current back bu�er data to the LCD frame bu�er and that will swap the back bu�ers.

* Remove the returned value (the back bu�er address).

– In the copy & swap task: change the “copy & swap” actions:

* Start the sending of the current back bu�er (called bu�er A) data to the LCD frame bu�er.

* Swap back bu�er A and back bu�er B.

* Wait for the end of back bu�ers swap: ensure the LCD driver is now using the bu�er A as sending
bu�er.

– Remove all the code concerning to the post-flush restoration (the call to memcpy or the use of a DMA).
In both cases, the call to LLUI_DISPLAY_flushDone() is removed.

– Unlock the Graphics Engine by calling LLUI_DISPLAY_setDrawingBuffer() , giving the back bu�er B
address and the flush identifier.

6.14. Graphical User Interface 1055

MicroEJ Documentation, Revision 32bb132e

– Wait for the end of sending: ensure the LCD driver has finished to send the data.

– (optional) Unlock again the Graphics Engine by calling LLUI_DISPLAY_setDrawingBuffer() , giving
the bu�er A address and the flush identifier:

* The call to LLUI_DISPLAY_setDrawingBuffer() returns false : that means at least one drawing
has been performed in the bu�er B; nothing else to do.

* The call to LLUI_DISPLAY_setDrawingBuffer() returns true : thatmeansnodrawinghas started
yet in the bu�er B. In that case, the Graphics Engine will reuse the bu�er A as back bu�er and the
restoration of the past becomes useless. The back bu�ers swap is so cancelled, update the LCD
driver status in consequence.

BSPwith DMA2D

• [VEE Port configuration project]

– Fetch the C Module DMA2D 5.0.0.

• [BSP project]

– Follow the migration steps of “BSP without GPU”.

– Check the content of the configuration file ui_drawing_dma2d_configuration.h (a versioning has
been added).

– Comment the line #error [...]" .

– According to thedisplayBu�erRefreshStrategy, unlock theMicroUIGraphicsEngine in theLCD interrupt
or in the DMA2Dmemcpy callback (see C Module: MicroUI Over DMA2D).

BSPwith VGLite

• [VEE Port configuration project]

– Fetch the C Module VGLite 8.0.0.

• [BSP project]

– Follow the migration steps of “BSP without GPU”.

– Migrate VGLite library to the version 3.0.15_rev7.

– Modify the VGLite library 3.0.15_rev7 by applying the patch 3.0.15_rev7.patch (see
README.md near patch file for more information).

– In the file vglite_window.c , add the function VGLITE_CancelSwapBuffers() and its pro-
totype in vglite_window.h :

void VGLITE_CancelSwapBuffers(void) {
fb_idx = fb_idx == 0 ? (APP_BUFFER_COUNT - 1) : (fb_idx) - 1;

}

6.14. Graphical User Interface 1056

https://repository.microej.com/modules/com/microej/clibrary/llimpl/display-dma2d/5.0.0/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/8.0.0/

MicroEJ Documentation, Revision 32bb132e

BSPwith NemaGFX

• [VEE Port configuration project]

– Fetch the C Module NemaGFX 2.0.0.

• [BSP project]

– Follow the migration steps of “BSP without GPU”.

– Check the content of the configuration file ui_drawing_nema_configuration.h (new version 2).

From 13.6.x to 13.7.2

Front Panel

• (optional) Fetch explicitly the UI Pack 13.7.2 to use the new API of the UI Pack:

<dependency org="com.microej.pack.ui" name="ui-pack" rev="13.7.2">
<artifact name="frontpanel" type="jar"/>

</dependency>

BSPwithout GPU

• [VEE Port configuration project]

– Fetch the C Module MicroUI 3.1.1.

• [BSP project]

– Optionally, implement UI_DRAWING_freeImageResources(MICROUI_Image* image) (single-output
bu�ered image format) or UI_DRAWING_freeImageResources_X(MICROUI_Image* image) (mulitple-
output bu�ered image formats, where X is the image format identifier) to free the resources associated
with a bu�ered image when it is closed.

BSPwith DMA2D

• [VEE Port configuration project]

– Fetch the C Module DMA2D 4.1.0.

• [BSP project]

– Follow the migration steps of “BSP without GPU”.

6.14. Graphical User Interface 1057

https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-nemagfx/2.0.0/
https://repository.microej.com/modules/com/microej/pack/ui/ui-pack/13.7.2/
https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui/3.1.1/
https://repository.microej.com/modules/com/microej/clibrary/llimpl/display-dma2d/4.1.0/

MicroEJ Documentation, Revision 32bb132e

BSPwith VGLite

• [VEE Port configuration project]

– Fetch the C Module VGLite 7.2.0.

• [BSP project]

– Follow the migration steps of “BSP without GPU”.

BSPwith NemaGFX

• [VEE Port configuration project]

– Fetch the C Module NemaGFX 1.2.0.

• [BSP project]

– Follow the migration steps of “BSP without GPU”.

– Review all options of ui_drawing_nema_configuration.h (version 2).

From 13.5.x to 13.6.2

Front Panel

• (optional) Fetch Front Panel Widgets 3.0.0 to use the new features of the Front Panel Widget library:

<dependency org="ej.tool.frontpanel" name="widget" rev="3.0.0"/>

• (optional) Fetch explicitly the UI Pack 13.6.2 to use the new API of the UI Pack:

<dependency org="com.microej.pack.ui" name="ui-pack" rev="13.6.2">
<artifact name="frontpanel" type="jar"/>

</dependency>

BSPwith VGLite

These steps are for a VEE Port that manages its own implementation of LLUI_DISPLAY_impl.h (that did not use
the old implementation which was available in this C Module):

• [VEE Port configuration project]

– Fetch the C Module VGLite 7.1.0.

– (optional) Fetch C Module RT500 7.0.0

• [BSP project]

– Delete the properties file cco_microui-vglite.properties .

– Delete the following files from the file-system and from the C project configuration:

* inc/display_utils.h

* inc/display_vglite.h

* inc/drawing_vglite.h

6.14. Graphical User Interface 1058

https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/7.2.0/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-nemagfx/1.2.0/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/ej/tool/frontpanel/widget/3.0.0/
https://repository.microej.com/modules/com/microej/pack/ui/ui-pack/13.6.2/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/7.1.0/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-mimxrt595-evk/7.0.0

MicroEJ Documentation, Revision 32bb132e

* inc/vglite_path.h

* src/display_stub.c

* src/display_utils.c

* src/display_vglite.c

* src/drawing_vglite.c

* src/vglite_path.c

– Add the new files to the C project configuration:

* src/ui_drawing_vglite_path.c

* src/ui_drawing_vglite_process.c

* src/ui_vglite.c

– Review all imports of the removed header files.

– In the implementationof LLUI_DISPLAY_impl.h , call UI_VGLITE_init() during the initialization step.

– In the GPU interrupt rountine, call UI_VGLITE_IRQHandler() .

– Review all options of ui_vglite_configuration.h .

– Implement UI_VGLITE_IMPL_notify_gpu_xxx() instead of DISPLAY_IMPL_notify_gpu_xxx() .

– Implement UI_VGLITE_IMPL_error() instead of DISPLAY_IMPL_error() .

– Change all calls to DISPLAY_VGLITE_xxx() functions to UI_VGLITE_xxx() functions.

– Change all calls to DRAWING_VGLITE_xxx() functions to UI_DRAWING_VGLITE_PROCESS_xxx() func-
tions.

– Change all calls to VGLITE_PATH_xxx() functions to UI_DRAWING_VGLITE_PATH_xxx() functions.

– Change all calls to DISPLAY_UTILS_xxx() functions to UI_VGLITE_xxx() functions.

BSPWith MCU i.MX RT595

These steps are for a VEE Port that uses the implementation of LLUI_DISPLAY_impl.h which was available in the
C Module VGLite:

• [VEE Port configuration project]

– Fetch the C Module VGLite 7.1.0.

– Fetch C Module RT500 7.0.0

• [BSP project]

– Follow the steps of BSP with VGLite (described above) except the calls to UI_VGLITE_init() and
UI_VGLITE_IRQHandler() .

– Implement DISPLAY_DMA_IMPL_notify_dma_xxx() instead of DISPLAY_IMPL_notify_dma_xxx() .

6.14. Graphical User Interface 1059

https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/7.1.0/
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-mimxrt595-evk/7.0.0

MicroEJ Documentation, Revision 32bb132e

BSPwith NemaGFX

• [VEE Port configuration project]

– Fetch the C Module NemaGFX 1.0.0.

• [BSP project]

– Add all the C files available in src folder.

– Configure the C project to include the inc folder.

– Read the comments in ui_drawing_nema_configuration.h and configures the Cmodule.

From 13.4.x to 13.5.1

Front Panel

• (optional) Fetch explicitly the UI Pack 13.5.1 to use the new API of the UI Pack:

<dependency org="com.microej.pack.ui" name="ui-pack" rev="13.5.1">
<artifact name="frontpanel" type="jar"/>

</dependency>

• Replace any calls to LLUIPainter.setDrawer() and LLDWPainter.setDrawer() to LLUIDisplay.
Instance.registerUIDrawer() .

• Replace any calls to LLUIPainter.getDrawer() and LLDWPainter.getDrawer() to LLUIDisplay.
Instance.getUIDrawer() .

• Replace any calls to LLUIDisplay.getDWDrawerSoftware() to LLUIDisplay.Instance.
getUIDrawerSoftware() .

• Implementation of the interface UIDrawingDefault : implement the interface UIDrawing instead.

• Implementation of the interfaces DWDrawing and DWDrawingDefault : implement the interface UIDrawing
instead.

• Implementation of the service BufferedImageProvider : implement handledFormat() and remove the
parameter format from newBufferedImage() .

• Replace any occurrences of MICROUI_IMAGE_FORMAT_LCD by MICROUI_IMAGE_FORMAT_DISPLAY .

BSPwithout GPU

• [VEE Port configuration project]

– Fetch the C Module MicroUI 3.0.0.

• [BSP project]

– Delete the VEE Port include folder (o�en /platform/inc).

– Delete the properties file cco_microui.properties .

– In the C project configuration, include the new C files ui_drawing.c , ui_image_drawing.c and
ui_drawing_stub.c .

6.14. Graphical User Interface 1060

https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-nemagfx/1.0.0/
https://repository.microej.com/modules/com/microej/pack/ui/ui-pack/13.5.1/
https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui/3.0.0/

MicroEJ Documentation, Revision 32bb132e

BSPwith DMA2D

• Follow the migration steps of “BSP without GPU”.

• [VEE Port configuration project]

– Fetch the C Module DMA2D 4.0.0.

• [BSP project]

– Delete the properties file cco_display-dma2d.properties .

– Read the comments about the cache in drawing_dma2d_configuration.h .

– Uncomment the expected define DRAWING_DMA2D_CACHE_MANAGEMENT (enable or disable the cache
management).

– Delete the C files drawing_dma2d.h and drawing_dma2d.c and remove them from the C project con-
figuration.

– In the C project configuration, include the new C file ui_drawing_dma2d.c .

– Replace the import drawing_dma2d.h by ui_drawing_dma2d.h .

– Replace the calls to functions DRAWING_DMA2D_xxx() by UI_DRAWING_DMA2D_xxx() .

BSPwith VGLite

Note: TheCModule is designed to target theNXP i.MXRT500; however it canbe locally customized for otherboards
(see [Custom project])

• Follow the migration steps of “BSP without GPU”.

• [VEE Port configuration project]

– Fetch the C Module VGLite 6.0.1.

• [BSP project]

– Delete the properties file cco_microui-vglite.properties .

– Delete the C files vg_drawer.h and vg_drawer.c and remove them from the C project configuration.

– Verify the options in display_configuration.h .

– In the C project configuration, include the new C file ui_drawing_vglite.c .

From 13.3.x to 13.4.1

BSPwithout GPU

• [VEE Port configuration project]

– Fetch the C Module MicroUI 2.0.1.

• [BSP project]

– Delete the properties file cco_microui.properties .

6.14. Graphical User Interface 1061

https://repository.microej.com/modules/com/microej/clibrary/llimpl/display-dma2d/4.0.0/
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus/i-mx-rt500-crossover-mcu-with-arm-cortex-m33-dsp-and-gpu-cores:i.MX-RT500
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/6.0.1/
https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui/2.0.1/

MicroEJ Documentation, Revision 32bb132e

BSPwith DMA2D

• Follow the migration steps of “BSP without GPU”.

• [VEE Port configuration project]

– Fetch the C Module DMA2D 3.0.2.

• [BSP project]

– Delete the properties file cco_display-dma2d.properties .

BSPwith VGLite

Note: TheCModule is designed to target theNXP i.MXRT500; however it canbe locally customized for otherboards
(see [Custom project])

• Follow the migration steps of “BSP without GPU”.

• [VEE Port configuration project]

– Fetch the C Module VGLite 5.0.1.

• [BSP project]

– Migrate VGLite library to the version 3.0.15_rev4.

– Modify theVGLite library3.0.15_rev4byapplying thepatch 3.0.15_rev4.patch (seeREADME.mdnear
patch file for more information).

From 13.2.x to 13.3.1

Front Panel

• (optional) Fetch explicitly the UI Pack 13.3.1 to use the new API of the UI Pack:

<dependency org="com.microej.pack.ui" name="ui-pack" rev="13.3.1">
<artifact name="frontpanel" type="jar"/>

</dependency>

BSPwithout GPU

• [VEE Port configuration project]

– Fetch the C Module MicroUI 2.0.0.

• [BSP project]

– Delete the properties file cco_microui.properties .

6.14. Graphical User Interface 1062

https://repository.microej.com/modules/com/microej/clibrary/llimpl/display-dma2d/3.0.2/
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus/i-mx-rt500-crossover-mcu-with-arm-cortex-m33-dsp-and-gpu-cores:i.MX-RT500
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/5.0.1/
https://repository.microej.com/modules/com/microej/pack/ui/ui-pack/13.3.1/
https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui/2.0.0/

MicroEJ Documentation, Revision 32bb132e

BSPwith DMA2D

• Follow the migration steps of “BSP without GPU”.

• [VEE Port configuration project]

– Fetch the C Module DMA2D 3.0.0.

• [BSP project]

– Delete the properties file cco_display-dma2d.properties .

BSPwith VGLite

Note: TheCModule is designed to target theNXP i.MXRT500; however it canbe locally customized for otherboards
(see [Custom project]).

• Follow the migration steps of “BSP without GPU”.

• [VEE Port configuration project]

– Fetch the C Module VGLite 3.0.0.

• [BSP project]

– Read the comments in display_configuration.h and configures the Cmodule.

– Add all C files available in src folder.

– Configure the C project to include the inc folder.

– Modify the VGLite library3.0.11_rev3byapplying thepatch 3.0.11_rev3.patch (seeREADME.mdnear
patch file for more information).

• [Custom project]

– Modify or remove the C files display_dma.c , display_frambuffer.c , LLUI_DISPLAY_impl.c ,
display_dma.c , vglite_support.c and vglite_window.c .

From 13.1.x to 13.2.0

Front Panel

• (optional) Fetch explicitly the UI Pack 13.2.0 to use the new API of the UI Pack:

<dependency org="com.microej.pack.ui" name="ui-pack" rev="13.2.0">
<artifact name="frontpanel" type="jar"/>

</dependency>

6.14. Graphical User Interface 1063

https://repository.microej.com/modules/com/microej/clibrary/llimpl/display-dma2d/3.0.0/
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus/i-mx-rt500-crossover-mcu-with-arm-cortex-m33-dsp-and-gpu-cores:i.MX-RT500
https://forge.microej.com/ui/repos/tree/General/microej-developer-repository-release/com/microej/clibrary/llimpl/microui-vglite/3.0.0/
https://repository.microej.com/modules/com/microej/pack/ui/ui-pack/13.2.0/

MicroEJ Documentation, Revision 32bb132e

From 13.0.x to 13.1.0

Front Panel

• (optional) Fetch Front Panel Widgets 2.1.0 to use the new features of the Front Panel Widget library (it fetches
by transitivity the UI Pack 13.1.0):

<dependency org="ej.tool.frontpanel" name="widget" rev="2.1.0"/>

• (optional) Or fetch explicitly the UI Pack 13.1.0 to use the new API of the UI Pack:

<dependency org="com.microej.pack.ui" name="ui-pack" rev="13.1.0">
<artifact name="frontpanel" type="jar"/>

</dependency>

BSPwithout GPU

• [VEE Port configuration project]

– Fetch the C Module MicroUI 1.1.1.

• [BSP project]

– Delete the properties file cco_microui.properties .

– Add a cast when using MICROUI_Image* object: (MICROUI_ImageFormat)image->format .

– Remove parameter MICROUI_GraphicsContext* when calling LLUI_DISPLAY_setDrawingLimits() .

– Ensure to call LLUI_DISPLAY_setDrawingLimits() before calling
LLUI_DISPLAY_setDrawingStatus() or LLUI_DISPLAY_notifyAsynchronousDrawingEnd() .

– (optional) Add an implementation of LLUI_DISPLAY_IMPL_image_heap_xxx to control the images
heap allocation; by default the internal Graphics Engine’s allocator is used. Another implementation
is also available in theMicroUI C module.

– (optional) Add the UI event logger available in theMicroUI C module.

BSPwith DMA2D

• Follow the migration steps of “BSP without GPU”.

• [VEE Port configuration project]

– Fetch the C Module DMA2D 2.1.0.

• [BSP project]

– Delete the properties file cco_display-dma2d.properties .

6.14. Graphical User Interface 1064

https://repository.microej.com/modules/ej/tool/frontpanel/widget/2.1.0/
https://repository.microej.com/modules/com/microej/pack/ui/ui-pack/13.1.0/
https://repository.microej.com/modules/com/microej/pack/ui/ui-pack/13.1.0/
https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui/1.1.1/
https://repository.microej.com/modules/com/microej/clibrary/llimpl/display-dma2d/2.1.0/

MicroEJ Documentation, Revision 32bb132e

From 12.x to 13.0.7

VEE Port Configuration Project

• Update Architecture version: 7.16.0 or higher.

• Add the following module in themodule description file:

<dependency org="com.microej.clibrary.llimpl" name="microui" rev="1.0.3"/>

• If not already set, set the ea:property bsp.project.microej.dir in the module ivy file to configure the
BSP output folder where is extracted the module.

Hardware Accelerator

• Open -configuration project > display > display.properties

• Remove optional property hardwareAccelerator . If old value was dma2d , add the followingmodule in the
module description file:

<dependency org="com.microej.clibrary.llimpl" name="display-dma2d" rev="1.0.8"/>

• For the hardware accelerator DMA2D, please consult STM32F7Discovery board updates. Add the file
lldisplay_dma2d.c , the global defines DRAWING_DMA2D_BPP=16 (or another value) and STM32F4XX or
STM32F7XX

• For the others hardware accelerators, please contact MicroEJ support.

Front Panel

This chapter resumes the changes to perform. The available changes in Front Panel API are described in next chap-
ter.

• If not already done, follow the Front Panel version 6 migration procedure detailed in chapter From 11.x to
12.1.5.

• Fetch the new Front Panel Widget library:

<dependency org="ej.tool.frontpanel" name="widget" rev="2.0.0"/>

• ej.fp.event.MicroUIButtons has been renamed in ej.microui.event.EventButton , and all others ej.
fp.event.MicroUIxxx in ej.microui.event.Eventxxx

• Display abstract class AbstractDisplayExtension (class to extendwidget Displaywhen targeting a custom
display) has been converted on the interface DisplayExtension . Somemethods names have changed and
now take in parameter the display widget.

6.14. Graphical User Interface 1065

https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui/1.0.3/
https://repository.microej.com/modules/com/microej/clibrary/llimpl/display-dma2d/1.0.8/

MicroEJ Documentation, Revision 32bb132e

Front Panel API

• ej.drawing.DWDrawing

– [Added] Equivalent of dw_drawing.h and dw_drawing_soft.h** : allows to implement some drawing
algorithms and/or to use the ones provided by the Graphics Engine. The drawing methods are related
to the library ej.api.drawing .

– [Added] Interface DWDrawingDefault : default implementation of DWDrawing which calls the Graphics
Engine algorithms.

• ej.drawing.LLDWPainter

– [Added] Equivalent of module com.microej.clibrary.llimpl#microui (LLDW_PAINTER_impl.c): imple-
ments all ej.api.drawing natives and redirect them to the interface DWDrawing .

– [Added] setDrawer(DWDrawing) : allows to configure the implementation of DWDrawing the
LLDWPainter has to use. When no drawer is configured, LLDWPainter redirects all drawings to the
internal Graphics Engine so�ware algorithms.

• ej.fp.event.MicroUIButtons

– [Removed] Replaced by EventButton .

• ej.fp.event.MicroUICommand

– [Removed] Replaced by EventCommand .

• ej.fp.event.MicroUIEventGenerator

– [Removed] Replaced by LLUIInput .

• ej.fp.event.MicroUIGeneric

– [Removed] Replaced by EventGeneric .

• ej.fp.event.MicroUIPointer

– [Removed] Replaced by EventPointer .

• ej.fp.event.MicroUIStates

– [Removed] Replaced by EventState .

• ej.fp.event.MicroUITouch

– [Removed] Replaced by EventTouch .

• ej.fp.widget.MicroUIDisplay

– [Removed] Replaced by LLUIDisplayImpl . Abstract widget display class has been replaced by an in-
terface that a widget (which should simulate a display) has to implement to be compatible with the
Graphics Engine.

– [Removed] AbstractDisplayExtension , all available implementations and
setExtensionClass(String) : the standard display formats (RGB565, etc.) are internally man-
aged by the Graphics Engine. For generic formats, some APIs are available in LLUIDisplayImpl
.

– [Removed] finalizeConfiguration() , getDisplayHeight() , getDisplayWidth() ,
getDrawingBuffer() , setDisplayWidth(int) , setDisplayHeight(int) , start() :
LLUIDisplayImpl is not an abstract widget anymore, these notions are widget dependent.

– [Removed] flush() .

– [Removed] getNbBitsPerPixel() .

6.14. Graphical User Interface 1066

https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui

MicroEJ Documentation, Revision 32bb132e

– [Removed] switchBacklight(boolean) .

• ej.fp.widget.MicroUILED

– [Removed] Replacedby LLUILedImpl . Abstractwidget LED class has been replacedby an interface that
a widget (which should simulate a LED) has to implement to be compatible with the Graphics Engine.

– [Removed] finalizeConfiguration() : LLUILedImpl is not an abstract widget anymore, this notion
is widget dependent.

– [Removed] getID() : MicroUI uses the widget (which implements the interface LLUILedImpl)’s label
to retrieve the LED. The LED labels must be integers from 0 to n-1 .

• ej.microui.display.LLUIDisplay

– [Added] Equivalent of LLUI_DISPLAY.h : several functions to interact with the Graphics Engine.

– [Added] blend(int,int,int) : blends two ARGB colors and opacity level.

– [Added] convertARGBColorToColorToDraw(int) : crops given color to display capacities.

– [Added] getDisplayPixelDepth() : replaces MicroUIDisplay.getNbBitsPerPixel() .

– [Added] getDWDrawerSoftware() : gives the unique instance of Graphics Engine’s internal so�ware
drawer (instance of DWDrawing).

– [Added] getUIDrawerSoftware() : gives the unique instance of Graphics Engine’s internal so�ware
drawer (instance of UIDrawing).

– [Added] mapMicroUIGraphicsContext(byte[]) and newMicroUIGraphicsContext(byte[]) : maps
the graphics context byte array (GraphicsContext.getSNIContext()) on an object which represents the
graphics context in front panel.

– [Added] mapMicroUIImage(byte[]) and newMicroUIImage(byte[]) : maps the image byte array (Im-
age.getSNIContext()) on an object which represents the image in front panel.

– [Added] requestFlush(boolean) : requests a call to LLUIDisplayImpl.flush() .

– [Added] requestRender(void) : requests a call to Displayable.render() .

• ej.microui.display.LLUIDisplayImpl

– [Added] Replaces MicroUIDisplay , equivalent of LLUI_DISPLAY_impl.h .

– [Added] initialize() : asks to initialize thewidget and to return a front panel imagewhere theGraph-
ics Engine will perform the MicroUI drawings.

– [Changed] flush(MicroUIGraphicsContext, Image, int, int, int, int) : asks to flush the graph-
ics context drawn by MicroUI in image returned by initialize() .

• ej.microui.display.LLUIPainter

– [Added] Equivalent of module com.microej.clibrary.llimpl#microui (LLUI_PAINTER_impl.c): imple-
ments all ej.api.microui natives and redirect them to the interface UIDrawing .

– [Added] MicroUIGraphicsContext : representation of a MicroUI GraphicsContext in front panel. This
interface (implemented by the Graphics Engine) provides several function to get information on graph-
ics context, clip, etc.

– [Added] MicroUIGraphicsContext#requestDrawing() : allows to take thehandon thedrawingbu�er.

– [Added] MicroUIImage : representation of a MicroUI Image in front panel. This interface (implemented
by the Graphics Engine) provides several function to get information on image.

6.14. Graphical User Interface 1067

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html#getSNIContext--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Image.html#getSNIContext--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Image.html#getSNIContext--
https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Image.html

MicroEJ Documentation, Revision 32bb132e

– [Added] setDrawer(UIDrawing) : allows to configure the implementation of UIDrawing the
LLUIPainter has to use. When no drawer is configured, LLUIPainter redirects all drawings to the
internal Graphics Engine so�ware algorithms.

–

• ej.microui.display.UIDrawing

– [Added] Equivalent of ui_drawing.h and ui_drawing_soft.h** : allows to implement some drawing
algorithms and/or to use the ones provided by the Graphics Engine. The drawing methods are related
to the library ej.api.microui .

– [Added] Interface UIDrawingDefault : default implementation of UIDrawing which calls the Graphics
Engine algorithms.

• ej.microui.event.EventButton

– [Added] Replaces MicroUIButton .

• ej.microui.event.EventCommand

– [Added] Replaces MicroUICommand .

• ej.microui.event.EventGeneric

– [Added] Replaces MicroUIGeneric .

• ej.microui.event.EventPointer

– [Added] Replaces MicroUIPointer .

• ej.microui.event.EventQueue

– [Added] Dedicated events queue used by MicroUI.

• ej.microui.event.EventState

– [Added] Replaces MicroUIState .

• ej.microui.event.EventTouch

– [Added] Replaces MicroUITouch .

• ej.microui.event.LLUIInput

– [Added] Replaces MicroUIEventGenerator .

• ej.microui.led.LLUILedImpl

– [Added] Replaces MicroUILED .

Image Generator

This chapter resumes the changes to perform. The available changes in Image Generator API are described in next
chapter.

This chapter only concerns VEE Port with a custom display. In this case a dedicated image generator extension
project is available. This project must be updated.

• Reorganize project to use source folders src/main/java and src/main/resources

• Add new module.ivy file:

6.14. Graphical User Interface 1068

MicroEJ Documentation, Revision 32bb132e

<ivy-module version="2.0" xmlns:ea="http://www.easyant.org" xmlns:m="http://www.
→˓easyant.org/ivy/maven" xmlns:ej="https://developer.microej.com" ej:version="2.
→˓0.0">

<info organisation="com.is2t.microui" module="imageGenerator-xxx" status=
→˓"integration" revision="1.0.0">

<ea:build organisation="com.is2t.easyant.buildtypes" module="build-std-
→˓javalib" revision="2.+"/>

</info>

<configurations defaultconfmapping="default->default;provided->provided">
<conf name="default" visibility="public" description="Runtime␣

→˓dependencies to other artifacts"/>
<conf name="provided" visibility="public" description="Compile-time␣

→˓dependencies to APIs provided by the VEE Port"/>
<conf name="documentation" visibility="public" description="Documentation␣

→˓related to the artifact (javadoc, PDF)"/>
<conf name="source" visibility="public" description="Source code"/>
<conf name="dist" visibility="public" description="Contains extra files␣

→˓like README.md, licenses"/>
<conf name="test" visibility="private" description="Dependencies for test␣

→˓execution. It is not required for normal use of the application, and is only␣
→˓available for the test compilation and execution phases."/>

</configurations>

<publications/>

<dependencies>
<dependency org="com.microej.pack.ui" name="ui-pack" rev="[UI Pack␣

→˓version]">
<artifact name="imageGenerator" type="jar"/>

</dependency>
</dependencies>

</ivy-module>

The artifact name prefix must be imageGenerator- .

• Update project classpath: remove classpath variable IMAGE-GENERATOR-x.x and add ivy file dependency

• Instead of implementing GenericDisplayExtension , the extension class must extend
BufferedImageLoader class; check class methods to override.

• Add the file src/main/resources/META-INF/services/com.microej.tool.ui.generator.
MicroUIRawImageGeneratorExtension ; this file has to specify the class which extends the
BufferedImageLoader class, for instance:

com.microej.generator.MyImageGeneratoExtension

• Build the easyant project

• Copy the jar in the VEE Port -configuration project > dropins folder

• Rebuild the VEE Port a�er any changes

6.14. Graphical User Interface 1069

MicroEJ Documentation, Revision 32bb132e

Image Generator API

• com.is2t.microej.microui.image.CustomDisplayExtension

– [Removed] Replaced by ImageConverter and MicroUIRawImageGeneratorExtension .

• com.is2t.microej.microui.image.DisplayExtension

– [Removed]

• com.is2t.microej.microui.image.GenericDisplayExtension

– [Removed] Replaced by ImageConverter and MicroUIRawImageGeneratorExtension .

• com.microej.tool.ui.generator.BufferedImageLoader

– [Added] Pixelated image loader (PNG, JPEG etc.).

• com.microej.tool.ui.generator.Image

– [Added] Representation of an image listed in a images.list file.

• com.microej.tool.ui.generator.ImageConverter

– [Added] Generic converter to convert an image in an output stream.

• com.microej.tool.ui.generator.MicroUIRawImageGeneratorExtension

– [Added] Graphics Engine RAW image converter: used when the image (listed in images.list) targets
a RAW format known by the Graphics Engine.

Font

• Open optional font(s) in -configuration project > microui/**/*.ejf

• Removeall Dynamic styles (select None or Built-in for bold, italic andunderline); thenumberof generated
fonts must be 1 (the feature to render Dynamic styles at runtime have been removed)

• Save the file(s)

BSP

This chapter resumes the changes to perform. The available changes in LLAPI are described in next chapter.

• Delete all VEE Port header files (folder should be set in -configuration project > bsp > bsp.properties
> property output.dir)

• If not possible to delete this folder, delete all UI headers files:

– intern/LLDISPLAY*

– intern/LLINPUT*

– intern/LLLEDS*

– LLDISPLAY*

– LLINPUT*

– LLLEDS*

• Replace all #include "LLDISPLAY.h" , #include "LLDISPLAY_EXTRA.h" and #include
"LLDISPLAY_UTILS.h" by #include "LLUI_DISPLAY.h"

6.14. Graphical User Interface 1070

MicroEJ Documentation, Revision 32bb132e

• Replace all #include "LLDISPLAY_impl.h" , #include "LLDISPLAY_EXTRA_drawing.h" and #include
"LLDISPLAY_EXTRA_impl.h" by #include "LLUI_DISPLAY_impl.h"

• Replace all LLDISPLAY_EXTRA_IMAGE_xxx by MICROUI_IMAGE_FORMAT_xxx

• All LLDISPLAY_IMPL_xxx functions have been renamed in LLUI_DISPLAY_IMPL_xxx

• LLUI_DISPLAY_IMPL_initialize has now the paremeter LLUI_DISPLAY_SInitData* init_data ; fill it as
explained in C doc.

• Implement new functions void LLUI_DISPLAY_IMPL_binarySemaphoreTake(void* sem) and void
LLUI_DISPLAY_IMPL_binarySemaphoreGive(void* sem, bool under_isr)

• Signature of LLUI_DISPLAY_IMPL_flush has changed

• All LLDISPLAY_EXTRA_IMPL_xxx functions have been renamed in LLUI_DISPLAY_IMPL_xxx

• Fix some functions signatures (LLUI_DISPLAY_IMPL_hasBacklight() , etc)

• Remove the functions LLDISPLAY_IMPL_getGraphicsBufferAddress ,
LLDISPLAY_IMPL_getHeight , LLDISPLAY_IMPL_getWidth , LLDISPLAY_IMPL_synchronize ,
LLDISPLAY_EXTRA_IMPL_waitPreviousDrawing , LLDISPLAY_EXTRA_IMPL_error

• Add the end of asynchronous flush copy, call LLUI_DISPLAY_flushDone

• Add the files LLUI_PAINTER_impl.c and LLDW_PAINTER_impl.c in your C configuration project

• Replace the prefix LLINPUT in all header files, functions and defines by the new prefix LLUI_INPUT

• Replace the prefix LLLEDS in all header files, functions and defines by the new prefix LLUI_LED

• Replace the prefix LLDISPLAY in all header files, functions and defines by the new prefix LLUI_DISPLAY

LLAPI

• dw_drawing_soft.h

– [Added] List of internal Graphics Engine so�ware algorithms to perform some drawings (related to li-
brary ej.api.drawing).

• dw_drawing.h

– [Added] List of ej.api.drawing library’s drawing functions to optionally implement in VEE Port.

• LLDISPLAY.h and intern/LLDISPLAY.h

– [Removed]

• LLDISPLAY_DECODER.h and intern/LLDISPLAY_DECODER.h

– [Removed]

• LLDISPLAY_EXTRA.h and intern/LLDISPLAY_EXTRA.h merged in LLUI_PAINTER_impl.h and
LLDW_PAINTER_impl.h

– [Changed] LLDISPLAY_SImage : replaced by MICROUI_Image .

– [Removed] LLDISPLAY_SRectangle , LLDISPLAY_SDecoderImageData , LLDISPLAY_SDrawImage ,
LLDISPLAY_SFlipImage , LLDISPLAY_SScaleImage and LLDISPLAY_SRotateImage

• LLDISPLAY_EXTRA_drawing.h

– [Removed]

• LLDISPLAY_EXTRA_impl.h and intern/LLDISPLAY_EXTRA_impl.h merged in LLUI_DISPLAY_impl.h ,
ui_drawing.h and dw_drawing.h

6.14. Graphical User Interface 1071

MicroEJ Documentation, Revision 32bb132e

– [Changed] LLDISPLAY_EXTRA_IMPL_setContrast(int32_t) : replaced by
LLUI_DISPLAY_IMPL_setContrast(uint32_t) (_optional_).

– [Changed] LLDISPLAY_EXTRA_IMPL_getContrast(void) : replaced by
LLUI_DISPLAY_IMPL_getContrast(void) (_optional_).

– [Changed] LLDISPLAY_EXTRA_IMPL_hasBackLight(void) : replaced by
LLUI_DISPLAY_IMPL_hasBacklight(void) (_optional_).

– [Changed] LLDISPLAY_EXTRA_IMPL_setBacklight(int32_t) : replaced by
LLUI_DISPLAY_IMPL_setBacklight(uint32_t) (_optional_).

– [Changed] LLDISPLAY_EXTRA_IMPL_getBacklight(void) : replaced by
LLUI_DISPLAY_IMPL_getBacklight(void) (_optional_).

– [Changed] LLDISPLAY_EXTRA_IMPL_isColor(void) : replaced by
LLUI_DISPLAY_IMPL_isColor(void) (_optional_).

– [Changed] LLDISPLAY_EXTRA_IMPL_getNumberOfColors(void) : replaced by
LLUI_DISPLAY_IMPL_getNumberOfColors(void) (_optional_).

– [Changed] LLDISPLAY_EXTRA_IMPL_isDoubleBuffered(void) : replaced by
LLUI_DISPLAY_IMPL_isDoubleBuffered(void) (_optional_).

– [Changed] LLDISPLAY_EXTRA_IMPL_getBacklight(void) : replaced by
LLUI_DISPLAY_IMPL_getBacklight(void) (_optional_).

– [Changed] LLDISPLAY_EXTRA_IMPL_fillRect(void*,int32_t,void*,int32_t) : replaced by
UI_DRAWING_fillRectangle(MICROUI_GraphicsContext*,jint,jint,jint,jint) (_optional_).

– [Changed] LLDISPLAY_EXTRA_IMPL_drawImage(void*,int32_t,void*,int32_t,void*) : replaced
by UI_DRAWING_drawImage(MICROUI_GraphicsContext*,MICROUI_Image*,jint,jint,jint,jint,
jint,jint,jint) (_optional_).

– [Changed] LLDISPLAY_EXTRA_IMPL_flipImage(void*,int32_t,void*,int32_t,void*) : replaced
by DW_DRAWING_drawFlippedImage(MICROUI_GraphicsContext*,MICROUI_Image*,jint,jint,
jint,jint,jint,jint,DRAWING_Flip,jint) (_optional_).

– [Changed] LLDISPLAY_EXTRA_IMPL_scaleImage(void*,int32_t,void*,int32_t,void*) :
replaced by DW_DRAWING_drawScaledImageNearestNeighbor(MICROUI_GraphicsContext*,
MICROUI_Image*,jint,jint,jfloat,jfloat,jint) and DW_DRAWING_drawScaledImageBilinear(MICROUI_GraphicsContext*,
MICROUI_Image*,jint,jint,jfloat,jfloat,jint) (_optional_).

– [Changed] LLDISPLAY_EXTRA_IMPL_rotateImage(void*,int32_t,void*,int32_t,void*) :
replaced by DW_DRAWING_drawRotatedImageNearestNeighbor(MICROUI_GraphicsContext*,
MICROUI_Image*,jint,jint,jint,jint,jfloat,jint) and DW_DRAWING_drawRotatedImageBilinear(MICROUI_GraphicsContext*,
MICROUI_Image*,jint,jint,jint,jint,jfloat,jint) (_optional_).

– [Changed] LLDISPLAY_EXTRA_IMPL_convertARGBColorToDisplayColor(int32_t) and
LLDISPLAY_EXTRA_IMPL_convertDisplayColorToARGBColor(int32_t) : replaced re-
spectively by LLUI_DISPLAY_IMPL_convertARGBColorToDisplayColor(uint32_t) and
LLUI_DISPLAY_IMPL_convertDisplayColorToARGBColor(uint32_t) (_optional_).

– [Changed] LLDISPLAY_EXTRA_IMPL_prepareBlendingOfIndexedColors(void*,void*) : replaced by
LLUI_DISPLAY_IMPL_prepareBlendingOfIndexedColors(uint32_t*,uint32_t*) (_optional_).

– [Changed] LLDISPLAY_EXTRA_IMPL_decodeImage(int32_t,int32_t,int32_t,void*) : replaced by
LLUI_DISPLAY_IMPL_decodeImage(uint8_t*,uint32_t,MICROUI_ImageFormat,MICROUI_Image*,
bool*) (_optional_).

6.14. Graphical User Interface 1072

MicroEJ Documentation, Revision 32bb132e

– [Removed] LLDISPLAY_EXTRA_IMPL_getGraphicsBufferMemoryWidth(void) and
LLDISPLAY_EXTRA_IMPL_getGraphicsBufferMemoryHeight(void) : replacedbyelements in structure
LLUI_DISPLAY_SInitData (_optional_).

– [Removed] LLDISPLAY_EXTRA_IMPL_backlightOn(void) and LLDISPLAY_EXTRA_IMPL_backlightOff(void)
.

– [Removed] LLDISPLAY_EXTRA_IMPL_enterDrawingMode(void) and
LLDISPLAY_EXTRA_IMPL_exitDrawingMode(void) .

– [Removed] LLDISPLAY_EXTRA_IMPL_error(int32_t) .

– [Removed] LLDISPLAY_EXTRA_IMPL_waitPreviousDrawing(void) : implementation has to call
LLUI_DISPLAY_notifyAsynchronousDrawingEnd(bool) instead.

• LLDISPLAY_impl.h and intern/LLDISPLAY_impl.h merged in LLUI_DISPLAY_impl.h

– [Changed] LLDISPLAY_IMPL_initialize(void) : replacedby LLUI_DISPLAY_IMPL_initialize(LLUI_DISPLAY_SInitData*)
(_mandatory_).

– [Changed] LLDISPLAY_IMPL_flush(int32_t,int32_t,int32_t,int32_t,int32_t) : replaced
by LLUI_DISPLAY_IMPL_flush(MICROUI_GraphicsContext*,uint8_t*, uint32_t,uint32_t,
uint32_t,uint32_t) (_mandatory_).

– [Removed] LLDISPLAY_IMPL_getWidth(void) , LLDISPLAY_IMPL_getHeight(void) and
LLDISPLAY_IMPL_getGraphicsBufferAddress(void) : replaced by elements in structure
LLUI_DISPLAY_SInitData .

– [Removed] LLDISPLAY_IMPL_synchronize(void) : implementation has to call
LLUI_DISPLAY_flushDone(bool) instead.

• LLDISPLAY_UTILS.h and intern/LLDISPLAY_UTILS.h merged in LLUI_DISPLAY.h

– [Changed] LLDISPLAY_UTILS_getBufferAddress(int32_t) : replaced by
LLUI_DISPLAY_getBufferAddress(MICROUI_Image*) .

– [Changed] LLDISPLAY_UTILS_setDrawingLimits(int32_t,int32_t,int32_t,int32_t,int32_t)
: replaced by LLUI_DISPLAY_setDrawingLimits(MICROUI_GraphicsContext*,jint,jint,jint,
jint) .

– [Changed] LLDISPLAY_UTILS_blend(int32_t,int32_t,int32_t) : replaced by
LLUI_DISPLAY_blend(uint32_t,uint32_t,uint32_t) .

– [Changed] LLDISPLAY_UTILS_allocateDecoderImage(void*) : replaced by
LLUI_DISPLAY_allocateImageBuffer(MICROUI_Image*,uint8_t) .

– [Changed] LLDISPLAY_UTILS_flushDone(void) : replaced by LLUI_DISPLAY_flushDone(bool) .

– [Changed] LLDISPLAY_UTILS_drawingDone(void) : replaced by
LLUI_DISPLAY_notifyAsynchronousDrawingEnd(bool) .

– [Removed] LLDISPLAY_UTILS_getWidth(int32_t) , LLDISPLAY_UTILS_getHeight(int32_t) and
LLDISPLAY_UTILS_getFormat(int32_t) : use MICROUI_Image elements instead.

– [Removed] LLDISPLAY_UTILS_enterDrawingMode(void) and LLDISPLAY_UTILS_exitDrawingMode(void)
.

– [Removed] LLDISPLAY_UTILS_setClip(int32_t,int32_t,int32_t,int32_t,int32_t) .

– [Removed] LLDISPLAY_UTILS_getClipX1/X2/Y1/Y2(int32_t) : use MICROUI_GraphicsContext ele-
ments instead.

– [Removed] LLDISPLAY_UTILS_drawPixel(int32_t,int32_t,int32_t) and
LLDISPLAY_UTILS_readPixel(int32_t,int32_t,int32_t) .

6.14. Graphical User Interface 1073

MicroEJ Documentation, Revision 32bb132e

• LLDW_PAINTER_impl.h

– [Added] List of ej.api.drawing library’s native functions implemented in module
com.microej.clibrary.llimpl#microui.

• LLLEDS_impl.h and intern/LLLEDS_impl.h merged in LLUI_LED_impl.h

– [Changed] LLLEDS_MIN_INTENSITY and LLLEDS_MAX_INTENSITY : replaced respectively by
LLUI_LED_MIN_INTENSITY and LLUI_LED_MAX_INTENSITY .

– [Changed] LLLEDS_IMPL_initialize(void) : replaced by LLUI_LED_IMPL_initialize(void) .

– [Changed] LLLEDS_IMPL_getIntensity(int32_t) : replaced by
LLUI_LED_IMPL_getIntensity(jint) .

– [Changed] LLLEDS_IMPL_setIntensity(int32_t,int32_t) : replaced by
LLUI_LED_IMPL_setIntensity(jint,jint) .

• LLINPUT.h and intern/LLINPUT.h merged in LLUI_INPUT.h

– [Changed] LLINPUT_sendEvent(int32_t,int32_t) : replaced by LLUI_INPUT_sendEvent(jint,
jint) .

– [Changed] LLINPUT_sendEvents(int32_t,int32_t*,int32_t) : replaced by
LLUI_INPUT_sendEvents(jint,jint*,jint) .

– [Changed] LLINPUT_sendCommandEvent(int32_t,int32_t) : replaced by
LLUI_INPUT_sendCommandEvent(jint,jint) .

– [Changed] LLINPUT_sendButtonPressedEvent(int32_t,int32_t) : replaced by
LLUI_INPUT_sendButtonPressedEvent(jint,jint) .

– [Changed] LLINPUT_sendButtonReleasedEvent(int32_t,int32_t) : replaced by
LLUI_INPUT_sendButtonReleasedEvent()jint,jint .

– [Changed] LLINPUT_sendButtonRepeatedEvent(int32_t,int32_t) : replaced by
LLUI_INPUT_sendButtonRepeatedEvent(jint,jint) .

– [Changed] LLINPUT_sendButtonLongEvent(int32_t,int32_t) : replaced by
LLUI_INPUT_sendButtonLongEvent(jint,jint) .

– [Changed] LLINPUT_sendPointerPressedEvent(int32_t,int32_t,int32_t,int32_t,int32_t) :
replaced by LLUI_INPUT_sendPointerPressedEvent(jint,jint,jint,jint,LLUI_INPUT_Pointer)
.

– [Changed] LLINPUT_sendPointerReleasedEvent(int32_t,int32_t) : replaced by
LLUI_INPUT_sendPointerReleasedEvent(jint,jint) .

– [Changed] LLINPUT_sendPointerMovedEvent(int32_t,int32_t,int32_t,int32_t) : replaced by
LLUI_INPUT_sendPointerMovedEvent(jint,jint,jint,LLUI_INPUT_Pointer) .

– [Changed] LLINPUT_sendTouchPressedEvent(int32_t,int32_t,int32_t) : replaced by
LLUI_INPUT_sendTouchPressedEvent(jint,jint,jint) .

– [Changed] LLINPUT_sendTouchReleasedEvent(int32_t) : replaced by
LLUI_INPUT_sendTouchReleasedEvent(jint) .

– [Changed] LLINPUT_sendTouchMovedEvent(int32_t,int32_t,int32_t) : replaced by
LLUI_INPUT_sendTouchMovedEvent(jint,jint,jint) .

– [Changed] LLINPUT_sendStateEvent(int32_t,int32_t,int32_t) : replaced by
LLUI_INPUT_sendStateEvent(jint,jint,jint) .

– [Changed] LLINPUT_getMaxEventsBufferUsage(void) : replaced by
LLUI_INPUT_getMaxEventsBufferUsage(void) .

6.14. Graphical User Interface 1074

https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui

MicroEJ Documentation, Revision 32bb132e

• LLINPUT_impl.h and intern/LLINPUT_impl.h merged in LLUI_INPUT_impl.h

– [Changed] LLINPUT_IMPL_initialize(void) : replaced by LLUI_INPUT_IMPL_initialize(void)
(_mandatory_).

– [Changed] LLINPUT_IMPL_getInitialStateValue(int32_t,int32_t) : replaced by
LLUI_INPUT_IMPL_getInitialStateValue(jint,jint) (_mandatory_).

– [Changed] LLINPUT_IMPL_enterCriticalSection(void) : replaced by
LLUI_INPUT_IMPL_enterCriticalSection(void) (_mandatory_).

– [Changed] LLINPUT_IMPL_leaveCriticalSection(void) : replaced by
LLUI_INPUT_IMPL_leaveCriticalSection(void) (_mandatory_).

• LLUI_DISPLAY.h

– [Added] Renaming of LLDISPLAY_UTILS.h .

– [Added] Several functions to interactwith theGraphics Engine and to get informationon images, graph-
ics context, clip, etc.

– [Added] LLUI_DISPLAY_requestFlush(bool) : requests a call to LLUI_DISPLAY_IMPL_flush() .

– [Added] LLUI_DISPLAY_requestRender(void) : requests a call to Displayable.render() .

– [Added] LLUI_DISPLAY_freeImageBuffer(MICROUI_Image*) : frees an image previously allocated by
LLUI_DISPLAY_allocateImageBuffer(MICROUI_Image*,uint8_t) .

– [Added] LLUI_DISPLAY_requestDrawing(MICROUI_GraphicsContext*,SNI_callback) : allows to
take the hand on the shared drawing bu�er.

– [Added] LLUI_DISPLAY_setDrawingStatus(DRAWING_Status) : specifies the drawing status to the
Graphics Engine.

• LLUI_DISPLAY_impl.h

– [Added] Merge of LLDISPLAY_EXTRA_impl.h and LLDISPLAY_impl.h .

– [Added] Structure LLUI_DISPLAY_SInitData : implementation has to fill it in
LLUI_DISPLAY_IMPL_initialize(LLUI_DISPLAY_SInitData*) .

– [Added] LLUI_DISPLAY_IMPL_binarySemaphoreTake(void*) and
LLUI_DISPLAY_IMPL_binarySemaphoreGive(void*,bool) : implementation has to manage a
binary semaphore (_mandatory_).

– [Added] LLUI_DISPLAY_IMPL_getNewImageStrideInBytes(MICROUI_ImageFormat,uint32_t,
uint32_t,uint32_t) : allows to set an image stride di�erent than image side (_optional_).

• LLUI_PAINTER_impl.h

– [Added] List of ej.api.microui library’s native functions implemented in module
com.microej.clibrary.llimpl#microui.

– [Added] MICROUI_ImageFormat : MicroUI Image pixel format.

– [Added] MICROUI_Image : MicroUI Image representation.

– [Added] MICROUI_GraphicsContext : MicroUI GraphicsContext representation.

• ui_drawing_soft.h

– [Added] List of internal Graphics Engine so�ware algorithms to perform some drawings (related to li-
brary ej.api.microui).

• ui_drawing.h

– [Added] List of ej.api.microui library’s drawing functions to optionally implement in VEE Port.

6.14. Graphical User Interface 1075

https://repository.microej.com/modules/com/microej/clibrary/llimpl/microui
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Image.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Image.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html

MicroEJ Documentation, Revision 32bb132e

CustomNative Drawing Functions

• In custom UI native methods, replace LLDISPLAY_UTILS_getBufferAddress(xxx); by
(uint32_t)LLUI_DISPLAY_getBufferAddress(xxx) (new function returns uint8_t*), where uint32_t
xxx is replaced by MICROUI_Image* xxx or by MICROUI_GraphicsContext* xxx .

• Replace LLDISPLAY_UTILS_getFormat(xxx) by xxx->format , where uint32_t xxx is replaced by
MICROUI_Image* xxx or by MICROUI_GraphicsContext* xxx .

• Replace call to LLDISPLAY_allocateDecoderImage by a call to LLUI_DISPLAY_allocateImageBuffer

• Optional: implement drawing functions listed in ui_drawing.h following the available examples in
LLUI_PAINTER_impl.c and LLDW_PAINTER_impl.c files comments.

Application

• See applicationMigration Guide.

From 11.x to 12.1.5

VEE Port Configuration Project

• Update Architecture version: 7.11.0 or higher.

Front Panel

• Create a new Front Panel Project (next sections explain how to update each widget):

1. Verify that FrontPanelDesigner is at least version 6: Help > About > Installations Details >

Plug-ins .

2. Create a new front panel project: File > New > Project. . . > MicroEJ >

MicroEJ Front Panel Project , choose a name and press Finish .

3. Move files from [old project]/src to [new project]/src/main/java .

4. Move files from [old project]/resources to [new project]/src/main/resources .

5. Move files from [old project]/definitions to [new project]/src/main/resources , except your
xxx.fp file.

6. If existing delete file [new project]/src/main/java/microui.properties .

7. Delete file [new project]/src/main/resources/.fp.xsd .

8. Delete file [new project]/src/main/resources/.fp1.0.xsd .

9. Delete file [new project]/src/main/resources/widgets.desc .

10. Open [old project]/definitions/xxx.fp .

11. Copy device attributes (name and skin) from [old project]/definitions/xxx.fp to [new
project]/src/main/resources/xxx.fp .

12. Copy content of body (not body tag itself) from [old project]/definitions/xxx.fp under device
group of [new project]/src/main/resources/xxx.fp .

6.14. Graphical User Interface 1076

MicroEJ Documentation, Revision 32bb132e

• Widget “led2states”:

1. Rename led2states by ej.fp.widget.LED .

2. Rename the attribute id by label .

• Widget “pixelatedDisplay”:

1. Rename pixelatedDisplay by ej.fp.widget.Display .

2. Remove the attribute id .

3. (if set) Remove the attribute initialColor if its value is 0

4. (if set) Rename the attribute mask by filter ; this imagemust have the same size in pixels than display
itself (width * height).

5. (if set) Rename the attribute realWidth by displayWidth .

6. (if set) Rename the attribute realHeight by displayHeight .

7. (if set) Rename the attribute transparencyLevel by alpha ; change the value: newValue = 255 -
oldValue .

8. (if set) Remove the attribute residualFactor (not supported).

9. (if set) If extensionClass is specified: follow next notes.

• Widget “pixelatedDisplay”: ej.fp.widget.Display Extension Class:

1. Open the class

2. Extends ej.fp.widget.MicroUIDisplay.AbstractDisplayExtension instead of com.is2t.
microej.frontpanel.display.DisplayExtension .

3. Renamemethod convertDisplayColorToRGBColor to convertDisplayColorToARGBColor .

4. Renamemethod convertRGBColorToDisplayColor to convertARGBColorToDisplayColor .

• Widget “pointer”:

1. Rename pointer by ej.fp.widget.Pointer .

2. Remove the attribute id .

3. (if set) Rename the attribute realWidth by areaWidth .

4. (if set) Rename the attribute realHeight by areaHeight .

5. Keep or remove the attribute listenerClass according next notes.

• Widget “pointer”: ej.fp.widget.Pointer Listener Class:

This extension class is useless if the implementation respects these rules:

– (a) press method is sending a press MicroUI Pointer event.

– (b) release method is sending a release MicroUI Pointer event.

– (c) move method is sending a move MicroUI Pointer event.

– (d) The MicroUI Pointer event generator name is POINTER when ej.fp.widget.Pointer ’s
touch attribute is false (or not set).

– (e) The MicroUI Pointer event generator name is TOUCH when ej.fp.widget.Pointer ’s
touch attribute is true .

If only (d) or (e) is di�erent:

1. Open the listener class.

6.14. Graphical User Interface 1077

MicroEJ Documentation, Revision 32bb132e

2. Extends the class ej.fp.widget.Pointer.PointerListenerToPointerEvents instead
of implementing the interface com.is2t.microej.frontpanel.input.listener.
PointerListener .

3. Implements the method getMicroUIGeneratorTag() .

In all other cases:

1. Open the listener class.

2. Implements the interface ej.fp.widget.Pointer.PointerListener instead of com.is2t.
microej.frontpanel.input.listener.PointerListener .

• Widget “push”:

1. Rename push by ej.fp.widget.Button .

2. Rename the attribute id by label .

3. (if set) Review filter image: this imagemust have the same size in pixels than the button skin .

4. (if set) Remove the attribute hotkey (not supported).

5. Keep or remove the attribute listenerClass according next notes.

• Widget “push”: ej.fp.widget.Button Listener Class:

This extension class is useless if the implementation respects these rules:

– (a) press method is sending a press MicroUI Buttons event with button label (equals to
old button id) as button index.

– (b) release method is sending a release MicroUI Buttons eventwith button label (equals
to old button id) as button index.

– (c) The MicroUI Buttons event generator name is BUTTONS .

If only (c) is di�erent:

1. Open the listener class.

2. Extends the class ej.fp.widget.Button.ButtonListenerToButtonEvents instead
of implementing the interface com.is2t.microej.frontpanel.input.listener.
ButtonListener .

3. Overrides the method getMicroUIGeneratorTag() .

In all other cases:

1. Open the listener class.

2. Implements the interface ej.fp.widget.Button.ButtonListener instead of com.is2t.
microej.frontpanel.input.listener.ButtonListener .

• Widget “repeatPush”:

1. Rename repeatPush by ej.fp.widget.RepeatButton .

2. (if set) Remove the attribute sendPressRelease (not supported).

3. Same rules than widget push.

• Widget “longPush”:

1. Rename longPush by ej.fp.widget.LongButton .

2. Same rules than widget push.

• Widget “joystick”:

6.14. Graphical User Interface 1078

MicroEJ Documentation, Revision 32bb132e

1. Rename joystick by ej.fp.widget.Joystick .

2. Remove the attribute id .

3. (if set) Rename the attribute mask by filter ; this imagemust have the same size in pixels than joystick
skin .

4. (if set) Remove the attribute hotkeys (not supported).

5. Keep or remove the attribute listenerClass according next notes.

• Widget “joystick”: ej.fp.widget.Joystick Listener Class:

This extension class is useless if the implementation respects these rules:

– (a) press methods are sending some MicroUI Command events UP , DOWN , LEFT , RIGHT
and SELECT .

– (b) repeat methods are sending same MicroUI Command events UP , DOWN , LEFT , RIGHT
and SELECT .

– (c) release methods are sending nothing.

– (d) The MicroUI Command event generator name is JOYSTICK .

If only (d) is di�erent:

1. Open the listener class

2. Extends the class ej.fp.widget.Joystick.JoystickListenerToCommandEvents in-
stead of implementing the interface com.is2t.microej.frontpanel.input.listener.
JoystickListener .

3. Overrides the method getMicroUIGeneratorTag() .

In all other cases:

1. Open the listener class.

2. Implements the interface ej.fp.widget.Joystick.JoystickListener instead of com.
is2t.microej.frontpanel.input.listener.JoystickListener .

• Others Widgets:

These widgets may have not been migrated. Check in ej.tool.frontpanel.widget library if
some widgets are compatible or write your own widgets.

Application

• See applicationMigration Guide.

From 10.x to 11.2.0

VEE Port Configuration Project

• Update Architecture version: 7.0.0 or higher.

6.14. Graphical User Interface 1079

MicroEJ Documentation, Revision 32bb132e

From 9.x to 10.0.2

VEE Port Configuration Project

• Update Architecture version: 6.13.0 or higher.

• Edit display/display.properties

• Add property imagesHeap.size=xxx ; this value fixes the images heap size when using the VEE Port in com-
mand line (to build a firmware)

• In VEE Port linker file (standalone mode with MicroEJ linker): remove the image heap reserved section and
put the section .bss.microui.display.imagesHeap instead.

BSP

• In BSP linker file: remove the image heap reserved section and put the section .bss.microui.display.
imagesHeap instead

• Edit LLDISPLAY*.c : remove the functions LLDISPLAY_IMPL_getWorkingBufferStartAddress and
LLDISPLAY_IMPL_getWorkingBufferEndAddress

Application

• See applicationMigration Guide.

From 8.x to 9.4.1

VEE Port Configuration Project

• Update Architecture version: 6.13.0 or higher.

Application

• See applicationMigration Guide.

From 7.x to 8.1.0

VEE Port Configuration Project

• Update Architecture version: 6.4.0 or higher.

• Edit display/display.properties : remove property mode=xxx

6.14. Graphical User Interface 1080

MicroEJ Documentation, Revision 32bb132e

BSP

• Edit LLDISPLAY*.c

• For LLDISPLAY SWITCH

– Remove the function LLDISPLAY_SWITCH_IMPL_getDisplayBufferAddress()

– Replace the function void LLDISPLAY_SWITCH_IMPL_getDisplayBufferAddress() by int32_t
LLDISPLAY_IMPL_flush()

– In this function, return the old LCD frame bu�er address

– Replace the function LLDISPLAY_COPY_IMPL_getBackBufferAddress() by
LLDISPLAY_IMPL_getGraphicsBufferAddress()

• For LLDISPLAY COPY

– Replace the function void LLDISPLAY_COPY_IMPL_copyBuffer() by int32_t
LLDISPLAY_IMPL_flush()

– In this function, return the back bu�er address (given in argument)

– Replace the function LLDISPLAY_COPY_IMPL_getBackBufferAddress() by
LLDISPLAY_IMPL_getGraphicsBufferAddress()

• For LLDISPLAY DIRECT

– Add the function void LLDISPLAY_IMPL_synchorize(void) (do nothing)

– Add the function int32_t LLDISPLAY_IMPL_flush()

– In this function, just return the back bu�er address (given in argument)

• Replace h file LLDISPLAY_SWITCH_IMPL.h , LLDISPLAY_COPY_IMPL.h or LLDISPLAY_DIRECT_IMPL.h by
LLDISPLAY_IMPL.h

• Replace all functions LLDISPLAY_SWITCH_IMPL_xxx , LLDISPLAY_COPY_IMPL_xxx and
LLDISPLAY_DIRECT_IMPL_xxx by LLDISPLAY_IMPL_xxx

• Remove the argument int32_t type from getWidth and getHeight

STM32 VEE Ports with DMA2D only

• In VEE Port configuration project, edit display/display.properties

• Add property hardwareAccelerator=dma2d

• In BSP project, edit LLDISPLAY*.c

• simplify following functions (see STM32F7Discovery board implementation)

LLDISPLAY_EXTRA_IMPL_fillRect
LLDISPLAY_EXTRA_IMPL_drawImage
LLDISPLAY_EXTRA_IMPL_waitPreviousDrawing

• Add the following function

void LLDISPLAY_EXTRA_IMPL_error(int32_t errorCode)
{

printf("lldisplay error: %d\n", errorCode);

(continues on next page)

6.14. Graphical User Interface 1081

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

while(1);
}

• Launch an application with images and fillrect

• Compile, link and debug the BSP

• Set some breakpoints on three functions

• Ensure the functions are called

6.15 Vector Graphics

Note: This chapter describes the VGPack implementation. The current VGPack only targets the i.MXRT595MCU (it
is part of theNXP i.MXRT500 crossoverMCUproduct line that embeds the VivanteGCNanoLiteV IP fromVerisilicon).
Please contact our support team for other hardware accelerators (GPU with vector graphics acceleration).

6.15.1 Principle

The Vector Graphics Pack features an extension of the User Interface Pack that implements theMicroVG API.

The diagram below shows a simplified view of the components involved in the provisioning of Vector Graphics
Extension.

Fig. 70: Overview

The modules responsible to manage the Matrix, the Path, the Gradient, the Image and the Font are respectively
called Matrix module, Path module, Gradient module, Image module and Font module. These five low-level parts
connect the MicroVG library to the user-supplied drivers code (coded in C). The drivers can use hardware accelera-
tors like GPU to perform specific actions (matrix computations, path rendering, font decoding, etc.).

TheMicroEJSimulator provides all features of theMicroVG library. The fivemodules are grouped in amodule called
Front Panel. The Front Panel is an extension of the UI Pack’s Front Panel mock.

6.15. Vector Graphics 1082

https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus/i-mx-rt500-crossover-mcu-with-arm-cortex-m33-dsp-and-gpu-cores:i.MX-RT500

MicroEJ Documentation, Revision 32bb132e

6.15.2 MicroVG

Principle

MicroVG library is an extension of the MicroUI library and provides vector drawing capabilities.

Architecture

MicroVG library is the entry point to perform some vectorial drawings on display. This library contains only a min-
imal set of basic APIs. As a result, high-level libraries can be used to have more expressive power. In addition to
this restricted set of APIs, the MicroVG implementation has been designed to minimize the EDC, BON, and MicroUI
footprint.

Native Calls

Like MicroUI, the MicroVG implementation for MicroEJ uses native methods to perform some actions (manipulate
matrices, perform drawings, decode and render fonts, etc.). The library implementation has been designed not to
block native methods (wait until the end of the drawing, etc.), which can lock the complete MicroEJ Core Engine
execution.

Refer to theMicroUI implementation to have more details about the native calls.

Installation

TheMicroVG library is an additionalmodule. In the VEEPort configuration’smoduledescription file, add the VGPack
dependency:

<dependency org="com.microej.pack.vg" name="vg-pack" rev="[VG Pack version]" conf="default->
→˓default"/>

Note: The latest current pack version is 1.5.0.

The VG Pack will be automatically available a�er a VEE Port rebuild.

Use

SeeMicroVG chapter in Application Developer Guide.

6.15.3 Abstraction Layer API

Principle

The MicroVG implementation for MicroEJ requires an Abstraction Layer implementation. The Abstraction Layer
implementation consists of a set of header files to implement in C to target the hardware drivers.

The VG Pack’s embedded Front Panel extension implements all MicroVG features for the simulator.

6.15. Vector Graphics 1083

https://repository.microej.com/modules/com/microej/pack/vg/vg-pack/
https://repository.microej.com/modules/com/microej/pack/vg/vg-pack/
https://repository.microej.com/modules/com/microej/pack/vg/vg-pack/

MicroEJ Documentation, Revision 32bb132e

Embedded VEE Port

Fig. 71: MicroVG Embedded Abstraction Layer API

The specification of header files names is:

• Name starts with LLVG_ .

• Second part’s name refers to the VG engine: MATRIX , PATH , GRADIENT , BVI (image), FONT .

• All file’s name ends with _impl : all functions must be implemented over hardware or in so�ware.

A master header file initializes the native Vector Graphics engine: see LLVG: VectorGraphics. All other header files
and their aims are described in next VG engines chapters: Matrix, Path, Gradient, Image and Font.

Simulator

Fig. 72: MicroVG Simulator Abstraction Layer API

The Simulator’s five VG engines are grouped in a Front Panel extension.

6.15. Vector Graphics 1084

MicroEJ Documentation, Revision 32bb132e

Note: The current implementation is built-in in the VG Pack and is only compatible with the i.MX RT595 MCU (see
VG Pack note).

6.15.4 Matrix

Principle

The Matrix module contains the C part of the MicroVG implementation, which manages arithmetics matrices. This
module is composed of only one element: an implementation of Abstraction Layer APIs to create and manipulate
the matrices.

Functional Description

The Matrix module implements the framework of the MicroVG Matrix. It provides Abstraction Layer APIs that ma-
nipulate thematrices: fill an identitymatrix, do a translation, a rotation, or a scaling and concatenate twomatrices.

A matrix is a 3x3 matrix, and its elements are encoded in float (32-bit values):

• matrix_memory[0] = matrix[0][0];

• matrix_memory[1] = matrix[0][1];

• matrix_memory[2] = matrix[0][2];

• matrix_memory[3] = matrix[1][0];

• matrix_memory[4] = matrix[1][1];

• matrix_memory[5] = matrix[1][2];

• matrix_memory[6] = matrix[2][0];

• matrix_memory[7] = matrix[2][1];

• matrix_memory[8] = matrix[2][2];

The bu�er where the matrix is encoded is stored in the Java heap.

Abstraction Layer API

The Abstraction Layer APIs that have to be implemented are listed in the header file LLVG_MATRIX_impl.h (see
LLVG_MATRIX: Matrix):

6.15. Vector Graphics 1085

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/Matrix.html

MicroEJ Documentation, Revision 32bb132e

Fig. 73: Matrix Abstraction Layer API

• MicroVG library calls the BSP functions through the header file LLVG_MATRIX_impl.h .

• The Cmodule MicroVG provides a default implementation of this header file: LLVG_MATRIX_impl.c .

• This file is automatically copied in the BSP project when fetching the Cmodule during the VEE Port build.

Use

The MicroVG Matrix APIs are available in the class ej.microvg. Matrix.

6.15.5 Path

Principle

The Pathmodule contains the C part of the MicroVG implementation, whichmanages vector paths. This module is
composed of two elements:

• an implementation of Abstraction Layer APIs to create path elements compatible with the hardware,

• an implementation of Abstraction Layer APIs for MicroVG drawings.

Functional Description

The Path module implements the framework of the MicroVG Path. It provides Abstraction Layer APIs that create
andmerge somepaths in a VEEPort-specific format. A�er the path creation and encoding, the path data should not
changewhen the applicationdraws it: the encoded format shouldbeusedby the VEEPort-specific implementation
(generally GPU).

A path is a succession of commands. The command encoding is implementation specific; however, the float
format is recommended.

List of commands:

• LLVG_PATH_CMD_CLOSE : MicroVG “CLOSE” command.

6.15. Vector Graphics 1086

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/Matrix.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/Path.html

MicroEJ Documentation, Revision 32bb132e

• LLVG_PATH_CMD_MOVE : MicroVG “MOVE ABS” command.

• LLVG_PATH_CMD_MOVE_REL : MicroVG “MOVE REL” command.

• LLVG_PATH_CMD_LINE : MicroVG “LINE ABS” command.

• LLVG_PATH_CMD_LINE_REL : MicroVG “LINE REL” command.

• LLVG_PATH_CMD_QUAD : MicroVG “QUAD ABS” command.

• LLVG_PATH_CMD_QUAD_REL : MicroVG “QUAD REL” command.

• LLVG_PATH_CMD_CUBIC : MicroVG “CUBIC ABS” command.

• LLVG_PATH_CMD_CUBIC_REL : MicroVG “CUBIC REL” command.

The bu�er where the commands are encoded is stored in the Java heap. The bu�er size is automatically increased
by the MicroVG implementation when nomore commands can be added.

A path is drawn with a color or with a linear gradient.

Abstraction Layer API

There are two separate Abstraction Layer API header files (see LLVG_PATH: Vector Path):

• LLVG_PATH_impl.h specifies the Abstraction Layer APIs used to create and encode the path.

• LLVG_PAINTER_impl.h lists the Abstraction Layer APIs called by VectorGraphicsPainter to draw the path.

Fig. 74: Path Abstraction Layer API

6.15. Vector Graphics 1087

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorGraphicsPainter.html

MicroEJ Documentation, Revision 32bb132e

• MicroVG library calls the BSP functions through the header files LLVG_PATH_impl.h and
LLVG_PAINTER_impl.h .

• The CmoduleMicroVG provides a default implementation of LLVG_PATH_impl.h : it manages the path bu�er
creation and filling, then redirect the command encoding to microvg_path.h .

• This C module also provides an implementation of LLVG_PAINTER_impl.c that synchronizes the drawing
with the MicroUI Graphics Engine and redirects the drawing itself to a third-party drawer.

• A Cmodule dedicated to a GPUprovides an implementation of this drawer and microvg_path.h : it encodes
the path commands and implements the drawings over the GPU library.

• The drawer also manages the Gradient.

• These files are automatically copied in the BSP project when fetching the C modules during the VEE Port
build.

Use

The MicroVG Path APIs are available in the class ej.microvg. Path.

6.15.6 Gradient

Principle

The Gradient module contains the C part of the MicroVG implementation, which manages linear gradients. This
module is composed of only one element: an implementation of the Abstraction Layer APIs to create gradient
elements compatible with the hardware.

Functional Description

TheGradientmodule implements the framework of theMicroVG LinearGradient. It provides Abstraction Layer APIs
that consist in creating a linear gradient in a VEE Port-specific format. A�er the gradient creation and encoding,
the gradient data should not changewhen the application draws it: the encoded format should be used by the VEE
Port-specific implementation (generally GPU).

A linear gradient is a successionof colors at di�erent positions. The colors from theMicroVG library implementation
are encoded in the 32-bit format: ARGB8888. The color encoding in the gradient is a VEE Port-specific implemen-
tation.

The bu�er where the gradient is encoded is stored in the Java heap. The MicroVG implementation on demand
automatically increases the bu�er size.

Abstraction Layer API

There are two separate Abstraction Layer API header files (see LLVG_GRADIENT: Vector Linear Gradient):

• LLVG_GRADIENT_impl.h specifies the Abstraction Layer APIs used to create and encode the gradient.

• LLVG_PAINTER_impl.h lists the Abstraction Layer APIs called by VectorGraphicsPainter to draw the path.

6.15. Vector Graphics 1088

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/Path.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/LinearGradient.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorGraphicsPainter.html

MicroEJ Documentation, Revision 32bb132e

Fig. 75: Gradient Abstraction Layer API

• MicroVG library calls the BSP functions through the header files LLVG_GRADIENT_impl.h and
LLVG_PAINTER_impl.h .

• The Cmodule MicroVG provides a default implementation of LLVG_GRADIENT_impl.h : it manages the gradi-
ent bu�er creation and filling, then redirect the gradient encoding to microvg_gradient.h .

• This C module also provides an implementation of LLVG_PAINTER_impl.c that synchronizes the drawing
with the MicroUI Graphics Engine and redirects the drawing itself to a third-party drawer.

• A C module dedicated to a GPU provides an implementation of LLVG_PAINTER_impl.h and
microvg_gradient.h : it encodes the gradient and implements the drawings over the GPU library.

• These files are automatically copied in the BSP project when fetching the C modules during the VEE Port
build.

6.15. Vector Graphics 1089

MicroEJ Documentation, Revision 32bb132e

Use

The MicroVG Gradient APIs are available in the class ej.microvg. LinearGradient.

6.15.7 Image

Principle

The Imagemodule contains the part of theMicroVG implementationwhichmanages vectorial images. Thismodule
is composed of several elements:

• an o�line tool that converts standard vector images in a binary format compatiblewith theRendering Engine,

• an implementation of Abstraction Layer APIs to manipulate image files,

• an implementation of Abstraction Layer APIs for MicroVG drawings.

Compile-time Image

The Image module implements the MicroVG VectorImage framework. It provides an o�line tool that consists in
opening and decoding an image file and some Abstraction Layer APIs that manipulate the image at runtime.

A compile-time image file:

• is either an AVD (Android Vector Drawable) or a Scalable Vector Graphics (SVG),

• is identified by the resource name,

• is encoded in a binary format compatible with the image renderer,

• can be stored as an internal resource or an external one (see External Memory),

• is an immutable image: the application cannot draw into it.

Image Generator

The o�line tool is an extension of the MicroUI Image Generator. This tool is automatically installed during the VEE
Port build.

The tool converts :

• The Android Vector Drawable (AVD): this kind of image can hold linear gradients, animations on colors, opac-
ity, path transformations, etc.

• The Scalable Vector Graphics (SVG): this kind of image is partially supported: linear gradients but no anima-
tions. It is advised to convert the SVG files into AVD files before using the Image Converter tool.

The tool generates a binary (RAW) file compatible with the Rendering Engine. The RAW file consists in a series of
vector paths and animations.

To list the images to convert, the tool uses the application list files whose extension is .vectorimage.list . The
generator provides an option to encode the path data (the path’s points): it can be stored on signed 8, 16, 32-bit
words or in float format. Respectively, the options are VG8 , VG16 , VG32 and VGF .

This is an example of a vectorimage.list file:

6.15. Vector Graphics 1090

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/LinearGradient.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorImage.html

MicroEJ Documentation, Revision 32bb132e

Convert an AVD in float format
/avd_image_1.xml:VGF
Convert an AVD in signed 16-bit format
/path/to/avd_image_2.xml:VG16
Convert an SVG in signed 8-bit format
/svg_image.svg:VG8

MicroVG Library

To load this kind of image, the application has to call VectorImage.getImage(). This API takes the image relative
path: /avd_image_1.xml or /path/to/avd_image_2.xml or /svg_image.svg .

The implementation uses the Abstraction Layer API to retrieve the image. Nodata is stored in the Java heap (except
the VectorImage object’s instance).

Resource Vector Image

The Imagemodule implements the MicroVG ResourceVectorImage framework.

Filtered Image

MicroVG VectorImage.filterImage() API allows to transform an image using a 4x5 color matrix. The result of the
image transformation is stored in the MicroUI Images Heap. MicroVG ports for dedicated GPU (Low Level imple-
mentation) are responsible of the deallocation of this generated image. An implementation is available forMicroVG
Over VGLite.

External Memory

Principle

MicroVG provides the API ResourceVectorImage.loadImage(). This is an extension of the compile-time images (the
concepts are exactly the same), but it allows a load of a RAW image stored in an external memory that is not byte-
addressable.

An external image loaded from byte-addressable memory is processed the same way than any compile-time im-
age. For an image loaded from an external memory which is not byte-addressable, its data must be copied into
byte-addressable memory before the image can be used for drawings. By default (see C Modules), the image data
is copied into MicroUI Images Heap. The implementation is responsible for the image’s lifecycle: allocation and
release (already implemented in the C Modules).

6.15. Vector Graphics 1091

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorImage.html#getImage-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/ResourceVectorImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorImage.html#filterImage-float:A-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/ResourceVectorImage.html#loadImage-java.lang.String-

MicroEJ Documentation, Revision 32bb132e

Configuration File

Like compile-time images, the Image Generator uses a list file whose extension is .externvectorimages.list .
The rules are exactly the sames than the compile-time images.

Process

The process to open a Vector Image from an external memory is exactly the same than the loading of an external
MicroUI Image .

The following steps describe how to setup the loading of an external resource from the application:

1. Add the image to the application project resources (typically in the source folder src/main/resources and
in the package images).

2. Create / open the configuration file (e.g. application.externvectorimages.list).

3. Add the relative path of the image and its output format (e.g. /images/myImage.avd:VGF see Image Gener-
ator).

4. Build the application: the ImageGenerator converts the image in RAW format in the external resources folder
([application_output_folder]/externalResources).

5. Deploy the external resources to the external memory (SDCard, flash, etc.) of the device.

6. (optional) Configure the External Resources Loader to load from this source.

7. Build the application and run it on the device.

8. The application loads the external resource using ResourceVectorImage.loadImage().

9. The image loader looks for the image and copies it in the images heap (no copy if the external memory is
byte-addressable).

10. The external resource is immediately closed: the image’s bytes have been copied in the images heap, or the
image’s bytes are always available (byte-addressable memory).

11. The application can use the image.

12. The application closes the image: the image is removed from the image heap.

Simulation

The Simulator automatically manages the external resources like internal resources. All images listed in *.
externvectorimages.list files are copied in the external resources folder, and this folder is added to the Simu-
lator’s classpath.

Bu�ered Vector Image

This image is a ResourceVectorImage that the application can draw into. More specifically, the drawings are not
performed but stored.

The concept consists in storing the compatible MicroUI drawings1 and all MicroVG drawings into a command list.
The application can then play this list of commands applying (or not) a global transformation.

1 The compatible MicroUI drawings depend on the GPU Port; see:ref:section_vg_cco.

6.15. Vector Graphics 1092

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/ResourceVectorImage.html#loadImage-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/ResourceVectorImage.html

MicroEJ Documentation, Revision 32bb132e

Note: The implementation uses the concept of MicroUI custom format (the custom Format.CUSTOM_7).

The way to register the drawing commands is strongly linked to the targeted GPU:

• The paths and gradients are stored to be used directly by the GPU to render the image (prevent runtime
modifications before the image rendering).

• Depending on the GPU capabilities (a GPUmay be able to draw aMicroUI anti-aliased line but not an aliased
line), some MicroUI drawing API may be implemented (see Bu�ered Image).

As a consequence, the implementation is dedicated to the GPU. The C Modules provide some implementations,
and the Front Panel (for the Simulation) features the same limitations as the embedded side (it is not possible to
store a MicroUI drawing in the simulator if the embedded side is not able to perform it).

Runtime Image

The third-party library VectorImageLoader features an API to load an Android Vector Drawable (AVD) at runtime.
This API creates a ResourceVectorImage

This library uses a simple XML parser (for performance and footprint convenience) that limits compatibility with
the AVD specification. For instance, this loader does not manage the animations.

The Vector Image Generator can generate a compatible AVD file in the .vectorimage.list , using AVD as output
format.

Convert an AVD into a compatible AVD format
/avd_image.xml:AVD
Convert an SVG into a compatible AVD format
/svg_image.svg:AVD

Rendering Engine

The Vector Image Rendering Engine has the responsibility of drawing the vector images. The destination is the
display bu�er, a MicroUI Bu�eredImage or a MicroVG Bu�eredVectorImage.

Three transformations can be applied when drawing a vector image:

• a global path transformation (3x3 matrix)

• a color transformation (4x5 color matrix)

• an opacity (value between 0 and 255)

The C Modules and the Front Panel already implement this engine.

Abstraction Layer API

There are two separate Abstraction Layer API header files:

• LLVG_BVI_impl.h specifies the Abstraction Layer APIs used to open and manage the Bu�eredVectorImage
cycle-life.

• LLVG_PAINTER_impl.h lists the Abstraction Layer APIs called by VectorGraphicsPainter to draw an image
(compile-time, runtime, or bu�ered vector image).

6.15. Vector Graphics 1093

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/ResourceVectorImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorGraphicsPainter.html

MicroEJ Documentation, Revision 32bb132e

Fig. 76: Image Abstraction Layer API

• MicroVG library calls theBSP functions through theheader files LLVG_BVI_impl.h and LLVG_PAINTER_impl.
h .

• A C module dedicated to a GPU provides an implementation of LLVG_BVI_impl.h and
LLVG_PATH_PAINTER_impl.h : the implementation is specific to the target (the GPU): the format of
the RAW paths, gradients, and animations are GPU compliant.

• These files are automatically copied in the BSP project when fetching the C modules during the VEE Port
build.

Simulation

The implementation of the MicroVG library is included in the VG Pack. No specific support is required to retrieve
and use the images.

6.15. Vector Graphics 1094

MicroEJ Documentation, Revision 32bb132e

Use

The MicroVG Font APIs are available in the class ej.microvg. VectorImage.

6.15.8 Font

Principle

The Font module contains the C part of the MicroVG implementation, whichmanages vectorial fonts. This module
is composed of two elements:

• an implementation of Abstraction Layer APIs to manipulate font files,

• an implementation of Abstraction Layer APIs for MicroVG drawings.

Functional Description

The Font module implements the MicroVG VectorFont framework. It provides Abstraction Layer APIs that consist
of opening and decoding a font file and getting the font’s characteristics.

A font file:

• is either a TTF or an OTF,

• is identified by the resource name,

• can be stored as internal resource or external (see External Fonts).

Nodata is stored in theJavaheap. The implementation is responsible for the font’s cycle life: allocationand release.

A font is used to draw a string with a color or with a linear gradient.

Abstraction Layer API

There are two separate Abstraction Layer API header files (see LLVG_FONT: Vector Font):

• LLVG_FONT_impl.h specifies the Abstraction Layer APIs used to open and retrieve the font’s characteristics.

• LLVG_PAINTER_impl.h lists the Abstraction Layer APIs called by VectorGraphicsPainter to draw a stringwith
the font.

6.15. Vector Graphics 1095

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorFont.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorGraphicsPainter.html

MicroEJ Documentation, Revision 32bb132e

Fig. 77: Font Abstraction Layer API

• MicroVG library calls the BSP functions through the header files LLVG_FONT_impl.h and
LLVG_PAINTER_impl.h .

• The Cmodule MicroVG provides a default implementation of LLVG_FONT_impl.h over FreeType.

• This C module also provides an implementation of LLVG_PAINTER_impl.c that synchronizes the drawing
with the MicroUI Graphics Engine and redirects the drawing itself to a third-party drawer.

• A C module dedicated to a GPU provides an implementation of this drawer. It also redirects the complex
layout to a third party C module.

• The drawer also manages the Gradient.

• The Cmodule Harfbuzz provides an implementation of complex layout.

• These files are automatically copied in the BSP project when fetching the C modules during the VEE Port
build.

6.15. Vector Graphics 1096

MicroEJ Documentation, Revision 32bb132e

External Memory

Principle

MicroVG does not provide some Low Level API tomake the distinction between a font loaded fromdi�erent kind of
memories (internal or external, byte-addressable or not). The Low Level implementation (C Modules MicroVG and
FreeType) features the font management from an external memory which is not byte-addressable when the VEE
Port provides an implementation of the External Resources Loader.

Configuration File

A Vector Font file is a simple resource. To specify this resource as an external resource, the font file path must be
listed in a .externresources.list file in addition with the .resources.list file (see Application Resources).

Process

The following steps describe how to setup the loading of an external resource from the application:

1. Add the font to the application project resources (typically in the source folder src/main/resources and in
the package fonts).

2. Create / open the configuration files (e.g. application.resources.list and application.
externresources.list).

3. In both files, add the relative path of the font (e.g. /fonts/myFont.ttf).

4. Build the application: the processed external resources are copied into the external resources folder (
[application_output_folder]/externalResources).

5. Deploy the external resources to the external memory (SDCard, flash, etc.) of the device.

6. (optional) Configure the External Resources Loader to load from this source.

7. Build the application and run it on the device.

8. The application loads the external resource using ej.microvg.VectorFont.loadFont().

9. FreeType (C Modules) recognizes this resource as external resource; it configures itself to manage this re-
source di�erently than an internal resource (see Library: FreeType to have more details).

10. The application can use the font.

Simulation

The Simulator automatically manages the external resources like internal resources. All images listed in *.
externresources.list files are copied in the external resources folder, and this folder is added to the Simulator’s
classpath.

6.15. Vector Graphics 1097

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorFont.html#loadFont-java.lang.String-

MicroEJ Documentation, Revision 32bb132e

Use

The MicroVG Font APIs are available in the class ej.microvg. VectorFont.

6.15.9 C Modules

Principle

Several C modules implement the VG Pack’s Abstraction Layer APIs. Some are generic, and some are VEE Port
dependent (more precisely: GPU dependent). The generic modules provide header files to be extended by the
specificmodules. The generic Cmodules are available on the Central Repository and the specific Cmodules on the
Developer Repository.

The following picture illustrates the available C modules and their relations for an implementation that uses:

• FreeType library for the font renderer and the font layouter in simple layout mode.

• Harfbuzz library for the font layouter in complex layout mode.

• Vivante VGLite library for the drawing of vector paths

The following chapters explain the aim and relations of each Cmodule.

Note: It is a simplified view: all sources and headers files of each Cmodule are not visible.

Fig. 78: MicroVG C Modules

6.15. Vector Graphics 1098

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorFont.html

MicroEJ Documentation, Revision 32bb132e

UI Pack &MicroUI C Modules

The UI Pack provides a header file to implement the MicroUI drawings: LLUI_PAINTER_impl.h . See C Modules
chapter to have more information.

Library: Vivante VGLite

This library is the o�icial Vivante VGLite library. The Cmodules use its header files to target the GPU.

Note: The library must be patched to be compatible with the Cmodule “MicroUI over VGLite”. Consult the Cmod-
ule’s ReadMe file for more information.

VG Pack

The VG Pack provides a set of header files to implement the MicroVG concepts. The header files are described in
the dedicated chapters: Matrix module, Path module, Gradient module, Imagemodule and Font module.

TheVGPack is anextensionof theUIPack. TheVGPack’sheader files require theUIPack’sheader files tomanipulate
the MicroUI concepts. Consequently, the VG Pack must be installed on a VEE Port that fetches a UI Pack.

The VG Pack and its header files are available on the Central Repository: com.microej.pack.vg#vg-pack.

CModule: MicroVG

Description

This generic C module provides an implementation of MicroVG concepts: matrix, path, linear gradient and font;
respectively LLVG_MATRIX_impl.c , LLVG_PATH_impl.c , LLVG_GRADIENT_impl.c and LLVG_FONT_freetype.c .

• Matrix (see Matrix module’s Abstraction Layer API): a basic so�ware implementation.

• Path (see Path module’s Abstraction Layer API): a generic implementation that manages the command
bu�er’s life cycle and dispatches the command encoding to a 3rd-party header file microvg_path.h .

• Gradient (see Gradientmodule’s Abstraction Layer API): a generic implementation thatmanages the gradient
bu�er’s life cycle and dispatches the gradient encoding to a 3rd-party header file microvg_gradient.h .

• Font (see Font module’s Abstraction Layer API): an implementation of vector font over FreeType: open font
file and retrieve font’s characteristics.

• TheMicroVG painter native functions are implemented in LLVG_PAINTER_impl.c and the drawings are redi-
rected to vg_drawing.h .

• Imagemanagement is too specific to the GPU and is not implemented in this C module.

This C module is available on the Central Repository: com.microej.clibrary.llimpl#microvg.

6.15. Vector Graphics 1099

https://repository.microej.com/modules/com/microej/pack/vg/vg-pack/
https://repository.microej.com/modules/com/microej/clibrary/llimpl/microvg/

MicroEJ Documentation, Revision 32bb132e

Dependencies

This generic C module requires some specific modules:

• Path and Gradient require a Cmodule specific to a VEE Port (to a GPU format).

• Font requires the FreeType library and optionally the Harfbuzz library to manage the complex layout.

Usage

1. This C module transitively fetches the C Module for MicroUI, follow its implementation rules.

2. Add all C files in the BSP project.

3. Configure the option in the header file microvg_configuration.h .

Library: FreeType

Description

The FreeType library compatible with MicroEJ is packaged in a C module on the Developer Repository:
com.microej.clibrary.thirdparty#freetype.

This C module provides a fork of FreeType 2.11.0.

Memory Heap Configuration

The FreeType library requires a memory Heap for FreeType internal objects allocated when a font file is loaded
(see https://freetype.org/freetype2/docs/design/design-4.html). The size of this heap depends on the number of
fonts loaded in parallel and on the fonts themselves. This size is defined by VG_FEATURE_FREETYPE_HEAP_SIZE in
microvg_configuration.h .

All fonts do not require the same heap size. FreeType heap usage can be monitored using the following configura-
tions:

• MICROVG_MONITOR_HEAP defined in microvg_helper.h

• MEJ_LOG_MICROVG and MEJ_LOG_INFO_LEVEL defined in mej_log.h

Principle

1. The Application loads a font with ej.microvg.VectorFont.loadFont().

• If the resource is internal or external frombyte-addressablememory, the FreeType library is configured
to read directly from that resource memory section.

• Else, if the resource is external from non-byte-addressable memory, the FreeType library is configured
to use the external loader to read from that memory.

• At this point, the font resources are allocated and the font generic data (including baseline & height
metrics) is loaded on the FreeType dedicated heap.

2. The Application requests metrics.

• For generic metrics, already loaded data is directly used (and scaled to the font size used).

6.15. Vector Graphics 1100

https://forge.microej.com/artifactory/microej-developer-repository-release/com/microej/clibrary/thirdparty/freetype/
https://freetype.org/freetype2/docs/design/design-4.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorFont.html#loadFont-java.lang.String-

MicroEJ Documentation, Revision 32bb132e

• For text-dependent metrics: computed by loading metrics of every glyph required by the input string
(the glyphs bitmaps are not actually rendered here).

3. The Application requests drawings.

• For every character to draw:

– the associated glyph is loaded,

– the bitmap is rendered for the given font size and

– the character is drawn in the given graphic context.

4. The Application unloads the font with ej.microvg.VectorFont.close().

• Any resource associated with the font is released.

• At this point, any attempt to use the font will result in an exception.

Library: Harfbuzz

The library Harfbuzz compatible with MicroEJ is packaged in a C module on the Developer Repository:
com.microej.clibrary.thirdparty#harfbuzz.

This C module provides a fork of Harfbuzz 4.2.1.

TheHarfbuzz library requires amemoryHeap for Harfbuzz internal objects allocatedwhen a font file is loaded. The
size of this heapdepends on the number of fonts loaded in parallel andon the fonts themselves. This size is defined
by VG_FEATURE_HARFBUZZ_HEAP_SIZE_HEAP in microvg_configuration.h .

All fonts do not require the same heap size. The MICROVG_MONITOR_HEAP define in microvg_helper.h and
MEJ_LOG_MICROVG and MEJ_LOG_INFO_LEVEL defines in mej_log.h can be used to monitor the Harfbuzz heap
evolution.

FreeType and Harfbuzz libraries are not sharing the same heap, but this could easilly be done by updating
ft_system.c and hb-alloc.c files.

CModule: MicroVG Over VGLite

Overview

This C module is a specific implementation of the VG Pack drawings over the o�icial Vivante VGLite library (that
targets some GPU with vector graphics acceleration):

• It implements the MicroVG API vg_drawing.h in vg_drawing_vglite.c and
LLVG_PAINTER_FONT_freetype_vglite.c .

• It implements the MicroVG Image management (draw a compile-time image, create a Bu�eredVectorImage,
etc.): LLVG_RAW_impl.c .

• It provides an implementation of MicroVG drawings to theMicroVG Bu�eredVectorImage: vg_drawing_bvi.
c .

• It also implements MicroUI drawings to the MicroVG Bu�eredVectorImage: ui_drawing_bvi.c .

The implementation requires:

• the concepts of the Cmodule MicroVG,

• the concepts of the Cmodule MicroUI over VGLite,

• the FreeType library,

6.15. Vector Graphics 1101

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorFont.html#close--
https://forge.microej.com/artifactory/microej-developer-repository-release/com/microej/clibrary/thirdparty/harfbuzz/

MicroEJ Documentation, Revision 32bb132e

• the Vivante VGLite library.

This C module is available on the Developer Repository: com.microej.clibrary.llimpl#microvg-vglite.

Usage

1. This C module transitively fetches the C Module for MicroUI for VGLite, follow its implementation rules.

2. Add all C files in the BSP project.

Compatibility

The compatibility between the components (Packs, C modules, and Libraries) is described in the Release Notes.

6.15.10 Simulation

Principle

The VG Pack embeds an extension ofUI Pack’s Front Panelmock to implement the equivalent of the five embedded
modules (Matrix, Path, Gradient, Image and Font).

The implementation simulates the same characteristics and limitations as the embeddedmodules.

Installation

No action is required in the VEE Port’s Front Panel project: the MicroVG simulation part is automatically usedwhen
an application uses MicroVG APIs on the simulator.

Use

Launch a MicroVG application on the Simulator to run the Front Panel extension.

6.15.11 Release Notes

UI Pack Compatibility Version

The current VG Pack version is 1.5.0. The following table describes the compatibility ranges between VG and UI
Packs.

VG Pack Range UI Pack Range Comment
1.5.0 14.0.0 UI Pack major version
[1.3.0-1.4.2] [13.5.0-14.0.0[Bu�eredImage with custom format
[1.1.0-1.2.1] [13.3.0-14.0.0[Internal feature
[1.0.0-1.0.1] [13.2.0-14.0.0[

6.15. Vector Graphics 1102

https://forge.microej.com/artifactory/microej-developer-repository-release/com/microej/clibrary/llimpl/microvg-vglite/

MicroEJ Documentation, Revision 32bb132e

Foundation Libraries

The following table describes Foundation Libraries API versions implemented in MicroEJ VG Packs.

Table 37: MicroVG API Implementation
VG Pack Range MicroVG
[1.4.0-1.5.0] 1.4.0
1.3.0 1.3.0
1.2.1 1.2.0
1.1.0 1.1.0
[1.0.0-1.0.1] 1.0.0

CModules Compatibility Version

The Cmodules are described here.

Several generic C modules are available for a given version of the VG Pack. In addition to generic C modules, the
specific implementation of the VG Pack over Vivante VGLite depends on:

• the UI Pack (see upper),

• the UI Pack Cmodule: see UI Pack,

• and by consequence, the specific C module MicroUI over VGLite: see C Module: MicroUI Over VGLite.

The following table describes the compatibility ranges between the VG Packs and the Cmodules (generic and spe-
cific):

VG Pack MicroVG FreeType Harfbuzz MicroUI-VGLite MicroVG-VGLite
1.5.0 5.0.0 2.0.2 1.0.2 8.0.0 7.0.0
1.4.2 4.0.0 2.0.2 1.0.2 7.2.0 6.1.1
[1.4.0-1.4.1] 3.0.1 2.0.2 1.0.2 [7.0.0-7.1.0] [6.0.0-6.1.0]
1.3.0 3.0.0 2.0.2 1.0.2 6.0.1 5.0.1
[1.2.0-1.2.1[2.1.0 2.0.2 1.0.2 5.0.1 4.0.4
[1.1.0-1.1.1[2.0.0 2.0.2 1.0.2 3.0.0 3.0.2
[1.0.0-1.1.0[n/a n/a n/a n/a n/a

Note: The C module MicroVG over VGLite fetches automatically by transitivity the other C modules. No need
to fetch explicitly the di�erentmodules (except the Cmodule Harfbuzz). An update of this Cmodule also updates
(if necessary) the other C modules.

6.15.12 Changelog

[1.5.0] - 2024-02-15

UI Pack

Changed

• Compatible with UI Pack 14.0.0 (Major version).

6.15. Vector Graphics 1103

https://repository.microej.com/modules/ej/api/microvg/1.4.0/
https://repository.microej.com/modules/ej/api/microvg/1.3.0/
https://repository.microej.com/modules/ej/api/microvg/1.2.0/
https://repository.microej.com/modules/ej/api/microvg/1.1.0/

MicroEJ Documentation, Revision 32bb132e

MicroVG

Fixed

• Fix the exception when loading a font or an image with an empty path.

• Fix the release of the BufferedVectorImage resources.

Front Panel

Fixed

• Fix the memory leak on images (ResourceVectorImage and Bu�eredVectorImage).

LLAPIs

Fixed

• Fix comment in header file LLVG_BVI_impl.h .

CModule MicroVG

Added

• Add the API freeImageResources that allows to fix the release of the BufferedVectorImage resources.

Fixed

• Fix traces when debugging the SNI resources with external resource support.

• Remove an unused include.

• Do not define Freetype variables if VG_FEATURE_FONT is not defined.

• Do not call MICROVG_PATH_initialize() if VG_FEATURE_PATH is not defined.

CModule VGLite

Fixed

• Fix the storing of color matrices in the BufferedVectorImage .

[1.4.2] - 2023-11-13

MicroVG

Added

• Add some traces when debugging the SNI resources.

Fixed

• Fix dynamic paths larger than 64 KB.

6.15. Vector Graphics 1104

MicroEJ Documentation, Revision 32bb132e

Front Panel

Fixed

• Fix dynamic paths larger than 64 KB.

CModule MicroVG

Added

• Add some traces when debugging the SNI resources (external VectorFont).

Fixed

• Fix dynamic paths larger than 64 KB.

• Fix some comments.

CModule VGLite

Fixed

• Fix some comments.

• Fix the dynamic path drawing on i.MX RT1170 Evaluation Kit (use the same quality of paths as vector images).

• Fix the path drawing on i.MX RT1170 Evaluation Kit (disable the color pre-multiplication).

• Fix the rendering of some blending modes on i.MX RT1170 Evaluation Kit by disabling the GPU pre-
multiplication when required.

[1.4.1] - 2023-09-21

MicroVG

Fixed

• Fix the path command “move relative”.

CModule VGLite

Added

• Add the compatibility with VGLite 3.0.15_rev7 .

Fixed

• Fix the use of the define VG_BLIT_WORKAROUND (useless).

• Fix the GPU deactivation when a drawing is not performed for any reason.

6.15. Vector Graphics 1105

MicroEJ Documentation, Revision 32bb132e

[1.4.0] - 2023-07-21

Fixed

• Fix the UI Pack minimal compatible version (13.5.0).

MicroVG

Added

• Add SystemView event logs (feature available with C Module MicroVG 3.0.1).

Changed

• Compatible with MicroVG API 1.4.

Fixed

• Fix path bounds computation.

CModule MicroVG

Fixed

• Fix the SystemView log identifiers.

• Fix the documentation of MICROVG_HELPER_get_utf() .

• Fix FreeType fonts closing twice.

CModule VGLite

Added

• Add support for DST_OUT and PLUS blendmodes (VG Pack 1.4.0).

Fixed

• Fix performing drawings when the clip is disabled.

• Fix the SystemView log identifiers.

• Remove the include of the unknown header file trace_vglite.h (require a re-build of FreeType library).

[1.3.0] - 2023-05-10

UI Pack

Changed

• Compatible with UI Pack 13.5.0 (BufferedImage with custom format).

6.15. Vector Graphics 1106

https://repository.microej.com/modules/com/microej/clibrary/llimpl/microvg/3.0.1/
https://repository.microej.com/modules/ej/api/microvg/1.4.0/

MicroEJ Documentation, Revision 32bb132e

MicroVG

Changed

• Compatible with MicroVG API 1.3.

Front Panel

Fixed

• Simplify pixel data conversion a�er drawing.

CModule MicroVG

Added

• Add the compatibility with multiple Graphics Context output formats (UI Pack 13.5.0).

• Add stub implementations for all MicroVG library algorithms.

• Add LLVG_PAINTER_impl.c to implement all MicroVG drawings and dispatch them to vg_drawing.h (like
MicroUI and LLUI_PAINTER_impl.c / ui_drawing.h).

• Add the MicroVG BufferedVectorImage definition (the functions to implement to draw into it).

Changed

• C Module MicroVG now depends on C Module MicroUI (to manage the support of multiple Graphics Context
output formats).

Fixed

• Remove an extraneous file.

• Fix issue whenmeasuring string width in complex layout mode.

Removed

• Remove the useless implementation of LLVG_PATH_IMPL_mergePaths (useless since VG Pack 1.2).

• Removepartial Freetype implementation thatmanipulates the font’s glyphs as bitmaps (not compatible any-
more with VG pack 1.3.0).

CModule VGLite

Added

• Add the implementation of all MicroUI, Drawing and MicroVG drawings in MicroVG BufferedVectorImage .

• Add incident reporting with drawing log flags (UI Pack 13.5.0).

Changed

• Merge BufferedVectorImage and RAW formats.

• Simplify the gradient modification according to the caller translation.

Fixed

• Fix the path to render during a path data animation.

Removed

6.15. Vector Graphics 1107

https://repository.microej.com/modules/ej/api/microvg/1.3.0/

MicroEJ Documentation, Revision 32bb132e

• Remove LLVG_BVI_impl.c : code is merged in LLVG_RAW_impl.c .

• Remove (move) some utility functions to C Module MicroUI-VGLite.

• Remove draw String native functions implementation (implemented in C Module MicroVG).

[1.2.1] - 2023-02-06

Front Panel

Fixed

• Fix the cropped images when using GraphicsContext clip and translation.

CModule VGLite

Fixed

• Fix the drawing of RAW images with multiple gradients in BufferedVectorImage .

• Fix a deadlock when drawing an empty BufferedVectorImage .

• Fix the interface between FreeType and MicroVG (remove useless parameter).

• Fix the synchronization with the Graphics Engine when a VG drawing is not performed (draw path, draw gra-
dient, draw string).

[1.2.0] - 2022-12-30

MicroVG

Changed

• Compatible with MicroVG API 1.2.

• Change the VectorImage internal format: raw format instead of immutables format.

Front Panel

Fixed

• Fix the redirection of fillEllipseArc to the right so�ware algorithm.

Vector Image Converter

Added

• Add “fill alpha” animations to gradient elements.

6.15. Vector Graphics 1108

https://repository.microej.com/modules/ej/api/microvg/1.2.0/

MicroEJ Documentation, Revision 32bb132e

C Module MicroVG

Added

• Add LLVG_MATRIX_IMPL_multiply(c,a,b) (C = AxB): faster than setConcat when destination and source
target the samematrix.

• Add an entry point to initialize the path engine on startup.

Changed

• Prevent a copy in a tempmatrix when calling postXXX functions.

Fixed

• Fix A.setConcat(B,A) .

CModule VGLite

Added

• Add the compatibility with VGLite 3.0.15_rev4 (not backward compatible).

• Add the VectorImage in binary format management (RAW format).

• Add loading of VectorImage from external resource system.

Changed

• Reduce the gradient footprint in BufferedVectorImage .

• Harmonize the use of vg_drawer.h functions (instead of VG_DRAWER_drawer_t functions) in
BufferedVectorImage .

• Use the global fields VGLite paths instead of functions fields (prevent dynamic allocation on task stack).

Fixed

• Fix the drawing of a text in a BufferedVectorImage : do not wake-up the GPU.

• Fix the constants used in get_command_parameter_number() function (no side-e�ect).

[1.1.1] - 2022-09-05

UI Pack

Changed

• Compatible with UI Pack 13.3.0 (Internal feature).

6.15. Vector Graphics 1109

MicroEJ Documentation, Revision 32bb132e

MicroVG

Changed

• Compatible with MicroVG API 1.1.

• Change color animation interpolation (match Android formula).

Fixed

• Fix NullPointerException while sorting TranslateXY VectorDrawableObjectAnimator in vectorimage-
converter.

LLAPIs

Added

• Add LLAPI to close a font: LLVG_FONT_IMPL_dispose() .

Changed

• Manage the font complex layout.

• Returns an error code when drawing something.

CModule MicroVG

Added

• Add microvg_configuration.h versionning.

• Add an option to load a VectorFont from the external resources.

• Add an option to select the text layouter between FreeType and Harfbuzz.

• Add a function to apply an opacity on a color.

• Add the text layout.

Changed

• Configure FreeType from microvg_configuration.h header file.

CModule VGLite

Added

• Add the BufferedVectorImage feature (BVI).

Changed

• Manage the closed fonts.

• Move ftvglite.c and ftvglite.h to C Module FreeType.

• Extract text layout to C Module MicroVG.

• Get fill rule configuration from each glyph FT_Outline->flags instead of defaulting it to
VG_LITE_FILL_EVEN_ODD .

• Use the MicroUI over VGLite’s Vectorial Drawer mechanism.

6.15. Vector Graphics 1110

https://repository.microej.com/modules/ej/api/microvg/1.1.1/

MicroEJ Documentation, Revision 32bb132e

• Join character bboxes at baseline for drawStringOnCircle .

[1.0.1] - 2022-05-16

MicroVG

Fixed

• Fix incorrect transformation of animated paths while creating a filtered image.

[1.0.0] - 2022-05-13

• Initial release.

UI Pack

• Compatible with UI Pack 13.2.0 or higher.

MicroVG

• Compatible with MicroVG API 1.0.0.

6.15.13 Migration Guide

From 1.4.x to 1.5.0

VEE Port Configuration Project

• Update UI Pack version: 14.0.0 or higher.

BSPwith VGLite

• Follow the migration steps of C Module MicroUI-VGLite 8.0.0.

• [VEE Port configuration project]

– Fetch VG Pack 1.5.0, C Modules MicroVG 5.0.0 and MicroVG-VGLite 7.0.0.

• [BSP project]

– Delete the properties files cco_microvg.properties and cco_microvg-vglite.properties .

6.15. Vector Graphics 1111

MicroEJ Documentation, Revision 32bb132e

From 1.3.x to 1.4.2

BSPwith VGLite

• Follow the migration steps of C Module MicroUI-VGLite 7.1.0.

• [VEE Port configuration project]

– Fetch VG Pack 1.4.2, C Modules MicroVG 4.0.0 and MicroVG-VGLite 6.1.1.

– Delete the content of dropins/include folder.

• [BSP project]

– Delete the properties files cco_microvg.properties and cco_microvg-vglite.properties .

• Build the VEE Port, the FreeType library (in case of a dedicated project), and the BSP.

From 1.2.x to 1.3.0

VEE Port Configuration Project

• Update UI Pack version: 13.5.0 or higher.

BSPwith VGLite

• Follow the migration steps of C Module MicroUI-VGLite 6.0.1.

• [VEE Port configuration project]

– Fetch VG Pack 1.3.0, C Modules MicroVG 3.0.0 and MicroVG-VGLite 5.0.1.

– Delete the content of dropins/include folder.

• [BSP project]

– Delete the properties files cco_microvg.properties and cco_microvg-vglite.properties .

– Delete the C files freetype_bitmap_helper.h , freetype_bitmap_helper.c , LLVG_BVI_impl.c
, LLVG_FONT_PAINTER_freetype_bitmap.c and LLVG_PATH_PAINTER_vglite.c and remove them
from the C project configuration.

– In the C project configuration, include the new C files ui_drawing_bvi.c , LLVG_BVI_stub.c ,
LLVG_PAINTER_impl.c , vg_drawing_bvi.c , vg_drawing_stub.c , vg_drawing_vglite.c and
vg_drawing.c .

– In the C project configuration, set the define LLUI_GC_SUPPORTED_FORMATS=2 to enable the Bu�ered-
VectorImage support.

– Verify the options in microvg_configuration.h .

• Build the VEE Port, the FreeType library (in case of a dedicated project), and the BSP.

6.15. Vector Graphics 1112

MicroEJ Documentation, Revision 32bb132e

6.16 Networking

6.16.1 Principle

MicroEJ provides some Foundation Libraries to initiate raw TCP/IP protocol-oriented communications and secure
this communication by using Secure Socket Layer (SSL) or Transport Layer Security (TLS) cryptographic protocols.

The diagram below shows a simplified view of the components involved in the provisioning of a Java network
interface.

Fig. 79: Overview

Net and SSL low level parts connects the Net and SSL libraries to the user-supplied drivers code (coded in C).

The MicroEJ Simulator provides all features of Net and SSL libraries. This one takes part of the network settings
stored in the operating system on which the Simulator will be launched.

6.16. Networking 1113

MicroEJ Documentation, Revision 32bb132e

6.16.2 Network Core Engine

Principle

TheNetmodule defines a low-level network framework for embedded devices. Thismodule allows you tomanage
connection (TCP)- or connectionless (UDP)-oriented protocols for client/server networking applications.

Functional Description

The Net library includes two sub-protocols:

• UDP: a connectionless-oriented protocol that allows communication with the server or client side in a non-
reliable way. No handshake mechanisms, no guarantee on delivery, and no order in packet sending.

• TCP: a connection-oriented protocol that allows communication with the server or client side in a reliable
way. Handshakes mechanism used, bytes ordered, and error checking performed upon delivery.

Dependencies

• LLNET_CHANNEL_impl.h , LLNET_SOCKETCHANNEL_impl.h , LLNET_STREAMSOCKETCHANNEL_impl.h
, LLNET_DATAGRAMSOCKETCHANNEL_impl.h , LLNET_DNS_impl.h , LLNET_NETWORKADDRESS_impl.h ,
LLNET_NETWORKINTERFACE_impl.h (see LLNET: Network).

Installation

The Net Pack bundles several libraries: Net, SSL & Security.

Refer to the chapter Pack Import to integrate a specific version of the Net Pack:

<dependencies>
<dependency org="com.microej.pack.net" name="net-pack" rev="11.0.2"/>

</dependencies>

Then, using the VEE Port Editor (see PlatformModule Configuration), enable the Net library (API, Impl & Mock):

Fig. 80: Net Pack Modules

6.16. Networking 1114

MicroEJ Documentation, Revision 32bb132e

Use

The Net API Module must be added to themodule.ivy of the MicroEJ Application project to use the Net library.

<dependency org="ej.api" name="net" rev="1.1.4"/>

This library provides a set of options. Refer to the chapter Standalone Application Options which lists all available
options.

6.16.3 SSL

Principle

SSL (Secure Sockets Layer) library provides APIs to create and establish an encrypted connection between a server
and a client. It implements the standard SSL/TLS (Transport Layer Security) protocol thatmanages client or server
authentication and encrypted communication. Mutual authentication is supported since SSL API 2.1.0 .

Functional Description

The SSL/TLS process includes two sub-protocols :

• Handshake protocol: consists that a server presents its digital certificate to the client to authenticate the
server’s identity. The authentication process uses public-key encryption to validate the digital certificate
and confirm that a server is in fact the server it claims to be.

• Record protocol: a�er the server authentication, the client and the server establish cipher settings to encrypt
the information they exchange. This provides data confidentiality and integrity.

Dependencies

• Network core module (see Network Core Engine).

• LLNET_SSL_CONTEXT_impl.h and LLNET_SSL_SOCKET_impl.h implementations (see LLNET_SSL: SSL).

Installation

The Net Pack bundles several libraries: Net, SSL & Security.

Refer to the chapter Pack Import to integrate a specific version of the Net Pack:

<dependencies>
<dependency org="com.microej.pack.net" name="net-pack" rev="11.0.2"/>

</dependencies>

Then, using the VEE Port Editor (see PlatformModule Configuration), enable the SSL library (API, Impl & Mock):

6.16. Networking 1115

https://repository.microej.com/modules/ej/api/net/

MicroEJ Documentation, Revision 32bb132e

Fig. 81: Net Pack Modules

Use

The SSL API module must be added to themodule.ivy of the MicroEJ Application project to use the SSL library.

<dependency org="ej.api" name="ssl" rev="2.2.3"/>

6.16.4 Network Interfaces Management

Overview

The Network Foundation Library provides a way to manage and configure TCP/IP network interfaces.

Dependencies

• Network core module (see Network Core Engine).

• LLECOM_NETWORK_impl.h implementation (see LLECOM_NETWORK: Network Interfaces).

Installation

The Network Packmodule must be installed in your VEE Port.

In the Platform configuration project, (-configuration su�ix), add the following dependency to themodule.ivy
file:

<dependency org="com.microej.pack.ecom-network" name="ecom-network-pack" rev="1.0.0" />

The Platform project must be rebuilt (Platform Build).

6.16. Networking 1116

https://repository.microej.com/modules/ej/api/ssl/

MicroEJ Documentation, Revision 32bb132e

Use

The Network API Module must be added to themodule.ivy file of the Application project:

<dependency org="ej.api" name="ecom-network" rev="2.1.1"/>

6.16.5 Wi-Fi

Overview

The Wi-Fi Foundation Library provides a way to manage and configure Wi-Fi access points.

Dependencies

• Network core module (see Network Core Engine).

• LLECOM_WIFI_impl.h implementation (see LLECOM_WIFI: Wi-Fi Management).

Installation

The Wi-Fi Packmodule must be installed in your VEE Port.

In the Platform configuration project, (-configuration su�ix), add the following dependency to themodule.ivy
file:

<dependency org="com.microej.pack.ecom-wifi" name="ecom-wifi-pack" rev="1.0.0" />

The Platform project must be rebuilt (Platform Build).

Use

The Wi-Fi API Module must be added to themodule.ivy file of the Application project:

<dependency org="ej.api" name="ecom-wifi" rev="2.2.2"/>

6.17 Bluetooth

6.17.1 Principle

The Bluetooth Foundation Library defines a low-level Bluetooth framework for embedded devices. It allows you to
manage abstract Bluetooth connections without worrying about the native underlying Bluetooth kind.

6.17. Bluetooth 1117

https://repository.microej.com/modules/ej/api/ecom-network/
https://repository.microej.com/modules/ej/api/ecom-wifi/

MicroEJ Documentation, Revision 32bb132e

6.17.2 Functional Description

TheMicroEJApplicationmanagesBluetoothelementsusingAdapter/Connection/Service/Characteristic/Descriptor/etc
abstraction. The Bluetooth implementationmade for eachMicroEJ Platform is responsible for surfacing the native
Bluetooth specific behavior.

6.17.3 Overview

The Bluetooth Foundation Library provides a way to manage and configure Bluetooth module.

6.17.4 Dependencies

• LLBLUETOOTH_impl.h implementation (see LLBLUETOOTH: Bluetooth).

– A sample implementation based on the Bluedroid stack can be found in the Espressif ESP32-S3 VEE
Port.

6.17.5 Installation

The Bluetooth Packmodule must be installed in your VEE Port.

In the Platform configuration project, (-configuration su�ix), add the following dependency to themodule.ivy
file:

<dependency org="com.microej.pack.bluetooth" name="bluetooth-pack" rev="2.2.1" />

The Platform project must be rebuilt (Platform Build).

6.17.6 Use

See Bluetooth API chapter in Application Developer Guide.

6.18 Event Queue

6.18.1 Principle

The Event Queue Foundation Library provides an asynchronous communication interface between the native
world and the Javaworld based on events. Its functional architecture andusage are documented in the Application
Developer Guide.

6.18. Event Queue 1118

https://github.com/MicroEJ/VEEPort-Espressif-ESP32-S3-DevKitC-1/blob/master/ESP32-S3-DevKitC1-Xtensa-FreeRTOS-bsp/projects/microej/bluetooth/src/LLBLUETOOTH_impl.c
https://github.com/MicroEJ/VEEPort-Espressif-ESP32-S3-DevKitC-1/blob/master/ESP32-S3-DevKitC1-Xtensa-FreeRTOS-bsp/projects/microej/bluetooth/src/LLBLUETOOTH_impl.c

MicroEJ Documentation, Revision 32bb132e

6.18.2 Dependencies

• LLEVENT_impl.h and LLEVENT.h implementations (see LLEVENT: Event Queue).

6.18.3 Installation

The Event Queue Packmodule must be installed in your VEE Port.

In the VEE Port configuration project, add the following dependency to themodule.ivy file:

<dependency org="com.microej.pack.event" name="event-pack" rev="2.0.1" transitive="false"/>

6.19 File System

6.19.1 Principle

The FS Foundation Library defines a low-level File System framework for embedded devices. It allows you toman-
age abstract files and directories without worrying about the native underlying File System kind.

6.19.2 Functional Description

The MicroEJ Application manages File System elements using File/Directory abstraction. The FS implementation
made for each MicroEJ Platform is responsible for surfacing the native File System specific behavior.

6.19.3 Dependencies

• LLFS_impl.h and LLFS_File_impl.h implementations (see LLFS: File System).

6.19.4 Installation

FS is an additionalmodule. In the platform configuration file, check FS to install it. When checked, the properties
file fs/fs.properties is required during platform creation in order to configure the module. This properties file
specifies the characteristics of the File System used in the C project (case sensitivity, root directory, file separator,
etc.).

The FS module defines two pre-configured File System types: Unix and FatFS . Some characteristics don’t need
to be specified for these File System types, but they can be overridden if needed. For example, specifying a Unix
File System type will automatically set the file separator to / .

If none of the pre-configured File System types correspond to the File System used in the C project, the Custom
type can be used. When this type is selected, all the File System characteristics must be specified in the properties
file.

The list below describes the properties that can be defined in the file fs/fs.properties :

• fs : Defines the type of File System used in the C project (optional, the default value is Unix). This property
can have one of the following values:

– Unix : select this configuration when using a Unix-like File System (case-sensitive, file separator is /).

– FatFS : select this configuration when using FatFS File System (case-insensitive, file separator is /).

6.19. File System 1119

MicroEJ Documentation, Revision 32bb132e

– Custom : select this configuration when using another type of File System.

• root.dir : Defines the File System root volume. This property is optional for Unix and FatFS (/ by default
for both).

• user.dir : Defines the File System user directory. This property is optional for FatFS (/usr/ by default).

• java.io.tmpdir : Defines the File System temporarydirectory. This property is optional for Unix and FatFS
(/tmp/ by default for both).

• file.separator : Defines the File System file separator. This property is optional for Unix and FatFS (/
by default for both).

• path.separator : Defines the File System path separator. This property is optional for Unix and FatFS (:
by default for both).

• case.sensitivity : Defines the case sensitivity of the File System. This property is optional for Unix (
caseSensitive by default) and FatFS (caseInsensitive by default). This property can have one of the
following values:

– caseSensitive : the File System is case-sensitive.

– caseInsensitive : the File System is case-insensitive.

Properties File Template

The following snippet can be used as a template for fs.properties file:

Defines the type of File System used in the C project.
Possible values are:
- FatFs
- Unix
- Custom
@optional, default value is "Unix"
#fs=

Defines the File System root volume.
@optional for the following File System types:
- FatFs (default value is "/")
- Unix (default value is "/")
@mandatory for the following File System type:
- Custom
#root.dir=

Defines the File System user directory.
@optional for the following File System type:
- FatFs (default value is "/usr")
@mandatory for the following File System types:
- Unix
- Custom
#user.dir=

Defines the File System temporary directory.
@optional for the following File System types:
- FatFs (default value is "/tmp")
- Unix (default value is "/tmp")
@mandatory for the following File System type:

(continues on next page)

6.19. File System 1120

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

- Custom
#java.io.tmpdir=

Defines the File System file separator.
@optional for the following File System types:
- FatFs (default value is "/")
- Unix (default value is "/")
@mandatory for the following File System type:
- Custom
#file.separator=

Defines the File System path separator.
@optional for the following File System types:
- FatFs (default value is ":")
- Unix (default value is ":")
@mandatory for the following File System type:
- Custom
#path.separator=

Defines the case sensitivity of the File System.
Valid values are "caseInsensitive" and "caseSensitive".
@optional for the following File System types:
- FatFs (default value is "caseInsensitive")
- Unix (default value is "caseSensitive")
@mandatory for the following File System type:
- Custom
#case.sensitivity=

6.19.5 Use

The FS API Module must be added to themodule.ivy of the MicroEJ Application project to use the FS library.

<dependency org="ej.api" name="fs" rev="2.0.6"/>

6.20 Hardware Abstraction Layer

6.20.1 Principle

TheHardwareAbstraction Layer (HAL) Foundation Library features API that target IOdevices, suchasGPIOs, analog
to/from digital converters (ADC / DAC), etc. The API are very basic in order to be as similar as possible to the BSP
drivers.

6.20. Hardware Abstraction Layer 1121

https://repository.microej.com/modules/ej/api/fs/

MicroEJ Documentation, Revision 32bb132e

6.20.2 Functional Description

The MicroEJ Application configures and uses some physical GPIOs, using one unique identifier per GPIO. The HAL
implementationmade for each MicroEJ Platform has the responsibility of verifying the veracity of the GPIO identi-
fier and the valid GPIO configuration.

Theoretically, a GPIO can be reconfigured at any time. For example a GPIO is configured in OUTPUT first, and later
in ADC entry. However the HAL implementation can forbid the MicroEJ Application from performing this kind of
operation.

6.20.3 Identifier

Basic Rule

MicroEJ Application manipulates anonymous identifiers used to identify a specific GPIO (port and pin). The iden-
tifiers are fixed by the HAL implementationmade for each MicroEJ Platform, and so this implementation is able to
make the link between the MicroEJ Application identifiers and the physical GPIOs.

• A port is a value between 0 and n - 1 , where n is the available number of ports.

• A pin is a value between 0 and m - 1 , where m is the maximum number of pins per port.

Generic Rules

Most of time the basic implementationmakes the link between the port / pin and the physical GPIO following these
rules:

• The port 0 targets all MCU pins. The first pin of the first MCU port has the ID 0 , the second pin has 1 ; the
first pin of the next MCUport has the ID m (where m is themaximumnumber of pins per port), etc. Examples:

/* m = 16 (16 pins max per MCU port) */
mcu_pin = application_pin & 0xf;
mcu_port = (application_pin >> 4) + 1;

/* m = 32 (32 pins max per MCU port) */
mcu_pin = application_pin & 0x1f;
mcu_port = (application_pin >> 5) + 1;

• The port from 1 to n (where n is the available number of MCU ports) targets the MCU ports. The first MCU
port has the ID 1 , the second has the ID 2 , and the last port has the ID n .

• The pin from 0 to m - 1 (where m is the maximum number of pins per port) targets the port pins. The first
port pin has the ID 0 , the second has the ID 1 , and the last pin has the ID m - 1 .

The implementation can also normalize virtual and physical board connectors. A physical connector is a connector
available on the board, and which groups several GPIOs. The physical connector is usually called JPn or CNn ,
where n is the connector ID. A virtual connector represents one or several physical connectors, and has a name;
for example ARDUINO_DIGITAL .

Using a unique ID to target a virtual connector allows you tomake an abstraction between theMicroEJ Application
and the HAL implementation. For exmaple, on a board A, the pin D5 of ARDUINO_DIGITAL port will be connected
to the MCU portA , pin12 (GPIO ID = 1 , 12). And on board B, it will be connected to the MCU port5 , pin0 (GPIO
ID = 5 , 0). From the MicroEJ Application point of view, this GPIO has the ID 30 , 5 .

Standard virtual connector IDs are:

6.20. Hardware Abstraction Layer 1122

MicroEJ Documentation, Revision 32bb132e

ARDUINO_DIGITAL = 30;
ARDUINO_ANALOG = 31;

Finally, the available physical connectors can have a number from 64 to 64 + i - 1 , where i is the available
numberof connectors on theboard. This allows theapplication toeasily target aGPIO that is availableonaphysical
connector, without knowing the corresponding MCU port and pin.

JP3 = 64;
JP6 = 65;
JP11 = 66;

6.20.4 Configuration

A GPIO can be configured in any of five modes:

• Digital input: The MicroEJ Application can read the GPIO state (for example a button state).

• Digital inputpull-up: TheMicroEJApplicationcan read theGPIOstate (for exampleabutton state); thedefault
GPIO state is driven by a pull-up resistor.

• Digital output: The MicroEJ Application can set the GPIO state (for example to drive an LED).

• Analog input: The MicroEJ Application can convert some incoming analog data into digital data (ADC). The
returned values are values between 0 and n - 1 , where n is the ADC precision.

• Analog output: The MicroEJ Application can convert some outgoing digital data into analog data (DAC). The
digital value is a percentage (0 to 100%) of the duty cycle generated on selected GPIO.

6.20.5 Dependencies

• LLHAL_impl.h implementation (see LLHAL: Hardware Abstraction Layer).

6.20.6 Installation

HAL is an additional module. In the platform configuration file, check HAL to install the module.

6.20.7 Use

The HAL API Module must be added to themodule.ivy of the MicroEJ Application project to use the HAL library.

<dependency org="ej.api" name="hal" rev="1.0.4"/>

6.20. Hardware Abstraction Layer 1123

https://forge.microej.com/artifactory/microej-developer-repository-release/ej/api/hal/

MicroEJ Documentation, Revision 32bb132e

6.21 Device Information

6.21.1 Principle

The Device Foundation Library provides access to the device information. This includes the architecture name and
a unique identifier of the device for this architecture.

6.21.2 Dependencies

• LLDEVICE_impl.h implementation (see LLDEVICE: Device Information).

6.21.3 Installation

Device Information is an additional module. In the platform configuration file, check Device Information to in-
stall it. When checked, the property file device/device.properties may be defined during platform creation to
customize the module.

The properties file must / can contain the following properties:

• architecture [optional, default value is “Virtual Device”]: Defines the value returned by the
ej.util.Device.getArchitecture() method on the Simulator.

• id.length [optional]: Defines the size of the ID returned by the ej.util.Device.getId() method on the Simu-
lator.

6.21.4 Use

TheDevice APIModulemust be added to themodule.ivy of theMicroEJApplicationproject to use theDevice library.

<dependency org="ej.api" name="device" rev="1.0.2"/>

6.22 Security

6.22.1 Principle

The Security Foundation Library provides standard Java API (part of the Java Cryptography Architecture) for cryp-
tographic operations: cipher, digest, MAC, signature, secure random & key/certificate management. It relies on a
native crypto engine (such as Mbed TLS, OpenSSL or wolfSSL).

6.21. Device Information 1124

https://repository.microej.com/javadoc/microej_5.x/apis/ej/util/Device.html#getArchitecture--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/util/Device.html#getId--
https://repository.microej.com/modules/ej/api/device/

MicroEJ Documentation, Revision 32bb132e

6.22.2 Dependencies

• The LLSEC_*.h implementations (see LLSEC: Security).

6.22.3 Installation

The Net Pack bundles several libraries: Net, SSL & Security.

Refer to the chapter Pack Import to integrate a specific version of the Net Pack:

<dependencies>
<dependency org="com.microej.pack.net" name="net-pack" rev="11.0.2"/>

</dependencies>

Then, using the VEE Port Editor (see PlatformModule Configuration), enable the Security library (API, Impl &Mock):

Fig. 82: Net Pack Modules

6.22.4 Use

The Security API module must be added to the module.ivy of the MicroEJ Application project to use the Security
library.

<dependency org="ej.api" name="security" rev="1.6.0"/>

6.23 Watchdog Timer

6.23.1 Overview

TheWatchdogTimer Foundation Library provides a way to handle hardware watchdog timer. A watchdog is partic-
ularly useful if you want to monitor di�erent items of your so�ware system during the runtime. The figure below
shows watchdog elements at each level of a MicroEJ project:

6.23. Watchdog Timer 1125

https://repository.microej.com/modules/ej/api/security/

MicroEJ Documentation, Revision 32bb132e

6.23.2 Principle

The Watchdog Timer API is in two parts, the first part drives thewatchdog timer itself. The second part of the API
implements a checkpoint registration system linked to the watchdog timer.

The checkpoint registration systemallows theuser to addcheckpointsmonitoredby thehardwarewatchdog timer.
Each checkpoint registered by the Watchdog Timer API must attest their activity before the watchdog timeout,
otherwise a hardware reset is performed. The high level diagram below summarizes interactions between the
user application, the Watchdog Timer API and the Watchdog timer.

6.23. Watchdog Timer 1126

MicroEJ Documentation, Revision 32bb132e

The particularity of this library is that it can be either used in Java, in C inside the BSP or even both of them. The
use of this library in the BSP in C is relevant when the user needs to monitor an item of the so�ware system which
is outside of the MicroEJ Virtual Machine. The sequence diagram below shows a standard use of the Watchdog API
in Java and in C.

6.23. Watchdog Timer 1127

MicroEJ Documentation, Revision 32bb132e

6.23.3 Mock Implementation

When you run your Application on the Simulator, the watchdog timer must be emulated. To do so, a Java Timer
Task is used which emulates the watchdog timer.

The Mock implementation does not perform a hardware reset when the false watchdog timer triggers.

6.23.4 Dependencies

• This library needs tobeusedwith theWatchdogTimerGeneric C implementationdeveloped for this purpose,
its module name is watchdog-timer-generic .

• LLWATCHDOG_TIMER_impl.h implemented by the Watchdog Timer C implementation (see LLWATCH-
DOG_TIMER: Watchdog Timer).

• watchdog_timer_helper.h implementation needed by the Watchdog Timer C implementation (see LL-
WATCHDOG_TIMER: Watchdog Timer).

6.23. Watchdog Timer 1128

MicroEJ Documentation, Revision 32bb132e

6.23.5 Installation

Watchdog Timer is an API composed of a Packmodule and a C componentmodule. You need both of them in your
VEE Port to install the API.

In the Platform configuration project, (-configuration su�ix), add the following dependencies tomodule.ivy file:

<dependency org="com.microej.pack.watchdog-timer" name="watchdog-timer-pack" rev="2.0.1" />
<dependency org="com.microej.clibrary.llimpl" name="watchdog-timer-generic" rev="3.0.1"/>

The Platform project must be rebuilt (Platform Build).

Then, you have to implement functions that match the LLWATCHDOG_TIMER_IMPL_*_action pattern which is re-
quired by the Watchdog C implementation.

6.23.6 Use in an Application

TheWatchdogTimer APIModulemust be added to themodule.ivy of the Application project in order to allowaccess
to the Watchdog library.

<dependency org="ej.api" name="watchdog-timer" rev="2.0.0"/>

6.23.7 Code example in Java

Here is an example that summarizes all features in a simple use case. The checkpoint is performed in a TimerTask
scheduled to run every 5 seconds. To use TimerTask in your Java application, add the following BON API depen-
dency:

<dependency org="ej.api" name="bon" rev="1.4.0" />

Then, you can use this example code:

// Test a simple watchdog timer use case
public static void main(String[] args) {

if (WatchdogTimer.isResetCause()) {
System.out.println("Watchdog timer triggered the last board reset!"); //$NON-

→˓NLS-1$
} else {

System.out.println("Watchdog timer DID NOT triggered the last board reset!");
→˓ //$NON-NLS-1$

}

WatchdogTimer.init();
System.out.println("Watchdog timer initialized to trigger after " + WatchdogTimer.

→˓getWatchdogTimeoutMs() + " ms."); //$NON-NLS-1$

TimerTask checkpointTask = new TimerTask() {

private final int checkpointId = WatchdogTimer.registerCheckpoint();

@Override
public void run() {

(continues on next page)

6.23. Watchdog Timer 1129

https://repository.microej.com/modules/ej/api/watchdog-timer/
https://repository.microej.com/modules/ej/api/bon/

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

// We attest our task activity using the checkpoint method.
// Since this is our only checkpoint registered, the watchdog timer␣

→˓is refreshed.
WatchdogTimer.checkpoint(this.checkpointId);
System.out.println("Task performed watchdog checkpoint with the ID "␣

→˓+ this.checkpointId); //$NON-NLS-1$
}

};

// We schedule our task to be executed every 5 seconds.
Timer timer = new Timer();
final int DELAY = 0;
final int PERIOD = 5000; // We assume that the watchdog timeout period is higher␣

→˓than 5000 milliseconds.
timer.schedule(checkpointTask, DELAY, PERIOD);

// Everything is ready, we launch the watchdog
WatchdogTimer.start();
System.out.println("Watchdog started!");

// Let the checkpointTask runs for a minute.

final int WAIT_A_MINUTE = 60000; // 60 000 milliseconds to wait a minute
try {

Thread.sleep(WAIT_A_MINUTE);
} catch (InterruptedException e) {

// TODO Auto-generated catch block
e.printStackTrace();

}

// Our program is finished. Now we stop the checkpointTask and the watchdog.
timer.cancel();
WatchdogTimer.stop(); // This method also unregisters all checkpoints.
System.out.println("Monitored task stopped and Watchdog timer stopped.");

}

6.23.8 Use in C inside the BSP

Once the Platform is configured to use theWatchdog Timer API as explained in Installation section, you can use
functions defined in LLWATCHDOG_TIMER_impl.h .

Note that compared to the Java API, you have to get error codes returned by functions to check if the function is
executed correctly since you have no access to exceptions generated for the Java.

TheWatchdog Timer Low Level API provides a set of functionswith the same usage as in Java. Here is the list of the
watchdog Low Level API functions:

LLWATCHDOG_TIMER_IMPL_init() // refer to ej.hal.WatchdogTimer.init()
LLWATCHDOG_TIMER_IMPL_start() // refer to ej.hal.WatchdogTimer.start()
LLWATCHDOG_TIMER_IMPL_stop() // refer to ej.hal.WatchdogTimer.stop()
LLWATCHDOG_TIMER_IMPL_registerCheckpoint() // refer to ej.hal.WatchdogTimer.
→˓registerCheckpoint()

(continues on next page)

6.23. Watchdog Timer 1130

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

LLWATCHDOG_TIMER_IMPL_unregisterCheckpoint() // refer to ej.hal.WatchdogTimer.
→˓unregisterCheckpoint()
LLWATCHDOG_TIMER_IMPL_checkpoint() // refer to ej.hal.WatchdogTimer.
→˓checkpoint()
LLWATCHDOG_TIMER_IMPL_isResetCause() // refer to ej.hal.WatchdogTimer.
→˓isResetCause()
LLWATCHDOG_TIMER_IMPL_getWatchdogTimeoutMs() // refer to ej.hal.WatchdogTimer.
→˓getWatchdogTimeoutMs()

There is an additional function in LLWATCHDOG_TIMER_impl.h compared to the Java API. This is
LLWATCHDOG_TIMER_IMPL_refresh , because a low level implementation of this function is required for the
library. However, the user does not need and should not use this function on his own.

6.23.9 Code example in C

Here is an example that summarizesmain features in a simple use case. The checkpoint is performed in a FreeRTOS
task scheduled to attest its activity to the watchdog every 5 seconds.

#include <stdio.h>
#include <stdint.h>

#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"
#include "semphr.h"

#include "LLWATCHDOG_TIMER_impl.h"

#define MONITORED_TASK_STACK_SIZE 1024
#define TASK_SLEEP_TIME_MS 5000 // We sleep for 5 seconds, assuming that the watchdog␣
→˓timeout is higher.

/*---*/

static void my_monitored_task(void *pvParameters){
// We get an ID from watchdog registration system for this new checkpoint
int32_t checkpoint_id = LLWATCHDOG_TIMER_IMPL_registerCheckpoint();

for(;;){
vTaskDelay(TASK_SLEEP_TIME_MS / portTICK_PERIOD_MS);
// Since this is our only checkpoint registered, the watchdog timer is␣

→˓refreshed.
LLWATCHDOG_TIMER_IMPL_checkpoint(checkpoint_id);
printf("MonitoredTask with ID = %d did watchdog checkpoint!\n", checkpoint_

→˓id);
}

}

/*---*/

int main(void){

(continues on next page)

6.23. Watchdog Timer 1131

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

xTaskHandle handle_monitored_task;

/* Check if last reset was done by the Watchdog timer. */
if(LLWATCHDOG_TIMER_IMPL_isResetCause()){

printf("Watchdog timer triggered the last reset, we stop the program now! \n
→˓");

return -1;
}

/* Setup the Watchdog Timer*/
if(WATCHDOG_TIMER_ERROR == LLWATCHDOG_TIMER_IMPL_init()){

printf("Failed to init watchdog timer in main. \n");
} else{

printf("Watchdog timer initialized to trigger after %d ms \n", LLWATCHDOG_
→˓TIMER_IMPL_getWatchdogTimeoutMs());

}

/* Start the Watchdog Timer*/
if(WATCHDOG_TIMER_ERROR == LLWATCHDOG_TIMER_IMPL_start()){

printf("Failed to start watchdog timer in main. \n");
} else{

printf("Watchdog started!\n");
}

/* Create the monitored task. */
xTaskCreate(my_monitored_task, "MonitoredTask", MONITORED_TASK_STACK_SIZE, NULL,␣

→˓tskIDLE_PRIORITY, &handle_monitored_task);

/* Start the scheduler. */
printf("Starting scheduler...\n");
vTaskStartScheduler();

return 0;
}

6.24 SystemView

6.24.1 Principle

SystemView is a real-time recording and visualization tool for embedded systems that reveals the actual runtime
behavior of an application, going far deeper than the system insights provided by debuggers. This is particularly
e�ective when developing and working with complex embedded systems comprising multiple threads and inter-
rupts: SystemView can ensure a systemperforms as designed, can track down ine�iciencies, and showunintended
interactions and resource conflicts, with a focus on the details of every single system tick.

A specific SystemView extensionmade byMicroEJ allows to trace the OS tasks and the MicroEJ Java threads at the
same time. This chapter explains how to add SystemView feature to a platform and set it up.

A SystemView support is provided to use the so�ware with a MicroEJ system. This documentation shows how to
set up your BSP and your Java application.

6.24. SystemView 1132

MicroEJ Documentation, Revision 32bb132e

Note: SystemView support for MicroEJ is compatible with FreeRTOS 9 and FreeRTOS 10.

Note: This SystemView section has been written for SystemView version V2.52a. Later versions may or may not
work, andmay needmodification to the following steps.

Here is an example when analyzing the DemoWidget running on the STM32F7508-DK platform.

6.24.2 References

• https://www.segger.com/products/development-tools/systemview/

• https://www.segger.com/downloads/jlink/UM08027

6.24.3 Installation

SystemView installation consists of adding several items in the BSP. The following steps describe them, and they
must be performed in the right order. If SystemView support is already available in the BSP, apply only modifi-
cations made by MicroEJ on SystemView files and SystemView for FreeRTOS files to enable MicroEJ Java threads
monitoring.

1. Download and install SystemView V2.52a: http://segger.com/downloads/systemview/.

2. Apply SystemView for FreeRTOS patch as described in the documentation (https://www.segger.com/
downloads/jlink/UM08027); the patch is available in the installation folder SEGGER\SystemView\Src\
Sample\FreeRTOSVxx .

6.24. SystemView 1133

https://github.com/MicroEJ/Demo-Widget
https://github.com/MicroEJ/Platform-STMicroelectronics-STM32F7508-DK
https://www.segger.com/products/development-tools/systemview/
https://www.segger.com/downloads/jlink/UM08027
http://segger.com/downloads/systemview/
https://www.segger.com/downloads/jlink/UM08027
https://www.segger.com/downloads/jlink/UM08027

MicroEJ Documentation, Revision 32bb132e

Note: If you are using FreeRTOS V10.2.0, use the patch located here: https://forum.segger.com/index.php/Thread/
6158-SOLVED-SystemView-Kernelpatch-for-FreeRTOS-10-2-0/?s=add3b0f6a33159b9c4b602da0082475afeceb89a

3. Check if the patch disabled SystemView systick events in port.c , if not remove these lines manually:

4. Add SEGGER\SystemView\Src\Sample\FreeRTOSVxx\Config\SEGGER_SYSVIEW_Config_FreeRTOS.c in
your BSP.

This file can bemodified to fit your system configuration:

• Update SYSVIEW_APP_NAME , SYSVIEW_DEVICE_NAME , and SYSVIEW_RAM_BASE defines to fit your system
information.

• To add MicroEJ Java threads management in SystemView tasks initialization:

– Add these includes #include "task.h" , #include "LLMJVM_MONITOR_SYSVIEW.
h" , #include "LLTRACE_SYSVIEW_configuration.h" , #include
"SEGGER_SYSVIEW_configuration.h" and the include that declares the external vari-
able pvMEJCoreEngineTask . pvMEJCoreEngineTask must be the FreeRTOS task handle
used to create the MicroEJ Core Engine task. Initializes this variable at NULL before the call
of the FreeRTOS scheduler.

6.24. SystemView 1134

https://forum.segger.com/index.php/Thread/6158-SOLVED-SystemView-Kernelpatch-for-FreeRTOS-10-2-0/?s=add3b0f6a33159b9c4b602da0082475afeceb89a
https://forum.segger.com/index.php/Thread/6158-SOLVED-SystemView-Kernelpatch-for-FreeRTOS-10-2-0/?s=add3b0f6a33159b9c4b602da0082475afeceb89a

MicroEJ Documentation, Revision 32bb132e

– In function _cbSendSystemDesc(void) , add this instruction:
SEGGER_SYSVIEW_SendSysDesc("N="SYSVIEW_APP_NAME",D="SYSVIEW_DEVICE_NAME",
O=FreeRTOS"); before SEGGER_SYSVIEW_SendSysDesc("I#15=SysTick"); .

– Replace the Global function section with this code:

/***
*
* Global functions
*
**
*/

SEGGER_SYSVIEW_OS_API SYSVIEW_MICROEJ_X_OS_TraceAPI;

static void SYSVIEW_MICROEJ_X_OS_SendTaskList(void){
SYSVIEW_X_OS_TraceAPI.pfSendTaskList();

// The strategy to send tasks info is different in post mortem and live␣
→˓analysis.
#if (1 == SEGGER_SYSVIEW_POST_MORTEM_MODE)

/**
* POST MORTEM analysis
*
* Using the post mortem analysis, FreeRTOS tasks regularly call the SYSVIEW_

→˓MICROEJ_X_OS_SendTaskList() function when
* a packet (systemview event) is sent to the SEGGER circular buffer. It is␣

→˓necessary because the information of tasks
* must be regularly uploaded in the circular buffer in order to provide a␣

→˓valid analysis at any moment.
* Consequently, we only allow to call LLMJVM_MONITOR_SYSTEMVIEW_send_task_

→˓list() when the current task is the MicroEJ Core Engine.
*/

/* Obtain the handle of the current task. */
TaskHandle_t xHandle = xTaskGetCurrentTaskHandle();
configASSERT(xHandle); // Check the handle is not NULL.

// Check if the current task handle is the MicroEJ Core Engine task handle.␣
→˓pvMEJCoreEngineTask is an external variable.

if(xHandle == pvMEJCoreEngineTask){
// Launched by the MicroEJ Core Engine, we execute LLMJVM_MONITOR_

→˓SYSTEMVIEW_send_task_list()
LLMJVM_MONITOR_SYSTEMVIEW_send_task_list();

}
#else

/**
* LIVE analysis
*
* Using the live analysis, the call of SYSVIEW_MICROEJ_X_OS_SendTaskList()␣

→˓is triggered by
* the SystemView Software through the J-Link probe. Consequently, the␣

→˓MicroEJ Core Engine task will never call
* the function LLMJVM_MONITOR_SYSTEMVIEW_send_task_list(). However, if the␣

(continues on next page)

6.24. SystemView 1135

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

→˓MicroEJ Core Engine task is created,
* the function must be called LLMJVM_MONITOR_SYSTEMVIEW_send_task_list().
*/
// Check if the MicroEJ Core Engine task handle is not NULL.␣

→˓pvMEJCoreEngineTask is an external variable.
if(NULL != pvMEJCoreEngineTask){

// The MicroEJ Core Engine task is running, we execute LLMJVM_MONITOR_
→˓SYSTEMVIEW_send_task_list()

LLMJVM_MONITOR_SYSTEMVIEW_send_task_list();
}

#endif
}

void SEGGER_SYSVIEW_Conf(void) {
SYSVIEW_MICROEJ_X_OS_TraceAPI.pfGetTime = SYSVIEW_X_OS_TraceAPI.pfGetTime;
SYSVIEW_MICROEJ_X_OS_TraceAPI.pfSendTaskList = SYSVIEW_MICROEJ_X_OS_

→˓SendTaskList;

SEGGER_SYSVIEW_Init(SYSVIEW_TIMESTAMP_FREQ, SYSVIEW_CPU_FREQ, &SYSVIEW_
→˓MICROEJ_X_OS_TraceAPI, _cbSendSystemDesc);

SEGGER_SYSVIEW_SetRAMBase(SYSVIEW_RAM_BASE);
}

5. Add in your BSP the MicroEJ Cmodule files for SystemView: com.microej.clibrary.thirdparty#systemview (or
check the di�erences between pre-installed SystemView and C files provided by this module)

6. Add in your BSP the MicroEJ C module files for SystemView FreeRTOS support (or check the di�erences be-
tween pre-installed SystemView and C files provided by this module)

• FreeRTOS 10: com.microej.clibrary.thirdparty#systemview-freertos10

• FreeRTOS 9: please contact our support team to get the latest maintenance version of com.microej.
clibrary.thirdparty#systemview-freertos9 module.

7. Install the Abstraction Layer implementation of the Java Trace API for SystemView by adding C module files
in your BSP: com.microej.clibrary.llimpl#trace-systemview

8. Make FreeRTOS compatible with SystemView: open FreeRTOSConfig.h and:

• add #define INCLUDE_xTaskGetIdleTaskHandle 1

• add #define INCLUDE_pxTaskGetStackStart 1

• add #define INCLUDE_uxTaskPriorityGet 1

• comment the line #define traceTASK_SWITCHED_OUT() if defined

• comment the line #define traceTASK_SWITCHED_IN() if defined

• add #include "SEGGER_SYSVIEW_FreeRTOS.h" at the end of the file

9. Enable SystemView on startup (before creating the first OS task): call SEGGER_SYSVIEW_Conf(); . The fol-
lowing include directive is required: #include "SEGGER_SYSVIEW.h" .

10. Print the RTT block address to the serial port on startup: printf("SEGGER_RTT block address: %p\n",
&(_SEGGER_RTT)); . The following include directive is required: #include "SEGGER_RTT.h" .

Note: This is useful if SystemViewdoes not automatically find theRTTblock address. See sectionRTTControl Block

6.24. SystemView 1136

https://repository.microej.com/modules/com/microej/clibrary/thirdparty/systemview/1.3.1/
https://repository.microej.com/modules/com/microej/clibrary/thirdparty/systemview-freertos10/1.1.1/
https://repository.microej.com/modules/com/microej/clibrary/llimpl/trace-systemview/3.1.0/

MicroEJ Documentation, Revision 32bb132e

Not Found for more details.

Note: Youmay also find the RTT block address in RAM by searching _SEGGER_RTT in the .map file generated with
the firmware binary.

11. Add a call to SEGGER_SYSVIEW_setMicroJVMTask((U32)pvCreatedTask); just a�er creating the OS task to
register the MicroEJ Core Engine OS task. The handler to give is the one filled by the xTaskCreate function.

12. Copy the file /YourPlatformProject-bsp/projects/microej/trace/systemview/SYSVIEW_MicroEJ.txt
to the SystemView installation path, such as SEGGER/SystemView_V252a/Description/ . If you use MicroUI
traces, you can also copy the file in the section Debug Traces

6.24.4 MicroEJ Core Engine OS Task

The MicroEJ Core Engine task is the OS task that executes MicroEJ Java threads. Once it is started (by calling
SNI_startVM), it executes the initialization code and rapidly starts to execute theMicroEJ Applicationmain thread.
At that time, the events produced by this OS task (context switch, semaphores, etc.) are dispatched to the current
MicroEJ Java thread. Consequently, this OS task is useless when the MicroEJ Application is running.

SystemView for MicroEJ disables the visibility of this OS task when the MicroEJ Application is running. It simplifies
the SystemView client debugging.

6.24.5 OS Tasks and Java Threads Names

Tomake a distinction between the OS tasks and the MicroEJ Java threads, a prefix is added to the OS tasks names
([OS]) and the Java threads names ([MEJ]).

6.24. SystemView 1137

MicroEJ Documentation, Revision 32bb132e

Fig. 83: OS Tasks and Java Threads Names

Note: SystemView limits the number of characters to 32. The prefix length is included in these 32 characters;
consequently, the end of the original OS task or Java thread name can be cropped.

6.24.6 OS Tasks and Java Threads Priorities

SystemView lists the OS tasks and Java threads according to their priorities. However, the priority notion does not
have the same signification when talking about OS tasks or Java threads: a Java thread priority depends on the
MicroEJ Core Engine OS task priority.

As a consequence, a Java thread with the priority 5 may not appear between an OS task with the priority 4 and
another OS task with priority 6 :

• if the MicroEJ Core Engine OS task priority is 3 , the Java threadmust appear below an OS task with priority
4 .

• if the MicroEJ Core Engine OS task priority is 7 , the Java threadmust appear above an OS task with priority
6 .

6.24. SystemView 1138

MicroEJ Documentation, Revision 32bb132e

To keep a consistent line ordering in SystemView, the priorities sent to the SystemView client respect the following
rules:

• OS task: priority_sent = task_priority * 100 .

• MicroEJ Java thread: priority_sent = MicroJvm_task_priority * 100 + thread_priority .

6.24.7 Use

MicroEJ Architecture can generate specific events that allow monitoring of current Java thread, Java exceptions,
Java allocations, . . . as well as custom application events. Please refer to the Event Tracing section.

To enable events recording, refer to the Event Recording section to configure the required Application Options.

6.24.8 Troubleshooting

SystemView doesn’t see any activity in MicroEJ Tasks

You have to enable runtime traces of your Java application.

• In Run > Run configuration , select your Java application launcher.

• Then, go to Configuration tab > Runtime > Trace .

• Finally, check checkboxes Enable execution traces and Start execution traces automatically as shown
in the picture below.

• Rebuild your firmware with the new Java application version, which should fix the issue.

6.24. SystemView 1139

MicroEJ Documentation, Revision 32bb132e

Youmay only check the first checkbox when you knowwhen you want to start the trace recording. For more infor-
mation, please refer to the Event Recording section to configure the required Application Options.

OVERFLOW Events in SystemView

Depending on the application, OVERFLOW events can be seen in System View. To mitigate this prob-
lem, the default SEGGER_SYSVIEW_RTT_BUFFER_SIZE can be increased from the default 1kB to a more
appropriate size of 4kB. Still, if OVERFLOW events are still visible, the user can further increase this
configuration found in /YourPlatformProject-bsp/projects/microej/thirdparty/systemview/inc/
SEGGER_SYSVIEW_configuration.h .

6.24. SystemView 1140

MicroEJ Documentation, Revision 32bb132e

RTT Control Block Not Found

• Get the RTT block address from the standard output by resetting the board (it is printed at the beginning of
the firmware program),

• In SystemView, select Target > Start recording ,

• In RTT Control Block Detection , select Address and put the address retrieved. You can also try with
Search Range option.

6.24.9 RTT block found by SystemView but no traces displayed

• Be sure that your MCU is running. The BSP may use semi-hosting traces that block the MCU execution if the
application is running out of a Debug session.

• You can check the state of theMCUusing J-Link tools such as J-Link Commander and Ozone to start a Debug
session.

6.24.10 Bus hardfault when running SystemViewwithout Java Virtual Machine (JVM)

The function LLMJVM_MONITOR_SYSTEMVIEW_send_task_list(); triggers a Bus Hardfault when no JVM is
launched. To solve this issue, comment this function call out in SEGGER_SYSVIEW_Config_FreeRTOS.c when you
run SystemView without launching the JVM.

6.24.11 SystemView for STM32 ST-Link Probe

SystemView so�ware requires a J-Link probe. If your target board uses an ST-Link probe, it is possible to re-flash
the ST-LINK on board with a J-Link firmware. See instructions provided by SEGGER Microcontroller https://www.
segger.com/products/debug-probes/j-link/models/other-j-links/st-link-on-board/ for more details.

If you cannot flash a firmware for an STM32 device a�er replacing the J-Link firmwarewith the ST-Link original one:

• Use ST_Link utility program to update the ST_Link firmware, go to ST-LINK > Firmware update .

• Then, try to flash again.

6.24. SystemView 1141

https://www.segger.com/products/debug-probes/j-link/models/other-j-links/st-link-on-board/
https://www.segger.com/products/debug-probes/j-link/models/other-j-links/st-link-on-board/

MicroEJ Documentation, Revision 32bb132e

6.25 Simulation

6.25.1 Principle

The MicroEJ Platform provides an accurate MicroEJ Simulator that runs on workstations. Applications execute in
an almost identical manner on both the workstation and on target devices. The MicroEJ Simulator features IO
simulation, JDWP debug coupled with Eclipse, accurate Java heap dump, and an accurate Java scheduling policy
(the same as the embedded one).1

6.25.2 Functional Description

In order to simulate external stimuli that come from the nativeworld (that is, “the Cworld”), theMicroEJ Simulator
has a Hardware In the Loop interface, HIL, which performs the simulation of Java-to-C calls. All Java-to-C calls are
rerouted to an HIL engine. Indeed HIL is a replacement for the [SNI] interface.

1 Only the execution speed is not accurate. The Simulator speed can be set to match the average MicroEJ Platform speed in order to adapt
the Simulator speed to the desktop speed.

6.25. Simulation 1142

MicroEJ Documentation, Revision 32bb132e

Fig. 84: The HIL Connects the MicroEJ Simulator to the Workstation.

The “simulated C world” is made of Mocks that simulate native code (such as drivers and any other kind of C li-
braries), so that the MicroEJ Application can behave the same as the device using the MicroEJ Platform.

The MicroEJ Simulator and the HIL are two processes that run in parallel: the communication between them is
through a socket connection. Mocks run inside the process that runs the HIL engine.

Fig. 85: A MicroEJ Simulator connected to its HIL Engine via a socket.

6.25. Simulation 1143

MicroEJ Documentation, Revision 32bb132e

6.25.3 Dependencies

No dependency.

6.25.4 Installation

The Simulator is a built-in feature of MicroEJ Platform architecture.

6.25.5 Use

To run an application in the Simulator, create a MicroEJ launch configuration by right-clicking on themain class of
the application, and selecting Run As > MicroEJ Application .

This will create a launch configuration configured for the Simulator, and will run it.

6.25.6 Mock

Principle

The HIL engine is a Java standard-based engine that runs Mocks. A Mock is a jar file containing some Java classes
that simulate natives for the Simulator. Mocks allow applications to be run unchanged in the Virtual Device while
still appearing to interact with native code.

Functional Description

As with SNI, HIL is responsible for finding the method to execute as a replacement for the native Java method
that the MicroEJ Simulator tries to run. Following the SNI specification philosophy, the matching algorithm uses
a naming convention. When a native method is called in the MicroEJ Simulator, it requests that the HIL engine
execute it. The corresponding Mock executes the method and provides the result back to the MicroEJ Simulator.

Fig. 86: The MicroEJ Simulator Executes a Native Java Method foo() .

Example

package example;

import java.io.IOException;

/**
* Abstract class providing a native method to access sensor value.
* This method will be executed out of virtual machine.
*/

(continues on next page)

6.25. Simulation 1144

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

public abstract class Sensor {

public static final int ERROR = -1;

public int getValue() throws IOException {
int sensorID = getSensorID();
int value = getSensorValue(sensorID);
if (value == ERROR) {

throw new IOException("Unsupported sensor");
}
return value;

}

protected abstract int getSensorID();

public static native int getSensorValue(int sensorID);
}

class Potentiometer extends Sensor {

protected int getSensorID() {
return Constants.POTENTIOMETER_ID; // POTENTIOMETER_ID is a static final

}
}

To implement the native method getSensorValue(int sensorID) , you need to create a MicroEJ mock project
containing the same Sensor class on the same example package.

To create a newMicroEJ mock project:

SDK 6

SDK 5

Follow the steps described in SDK 6 User Guide - Create a Project depending on your IDE.

• Select File > New > Module Project ,

• Fill the module information (project name, module organization, name and revision),

• Select the microej-mock skeleton,

• Click on Finish .

The following code is the required Sensor class of the created Mock project:

package example;

import java.util.Random;

/**
* Java standard class included in a Mock jar file.
* It implements the native method using a Java method.
*/
public class Sensor {

(continues on next page)

6.25. Simulation 1145

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

/**
* Constants
*/

private static final int SENSOR_ERROR = -1;
private static final int POTENTIOMETER_ID = 3;

private static final Random RANDOM = new Random();

/**
* Implementation of native method "getSensorValue()"
*
* @param sensorID Sensor ID
* @return Simulated sensor value
*/

public static int getSensorValue(int sensorID) {
if(sensorID == POTENTIOMETER_ID) {

// For the simulation, Mock returns a random value
return RANDOM.nextInt();

}
return SENSOR_ERROR;

}

}

Note: The visibility of the native method implemented in the mock must be public regardless of the vis-
ibility of the native method in the application. Otherwise the following exception is raised: java.lang.
UnsatisfiedLinkError: No such method in remote class .

Mocks Design Support

Interface

TheMicroEJ Simulator interface is defined by static methods on the Java class com.is2t.hil.NativeInterface .

Array Type Arguments

Both [SNI] and HIL allow arguments that are arrays of base types. By default the contents of an array are NOT sent
over to theMock. An “empty copy” is sent by theHIL engine, and the contents of the arraymust be explicitly fetched
by the Mock. The array within the Mock can be modified using a regular assignment. Then to apply these changes
in the MicroEJ Simulator, the modifications must be flushed back. There are two methods provided to support
fetch and flush between the MicroEJ Simulator and the HIL:

• refreshContent : initializes the array argument from the contents of its MicroEJ Simulator counterpart.

• flushContent : propagates (to the MicroEJ Simulator) the contents of the array that is used within the HIL
engine.

6.25. Simulation 1146

MicroEJ Documentation, Revision 32bb132e

Fig. 87: An Array and Its Counterpart in the HIL Engine.

Below is a typical usage.

public static void foo(char[] chars, int offset, int length){
NativeInterface ni = HIL.getInstance();
//inside the Mock
ni.refreshContent(chars, offset, length);
chars[offset] = 'A';
ni.flushContent(chars, offset, 1);

}

Blocking Native Methods

Some native methods block until an event has arrived [SNI]. Such behavior is implemented in native using the
following three functions:

• int32_t SNI_suspendCurrentJavaThread(int64_t timeout)

• int32_t SNI_getCurrentJavaThreadID(void)

• int32_t SNI_resumeJavaThread(int32_t id)

This behavior is implemented in a Mock using the following methods on a lock object:

• Object.wait(long timeout): Causes thecurrent thread towait until another thread invokes thenotify()method
or the notifyAll() method for this object.

• Object.notifyAll(): Wakes up all the threads that are waiting on this object’s monitor.

• NativeInterface.notifySuspendStart() : Notifies the Simulator that the current native is suspended so
it can schedule a thread with a lower priority.

• NativeInterface.notifySuspendEnd() : Notifies the Simulator that the current native is no more sus-
pended. Lower priority threads in the Simulator will not be scheduled anymore.

public static byte[] data = new byte[BUFFER_SIZE];
public static int dataLength = 0;
private static Object lock = new Object();

// Mock native method
public static void waitForData() {

NativeInterface ni = HIL.getInstance();
// inside the Mock
// wait until the data is received
synchronized (lock) {

while (dataLength == 0) {
try {

ni.notifySuspendStart();
(continues on next page)

6.25. Simulation 1147

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Object.html#wait-long-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Object.html#notify--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Object.html#notifyAll--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Object.html#notifyAll--

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

lock.wait(); // equivalent to lock.wait(0)
} catch (InterruptedException e) {

// Use the error code specific to your library
throw new NativeException(-1, "InterruptedException",␣

→˓e);
} finally {

ni.notifySuspendEnd();
}

}
}

}

// Mock data reader thread
public static void notifyDataReception() {

synchronized (lock) {
dataLength = readFromInputStream(data);
lock.notifyAll();

}
}

Resource Management

In Java, every class canplay the roleof a small read-only file systemroot: The stored files are called “Java resources”
and are accessible using a path as a String.

The MicroEJ Simulator interface allows the retrieval of any resource from the original Java world, using the
getResourceContent method.

public static void bar(byte[] path, int offset, int length) {
NativeInterface ni = HIL.getInstance();
ni.refreshContent(path, offset, length);
String pathStr = new String(path, offset, length);
byte[] data = ni.getResourceContent(pathStr);
...

}

Synchronous Terminations

To terminate the whole simulation (MicroEJ Simulator and HIL), use the stop() method.

public static void windowClosed() {
HIL.getInstance().stop();

}

6.25. Simulation 1148

MicroEJ Documentation, Revision 32bb132e

Dependencies

SDK 6

SDK 5

• Copy the HILEngine.jar from the VEE Port into a project folder, for example in libs .

• Add a dependency to this local library in the build.gradle.kts file:

implementation(files("libs/HILEngine.jar"))

The HIL Engine API is automatically provided by the microej-mock project skeleton.

Installation

SDK 6

SDK 5

• Create a J2SE Library project,

• In the build.gradle.kts file, change the com.microej.gradle.j2se-library plugin to com.microej.
gradle.mock .

• Build and publish the Mock by executing the Gradle publish task.

Once the module is built, the mock can be installed in a VEE Port in one of the two ways:

• by adding themockmodule as a regular VEE Portmodule dependency (if your VEE Port configuration project
contains a module.ivy file),

• or by manually copying the JAR file [mock_project]/build/libs/[mock_name]-[mock_version].jar to
the VEE Port configurationmock dropins folder dropins/mocks/dropins/ .

First create a newmodule project using the microej-mock skeleton.

Once implemented, right-click on the repository project and select Build Module .

Once the module is built, the mock can be installed in a VEE Port in one of the two ways:

• by adding themockmodule as a regular VEE Portmodule dependency (if your VEE Port configuration project
contains a module.ivy file),

• or by manually copying the JAR file [mock_project]/target~/rip/mocks/[mock_name].jar to the VEE
Port configurationmock dropins folder dropins/mocks/dropins/ .

6.25. Simulation 1149

MicroEJ Documentation, Revision 32bb132e

Make sure theoptionResolve Foundation Libraries inWorkspace is enabled touse themockwithout having to install
it a�er eachmodification during development.

Use

Once installed, a Mock is used automatically by the Simulator when the MicroEJ Application calls a native method
which is implemented into the Mock.

JavaFX

JavaFX is an open-source library for creating modern Java user interfaces that is highly portable. It can be used to
quickly create graphical Mocks for your VEE Port.

• If your SDK is running on JDK 8, the Oracle JDK contains JavaFX, so this version allows you to use it right now
in your project.

• If your SDK is running on JDK 11, JavaFX must be added as an additional dependency to your Mock and VEE
Port project. For that, MicroEJCorp. provides a ready-to-use packagedmodule for all supportedOS versions.

<dependency org="com.microej.tool" name="javafx" rev="1.2.0" />

The Module serves two purposes, depending on whether it is added to a Mock or a VEE Port project:

• In a Mock project, JavaFX is added as a compile-time dependency, its content is not included in the Mock.

• If your VEE Port contains at least one Mock, JavaFXmust be added to the VEE Port project in order to embed
its content in the VEE Port.

6.25.7 Shielded Plug Mock

General Architecture

The Shielded Plug Mock simulates a Shielded Plug [SP] on desktop computer. This mock can be accessed from the
MicroEJ Simulator, the hardware platform or a Java J2SE application.

6.25. Simulation 1150

https://openjfx.io/

MicroEJ Documentation, Revision 32bb132e

Fig. 88: Shielded Plug Mock General Architecture

Configuration

Themock socket port can be customized for J2SE clients, even though several Shielded Plugmocks with the same
socket port cannot run at the same time. The default socket port is 10082.

The Shielded Plug mock is a standard MicroEJ Application. It can be configured using Java properties:

• sp.connection.address

• sp.connection.port

6.25.8 Front Panel Mock

Principle

Amajor strengthof theMicroEJ environment is that it allowsapplications tobedevelopedand tested in aSimulator
rather than on the target device, which might not yet be built. To make this possible for devices that controls
operated by the user, the Simulatormust connect to a “mock” of the control panel (the “Front Panel”) of the device.
The Front Panel generates a graphical representation of the device, and is displayed in a window on the user’s
development machine when the application is executed in the Simulator.

The Front Panel has been designed to be an implementation of MicroUI library (see Simulation). However it can be
use to show a hardware device, blink a LED, interact with user without using MicroUI library.

6.25. Simulation 1151

MicroEJ Documentation, Revision 32bb132e

Functional Description

1. Creates a new Front Panel project.

2. Creates an image of the required Front Panel. This could be a photograph or a drawing.

3. Defines the contents and layout of the Front Panel by editing an XML file (called an fp file). Full details about
the structure and contents of fp files can be found in chapter Front Panel.

4. Creates images to animate the operation of the controls (for example button down image).

5. Creates Front PanelWidgets that make the link between the application and the user interactions.

6. Previews the Front Panel to check the layout of controls and the events they create, etc.

7. Exports the Front Panel project into a MicroEJ VEE Port project.

The Front Panel Project

Creating a Front Panel Project

A Front Panel project is created using the New Front Panel Project wizard. Select:

New > Project. . . > MicroEJ > Front Panel Project

The wizard will appear:

Fig. 89: New Front Panel Project Wizard

6.25. Simulation 1152

MicroEJ Documentation, Revision 32bb132e

Enter the name for the new project.

Project Contents

Fig. 90: Project Contents

A Front Panel project has the following structure and contents:

• The src/main/java folder is provided for the definition of Front Panel Widgets . It is initially empty. The
creation of these classes will be explained later.

• The src/main/resources folder holds the file or files that define the contents and layout of the Front Panel,
with a .fp extension (the fp file or files), plus images used to create the Front Panel. A newly created project
will have a single fp file with the same name as the project, as shown above. The contents of fp files are
detailed later in this document.

• The JRE System Library is referenced, because a Front Panel project needs to support the writing of Java
for the Listeners (and DisplayExtensions).

• The Modules Dependencies contains the libraries for the Front Panel simulation, the widgets it supports
and the types needed to implement Listeners (and DisplayExtensions).

• The lib contains a local copy of Modules Dependencies .

Module Dependencies

The Front Panel project is a regular MicroEJ Module project. Its module.ivy file should look like this example:

<ivy-module version="2.0" xmlns:ea="http://www.easyant.org" xmlns:ej="https://developer.
→˓microej.com" ej:version="2.0.0">

<info organisation="com.mycompany" module="examplePanel" status="integration" revision="1.
→˓0.0"/>

<configurations defaultconfmapping="default->default;provided->provided">
<conf name="default" visibility="public" description="Runtime dependencies to other␣

→˓artifacts"/>
(continues on next page)

6.25. Simulation 1153

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

<conf name="provided" visibility="public" description="Compile-time dependencies to␣
→˓APIs provided by the platform"/>

</configurations>

<dependencies>
<dependency org="ej.tool.frontpanel" name="framework" rev="1.1.1"/>

</dependencies>
</ivy-module>

The Front Panel Framework contains the Front Panel core classes,mainly the ability to create your own Front Panel
Widget to simulate user interactions.

Note: Some Front Panel Widgets are available to interact with the MicroUI devices (display, input devices, etc.),
see Simulation.

Front Panel File

File Content

The Front Panel engine takes an XML file (the .fp file) as input. It describes the panel usingwidgets: they simulate
the drivers, sensors and actuators of the real device. The Front Panel engine generates the graphical representa-
tion of the real device, and is displayed in a window on the user’s development machine when the application is
executed in the Simulator.

The following example file describes a simple board with one LED:

<?xml version="1.0"?>
<frontpanel

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="https://developer.microej.com"
xsi:schemaLocation="https://developer.microej.com .widget.xsd">

<device name="MyBoard" skin="myboard.png">
<ej.fp.widget.LED x="131" y="127" skin="box_led.png"/>

</device>
</frontpanel>

The device skin must refer to a png file in the src/main/resources folder. This image is used to render the
background of the Front Panel. The widgets are drawn on top of this background.

The device contains the elements that define the widgets that make up the Front Panel. The name of the widget
element defines the type of widget. The set of valid types is determined by the Front Panel Designer. Every widget
element defines a label , whichmust be unique for widgets of this type (optional or not), and the x and y coordi-
nates of the position of the widget within the Front Panel (0,0 is top le�). Theremay be other attributes depending
on the type of the widget.

The file and tags specifications are available in chapter Front Panel.

Note: The .fp file grammar has changed since the UI Pack version 12.0.0 (Front Panel core has been moved
to MicroEJ Architecture starting from version 7.11.0). A quick migration guide is available: open VEE Port con-

6.25. Simulation 1154

https://repository.microej.com/modules/ej/tool/frontpanel/framework/

MicroEJ Documentation, Revision 32bb132e

figuration file .Platform , go to Content tab, click on module Front Panel . The migration guide is available in
Details box.

Editing Front Panel Files

Toedit a .fp file, open it using the Eclipse XMLeditor (right-click on the .fp file, select Open With > XML Editor
). This editor features syntax highlighting and checking, and content-assist based on the schema (XSD file) refer-
enced in the fp file. This schema is a hidden file within the project’s definitions folder. An incremental builder
checks the contents of the fp file each time it is saved and highlights problems in the Eclipse Problems view, and
with markers on the fp file itself.

A preview of the Front Panel can be obtained by opening the Front Panel Preview (Window > Show View >
Other. . . > MicroEJ > Front Panel Preview).

The preview is updated each time the .fp file is saved.

A typical working layout is shown below.

Fig. 91: Working Layout Example

Within theXMLeditor, content-assist is obtainedbypressing CTRL + SPACE keys. Theeditorwill list all theelements
valid at the cursor position, and insert a template for the selected element.

6.25. Simulation 1155

MicroEJ Documentation, Revision 32bb132e

Multiple Front Panel Files

A Front Panel project can contain multiple .fp files. All those files are compiled when exporting the Front Panel
project to a VEE Port (or during VEE Port build). It may be useful to have two or more representations of a board
(skin, device layout, display size, etc. . .). When running the simulator, by default, the .fp file declared by the VEE
Port configuration, is used (or a random one if no default is configured). To pick a specific one, set the Application
Option frontpanel.file to a Front Panel simple file name included in the VEE Port (e.g. myproduct.fp).

Widget

Description

A widget is a subclass of Front Panel Framework class ej.fp.Widget . The library ej.tool.frontpanel#widget
provides a set of widgets which are Graphics Engine compatible (see Simulation). To create a new widget (or a
subclass of an existing widget), have a look on available widgets in this library.

Fig. 92: Front Panel Widgets

A widget is recognized by the fp file as soon as its class contains a @WidgetDescription annotation. The anno-
tation contains several @WidgetAttribute . An attribute has got a name and tells if it is an optional attribute of
widget (by default an attribute is mandatory).

This is the description of the widget LED :

@WidgetDescription(attributes = { @WidgetAttribute(name = "x"),
@WidgetAttribute(name = "y"), @WidgetAttribute(name = "skin")})

As soon as a widget is created (with its description) in Front Panel project, the fp file can use it. Close and reopen
fp file a�er creating a newwidget. In device group, press CTRL + SPACE keys to visualize the available widgets:
the new widget can be added.

<ej.fp.widget.LED x="170" y="753" skin="box_led.png" />

Each attribute requires the set methods in the widget source code. For instance, the widget LED (or its hierarchy)
contains the following methods for sure:

• setX(int) ,

• setY(int) ,

• setskin(Image) .

The set method parameter’s type fixes the expected value in fp file. If the attribute cannot match the expected
type, an error is throw when editing fp file. Widget master class already provides a set of standard attributes:

• setFilter(Image) : apply a filtering image which allows to crop input area (Input Device Filters).

6.25. Simulation 1156

MicroEJ Documentation, Revision 32bb132e

• setWidth(int) and setHeight(int) : limits the widget size.

• setLabel(String) : specifies an identifier to the widget.

• setOverlay(boolean) : draws widget skin with transparency or not.

• setSkin(Image) : specifies the widget skin.

• setX(int) and setY(int) : specifies widget position.

Notes:

• Widget class does not specify if an attribute is optional or not. It it the responsability to the subclass.

• The label is o�en used as identifier. It also allows to retrieve a widget calling Device.getDevice().
getWidget(Class<T>, String) . Some widgets are using this identifier as an integer label. It is the re-
sponsability to the widget to fix the signification of the label.

• The widget size is o�en fixed by the its skin (which is an image). See Widget.finalizeConfiguration()
: it sets the widget size according the skin if the skin has been set; even if methods setWidth() and
setHeight() have been called before.

Runtime

The Front Panel engine parsing the fp file at application runtime. The widget methods are called in two times.
First, engine creates widget by widget:

1. widget’s constructor: Widget should initialize its own fields which not depend on widget attributes (not val-
orized yet).

2. setXXX() : Widget should check if given attribute value matches the expected behavior (the type has been
already checked by caller). For instance if a width is not negative. On error, implementation can throw an
IllegalArgumentException . These checks must not depend on other attributes because they may have
not already valorized.

3. finalizeConfiguration() : Widget should check the coherence between all attributes: they are now val-
orized.

During these three calls, all widgets are not created yet. And so, by definition, the main device (which is a
widget) not more. By consequence, the implementation must not try to get the instance of device by calling
Device.getDevice() . Furthermore, a widget cannot try to get another widget by calling Device.getDevice().
getWidget(s) . If a widget depend on another widget for any reason, the last checks can be performed in start()
method. This method is called when all widgets and main device are created. Call to Device.getDevice() is
allowed.

Themethod showYourself() is only useful when visualizing the fp file during its editing (use Eclipse view Front
Panel Preview). This method is called when clicking on button Outputs .

Example

The following code is a simplewidget LED. MicroEJ Application can interact with it using nativemethods on() and
off() of class ej.fp.widget.LED :

package ej.fp.widget;

import ej.fp.Device;
import ej.fp.Image;
import ej.fp.Widget;

(continues on next page)

6.25. Simulation 1157

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

import ej.fp.Widget.WidgetAttribute;
import ej.fp.Widget.WidgetDescription;

/**
* Widget LED declaration. This class must have the same package than
* <code>LED</code> in MicroEJ application. This is required by the simulator to
* retrieve the implementation of native methods.
*/
@WidgetDescription(attributes = { @WidgetAttribute(name = "x"), @WidgetAttribute(name = "y"),

@WidgetAttribute(name = "skin") })
public class LED extends Widget {

boolean on; // false init

/**
* Called by the plugin when clicking on <code>Outputs</code> button from Front
* Panel Preview.
*/
@Override
public void showYourself(boolean appearSwitchedOn) {

update(appearSwitchedOn);
}

/**
* Called by framework to render the LED.
*/
@Override
public Image getCurrentSkin() {

// when LED is off, hide its skin returning null
return on ? getSkin() : null;

}

/**
* MicroEJ application native
*/
public static void on() {

update(true);
}

/**
* MicroEJ application native
*/
public static void off() {

update(false);
}

private static void update(boolean on) {

// retrieve the LED (there is only one LED on device)
LED led = Device.getDevice().getWidget(LED.class);

// update its state
(continues on next page)

6.25. Simulation 1158

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

led.on = on;

// ask to repaint it
led.repaint();

}
}

Empty Widget

By definition a widget may not contain an attribute. This kind of widget is useful to perform something at Front
Panel startup, for instance to start a thread to pick up data somewhere.

The widget description is @WidgetDescription(attributes = { }) . In start() method, a custom behavior
can be performed. In fp file, the widget declaration is <com.mycompany.Init/> (where Init is an example of
widget name).

Input Device Filters

The widgets which simulate the input devices use images (or “skins”) to show their current states (pressed and
released). The user can change the state of the widget by clicking anywhere on the skin: it is the active area. This
active area is, by default, rectangular.

These skins can be associated with an additional image called a filter . This image defines the widget’s active
area. It is useful when the widget is not rectangular.

Fig. 93: Active Area

The filter imagemust have the same size as the skin image. The active area is delimited by the fully opaque pixels.
Every pixel in the filter image which is not fully opaque is considered not part of the active area.

Installation

In the VEE Port configuration file, check Front Panel to install the Front Panelmodule. When checked, the proper-
ties file frontpanel/frontpanel.properties is required during VEE Port creation to configure the module. This
configuration step is used to identify and configure the Front Panel.

The properties file must / can contain the following properties:

• project.name [mandatory]: Defines the name of the Front Panel project (same workspace as the VEE Port
configuration project). If the project name does not exist, a new project will be created.

• fpFile.name [optional, default value is “” (empty)]: Defines the Front Panel file (*.fp) the application has to
use by default when several fp files are available in project.

6.25. Simulation 1159

MicroEJ Documentation, Revision 32bb132e

Advanced: Test the Front Panel Project

Note: Starting from SDK 5.7.0 and Architecture 8.0.0, the Front Panel projects are automatically resolved in the
workspace, so this section and the property ej.fp.project are obsolete since. See Resolve Foundation Libraries
in Workspace for more details.

If the Front Panel project has been created with a SDK version lower than 5.7.0, a project option must be updated:

• right-click on the Module Dependencies entry.

• click on Properties .

• go to the Classpath tab.

• check the Resolve dependencies in workspace option.

To quickly test a Front Panel project without rebuilding the VEE Port or manually exporting the project, add
the Application Option ej.fp.project to the absolute path of a Front Panel project (e.g. c:\mycompany\
myfrontpanel-fp). The Simulator will use the Front Panel project specified instead of the one included in the
VEE Port. This feature is useful for locally testing some changes in the Front Panel project.

-Dej.fp.project=${project_loc:myfrontpanel-fp}

Warning: This feature only works if the VEE Port has been built with the Front Panel module enabled and the
VEE Port does not contain the changes until a new VEE Port is built.

Use

Launch an application on the Simulator to run the Front Panel.

6.25.9 Bluetooth Mock

Overview

To run aMicroEJ Application that uses theBluetooth API Library onMicroEJ Simulator, a BluetoothMock Controller
must be set up first:

6.25. Simulation 1160

MicroEJ Documentation, Revision 32bb132e

TheBluetoothMockController is a hardwaremockof theBluetooth library. Itmeans the Simulator uses a real Blue-
tooth device to scan other devices, advertise, discover services, connect, pair, etc. . . This design enables testing of
apps in a real-world environment.

The Bluetooth Mock Controller implementation is provided for the ESP32-S3-DevKitC-1 board reference. Other
implementations or sources can be provided on request.

Requirements

• A ESP32-S3-DevKitC-1 board.

• ABluetoothMock Controller firmware (this executable onlyworkswith versions [2.0.0;2.3.0[of the Blue-
tooth Pack).

• An Espressif tool to flash the firmware.

Usage

To simulate a Bluetooth application, follow these three steps:

• Set up the controller

• Set up the network configuration

• Run the application on the Simulator

If your are facing any issues, check the Troubleshooting section.

Controller Setup

Unzip Executable-Bluetooth-Mock-Controller-ESP32-S3-1.0.0.zip . Inside it you will find the firmware file:
Executable-Bluetooth-Mock-Controller-ESP32-S3-1.0.0.bin .

To set up the controller, follow these steps:

• Plug-in the ESP32-S3-DevKitC-1 board to your computer,

• Find the associated COM port,

• In the flash tool:

– select the chip “ESP32-S3”

– browse for the firmware file

– set the o�set to 0x000000

– set the SPI speed to 80 Mhz

– set the SPI mode to DIO

– set the COM port

– set the baudrate to 460 800

– start the flash download

With the flash download tool from Espressif, you should end with something similar to this :

6.25. Simulation 1161

https://docs.espressif.com/projects/esp-idf/en/latest/esp32s3/hw-reference/esp32s3/user-guide-devkitc-1.html
https://repository.microej.com/packages/ble-mock/Executable-Bluetooth-Mock-Controller-ESP32-S3-1.0.0.zip
https://www.espressif.com/en/support/download/other-tools

MicroEJ Documentation, Revision 32bb132e

Fig. 94: Bluetooth Controller Flash Download Tool Configuration

Network Setup

To configure the network:

1. Connect your computer to the Wi-Fi network “BLE-Mock-Controller-[hexa device id]” mounted by the con-
troller.

2. Open a browser and connect to http://192.168.4.1/ to access the Wi-Fi setup interface :

3. Select the desired network and provide the required information if asked. If an error occurs during the con-
nection, retry this step.

4. In case the device is successfully connected to the desired network, the web page should looks like this:

6.25. Simulation 1162

MicroEJ Documentation, Revision 32bb132e

Additionally, the serial output of the device shows connection status.

5. Connect your computer back to this network: your computer and the controllermustbe in the samenetwork.

6. Reboot the ESP32-S3-DevKitC-1 board.

Simulation

It is possible to run the Simulator as many times as necessary using the same setup. Also, rebooting the controller
will automatically set up the network with the saved configuration.

The IP address of the controller is available in the logs :

Before running your Bluetooth application on the Simulator, in the Run configuration panel, set the simulation
mode to “Controller (over net)” and configure the Bluetooth Mock settings.

Fig. 95: Bluetooth Mock Configuration

Launching the application on the Simulator will restore the controller to its initial state (the Bluetooth adapter is
disabled).

6.25. Simulation 1163

MicroEJ Documentation, Revision 32bb132e

Troubleshooting

Network Setup Errors

I can’t find the “BLE-Mock-Controller-[hexa device id]” access point

The signal of this Wi-Fi access point may be weaker than the surrounding access points. Try to reduce the distance
between the controller and your computer; and rescan. If it’s not possible, try using a smartphone instead (only a
browser will be required to set up the network configuration).

I want to override the network configuration

If the Wi-Fi credentials are not valid anymore, the controller restarts the network setup phase. Yet, in case the
credentials are valid but you want to change them, erase the flash and reflash the firmware.

“Invalid parameter type: 0x47 expected 0x53” error

Reboot the ESP32-S3-DevKitC-1 board. The controller restarts and connects to the Wi-Fi.

Simulation Errors

Error during the simulation: mock could not connect to controller

This errormeans themock process (Simulator) could not initialize the connectionwith the controller. Please check
that the device is connected to the network (see logs in the serial port output) and that your computer is in the
same network.

6.26 Appendices

6.26.1 Low Level API

This chapter describes succinctly the available Low Level API, module by module. The exhaustive documentation
of each LLAPI function is available in the LLAPI header files themselves. The required header files to implement are
automatically copied in the folder include of MicroEJ Platform at platform build time.

LLMJVM: MicroEJ Core Engine

Naming Convention

The Low Level MicroEJ Core Engine API, the LLMJVM API, relies on functions that need to be implemented. The
naming convention for such functions is that their names match the LLMJVM_IMPL_* pattern.

6.26. Appendices 1164

MicroEJ Documentation, Revision 32bb132e

Header Files

Three C header files are provided:

• LLMJVM_impl.h

Defines the set of functions that the BSPmust implement to launch and schedule the virtual machine

• LLMJVM.h

Defines the set of functions provided by virtual machine that can be called by the BSPwhen using the virtual
machine

• LLBSP_impl.h

Defines the set of extra functions that the BSPmust implement.

LLKERNEL: Multi-Sandbox

Naming Convention

The Low Level Kernel API, the LLKERNEL API, relies on functions that need to be implemented. The naming con-
vention for such functions is that their names match the LLKERNEL_IMPL_* pattern.

Header Files

One C header file is provided:

• LLKERNEL_impl.h

Defines the set of functions that the BSP must implement to manage memory allocation of dynamically in-
stalled applications.

LLSP: Shielded Plug

Naming Convention

The Low Level Shielded Plug API, the LLSP API, relies on functions that need to be implemented. The naming
convention for such functions is that their names match the LLSP_IMPL_* pattern.

Header Files

The implementation of the Shielded Plug for the Platform assumes some support from the underlying RTOS. It is
mainly related to provide some synchronization when reading / writing into Shielded Plug blocks.

• LLSP_IMPL_syncWriteBlockEnter and LLSP_IMPL_syncWriteBlockExit are used as a semaphore by
RTOS tasks. When a task wants to write to a block, it “locks” this block until it has finished to write in it.

• LLSP_IMPL_syncReadBlockEnter and LLSP_IMPL_syncReadBlockExit are used as a semaphore by RTOS
tasks. When a task wants to read a block, it “locks” this block until it is ready to release it.

The [SP] specification provides a mechanism to force a task to wait until new data has been provided to a block.
The implementation relies on functions LLSP_IMPL_wait and LLSP_IMPL_wakeup to block the current task and
to reschedule it.

6.26. Appendices 1165

MicroEJ Documentation, Revision 32bb132e

LLEXT_RES: External Resources Loader

Principle

This LLAPI allows to use the External Resource Loader. When installed, the External Resource Loader is notified
when the MicroEJ Core Engine is not able to find a resource (an image, a file etc.) in the resources area linked with
the MicroEJ Core Engine.

When a resource is not available, theMicroEJ Core Engine invokes the External Resource Loader in order to load an
unknown resource. The External Resource Loader uses the LLAPI EXT_RES to let the BSP loads or not the expected
resource. The implementation has to be able to load several files in parallel.

Naming Convention

The Low Level API, the LLEXT_RES API, relies on functions that need to be implemented. The naming convention
for such functions is that their names match the LLEXT_RES_IMPL_* pattern.

Header Files

One header file is provided:

• LLEXT_RES_impl.h

Defines the set of functions that the BSPmust implement to load some external resources.

LLCOMM: Serial Communications

Naming Convention

The Low Level Comm API (LLCOMM), relies on functions that need to be implemented by engineers
in a driver. The names of these functions match the LLCOM_BUFFERED_CONNECTION_IMPL_* or the
LLCOM_CUSTOM_CONNECTION_IMPL_* pattern.

Header Files

Four C header files are provided:

• LLCOMM_BUFFERED_CONNECTION_impl.h

Defines the set of functions that the driver must implement to provide a Bu�ered connection

• LLCOMM_BUFFERED_CONNECTION.h

Defines the set of functions provided by ECOM Comm that can be called by the driver (or other C code) when
using a Bu�ered connection

• LLCOMM_CUSTOM_CONNECTION_impl.h

Defines the set of functions that the driver must implement to provide a Custom connection

• LLCOMM_CUSTOM_CONNECTION.h

Defines the set of functions provided by ECOM Comm that can be called by the driver (or other C code) when
using a Custom connection

6.26. Appendices 1166

MicroEJ Documentation, Revision 32bb132e

LLUI_INPUT: Input

LLUI_INPUT API is composed of the following files:

• the file LLUI_INPUT_impl.h that defines the functions to be implemented

• the file LLUI_INPUT.h that provides the functions for sending events

Implementation

LLUI_INPUT_IMPL_initialize is the first function called by the input engine, and it may be used to initialize the
underlying devices and bind them to event generator IDs.

LLUI_INPUT_IMPL_enterCriticalSection and LLUI_INPUT_IMPL_exitCriticalSection need to provide the
Input Enginewith a critical sectionmechanism for synchronizingdeviceswhen sending events to the internal event
queue. Themechanism used to implement the synchronizationwill depend on the platform configuration (with or
without RTOS), and whether or not events are sent from an interrupt context.

LLUI_INPUT_IMPL_getInitialStateValue allows the input stack to get the current state for devices connected
to the MicroUI States event generator, such as switch selector, coding wheels, etc.

Sending Events

The LLUI_INPUT API provides two generic functions for a C driver to send data to its associated event generator:

• LLUI_INPUT_sendEvent : Sends a 32-bit event to a specific event generator, specified by its ID. If the in-
put bu�er is full, the event is not added, and the function returns LLUI_INPUT_NOK ; otherwise it returns
LLUI_INPUT_OK .

• LLUI_INPUT_sendEvents : Sends a frame constituted by several 32-bit events to a specific event generator,
specified by its ID. If the input bu�er cannot receive the whole data, the frame is not added, and the function
returns LLUI_INPUT_NOK ; otherwise it returns LLUI_INPUT_OK .

Eventswill be dispatched to the associated event generator thatwill be responsible for decoding them (seeGeneric
Event Generators).

The UI extension provides an implementation for each of MicroUI’s built-in event generators. Each one has dedi-
cated functions that allows a driver to send them structured data without needing to understand the underlying
protocol to encode/decode the data. The following table shows the functions provided to send structured events
to the predefined event generators:

6.26. Appendices 1167

MicroEJ Documentation, Revision 32bb132e

Table 38: LLUI_INPUT API for predefined event generators
Function name Default event

generator
kindPage 1168, 1

Comments

LLUI_INPUT_sendCommandEvent Command Constants are provided that define all stan-
dard MicroUI commands [MUI].

LLUI_INPUT_sendButtonPressedEvent

LLUI_INPUT_sendButtonReleasedEvent

LLUI_INPUT_sendButtonRepeatedEvent

LLUI_INPUT_sendButtonLongEvent

Buttons In the case of chronological sequences (for
example, a RELEASE that may occur only
a�er a PRESSED), it is the responsibility of
the driver to ensure the integrity of such se-
quences.

LLUI_INPUT_sendPointerPressedEvent

LLUI_INPUT_sendPointerReleasedEvent

LLUI_INPUT_sendPointerMovedEvent

Pointer In the case of chronological sequences (for
example, a RELEASE that may occur only
a�er a PRESSED), it is the responsibility of
the driver to ensure the integrity of such se-
quences. Depending on whether a button of
the pointer is pressed while moving, a DRAG
and/or a MOVE MicroUI event is generated.

LLUI_INPUT_sendStateEvent States The initial value of each state machine
(of a States) is retrieved by a call to
LLUI_INPUT_IMPL_getInitialStateValue
that must be implemented by the device. Al-
ternatively, the initial value can be specified
in the XML static configuration.

LLUI_INPUT_sendTouchPressedEvent

LLUI_INPUT_sendTouchReleasedEvent

LLUI_INPUT_sendTouchMovedEvent

Pointer In the case of chronological sequences (for
example, a RELEASE that may only occur
a�er a PRESSED), it is the responsibility of
the driver to ensure the integrity of such se-
quences. These APIswill generate a DRAGMi-
croUI event instead of aMOVEwhile they rep-
resent a touch pad over a display.

Event Bu�er

Functions LLUI_INPUT_IMPL_log_xxx allow logging the use of event bu�er. Implementation of these LLAPIs is
already available on the MicroEJ Central Repository (LLUI_INPUT_LOG_impl.c). This implementation is using an
array to add some metadata to each event. This metadata is used when the BSP is calling LLUI_INPUT_dump() .
Whenno implementation is included in theBSP, the call to LLUI_INPUT_dump() has no e�ect (no available logger).

1 The implementation class is a subclass of the MicroUI class of the column.

6.26. Appendices 1168

MicroEJ Documentation, Revision 32bb132e

LLUI_DISPLAY: Display

Principle & Naming Convention

The Graphics Engine provides some Low Level APIs to connect a display driver. The file LLUI_DISPLAY_impl.h
defines the API headers to be implemented. For the APIs themselves, the naming convention is that their names
match the *_IMPL_* pattern when the functions need to be implemented:

• LLUI_DISPLAY_IMPL_initialize

• LLUI_DISPLAY_IMPL_binarySemaphoreTake

• LLUI_DISPLAY_IMPL_binarySemaphoreGive

• LLUI_DISPLAY_IMPL_flush

Some additional Low Level APIs allow you to connect display extra features. These Low Level APIs are not required.
When they are not implemented, a default implementation is used (weak function). It concerns backlight, contrast,
etc.

This describes succinctly some LLUI_DISPLAY_IMPL functions. Please refer to documentation inside header files
to have more information.

Initialization

Each Graphics Engine gets initialized by calling the function LLUI_DISPLAY_IMPL_initialize : It asks its display
driver to initialize itself. The implementation function has to fill the given structure LLUI_DISPLAY_SInitData .
This structure allows to retrieve the size of the virtual and physical screen, the back bu�er address (where MicroUI
is drawing). The implementation has to give two binary semaphores.

Image Heap

The display drivermust reserve a runtimememory bu�er for creating dynamic imageswhen usingMicroUI Resour-
ceImage and Bu�eredImage classes methods. The display driver may choose to reserve an empty bu�er. Thus,
calling MicroUI methods will result in a MicroUIException exception.

The section name is .bss.microui.display.imagesHeap .

Functions LLUI_DISPLAY_IMPL_imageHeapXXX allow to control the imagebu�ers allocation in the imageheap. Im-
plementation of these LLAPIs is already available on theMicroEJ Central Repository (LLUI_DISPLAY_HEAP_impl.c
). This implementation is using a best fit allocator. It can be updated to log the allocations, the remaining space,
etc. When no implementation is included in the BSP, the default Graphics Engine’a allocator (a best fit allocator) is
used.

External Font Heap

The display driver must reserve a runtime memory bu�er for loading external fonts (fonts located outside CPU
addresses ranges). The display driver may choose to reserve an empty bu�er. Thus, calling MicroUI Font methods
will result in empty drawings of some characters.

The section name is .bss.microui.display.externalFontsHeap .

6.26. Appendices 1169

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/ResourceImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/ResourceImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/BufferedImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/MicroUIException.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Font.html

MicroEJ Documentation, Revision 32bb132e

Flush and Synchronization

The back bu�er (graphics bu�er) address defined in the Initialization function is the address for the very first draw-
ing. The content of this bu�er is flushed to the external displaymemory by the function LLUI_DISPLAY_flush . The
parameters define one or several rectangular regions of the content that have changed during the last drawing ac-
tionand thatmust be flushed to the display bu�er (dirty area). This function should be atomic: the implementation
has to start another task or a hardware device (o�en a DMA) to perform the copy.

As soon as the application performs a new drawing, the Graphics Engine locks the thread. It will automatically be
unlocked when the BSP will call LLUI_DISPLAY_setDrawingBuffer at the end of the copy.

Display Characteristics

Function LLUI_DISPLAY_IMPL_isColor directly implements the method from the MicroUI Display class of the
same name. The default implementation always returns true when the number of bits per pixel is higher than 4.

Function LLUI_DISPLAY_IMPL_getNumberOfColors directly implements the method from the MicroUI Display
class of the same name. The default implementation returns a value according to the number of bits by pixel,
without taking into consideration the alpha bit(s).

Function LLUI_DISPLAY_IMPL_isDoubleBuffered directly implements themethod from theMicroUIDisplay class
of the same name. The default implementation returns true . When LLAPI implementation targets a display in
direct mode, this function must be implemented and return false .

Contrast

LLUI_DISPLAY_IMPL_setContrast and LLUI_DISPLAY_IMPL_getContrast are called to set/get the current dis-
play contrast intensity. The default implementations don’t manage the contrast.

BackLight

LLUI_DISPLAY_IMPL_hasBacklight indicates whether the display has backlight capabilities.

LLUI_DISPLAY_IMPL_setBacklight and LLUI_DISPLAY_IMPL_getBacklight are called to set/get the current
display backlight intensity.

Color Conversions

The following functions are only useful (and called) when the display is not a standard display, see Pixel Structure.

LLUI_DISPLAY_IMPL_convertARGBColorToDisplayColor is called to convert a 32-bit ARGB MicroUI color in
0xAARRGGBB format into the “driver” display color.

LLUI_DISPLAY_IMPL_convertDisplayColorToARGBColor is called to convert a display color to a 32-bit ARGBMi-
croUI color.

6.26. Appendices 1170

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html

MicroEJ Documentation, Revision 32bb132e

CLUT

The function LLUI_DISPLAY_IMPL_prepareBlendingOfIndexedColors is called when drawing an image with in-
dexed color. See CLUT to have more information about indexed images.

Image Decoders

The API LLUI_DISPLAY_IMPL_decodeImage allows to add some additional image decoders.

LLUI_LED: LEDs

Principle

The LEDs engine provides LowLevel APIs for connecting LEDdrivers. The file LLUI_LED_impl.h , which comeswith
the LEDs engine, defines the API headers to be implemented.

Naming Convention

The Low Level APIs rely on functions that must be implemented. The naming convention for such functions is that
their names match the *_IMPL_* pattern.

Initialization

The first function called is LLUI_LED_IMPL_initialize , which allows the driver to initialize all LED devices. This
methodmust return the available number of LEDs. Each LED has a unique identifier. The first LED has the ID 0, and
the last has the ID NbLEDs – 1.

This UI extensionprovides support to e�iciently implement the set ofmethods that interactwith the LEDs provided
by a device. Below are the relevant C functions:

• LLUI_LED_IMPL_getIntensity : Get the intensity of a specific LED using its ID.

• LLUI_LED_IMPL_setIntensity : Set the intensity of an LED using its ID.

LLVG: VectorGraphics

Principle

The VG Pack provides a Low Level API for initializing the Vector Graphics engine. The file LLVG_impl.h , which
comes with the VG Pack, defines the API headers to be implemented.

6.26. Appendices 1171

MicroEJ Documentation, Revision 32bb132e

Naming Convention

The Low Level APIs rely on functions that must be implemented. The naming convention for such functions is that
their names match the *_IMPL_* pattern.

Initialization

The function LLVG_IMPL_initialize is the first native function called by the MicroVG implementation. It allows
to initialize all C components: GPU initialization, Font engine, heapmanagement, etc.

LLVG_MATRIX: Matrix

Principle

TheMatrixmoduleprovides LowLevel APIs formanipulatingmatrices. The file LLVG_MATRIX_impl.h , which comes
with the Matrix module, defines the API headers to be implemented.

Naming Convention

The Low Level APIs rely on functions that must be implemented. The naming convention for such functions is that
their names match the *_IMPL_* pattern.

Implementation

Thematrix functions are divided in four groups:

1. identity and copy: fill an identity matrix or copy a matrix to another one.

2. setXXX: erase the content of the matrix by an operation (translate, rotation, scaling, concatenate).

3. xxx (no prefix): perform an operation with thematrix as first argument: M' = M * xxx(x, y) where xxx is
the operation (translate, rotation, scaling, concatenate).

4. postXXX: perform an operation with the matrix as second argument: M' = xxx(x, y) * M where xxx is
the operation (translate, rotation, scaling, concatenate).

LLVG_PATH: Vector Path

Principle

ThePathmoduleprovides LowLevel APIs for creatingpaths inplatformspecific format. The file LLVG_PATH_impl.h
, which comes with the Path module, defines the API headers to be implemented. The file LLVG_PAINTER_impl.h
defines the API headers to be implemented to draw the paths (with a color or a gradient).

6.26. Appendices 1172

MicroEJ Documentation, Revision 32bb132e

Naming Convention

The Low Level APIs rely on functions that must be implemented. The naming convention for such functions is that
their names match the *_IMPL_* pattern.

Creation

The header file LLVG_PATH_impl.h allows to convert a MicroVG library format path in a bu�er that represents the
same vectorial path in the platform specific format (generally GPU format).

The first function called is LLVG_PATH_IMPL_initializePath , which allows the implementation to initialize the
path bu�er. The bu�er is allocated in the Java heap and its size is fixed by the MicroVG implementation. When
the bu�er is too small for the platform specific format, the implementation has to return the expected bu�er size
instead of the keyword LLVG_SUCCESS .

The next steps consist in appending some commands in the path bu�er. The command encoding depends on the
platform specific format. When the bu�er is too small to add the new command, the implementation has to return
a value that indicates the number of bytes the array must be enlarged with.

List of commands:

• LLVG_PATH_CMD_CLOSE : MicroVG “CLOSE” command.

• LLVG_PATH_CMD_MOVE : MicroVG “MOVE ABS” command.

• LLVG_PATH_CMD_MOVE_REL : MicroVG “MOVE REL” command.

• LLVG_PATH_CMD_LINE : MicroVG “LINE ABS” command.

• LLVG_PATH_CMD_LINE_REL : MicroVG “LINE REL” command.

• LLVG_PATH_CMD_QUAD : MicroVG “QUAD ABS” command.

• LLVG_PATH_CMD_QUAD_REL : MicroVG “QUAD REL” command.

• LLVG_PATH_CMD_CUBIC : MicroVG “CUBIC ABS” command.

• LLVG_PATH_CMD_CUBIC_REL : MicroVG “CUBIC REL” command.

List of operations:

• LLVG_PATH_IMPL_appendPathCommand1 : Adds a command with 1 point parameter in the array.

• LLVG_PATH_IMPL_appendPathCommand2 : Adds a command with 2 points parameter in the array.

• LLVG_PATH_IMPL_appendPathCommand3 : Adds a command with 3 points parameter in the array.

Apath is automatically closedby theMicroVG implementation (by adding the command LLVG_PATH_CMD_CLOSE). A
pathcanbe reopened (function LLVG_PATH_IMPL_reopenPath), that consists in removing the last addedcommand
(LLVG_PATH_CMD_CLOSE command) from the bu�er.

6.26. Appendices 1173

MicroEJ Documentation, Revision 32bb132e

Drawing

The header file LLVG_PAINTER_impl.h provides the functions called by the application via VectorGraphicsPainter
to draw a path.

• A path can be drawn with a 32-bit color (ARGB8888): LLVG_PAINTER_IMPL_drawPath .

• A path can be drawn with a linear gradient: LLVG_PAINTER_IMPL_drawGradient .

Thedrawingdestination is symbolizedbyaMicroUIGraphicsContext: a pointer to a MICROUI_GraphicsContext in-
stance. LikeMicroUI Painter natives, the implementationhas to synchronize thedrawingswith theMicroUI Graphics
Engine.

LLVG_GRADIENT: Vector Linear Gradient

Principle

The Gradient module provides Low Level APIs for creating linear gradients in platform specific format. The file
LLVG_GRADIENT_impl.h , which comes with the Gradient module, defines the API headers to be implemented.

Naming Convention

The Low Level APIs rely on functions that must be implemented. The naming convention for such functions is that
their names match the *_IMPL_* pattern.

Implementation

Only one function has to be implemented: LLVG_GRADIENT_IMPL_initializeGradient . It consists in encoding
the MicroVG LinearGradient in a bu�er that represents the linear gradient in platform specific format (generally
GPU format).

This function allows the implementation to initialize the gradient bu�er. The bu�er is allocated in the Java heap
and its size is fixed by the MicroVG implementation. When the bu�er is too small for the platform specific format,
the implementation has to return the expected bu�er size instead of the keyword LLVG_SUCCESS .

LLVG_FONT: Vector Font

Principle

The Font module provides Low Level APIs for decoding fonts (LLVG_FONT_impl.h) and rendering texts (
LLVG_PAINTER_impl.h). Both header files, which come with the Font module, define the API headers to be im-
plemented.

6.26. Appendices 1174

MicroEJ Documentation, Revision 32bb132e

Naming Convention

The Low Level APIs rely on functions that must be implemented. The naming convention for such functions is that
their names match the *_IMPL_* pattern.

Initialization

The first function called is LLVG_FONT_IMPL_load_font , which allows the driver to open a font file from its name.
This function takes a parameter to configure the text rendering engine:

• Simple layout: uses the glyph advance metrics and the font kerning table.

• Complex layout: uses the font GPOS and GSUB tables.

See VectorFont for more information.

The implementation must manage its own heap to keep the font opened. The font’s data are disposed by a call to
LLVG_FONT_IMPL_dispose .

Font Characteristics

The other functions in LLVG_FONT_impl.h consist in retrieving some font characteristics according a text and a
font size: string width, string height, baseline, etc.

See VectorFont for more information.

Drawing

The header file LLVG_PAINTER_impl.h provides the functions called by the application via VectorGraphicsPainter
to draw a path.

• A string can be drawn with a 32-bit color (ARGB8888): LLVG_PAINTER_IMPL_drawString .

• A string can be drawn with a linear gradient: LLVG_PAINTER_IMPL_drawStringGradient .

• A string can be draw on a circle: LLVG_PAINTER_IMPL_drawStringOnCircle and
LLVG_FONT_PAINTER_IMPL_drawStringOnCircleGradient .

Thedrawingdestination is symbolizedbyaMicroUIGraphicsContext: a pointer to a MICROUI_GraphicsContext in-
stance. LikeMicroUI Painter natives, the implementationhas to synchronize thedrawingswith theMicroUI Graphics
Engine.

LLNET: Network

Naming Convention

The Low Level API, the LLNET API, relies on functions that need to be implemented. The naming convention for
such functions is that their names match the LLNET_IMPL_* pattern.

6.26. Appendices 1175

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorFont.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microvg/VectorFont.html

MicroEJ Documentation, Revision 32bb132e

Header Files

Several header files are provided:

• LLNET_CHANNEL_impl.h

Defines a set of functions that the BSPmust implement to initialize the Net native component. It also defines
some configuration operations to setup a network connection.

• LLNET_SOCKETCHANNEL_impl.h

Defines a set of functions that the BSP must implement to create, connect and retrieve information on a
network connection.

• LLNET_STREAMSOCKETCHANNEL_impl.h

Defines a set of functions that the BSP must implement to do some I/O operations on connection oriented
socket (TCP). It also defines function to put a server connection in accepting mode (waiting for a new client
connection).

• LLNET_DATAGRAMSOCKETCHANNEL_impl.h

Defines a set of functions that theBSPmust implement todo some I/Ooperationsonconnectionless oriented
socket (UDP).

• LLNET_DNS_impl.h

Defines a set of functions that the BSPmust implement to request host IP address associated to a host name
or to request Domain Name Service (DNS) host IP addresses setup in the underlying system.

• LLNET_NETWORKADDRESS_impl.h

Defines a set of functions that the BSP must implement to convert string IP address or retrieve specific IP
addresses (lookup, localhost or loopback IP address).

• LLNET_NETWORKINTERFACE_impl.h

Defines a set of functions that the BSPmust implement to retrieve information on a network interface (MAC
address, interface link status, etc.).

LLNET_SSL: SSL

Naming Convention

The Low Level API, the LLNET_SSL API, relies on functions that need to be implemented. The naming convention
for such functions is that their names match the LLNET_SSL_* pattern.

Header Files

Three header files are provided:

• LLNET_SSL_CONTEXT_impl.h

Defines a set of functions that the BSP must implement to create a SSL Context and to load CA (Certificate
Authority) certificates as trusted certificates.

• LLNET_SSL_SOCKET_impl.h

Defines a set of functions that the BSP must implement to initialize the SSL native components, to create
an underlying SSL Socket and to initiate a SSL session handshake. It also defines some I/O operations such

6.26. Appendices 1176

MicroEJ Documentation, Revision 32bb132e

as LLNET_SSL_SOCKET_IMPL_write or LLNET_SSL_SOCKET_IMPL_read used for encrypted data exchange
between the client and the server.

• LLNET_SSL_X509_CERT_impl.h

Defines a function named LLNET_SSL_X509_CERT_IMPL_parse for certificate parsing. This function checks if
a given certificate is an X.509 digital certificate and returns its encoded format type : Distinguished Encoding
Rules (DER) or Privacy-Enchanced Mail (PEM).

LLECOM_NETWORK: Network Interfaces

Naming Convention

The Low Level Network Interfaces API (LLECOM_NETWORK), relies on functions that need to be implemented by
engineers in a driver. The names of these functions match the LLECOM_NETWORK_IMPL_* pattern.

Header Files

One header file is provided:

• LLECOM_NETWORK_impl.h

Defines the set of functions that the BSP must implement to manage and configure and TCP/IP network in-
terfaces.

LLECOM_WIFI: Wi-Fi Management

Naming Convention

The Low Level Wi-FI API (LLECOM_WIFI), relies on functions that need to be implemented by engineers in a driver.
The names of these functions match the LLECOM_WIFI_IMPL_* pattern.

Header Files

One header file is provided:

• LLECOM_WIFI_impl.h

Defines the set of functions that the BSPmust implement to manage and configure Wi-FI access points.

LLBLUETOOTH: Bluetooth

Naming Convention

The Low Level Bluetooth API (LLBLUETOOTH), relies on functions that need to be implemented by engineers in a
driver. The names of these functions match the LLBLUETOOTH_IMPL_* pattern.

6.26. Appendices 1177

MicroEJ Documentation, Revision 32bb132e

Header Files

One header file is provided:

• LLBLUETOOTH_impl.h

Defines the set of functions that the BSPmust implement to manage and configure and Bluetooth module.

LLEVENT: Event Queue

Naming Convention

TheLowLevel EventQueueAPI (LLEVENT), relies on functions that need tobe implementedbyengineers in adriver.
The names of these functions match the LLEVENT_IMPL_* or LLEVENT_* pattern.

Header Files

Two header files are provided:

• LLEVENT_impl.h

Defines the set of functions that the BSP must implement to manage, o�er/handle events from the Event
Queue.

• LLEVENT.h

Defines the set of functions that the BSPmust implement to use the Event Queue from the native side.

LLFS: File System

Naming Convention

The Low Level File SystemAPI (LLFS), relies on functions that need to be implemented by engineers in a driver. The
names of these functions match the LLFS_IMPL_* and the LLFS_File_IMPL_* pattern.

Header Files

Two C header files are provided:

• LLFS_impl.h

Defines a set of functions that the BSPmust implement to initialize the FS native component. It also defines
some functions to manage files, directories and retrieve information about the underlying File System (free
space, total space, etc.).

• LLFS_File_impl.h

Defines a set of functions that the BSPmust implement to do some I/O operations on files (open, read, write,
close, etc.).

6.26. Appendices 1178

MicroEJ Documentation, Revision 32bb132e

LLHAL: Hardware Abstraction Layer

Naming Convention

The Low Level API, the LLHAL API, relies on functions that need to be implemented. The naming convention for
such functions is that their names match the LLHAL_IMPL_* pattern.

Header Files

One header file is provided:

• LLHAL_impl.h

Defines the set of functions that the BSPmust implement to configure and drive some MCU GPIO.

LLDEVICE: Device Information

Naming Convention

The Low Level Device API (LLDEVICE), relies on functions that need to be implemented by engineers in a driver. The
names of these functions match the LLDEVICE_IMPL_* pattern.

Header Files

One C header file is provided:

• LLDEVICE_impl.h

Defines a set of functions that the BSP must implement to get the platform architecture name and unique
device identifier.

LLWATCHDOG_TIMER: Watchdog Timer

Naming Convention

The Low Level Watchdog Timer API (LLWATCHDOG_TIMER), provides functions that allow the use of this API at the
BSP level in C. The names of these functions match the LLWATCHDOG_TIMER_IMPL_* pattern.

The Watchdog API is delivered with a Generic C implementation on which the platform must depend. This imple-
mentation relies on functions that need to be implemented by engineers in a driver. The name of these functions
match the LLWATCHDOG_TIMER_IMPL_*_action pattern.

6.26. Appendices 1179

MicroEJ Documentation, Revision 32bb132e

Header Files

One C header file is provided:

• LLWATCHDOG_TIMER_impl.h

Defines a set of functions that can be used at BSP level if required.

This C header file contains functions to implement:

• watchdog_timer_helper.h

Defines a set of functions that the BSPmust implement to link the platformwatchdog timer to theWatchdog
Timer library.

LLSEC: Security

Naming Convention

The LowLevel Security API (LLSEC) provides functions that allow the use of this API at the BSP level in C. The names
of these functions match the LLSEC_*_IMPL_* pattern.

Header Files

Several C header files are provided:

• LLSEC_CIPHER_impl.h

Defines a set of functions that must be implemented by the BSP in order to decrypt and encrypt data using
cryptographic ciphers.

• LLSEC_CONSTANTS.h

Defines constants for certificates encoding formats.

• LLSEC_DIGEST_impl.h

Defines a set of functions that must be implemented by the BSP in order to support message digest algo-
rithms such as SHA-1 or SHA-256.

• LLSEC_ERRORS.h

Defines the Security API error return codes.

• LLSEC_KEY_FACTORY_impl.h

Defines a set of functions that must be implemented by the BSP in order to get keys informations such as
algorithm or encoded form.

• LLSEC_KEY_PAIR_GENERATOR_impl.h

Defines a set of functions thatmust be implemented by the BSP in order to generate private/public key pairs.

• LLSEC_MAC_impl.h

Defines a set of functions that must be implemented by the BSP in order to support MAC algorithms.

• LLSEC_PRIVATE_KEY_impl.h

Defines a set of functions thatmust be implementedby theBSP inorder to encodeprivate keys inDER format.

6.26. Appendices 1180

MicroEJ Documentation, Revision 32bb132e

• LLSEC_PUBLIC_KEY_impl.h

Defines a set of functions that must be implemented by the BSP in order to encode public keys.

• LLSEC_RANDOM_impl.h

Defines a set of functions that must be implemented by the BSP in order to generate random data.

• LLSEC_SIG_impl.h

Defines a set of functions thatmustbe implementedby theBSP inorder to support signatures functionalities.

• LLSEC_X509_CERT_impl.h

Defines a set of functions that must be implemented by the BSP in order to manage X509 certificates opera-
tions like getting the public key, extracting the issuer, etc.

6.26.2 MicroEJ Foundation Libraries

EDC

Error Messages

When an exception is thrown by the runtime, the error message

Generic:E=<messageId>

is issued, where <messageId> meaning is defined in the next table:

Table 39: Generic Error Messages
Message ID Description
1 Negative o�set.
2 Negative length.
3 O�set + length > object length.

When an exception is thrown by the implementation of the EDC API, the error message

EDC-1.2:E=<messageId>

is issued, where <messageId> meaning is defined in the following table:

6.26. Appendices 1181

MicroEJ Documentation, Revision 32bb132e

Table 40: EDC Error Messages
Mes-
sage
ID

Description

-4 No native stack found to execute the Java native method.
-3 Maximum stack size for a thread has been reached. Increase the maximum size of the thread stack

parameter.
-2 No Java stack block could be allocated with the given size. Increase the Java stack block size.
-1 The Java stack space is full. Increase the Java stack size or the number of Java stack blocks.
1 A closed stream is being written/read.
2 The operation Reader.mark() is not supported.
3 lock is null in Reader(Object lock).
4 String index is out of range.
5 Argument must be a positive number.
6 Invalid radix used. Must be from Character.MIN_RADIX to Character.MAX_RADIX.
7 Operation Reader.reset() is not supported.
8 String is empty.
9 Start index is out of range.
10 End index is out of range.
11 A throwable cannot suppress itself in Throwable.addSuppressed(Throwable exception).
12 Given exception is null in Throwable.addSuppressed(Throwable exception).

Exit Codes

The MicroEJ Application can stop its execution by calling the method System.exit(). To retrieve the appplication
exit code (or exit status), use the C function SNI_getExitCode() a�er the end of SNI_startVM() (see sni.h
header file). If the MicroEJ Application ended without calling System.exit() then SNI_getExitCode() returns 0 .

The error codes returned by SNI_startVM() are defined in the section Error Codes.

SNI

Error Messages

The following error messages are issued at runtime.

Table 41: [SNI] Run Time Error Messages.
Message ID Description
-1 Not enough blocks.
-2 Reserved.
-3 Max stack blocks per thread reached.

6.26. Appendices 1182

https://repository.microej.com/javadoc/microej_5.x/apis/java/io/Reader.html#mark-int-
https://repository.microej.com/javadoc/microej_5.x/apis/java/io/Reader.html#Reader-java.lang.Object-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Character.html#MIN_RADIX
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Character.html#MAX_RADIX
https://repository.microej.com/javadoc/microej_5.x/apis/java/io/Reader.html#reset--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Throwable.html#addSuppressed-java.lang.Throwable-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Throwable.html#addSuppressed-java.lang.Throwable-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#exit-int-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#exit-int-

MicroEJ Documentation, Revision 32bb132e

KF

Definitions

Feature Definition Files

A Feature is a group of types, resources and [BON] immutables objects defined using two files that shall be in Ap-
plication classpath:

• [featureName].kf , a Java properties file. Keys are described in the “Feature definition file properties” table
below.

• [featureName].cert , an X509 certificate file that uniquely identifies the Feature

Table 42: Feature definition file properties
Key Usage Description
entryPoint Mandatory The fully qualified name of the class that implements

ej.kf.FeatureEntryPoint
immutables Optional Semicolon separated list of paths to [BON] immutable files owned by the

Feature. [BON] immutable file is defined by a / separated path relative
to application classpath

resources Optional Semicolon separated list of resource names owned by the Feature. Re-
source name is defined by Class.getResourceAsStream(String)

requiredTypes Optional Comma separated list of fully qualified names of required types. (Types
that may be dynamically loaded using Class.forName()).

types Optional Comma separated list of fully qualified names of types ownedby the Fea-
ture. Awildcard is allowed as terminal character to embed all types start-
ing with the given qualified name (a.b.C,x.y.*)

version Mandatory String version, that can retrieved using ej.kf.Module.getVersion()

Kernel Definition Files

Kernel definition files are mandatory if one or more Feature definition file is loaded and are named kernel.kf
and kernel.cert . kernel.kf must only define the version key. All types, resources and immutables are
automatically owned by the Kernel if not explicitly set to be owned by a Feature.

Kernel API Files

Kernel API file definition is explained here: Kernel API.

Access Error Codes

When an instruction is executed that will break a [KF] specification insulation semantic rule, a
java.lang.IllegalAccessError is thrown, with an error code composed of two parts: [source][errorKind]
.

• source : a single character indicating the kind of Java element on which the access error occurred (Table
“Error codes: source”)

• errorKind : an error number indicating the action on which the access error occurred (Table “Error codes:
kind”)

6.26. Appendices 1183

https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/FeatureEntryPoint.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#getResourceAsStream-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#forName-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Module.html#getVersion--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/IllegalAccessError.html

MicroEJ Documentation, Revision 32bb132e

Table 43: Error codes: source
Ch aracter Description
A Error thrown when accessing an array
I Error thrown when calling a method
F Error thrown when accessing an instance field
M Error thrown when entering a synchronized block or method
P Error thrown when passing a parameter to a method call
R Error thrown when returning from amethod call
S Error thrown when accessing a static field

Table 44: Error codes: kind
Id Description
1 An object owned by a Feature is being assigned to an object owned by the Kernel, but the current context

is not owned by the Kernel
2 An object owned by a Feature is being assigned to an object owned by another Feature
3 An object owned by a Feature is being accessed from a context owned by another Feature
4 A synchronize on an object owned by the Kernel is executed in a method owned by a Feature
5 A call to a feature code occurs while owning a Kernel monitor

ECOM

Warning: This chapter describes the Foundation Library ECOM-1.1 .

ECOM-1.1 is discontinued since Architecture 8.0.0.

Error Messages

When an exception is thrown by the implementation of the ECOM API, the error message

ECOM-1.1:E=<messageId>

is issued, where <messageId> meaning is defined in the next table:

Table 45: ECOM Error Messages
Message ID Description
1 The connection has been closed. Nomore action can be done on this connection.
2 The connection has already been closed.
3 The connection description is invalid. The connection cannot be opened.
4 The connection stream has already been opened. Only one stream per kind of stream (input or

output stream) can be opened at the same time.
5 Toomany connections have been opened at the same time. The platform is not able to open a new

one. Try to close useless connections before trying to open the new connection.

6.26. Appendices 1184

MicroEJ Documentation, Revision 32bb132e

ECOM Comm

Error Messages

When an exception is thrown by the implementation of the ECOM-COMM API, the error message

ECOM-COMM:E=<messageId>

is issued, where <messageId> meaning is defined in the next table:

Table 46: ECOM-COMM error messages
Message ID Description
1 The connection descriptor must start with "comm:"
2 Reserved.
3 The Comm port is unknown.
4 The connection descriptor is invalid.
5 The Comm port is already open.
6 The baudrate is unsupported.
7 The number of bits per character is unsupported.
8 The number of stop bits is unsupported.
9 The parity is unsupported.
10 The input stream cannot be opened because native driver is not able to create a RX bu�er to

store the incoming data.
11 The output stream cannot be opened because native driver is not able to create a TX bu�er to

store the outgoing data.
12 The given connection descriptor option cannot be parsed.

MicroUI

Error Messages

See Error Messages.

FS

Error Messages

When an exception is thrown by the implementation of the FS API, the error message

FS:E=<messageId>

is issued, where <messageId> meaning is defined in the next table:

Table 47: File System Error Messages
Message ID Description
-1 End of File (EOF).
-2 An error occurred during a File System operation.
-3 File System not initialized.

6.26. Appendices 1185

MicroEJ Documentation, Revision 32bb132e

Net

Error Messages

When an exception is thrown by the implementation of the Net API, the error message

NET-1.1:E=<messageId>

is issued, where <messageId> meaning is defined in the next table:

Table 48: Net Error Messages
Message ID Description
-2 Permission denied.
-3 Bad socket file descriptor.
-4 Host is down.
-5 Network is down.
-6 Network is unreachable.
-7 Address already in use.
-8 Connection abort.
-9 Invalid argument.
-10 Socket option not available.
-11 Socket not connected.
-12 Unsupported network address family.
-13 Connection refused.
-14 Socket already connected.
-15 Connection reset by peer.
-16 Message size to be sent is too long.
-17 Broken pipe.
-18 Connection timed out.
-19 Not enough free memory.
-20 No route to host.
-21 Unknown host.
-23 Native method not implemented.
-24 The blocking request queue is full, and a new request cannot be added now.
-25 Network not initialized.
-255 Unknown error.

SSL

Error Messages

When an exception is thrown by the implementation of the SSL API, the error message

SSL-2.0:E=<messageId>

is issued, where <messageId> meaning is defined in the next table:

Table 49: SSL Error Messages
Message ID Description
-2 Connection reset by the peer.
-3 Connection timed out.

continues on next page

6.26. Appendices 1186

MicroEJ Documentation, Revision 32bb132e

Table 49 – continued from previous page
Message ID Description
-5 Dispatch blocking request queue is full, and a new request cannot be added now.
-6 Certificate parsing error.
-7 The certificate data size bigger than the immortal bu�er used to process certificate.
-8 No trusted certificate found.
-9 Basic constraints check failed: Intermediate certificate is not a CA certificate.
-10 Subject/issuer name chaining error.
-21 Wrong block type for RSA function.
-22 RSA bu�er error: Output is too small, or input is too large.
-23 Output bu�er is too small, or input is too large.
-24 Certificate AlogID setting error.
-25 Certificate public-key setting error.
-26 Certificate date validity setting error.
-27 Certificate subject name setting error.
-28 Certificate issuer name setting error.
-29 CA basic constraint setting error.
-30 Extensions setting error.
-31 Invalid ASN version number.
-32 ASN get int error: invalid data.
-33 ASN key init error: invalid input.
-34 Invalid ASN object id.
-35 Not null ASN tag.
-36 ASN parsing error: zero expected.
-37 ASN bit string error: wrong id.
-38 ASN OID error: unknown sum id.
-39 ASN date error: bad size.
-40 ASN date error: current date before.
-41 ASN date error: current date a�er.
-42 ASN signature error: mismatched OID.
-43 ASN time error: unknown time type.
-44 ASN input error: not enough data.
-45 ASN signature error: confirm failure.
-46 ASN signature error: unsupported hash type.
-47 ASN signature error: unsupported key type.
-48 ASN key init error: invalid input.
-49 ASN NTRU key decode error: invalid input.
-50 X.509 critical extension ignored.
-51 ASN no signer to confirm failure (no CA found).
-52 ASN CRL signature-confirm failure.
-53 ASN CRL: no signer to confirm failure.
-54 ASN OCSP signature-confirm failure.
-60 ECC input argument is wrong type.
-61 ECC ASN1 bad key data: invalid input.
-62 ECC curve sum OID unsupported: invalid input.
-63 Bad function argument provided.
-64 Feature not compiled in.
-65 Unicode password too big.
-66 No password provided by user.
-67 AltNames extensions too big.
-70 AES-GCM Authentication check fail.

continues on next page

6.26. Appendices 1187

MicroEJ Documentation, Revision 32bb132e

Table 49 – continued from previous page
Message ID Description
-71 AES-CCM Authentication check fail.
-80 Cavium Init type error.
-81 Bad alignment error, no alloc help.
-82 Bad ECC encrypt state operation.
-83 Bad padding: message wrong length.
-84 Certificate request attributes setting error.
-85 PKCS#7 error: mismatched OID value.
-86 PKCS#7 error: no matching recipient found.
-87 FIPS mode not allowed error.
-88 Name constraint error.
-89 Random Number Generator failed.
-90 FIPS Mode HMACminimum key length error.
-91 RSA Padding error.
-92 Export public ECC key in ANSI format error: Output length only set.
-93 In Core Integrity check FIPS error.
-94 AES Known Answer Test check FIPS error.
-95 DES3 Known Answer Test check FIPS error.
-96 HMAC Known Answer Test check FIPS error.
-97 RSA Known Answer Test check FIPS error.
-98 DRBG Known Answer Test check FIPS error.
-99 DRBG Continuous Test FIPS error.
-100 AESGCM Known Answer Test check FIPS error.
-101 Process input state error.
-102 Bad index to key rounds.
-103 Out of memory.
-104 Verify problem found on completion.
-105 Verify mac problem.
-106 Parse error on header.
-107 Weird handshake type.
-108 Error state on socket.
-109 Expected data, not there.
-110 Not enough data to complete task.
-111 Unknown type in record header.
-112 Error during decryption.
-113 Received alert: fatal error.
-114 Error during encryption.
-116 Need peer’s key.
-117 Need the private key.
-118 Error during RSA private operation.
-119 Server missing DH parameters.
-120 Build message failure.
-121 Client hello not formed correctly.
-122 The peer subject namemismatch.
-123 Non-blocking socket wants data to be read.
-124 Handshake layer not ready yet; complete first.
-125 Premaster secret version mismatch error.
-126 Record layer version error.
-127 Non-blocking socket write bu�er full.
-128 Malformed bu�er input error.

continues on next page

6.26. Appendices 1188

MicroEJ Documentation, Revision 32bb132e

Table 49 – continued from previous page
Message ID Description
-129 Verify problem on certificate and check date/time on your device.
-130 Verify problem based on signature.
-131 PSK client identity error.
-132 PSK server hint error.
-133 PSK key callback error.
-134 Record layer length error.
-135 Can’t decode peer key.
-136 The peer sent close notify alert.
-137 Wrong client/server type.
-138 The peer didn’t send the certificate.
-140 NTRU key error.
-141 NTRU DRBG error.
-142 NTRU encrypt error.
-143 NTRU decrypt error.
-150 Bad ECC Curve Type or unsupported.
-151 Bad ECC Curve or unsupported.
-152 Bad ECC Peer Key.
-153 ECC Make Key failure.
-154 ECC Export Key failure.
-155 ECC DHE shared failure.
-157 Not a CA by basic constraint.
-159 Bad Certificate Manager error.
-160 OCSP Certificate revoked.
-161 CRL Certificate revoked.
-162 CRLmissing, not loaded.
-165 OCSP needs a URL for lookup.
-166 OCSP Certificate unknown.
-167 OCSP responder lookup fail.
-168 Maximum chain depth exceeded.
-171 Suites pointer error.
-172 No PEM header found.
-173 Out of order message: fatal.
-174 Bad KEY type found.
-175 Sanity check on ciphertext failed.
-176 Receive callback returnedmore than requested.
-178 Need peer certificate for verification.
-181 Unrecognized host name error.
-182 Unrecognized max fragment length.
-183 Key Use digitalSignature not set.
-185 Key Use keyEncipherment not set.
-186 Ext Key Use server/client authentication not set.
-187 Send callback out-of-bounds read error.
-188 Invalid renegotiation.
-189 Peer sent di�erent certificate during SCR.
-190 Finishedmessage received from peer before receiving the Change Cipher message.
-191 Sanity check onmessage order.
-192 Duplicate handshake message.
-193 Unsupported cipher suite.
-194 Can’t match cipher suite.

continues on next page

6.26. Appendices 1189

MicroEJ Documentation, Revision 32bb132e

Table 49 – continued from previous page
Message ID Description
-195 Bad certificate type.
-196 Bad file type.
-197 Opening random device error.
-198 Reading random device error.
-199 Windows cryptographic init error.
-200 Windows cryptographic generation error.
-201 No data is waiting to be received from the random device.
-202 Unknown error.

6.26.3 Tools Options and Error Codes

Immutable Files Related Error Messages

The following error messages are issued at SOAR time (link phase) and not at runtime.

Table 50: Errors when parsing immutable files at link time.
Message
ID

Description

0 Duplicated ID in immutable files. Each immutable object should have a unique ID in the SOAR
image.

1 An immutable file refers to an unknown field of an object.
2 Tried to assign the same object field twice.
3 All immutable object fields should be defined in the immutable file description.
4 The assigned value does not match the expected Java type.
5 An immutable object refers to an unknown ID.
6 The length of the immutable object does not match the length of the assigned object.
7 The type defined in the file doesn’t match the Java expected type.
8 Generic error while parsing an immutable file.
9 Cycle detected in an alias definition.
10 An immutable object is an instance of an abstract class or an interface.
11 Unknown XML attribute in an immutable file.
12 A mandatory XML attribute is missing.
13 The value is not a valid Java literal.
14 Alias already exists.

SNI

The following error messages are issued at SOAR time and not at runtime.

Table 51: [SNI] Link Time Error Messages.
Message ID Description
363 Argument cannot be a reference.
364 Argument can only be from a base type array.
365 Return type must be a base type.
366 Methodmust be a static method.

6.26. Appendices 1190

MicroEJ Documentation, Revision 32bb132e

SP Compiler

Options

Table 52: Shielded Plug Compiler Options.
Option name Description
-verbose[e...e] Extra messages are printed out to the console according to the number of ‘e’.
-descriptionFile

file
XML Shielded Plug description file. Multiple files allowed.

-waitingTaskLimit
value

Maximum number of task/threads that can wait on a block: a number between 0 and
7. -1 is for no limit; 8 is for unspecified.

-immutable When specified, only immutable Shielded Plugs can be compiled.
-output dir Output directory. Default is the current directory.
-outputName name Output name for the Shielded Plug layout description. Default is “shielded_plug”.
-endianness name Either “little” or “big”. Default is “little”.
-outputArchitecture
value

Output ELF architecture. Only “ELF” architecture is available.

-rwBlockHeaderSize
value

Read/Write header file value.

-genIdsC When specified, generate a C header file with block ID constants.
-cOutputDir dir Output directory of C header files. Default is the current directory.
-cConstantsPrefix
prefix

C constants name prefix for block IDs.

-genIdsJava When specified, generate Java interfaces file with block ID constants.
-jOutputDir dir Output directory of Java interfaces files. Default is the current directory.
-jPackage name The name of the package for Java interfaces.

Error Messages

Table 53: Shielded Plug Compiler Error Messages.
Message ID Description
0 Internal limits reached.
1 Invalid endianness.
2 Invalid output architecture.
3 Error while reading / writing files.
4 Missing a mandatory option.

6.26. Appendices 1191

MicroEJ Documentation, Revision 32bb132e

NLS Immutables Creator

Table 54: NLS Immutables Creator Errors Messages
ID Type Description
1 Error Error reading the nls list file: invalid path, input/output error, etc.
2 Error Error reading the nls list file: The file contents are invalid.
3 Error Specified class is not an interface.
4 Error Invalid message ID. Must be greater than or equal to 1.
5 Error Duplicate ID. Both messages use the samemessage ID.
6 Error Specified interface does not exist.
7 Error Specified message constant is not visible (must be public).
8 Error Specified message constant is not an integer.
9 Error No locale file is defined for the specified header.
10 Error IO error: Cannot create the output file.
11 Warning Missing message value.
12 Warning There is a gap (or gaps) in messages constants.
13 Warning Specified property does not denote a message.
14 Warning Invalid properties header file. File is ignored.
15 Warning Nomessage is defined for the specified header.
16 Warning Invalid property.

MicroUI Static Initializer

Inputs

The XML file used as input by theMicroUI Static Initialization Toolmay contain tags related to the Input component
as described below.

Listing 10: Event Generators Description

<eventgenerators>
<!-- Generic Event Generators -->

<eventgenerator name="GENERIC" class="foo.bar.Zork">
<property name="PROP1" value="3"/>
<property name="PROP2" value="aaa"/>

</eventgenerator>

<!-- Predefined Event Generators -->
<command name="COMMANDS"/>
<buttons name="BUTTONS" extended="3"/>
<buttons name="JOYSTICK" extended="5"/>
<pointer name="POINTER" width="1200" height="1200"/>
<touch name="TOUCH" display="DISPLAY"/>
<states name="STATES" numbers="NUMBERS" values="VALUES"/>

</eventgenerators>

<array name="NUMBERS">
<elem value="3"/>
<elem value="2"/>
<elem value="5"/>

(continues on next page)

6.26. Appendices 1192

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

</array>

<array name="VALUES">
<elem value="2"/>
<elem value="0"/>
<elem value="1"/>

</array>

Table 55: Event Generators Static Definition
Tag Attributes Description
eventgenerators The list of event generators.

priority Optional. An integer value. Defines the internal display thread priority. De-
fault value is 5.

eventgenerator Describes a generic event generator. See also Generic Event Generators.
name The logical name.
class Theevent generator class (must extend the ej.microui.event.generator.

GenericEventGenerator class). This class must be available in the MicroEJ
Application classpath.

listener Optional. Default listener’s logical name. Only a display is a valid listener. If
no listener is specified the listener is the default display.

property A generic event generator property. The generic event generator will receive
this property at startup, via the method setProperty .

name The property key.
value The property value.

command The default event generator Command .
name The logical name.
listener Optional. Default listener’s logical name. Only a display is a valid listener. If

no listener is specified, then the listener is the default display.
buttons The default event generator Buttons .

name The logical name.
extended Optional. An integer value. Defines the number of buttonswhich support the

MicroUI extended features (elapsed time, click and double-click).
listener Optional. Default listener’s logical name. Only a display is a valid listener. If

no listener is specified, then the listener is the default display.
pointer The default event generator Pointer .

name The logical name.
width An integer value. Defines the pointer area width.
height An integer value. Defines the pointer area heigth.
extended Optional. An integer value. Defines the number of pointer buttons (right

click, le� click, etc.) which support the MicroUI extended features (elapsed
time, click and double-click).

listener Optional. Default listener’s logical name. Only a display is a valid listener. If
no listener is specified, then the listener is the default display.

touch The default event generator Touch .
name The logical name.
display Logical name of the Display with which the touch is associated.
listener Optional. Default listener’s logical name. Only a display is a valid listener. If

no listener is specified, then the listener is the default display.
states An event generator that manages a group of state machines.

The state of a machine is changed by sending an event using
LLUI_INPUT_sendStateEvent .

continues on next page

6.26. Appendices 1193

MicroEJ Documentation, Revision 32bb132e

Table 55 – continued from previous page
Tag Attributes Description

name The logical name.
numbers The logical name of the array which defines the number of state machines

for this States generator, and their range of state values. The IDs of the state
machines start at 0. The number of state machines managed by the States
generator is equal to the size of the numbers array, and the value of each
entry in the array is the number of di�erent values supported for that state
machine. State machine values for state machine i can be in the range 0 to
numbers[i] -1.

values Optional. The logical name of the array which defines the initial state values
of the state machines for this States generator. The values array must be
the samesize as the numbers array. If initial state values are specifiedusing a
values array, then the LLUI_INPUT_IMPL_getInitialStateValue function
is not called; otherwise that function is used to establish the initial values1

listener Optional. Default listener’s logical name. Only a display is a valid listener. If
no listener is specified, then the listener is the default display.

array An array of values.
name The logical name.

elem A value.
value An integer value.

Display

The display component augments the static initialization file with:

• The configuration of each display.

• Fonts that are implicitly embedded within the application (also called system fonts). Applications can also
embed their own fonts.

<display name="DISPLAY"/>

<fonts>

<range name="LATIN" sections="0-2"/>
<customrange start="0x21" end="0x3f"/>

</fonts>

1 Exception: When using MicroEJ Platform, where there is no equivalent to the LLUI_INPUT_IMPL_getInitialStateValue function. If no
values array is provided, and the MicroEJ Platform is being used, all state machines take 0 as their initial state value.

6.26. Appendices 1194

MicroEJ Documentation, Revision 32bb132e

Table 56: Display Static Initialization XML Tags Definition
Tag Attributes Description
display The display element describes one display.

name The logical name of the display.
priority Deprecated. This value is not taken in consideration. UseMicroEj application

launcher option instead.
default Deprecated. This value is not taken in consideration.

fonts The list of system fonts. The system fonts are available for all displays.
font A system font.

file The font file path. The path may be absolute or relative to the XML file.
range A font generic range.

name The generic range name (LATIN , HAN , etc.)
sections Optional. Defines one or several sub parts of the generic range.

“1”: add only part 1 of the range
“1-5”: add parts 1 to 5
“1,5”: add parts 1 and 5
These combinations are allowed:
“1,5,6-8” add parts 1, 5, and 6 through 8
By default, all range parts are embedded.

customrange A font-specific range.
start UTF16 value of the very first character to embed.
end UTF16 value of the very last character to embed.

Front Panel

FP File

XML Schema

<?xml version="1.0"?>
<frontpanel

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="https://developer.microej.com"
xsi:schemaLocation="https://developer.microej.com .widget.xsd">

<device name="example" skin="example-device.png">
<ej.fp.widget.[type] x="22" y="51" [widget-attributes]/>
<ej.fp.widget.[type] x="30" y="125" [widget-attributes]/>
<!-- ... -->

</device>
</frontpanel>

6.26. Appendices 1195

MicroEJ Documentation, Revision 32bb132e

File Specification

Table 57: FP File Specification
Tag Attributes Description
frontpanel The root element.

xmlns:xsi Invariant tag1
xmlns Invariant tag2
xsi:schemaLocation Invariant tag3

device The device’s root element.
name The device’s logical name.
skin Refers to a PNG file which defines the device background.

ej.fp.widget.xxx Defines the widget to use. Refer to the widget documentation.
label All widget should provide this identifier. Sometimes it is used

as string, sometimes as integer
x The widget x-coordinate.
y The widget y-coordinate.

HIL Engine

Below are the HIL Engine options:

Table 58: HIL Engine Options
Option name Description
-verbose[e....e] Extra messages are printed out to the console (add extra e to get more messages).
-ip <address> MicroEJ Simulator connection IP address (A.B.C.D). By default, set to localhost.
-port <port> MicroEJ Simulator connection port. By default, set to 8001.

-connectTimeout
<timeout>

timeout in s for MicroEJ Simulator connections. By default, set to 10 seconds.

-excludes
<name[sep]name>

Types that will be excluded from the HIL Engine class resolution provided mocks. By
default, no types are excluded.

-mocks
<name[sep]name>

Mocks are either .jar file or .class files.

Heap Dumping

XML Schema

Below is the XML schema for heap dumps.

1 Must be “ http://www.w3.org/2001/XMLSchema-instance ”
2 Must be “ https://developer.microej.com ”
3 Must be “ https://developer.microej.com .widget.xsd ”

6.26. Appendices 1196

MicroEJ Documentation, Revision 32bb132e

Table 59: XML Schema for Heap Dumps

<?xml version='1.0' encoding='UTF-8'?>
<!--

Schema

Copyright 2012 IS2T. All rights reserved.

IS2T PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
-->

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<!-- root element: heap -->
<xs:element name="heap">

<xs:complexType>
<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element ref="class"/>
<xs:element ref="object"/>
<xs:element ref="array"/>
<xs:element ref="stringLiteral"/>

</xs:choice>
</xs:complexType>

</xs:element>

<!-- class element -->
<xs:element name="class">

<xs:complexType>
<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element ref="field"/>
</xs:choice>
<xs:attribute name="name" type="xs:string" use = "required"/>
<xs:attribute name="id" type="xs:string" use = "required"/>
<xs:attribute name="superclass" type="xs:string"/>

</xs:complexType>
</xs:element>

<!-- object element-->
<xs:element name="object">

<xs:complexType>
<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element ref="field"/>
</xs:choice>
<xs:attribute name="id" type="xs:string" use = "required"/>
<xs:attribute name="class" type="xs:string" use = "required"/>
<xs:attribute name="createdAt" type="xs:string" use = "optional"/>
<xs:attribute name="createdInThread" type="xs:string" use = "optional"/>
<xs:attribute name="createdInMethod" type="xs:string"/>
<xs:attribute name="tag" type="xs:string" use = "required"/>

</xs:complexType>
</xs:element>

continues on next page

6.26. Appendices 1197

MicroEJ Documentation, Revision 32bb132e

Table 59 – continued from previous page

<!-- array element-->
<xs:element name="array" type = "arrayTypeWithAttribute"/>
<!-- stringLiteral element-->
<xs:element name="stringLiteral">

<xs:complexType>
<xs:sequence>

<xs:element minOccurs ="4" maxOccurs="4" ref="field "/>
</xs:sequence>
<xs:attribute name="id" type="xs:string" use = "required"/>
<xs:attribute name="class" type="xs:string" use = "required"/>

</xs:complexType>
</xs:element>

<!-- field element: child of class, object and stringLiteral-->
<xs:element name="field">

<xs:complexType>
<xs:attribute name="name" type="xs:string" use = "required"/>
<xs:attribute name="id" type="xs:string" use = "optional"/>
<xs:attribute name="value" type="xs:string" use = "optional"/>
<xs:attribute name="type" type="xs:string" use = "optional"/>

</xs:complexType>
</xs:element>

<xs:simpleType name = "arrayType">
<xs:list itemType="xs:integer"/>

</xs:simpleType>

<!-- complex type "arrayTypeWithAttribute". type of array element-->
<xs:complexType name = "arrayTypeWithAttribute">

<xs:simpleContent>
<xs:extension base="arrayType">

<xs:attribute name="id" type="xs:string" use = "required"/>
<xs:attribute name="class" type="xs:string" use = "required"/>
<xs:attribute name="createdAt" type="xs:string" use = "optional"/>
<xs:attribute name="createdInThread" type="xs:string" use = "optional"/>
<xs:attribute name="createdInMethod" type="xs:string" use = "optional"/>
<xs:attribute name="length" type="xs:string" use = "required"/>
<xs:attribute name="elementsType" type="xs:string" use = "optional"/>
<xs:attribute name="type" type="xs:string" use = "optional"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>

</xs:schema>

6.26. Appendices 1198

MicroEJ Documentation, Revision 32bb132e

File Specification

Types referenced in heapdumps are represented in the internal classfile format (Internal classfile Format for Types).
Fully qualified names are names separated by the / separator (For example, a/b/C).

Listing 11: Internal classfile Format for Types

Type = <BaseType> | <ClassType> | <ArrayType>
BaseType: B(byte), C(char), D(double), F(float), I(int), J(long), S(short), Z(boolean),
ClassType: L<ClassName>;
ArrayType: [<Type>

Tags used in the heap dumps are described in the table below.

Table 60: Tag Descriptions
Tags Attributes Description
heap The root element.
class Element that references a Java class.

name Class type (<ClassType>)
id Unique identifier of the class.
superclass Identifier of the superclass of this class.

object Element that references a Java object.
id Unique identifier of this object.
class Fully qualified name of the class of this object.

array Element that references a Java array.
id Unique identifier of this array.
class Fully qualified name of the class of this array.
elementsType Type of the elements of this array.
length Array length.

stringLiteral Element that references a java.lang.String literal.
id Unique identifier of this object.
class Id of java.lang.String class.

field Element that references the field of an object or a class.
name Name of this field.
id Object or Array identifier, if it holds a reference.
type Type of this field, if it holds a base type.
value Value of this field, if it holds a base type.

6.26.4 Architectures MCU / Compiler

Principle

The MicroEJ C libraries have been built for a specific processor (a specific MCU architecture) with a specific C com-
piler. The third-party linkermustmake sure to link C libraries compatible with the MicroEJ C libraries. This chapter
details the compiler version, flags and options used to build MicroEJ C libraries for each processor.

Some processors include an optional floating point unit (FPU). This FPU is single precision (32 bits) and is compli-
ant with IEEE 754 standard. It can be disabled when not in use, thus reducing power consumption. There are two
steps to use the FPU in an application. The first step is to tell the compiler and the linker that the microcontroller
has an FPUavailable so that theywill produce compatible binary code. The second step is to enable the FPUduring
execution. This is done by writing to CPAR in the SystemInit() function. Even if there is an FPU in the proces-
sor, the linker may still need to use runtime library functions to deal with advanced operations. A program may
also define calculation functions with floating numbers, either as parameters or return values. There are several

6.26. Appendices 1199

MicroEJ Documentation, Revision 32bb132e

Application Binary Interfaces (ABI) to handle floating point calculations. Hence, most compilers provide options to
select one of these ABIs. This will a�ect how parameters are passed between caller functions and callee functions,
and whether the FPU is used or not. There are three ABIs:

• So� ABI without FPU hardware. Values are passed via integer registers.

• So�ABIwith FPUhardware. The FPU is accesseddirectly for simple operations, butwhena function is called,
the integer registers are used.

• Hard ABI. The FPU is accessed directly for simple operations, and FPU-specific registers are used when a
function is called, for both parameters and the return value.

It is important to note that code compiled with a particular ABI might not be compatible with code compiled with
another ABI. MicroEJ modules, including the MicroEJ Core Engine, use the hard ABI.

Supported MicroEJ Core Engine Capabilities by Architecture Matrix

The following table lists the supported MicroEJ Core Engine capabilities by MicroEJ Architectures.

Table 61: Supported MicroEJ Core Engine Capabilities by MicroEJ Ar-
chitecture Matrix

MicroEJ Core Engine Architectures Capabilities
MCU Compiler Mono- Sandbox Tiny- Sandbox Multi- Sandbox
ARM Cortex-M0 GCC YES YES NO
ARM Cortex-M4 IAR Embedded Workbench

for ARM
YES YES YES

ARM Cortex-M4 GCC YES NO YES
ARM Cortex-M4 Keil uVision YES NO YES
ARM Cortex-M7 IAR Embedded Workbench

for ARM
YES NO YES

ARM Cortex-M7 GCC YES NO YES
ARM Cortex-M7 Keil uVision YES NO YES
ARMv7A GCC YES YES YES
ARMv7VE GCC YES YES YES
ESP32 ESP-IDF YES NO YES

6.26. Appendices 1200

MicroEJ Documentation, Revision 32bb132e

ARM Cortex-M0

Table 62: ARM Cortex-M0 Compilers
Compiler Version Flags and Options Module
GCC 4.8 -mabi=aapcs -mcpu=cortex-m0 -mlittle-endian -mthumb flopi0G22

ARM Cortex-M4

Table 63: ARM Cortex-M4 Compilers
Com-
piler

Build
Ver-
sion

Known Compatible Ver-
sions

Flags and Options Mod-
ule

Keil
uVi-
sion

5.18.0.0 5.x --cpu Cortex-M4.fp --apcs=/hardfp
--fpmode=ieee_no_fenv

flopi4A20

GCC 4.8 4.x, 5.x, 6.x, 7.x, 8.x, 9.x -mabi=aapcs -mcpu=cortex-m4
-mlittle-endian -mfpu=fpv4-sp-d16
-mfloat-abi=hard -mthumb

flopi4G25

IAR
Em-
bed-
ded
Work-
bench
for
ARM

8.32.1.186318.x, 9.x --cpu Cortex-M4F --fpu VFPv4_sp flopi4I35

Note: Since MicroEJ 4.0, Cortex-M4 architectures are compiled using hardfp convention call.

ARM Cortex-M7

Table 64: ARM Cortex-M7 Compilers
Com-
piler

Build
Ver-
sion

Known Compatible Ver-
sions

Flags and Options Mod-
ule

Keil
uVi-
sion

5.18.0.0 5.x --cpu Cortex-M7.fp.sp --apcs=/hardfp
--fpmode=ieee_no_fenv

flopi7A21

GCC 4.8 4.x, 5.x, 6.x, 7.x, 8.x, 9.x -mabi=aapcs -mcpu=cortex-m7
-mlittle-endian -mfpu=fpv5-sp-d16
-mfloat-abi=hard -mthumbb

flopi7G26

IAR
Em-
bed-
ded
Work-
bench
for
ARM

8.32.1.186318.x, 9.x --cpu Cortex-M7 --fpu VFPv5_sp flopi7I36

6.26. Appendices 1201

https://repository.microej.com/modules/com/microej/architecture/CM0/CM0_GCC48/flopi0G22/
https://repository.microej.com/modules/com/microej/architecture/CM4/CM4hardfp_ARMCC5/flopi4A20/
https://repository.microej.com/modules/com/microej/architecture/CM4/CM4hardfp_GCC48/flopi4G25/
https://repository.microej.com/modules/com/microej/architecture/CM4/CM4hardfp_IAR83/flopi4I35/
https://repository.microej.com/modules/com/microej/architecture/CM7/CM7hardfp_ARMCC5/flopi7A21/
https://repository.microej.com/modules/com/microej/architecture/CM7/CM7hardfp_GCC48/flopi7G26/
https://repository.microej.com/modules/com/microej/architecture/CM7/CM7hardfp_IAR83/flopi7I36/

MicroEJ Documentation, Revision 32bb132e

ARMv7A (ARMv7-A without integer division extension: Cortex-A5/Cortex-A8/Cortex-A9)

Table 65: ARMv7A Compilers
Com-
piler

Build
Ver-
sion

Known Compatible Ver-
sions

Flags and Options Mod-
ule

GCC 10.3 4.x, 5.x, 6.x, 7.x, 8.x, 9.x, 10.x -mabi=aapcs-linux -march=armv7-a
-mlittle-endian -mfpu=vfp
-mfloat-abi=hard -mthumb

oliveARMv7A_2

ARMv7VE (ARMv7-A with integer division extension: Cortex-A7/Cortex-A15)

Table 66: ARMv7VE Compilers
Com-
piler

Build
Ver-
sion

Known Compatible Ver-
sions

Flags and Options Mod-
ule

GCC 10.3 4.x, 5.x, 6.x, 7.x, 8.x, 9.x, 10.x -mabi=aapcs-linux -march=armv7ve
-mlittle-endian -mfpu=vfp
-mfloat-abi=hard -mthumb

oliveARMv7VE_1

6.26. Appendices 1202

MicroEJ Documentation, Revision 32bb132e

ESP32

Table 67: Espressif ESP32 Compilers
Com-
piler

Version Flags and Options Module
Name

Module Version

GCC
(ESP-
IDF)

5.2.0
(crosstool-
ng-
1.22.0-
80-
g6c4433a)

-mlongcalls simikou1 Any

GCC
(ESP-
IDF)

5.2.0
(crosstool-
ng-
1.22.0-
80-
g6c4433a)

-mlongcalls -mfix-esp32-psram-cache-issue simikou2 Up to 7.13.0 (in-
cluded)

GCC
(ESP-
IDF)

5.2.0
(crosstool-
ng-
1.22.0-
96-
g2852398)

-mlongcalls -mfix-esp32-psram-cache-issue simikou2 7.12.2 or higher

GCC
(ESP-
IDF)

8.2.0
(crosstool-
NG esp-
2019r2)

-mlongcalls simikou3 7.16.0 or higher

GCC
(ESP-
IDF)

5.2.0
(crosstool-
ng-
1.22.0-
97-
gc752ad5)

-mlongcalls -mfix-esp32-psram-cache-issue simikou4 7.12.2 or higher

GCC
(ESP-
IDF)

8.4.0
(crosstool-
NG esp-
2021r1)

-mlongcalls simikou5 7.16.1 or higher

GCC
(ESP-
IDF)

8.4.0
(crosstool-
NG esp-
2021r1)

-mlongcalls -mfix-esp32-psram-cache-issue
-mfix-esp32-psram-cache-strategy=memw

simikou6 7.16.1 or higher

GCC
(ESP-
IDF)

11.2.0
(crosstool-
NG esp-
2022r1)

-mlongcalls simikou7 7.20.1 or higher

6.26. Appendices 1203

https://repository.microej.com/modules/com/microej/architecture/ESP32/GNUv52_xtensa-esp32/simikou1/
https://repository.microej.com/modules/com/microej/architecture/ESP32/GNUv52_xtensa-esp32-psram/simikou2/
https://repository.microej.com/modules/com/microej/architecture/ESP32/GNUv52b96_xtensa-esp32-psram/simikou2/
https://repository.microej.com/modules/com/microej/architecture/ESP32/GNUv82_xtensa-esp32s2/simikou3/
https://repository.microej.com/architectures/com/microej/architecture/ESP32/GNUv84_xtensa-esp32-psram/simikou6/
https://repository.microej.com/architectures/com/microej/architecture/ESP32/GNUv112_xtensa-esp32s3/simikou7/

MicroEJ Documentation, Revision 32bb132e

IAR Linker Specific Options

This section lists options thatmust bepassed to IAR linker for correctly linking theMicroEJobject file (microejapp.
o) generated by the SOAR.

--no_range_reservations

MicroEJ SOAR generates ELF absolute symbols to define some Link-Time Option (0 based values). By default, IAR
linker allocates a 1 byte section on the fly, which may cause silent sections placement side e�ects or a section
overlap error whenmultiple symbols are generated with the same absolute value:

Error[Lp023]: absolute placement (in [0x00000000-0x000000db]) overlaps with absolute symbol
[. . .]

The option --no_range_reservations tells IAR linker to manage an absolute symbol as described by the ELF
specification.

--diag_suppress=Lp029

MicroEJSOARgenerates internal veneers thatmaybe interpreted as illegal codeby IAR linker, causing the following
error:

Error[Lp029]: instruction validation failure in section "C:\xxx\microejapp.o[.text.
__icetea__virtual___1xxx#1126]": nested IT blocks. Code in wrong mode?

The option --diag_suppress=Lp029 tells IAR linker to ignore instructions validation errors.

GNU LD Specific Options

--start-group --end-group

By default the GNU linker does not search unresolved symbols in previously loaded files and can cause undefined
reference errors. To solve this issue, either change the load order of libraries (put microejapp.o first) or guard the
libraries with the options --start-group and --end-group .

ARM Linker Specific Options

ARM linker (armlink) is the linker included in ARM Compiler and Keil MDK-ARM development tools.

Fix Unexpected Undefined Symbol

The ARM linker requires to resolve all symbols before detecting some that are not transitively required for linking
the Executable. This typically happen when linking ELF object files containing dead code or debug functions that
are compiled but not intended to be linked. If such functions refer to unresolved symbols, youmayneed to define a
fake symbol tomake the linker happy. Youcandeclare it in yourBSPproject or directly in your VEEPort as following:

• Create a file link/armlink-weak.lscf in the dropins directory of your VEE Port configuration project.

• Edit the file and declare as many symbols as required. See also the MicroEJ Linker chapter for more details
on the MicroEJ linker file syntax.

6.26. Appendices 1204

MicroEJ Documentation, Revision 32bb132e

<lscFragment>
<defSymbol name="[symbolName]" value="0" rootSymbol="true" weak="true"/>

</lscFragment>

The weak symbol(s) will be directly defined in the application object file (microejapp.o).

Link the SOAR Debug Section

When building an Application, the SOAR generates a dedicated ELF debug section named .debug.soar in the
application object file (microejapp.o). This section is used by debug tools such as the Stack Trace Reader or the
Heap Dumper. It is also used by the SOAR itself for building Features on a Kernel.

Unfortunately, the ARM linker does not link this section in the output ELF executable, even with debug mode en-
abled. If you try to load the raw executable produced by the ARM linker, the tools will fail with a no debug section
error. Here is an example with the Stack Trace Reader:

=============== [MicroEJ Core Engine Trace] ===============
[INFO] Paste the MicroEJ core engine stack trace here.
1 : PROXY ERROR
[M8] - The file XXX is not a valid image file or has no debug informations (can't read␣

→˓file: XXX (no debug section)).

To be able to use debug tools, the debug section must be manually linked and injected in the Executable. This is
done using the SOAR debug infos post-linker tool.

Fig. 96: SOAR debug infos post-linker tool Selection

This tool takes two file options:

• soar.object.file : the internal object file produced by the SOAR when building the Application. It can be
found in the Launch Output Folder at soar/[application_main_class].o .

• output.executable.file : the Executable file produced by the ARM linker that includes the linked Applica-
tion.

6.26. Appendices 1205

MicroEJ Documentation, Revision 32bb132e

Fig. 97: SOAR debug infos post-linker tool Configuration

Once executed, it produces a new Executable file beside the original one with the .microej extension su�ix

=============== [SOARDebugInfosPostLinker] ===============
Successfully generated c:\myExecutable.axf.microej.

SUCCESS

This file now contains the linked .debug.soar section so that it can be used by the debug tools.

6.26.5 Former PlatformMigration

This chapter describes the steps to migrate a former MicroEJ Platform in its latest form described in Platform Cre-
ation chapter.

As a reminder, this new form brings twomain features:

• Both Platform build and dependencies declaration are managed by MicroEJ Module Manager. This allows a
fully automated build and continuous integration.

• The configuration of the target Board Support Package (BSP) has been revisited to support any BSP Connec-
tion cases.

Former MicroEJ Platformswere usually distributed byMicroEJ Corp. in an all-in-one ZIP file also called fullPackag-
ing.

In this document, the MicroEJ Platform for STMicroelectronics STM32F746G-DISCO board will be used as an exam-
ple.

The following figure shows the fullPackaging structure once extracted.

6.26. Appendices 1206

https://repository.microej.com/packages/referenceimplementations/846SI/3.4.2/STM32F746GDISCO-846SI-fullPackaging-eval-3.4.2.zip

MicroEJ Documentation, Revision 32bb132e

Fig. 98: STM32F746G-DISCO Platform Full Packaging Structure

Themigration steps are:

1. Create aModule Repository to store theMicroEJ Architecture andMicroEJ Packs used by the Platform.

2. Import the Platform Configuration Additions into the Platform Configuration project.

3. Update the Front Panel project configuration.

4. Configure the BSP Connection.

5. Add the Build Script and Run Script.

Note: Themigration of a Platform requires at least the version 5.4.0 of the SDK.

Create an Architecture Repository

The first step is to create an Architecture Repository containing the Architecture and Packs provided in the
platformArchitecture directory of the fullPackaging package.

Note: If the Architecture and Packs used by the Platform are already stored in the module repositories provided
byMicroEJ Corp (Central Repository,Developer Repository), or in your organization’s repositories, thenmove to the
next step.

By default, we provide the steps to extend the defaultMicroEJ SDK settings file configurationwith local Architecture
and Packs modules. The following steps can be adapted to custom settings file.

• Create a new empty project named architecture-repository

• Create a new file named ivysettings.xml with the following content and update the included settings file
according to your MicroEJ SDK version (see SDK Version)

6.26. Appendices 1207

https://github.com/MicroEJ/VEEPortQualificationTools/blob/master/framework/platform/

MicroEJ Documentation, Revision 32bb132e

<?xml version="1.0" encoding="UTF-8"?>
<ivysettings>
<property name="local.repo.url" value="${ivy.settings.dir}" override="false"/>

<!--
Include default settings file for MicroEJ SDK version:
- MICROEJ SDK 5.4.0 or higher: ${user.home}/.microej/microej-ivysettings-5.4.xml
- MICROEJ SDK 5.0.0 to 5.3.1: ${user.home}/.microej/microej-ivysettings-5.xml
- MICROEJ SDK 4.1.x: ${user.home}/.ivy2/microej-ivysettings-4.1.xml

-->
<include file="${user.home}/.microej/microej-ivysettings-5.xml"/>

<settings defaultResolver="ArchitectureResolver"/>

<resolvers>
<chain name="ArchitectureResolver">

<filesystem m2compatible="true">
<artifact pattern="${local.repo.url}/${microej.artifact.pattern}" />
<ivy pattern="${local.repo.url}/${microej.ivy.pattern}" />

</filesystem>
<resolver ref="${microej.default.resolver}"/>

</chain>
</resolvers>

</ivysettings>

• Copy the Architecture file (.xpf) into the correct directory following its naming convention).

– Open or extract the Architecture file (.xpf)

– Open the release.properties file to retrieve the naming convention mapping:

* architecture is the ISA (e.g. CM7)

* toolchain is the TOOLCHAIN (e.g. CM7hardfp_ARMCC5)

* name is the UID (e.g. flopi7A21)

* version is the VERSION (e.g. 7.11.0)

For example, in the STM32F746G-DISCOPlatform, the Architecture file flopi7A21-eval.xpf shall be copied
and renamed to architecture-repository/com/microej/architecture/CM7/CM7hardfp_ARMCC5/
flopi7A21/7.11.0/flopi7A21-7.11.0-eval.xpf .

• Copy the Architecture Specific Packs files (.xpfp) into the correct directory following MicroEJ Naming Con-
vention (seePack Import)with the exceptionof theStandalonepack that shouldnot be imported (e.g. named
flopi7A21Standalone.xpfp).

– Open or extract the Architecture Specific Pack (.xpfp).

Note: The Architecture Specific Packs have the UID of the Architecture in their name (e.g.
flopi7A21UI.xpfp) and their release_pack.properties file contains the information of the Archi-
tecture.

– Open the release_pack.properties file to retrieve the naming convention mapping:

* architecture is the ISA (e.g. CM7)

* toolchain is the TOOLCHAIN (e.g. CM7hardfp_ARMCC5)

6.26. Appendices 1208

MicroEJ Documentation, Revision 32bb132e

* name is the UID (e.g. flopi7A21)

* packName is the NAME (e.g. ui)

* packVersion is the VERSION (e.g. 12.0.1)

For example, in the STM32F746G-DISCO Platform, the Architecture Specific Pack UI flopi7A21UI.
xpfp shall be copied and renamed to architecture-repository/com/microej/architecture/CM7/
CM7hardfp_ARMCC5/flopi7A21-ui-pack/12.0.1/flopi7A21-ui-pack-12.0.1.xpfp .

• Copy the LegacyGeneric Packs (.xpfp files) into the correct directory followingMicroEJNamingConvention
(see Pack Import).

– Open or extract the Generic Pack (.xpfp).

Note: The release_pack.properties of Legacy Generic Packs does not contain information about
Architecture.

– Open the release_pack.properties file:

* packName is the NAME (e.g. fs)

* packVersion is the VERSION (e.g. 4.0.2)

For example, in the STM32F746G-DISCO Platform, the Legacy Generic Pack FS fs.xpfp shall be copied and
renamed to architecture-repository/com/microej/pack/fs/4.0.2/fs-4.0.2.xpfp .

• Configure MicroEJ Module Manager to use the Architecture Repository:

– Go to Window > Preferences > MicroEJ > Module Manager

– In Module Repository set Settings File: to ${workspace_loc:architecture-repository/

ivysettings.xml} .

– Apply and Close

Here is the layout of the Architecture Repository for the STM32F746G-DISCO Platform.

6.26. Appendices 1209

MicroEJ Documentation, Revision 32bb132e

Fig. 99: Architecture Repository for STM32F746G-DISCO fullPackaging

Import the Former Platform Sources

• Go to File > Import. . . > General > Existing Projects into Workspace .

• Browse to the archive file that contains the platform sources, like in the example below.

• Select the -configuration , -fp and -bsp projects prefixed with the Platform name (e.g.,
STM32F746GDISCO-Full-CM7_ARMCC-FreeRTOS).

6.26. Appendices 1210

MicroEJ Documentation, Revision 32bb132e

• Click Finish .

Install the Platform Configuration Additions

• Rename the file bsp.properties located in the Platform Configuration Project to bsp2.properties (save
it for later).

• Install Platform Configuration Additions, by following instructions described at https://
github.com/MicroEJ/VEEPortQualificationTools/blob/master/framework/platform/README.rst.
Files within the content folder have to be copied to the -configuration project (e.g.
STM32F746GDISCO-Full-CM7_ARMCC-FreeRTOS-configuration).

• Edit the module.properties file and set com.microej.platformbuilder.platform.filename to the
name of the platform configuration file (e.g. STM32F746GDISCO.platform).

• Update the default name of the Platform module in the module.ivy . Replace with
<info organisation="com.microej.platform.st.stm32f746g-disco" module="Platform"
status="integration" revision="1.0.0"> .

• Update the module.ivy with the Architecture and Packs dependencies.

Here is the module dependencies declared for the STM32F746G-DISCO Platform.

Listing 12: STM32F746GDISCO-Full-CM7_ARMCC-FreeRTOS-
configuration/module.ivy

<dependencies>
<!-- MicroEJ Architecture -->
<dependency org="com.microej.architecture.CM7.CM7hardfp_ARMCC5" name="flopi7A21" rev="7.11.

→˓0">
<artifact name="flopi7A21" m:classifier="${com.microej.platformbuilder.architecture.

→˓usage}" ext="xpf"/>
</dependency>

<!-- MicroEJ Architecture Specific Packs -->
<dependency org="com.microej.architecture.CM7.CM7hardfp_ARMCC5" name="flopi7A21-ui-pack"␣

→˓rev="12.0.1">
<artifact name="flopi7A21-ui-pack" ext="xpfp"/>

</dependency>
<dependency org="com.microej.architecture.CM7.CM7hardfp_ARMCC5" name="flopi7A21-net-pack"␣

→˓rev="6.1.5">
<artifact name="flopi7A21-net-pack" ext="xpfp"/>

</dependency>

<!-- Legacy MicroEJ Generic Packs -->
<dependency org="com.microej.pack" name="fs" rev="4.0.2">
<artifact name="fs" ext="xpfp"/>

</dependency>
<dependency org="com.microej.pack" name="hal" rev="2.0.1">
<artifact name="hal" ext="xpfp"/>

</dependency>

</dependencies>

6.26. Appendices 1211

https://github.com/MicroEJ/VEEPortQualificationTools/blob/master/framework/platform/
https://github.com/MicroEJ/VEEPortQualificationTools/blob/master/framework/platform/README.rst
https://github.com/MicroEJ/VEEPortQualificationTools/blob/master/framework/platform/README.rst

MicroEJ Documentation, Revision 32bb132e

Update the Front Panel Configuration

• In -configuration/frontpanel/frontpanel.properties set the project.name to the folder name that
contains the front-panel (e.g. project.name=STM32F746GDISCO-Full-CM7_ARMCC-FreeRTOS-fp).

At this state, the Platform is not connected to the BSP yet, but you can check that everything is properly configured
so far by building it:

• Right-click on the -configuration project and select Build Module

• Import the Platform built into the workspace by following the instructions available at the end of the build
logs (see logs example below).

module-platform:report:
[echo] ␣

→˓==
[echo] Platform has been built in this directory 'C:\STM32F746GDISCO-Platform-

→˓CM7hardfp_ARMCC5-0.1.0'.
[echo] To import this project in your MicroEJ SDK workspace (if not already␣

→˓available):
[echo] - Select 'File' > 'Import...' > 'General' > 'Existing Projects into Workspace

→˓' > 'Next'
[echo] - Check 'Select root directory' and browse 'C:\STM32F746GDISCO-Platform-

→˓CM7hardfp_ARMCC5-0.1.0' > 'Finish'
[echo] ␣

→˓==

At this stage the Platform is built and imported in the workspace, so you can create a Standalone Application and
run it on the Simulator (see Create a MicroEJ Standalone Application).

Note: If the build failed, it might be because the Architecture and Packs can not be retrieved from the Architec-
ture Repository. Ensure that the Architecture Repository is correctly configured and that it contains the required
artifacts (as described in the first step).

Configure the BSP Connection

This section explains how to configure a full BSP Connection on the STM32F746G-DISCOPlatform. SeeBSPConnec-
tion for more information.

• Open -configuration/bsp/bsp.properties .

• Comment out and set the following variables:

– root.dir

– microejapp.relative.dir

– microejlib.relative.dir

– microejinc.relative.dir

– microejscript.relative.dir

For example:

6.26. Appendices 1212

MicroEJ Documentation, Revision 32bb132e

Specify the MicroEJ Application file ('microejapp.o') parent directory.
This is a '/' separated directory relative to 'bsp.root.dir'.
microejapp.relative.dir=Projects/STM32746G-Discovery/Applications/MicroEJ/platform/lib

Specify the MicroEJ Platform runtime file ('microejruntime.a') parent directory.
This is a '/' separated directory relative to 'bsp.root.dir'.
microejlib.relative.dir=Projects/STM32746G-Discovery/Applications/MicroEJ/platform/lib

Specify MicroEJ Platform header files ('*.h') parent directory.
This is a '/' separated directory relative to 'bsp.root.dir'.
microejinc.relative.dir=Projects/STM32746G-Discovery/Applications/MicroEJ/platform/inc

Specify BSP external scripts files ('build.bat' and 'run.bat') parent directory.
This is a '/' separated directory relative to 'bsp.root.dir'.
microejscript.relative.dir=Projects/STM32746G-Discovery/Applications/MicroEJ/scripts

Specify the BSP root directory. Can use ${project.parent.dir} which target the parent␣
→˓of platform configuration project
For example, '${project.parent.dir}/PROJECT-NAME-bsp' specifies a BSP project beside␣
→˓the '-configuration' project
root.dir=${project.parent.dir}/STM32F746GDISCO-Full-CM7_ARMCC-FreeRTOS-bsp/

The paths to microejXXX.relative.dir can be inferred by looking at the output.dir value in bsp2.
properties saved earlier. For example on the STM32F746G-DISCOproject, its value is ${workspace}/${project.
prefix}-bsp/Projects/STM32746G-Discovery/Applications/MicroEJ/platform .

• The BSP project path ${workspace}/${project.prefix}-bsp becomes ${project.parent.dir}/
STM32F746GDISCO-Full-CM7_ARMCC-FreeRTOS-bsp/ .

• Projects/STM32746G-Discovery/Applications/MicroEJ/platform is the path to the Application file,
Platform header and runtime files. MicroEJ convention is to put the Application file and Platform runtime
files to platform/lib/ and the Platform header files to platform/inc/ .

• Build Script File and Run Script File are PCA-specific and did not exist before. By convention we put them in a
scripts/ directory.

The paths to microejXXX.relative.dir can be also be checked by looking at the C TOOLCHAIN
configuration of the BSP. For example on the STM32F746G-DISCO project, the BSP configuration is lo-
cated at STM32F746GDISCO-Full-CM7_ARMCC-FreeRTOS-bsp/Projects/STM32746G-Discovery/Applications/
MicroEJ/MDK-ARM/Project.uvprojx .

• In Project > Options for Target ‘standalone’. . . > C/C++ > Include Paths contains ../platform/inc

. This corresponds to the microejinc.relative.dir relative the TOOLCHAIN project’s file.

• In the Project pane, there is a folder MicroEJ/Libs that contains microejruntime.lib and microejapp.
o .

– Right-click on microejruntime.lib > Options for File ‘XXX’. . . . The Path is ../platform/lib/

microejruntime.lib . This corresponds to the microejlib.relative.dir .

– Right-click on microejapp.o > Options for File ‘XXX’. . . . The Path is ../platform/lib/

microejapp.o . This corresponds to the microejapp.relative.dir .

• Rebuild the platform (Right-click on the -configuration project and select Build Module)

At this stage the Platform is connected to the BSP so you can build and programa Firmware (seeRun on theDevice).

6.26. Appendices 1213

MicroEJ Documentation, Revision 32bb132e

Add the Build and Run Scripts

The final stage consists of adding the Build Script, to automate the build of a Firmware, and the Run Script, to
automate the programming of a MicroEJ Firmware onto the device.

The Platform Qualification Tools provides examples of Build Script and Run Script for various C TOOLCHAIN here.
This tutorial also describes the steps to create and use these scripts.

On the STM32F746G-DISCO, the C TOOLCHAIN used is Keil uVision.

• Create the directory pointed by microejscript.relative.dir (e.g.
STM32F746GDISCO-Full-CM7_ARMCC-FreeRTOS-bsp\Projects\STM32746G-Discovery\Applications\
MicroEJ\scripts).

• Copy the example scripts from the Platform Qualification Tools for the C TOOLCHAIN of the BSP (e.g.
PlatformQualificationTools/framework/platform/scripts/KEILuV5/)

• Configure the scripts. Refer to the documentation in the scripts comments for this step.

• Enable the execution of the build script:

– Go to Run > Run Configurations. . .

– Select the launch configuration

– Go to Configuration > Device > Deploy

– Ensure Execute the MicroEJ build script (build.bat) at a location known by the 3rd-party BSP project.
is checked.

Use the Platform in Module Projects

Module projects may require the Platform, for example to build an Application or to run a Test Suite. One way of
selecting the Platform in a module project is to declare it as a module dependency (see Platform Selection).

In case a former Platform is loaded this way in your existing module projects, the dependency has to be updated.
In this example, the Platform would now be selected like this:

<dependency org="com.microej.platform.st.stm32f746g-disco" name="Platform" rev="1.
→˓0.0" conf="platform->default" transitive="false"/>

This also requires that your module projects use a compatible version of the associated build type (the build type
relates to the Module Natures). As stated before, loading a Platform in its latest form requires at least the version
5.4.0 of the SDK. Therefore, make sure to use versions of the build types that come with the SDK 5.4.0 and
above. Here is a brief summary of the minimum version for the most commonmodule natures:

• Add-On Library: build type com.is2t.easyant.buildtypes#build-microej-javalib version 5.0.0 and
above.

• Standalone Application: build type com.is2t.easyant.buildtypes#build-firmware-singleapp version
1.4.0 and above.

• Sandboxed Application: build type com.is2t.easyant.buildtypes#build-application version 8.0.0
and above.

6.26. Appendices 1214

https://github.com/MicroEJ/VEEPortQualificationTools
https://github.com/MicroEJ/VEEPortQualificationTools/tree/master/framework/platform/scripts
https://github.com/MicroEJ/VEEPortQualificationTools

MicroEJ Documentation, Revision 32bb132e

Going further

Now that the Platform is connected to the BSP it can leverage the Java Test Suites provided by the Platform Quali-
fication Tools. See Run a Test Suite on a Device for a step by step explanation on how to do so.

6.26.6 Architecture 8.0.0 Migration

This chapter describes the steps to migrate a VEE Port from Architecture 8.0.0 to Architecture 8.1.0 .

As a reminder, refer to the Architecture 8.1.0 Changelog section for the complete list of changes and updates.

Migrate Core Engine Capability Configuration

The selectionof theCoreEngine capability is nowdonevia theproperty com.microej.runtime.capability . Refer
to one of the sections below depending on your desired capability.

If you use the property com.microej.platformbuilder.module.multi.enabled , update your Platform Config-
uration Additions to the version 2.1.0 or higher. It is also recommended to delete the property com.microej.
platformbuilder.module.multi.enabled and to use the property com.microej.runtime.capability instead.

Mono-Sandbox

Mono-Sandbox remains the default capability and no changes are required to your VEE Port configuration.

Multi-Sandbox

In the Platform Editor, the Multi Applications (kf) module now appears in gray:

Unselect the kf module and follow the instructions from theMulti-Sandbox installation section.

Tiny-Sandbox

The property mjvm.standalone.configuration used to select the Tiny-Sandbox capability is now deprecated.
It is recommended to remove the definition of this property from the configuration.xml file and follow the
instructions from the Tiny-Sandbox installation section.

6.26. Appendices 1215

https://github.com/MicroEJ/VEEPortQualificationTools
https://github.com/MicroEJ/VEEPortQualificationTools
https://github.com/MicroEJ/VEEPortQualificationTools/blob/master/framework/platform/
https://github.com/MicroEJ/VEEPortQualificationTools/blob/master/framework/platform/

MicroEJ Documentation, Revision 32bb132e

Migrate Your LLKERNEL Implementation

This section only applies if your LLKERNEL was based on legacy In-Place Installation mode. The Ker-
nel Working Bu�er no longer exists. The functions LLKERNEL_IMPL_allocateWorkingBuffer() and
LLKERNEL_IMPL_freeWorkingBuffer() are no more called and can be simply removed from your implementa-
tion.

Memory allocation for the Featureswill nowuse the function LLKERNEL_IMPL_allocateFeature() . The following
code is a LLKERNEL_impl.c template for migrating your current implementation using this API. The code logic
based on a malloc/free implementation does not need to be changed.

#include <stdlib.h>
#include <string.h>

#include "LLKERNEL_impl.h"

// Your implementation of malloc()
#define KERNEL_MALLOC(size) malloc((size_t)(size))

// Your implementation of free()
#define KERNEL_FREE(addr) free((void*)(addr))

// Your implementation of 'ASSERT(0)'
#define KERNEL_ASSERT_FAIL() while(1)

// Utility macros for allocating RAM and ROM areas with required alignment constraints
#define KERNEL_AREA_GET_MAX_SIZE(size, alignment) ((size)+((alignment)-1))
#define KERNEL_AREA_GET_START_ADDRESS(addr, alignment) ((void*)((((int32_
→˓t)(addr))+(alignment)-1)&~((alignment)-1)))

typedef struct installed_feature{
void* ROM_area;
void* RAM_area;

} installed_feature_t;

int32_t LLKERNEL_IMPL_allocateFeature(int32_t size_ROM, int32_t size_RAM) {
int32_t ret = 0;
int total_size = sizeof(installed_feature_t);
total_size += KERNEL_AREA_GET_MAX_SIZE(size_ROM, LLKERNEL_ROM_AREA_ALIGNMENT);
total_size += KERNEL_AREA_GET_MAX_SIZE(size_RAM, LLKERNEL_RAM_AREA_ALIGNMENT);

void* total_area = KERNEL_MALLOC(total_size);
if(NULL != total_area){

installed_feature_t* f = (installed_feature_t*)total_area;
f->ROM_area = KERNEL_AREA_GET_START_ADDRESS((void*)(((int32_t)f)+((int32_

→˓t)sizeof(installed_feature_t))), LLKERNEL_ROM_AREA_ALIGNMENT);
f->RAM_area = KERNEL_AREA_GET_START_ADDRESS((void*)(((int32_t)f->ROM_area)+size_ROM),␣

→˓LLKERNEL_RAM_AREA_ALIGNMENT);
ret = (int32_t)f;

} // else out of memory

return ret;
}

(continues on next page)

6.26. Appendices 1216

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

void LLKERNEL_IMPL_freeFeature(int32_t handle) {
KERNEL_FREE(handle);

}

int32_t LLKERNEL_IMPL_getAllocatedFeaturesCount(void) {
// No persistency support
return 0;

}

int32_t LLKERNEL_IMPL_getFeatureHandle(int32_t allocation_index) {
// No persistency support
KERNEL_ASSERT_FAIL();

}

void* LLKERNEL_IMPL_getFeatureAddressRAM(int32_t handle) {
return ((installed_feature_t*)handle)->RAM_area;

}

void* LLKERNEL_IMPL_getFeatureAddressROM(int32_t handle) {
return ((installed_feature_t*)handle)->ROM_area;

}

int32_t LLKERNEL_IMPL_copyToROM(void* dest_address_ROM, void* src_address, int32_t size) {
memcpy(dest_address_ROM, src_address, size);
return LLKERNEL_OK;

}

int32_t LLKERNEL_IMPL_flushCopyToROM(void) {
return LLKERNEL_OK;

}

int32_t LLKERNEL_IMPL_onFeatureInitializationError(int32_t handle, int32_t error_code) {
// No persistency support
KERNEL_ASSERT_FAIL();
return 0;

}

6.26.7 Architecture 7.x Migration

This chapter describes the steps to migrate a VEE Port from Architecture 7.x to Architecture 8.0.0 .

As a reminder, refer to the Architecture 8.0.0 Changelog section for the complete list of changes and updates.

6.26. Appendices 1217

MicroEJ Documentation, Revision 32bb132e

Update Platform Configuration Additions

Architecture 8.0.0 nowdirectly integrates theBSPConnectionmechanism. Consequently, PlatformConfiguration
Additions files have been separated in two directories:

• content-sdk-5 : files required for building the VEE Port using SDK 5.x (MMM)

• content-architecture-7 : files required for building the Executable using Architecture 7.x.

See https://github.com/MicroEJ/VEEPortQualificationTools/blob/master/framework/platform/README.rst for
more details.

Your VEE Port must be updated to remove files that are now included in Architecture 8:

• Delete [name]-configuration/build/module/module-dropins directory.

• Delete [name]-configuration/build/module/module-dropins.ant file.

• Delete [name]-configuration/build/platform/platform-deploy.ant file.

• Delete [name]-configuration/build/platform/platform-kf.ant file.

• Download the latest content-sdk-5 directory. Your local files must be overridden.

• Edit yourmodule.ivy and put back your module name, version, organisation and <dependencies> content.

• Edit yourmodule.properties and put back your options (if they have changed from default ones).

• Delete the following files from your [name]-configuration/dropins directory:

– scripts/init-bsp/*

– scripts/init-license-checker/*

– scripts/checkOS.xml

– scripts/deployInBSP.xml

– scripts/deployInBSPCommon.xml

– scripts/deployToolBSPRun*

– scripts/fullLink*

– tools/license-checker.jar

– workbenchExtension-launchScriptFramework.jar

• Rebuild your VEE Port.

• Rebuild your Executable.

Update BSPwith new Sections Names

TheCore Engine sections have been renamed to respect the standard ELF convention. SeeCore Engine Link section
for further details.

All references to section names in your BSPmust be updated. This is usually only used in your linker script file, but
section names are sometimes also hardcoded in the C Code. Here is an example of a GNU LD script highlighting the
typical changes that must be made:

6.26. Appendices 1218

https://github.com/MicroEJ/VEEPortQualificationTools/blob/master/framework/platform/README.rst

MicroEJ Documentation, Revision 32bb132e

Fig. 100: Example of LD Script File Migration

Remove LLBSP_IMPL_isInReadOnlyMemory

The LLBSP_IMPL_isInReadOnlyMemory function has been removed since it is no more called by the Core Engine.
You can simply remove your implementation function.

Migrate Built-in Modules

The following built-in legacy modules have been removed from the Architecture:

• Device

• ECOM-COMM

In the Platform Editor, these modules now appear in gray with Architecture 8.x :

6.26. Appendices 1219

MicroEJ Documentation, Revision 32bb132e

To remove these modules, open the .platform file using a text editor and remove the following XML elements:

<group name="device"/>
<group name="ecom"/>

Migrate Device Module

The latest Device Pack available on the Central Repository is backward compatible with the built-in Architecture
module.

The following dependency must be added to themodule.ivy of the VEE Port configuration project:

<dependency org="com.microej.pack.device" name="device-pack" rev="1.1.1" />

Migrate ECOM-COMMModule

The Foundation Library ECOM-COMM-1.1 has been removed from Architecture 8.0.0. It is now replaced by
ECOM-COMM-2.0 which is distributed in its own Pack.

There are twomigration options:

• either migrate to the latest ECOM-COMM-2.0 Pack,

• or integrate the legacy ECOM-COMM-1.1 Pack files as-is into your VEE Port dropins directory.

Contact our support team to get the best migration strategy and detailed instructions.

6.26. Appendices 1220

https://repository.microej.com/modules/com/microej/pack/device/device-pack/
https://www.microej.com/contact/#form_2

MicroEJ Documentation, Revision 32bb132e

Migrate Your LLKERNEL Implementation

The following code is a LLKERNEL_impl.c template for migrating your current implementation of Feature instal-
lation in RAM. This is now called In-Place Installation. Your code logic for managing allocated blocks does not need
to be changed. As there is no installation in ROM, most of the new functions do not need to be implemented.

#include "LLKERNEL_impl.h"

void* LLKERNEL_IMPL_allocateWorkingBuffer(int32_t size) {
// Paste here the code of your former 'LLKERNEL_IMPL_allocate' function

}

void LLKERNEL_IMPL_freeWorkingBuffer(void* chunk_address) {
// Paste here the code of your former 'LLKERNEL_IMPL_free' function

}

int32_t LLKERNEL_IMPL_allocateFeature(int32_t size_ROM, int32_t size_RAM) {
return 0;

}

int32_t LLKERNEL_IMPL_getAllocatedFeaturesCount(void) {
return 0;

}

void LLKERNEL_IMPL_freeFeature(int32_t handle) {
// Paste here your implementation of 'ASSERT(0)'

}

int32_t LLKERNEL_IMPL_getFeatureHandle(int32_t allocation_index) {
// Paste here your implementation of 'ASSERT(0)'
return 0;

}

void* LLKERNEL_IMPL_getFeatureAddressRAM(int32_t handle) {
// Paste here your implementation of 'ASSERT(0)'
return 0;

}

void* LLKERNEL_IMPL_getFeatureAddressROM(int32_t handle) {
// Paste here your implementation of 'ASSERT(0)'
return 0;

}

int32_t LLKERNEL_IMPL_copyToROM(void* dest_address_ROM, void* src_address, int32_t size) {
// Paste here your implementation of 'ASSERT(0)'
return 0;

}

int32_t LLKERNEL_IMPL_flushCopyToROM(void) {
// Paste here your implementation of 'ASSERT(0)'
return 0;

}

(continues on next page)

6.26. Appendices 1221

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

int32_t LLKERNEL_IMPL_onFeatureInitializationError(int32_t handle, int32_t error_code) {
// Paste here your implementation of 'ASSERT(0)'
return 0;

}

Migrate Trace C Library Usage

In Architecture 8.0.0 , the Trace C library’s version has been updated from 1.0.0 to 2.0.0 . This new version
introduces the following backward incompatible changes:

• C header file trace.h has been renamed into LLTRACE.h .

• The functions declared in this header have been renamed from TRACE_xxx to LLTRACE_xxx .

If you have included trace.h in a C file, the compilation will fail with an error message similar to one of the fol-
lowing messages:

• fatal error: trace.h: No such file or directory

• Fatal Error[Pe1696]: cannot open source file "trace.h"

To fix this issue, you can eithermigrate to version 2.0.0 of the Trace library or provide a backward compatibility
layer.

To migrate to version 2.0.0 , you need to make the following changes:

• Replace the directives #include "trace.h" with #include "LLTRACE.h" .

• Replace any references to the TRACE_xxx functions (e.g., TRACE_record_event_void) with references to
the corresponding LLTRACE_xxx function (e.g., LLTRACE_record_event_void).

If you decide not tomodify existing code, you can create and add to your project a trace.h file with the following
content:

#ifndef TRACE_H
#define TRACE_H

/**
* Trace library API backward compatibility layer.
* Allows to use Trace API 1.0.0 (Architecture 7.x) in a VEE Port
* that includes Trace API 2.0.0 (Architecture 8.x).
*/

#include "LLTRACE.h"

#ifdef __cplusplus
extern "C" {

#endif

#define TRACE_start LLTRACE_start
#define TRACE_start LLTRACE_start
#define TRACE_stop LLTRACE_stop
#define TRACE_is_started LLTRACE_is_started
#define TRACE_declare_event_group LLTRACE_declare_event_group
#define TRACE_record_event_void LLTRACE_record_event_void
#define TRACE_record_event_u32 LLTRACE_record_event_u32

(continues on next page)

6.26. Appendices 1222

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

#define TRACE_record_event_u32x2 LLTRACE_record_event_u32x2
#define TRACE_record_event_u32x3 LLTRACE_record_event_u32x3
#define TRACE_record_event_u32x4 LLTRACE_record_event_u32x4
#define TRACE_record_event_u32x5 LLTRACE_record_event_u32x5
#define TRACE_record_event_u32x6 LLTRACE_record_event_u32x6
#define TRACE_record_event_u32x7 LLTRACE_record_event_u32x7
#define TRACE_record_event_u32x8 LLTRACE_record_event_u32x8
#define TRACE_record_event_u32x9 LLTRACE_record_event_u32x9
#define TRACE_record_event_u32x10 LLTRACE_record_event_u32x10
#define TRACE_record_event_end LLTRACE_record_event_end
#define TRACE_record_event_end_u32 LLTRACE_record_event_end_u32

#ifdef __cplusplus
}

#endif

#endif //TRACE_H

Migrate Legacy System Properties Files

Legacy SystemProperties files (*.system.properties) are nomore supported by Architecture 8.0.0 . These files
must be renamed to *.properties.list files (see System Properties for more details).

To facilitate the migration, legacy System Properties files are detected by SOAR and the following error is thrown:

1 : SOAR-L ERROR :
[M78] - System properties file [properties/xxx.system.properties] in classpath entry [...]␣
→˓must be renamed to [properties/xxx.properties.list].

The following modules declare legacy System Properties files in older versions. Make sure to update the module
to the specified version or a newer release in your projects.

• Pack NET version 9.4.2 .

• Add-On library eclasspath-logging version 1.2.1 .

• Testsuite FS version 3.0.7 .

6.26. Appendices 1223

CHAPTER

SEVEN

KERNEL DEVELOPER GUIDE

7.1 Overview

7.1.1 Introduction

The Kernel Developer’s Guide describes how to create a Kernel Application. A Kernel Application is a Standalone
Application that can be extended (statically or dynamically) to install, run, and control the execution of new appli-
cations called Sandboxed Applications.

The intended audience of this document are Java developers and system architects who plan to design and build
their own Kernel.

Here is a non-exhaustive list of the activities to be done by Kernel Developers:

• Integrating the Kernel Application with a VEE Port to produce a Multi-Sandbox Executable and Virtual Device

• Defining the set of APIs that will be exposed to Applications, optionally by maintaining a custom Runtime
Environment

• Managing lifecycles of applications (deciding when to install, start, stop and uninstall them)

• Defining and applying permissions on system resources (rules & policies)

• Managing connectivity

• Controlling andmonitoring resources

This document takes as prerequisite that a VEE Port is available for the target device (see VEE Porting Guide). This
document also assumes that the reader is familiar with the development and deployment of Applications (see
Application Developer Guide) and specifics of developing Sandboxed Applications (see Sandboxed Application).

7.1.2 Terms and Definitions

AMulti-SandboxVEEPort is aVEEPortwith theMulti-Sandboxcapabilityof theCoreEngineenabled (see thechapter
Multi-Sandbox of the VEE Porting Guide). A Multi-Sandbox Executable can only be built with a Multi-Sandbox VEE
Port.

A Virtual Device is the Multi-Sandbox Executable counterpart for developing a Sandboxed Application. It provides
the Kernel functional simulation part. Usually it also provides a mean to directly deploy a Sandboxed Application
on the target device running the Multi-Sandbox Executable (this is called Local Deployment).

1224

MicroEJ Documentation, Revision 32bb132e

7.1.3 Overall Architecture

Fig. 1: Kernel Boundary Overview

7.1.4 Input and Output Artifacts

Fig. 2: Kernel Input and Output Artifacts

7.1.5 Kernel Build Flow

The following describes the Kernel build flow.

7.1. Overview 1225

MicroEJ Documentation, Revision 32bb132e

Fig. 3: Kernel Build Flow

The Virtual Device builder performs the following steps:

• Remove the embedded part of the VEE Port (including MEJ32).

• Append Add-On Libraries and pre-installed Applications into the runtime classpath. See Kernel Module Con-
figuration section for specifying the dependencies.

• Add a custom license allowing Virtual Device redistribution.

• Generate the Runtime Environment from the Kernel APIs.

7.1.6 Kernel Implementation Libraries

Kernel implementations must cover the following topics:

• The kernel entry point implementation, that deals with configuring the di�erent policies, registering kernel
services and converters, and starting applications.

• The storage infrastructure implementation: mapping the Storage service on an actual data storage imple-
mentation. There are multiple implementations of the data storage, provided in di�erent artifacts that will
be detailed in dedicated sections.

• The applicationsmanagement infrastructure: how application code is stored inmemory and how the lifecy-
cle of the code is implemented. Again, this has multiple alternative implementations, and the right module
must be selected at build time to cover the specific Kernel needs.

• The simulation support: how the Virtual Device implementation reflects the Executable implementation,
with the help of specific artifacts.

• The Kernel API definition: not all the classes and methods used to implement the Kernel Application are
actually exposed to the Sandboxed Applications. There are some artifacts available that expose some of the
libraries to the applications, these ones can be picked when the Kernel is assembled.

7.1. Overview 1226

MicroEJ Documentation, Revision 32bb132e

• The Kernel types conversion and other KF-related utilities: Kernel types instances owned by one application
can be transferred to another application through a Shared Interface. For that to be possible, a conversion
proxy must be registered for this kernel type.

• Tools libraries: tools that plug into the SDK, extending themwith features that are specific to the Kernel, like
deployment of an application, a management console, . . .

7.2 Kernel & Features Specification

Multi-Sandboxing is based on the Kernel & Features specification (KF). The fundamental concepts are introduced
in the Sandboxed Application chapter.

The following table provides links to the complete KF APIs & specification.

Documentation Link
Java APIs https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/

package-summary.html
Specification https://repository.microej.com/packages/ESR/ESR-SPE-0020-KF-1.4-H.pdf
Module https://repository.microej.com/modules/ej/api/kf/

7.3 Getting Started

MicroEJ provides a ready-to-use Kernel template called Kernel GREEN to get familiar with Kernel development.

This Kernel is available in two di�erent formats:

• in binary: pre-built Executables and Virtual Devices for evaluation boards available at https://repository.
microej.com/packages/green/. It allows the Application developer to write its first Sandboxed Application
quickly and then dynamically deploy it through a TCP/IP connection. See theGet StartedwithMulti-Sandbox
for STM32F7508-DK Discovery Kit.

• in source: the Kernel GREEN repository is available at https://github.com/MicroEJ/Kernel-GREEN. It allows
the Kernel developer to explore Multi-Sandboxing capabilities and start to adapt them to its needs. See the
README file from the repository. It contains a step-by-step guide to build the Kernel GREEN on any compati-
ble VEE Port.

7.4 Kernel Creation

This chapter requires a minimum understanding ofMicroEJ Module Manager andModule Natures.

7.4.1 Create a new Project

First create a new Kernel Application.

A new project is generated into the workspace:

7.2. Kernel & Features Specification 1227

https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/package-summary.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/package-summary.html
https://repository.microej.com/packages/ESR/ESR-SPE-0020-KF-1.4-H.pdf
https://repository.microej.com/modules/ej/api/kf/
https://repository.microej.com/packages/green/
https://repository.microej.com/packages/green/
https://developer.microej.com/stm32f7508-dk-discovery-kit-get-started-multi-sandbox/
https://developer.microej.com/stm32f7508-dk-discovery-kit-get-started-multi-sandbox/
https://github.com/MicroEJ/Kernel-GREEN
https://github.com/MicroEJ/Kernel-GREEN/blob/master/README.md

MicroEJ Documentation, Revision 32bb132e

7.4.2 Configure a VEE Port

Beforebuilding theKernel, youneed tobuildaVEEPortwithMulti-Sandboxcapability. Toenable theMulti-Sandbox
capability in your VEE Port configuration, follow the instructions from theMulti-Sandbox section.

Once the VEE Port is built, configure the target VEE Port in your Kernel project. See Platform Selection.

7.4.3 Build the Executable and Virtual Device

In thePackageExplorer, right-clickon theproject andselect Build Module . Thebuildof theExecutableandVirtual
Devicemay take several minutes. Once the build has succeeded, the folder myfirmware > target~ > artifacts
contains the firmware output artifacts (see Input and Output Artifacts) :

• mymodule.out : The Executable to be programmed on device.

• mymodule.kpk : The Kernel package to be imported in a MicroEJ Forge instance.

• mymodule.vde : The Virtual Device to be imported in the SDK.

• mymodule-workingEnv.zip : This file contains all files produced by the build phase (intermediate, debug
and report files).

7.4. Kernel Creation 1228

MicroEJ Documentation, Revision 32bb132e

7.4. Kernel Creation 1229

MicroEJ Documentation, Revision 32bb132e

7.4.4 Expose APIs

A Kernel must define the set of classes, methods and static fields all applications are allowed to use.

Note: According to the Kernel and Features specification, no API is open by default to Sandboxed Applications.

This can be done either by declaring Kernel APIs or by definining a Runtime Environment.

The main di�erence is from the Application development point of view. In the first case, the Application project
still declares standard module dependencies. This is the good starting point for quickly building a Kernel with Ap-
plications based on the MicroEJ modules as-is. In the second case, the Application project declares the runtime
environment dependency. This is the preferred way in case you intend to build andmaintain a dedicated Applica-
tions ecosystem.

A Kernel API or a Runtime Environment module is added as a dependency with the configuration
kernelapi->default .

<dependency org="com.microej.kernelapi" name="edc" rev="1.0.6" conf="kernelapi->default"/>

7.4.5 Implement a Security Policy

TheKernel can restrict sensitiveorpossibly unsafeoperationsperformedbySandboxedApplications, thusdefining
a security policy. Implementing a security policy is achievedby enabling support for SecurityManagement system-
wide and by registering to the Kernel a custom SecurityManager that will handle the Permission checks.

Note: An API controlled by the Security Managermust be guarded by a Permission check. The usual API documen-
tation convention is to declare to throw a SecurityException with details about the requested Permission.

Enable the Security Management

For the sake of ROM footprint optimization, calls to Permission checks are disabled by default. In order to activate
this feature the Option(checkbox): Enable SecurityManager checks option must be set.

Implement your Security Policy

This can be achieved by subclassing the base SecurityManager class, overriding its SecurityMan-
ager.checkPermission(Permission) method, and registering an instance of this class to the Kernel by a call to
System.setSecurityManager(SecurityManager).

// create a new Security Manager
SecurityManager sm = new SecurityManager() {

@Override
public void checkPermission(java.security.Permission perm) {

// here implement your Kernel Security Policy
};

};
// register the Security Manager
System.setSecurityManager(sm);

7.4. Kernel Creation 1230

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/SecurityManager.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/security/Permission.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/SecurityException.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/SecurityManager.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/SecurityManager.html#checkPermission-java.security.Permission-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/SecurityManager.html#checkPermission-java.security.Permission-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#setSecurityManager-java.lang.SecurityManager-

MicroEJ Documentation, Revision 32bb132e

Then you have to implement your own Security Policy.

Implementation of a Security Policy is demonstrated in the Kernel-GREEN project. This Kernel implements a
logging-only Security Policy using the utility class FeaturePermissionCheckDelegate that helps in implementing
Permission checks in a Multi-Sandbox environment.

7.4.6 Add Pre-installed Applications

Your device may comewith pre-installed applications, also known as applications that are already available when
the Kernel starts. These applications are installed during themanufacturing process, such as in ROM alongside the
Kernel executable.

To mimic this behavior on a Virtual Device, add a new dependency with the configuration
systemapp-vd->application .

<dependency org="com.mycompany" name="myapp" rev="0.1.0" conf="systemapp-vd->application"/>

7.4.7 Build the Executable in the Workspace

It is possible to build the Executable using aMicroEJ Launch rather than the regular module build. This speeds-up
the build time thanks to MicroEJ Module Manager workspace resolution and Eclipse incremental compilation.

• Import the Kernel project and all Sandboxed Application projects in the same workspace,

• Prepare a MicroEJ Application launch for the Kernel as a regular Standalone Application,

• Prepare a MicroEJ Application launch for each Sandboxed Application using Build Dynamic Feature settings.

The following figure shows the overall build flow:

Fig. 4: Kernel Build Flow using MicroEJ Launches

7.4. Kernel Creation 1231

https://github.com/MicroEJ/Kernel-GREEN
https://repository.microej.com/javadoc/microej_5.x/apis/com/microej/kf/util/security/FeaturePermissionCheckDelegate.html

MicroEJ Documentation, Revision 32bb132e

7.4.8 Kernel Application Configuration

Module Configuration

The build-firmware-multiapp build type defines additional configurations, used to specify the di�erent kind of
firmware inputs (see Input and Output Artifacts) as dependencies.

The following table lists the di�erent configuration mapping usage where a dependency line is declared:

<dependency org="..." name="..." rev="..." conf="[Configuration Mapping]"/>

Table 1: ConfigurationsMapping for build-firmware-multiapp Build
Type

Configuration Mapping Dependency Kind Usage
vdruntime->default Add-On Library (JAR

)
Embedded in the Virtual Device only, not in the Exe-
cutable

default->default;
vdruntime->default

Add-On Library (JAR
)

Embedded in both the Executable and the Virtual De-
vice

platform->default VEE Port VEE Port dependency used to build the Executable and
the Virtual Device. There are other ways to select the
VEE Port (see Platform Selection)

kernelapi->default Runtime Environ-
ment (JAR)

See Runtime Environment

systemapp-vd->application Application (WPK) Included to the Virtual Device as pre-installed Applica-
tion.

Example of minimal firmware dependencies.

The following example defines a Kernel that exposes all APIs of EDC library.

<dependencies>
<dependency org="ej.api" name="edc" rev="1.2.0" conf="provided" />
<!-- Runtime API (set of Kernel API files) -->
<dependency org="com.microej.kernelapi" name="edc" rev="1.0.0" conf="kernelapi->default"/

→˓>
</dependencies>

Build Options

The Kernel Application module nature section describes all the options available for building a Kernel module.

Build only a Virtual Device with a pre-existing Kernel

Copy/Paste the .kpk file into the folder dropins

7.4. Kernel Creation 1232

MicroEJ Documentation, Revision 32bb132e

7.5 Kernel APIs

Kernel API files (kernel.api) specify among all types owned by the Kernel which onesmust be used by Features,
and for those types which members (method, and static fields) are allowed to be accessed by Features. When a
type is not declared in a Kernel API, the Kernel and each Feature can have their own version of that type, but if a
type is declared in a Kernel API file only the Kernel version will be used by the Kernel and all the Features.

For mode details refer to the Class Spaces chapter of the Kernel & Features Specification.

7.5.1 Kernel API Definition

A Kernel API file is an XML file named kernel.api declared at the root of one or more path composing the Appli-
cation classpath.

Listing 1: Kernel API Example for exposing System.out.println API

<require>
<type name="java.io.PrintStream"/>
<type name="java.lang.String"/>
<type name="java.lang.System"/>
<field name="java.lang.System.out"/>
<method name="java.io.PrintStream.println(java.lang.String)void"/>

</require>

The table belowdescribes the format of the XML elements. The full XML schema is available in theKernel & Features
Specification.

Table 2: XML elements specification
Tag Attributes Description
re-
quire

The root element

field Static fielddeclaration. Declaringa fieldasaKernelAPI automatically sets thedeclaring
type as a Kernel API

name Fully qualified name on the form [type].[fieldName]
method Method or constructor declaration. Declaring amethod or a constructor as a Kernel API

automatically sets the declaring type as a Kernel API
name Fully qualified name on the form [type].[methodName]([typeArg1,...,typeArgN)

typeReturned . Types are fully qualified names or one of a base type as described by
the Java language (boolean , byte , char , short , int , long , float , double) When
declaring a constructor, methodName is the single type name. When declaring a void
method or a constructor, typeReturned is void

type Type declaration, allowed to be loaded from a Feature using Class.forName()
name Fully qualified name on the form [package].[package].[typeName]

7.5. Kernel APIs 1233

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#out
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#forName-java.lang.String-

MicroEJ Documentation, Revision 32bb132e

7.5.2 Writing Kernel APIs

This section lists di�erent ways to help to write kernel.api files.

Default Kernel APIs Derivation

MicroEJ Corp. provides predefined kernel API files for themost common libraries provided by a Kernel. These files
are packaged as MicroEJ modules in the Developer Repository under the com/microej/kernelapi organisation.

The packaged file kernel.api can be extracted from the JAR file and edited in order to keep only desired types,
methods and fields.

Kernel API Generator

MicroEJ Kernel API Generator is a tool that help to generate a kernel.api file based on a Java classpath.

In the SDK, create a new MicroEJ Tool launch, Run > Run Configurations > MicroEJ Tool , choose your Plat-

form, select Kernel API Generator for the Settings options, and don’t forget to set the output folder.

Define the classpath to use in the Configuration tab, and Press Run . A kernel.api file is generated in the
output folder and it contains all classes, methods and fields found in the given classpath.

7.5. Kernel APIs 1234

https://forge.microej.com/artifactory/microej-developer-repository-release/com/microej/kernelapi/

MicroEJ Documentation, Revision 32bb132e

Category: Kernel API Generator

Group: Classpath

Option(list):

Option Name: kernel.api.generator.classpath

Default value: (empty)

Group: Types Filters

Option(text): Includes Patterns

Option Name: kernel.api.generator.includes.patterns

Default value: **/*.class

Description: Comma separated list of ANT Patterns for types to include.

7.5. Kernel APIs 1235

MicroEJ Documentation, Revision 32bb132e

Option(text): Excludes Patterns

Option Name: kernel.api.generator.excludes.patterns

Default value: (empty)

Description: Comma separated list of ANT Patterns for types to exclude.

7.6 Runtime Environment

7.6.1 Principle

A Runtime Environment is amodule nature for defining the set of APIs available to an Application developer on a
Kernel. It is built by aggregating a set of Kernel APIs.

Building a Runtime Environment is one of the 2 solutions to define the APIs of a Kernel, as described in the section
Expose APIs. Having the set of APIs named and versioned in a Runtime Environment allows to maintain, share and
document it outside of a specific Kernel implementation.

Once built, a Runtime Environment module contains the following elements:

• A JAR file with the whole library of APIs (.class files and .java), used by Application projects to compile
Application code;

• A JAR file with the kernel.api file defined in the module (if any), used by Kernel projects to fetch all the
kernel.api files (by transitivity) to expose APIs when building the Firmware and the Virtual Device;

• A JAR file with the Javadoc of the APIs for documentation.

The following figure shows the overall build flow:

7.6. Runtime Environment 1236

MicroEJ Documentation, Revision 32bb132e

7.6.2 Create a new Runtime Environment Module

A Runtime Environmentmodule project is created with the runtime-api skeleton.

<info organisation="com.mycompany" module="myruntimeapi" status="integration" revision="1.0.0
→˓">

<ea:build organisation="com.is2t.easyant.buildtypes" module="build-runtime-api" revision=
→˓"4.0.+">

</ea:build>
</info>

7.6. Runtime Environment 1237

MicroEJ Documentation, Revision 32bb132e

Kernel APIs as Dependencies

The Kernel APIs can be declared as dependencies of themodule. For example, the following dependencies declare
a Runtime Environment that aggregates all classes, methods and fields defined by EDC , KF , BON , MicroUI Kernel
APIs modules.

<dependencies>
<dependency org="com.microej.kernelapi" name="edc" rev="1.0.6"/>
<dependency org="com.microej.kernelapi" name="kf" rev="2.0.3"/>
<dependency org="com.microej.kernelapi" name="bon" rev="1.1.1"/>
<dependency org="com.microej.kernelapi" name="microui" rev="3.1.0"/>

</dependencies>

The libraries modules are fetched transitively from the Kernel APIs dependencies. For example, the dependency
com.microej.kernelapi#edc;1.0.6 fetches the library ej.api#edc;1.2.3.

It is also possible to force the version of the libraries to use by declaring them as direct dependencies. This is typi-
callyused togeta latest versionof the librarywith improvements suchasJavadoc fixesorNull Analysis annotations.
In this example:

<dependencies>
<dependency org="com.microej.kernelapi" name="edc" rev="1.0.6"/>

<dependency org="ej.api" name="edc" rev="1.3.4"/>
</dependencies>

The Runtime Environment uses the version 1.3.4 of the EDC library instead of the version 1.2.3 fetched transi-
tively by the dependency com.microej.kernelapi#edc;1.0.6 .

Kernel APIs as Project File

The Kernel APIs can also be defined in a file in the Runtime Environment directly. The filemust be named kernel.
api and stored in the src/main/resources folder.

Add Add-On Processors

When the Runtime Environment includes an Add-On Library which uses an Add-On Processor, this Add-On Proces-
sor must be declared as a direct dependency in the Runtime Environment.

The Add-On Processor dependency line can be retrieved as follows:

• In your targetmodule repository, go to the Add-On Library folder,

• Open the ivy-[version].xml file,

• Search for the dependency line with conf="addon-processor->addon-processor"

<ivy-module xmlns:ea="http://www.easyant.org" xmlns:ej="https://developer.
→˓microej.com" xmlns:m="http://ant.apache.org/ivy/maven" version="2.0"␣
→˓ej:version="2.0.0">

<info organisation="com.mycompany" module="mylibrary" revision="M.m.p"␣
→˓status="release" publication="20220523165033">

...
</info>
<configurations>

(continues on next page)

7.6. Runtime Environment 1238

https://repository.microej.com/modules/ej/api/edc/1.2.3/

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

...
<conf name="addon-processor" visibility="public" description="Addon␣

→˓processors dependencies."/>
</configurations>
<publications>

...
</publications>
<dependencies>

<dependency org="ej.api" name="edc" rev="1.3.3" conf="default->default;
→˓provided->provided"/>

...
<dependency org="com.mycompany.addon" name="mylibrary-processor" rev="x.y.

→˓z" conf="addon-processor->addon-processor"/>
...

</dependencies>
</ivy-module>

• In the Runtime Environmentmodule description file, declare the addon-processor configuration in the list
of configurations

<conf name="addon-processor" visibility="public" description="Add-On Processors␣
→˓dependencies."/>

• Paste the Add-On Processor dependency line

Warning: If the Add-On library version is changed, the Add-On Processor version must be updated.

Here is a list of known libraries using an Add-On Processor:

• NLS:

<dependency org="com.microej.tool.addon.runtime" name="binary-nls-processor" rev="
→˓<version>" conf="addon-processor->addon-processor"/>

• Wadapps:

<dependency org="ej.tool.addon.wadapps" name="wadapps-processor" rev="<version>" conf=
→˓"addon-processor->addon-processor"/>

• JavaScript:

<dependency org="com.microej.tool.addon.runtime" name="js-processor" rev="<version>"␣
→˓conf="addon-processor->addon-processor"/>

7.6. Runtime Environment 1239

https://repository.microej.com/modules/com/microej/library/runtime/binary-nls/
https://forge.microej.com/artifactory/microej-developer-repository-release/ej/library/wadapps/wadapps/
https://forge.microej.com/artifactory/microej-developer-repository-release/com/microej/library/runtime/js/

MicroEJ Documentation, Revision 32bb132e

7.6.3 Use a Runtime Environment in an Application

The Runtime Environment dependency must be declared in the Application project as following:

<dependency org="com.mycompany" name="myruntimeapi" rev="1.0.0" conf="provided->runtimeapi"/>

Note: If youwant to add an other library dependency, make sure it is has been built on this Runtime Environment.
Otherwise this could lead to inconsistent situations, for example by using an API not available at runtime. An other
approach is to add it to the Runtime Environment.

7.6.4 Extend a Runtime Environment

In a Kernel, Foundation and Add-On libraries can be extended by adding newmethods to their existing classes. For
example, it allows to add newmethods to the class java.lang.String of the module ej.api#edc. This is done thanks
to the Class Extender tool. This tool works at binary level and is able to inject methods from one class to another.
Extensions can thus be independently compiled andbe retrievedby theKernel and appliedduring aMulti-Sandbox
Executable build.

To make the extensions available to Application developers, the Runtime Environment has to be extended too.

The following diagram illustrates the process of extending the default java.lang.String class from [EDC] from a Ker-
nel developer point of view:

7.6. Runtime Environment 1240

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/String.html
https://repository.microej.com/modules/ej/api/edc/
https://repository.microej.com/modules/com/microej/tool/class-extender/
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/String.html

MicroEJ Documentation, Revision 32bb132e

The extension must be applied in 2 locations:

1. In the Runtime Environment. This ensures that Applications developers can see and use the new methods.
The custom Runtime Environment must contain the following element:

• the API to extend, as a dependency. Here this is the EDC Foundation Library API, which contains the
java.lang.String class we want to extend. We can add it transitively through its kernelapi:

<dependency org="com.microej.kernelapi" name="edc" rev="1.0.6"/>

• a Kernel API file definition in the src/main/resources folder which includes the new methods. For
example:

<?xml version="1.0" encoding="UTF-8"?>
<require>

<method name="java.lang.String.myNewMethod(int)java.lang.String"/>
<method name="java.lang.String.myOtherNewMethod()void"/>

</require>

• the new version of the Java source of the API to extend. This class overrides the original class fetched
fromthedependency. Therefore itmust includeall themethods, theonesexisting in theoriginal classas
well as the newmethods, with their Javadoc specification. In our example, wemust add anew String.
java source file in the src/main/java/java/lang folder, and add the newmethods:

7.6. Runtime Environment 1241

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/String.html

MicroEJ Documentation, Revision 32bb132e

public String myNewMethod(int number) {
return "My number is " + number;

}

public void myOtherNewMethod() {
System.out.println("Hello!");

}

This class overrides the java.lang.String class fetched from the EDC dependency.

Once built, the customRuntime Environment contains the newmethods and can be used in the Applications
projects.

2. In the Kernel. The EDC implementation is extended during the Kernel build thanks to the Class Extender tool.
Refer to the Class Extender tool README and especially to the chapter Include Class Extender During
Firmware Project Build to learn how to integrate it in a Kernel build.

MicroEJ Corp. provides some ready-to-use extension modules:

• com.microej.library.runtime#string-regex: Stringmethods based onRegular Expressions (e.g. String.
split() , String.replaceAll())

• com.microej.library.runtime#string-format: String formatting utilitymethods (e.g. String.format())

7.7 Kernel UID

The Kernel UID is a sequence of bytes that uniquely identifies the Kernel. This UID is generated by SOAR from Java
code content, Platform characteristics and a timestamp. Two Kernels built from the same Kernel Application code
will not share the same UID.

The Kernel UID is used by Core Engine to check if an Application can be installed on a Kernel. During the Application
build, the resulting .fo file embeds the Kernel UID on which it has been built.

During Kernel.install(), the UID embedded in the .fo is compared with the Kernel UID. By default, if both UIDs are
equal the Application installation continues. Otherwise it is stopped. See also Feature Portability Control for .fo
installation on di�erent Kernels.

The Kernel UID can be retrieved at runtime using Kernel.getInstance() .getUID().

7.8 Sandboxed Application Lifecycle

The lifecycle of an Sandboxed Application is managed by the Kernel.

7.7. Kernel UID 1242

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/String.html
https://repository.microej.com/modules/com/microej/tool/class-extender/1.0.4/README-1.0.4.md
https://repository.microej.com/modules/com/microej/library/runtime/string-regex/
https://repository.microej.com/modules/com/microej/library/runtime/string-format/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#install-java.io.InputStream-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#getInstance--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Module.html#getUID--

MicroEJ Documentation, Revision 32bb132e

Fig. 5: Sandboxed Application Lifecycle

An Application is in one of the following states:

• INSTALLED: the Application has been successfully linked to the Kernel and is not running. There are no ref-
erences from the Kernel to objects owned by this Application.

• STARTED: the Application has been started and is running.

• STOPPED: the Application has been stopped and all its owned threads and execution contexts are termi-
nated. The memory and resources are not yet reclaimed.

• UNINSTALLED: the Application has been unlinked from the Kernel.

7.9 Kernel and Features Communication

Kernel and Features can communicate with each other by sharing interface implementation instances at runtime.

In this section you will learn:

• How two (or more) Feature(s) can communicate with each other.

• How the Kernel can communicate with a Feature.

Below are defined several terms that will be used throughout this page:

• Shared Interface is a mechanism specific to MicroEJ Multi-Sandbox that allows exchanging object instances
between Features.

• Service represents an object instance (i.e an interface implementation)

• Shared Services is a MicroEJ helper module that eases sharing services within a Multi-Sandbox context; it
provides generic APIs that can be re-implemented as needed.

7.9. Kernel and Features Communication 1243

https://repository.microej.com/javadoc/microej_5.x/apis/ej/service/package-summary.html

MicroEJ Documentation, Revision 32bb132e

• Registry or Service Registry represents the actual implementation of Shared Services APIs. MicroEJ provides
such registries for KF but custom registries can be implemented as needed.

7.9.1 Shared Services

Services can be shared by means of the ej.Service library.

The Shared Services mechanism relies on a registry system that mostly consists in a Java map of class types to
object instances (Map<Class<?>, Object>).

EachFeatureownsa local registry inwhich it can register andget serviceswithin its owncontext; services registered
in a local context cannot be retrieved by the Kernel nor any other Feature.

The Kernel also has a local registry in which it can register services that can be used within its own context but not
from the context of Features.

Finally there exists a unique shared service registry contains all the registered shared services; this registry is avail-
able to all Features and to the Kernel as well.

Security policies can be implemented to restrict the usage of certain services by certain Features.

Note: The following sections relate to the existing KF implementation of the ej.Service library available in the
KF-Util module ; you can however do your own custom implementation depending as needed.

7.9.2 Communication between Features

The KF specification does not allow Features to access object instances from other Features directly: access can
only be done by means of a proxy of the target object instance.

This is made possible through the Shared Interfaces mechanism. More information about proxies can be found in
the Shared Interfaces section.

In a nutshell Shared Interfaces and Shared Services are two complementary notions: the Shared Interfacesmecha-
nism is responsible for setting up the capability of sharing an instance between Features whereas Shared Services
o�er a way to get, store and retrieve these instances once correctly set up.

Register a Service

The following line of code allows you to easily register a Service instance.

ServiceFactory.register(MyInterface.class,myInterface)

When registering a service from a Feature there are two possible options:

• The registered service is not a Shared Interface; in this case the service instance will be registered in a local
service registry and only available from the Feature itself.

• The registered service is a Shared Interface; in this case the service instance will be registered in the Shared
Service Registry and therefore available to any other Features that has a proxy for this instance.

For Features to use the Shared Interfaces mechanism, a Kernel must provide:

• anAPI for a first Feature to register its Shared Interface, and for a secondFeature to get aproxyon it (bymeans
of the ej.Service library)

• a set of registered Kernel types converters (see below)

7.9. Kernel and Features Communication 1244

https://repository.microej.com/javadoc/microej_5.x/apis/ej/service/package-summary.html
https://repository.microej.com/javadoc/microej_5.x/apis/com/microej/kf/util/service/ServiceRegistryKF.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/service/package-summary.html
https://repository.microej.com/javadoc/microej_5.x/apis/com/microej/kf/util/package-summary.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/service/package-summary.html

MicroEJ Documentation, Revision 32bb132e

Get a Service

The following line of code allows you to easily get a Service instance.

MyInterface myInterface = ServiceFactory.getService(MyInterface.class)

When getting a service instance from a Feature, the service instance is searched in the following order:

1. In the Local Registry, check for an instance registered by the Feature.

2. In the Shared Registry, check for an instance registered by the Feature itself.

3. In the Shared Registry, check for an instance registered (publicly) by the Kernel.

4. In the Shared Registry, check for an instance registered as a Shared Interface by an other Feature.

7.9.3 Communication between Kernel and Feature

The Kernel can also communicate with Features using Shared Services, by exposing object instances to Features in
the shared registry.

Register a Service

From the Kernel side two distinct APIs may be used to register a Service, depending on whether the service must
be registered locally or not.

You canuse the generic ej.Service API thatwill automatically register the service instance in the localKernel service
registry.

ServiceFactory.register(MyInterface.class,myInterface) //accessible within the Kernel␣
→˓context only

Or you can specify in which registry the Kernel should register the service by using the ServiceRegistryKF API from
the KF-Util module as depicted below.

By doing so the service instance is exposed in the Shared Registry.

Note: To allow the usage of Kernel APIs by Features, you must make sure that the Kernel registers the necessary
Kernel APIs. Learn more about Kernel API. Use of extra APIs from ServiceRegistryKF to specify the registry is re-
served for the Kernel and will throw an exception if used from a Feature context.

Get a Service

The following line of code allows you to easily get a Service instance.

MyInterface myInterface = ServiceFactory.getService(MyInterface.class)

When getting a service instance from the Kernel, the service instance is searched in the following order:

1. In the Local Registry, check for an instance registered by the Kernel.

2. In the Shared Registry, check for an instance registered by the Kernel.

3. In the Shared Registry, check for an instance registered as Shared Interface by an other Feature.

7.9. Kernel and Features Communication 1245

https://repository.microej.com/javadoc/microej_5.x/apis/ej/service/package-summary.html
https://repository.microej.com/javadoc/microej_5.x/apis/com/microej/kf/util/service/ServiceRegistryKF.html
https://repository.microej.com/javadoc/microej_5.x/apis/com/microej/kf/util/package-summary.html
https://docs.microej.com/en/latest/KernelDeveloperGuide/kernelAPI.html

MicroEJ Documentation, Revision 32bb132e

If no instance was found, an attempt ismade to create a new instance of the provided type from SystemProperties.

This property binds the service type (the property key) to the actual service implementation type (the property
value) that will be used for instantiation.

For example, in order to allow an instance of the ej.bon.Timer service to be created automatically if not present,
the following property must be set:

ej.bon.Timer=ej.bon.Timer

Note: Since the service typeand the implementation typearedynamically boundusing class reflection, both types
must be declared as Required Types.

7.9.4 Implement a Registry

In case the existing KF implementation of Shared Services does not fit your needs, you can implement your own
registry system classes using the Kernel.bind() KF API.

This API allows a consumer Feature for remote use of an instance which type is owned by another Feature or the
Kernel. In case the type is owned by another Feature, the returned instance is a Proxy of the shared instance. In
case the type is owned by the Kernel, the returned instance is the conversion result of the shared instance to the
Kernel type; for this to happen a suitable Convertermust be registered.

As an example the steps below describe how to implement a generic Shared Interface service that relies on the
Kernel.bind() API.

1. Declare the following class in your Kernel

package com.microej.example;

import ej.kf.Feature;
import ej.kf.Feature.State;
import ej.kf.FeatureStateListener;
import ej.kf.Kernel;
import ej.kf.Module;

/**
* Example of Kernel APIs for registering a generic Shared Interface service.
*/
public class GlobalService {

private static Object GLOBAL_SERVICE;
static {

// automatically unregister the global service when the Feature is stopped.
Kernel.addFeatureStateListener(new FeatureStateListener() {

@Override
public void stateChanged(Feature feature, State previousState) {

synchronized (GlobalService.class) {
if (GLOBAL_SERVICE != null && Kernel.getOwner(GLOBAL_SERVICE) == feature

&& previousState == State.STARTED) {
GLOBAL_SERVICE = null;

}

(continues on next page)

7.9. Kernel and Features Communication 1246

https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#bind-T-java.lang.Class-ej.kf.Feature-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Proxy.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#bind-T-java.lang.Class-ej.kf.Feature-

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

}
}

});
}

/**
* Basic API to register a Feature service.

* The service is automatically unregistered when the Feature is stopped.
*
* @param service
* the service being registered. It must implement a shared interface.
*/
public synchronized static void registerService(Object service) {

Kernel.enter();
GLOBAL_SERVICE = service;

}

/**
* Basic API to retrieve a Feature service.

*
* @param <T>
* the interface type
*
* @param serviceClass
* the interface of the service being retrieved. It must implement a shared␣

→˓interface.
* @return the binded service or <code>null</code> if no registered service
*/
@SuppressWarnings("unchecked")
public synchronized static <T> T getService(Class<T> serviceClass) {

Module contextOwner = Kernel.getContextOwner();
Kernel.enter();
if (GLOBAL_SERVICE == null) {

return null;
}
return Kernel.bind((T) GLOBAL_SERVICE, serviceClass, (Feature) contextOwner);

}
}

1. Declare the following exposed APIs in your kernel.api file (refer to Kernel API Definition for details)

<method name="com.microej.example.GlobalService.registerService(java.lang.Object)void" />
<method name="com.microej.example.GlobalService.getService(java.lang.Class)java.lang.Object"␣
→˓/>

1. Your App1 is ready to register a Shared Interface as a service

MySharedInterface service = new MySharedInterface();
GlobalService.registerService(service);

1. Your App2 is ready to retrieve a Shared Interface as a service

7.9. Kernel and Features Communication 1247

https://docs.microej.com/en/latest/KernelDeveloperGuide/kernelAPI.html#kernel-api-definition

MicroEJ Documentation, Revision 32bb132e

MySharedInterface service = GlobalService.getService(MySharedInterface.class))
service.use();

7.9.5 Kernel Types Converter

The Shared Interfacemechanismallows to transfer an object instance of a Kernel type fromone Feature to an other
(see Transferable Types section).

Todo that, theKernelmust register anewKernel type converter. See theConverter class andKernel.addConverter()
method for more details.

The table below shows some converters defined in the com.microej.library.util#kf-util library.

Table 3: Example of Available Kernel Types Converters
Type Converter Class Conversion Rule
java.lang.Boolean BooleanConverter Clone by copy
java.lang.Byte ByteConverter Clone by copy
java.lang.Character CharacterConverter Clone by copy
java.lang.Short ShortConverter Clone by copy
java.lang.Integer IntegerConverter Clone by copy
java.lang.Float FloatConverter Clone by copy
java.lang.Long LongConverter Clone by copy
java.lang.Double DoubleConverter Clone by copy
java.lang.String StringConverter Clone by copy
java.io.InputStream InputStreamConverter Create a Proxy reference
java.util.Date DateConverter Clone by copy
java.util.List<T> ListConverter Clone by copy with recursive element conversion
java.util.Map<K,V> MapConverter Clone by copy with recursive keys and values conversion

7.10 Multi-Sandbox Enabled Libraries

A Multi-Sandbox enabled library is a Foundation Library or an Add-On Library that can be embedded by a Kernel
with its APIs exposed to Features.

A library requires specific code for enabling Multi-Sandbox in the following cases:

• it implements an internal global state: lazy initialization of a singleton, registry of callbacks, internal cache,
. . . ,

• it provides access to native resources that must be controlled using a Security Manager.

Otherwise, the library is called a stateless library. A stateless library is Multi-Sandbox enabled by default: it can be
embedded by the Kernel, and its APIs are directly exposed to Features without codemodification.

Note: This chapter generally applies to any Kernel code, not just libraries.

7.10. Multi-Sandbox Enabled Libraries 1248

https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Converter.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#addConverter-ej.kf.Converter-
https://repository.microej.com/modules/com/microej/library/util/kf-util/
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Boolean.html
https://repository.microej.com/javadoc/microej_5.x/apis/com/microej/kf/util/BooleanConverter.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Byte.html
https://repository.microej.com/javadoc/microej_5.x/apis/com/microej/kf/util/ByteConverter.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Character.html
https://repository.microej.com/javadoc/microej_5.x/apis/com/microej/kf/util/CharacterConverter.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Short.html
https://repository.microej.com/javadoc/microej_5.x/apis/com/microej/kf/util/ShortConverter.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Integer.html
https://repository.microej.com/javadoc/microej_5.x/apis/com/microej/kf/util/IntegerConverter.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Float.html
https://repository.microej.com/javadoc/microej_5.x/apis/com/microej/kf/util/FloatConverter.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Long.html
https://repository.microej.com/javadoc/microej_5.x/apis/com/microej/kf/util/LongConverter.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Double.html
https://repository.microej.com/javadoc/microej_5.x/apis/com/microej/kf/util/DoubleConverter.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/String.html
https://repository.microej.com/javadoc/microej_5.x/apis/com/microej/kf/util/StringConverter.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/io/InputStream.html
https://repository.microej.com/javadoc/microej_5.x/apis/com/microej/kf/util/InputStreamConverter.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/Date.html
https://repository.microej.com/javadoc/microej_5.x/apis/com/microej/kf/util/DateConverter.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/List.html
https://repository.microej.com/javadoc/microej_5.x/apis/com/microej/kf/util/ListConverter.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/Map.html
https://repository.microej.com/javadoc/microej_5.x/apis/com/microej/kf/util/MapConverter.html

MicroEJ Documentation, Revision 32bb132e

7.10.1 Manage Internal Global State

A library may define code that performsmodifications of its internal state, for example:

• lazy initialization of a singleton,

• registering/un-registering a callback,

• maintaining an internal global cache, . . .

By default, calling one of these APIs from a Feature context will throw one of the following errors:

java.lang.IllegalAccessError: KF:E=S1
at <Kernel Method>
...
at <Feature Method>

java.lang.IllegalAccessError: KF:E=F1
at <Kernel Method>
...
at <Feature Method>

The reason is that the Core Engine rejects assigning a Feature object in a static field or an instance field owned by
the Kernel. See the KF library access error codes for more details. This prevents unwanted object links from the
Kernel to the Feature, which would lead to stale references when stopping the Feature.

The library code must be adapted to implement the desired behavior when the code is called from a Feature con-
text. The following sections describe the most common strategies applied on a concrete example:

• declaring a static field local to the Feature,

• allowing a field assignment in Kernel mode,

• using existing Multi-Sandbox enabled data structures.

Declare a Static Field Local to the Feature

The Kernel & Features Specification defines Context Local Storage for static fields. This implies that the Core Engine
allocates a dedicatedmemory slot to store the static field for each execution context (the Kernel and each Feature).

Context Local Storage for static fields is typically used when the library defines a lazy initialized singleton. A lazy
initialized singleton is a singleton that is only allocated the first time it is required. This is how is implemented the
well-known Math.random() method:

public class Math{
private static Random RandomGenerator;

public static double random() {
if(RandomGenerator == null) {

RandomGenerator = new Random();
}
return RandomGenerator.nextDouble();

}
}

To enable this code for Multi-Sandbox, you can simply declare the static field local to the context. For that, create a
kernel.intern file at the root of the library or Kernel classpath (e.g., in the src/main/resources directory) with
the following content:

7.10. Multi-Sandbox Enabled Libraries 1249

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Math.html#random--

MicroEJ Documentation, Revision 32bb132e

<kernel>
<contextLocalStorage name="java.lang.Math.RandomGenerator"/>

</kernel>

When themethod is called in a new context, the static field is read to null , and then a new object will be allocated
and assigned to the local static field. Thus, each context will create its own instance of the Random singleton on
demand.

Note: By default, reading a static field for the first time in a new context returns null . However, it is possible to
write dedicated code to initialize the static field before its first read access. See section §4.3.3 Context Local Static
Field References of the Kernel & Features Specification for more details.

Allow a Field Assignment in Kernel Mode

It is possible to assign a Feature object in a static field or an instance field owned by the Kernel only if the Kernel
owns the current context. Such an assignmentmust be removed before stopping the Feature. The commonway is
to register a FeatureStateListener at Kernel boot. This gives a hook to remove Kernel links to Feature objects when
a Feature moves to the STOPPED state.

Kernel.addFeatureStateListener(new FeatureStateListener() {

@Override
public synchronized void stateChanged(Feature feature, State previousState) {

if (feature.getState() == State.STOPPED) {
// Here, remove Kernel->Feature references

}
}

};

Without this, the Feature will remain in the STOPPED state. Therefore, it will not be possible to uninstall it or start
it again until the link is removed. The remaining Feature objects referenced by the Kernel are called Kernel stale
references.

Note: To help debug your Kernel, Kernel stale references are displayed by the Core Engine dump.

Use Existing Multi-Sandbox Enabled Data Structures

MicroEJ Corp. provides ready-to-use classes on the shelf that are Multi-Sandbox enabled. Among them, we can
cite the following:

• KernelObservable : Implementation of Observable that can handle observers from any Module.

• KFList : Implementation of a Collection with multi-context support.

• SharedPropertyRegistry : Map of key/value properties.

• SharedServiceRegistry : Map of API/implementation services.

Please contact our support team for more details on usage.

7.10. Multi-Sandbox Enabled Libraries 1250

https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/FeatureStateListener.html

MicroEJ Documentation, Revision 32bb132e

7.10.2 Implement a Security Manager Permission Check

AMulti-Sandbox enabled Foundation Library should protect Feature from accessing native resources. This is done
by requesting a check to the current SecurityManager defined by the Kernel.

The following code is the typical code that must be written at the beginning of API methods.

void myAPIThatOpensAccessToANativeResource(){

if (Constants.getBoolean("com.microej.library.edc.securitymanager.enabled")) {
// Here, the Security Manager support is enabled.

SecurityManager securityManager = System.getSecurityManager();
if (securityManager != null) {

// Here, the Kernel has registered a Security Manager

// Create a Permission with relevant parameters for the Security Manager to render␣
→˓the permission

MyResourcePermission p = new MyResourcePermission();

// Request the permission check.
// If the Kernel rejects the permission, it will throw a SecurityException
securityManager.checkPermission(p);

}
}

// Implementation code
// ...

}

Note: The code is wrapped by a static check of the Option(checkbox): Enable SecurityManager checks. By default,
this option is disabled, so the SOAR automatically removes the code. This allows you to use your library in a Mono-
Sandbox environment where ROM footprint matters. Your Kernel shall enable this option to trigger the Security
Manager checks. See Implement a Security Policy for more details.

7.10.3 Known Foundation Libraries Behavior

This section details the Multi-Sandbox semantic that has been added to Foundation Libraries in order to be Multi-
Sandbox enabled. Most of the Foundation Libraries provided by MicroEJ Corp. are Multi-Sandbox enabled unless
the library documentation (e.g., README.md) mentions specific limitations.

7.10. Multi-Sandbox Enabled Libraries 1251

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/SecurityManager.html

MicroEJ Documentation, Revision 32bb132e

MicroUI

Note: This chapter describes the current MicroUI version 3 , provided by UI Pack version 13.0.0 or higher. If you
are using the former MicroUI version 2 (provided by MicroEJ UI Pack version up to 12.1.x), please refer to this
MicroEJ Documentation Archive.

Physical Display Ownership

The physical display is owned by only one context at a time (the Kernel or one Feature). The following cases may
trigger a physical display owner switch:

• during a call to Display.requestShow(Displayable), Display.requestHide(Displayable), Dis-
play.requestRender() or Display.requestFlush(): a�er the successful permission check, it is assigned to
the context owner.

• during a call to MicroUI.callSerially(Runnable): a�er the successful permission check it is assigned to owner
of the Runnable instance.

The physical display switch performs the following actions:

• If a Displayable instance is currently shown on the Display , the method Displayable.onHidden() is called,

• All pending events (input events, display flushes, call serially runnable instances) are removed from the dis-
play event serializer,

• System Event Generators handlers are reset to their default EventHandler instance,

• Thepending event created by callingDisplay.callOnFlushCompleted(Runnable) is removed andwill be never
added to the display event serializer.

Warning: The display switch is performed immediately when the current thread is the MicroUI thread itself
(during a MicroUI event such as a MicroUI.callSerially(Runnable)). The caller looses the display and its next
requests during same MicroUI event will throw a new display switch. Caller should call future display owner’s
code (which will ask a display switch) in a dedicated MicroUI.callSerially(Runnable) event.

The call to Display.callOnFlushCompleted(Runnable) has no e�ect when the display is not assigned to the context
owner.

Automatically Reclaimed Resources

Instances of ResourceImage and Font are automatically reclaimed when a Feature is stopped.

7.10. Multi-Sandbox Enabled Libraries 1252

https://docs.microej.com/_/downloads/en/20201009/pdf/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#requestShow-ej.microui.display.Displayable-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#requestHide-ej.microui.display.Displayable-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#requestRender--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#requestRender--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#requestFlush--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/MicroUI.html#callSerially-java.lang.Runnable-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Displayable.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Displayable.html#onHidden--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/EventHandler.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#callOnFlushCompleted-java.lang.Runnable-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/MicroUI.html#callSerially-java.lang.Runnable-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/MicroUI.html#callSerially-java.lang.Runnable-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Display.html#callOnFlushCompleted-java.lang.Runnable-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/ResourceImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Font.html

MicroEJ Documentation, Revision 32bb132e

BON

Kernel Timer

A Kernel Timer instance can handle TimerTask instances owned by the Kernel or any Features.

It should not be created in clinit code, otherwise youmay have to manually declare explicit clinit dependencies.

Automatically Reclaimed Resources

TimerTask instances are automatically canceled when a Feature is stopped.

ECOM

The ej.ecom.DeviceManager registry allows to share devices across Features. Instances of ej.ecom.Device that are
registered with a Shared Interface type are made accessible through a Proxy to all other Features that embed the
same Shared Interface (or an upper one of the hierarchy).

ECOM-COMM

Instances of ej.ecom.io.CommConnection are automatically reclaimed when a Feature is stopped.

FS

Instances of java.io.FileInputStream, java.io.FileOutputStream are automatically reclaimed when a Feature is
stopped.

NET

Instances of java.net.Socket, java.net.ServerSocket, java.net.DatagramSocket are automatically reclaimedwhen a
Feature is stopped.

SSL

Instances of javax.net.ssl.SSLSocket are automatically reclaimed when a Feature is stopped.

7.11 Setup a KF Test Suite

A KF test suite can be executed when building a Foundation Library or an Add-On library, and usually extends the
tests written for the default library test suite to verify the behavior of this library when its APIs are exposed by a
Kernel.

A KF test suite is composed of a set of KF tests, each KF test itself is aminimal Multi-Sandbox Executable composed
of a Kernel and zero or more Features.

7.11. Setup a KF Test Suite 1253

https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Timer.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/TimerTask.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/TimerTask.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/ecom/DeviceManager.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/ecom/Device.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/ecom/io/CommConnection.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/io/FileInputStream.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/io/FileOutputStream.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/net/Socket.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/net/ServerSocket.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/net/DatagramSocket.html
https://repository.microej.com/javadoc/microej_5.x/apis/javax/net/ssl/SSLSocket.html

MicroEJ Documentation, Revision 32bb132e

7.11.1 Enable the Test Suite

In an existing library project:

• Create the src/test/projects directory,

• Edit the module.ivy and insert the following line within the <ea:build> XML element:

<ea:plugin organisation="com.is2t.easyant.plugins" module="microej-kf-testsuite"␣
→˓revision="+" />

• Configure theoption artifacts.resolver to thenameof the resolver used to import KF test dependencies.
The namemust be one of the resolver names defined in your settings file. If you are using the default settings
file, set the option to MicroEJChainResolver . This option is usually set as a globalMMM option.

7.11.2 Add a KF Test

A KF test is a structured directory placed in the src/test/projects directory.

• Create a new directory for the KF test

• Within this directory, create the sub-projects:

– Create a new directory for the Kernel project and initialize it using the microej-javalib skeleton,

– Create a new directory for the Feature project and initialize it using the application skeleton,

– Create a newdirectory for the Firmware project and initialize it using the firmware-multiapp skeleton.

The names of the project directories are free, however MicroEJ suggests the following naming convention, assum-
ing the KF test directory is [TestName] :

• [TestName]-kernel for the Kernel project,

• [TestName]-app[1..N] for Feature projects,

• [TestName]-firmware for the Firmware project.

The KF Test Suite structure shall be similar to the following figure:

7.11. Setup a KF Test Suite 1254

MicroEJ Documentation, Revision 32bb132e

Fig. 6: KF Test Suite Overall Structure

All the projects will be built automatically in the right order based on their dependencies.

7.11. Setup a KF Test Suite 1255

MicroEJ Documentation, Revision 32bb132e

7.11.3 KF Test Suite Options

It is possible to configure the same options defined by Test Suite Options for the KF test suite, by using the prefix
microej.kf.testsuite.properties instead of microej.testsuite.properties .

7.12 Kernel Linking

This chapter describes how a Kernel Application is linked.

Basically, aKernelApplication is linkedasaStandaloneApplication. Themaindi�erence is thataKernelApplication
defines Kernel APIs, and requires to embed additional information that will be used later to build a Sandboxed
Application against this Kernel (by linking with the Kernel APIs). Such additional information is called the Kernel
Metadata.

7.12.1 Link Flow

The following figure shows the general process of linking an Executable, applied to a Kernel Application.

Fig. 7: Kernel Link Flow

The Platformmust be configured withMulti-Sandbox capability.

By default, theKernelMetadata is included in the .debug.soar sectionwhich also serves for debugpurpose (Stack
Trace Reader, Heap Dumper). Particularly, it contains resolved absolute addresses of Kernel APIs.

7.12. Kernel Linking 1256

MicroEJ Documentation, Revision 32bb132e

7.12.2 Kernel Metadata Generation

To build a Sandboxed Application on Device, the Kernel Metadatamust be exported a�er the Firmware link from the
.debug.soar section of the executable. This step is not necessary to build a Sandboxed Application O� Board.

The Kernel Metadata can be exported from an existing Firmware executable file by using the Kernel Metadata Gen-
erator tool. It produces a .kdat file that will be used to link the Sandboxed Applications on device.

Fig. 8: Kernel Metadata Generator

The .kdat file is optimized for size. When linking a Sandboxed Application .fso file, only the required metadata
will be loaded in Java heap. It will be loaded from a standard InputStream, so that it can be stored to a memory
that is not accessible from the CPU’s address space.

Note: The Kernel Metadata .kdat file can also be integrated in a Firmware executable file using post-link tools
such as binutils objcopy, provided a dedicated section has been reserved by the third-party linker.

7.12. Kernel Linking 1257

https://repository.microej.com/javadoc/microej_5.x/apis/java/io/InputStream.html

MicroEJ Documentation, Revision 32bb132e

7.12.3 Feature Portability Control

A Kernel can install .fo files that have been built on other Kernels, provided this Kernel complies with other Ker-
nels according to a set of rules declared herea�er. This is called Feature Portability Control, as the verification is
performed during the new Kernel build, with no impact on the Feature dynamic installation.

Principle

During a Kernel build, SOAR can verify this Kernel preserves the portability of any .fo files built on a previous
Kernel using the Kernel metadata file. If the portability is preserved, the UID of the previous Kernel is embedded in
the new Kernel, allowing .fo files built on the previous Kernel to be installed as well. Otherwise, SOAR fails with
an error indicating the broken rule(s).

Fig. 9: Feature Portability Control Principle

Enable

Note: This is a new functionality that requires Architecture 8.0.0 or higher.

Add the following Application Options to your Kernel project:

• com.microej.soar.kernel.featureportabilitycontrol.enabled : true to enable Feature Portability
Control. Any other value disables Feature Portability Control (the following option is ignored).

• com.microej.soar.kernel.featureportabilitycontrol.metadata.path : Path to the Kernel Metadata
file (.kdat file).

7.12. Kernel Linking 1258

MicroEJ Documentation, Revision 32bb132e

Portability Rules

AKernel Application can install a .fo file that has been built against another Kernel Application if the Kernel Appli-
cation codehas not changedor if themodifications respect theportability rules. Here is the list of themodifications
that can be done while preserving the portability:

• Modify method code, except ifMethod Devirtualization orMethod Inlining has changed.

• Add a new type (including declared as Kernel API),

• Add a new static method (including declared as Kernel API),

• Add a new instance method in a type not declared as Kernel API,

• Add a new instance method with private visibility in a type declared as Kernel API,

• Add a new static field (including declared as Kernel API),

• Add a new instance field in a type not declared as Kernel API,

• Rename an instance field with private visibility in a type declared as Kernel API,

• Modify a Java type, method, or static field not declared as Kernel API (code, signature, hierarchy)

• Remove a Java type, method, or static field not declared as Kernel API

Both Kernel Applications must be built from Platforms based on the same Architecture version.

Any other modifications will break the Feature portability. For example, the following modifications will not pre-
serve the portability:

• Remove a Java type, method or static field declared as Kernel API,

• Add or remove an instance method in a type declared as Kernel API, even if the method is not declared as
Kernel API,

• Add or remove an instance field in a type declared as Kernel API,

• Modify method or field signature declared as Kernel API (name, declaring type, static vs instance member,
. . .),

• Modify hierarchy of a type declared as Kernel API.

7.13 Application Linking

This chapter describes how a Sandboxed Application is built so that it can be (dynamically) installed on a Kernel.
The build output file of a Sandboxed Application against a Kernel is called a Feature, hence the f letter used in the
extension name of the related files (.fso and .fo files).

7.13.1 SOAR Build Phases

When building a Sandboxed Application to a Feature, SOAR processing is divided in two phases:

1. SOAR Resolver: loads the set of application .class files and resources. Among the various steps, mention
may bemade of:

• Computing the transitive closure from the application entry points of all required elements (types,
methods, fields, strings, immutables, resources, system properties),

• Computing the clinit order.

7.13. Application Linking 1259

MicroEJ Documentation, Revision 32bb132e

The result is an object file that ends with .fso extension. The .fso file is a portable file that can be linked
on any compatible Kernel (see FSO Compatibility).

2. SOAROptimizer: links a .fso file against a specific Kernel. Among the various steps, mentionmay bemade
of:

• Linking to the expected Kernel APIs (types, methods, fields) according to the JVM specification1,

• Generating the MEJ32 instructions,

• Building the virtualization tables.

The result is an object file that ends with the .fo extension. By default, the .fo file is specific to a Kernel: it
can only be installed on the Kernel it has been linked to. Rebuilding a Kernel implies to run this phase again,
unless the application has been built for the previous Kernel (see Feature Portability).

Fig. 10: Sandboxed Application Build Flow

The Feature .fo file can be deployed to the Device using Kernel.install() method.
1 Tim Lindholm & Frank Yellin, The Java™ Virtual Machine Specification, Second Edition, 1999

7.13. Application Linking 1260

https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#install-java.io.InputStream-

MicroEJ Documentation, Revision 32bb132e

7.13.2 Feature Build O� Board

A Sandboxed Application can be built to a Feature (.fo file) using a MicroEJ Application Launch configured as
follows:

• Set the Settings field in the Execution tab to Build Dynamic Feature .

• Set the Kernel field in the Configuration tab to a Multi-Sandboxed Firmware (.out ELF executable file).

Fig. 11: Feature Build Flow using MicroEJ Launch

7.13.3 Feature Build On Device

Note: This is a new functionality that requires a custom Architecture configuration. Please contact our support
team for more details.

The SOAROptimizer is packaged to a Foundation Library named SOAR , thus this phase can be executed directly on
Device.

General Workflow

Here are the typical steps to achieve:

• Build the Sandboxed Application on any compatible Kernel to get the .fso file,

• Transfer the .fso file on Device by any mean,

• Generate the Kernel Metadata for the Kernel on which the .fso file is being linked,

• Transfer the .kdat file on Device by any mean,

• Write a MicroEJ Standalone Application for building the .fso file:

7.13. Application Linking 1261

MicroEJ Documentation, Revision 32bb132e

– implement a com.microej.soar.KernelMetadataProvider to provide an InputStream to load the .
kdat file,

– provide an InputStream to load the .fso file,

– provide an OutputStream to store the .fo file,

– call FeatureOptimizer.build() method.

Then the .fo file can be dynamically installed using Kernel.install().

Fig. 12: Sandboxed Application Build on Device

Note: Although this is common, it is not required to run the SOAR Optimizer phase on the Kernel that will dynam-
ically install the .fo . There is no relationship between SOAR and KF Foundation Libraries.

Implement the Kernel

SOAR Optimizer can be integrated on any Standalone Application providing the followingmodule dependencies:

<dependency org="ej.api" name="edc" rev="1.3.3" />
<dependency org="com.microej.api" name="soar" rev="1.0.0" />
<dependency org="ej.library.eclasspath" name="collections" rev="1.4.0" />

The following code template illustrates the usage of the SOAR Foundation Library:

7.13. Application Linking 1262

https://repository.microej.com/javadoc/microej_5.x/apis/java/io/InputStream.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/io/InputStream.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/io/OutputStream.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/kf/Kernel.html#install-java.io.InputStream-

MicroEJ Documentation, Revision 32bb132e

package com.microej.example;

import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;

import com.microej.soar.FeatureOptimizer;
import com.microej.soar.FeatureOptimizerException;
import com.microej.soar.KernelMetadataProvider;

/**
* This is a template code that shows the typical steps to follow for building a
* .fo file from a .fso file on Device.
*/
public class TemplateFSOBuild {

/**
* Your Platform specific {@link KernelMetadataProvider} implementation.
*/
private static final class MyKernelMetadataProvider implements KernelMetadataProvider {

@Override
public InputStream openInputStream(int offset) throws IOException {

// Return an InputStream to the Kernel Metadata resource (.kdat file) at the given␣
→˓offset in bytes.

return null; // TODO
}

@Override
public String toString() {

// Here, return a printable representation of this Kernel Metadata Provider (for␣
→˓debug purpose only)

return "Kernel Metadata loaded from ..."; // TODO
}

}

/**
* A method that builds a .fso file to a .fo file.
*/
public static void build() {

// Create the KernelMetadataProvider instance
KernelMetadataProvider kernelMetadataProvider = new MyKernelMetadataProvider();

// Load the .fso InputStream
InputStream fsoInputStream = null; // TODO

// Prepare the target OutputStream where to store the .fo
OutputStream foOutputStream = null; // TODO

// Create the FeatureOptimizer instance
FeatureOptimizer featureOptimizer;
try {

(continues on next page)

7.13. Application Linking 1263

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

featureOptimizer = new FeatureOptimizer(kernelMetadataProvider);
} catch (FeatureOptimizerException e) {

// Handle Kernel Metadata cannot be loaded
e.printStackTrace(); // TODO
return;

}

// Build
try {

featureOptimizer.build(fsoInputStream, foOutputStream);
} catch (FeatureOptimizerException e) {

// Handle .fso cannot be built to .fo
e.printStackTrace(); // TODO

}
}

}

7.13.4 FSO Compatibility

A .fso file can be linked on any Kernel providing all the following conditions:

• its Architecture has the same endianness than the Architecture on which the .fso file has been produced,

• its Architecture version is compatible2 with the Architecture version on which the .fso file has been pro-
duced,

• it provides the required APIs according to the JVM specificationPage 1260, 1.

A current limitation is that if the Sandboxed Application declares an immutable object, SOAROptimizerwill resolve
fields within the same class rather than considering the entire class hierarchy.

7.13.5 Feature Portability

By default, a .fo file can only be installed on the Kernel on which it has been linked.

Starting from Architecture 8.0.0, the same Feature file can be installed on di�erent Kernels. This is called Feature
Portability. Thus it is not required to rebuild the .fo file in the following cases:

• Relinking the executable (memory layout changes),

• Recompiling the C code,

• Rebuilding the Kernel Application, if Feature Portability Control has been enabled.
2 New version is greater than or equals to the old one within the samemajor version.

7.13. Application Linking 1264

MicroEJ Documentation, Revision 32bb132e

Fig. 13: Feature Portability Overview

7.13. Application Linking 1265

CHAPTER

EIGHT

VEEWEAR USER GUIDE

VEEWear is a specialized application framework tailor-made for next-gen smartwatches. Engineered with a highly
optimizedmemory footprint, VEEWear ensures e�icient performanceon low-powerMCUs andMPUswhile o�ering
robust features comparable to larger operating systems.

VEE Wear includes all graphical features fromMicroEJ runtime, including:

• A thread-safe 2D graphics engine

• A widget framework

• Vector drawing support

• Andmore. Refer to the Graphical User Interface section for more info

Android Compatibility Kit

The Android Compatibility Kit comprises two technologies:

1. Support for Android development tools, including Android Studio and Gradle, is provided by MICROEJ SDK
6.

2. Support for MicroEJ applications on the Android OS (Android Runtime).

The support providedbyAndroiddevelopment tools andAndroid runtime is especially beneficialwhen running the
sameapplicationonbothanAndroidprocessorandanMCU.This scenariooccurs, for example,when implementing
Android o�-loading with a big-little architecture.

Moreover, the Android runtime enables the execution of the same application on an Android smartphone. For
instance, in scenarios such as building awatch face or apppickerwithin a companion smartphone app, theMicroEJ
application code can be directly utilized to display the app or watch face. This eliminates the necessity to develop
a similar version specifically for Android.

iOS Compatibility Kit

The iOS Compatibility Kit feature provides support for MicroEJ applications on iOS (iOS Runtime). This runtime
enables the execution of the same application on an iOS smartphone. For example, when creating a watch face or
app picker within a companion smartphone app, the MicroEJ application code can be directly used to display the
app or watch face. This eliminates the necessity to develop a separate version for iOS.

1266

MicroEJ Documentation, Revision 32bb132e

MicroEJ’s o�loading framework

VEE Wear incorporates an o�loading framework designed to optimize power consumption in a big-little architec-
ture, where an application processor runs Android, and a companion MCU operates MICROEJ VEE. By alternating
the execution of applications between low-consumption MCUs and powerful MPUs, this setup guarantees maxi-
mumpower e�iciency, thereby conserving battery life. The o�loading framework encompasses an inter-processor
communication framework and e�icient low-power profile management.

Low Power Facer Engine

VEE Wear supports the Facer Engine, expanding Facer’s extensive watch face catalog of 500,000 faces across all
smartwatches, including low-power RTOS watches, enriching the user experience for all users. For further infor-
mation about the MicroEJ and Facer partnership, please contact your MicroEJ sales representative.

8.1 Android Compatibility Kit

MicroEJ provides a set of tools and libraries to run applications powered by MicroEJ on Android andWear OS. This
allows for the same application to be developed, simulated, tested, and executed on MicroEJ VEE and Android
alike.

Having the same code ready for both Android and MicroEJ VEE opens up a wide range of use cases, including but
not limited to:

• Develop derivative products based on small MCUs or low-cost MPUs with limited resources where Android
cannot be used as it is inherently resource-intensive.

• Reduce energy consumption by enabling two processors to coexist to distribute tasks between a very pow-
erful processor powered by Android and a low-power processor powered by MicroEJ.

Below are some examples from the wearable segment that illustrate these use cases:

• Watch faces can be developed once and deployed on both a smartwatch (MicroEJ VEE) and its companion
smartphone app (Android), enabling consistent functionality and appearance across both devices. This pro-
vides a good user experience for the user while minimizing code duplication andmaintenance for the devel-
oper.

• Power e�iciency is a significant concern with wearable as sophisticated features o�en come at a high cost
in terms of power consumption. An o�loading framework can reduce power usage by executing the same
application alternately on a low-consumptionMCUandapowerfulMPU.Operating in standbymodeasmuch
as possible on the MCU is one of the strategies to achieve energy e�iciency.

8.1. Android Compatibility Kit 1267

https://www.facer.io/
https://www.microej.com/contact/#form_1

MicroEJ Documentation, Revision 32bb132e

8.1.1 Overview

The Android Compatibility Kit is composed of twomain components:

• A runtime: applications developed onMicroEJ can run on the Android platform thanks to the Android-based
implementation of the MicroEJ Foundation libraries and dedicated support libraries.

• A developer kit: the MICROEJ SDK 6 and a Gradle plugin provide the necessary support for developing appli-
cations in Android Studio using Gradle.

Workflow

Below is a general overview of the workflow when developing a product that targets both MicroEJ and Android-
powered devices.

Fig. 1: Workflow Diagram

8.1. Android Compatibility Kit 1268

MicroEJ Documentation, Revision 32bb132e

So�ware Architecture

Applications designed to run in MicroEJ VEE can also run on Android, thanks to a specific implementation of Mi-
croEJ Foundation libraries based on Android libraries.

Fig. 2: So�ware Architecture

Available APIs and Features

• Foundation Libraries

– EDC

– BON

– SNI

– MICROUI

– MICROVG

– TRACE

• All compatible Add-on Libraries

• Supported Resources

– Images

– Fonts (EJF, TTF, OTF)

– Android Vector Drawables (AVD)

– SVG

– NLS (including Android XML and PO formats)

– Constants

8.1. Android Compatibility Kit 1269

MicroEJ Documentation, Revision 32bb132e

– Properties

• Customnative APIs can be implemented over Android libraries tomake themexecutable on Android devices.

8.1.2 Installation

To develop applications compatible with both Android and MicroEJ VEE, it is required to use MICROEJ SDK 6. The
MICROEJ SDK provides Gradle plugins that allow for seamless integration in Android Studio.

For comprehensive installation instructions, read the SDK 6 Installation Guide. Follow the steps related to Android
Studio when relevant.

In addition to installing MICROEJ SDK 6, make sure to comply with the requirements listed below.

JDK Version

The Android Compatibility Kit, like MICROEJ SDK 6, is compatible with a JDK 11 or higher LTS version. The JDK
version to use will depend on the Android Gradle Plugin (AGP) being used by your Android project. Starting from
version 8, AGP requires aminimumJDK 17. If you intend to use JDK 11, youwill need to specify a compatible version
of AGP (e.g., 7.4.2). Refer to the Android Gradle plugin release notes for more information.

Configure Repositories

The SDK 6 repositories configuration references the MicroEJ module repositories which are required for resolving
the SDK Gradle plugins andmodules. Working with Android plugins andmodules involves extending this configu-
ration to include additional repositories that are essential for Android development.

• download and copy this file in <user.home>/.gradle/init.d/ .

8.1.3 Project Setup

This chapterwill guide you through theprocess of creating aproject for having anapplication compatiblewith both
Android and MicroEJ VEE.

The recommended project structure to get started is to have a basicmulti-project build that contains a root project
and two subprojects: one subproject for the Android/Wear OS application and one subproject for the MicroEJ Ap-
plication. The MicroEJ Application defines code that will run on both MicroEJ VEE and Android, while the Android
application includes wrapper code and logic specific to Android.

What follows is the directory and file structure of a typical project:

android-app/
src
microej.properties # MicroEJ Application Options for Android/Wear OS
build.gradle.kts

microej-app/
src
configuration/

| common.properties # MicroEJ Application Options for MicroEJ VEE
build.gradle.kts

build.gradle.kts
settings.gradle.kts

8.1. Android Compatibility Kit 1270

https://developer.android.com/build/releases/gradle-plugin

MicroEJ Documentation, Revision 32bb132e

Create or Import an Android project

The Android documentation covers the process of creating apps for diverse form factors, including smartphones
and wearable devices. Read Create a Project and follow the guidelines before proceeding. If you are creating a
project from scratch, we recommend using the Empty Activity template.

Note: The project template in Android Studio defines a default repositories configuration in the settings.
gradle.kts file of the project like below:

pluginManagement {
repositories {

google()
mavenCentral()
gradlePluginPortal()

}
}
dependencyResolutionManagement {

repositoriesMode.set(RepositoriesMode.FAIL_ON_PROJECT_REPOS)
repositories {

google()
mavenCentral()

}
}

Please note that this will override the repositories configuration defined during the installation process, based
on Gradle initialization scripts. Set the configuration according to your preference, but we suggest removing these
lines at first from the settings file to get started.

Assuming that a Gradle project with an Android application is now opened in Android Studio, do the following:

• Open the build.gradle.kts file at the root of the project.

• Add these lines to the plugins block:

id("com.microej.gradle.application") version "0.15.0" apply false
id("com.microej.android.gradle.plugins.android") version "0.3.6" apply false

Create or Import a MicroEJ Application

The next step is adding the module that contains the MicroEJ Application to the Gradle project.

Create a MicroEJ Application

Import an existing MicroEJ Application

• Click on File > New > NewModule. . . .

• Select Java or Kotlin Library .

• Set the name of the module in the Library Name field.

• Set the package name of the module in the Package name field.

• Enter a name for the main Java class of the application in the Class name field.

• Select the language Java in the Language field.

8.1. Android Compatibility Kit 1271

https://developer.android.com/studio/projects/create-project

MicroEJ Documentation, Revision 32bb132e

• Select Kotlin DSL in the Build configuration language field.

• Click on Finish .

The module created by Android Studio is a standard Java module (Gradle java-library plugin). The build.
gradle.kts file has to be updated to make it a MicroEJ Application module:

• Open the build.gradle.kts file.

• Erase its whole content.

• Add the com.microej.gradle.application plugin in the build.gradle.kts file:

plugins {
id("com.microej.gradle.application")

}

• Add the following microej block in the build.gradle.kts file:

microej {
applicationMainClass = "com.mycompany.Main"

}

where the property applicationMainClass is set to the Full Qualified Name of the main class of the appli-
cation. This class must define a main() method and is the entry point of the application.

• Declare thedependencies requiredbyyourapplication in the dependencies blockof the build.gradle.kts
file. The EDC library is always required in the build path of an Application project, as it defines the minimal
runtime environment for embedded devices:

dependencies {
implementation("ej.api:edc:1.3.5")

}

If you have already developed a MicroEJ Application, you can import it in the project.

Note: If the MicroEJ Application has been created with the SDK 5 or lower, it is required to first migrate it to SDK 6.
Read the comprehensiveMigration Guide before proceeding.

• Click on File > New > Import Module. . . .

• Browse to the source directory of the Gradle project.

• Set the module name.

• Click on Finish .

Note: Android Studio may use the Groovy DSL to include the imported module. The result is the creation
of a setting.gradle file that shadows the configuration in the settings.gradle.kts file. If that occurs,
merge the relevant content of the setting.gradle file into the existing settings.gradle.kts and remove
the setting.gradle .

• Set the microejConflictResolutionRulesEnabled property to false in the build.gradle.kts file:

8.1. Android Compatibility Kit 1272

MicroEJ Documentation, Revision 32bb132e

microej {
microejConflictResolutionRulesEnabled = false
...

}

Note: The MicroEJ Gradle plugin comes with additional conflict resolution rules compared to Gradle’s de-
fault behavior. This canmake the build fail whenworking with Android dependencies, so it is recommended
to use Gradle’s default conflict management in this case. These extra rules can be disabled by setting the
microejConflictResolutionRulesEnabled property to false in the microej configuration block. Read
Manage Resolution Conflicts for more details.

• Ensure that the Gradle settings file includes the Android and MicroEJ modules, like in this example:

include(":android-app")
include(":microej-app")

• To synchronize your project files, select Sync Now from the notification bar that appears a�er making
changes.

When the Gradle project has been reloaded, it should compile successfully, without any error.

Configure the Android Application

The next steps show how to configure the Android or Wear OS application to declare the MicroEJ Application.

• Open the build.gradle.kts file of the Android application.

• Add the com.microej.android.gradle.plugins.android plugin:

plugins {
id("com.android.application")
id("com.microej.android.gradle.plugins.android")
...

}

• Add a dependency to the MicroEJ support library depending on the target (Android or Wear OS).

Android

Wear OS

dependencies {
implementation("com.microej.android.support:microej-application:2.0.1")
...

}

The support library microej-application allows running a MicroEJ Application in an Android Activity using the
MicroEJ support engine.

dependencies {
implementation("com.microej.android.support:microej-wearos:2.0.1")
implementation("androidx.wear.watchface:watchface:1.1.1")
implementation("androidx.wear.watchface:watchface-guava:1.1.1")
...

}

8.1. Android Compatibility Kit 1273

MicroEJ Documentation, Revision 32bb132e

The support library microej-wearos allows running a MicroEJ Application in a Wear OS WatchFaceService using
the MicroEJ support engine.

• Add a dependency to the MicroEJ Application using the microejApp configuration, for example:

dependencies {
microejApp(project(":microej-app"))
...

}

where microej-app is the name of the subproject that contains the MicroEJ Application.

• Add a dependency to a VEE Port, for example:

dependencies {
microejVee("com.mycompany:veeport:1.0.0")
...

}

There are multiple options for providing a VEE Port in your project. Read Select a VEE Port to explore the
available options.

Note: It is required to select a VEE Port that’s configured to build MicroEJ Applications for Android. Read the
VEE Port section to learn how to configure a VEE Port for this purpose.

• Add a file named microej.properties at the root of the Android application. This file sets the MicroEJ
Application Options when running on Android. It is similar in principle to defining Application Options for the
embedded device. Depending on the target device (Android or embedded device), the content may di�er.

• Select Sync Now from the notification bar to synchronize your project files.

Start the MicroEJ Application

The final step involves calling the entry point of the MicroEJ Application fromwithin the Android or Wear OS appli-
cation.

Android

Wear OS

Assuming that the Android application declares an activity in the AndroidManifest.xml :

• Open the corresponding activity Java/Kotlin file.

• Make MicroEJActivity the superclass of this class.

• Override themethod getApplicationMainClass() andmake it return the Full Qualified Name of themain
class of the MicroEJ Application.

This is an example of a simple activity:

Kotlin

Java

class MainActivity : MicroEJActivity() {
override fun getApplicationMainClass(): String {

return "com.mycompany.Main";

(continues on next page)

8.1. Android Compatibility Kit 1274

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

}
}

public class MainActivity extends MicroEJActivity {
@Override
protected String getApplicationMainClass() {

return "com.mycompany.Main";
}

}

When the activity is created, it instantiates the main class of the MicroEJ Application and invokes its main()
method.

Assuming that the Wear OS application declares a watch face service in the AndroidManifest.xml :

• Open the corresponding watch face service Java/Kotlin file.

• Make MicroEJWatchFaceService the superclass of this class.

• Override themethod getApplicationMainClass() andmake it return the Full Qualified Name of themain
class of the MicroEJ Application.

This is an example of a simple activity:

Kotlin

Java

class MyWatchFaceService : MicroEJWatchFaceService() {
override fun getApplicationMainClass(): String {

return "com.mycompany.Main";
}

}

public class MyWatchFaceService extends MicroEJWatchFaceService {
@Override
protected String getApplicationMainClass() {

return "com.mycompany.Main";
}

}

When the watch face service is created, it instantiates the main class of the MicroEJ Application and invokes its
main() method.

Select Sync Now from the notification bar to synchronize your project files.

8.1. Android Compatibility Kit 1275

MicroEJ Documentation, Revision 32bb132e

Run on MicroEJ VEE and Android

The application can now be deployed to both MicroEJ VEE and Android environments.

The deployment of an application designed to use the Android Compatibility Kit has nothing specific compared
to other MicroEJ or Android applications. This means that you can refer to the dedicated documentation for this
matter:

• for MicroEJ VEE: refer to sections Run On Simulator, Build Executable and Run On Device.

• for Android: refer to the o�icial Android documentation.

• for Wear OS: refer to the o�icial Wear OS documentation.

8.1.4 VEE Port

This section explains how to configure a VEE Port so that it provides the capability to build a MicroEJ Application
for Android.

Once it is configured, the VEE Port can thus be used to build a MicroEJ Application for Android, in addition to stan-
dard features such as building a MicroEJ Application for an Embedded Device and running it on the Simulator.

VEE Port Configuration

The configuration steps ensure that the VEE Port provides build scripts and implementations of Foundation Li-
braries which are specific to Android.

These files are gathered in Android Packs. Each Android Pack provides support for one or multiple Foundation
Libraries. The Core Android Pack is absolutely necessary to be able to build any MicroEJ Application for Android.
Additional Android Packs should be included depending on the Foundation Libraries provided by the VEE Port.

To declare an Android Pack dependency, edit the module.ivy file of the VEE Port and add the following linewithin
the <dependencies> element:

<dependency org="com.microej.android.pack" name="[NAME]-android-pack" rev=
→˓"[VERSION]"/>

MicroEJ Android Packs

MicroEJ provides Android Packs for some Foundation Libraries:

Name Module Implemented Libraries
Core Android Pack com.microej.android.pack#core-android-pack EDC, BON, SNI, Trace
UI Android Pack com.microej.android.pack#ui-android-pack MicroUI, Drawing
VG Android Pack com.microej.android.pack#vg-android-pack MicroVG

Note: Some Foundation Libraries such as FS and NET do not require an Android Pack as their APIs are already
implemented by the Android SDK.

For more information on the usage and limitations of each Android Pack, refer to its README.

8.1. Android Compatibility Kit 1276

https://developer.android.com/studio/run
https://developer.android.com/training/wearables/get-started/creating#run-emulator
https://repository.microej.com/modules/com/microej/android/pack/core-android-pack/
https://repository.microej.com/javadoc/microej_5.x/libraries/edc-1.3-api/
https://repository.microej.com/javadoc/microej_5.x/libraries/bon-1.4-api/
https://repository.microej.com/javadoc/microej_5.x/libraries/sni-1.4-api/
https://repository.microej.com/javadoc/microej_5.x/libraries/trace-1.1-api/
https://repository.microej.com/modules/com/microej/android/pack/ui-android-pack/
https://repository.microej.com/javadoc/microej_5.x/libraries/microui-3.3-api/
https://repository.microej.com/javadoc/microej_5.x/libraries/drawing-1.0-api/
https://repository.microej.com/modules/com/microej/android/pack/vg-android-pack/
https://repository.microej.com/javadoc/microej_5.x/libraries/microvg-1.4-api/

MicroEJ Documentation, Revision 32bb132e

Custom Android Packs

AMicroEJ Applicationmay call nativemethods, which require a di�erent implementation on each execution target
(embedded device, Simulator or Android). Therefore if an Application is executed on Android, the VEE Port should
provide an implementation of these native methods for Android. This dedicated implementation is called an An-
droidmock, and it is usually packaged in an Android Pack. This section explains how to develop a custom Android
Pack including an Android mock.

Note: Currently, VEE Ports and their components can not be developed inMicroEJ SDK 6. This means that Android
Packs must be developed with SDK 5 and MMM, and cannot be developed with Android Studio and Gradle.

Setting Android SDK Environment Variable

Since the Android mock will be compiled using Android SDK, you should have Android Studio and Android SDK
installed. If it is not set already on your system, you should set the ANDROID_HOME environment variable.

You can follow these steps to find the Android SDK location on your system:

• In Android Studio, select File > Settings. . . .

• In the settings dialog, find Android SDK and copy the path set as Android SDK Location .

On Windows, this path is typically C:\Users\[USER]\AppData\Local\Android\Sdk .

Make sure to restart MicroEJ SDK a�er setting the environment variable.

Creating the Android Pack Module

The first step is to create the custom-android-pack project:

• In MicroEJ SDK, select File > New > Project. . . .

• In the wizard dialog, select MicroEJ > Module Project and click on Next > .

• In the new module dialog, type custom-android-pack as Project Name and as Module , choose the

Organization and Revision of your choice, select product-java as Skeleton and click on Finish .

By default, the library built by the module is not packaged as an Android mock. To make sure that the library is
added to the list of Android mocks, edit the module.ivy file of the project and add the following lines within the
<ea:build> element:

<ea:property name="target.main.artifact.rip.relativedir" value="android/mocks/dropins"/>

8.1. Android Compatibility Kit 1277

https://developer.android.com/studio/install
https://developer.android.com/studio/install
https://developer.android.com/tools/variables#android_home

MicroEJ Documentation, Revision 32bb132e

Compiling against Android SDK

By default, the library is compiled against the JRE. Both the Eclipse project and the MMMbuildmust be configured
to compile against Android SDK rather than the JRE.

First, the JREmust be replaced by Android SDK in the build path of the Eclipse project:

• Right-click on the project, select Build Path > Configure Build Path. . . .

• In the properties dialog, open the Libraries tab, select JRE System Library , click on Remove and click

on Add Variable. . . .

• In the classpath entry dialog, click on Configure Variables. . . .

• In the variables dialog, click on New.. . .

• In the new variable dialog, type ANDROID_HOME as Name , type the Android SDK location as Path and
click on OK .

• Back to the variables dialog, click on Apply and Close .

• Back to the classpath entry dialog, select the ANDROID_HOME variable and click on Extend. . . .

• In the variable extension dialog, browse the platforms/android-[VERSION]/android.jar file and click on
OK .

• Back to the properties dialog, click on Apply and Close .

Finally, the JREmust be replaced by Android SDK in the build path of the MMMmodule:

• Edit the module.ivy file and add the following lines within the <ea:build> element:

<ea:property name="include.java.runtime" value="false"/>
<ea:property name="no.obfuscation" value="true"/>

• Create a file named module.ant at the root of the project with the following content:

<project name="custom-android-pack" xmlns:ea="antlib:org.apache.easyant">
<target name="-custom-android-pack:augment-classpath" extensionOf=

→˓"abstract-compile:compile-ready">
<property environment="env"/>
<ea:path pathid="compile.main.classpath" overwrite="prepend">

<fileset file="${env.ANDROID_HOME}/platforms/android-
→˓[VERSION]/android.jar"/>

</ea:path>
</target>

</project>

• In this module.ant , replace [VERSION] in the <fileset> element by the minimum Android SDK version
required by your Android mock.

8.1. Android Compatibility Kit 1278

MicroEJ Documentation, Revision 32bb132e

Implementing the Androidmock

You can add the Java source code of your Androidmock into the src/main/java folder of the project. At runtime,
the Android mock will be added to the classpath before the code of the Application and before its dependencies.
This allows you to replace the implementation of any Java class in an Android mock. The recommended practice
is to replace only the classes which include native methods.

Using the Android Pack in the VEE Port

To build the Android Pack, right-click on the project and select Build Module .

The Android Pack can be included in a VEE Port by declaring a dependency in the module.ivy of the VEE Port as
explained in the first subsection:

<dependency org="[ORGANIZATION]" name="custom-android-pack" rev="[VERSION]"/>

8.2 iOS Compatibility Kit

MicroEJ provides a set of tools and libraries to run applications powered by MicroEJ on iOS. This allows for the
same application to be developed, simulated, tested, and executed on MicroEJ VEE and iOS alike.

Thanks to the iOS Compatibility Kit, watch faces can be developed once and deployed on both a smartwatch (Mi-
croEJVEE) and its companion smartphoneapp (iOS), enabling consistent functionality andappearanceacrossboth
devices. This provides a good user experience for the user whileminimizing code duplication andmaintenance for
the developer.

8.2.1 So�ware Architecture

The iOS Compatibility Kit provides a JDK which can be used to compile and run Java code on iOS. The code of the
MicroEJ Application and of the libraries it depends on is executed on a Java VM started by the iOS app.

The JDK runtime includes JavaFX to be able to display Applications which useMicroUI orMicroVG.

8.2. iOS Compatibility Kit 1279

MicroEJ Documentation, Revision 32bb132e

Fig. 3: So�ware Architecture

8.2.2 Workflow

The iOS app can be developed and built on Xcode as a regular iOS application. To run a MicroEJ Application, the
Xcode project is configured to embed:

• the runtime libraries of the JDK (JARs and native libraries),

• the implementation of the MicroEJ Foundation Libraries compiled against Java SE and JavaFX APIs,

• the code and resources of the MicroEJ Application and of the Add-On Libraries that it depends on.

8.2. iOS Compatibility Kit 1280

MicroEJ Documentation, Revision 32bb132e

8.2.3 Evaluation

The iOS Compatibility Kit is available on demand. You can contactMicroEJ Support to evaluate this solution.

8.3 O�loading

Many high-end smartwatches rely on amicroprocessor running Android. The power consumption of these devices
is fairly high and show an average battery life of one or two days. Integrating an extra low-power microcontroller
into the watch’s hardware enables the delegation of specific tasks from the main microprocessor, resulting in an
increased battery life. Keeping a powerful microprocessor on the hardware ensures the ability to display high-
performance animations and access the Android ecosystem.

8.3.1 Solution

VEE Wear o�ers a comprehensive solution for so�ware development on this dual architecture:

• MicroEJ VEE enables the execution of applications written in high-level code through virtualization on the
microcontroller.

• the Android Compatibility Kit allows the execution of the same application on the microprocessor without
the need for re-implementation.

• the O�loading Framework provides the ability to switch the application context between the two processors
depending on their capabilities and on the application flow.

One Code, Two Targets

MicroEJ Application development shares the same programming language as Android Application development.
Thanks to this similarity, any MicroEJ Application code is compatible with the Android runtime environment. The
Android Compatibility Kit provides the tools and libraries to execute a MicroEJ Application on Android.

Using this solution, the application code can be programmedonce and executed both on the low-powermicrocon-
troller and the high-power microprocessor.

O�loading Framework

The o�loading strategy is a set of rules defined by the design of the watch.

Here is a non-exhaustive list of common o�loading rules:

• switching to the low-powermicrocontroller a�er a fewsecondsof user inactivity (o�encalledambientmode)

• switching to the high-power microprocessor when starting a high-performance animation

• switching to the high-power microprocessor when navigating to a menu which is only available on Android

Switching from a processor to the other may require to synchronize the state of the so�ware and to provide the
necessary data for the other processor to take over. The time to wake-up the processor and to synchronize the
data has to be taken into account when designing the so�ware architecture.

Once these rules have been decided, the O�loading Framework APIs can be used to wake up the other processor,
to synchronize data, to be notifiedwhen the other processor is ready, to hand over the control of the display, to put
the processor to sleep, etc.

8.3. O�loading 1281

MicroEJ Documentation, Revision 32bb132e

8.3.2 Evaluation

The Android Compatibility Kit can be evaluated by following its documentation.

An demonstration with a sample o�loading framework is available on demand. You can contact MicroEJ Support
to test this demonstration.

8.3. O�loading 1282

CHAPTER

NINE

TUTORIALS

9.1 Understand How to Build a Firmware and its Dependencies

A Firmware is built from several input resources and tools. Each component has dependencies and requirements
that must be carefully respected in order to build a Firmware.

This document describes the components, their dependencies and the process involved in the build of a Firmware.

Good knowledge of theMicroEJ Glossary is required.

9.1.1 The Components

As depicted in the following image, several resources and tools are used to build a Firmware.

1283

MicroEJ Documentation, Revision 32bb132e

Architecture

AMicroEJ Architecture contains the runtime port to a target instruction set (ISA), a C compiler (CC) and Foundation
Libraries.

Architectures are distributed in two versions:

• Evaluation Architectures: license with runtime limitations (explained in the Application Developer Guide).

• Production Architectures: license suitable for production.

A selection of supported embedded Architectures can be found here: https://developer.microej.com/
mej32-embedded-runtime-architectures/

The Architecture is either provided from:

• MicroEJ Central Repository, for Evaluation Architectures only.

• MicroEJ Support team or your MicroEJ sales representative, for Production Architectures only.

Note: Ask MicroEJ sales or support team if the requested architecture is not listed as available.

Platform Sources

A Platform includes development tools and a runtime environment:

• the Architecture andMicroEJ Packs,

• the Abstraction Layers implementations,

• the Simulator and its associated Mocks,

• a C Board Support Package (BSP) with C drivers and an optional RTOS.

The Platform sources contains the following projects:

• <platform>-configuration : The Platform Configuration project.

• <platform>-bsp : The C code for the board-specific files (drivers).

• <platform>-fp : Front Panel mockup for the simulator.

See Platform Import to learn how to import an existing Platform, and Platform Creation to learn how to create a
Platform.

Depending on the project’s requirements, the Platform can be connected in various ways to the BSP; see BSP Con-
nection for more information on how to do it.

Application

An Application is a Java project that can be configured (in the Run configurations . . . properties):

1. to either run on:

• the Simulator (computer desktop),

• a device (actual embedded hardware).

2. to setup:

• memory (example: Java heap, Java stack),

9.1. Understand How to Build a Firmware and its Dependencies 1284

https://developer.microej.com/mej32-embedded-runtime-architectures/
https://developer.microej.com/mej32-embedded-runtime-architectures/

MicroEJ Documentation, Revision 32bb132e

• Foundation Libraries,

• etc.

To run on a device, the application is compiled and optimized for a specific Platform. It generates a microejapp.o
(native object code) linked with the <platform>-bsp project.

To import an existing Application as a zipped project in the SDK:

• Go to File > Import. . . > General > Existing Projects into Workspace > Select archive file >

Browse. . . .

• Select the zip file of the project.

• And select Finish import.

See Create aMicroEJ Standalone Application formore information on how to create, configure, and develop a Stan-
dalone Application.

C Toolchain (GCC, KEIL, IAR, . . .)

Used to compile and link the following files into the final executable (binary, hex, elf, . . . that will be programmed
on the hardware):

• the microejapp.o (application),

• the microejruntime.lib or microejruntime.a (Platform runtime),

• the BSP C files (C application files and Board Support Package).

Module Repository

A Module Repository provides the modules required to build Platforms and Applications.

• The MicroEJ Central Repository is an online repository of so�ware modules (libraries, tools, etc.), see https:
//repository.microej.com/. This repository can also be used as an o�line repository, see https://developer.
microej.com/central-repository/.

• (Optional) It can be extended with an o�line repository (.zip) that can be imported in the workspace (see
Use the O�line Repository):

SeeModule Repository for more information.

Dependencies Between Components

• An Architecture targets a specific instruction set (ISA) and a specific C compiler (CC).

– The C toolchain used for the Architecturemust be the same as the one used to compile and link the BSP
project.

• A Platform consists of the aggregation of both an Architecture and a BSP with a C toolchain.

– Changing either the Architecture or the C toolchain results in a change of the Platform.

• An Application is independent of the Architecture.

– It can run on any Platform as long the Platform provides the required APIs.

– To run an Application on a new device, create a new Platform for this device with the exact same fea-
tures. The Application will not require any change.

9.1. Understand How to Build a Firmware and its Dependencies 1285

https://repository.microej.com/
https://repository.microej.com/
https://developer.microej.com/central-repository/
https://developer.microej.com/central-repository/

MicroEJ Documentation, Revision 32bb132e

9.1.2 How to Build

The process of building a Firmware is two-fold:

1. Build a Platform,

2. Compile/link the application and BSP using the C toolchain.

Note: The Application will also run on the Simulator using the mocks provided by the Platform.

Build a Platform

The next schema presents the components and process to build a Platform.

Build a Firmware

The next schema presents the build flow of a Mono-Sandbox Firmware (previously known as a MicroEJ Single-app
Firmware). The steps are:

1. Build the Application using the SDK (generates a microejapp.o file).

2. Compile the BSP C sources using the C toolchain (generates .o files).

3. Link theBSP files (.o), the Application (microejapp.o) and thePlatform runtime library (microejruntime.
a) using the C toolchain to produce the final executable (ELF or binary, for example application.out).

9.1. Understand How to Build a Firmware and its Dependencies 1286

MicroEJ Documentation, Revision 32bb132e

See BSP Connection for more information on how to connect a Platform to a BSP.

Dependencies Between Processes

• Rebuild the Platform:

– When the Architecture (.xpf) changes.

– When a Pack provided by MicroEJ (.xpfp) changes.

– When a Foundation Library changes, either when

* The public API (.java or .h) changes.

* The front-panel or mock implementation (.java) changes.

• Rebuild of the Platform is not required:

– When the implementation (.c) of a Foundation Library changes.

– When the BSP (.c) changes.

– When the Application changes.

• Rebuild the Application:

– When its code changes.

– When the Platform changes.

• Rebuild the BSP:

– When its code changes.

– When the Platform changes.

• Rebuild the Firmware:

9.1. Understand How to Build a Firmware and its Dependencies 1287

MicroEJ Documentation, Revision 32bb132e

– When the Application (microejapp.o) changes.

– When the BSP (*.o) changes.

– When the Platform (microejruntime.a) changes.

9.2 Create a MicroEJ Platform for a Custom Device

9.2.1 Introduction

AMicroEJ Architecture is a so�ware package that includes theMicroEJ Runtime port to a specific target Instruction
Set Architecture (ISA) and C compiler. It contains a set of libraries, tools and C header files. The MicroEJ Architec-
tures are provided by MicroEJ SDK.

A MicroEJ Platform is a MicroEJ Architecture port for a custom device. It contains the MicroEJ configuration and
the BSP (C source files).

MicroEJCorp. providesMicroEJEvaluationArchitecturesathttps://repository.microej.com/modules/, andMicroEJ
Platform demo projects for various evaluation boards at https://repository.microej.com/index.php?resource=JPF.

We recommend reading theMICROEJ VEE section to get an overview of MicroEJ Firmware build flow.

The following document assumes the reader is familiar with the VEE Porting Guide.

Each MicroEJ Platform is specific to:

• a MicroEJ Architecture (MCU ISA and C compiler)

• an optional RTOS (e.g. FreeRTOS - note: the MicroEJ OS can run bare metal)

• adevice: theOSbringupcode that is device specific (e.g. theMCUspecific code/IO/RAM/Clock/Middleware. . .
configurations)

In this document we will address the following items:

• MicroEJ Platform Configuration project (in MicroEJ SDK)

• MicroEJ Simulator (in MicroEJ SDK)

• Platform BSP (in a C IDE/Compiler like GCC/KEIL/IAR)

The MicroEJ Platform relies on C drivers (aka low level LL drivers) for each of the platform feature. These drivers
are implemented in the platform BSP project. This project is edited in the C compiler IDE/dev environment (e.g.
KEIL, GCC, IAR). E.g. the MicroUI library LED feature will require a LLUI_LED.c that implements the native on/o�
IO drive.

The following sections explain how to create a MicroEJ Platform for a custom device starting from an existing Mi-
croEJ Platform project whether it is configured for the same MCU/RTOS/C Compiler or not.

In the following, we assume that the new device hardware is validated and at least a trace output is available. It is
also a good idea to run basic hardware tests like:

• Internal and external flash programming and verification

• RAM 8/16/32 -bit read/write operations (internal and external if any)

• EEMBC Coremark benchmark to verify the CPU/buses/memory/compiler configuration

• See the Platform Qualification Tools used to qualify MicroEJ Platforms.

9.2. Create a MicroEJ Platform for a Custom Device 1288

https://repository.microej.com/modules/
https://repository.microej.com/index.php?resource=JPF
https://github.com/MicroEJ/VEEPortQualificationTools

MicroEJ Documentation, Revision 32bb132e

9.2.2 A MicroEJ Platform Project is already available for the sameMCU/RTOS/C Compiler

This is the fastest way: the MicroEJ Platform is usually provided for a silicon vendor evaluation board. Import this
platform in MicroEJ SDK.

As the MCU, RTOS and compiler are the same, only the device specific code needs to be changed (external RAM,
external oscillator, communication interfaces).

Platform

In the SDK

• modify the .platform fromtheMicroEJPlatform(xxx-configuration project) tomatch thedevice features
and its associated configuration (e.g. UI->Display).

More details on available modules can be found in the VEE Porting Guide.

BSP

Required actions:

• modify the BSP C project to match the device specification

– edit the scatter file/link options

– edit the compilation options

• create/review/change the platform Low Level C drivers. They must match the device components and the
MCU IO pin assignment

Note: A number of LL*.h files are referenced from the project. Implement the function prototypes declared
there so that the JVM can delegate the relevant operations to the provided BSP C functions.

9.2. Create a MicroEJ Platform for a Custom Device 1289

MicroEJ Documentation, Revision 32bb132e

Simulator

In the SDK

• modify the existing Simulator Front Panel xxx-fp project

9.2.3 A MicroEJ Platform Project is not available for the sameMCU/RTOS/C Compiler

Look for an available MicroEJ Platform that will match in order of priority:

• same MCU part number

• same RTOS

• same C compiler

At this point, consider either to modify the closest MicroEJ Platform

• In the SDK: modify the platform configuration.

• in the C IDE: start from an empty project that match with the MCU.

Or to start from scratch a newMicroEJ Platform

• In the SDK: create the MicroEJ Platform and refer to the selectedMicroEJ Platform as amodel for implemen-
tation. (refer to Platform Configuration)

• in the C IDE: start from an empty project and implement the drivers of each of the LL drivers API.

Make sure to link with:

– the microejruntime.a that runs the JVM for the MCU Architecture

– the microejapp.o that contains the compiled Java application

MCU

The MCU specific code can be found:

• in the C project IDE properties

• in the linker file

• the IO configuration

• in the low level driver (these drivers are usually provided by the silicon vendor)

RTOS

The LL driver is named LLMJVM_RTOS.c/.h . Modify this file to match the selected RTOS.

9.2. Create a MicroEJ Platform for a Custom Device 1290

MicroEJ Documentation, Revision 32bb132e

C Compiler

The BSP project is provided for a specific compiler (that matches the selected platform architecture). Start a new
project with the compiler IDE that includes the LL drivers and start the MicroEJ Platform in the main() function.

9.2.4 Platform Validation

Use the Platform Qualification Tools to qualify the MicroEJ Platform built.

9.2.5 Further Assistance Needed

Pleasenote that portingMicroEJ to anewdevice is also something that is part of our engineering services. Consider
contacting our sales team to request a quote.

9.3 Create a MicroEJ Firmware From Scratch

This tutorial explains how to create a MicroEJ Firmware from scratch. It goes trough the typical steps followed by
a Firmware developer integrating MicroEJ with a C Board Support Package (BSP) for a target device.

In this tutorial, the target device is a a Luminary Micro Stellaris. Though this device is no longer available on the
market, it has two advantages:

• The QEMU PC System emulator can emulate the device.

• FreeRTOS provides an o�icial Demo BSP.

Consequently, no board is required to follow this tutorial. Everything is emulated on the developer’s PC.

The tutorial should take 1hour to complete (excluding the installation timeofMicroEJSDKandWindowsSubsystem
Linux (WSL)).

9.3.1 Intended Audience

The audience for this document is Firmware engineers who want to understand how MicroEJ is integrated to a C
Board Support Package.

In addition, this tutorial should be of interest to all developers wishing to familiarize themselves with the low level
components of a MicroEJ Firmware such as: MicroEJ Architecture,MicroEJ Platform, Low Level API and BSP connec-
tion.

9.3.2 Introduction

The following steps are usually followed when starting a new project:

1. Pick a target device (that meets the requirements of the project).

2. Setup a RTOS and a toolchain that support the target device.

3. Adapt the RTOS port if needed.

4. Install aMicroEJ Architecture that matches the target device/RTOS/toolchain.

5. Setup a newMicroEJ Platform connected to the Board Support Package (BSP).

6. Implement Low Level API.

9.3. Create a MicroEJ Firmware From Scratch 1291

https://github.com/MicroEJ/VEEPortQualificationTools
https://www.microej.com/contact/#form_1

MicroEJ Documentation, Revision 32bb132e

7. Validate the resulting MicroEJ Platform with the Platform Qualification Tools (PQT).

8. Develop theMicroEJ Application.

This tutorial describes step by step how to go from the FreeRTOS BSP to a MicroEJ Application that runs on the
MicroEJ Platform and prints the classic "Hello, World!" .

In this tutorial:

• The target device is a Luminary Micro Stellaris which is emulated by QEMU (QEMU Stellaris boards).

• The RTOS is FreeRTOS and the toolchain is GNU CC fo ARM.

All modifications to FreeRTOS BSP made for this tutorial are available at https://github.com/MicroEJ/FreeRTOS/
tree/tuto-microej-firmware-from-scratch.

Note: The implementation of the Low Level API and their validation with the Platform Qualification Tools (PQT)
will be the topic of another tutorial.

9.3.3 Prerequisites

• MicroEJSDKversion 5.3.0 or higher (distribution 20.10). Canbedownloaded fromhttps://repository.microej.
com/packages/SDK (tested on MicroEJ SDK distribution 20.10)

• Windows 10 or higher with Windows Subsystem for Linux (WSL). See the installation guide.

• A Linux distribution installed on WSL (Tested on Ubuntu 19.10 eoan and Ubuntu 20.04 focal).

Note: In WSL, use the command lsb_release -a to print the current Ubuntu version.

A code editor such as Visual Studio Code is also recommended to edit BSP files.

9.3.4 Overview

Thenext sectionsdescribe stepby stephowtobuild aMicroEJFirmware that runsaHelloWorldMicroEJApplication
on the emulated device.

The steps to follow are:

1. Setup the development environment (assuming the prerequisites are satisfied).

2. Get a running BSP

3. Build the MicroEJ Platform

4. Create the HelloWorld MicroEJ Application

5. Implement the minimum Low Level API to run the application

This tutorial goes through trials and errors every Firmware developers may encounter. It provides a solution a�er
each error rather than providing the full solution in one go.

9.3. Create a MicroEJ Firmware From Scratch 1292

https://github.com/microej/VEEPortQualificationTools
https://www.qemu.org/docs/master/system/arm/stellaris.html
https://github.com/MicroEJ/FreeRTOS/tree/tuto-microej-firmware-from-scratch
https://github.com/MicroEJ/FreeRTOS/tree/tuto-microej-firmware-from-scratch
https://github.com/microej/VEEPortQualificationTools
https://repository.microej.com/packages/SDK
https://repository.microej.com/packages/SDK
https://repository.microej.com/packages/SDK/20.10/MicroEJ-SDK-Installer-Win64-20.10.exe
https://learn.microsoft.com/en-us/windows/wsl/install

MicroEJ Documentation, Revision 32bb132e

9.3.5 Setup the Development Environment

This section assumes the prerequisites have been properly installed.

In WSL:

1. Update apt’s cache: sudo apt-get update

2. Install qemu-system-arm and GNU CC toolchain for ARM: sudo apt-get install -y qemu-system-arm
gcc-arm-none-eabi build-essential subversion

3. The rest of this tutorial will use the folder src/tuto-from-scratch/ in the Windows home folder.

4. Create the folder: mkdir -p /mnt/c/Users/${USER}/src/tuto-from-scratch (the -p option ensures all
the directories are created).

5. Go into the folder: cd /mnt/c/Users/${USER}/src/tuto-from-scratch/

6. Clone FreeRTOS and its submodules: git clone -b V10.3.1 --recursive https://github.com/
FreeRTOS/FreeRTOS.git (this may takes some time)

Note: Use the right-click to paste from the Windows clipboard into WSL console. The right-click is also used to
copy from the WSL console into the Windows clipboard.

9.3.6 Get Running BSP

This section presents how to get running BSP based on FreeRTOS that boots on the target device.

1. Go into the target device sub-project: cd FreeRTOS/FreeRTOS/Demo/CORTEX_LM3S811_GCC

2. Build the project: make

Ignoring the warnings, the following error appears during the link:

CC hw_include/osram96x16.c
LD gcc/RTOSDemo.axf
arm-none-eabi-ld: section .text.startup LMA [0000000000002b24,0000000000002c8f]␣
→˓overlaps section .data LMA [0000000000002b24,0000000000002b27]
make: *** [makedefs:191: gcc/RTOSDemo.axf] Error 1

Insert the following fixes in the linker script file named standalone.ld (thanks to http://roboticravings.
blogspot.com/2018/07/freertos-on-cortex-m3-with-qemu.html).

Note: WSL can start the editor Visual Studio Code. type code . in WSL. . represents the current directory
in Unix.

Listing 1: https://github.com/MicroEJ/FreeRTOS/commit/
48248eae13baebf7df9638cd8da6fbfe1a735a9c

diff --git a/FreeRTOS/Demo/CORTEX_LM3S811_GCC/standalone.ld b/FreeRTOS/Demo/CORTEX_
→˓LM3S811_GCC/standalone.ld
--- a/FreeRTOS/Demo/CORTEX_LM3S811_GCC/standalone.ld
+++ b/FreeRTOS/Demo/CORTEX_LM3S811_GCC/standalone.ld
@@ -42,7 +42,15 @@ SECTIONS

_etext = .;

(continues on next page)

9.3. Create a MicroEJ Firmware From Scratch 1293

http://roboticravings.blogspot.com/2018/07/freertos-on-cortex-m3-with-qemu.html
http://roboticravings.blogspot.com/2018/07/freertos-on-cortex-m3-with-qemu.html
https://github.com/MicroEJ/FreeRTOS/commit/48248eae13baebf7df9638cd8da6fbfe1a735a9c
https://github.com/MicroEJ/FreeRTOS/commit/48248eae13baebf7df9638cd8da6fbfe1a735a9c

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

} > FLASH

- .data : AT (ADDR(.text) + SIZEOF(.text))
+ .ARM.exidx :
+ {
+ *(.ARM.exidx*)
+ *(.gnu.linkonce.armexidx.*)
+ } > FLASH
+
+ _begin_data = .;
+
+ .data : AT (_begin_data)

{
_data = .;
*(vtable)

This is the output of the git diff command. Lines startingwith a - should be removed. Lines startingwith
a + should be added.

Note: The patch(1) can be used to apply the patch. Assuming WSL shell is in FreeRTOS/Demo/
CORTEX_LM3S811_GCC directory:

1. Install dos2unix utility: sudo apt install dos2unix

2. Convert all files to unix line-ending: find -type f -exec dos2unix {} \;

3. Copy the content of the code block in a file named linker.patch (every lines of the code block must
be copied in the file).

4. Apply the patch: patch -l -p4 < linker.patch .

It is also possible to paste the di� directly into the console:

1. In WSL, invoke patch -l -p4 . The command starts, waiting for input on stdin (the standard input).

2. Copy the di� and paste it in WSL

3. Press enter

4. Press Ctrl-d Ctrl-d (press the Control key + the letter d twice).

3. Run the build again: make

4. Run the emulator with the generated kernel: qemu-system-arm -M lm3s811evb -nographic -kernel
gcc/RTOSDemo.bin

The following error appears and then nothing:

ssd0303: error: Unknown command: 0x80
ssd0303: error: Unexpected byte 0xe3
ssd0303: error: Unknown command: 0x80
ssd0303: error: Unexpected byte 0xe3
ssd0303: error: Unknown command: 0x80
ssd0303: error: Unexpected byte 0xe3
ssd0303: error: Unknown command: 0x80
ssd0303: error: Unexpected byte 0xe3

(continues on next page)

9.3. Create a MicroEJ Firmware From Scratch 1294

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

ssd0303: error: Unknown command: 0x80
ssd0303: error: Unexpected byte 0xe3
ssd0303: error: Unknown command: 0x80
ssd0303: error: Unexpected byte 0xe3
ssd0303: error: Unknown command: 0x80
ssd0303: error: Unexpected byte 0xe3
ssd0303: error: Unknown command: 0x80
ssd0303: error: Unexpected byte 0xe3
ssd0303: error: Unknown command: 0x80
ssd0303: error: Unexpected byte 0xe3

5. Press Ctrl-a x (press Control + the letter a , release, press x) to the end the QEMU session. The session
ends with QEMU: Terminated .

Note: The errors can be safely ignored. They occur because the OLED controller emulated receive incorrect
commands.

At this point, the target device is successfully booted with the FreeRTOS kernel.

9.3.7 FreeRTOS Hello World

This section describes how to configure the BSP to print text on the QEMU console.

The datasheet of the target device (LM3S811 datasheet) describes how to use the UART device and an example
implementation for QEMU is available here).

Here is the patch that implements putchar(3) and puts(3) and prints Hello World .

Listing 2: https://github.com/MicroEJ/FreeRTOS/commit/
d09ec0f5cbdf69ca97a5ac15f8b905538aa4c61e

diff --git a/FreeRTOS/Demo/CORTEX_LM3S811_GCC/main.c b/FreeRTOS/Demo/CORTEX_LM3S811_GCC/main.
→˓c
--- a/FreeRTOS/Demo/CORTEX_LM3S811_GCC/main.c
+++ b/FreeRTOS/Demo/CORTEX_LM3S811_GCC/main.c
@@ -134,9 +134,25 @@ SemaphoreHandle_t xButtonSemaphore;
QueueHandle_t xPrintQueue;

/*---*/
+#define UART0BASE ((volatile int*) 0x4000C000)
+
+int putchar (int c){
+ (*UART0BASE) = c;
+ return c;
+}
+
+int puts(const char *s) {
+ while (*s) {
+ putchar(*s);
+ s++;
+ }

(continues on next page)

9.3. Create a MicroEJ Firmware From Scratch 1295

https://www.ti.com/lit/ds/symlink/lm3s811.pdf
https://github.com/dwelch67/qemu_arm_samples/blob/master/cortex-m/uart01/notmain.c
https://github.com/MicroEJ/FreeRTOS/commit/d09ec0f5cbdf69ca97a5ac15f8b905538aa4c61e
https://github.com/MicroEJ/FreeRTOS/commit/d09ec0f5cbdf69ca97a5ac15f8b905538aa4c61e

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

+ return putchar('\n');
+}

int main(void)
{
+ puts("Hello, World! puts function is working.");
+

/* Configure the clocks, UART and GPIO. */
prvSetupHardware();

Rebuild and run the newly generated kernel: make && qemu-system-arm -M lm3s811evb -nographic -kernel
gcc/RTOSDemo.bin (press Ctrl-a x to interrupt the emulator).

make: Nothing to be done for 'all'.
Hello, World! puts function is working.
ssd0303: error: Unknown command: 0x80
ssd0303: error: Unexpected byte 0xe3
ssd0303: error: Unknown command: 0x80
ssd0303: error: Unexpected byte 0xe3
ssd0303: error: Unknown command: 0x80
ssd0303: error: Unexpected byte 0xe3
ssd0303: error: Unknown command: 0x80
ssd0303: error: Unexpected byte 0xe3
ssd0303: error: Unknown command: 0x80
ssd0303: error: Unexpected byte 0xe3
ssd0303: error: Unknown command: 0x80
ssd0303: error: Unexpected byte 0xe3
ssd0303: error: Unknown command: 0x80
ssd0303: error: Unexpected byte 0xe3
ssd0303: error: Unknown command: 0x80
ssd0303: error: Unexpected byte 0xe3
ssd0303: error: Unknown command: 0x80
ssd0303: error: Unexpected byte 0xe3
QEMU: Terminated

With this two functions implemented, printf(3) is also available.

Listing 3: https://github.com/MicroEJ/FreeRTOS/commit/
1f7e7ee014754a4dcb4f6c5a470205e02f6ac3c8

diff --git a/FreeRTOS/Demo/CORTEX_LM3S811_GCC/main.c b/FreeRTOS/Demo/CORTEX_LM3S811_GCC/main.
→˓c
--- a/FreeRTOS/Demo/CORTEX_LM3S811_GCC/main.c
+++ b/FreeRTOS/Demo/CORTEX_LM3S811_GCC/main.c
@@ -149,9 +149,11 @@ int puts(const char *s) {

return putchar('\n');
}

+#include <stdio.h>
+
int main(void)
{

(continues on next page)

9.3. Create a MicroEJ Firmware From Scratch 1296

https://github.com/MicroEJ/FreeRTOS/commit/1f7e7ee014754a4dcb4f6c5a470205e02f6ac3c8
https://github.com/MicroEJ/FreeRTOS/commit/1f7e7ee014754a4dcb4f6c5a470205e02f6ac3c8

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

- puts("Hello, World! puts function is working.");
+ printf("Hello, World! printf function is working.\n");

/* Configure the clocks, UART and GPIO. */
prvSetupHardware();

At this point, the character output on the UART is implemented in the FreeRTOS BSP. The next step is to create the
MicroEJ Platform and MicroEJ Application.

9.3.8 Create a MicroEJ Platform

This section describes how to create and configure aMicroEJ Platform compatiblewith the FreeRTOSBSP andGCC
toolchain.

• A MicroEJ Architecture is a so�ware package that includes the MicroEJ Runtime port to a specific target In-
struction Set Architecture (ISA) and C compiler. It contains a set of libraries, tools and C header files. The
MicroEJ Architectures are provided by MicroEJ SDK.

• AMicroEJ Platform is a port of a MicroEJ Architecture for a custom device. It contains the MicroEJ configura-
tion and the BSP (C source files).

When selecting a MicroEJ Architecture, special care must be taken to ensure the compatibility between the
toolchain used in the BSP and the toolchain used to build the MicroEJ Core Engine included in the MicroEJ Ar-
chitecture.

The list of MicroEJ Architectures supported is listed here. MicroEJ Evaluation Architectures provided by MicroEJ
Corp. can be downloaded fromMicroEJ Architectures Repository.

There is no CM3 in MicroEJ Architectures Repository and the Arm® Cortex®-M3 MCU is not mentioned in the ca-
pabilities matrix. This means that the MicroEJ Architectures for Arm® Cortex®-M3 MCUs are no longer distributed
for evaluation. Download the latest MicroEJ Architecture for Arm® Cortex®-M0 instead (the Arm® architectures are
binary upward compatible from Arm®v6-M (Cortex®-M0) to Arm®v7-M (Cortex®-M3)).

Import the MicroEJ Architecture

This step describes how to import aMicroEJ Architecture.

1. Start MicroEJ SDK on an empty workspace. For example, create an empty folder workspace next to the
FreeRTOS git folder and select it.

2. Keep the default MicroEJ Repository

3. Download the latest MicroEJ Architecture for Arm® Cortex®-M0 instead: https://repository.microej.com/
modules/com/microej/architecture/CM0/CM0_GCC48/flopi0G22/7.14.0/flopi0G22-7.14.0-eval.xpf

4. Import the MicroEJ Architecture in MicroEJ SDK

1. File > Import > MicroEJ > Architectures

2. select the MicroEJ Architecture file downloaded

3. Accept the license and click on Finish

9.3. Create a MicroEJ Firmware From Scratch 1297

https://repository.microej.com/modules/com/microej/architecture/
https://repository.microej.com/modules/com/microej/architecture/CM0/CM0_GCC48/flopi0G22/7.14.0/flopi0G22-7.14.0-eval.xpf
https://repository.microej.com/modules/com/microej/architecture/CM0/CM0_GCC48/flopi0G22/7.14.0/flopi0G22-7.14.0-eval.xpf

MicroEJ Documentation, Revision 32bb132e

Install an Evaluation License

This step describes how to create and activate an Evaluation License for the MicroEJ Architecture previously im-
ported.

1. Select the Window > Preferences > MicroEJ > Architectures menu .

2. Click on the architectures and press Get UID .

3. Copy the UID. It will be needed when requesting a license.

4. Go to https://license.microej.com.

5. Click on Create a new account link.

6. Create an account with a valid email address. A confirmation email will be sent a fewminutes a�er. Click on
the confirmation link in the email and login with the account.

7. Click on Activate a License .

8. Set Product P/N: to 9PEVNLDBU6IJ .

9. Set UID: to the UID generated before.

10. Click on Activate .

• The license is being activated. Anactivationmail shouldbe received in less than5minutes. If not, please
contact contact our support team.

• Once received by email, save the attached zip file that contains the activation key.

11. Go back to Microej SDK.

9.3. Create a MicroEJ Firmware From Scratch 1298

https://license.microej.com

MicroEJ Documentation, Revision 32bb132e

12. Select the Window > Preferences > MicroEJ menu.

13. Press Add. . . .

14. Browse the previously downloaded activation key archive file.

15. Press OK . A new license is successfully installed.

16. Go to Architectures sub-menu and check that all architectures are now activated (green check).

17. Microej SDK is successfully activated.

Create the MicroEJ Platform

This step describes how to create a newMicroEJ Platform using the MicroEJ Architecture previously imported.

1. Select File > New > Platform Project .

2. Ensure the Architecture selected is the MicroEJ Architecture previously imported.

3. Ensure the Create from a platform reference implementation box is unchecked.

4. Click on Next button.

5. Fill the fields:

• Set Device: to lm3s811evb

9.3. Create a MicroEJ Firmware From Scratch 1299

MicroEJ Documentation, Revision 32bb132e

• Set Name: to Tuto

Setup the MicroEJ Platform

This step describes how to configure the MicroEJ Platform previously created. For more information on this topic,
please refer to Platform Configuration.

The Platform Configuration Additions provide a flexible way to configure the BSP connection between the Mi-
croEJ Platform and MicroEJ Application to the BSP. In this tutorial, the Partial BSP connection is used. That is,
the MicroEJ SDK will output all MicroEJ files (C headers, MicroEJ Application microejapp.o , MicroEJ Runtime
microejruntime.a , . . .) in a location known by the BSP. The BSP is configured to compile and link with those files.

For this tutorial, that means that the final binary is produced by invoking make in the FreeRTOS BSP.

1. Install the Platform Configuration Additions by copying all the files within the content folder in the MicroEJ
Platform folder.

Note: The content directory contains files thatmust be installed in aMicroEJ Platform configuration direc-

9.3. Create a MicroEJ Firmware From Scratch 1300

https://github.com/MicroEJ/VEEPortQualificationTools/tree/2.6.0/framework/platform
https://github.com/MicroEJ/VEEPortQualificationTools/tree/2.6.0/framework/platform/content

MicroEJ Documentation, Revision 32bb132e

tory (thedirectory that contains the .platform file). It canbeautomatically downloadedusing the following
command line:

svn export --force https://github.com/MicroEJ/VEEPortQualificationTools/tags/2.6.0/
→˓framework/platform/content [path_to_platform_configuration_directory]

2. Edit the file bsp/bsp.properties as follow:

Specify the MicroEJ Application file ('microejapp.o') parent directory.
This is a '/' separated directory relative to 'bsp.root.dir'.
microejapp.relative.dir=microej/lib

Specify the MicroEJ Platform runtime file ('microejruntime.a') parent directory.
This is a '/' separated directory relative to 'bsp.root.dir'.
microejlib.relative.dir=microej/lib

Specify MicroEJ Platform header files ('*.h') parent directory.
This is a '/' separated directory relative to 'bsp.root.dir'.
microejinc.relative.dir=microej/inc

3. Edit the file modules.ivy and add the MicroEJ Architecture as a dependency:

<dependencies>
<dependency org="com.microej.architecture.CM0.CM0_GCC48" name="flopi0G22" rev="7.

→˓14.0">
<artifact name="flopi0G22" m:classifier="${com.microej.platformbuilder.

→˓architecture.usage}" ext="xpf"/>
</dependency>

</dependencies>

4. Edit the file modules.properties and set the MicroEJ platform filename:

Platform configuration file (relative to this project).
com.microej.platformbuilder.platform.filename=Tuto.platform

5. Right-click on the platform project and click on Build Module .

6. The following message appears in the console:

module-platform:report:
[echo] ␣

→˓==
[echo] Platform has been built in this directory 'C:\Users\user\src\tuto-

→˓from-scratch\workspace/lm3s811evb-Platform-CM0_GCC48-0.0.1'.
[echo] To import this project in your MicroEJ SDK workspace (if not already␣

→˓available):
[echo] - Select 'File' > 'Import...' > 'General' > 'Existing Projects into␣

→˓Workspace' > 'Next'
[echo] - Check 'Select root directory' and browse 'C:\Users\user\src\tuto-

→˓from-scratch\workspace/lm3s811evb-Platform-CM0_GCC48-0.0.1' > 'Finish'
[echo] ␣

→˓==

BUILD SUCCESSFUL

9.3. Create a MicroEJ Firmware From Scratch 1301

MicroEJ Documentation, Revision 32bb132e

7. Follow the instructions to import the generated platform in the workspace:

At this point, the MicroEJ Platform is ready to be used to build MicroEJ Applications.

9.3.9 Create MicroEJ Application HelloWorld

1. Select File > New > Standalone Application Project .

2. Set the name to HelloWorld and click on Finish

9.3. Create a MicroEJ Firmware From Scratch 1302

MicroEJ Documentation, Revision 32bb132e

3. Run theapplication inSimulator to ensure it isworkingproperly. Right-clickonHelloWorldproject > Run As
> MicroEJ Application

9.3. Create a MicroEJ Firmware From Scratch 1303

MicroEJ Documentation, Revision 32bb132e

The following message appears in the console:

9.3. Create a MicroEJ Firmware From Scratch 1304

MicroEJ Documentation, Revision 32bb132e

=============== [Initialization Stage] ===============
=============== [Launching on Simulator] ===============
Hello World!
=============== [Completed Successfully] ===============

SUCCESS

9.3.10 Configure BSP Connection in MicroEJ Application

This step describes how to configure the BSP connection for the HelloWorld MicroEJ Application and how to build
the MicroEJ Application that will run on the target device.

For a MicroEJ Application, the BSP connection is configured in the PROJECT-NAME/build/emb.properties file.

1. Create a file HelloWorld/build/emb.properties with the following content:

core.memory.immortal.size=0
core.memory.javaheap.size=1024
core.memory.threads.pool.size=4
core.memory.threads.size=1
core.memory.thread.max.size=4
deploy.bsp.microejapp=true
deploy.bsp.microejlib=true
deploy.bsp.microejinc=true
deploy.bsp.root.dir=[absolute_path] to FreeRTOS\\FreeRTOS\\Demo\\CORTEX_LM3S811_GCC

Note: Assuming the WSL current directory is FreeRTOS/FreeRTOS/Demo/CORTEX_LM3S811_GCC , use the
following command to find the deploy.bsp.root.dir path with proper escaping:

pwd | sed -e 's|/mnt/c/|C:\\\\|' -e 's|/|\\\\|g'

2. Open Run > Run configurations. . .

3. Select the HelloWorld launcher configuration

9.3. Create a MicroEJ Firmware From Scratch 1305

MicroEJ Documentation, Revision 32bb132e

4. Select Execution tab.

5. Change the execution mode from Execute on Simulator to Execute on Device .

6. Add the file build/emb.properties to the options files

9.3. Create a MicroEJ Firmware From Scratch 1306

MicroEJ Documentation, Revision 32bb132e

7. Click on Run

=============== [Initialization Stage] ===============
Platform connected to BSP location 'C:\Users\user\src\tuto-from-scratch\FreeRTOS\FreeRTOS\
→˓Demo\CORTEX_LM3S811_GCC' using application option 'deploy.bsp.root.dir'.
=============== [Launching SOAR] ===============
=============== [Launching Link] ===============
=============== [Deployment] ===============
MicroEJ files for the 3rd-party BSP project are generated to 'C:\Users\user\src\tuto-from-
→˓scratch\workspace\HelloWorld\com.mycompany.Main\platform'.
The MicroEJ application (microejapp.o) has been deployed to: 'C:\Users\user\src\tuto-from-
→˓scratch\FreeRTOS\FreeRTOS\Demo\CORTEX_LM3S811_GCC\microej\lib'.
The MicroEJ platform library (microejruntime.a) has been deployed to: 'C:\Users\user\src\
→˓tuto-from-scratch\FreeRTOS\FreeRTOS\Demo\CORTEX_LM3S811_GCC\microej\lib'.
The MicroEJ platform header files (*.h) have been deployed to: 'C:\Users\user\src\tuto-from-
→˓scratch\FreeRTOS\FreeRTOS\Demo\CORTEX_LM3S811_GCC\microej\inc'.
=============== [Completed Successfully] ===============

SUCCESS

At this point, the HelloWorld MicroEJ Application is built and deployed in the FreeRTOS BSP.

9.3.11 MicroEJ and FreeRTOS Integration

This section describes how to finalize the integration between MicroEJ and FreeRTOS to get a working firmware
that runs the HelloWorld MicroEJ Application built previously.

In the previous section, when the MicroEJ Application was built, several files were added to a new folder named
microej/ .

$ pwd
/mnt/c/Users/user/src/tuto-from-scratch/FreeRTOS/FreeRTOS/Demo/CORTEX_LM3S811_GCC
$ tree microej/
microej/

inc
BESTFIT_ALLOCATOR.h
BESTFIT_ALLOCATOR_impl.h
LLBSP_impl.h
LLMJVM.h
LLMJVM_MONITOR_impl.h
LLMJVM_impl.h
LLTRACE_impl.h
MJVM_MONITOR.h
MJVM_MONITOR_types.h
intern

BESTFIT_ALLOCATOR.h
BESTFIT_ALLOCATOR_impl.h
LLBSP_impl.h
LLMJVM.h
LLMJVM_impl.h
trace_intern.h

sni.h
trace.h

(continues on next page)

9.3. Create a MicroEJ Firmware From Scratch 1307

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

lib
microejapp.o
microejruntime.a

3 directories, 19 files

• The microej/lib folder contains the HelloWorld MicroEJ Application object file (microejapp.o) and the
MicroEJ Runtime. The final binary must be linked with these two files.

• The microej/inc folder contains several Cheader filesused toexposeMicroEJLowLevel APIs. The functions
defined in files ending with the _impl.h su�ix should be implemented by the BSP.

To summarize, the following steps remain to complete the integration between MicroEJ and the FreeRTOS BSP:

• Implement minimal Low Level APIs

• Invoke the MicroEJ Core Engine

• Build and link the firmware with the MicroEJ Runtime and MicroEJ Application

Minimal Low Level APIs

The purpose of this tutorial is to demonstrate how to develop aminimal MicroEJ Architecture, it is not to develop a
complete MicroEJ Architecture. Therefore this tutorial implements only the required functions and provides stub
implementation for unused features. For example, the following implementation does not support scheduling.

The two headers that must be implemented are LLBSP_impl.h and LLMJVM_impl.h .

1. In the BSP, create a folder named microej/src (next to the microej/lib and microej/inc folders).

2. Implement LLBSP_impl.h in LLBSP.c :

Listing 4: microej/src/LLBSP.c

#include "LLBSP_impl.h"

extern void _etext(void);
uint8_t LLBSP_IMPL_isInReadOnlyMemory(void* ptr)
{
return ptr < &_etext;

}

/**
* Writes the character <code>c</code>, cast to an unsigned char, to stdout stream.
* This function is used by the default implementation of the Java <code>System.out</
→˓code>.
*/
void LLBSP_IMPL_putchar(int32_t c)
{
putchar(c);

}

• The implementation of LLBSP_IMPL_putchar reuses the putchar implemented previously.

• The rodata section is defined in the linker script standalone.ld . The flash memory starts at 0 and
the end of the section is stored in the _etex symbol.

9.3. Create a MicroEJ Firmware From Scratch 1308

MicroEJ Documentation, Revision 32bb132e

3. Implement LLMJVM_impl.h in LLMJVM_stub.c (all functions are stubbed with a dummy implementation):

Listing 5: microej/src/LLMJVM_stub.c

#include "LLMJVM_impl.h"

int32_t LLMJVM_IMPL_initialize()
{

return LLMJVM_OK;
}

int32_t LLMJVM_IMPL_vmTaskStarted()
{

return LLMJVM_OK;
}

int32_t LLMJVM_IMPL_scheduleRequest(int64_t absoluteTime)
{

return LLMJVM_OK;
}

int32_t LLMJVM_IMPL_idleVM()
{

return LLMJVM_OK;
}

int32_t LLMJVM_IMPL_wakeupVM()
{

return LLMJVM_OK;
}

int32_t LLMJVM_IMPL_ackWakeup()
{

return LLMJVM_OK;
}

int32_t LLMJVM_IMPL_getCurrentTaskID()
{

return (int32_t) 123456;
}

void LLMJVM_IMPL_setApplicationTime(int64_t t)
{

}

int64_t LLMJVM_IMPL_getCurrentTime(uint8_t system)
{

return 0;
}

int64_t LLMJVM_IMPL_getTimeNanos()

(continues on next page)

9.3. Create a MicroEJ Firmware From Scratch 1309

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

{
return 0;

}

int32_t LLMJVM_IMPL_shutdown(void)
{

return LLMJVM_OK;
}

The microej folder in the BSP has the following structure:

$ pwd
/mnt/c/Users/user/src/tuto-from-scratch/FreeRTOS/FreeRTOS/Demo/CORTEX_LM3S811_GCC
$ tree microej/
microej/

inc
BESTFIT_ALLOCATOR.h
BESTFIT_ALLOCATOR_impl.h
LLBSP_impl.h
LLMJVM.h
LLMJVM_MONITOR_impl.h
LLMJVM_impl.h
LLTRACE_impl.h
MJVM_MONITOR.h
MJVM_MONITOR_types.h
intern

BESTFIT_ALLOCATOR.h
BESTFIT_ALLOCATOR_impl.h
LLBSP_impl.h
LLMJVM.h
LLMJVM_impl.h
trace_intern.h

sni.h
trace.h

lib
microejapp.o
microejruntime.a

src
LLBSP.c
LLMJVM_stub.c

4 directories, 21 files

9.3. Create a MicroEJ Firmware From Scratch 1310

MicroEJ Documentation, Revision 32bb132e

Invoke MicroEJ Core Engine

The MicroEJ Core Engine is created and initialized with the C function SNI_createVM . Then it is started and ex-
ecuted in the current RTOS task by calling SNI_startVM . The function SNI_startVM returns when the MicroEJ
Application exits. Both functions are declared in the C header sni.h .

Listing 6: https://github.com/MicroEJ/FreeRTOS/commit/
7ae8e79f9c811621569ccb90c46b1dcda91da35d

diff --git a/FreeRTOS/Demo/CORTEX_LM3S811_GCC/main.c b/FreeRTOS/Demo/CORTEX_LM3S811_GCC/main.
→˓c
--- a/FreeRTOS/Demo/CORTEX_LM3S811_GCC/main.c
+++ b/FreeRTOS/Demo/CORTEX_LM3S811_GCC/main.c
@@ -150,11 +150,14 @@ int puts(const char *s) {
}

#include <stdio.h>
+#include "sni.h"

int main(void)
{

printf("Hello, World! printf function is working.\n");

+ SNI_startVM(SNI_createVM(), 0, NULL);
+

/* Configure the clocks, UART and GPIO. */
prvSetupHardware();

Build and Link the Firmware with the MicroEJ Runtime and MicroEJ Application

To build and link the firmware with the MicroEJ Runtime and MicroEJ Application, the BSP port must be modified
to:

1. Use the MicroEJ header files in folder microej/inc

2. Use the source files folder microej/src that contains the Low Level API implementation LLBSP.c and
LLMJVM_stub.c

3. Compile and link LLBSP.o and LLMJVM_stub.o

4. Link with MicroEJ Application (microej/lib/microejapp.o) and MicroEJ Runtime (microej/lib/
microejruntime.a)

The following patch updates the BSP port Makefile to do it:

Listing 7: https://github.com/FreeRTOS/FreeRTOS/commit/
257d9e1d123be0342029e2930c0073dd5a4a2b2d

--- a/FreeRTOS/Demo/CORTEX_LM3S811_GCC/Makefile
+++ b/FreeRTOS/Demo/CORTEX_LM3S811_GCC/Makefile
@@ -29,8 +29,10 @@ RTOS_SOURCE_DIR=../../Source
DEMO_SOURCE_DIR=../Common/Minimal

CFLAGS+=-I hw_include -I . -I ${RTOS_SOURCE_DIR}/include -I ${RTOS_SOURCE_DIR}/portable/GCC/
→˓ARM_CM3 -I ../Common/include -D GCC_ARMCM3_LM3S102 -D inline=

(continues on next page)

9.3. Create a MicroEJ Firmware From Scratch 1311

https://github.com/MicroEJ/FreeRTOS/commit/7ae8e79f9c811621569ccb90c46b1dcda91da35d
https://github.com/MicroEJ/FreeRTOS/commit/7ae8e79f9c811621569ccb90c46b1dcda91da35d
https://github.com/FreeRTOS/FreeRTOS/commit/257d9e1d123be0342029e2930c0073dd5a4a2b2d
https://github.com/FreeRTOS/FreeRTOS/commit/257d9e1d123be0342029e2930c0073dd5a4a2b2d

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

+CFLAGS+= -I microej/inc

VPATH=${RTOS_SOURCE_DIR}:${RTOS_SOURCE_DIR}/portable/MemMang:${RTOS_SOURCE_DIR}/portable/
→˓GCC/ARM_CM3:${DEMO_SOURCE_DIR}:init:hw_include
+VPATH+= microej/src

OBJS=${COMPILER}/main.o \
${COMPILER}/list.o \

@@ -44,9 +46,12 @@ OBJS=${COMPILER}/main.o \
${COMPILER}/semtest.o \
${COMPILER}/osram96x16.o

+OBJS+= ${COMPILER}/LLBSP.o ${COMPILER}/LLMJVM_stub.o
+
INIT_OBJS= ${COMPILER}/startup.o

LIBS= hw_include/libdriver.a
+LIBS+= microej/lib/microejruntime.a microej/lib/microejapp.o

Then build the firmware with make . The following error occurs at link time.

CC microej/src/LLMJVM_stub.c
LD gcc/RTOSDemo.axf ␣

→˓ ␣
→˓ arm-none-eabi-ld: error: microej/lib/
→˓microejruntime.a(sni_vm_startup_greenthread.o) uses VFP register arguments, gcc/RTOSDemo.
→˓axf does not
arm-none-eabi-ld: failed to merge target specific data of file microej/lib/microejruntime.
→˓a(sni_vm_startup_greenthread.o)
arm-none-eabi-ld: gcc/RTOSDemo.axf section `ICETEA_HEAP' will not fit in region `SRAM'
arm-none-eabi-ld: region `SRAM' overflowed by 4016 bytes
microej/lib/microejapp.o: In function `_java_internStrings_end':

The RAM requirements of the BSP (with printf), FreeRTOS, the MicroEJ Application and MicroEJ Runtime do not
fit in the 8k of SRAM. It is possible to link within 8k of RAM by customizing a MicroEJ Tiny-Sandbox on a baremetal
device (without a RTOS) but this is not the purpose of this tutorial.

Instead, this tutorial will switch to another device, the LuminaryMicro Stellaris LM3S6965EVB. This device is almost
identical as the LM3S811EVB but it has 256k of flash memory and 64k of SRAM. Updating the values in the linker
script standalone.ld is su�icient to create a valid BSP port for this device.

Instead of continuing to work with the LM3S811 port, create a copy, named CORTEX_LM3S6965_GCC:

$ cd ..
$ pwd
/mnt/c/Users/user/src/tuto-from-scratch/FreeRTOS/FreeRTOS/Demo
$ cp -r CORTEX_LM3S811_GCC/ CORTEX_LM3S6965_GCC
$ cd CORTEX_LM3S6965_GCC

The BSP path defined by the property deploy.bsp.root.dir in the MicroEJ Applicationmust be updated as well.

The rest of the tutorial assumes that everything is done in the CORTEX_LM3S6965_GCC folder.

Then update the linker script standlone.ld :

9.3. Create a MicroEJ Firmware From Scratch 1312

MicroEJ Documentation, Revision 32bb132e

Listing 8: https://github.com/MicroEJ/FreeRTOS/commit/
0e2e31d8a510d37178c340051bab636902471eea

diff --git a/FreeRTOS/Demo/CORTEX_LM3S6965_GCC/standalone.ld b/FreeRTOS/Demo/CORTEX_LM3S6965_
→˓GCC/standalone.ld
--- a/FreeRTOS/Demo/CORTEX_LM3S6965_GCC/standalone.ld
+++ b/FreeRTOS/Demo/CORTEX_LM3S6965_GCC/standalone.ld
@@ -28,8 +28,8 @@

MEMORY
{
- FLASH (rx) : ORIGIN = 0x00000000, LENGTH = 64K
- SRAM (rwx) : ORIGIN = 0x20000000, LENGTH = 8K
+ FLASH (rx) : ORIGIN = 0x00000000, LENGTH = 256K
+ SRAM (rwx) : ORIGIN = 0x20000000, LENGTH = 64K
}

SECTIONS

The new command to run the firmware with QEMU is: qemu-system-arm -M lm3s6965evb -nographic -kernel
gcc/RTOSDemo.bin .

Rebuild the firmware with make . The following error occurs:

CC microej/src/LLMJVM_stub.c
LD gcc/RTOSDemo.axf ␣

→˓ ␣
→˓ microej/lib/microejapp.o: In function␣
→˓`_java_internStrings_end':
C:\Users\user\src\tuto-from-scratch\workspace\HelloWorld\com.mycompany.Main\SOAR.o:(.text.
→˓soar+0x1b3e): undefined reference to `ist_mowana_vm_GenericNativesPool___com_1is2t_1vm_
→˓1support_1lang_1SupportNumber_1parseLong'
C:\Users\user\src\tuto-from-scratch\workspace\HelloWorld\com.mycompany.Main\SOAR.o:(.text.
→˓soar+0x1cea): undefined reference to `ist_mowana_vm_GenericNativesPool___com_1is2t_1vm_
→˓1support_1lang_1SupportNumber_1toStringLongNative' C:\Users\user\src\tuto-from-
→˓scratch\workspace\HelloWorld\com.mycompany.Main\SOAR.o:(.text.soar+0x1e3e): undefined␣
→˓reference to `ist_mowana_vm_GenericNativesPool___com_1is2t_1vm_1support_1lang_1Systools_
→˓1appendInteger'
C:\Users\user\src\tuto-from-scratch\workspace\HelloWorld\com.mycompany.Main\SOAR.o:(.text.
→˓soar+0x1f2a): undefined reference to `ist_mowana_vm_GenericNativesPool___java_1lang_
→˓1System_1getMethodClass'
C:\Users\user\src\tuto-from-scratch\workspace\HelloWorld\com.mycompany.Main\SOAR.o:(.text.
→˓soar+0x1e3e): undefined reference to `ist_mowana_vm_GenericNativesPool___com_1is2t_1vm_
→˓1support_1lang_1Systools_1appen
... skip ...
C:\Users\user\src\tuto-from-scratch\workspace\HelloWorld\com.mycompany.Main\SOAR.o:(.text.
→˓soar+0x31d6): undefined reference to `ist_mowana_vm_GenericNativesPool___java_1lang_
→˓1System_1initializeProperties'
C:\Users\user\src\tuto-from-scratch\workspace\HelloWorld\com.mycompany.Main\SOAR.o:(.text.
→˓soar+0x37b6): undefined reference to `ist_mowana_vm_GenericNativesPool___java_1lang_
→˓1Thread_1storeException'
C:\Users\user\src\tuto-from-scratch\workspace\HelloWorld\com.mycompany.Main\SOAR.o:(.text.
→˓soar+0x37c8): undefined reference to `ist_microjvm_NativesPool___java_1lang_1Thread_

(continues on next page)

9.3. Create a MicroEJ Firmware From Scratch 1313

https://github.com/MicroEJ/FreeRTOS/commit/0e2e31d8a510d37178c340051bab636902471eea
https://github.com/MicroEJ/FreeRTOS/commit/0e2e31d8a510d37178c340051bab636902471eea

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

→˓1execClinit'
microej/lib/microejapp.o: In function `__icetea__getSingleton__com_is2t_microjvm_mowana_
→˓VMTask':
C:\Users\user\src\tuto-from-scratch\workspace\HelloWorld\com.mycompany.Main\SOAR.o:(.text.__
→˓icetea__getSingleton__com_is2t_microjvm_mowana_VMTask+0xc): undefined reference to `com_
→˓is2t_microjvm_mowana_VMTask___getSingleton'
microej/lib/microejapp.o: In function `__icetea__getSingleton__com_is2t_microjvm_
→˓IGreenThreadMicroJvm':
... skip ...
microej/lib/microejapp.o: In function `TRACE_record_event_u32x3_ptr':
C:\Users\user\src\tuto-from-scratch\workspace\HelloWorld\com.mycompany.Main\SOAR.o:(.rodata.
→˓TRACE_record_event_u32x3_ptr+0x0): undefined reference to `TRACE_default_stub'
microej/lib/microejapp.o: In function `TRACE_record_event_u32x4_ptr':
C:\Users\user\src\tuto-from-scratch\workspace\HelloWorld\com.mycompany.Main\SOAR.o:(.rodata.
→˓TRACE_record_event_u32x4_ptr+0x0): undefined reference to `TRACE_default_stub'
microej/lib/microejapp.o:C:\Users\user\src\tuto-from-scratch\workspace\HelloWorld\com.
→˓mycompany.Main\SOAR.o:(.rodata.TRACE_record_event_u32x5_ptr+0x0): more undefined␣
→˓references to `TRACE_default_stub' follow
make: *** [makedefs:196: gcc/RTOSDemo.axf] Error 1

This error occurs because microejruntime.a refers to symbols in microejapp.o but is declared a�er in the linker
command line. By default, the GNU LD linker does not search unresolved symbols into archive files loaded previ-
ously (see man ld for a description of the start-group option). To solve this issue, either invert the declaration
of LIBS (put microejapp.o first) or guard the libraries declaration with --start-group and --end-group in
makedefs . This tutorial uses the later.

Listing 9: https://github.com/MicroEJ/FreeRTOS/commit/
4b23ea2e77112f053368718d299�8db826ddde1

diff --git a/FreeRTOS/Demo/CORTEX_LM3S6965_GCC/makedefs b/FreeRTOS/Demo/CORTEX_LM3S6965_GCC/
→˓makedefs
--- a/FreeRTOS/Demo/CORTEX_LM3S6965_GCC/makedefs
+++ b/FreeRTOS/Demo/CORTEX_LM3S6965_GCC/makedefs
@@ -196,13 +196,13 @@ ifeq (${COMPILER}, gcc)

echo ${LD} -T ${SCATTER_${notdir ${@:.axf=}}} \
--entry ${ENTRY_${notdir ${@:.axf=}}} \
${LDFLAGSgcc_${notdir ${@:.axf=}}} \

- ${LDFLAGS} -o ${@} ${^} \
- '${LIBC}' '${LIBGCC}'; \
+ ${LDFLAGS} -o ${@} --start-group ${^} \
+ '${LIBC}' '${LIBGCC}' --end-group; \

fi
@${LD} -T ${SCATTER_${notdir ${@:.axf=}}} \

--entry ${ENTRY_${notdir ${@:.axf=}}} \
${LDFLAGSgcc_${notdir ${@:.axf=}}} \

- ${LDFLAGS} -o ${@} ${^} \
- '${LIBC}' '${LIBGCC}'
+ ${LDFLAGS} -o ${@} --start-group ${^} \
+ '${LIBC}' '${LIBGCC}' --end-group

@${OBJCOPY} -O binary ${@} ${@:.axf=.bin}
endif

Rebuild with make . The following error occurs:

9.3. Create a MicroEJ Firmware From Scratch 1314

https://github.com/MicroEJ/FreeRTOS/commit/4b23ea2e77112f053368718d299ff8db826ddde1
https://github.com/MicroEJ/FreeRTOS/commit/4b23ea2e77112f053368718d299ff8db826ddde1

MicroEJ Documentation, Revision 32bb132e

LD gcc/RTOSDemo.axf
microej/lib/microejruntime.a(VMCOREMicroJvm__131.o): In function `VMCOREMicroJvm__1131____1_
→˓11046':
_131.c:(.text.VMCOREMicroJvm__1131____1_11046+0x20): undefined reference to `fmodf'
microej/lib/microejruntime.a(VMCOREMicroJvm__131.o): In function `VMCOREMicroJvm__1131____1_
→˓11045':
_131.c:(.text.VMCOREMicroJvm__1131____1_11045+0x2c): undefined reference to `fmod'
microej/lib/microejruntime.a(iceTea_lang_Math.o): In function `iceTea_lang_Math___cos':
Math.c:(.text.iceTea_lang_Math___cos+0x2a): undefined reference to `cos'
microej/lib/microejruntime.a(iceTea_lang_Math.o): In function `iceTea_lang_Math___sin':
Math.c:(.text.iceTea_lang_Math___sin+0x2a): undefined reference to `sin'
microej/lib/microejruntime.a(iceTea_lang_Math.o): In function `iceTea_lang_Math___tan':
Math.c:(.text.iceTea_lang_Math___tan+0x2a): undefined reference to `tan'
microej/lib/microejruntime.a(iceTea_lang_Math.o): In function `iceTea_lang_Math___acos__D':
Math.c:(.text.iceTea_lang_Math___acos__D+0x18): undefined reference to `acos'
microej/lib/microejruntime.a(iceTea_lang_Math.o): In function `iceTea_lang_Math___acos(void)
→˓':
Math.c:(.text.iceTea_lang_Math___acos__F+0x12): undefined reference to `acosf'
microej/lib/microejruntime.a(iceTea_lang_Math.o): In function `iceTea_lang_Math___asin':
Math.c:(.text.iceTea_lang_Math___asin+0x18): undefined reference to `asin'
microej/lib/microejruntime.a(iceTea_lang_Math.o): In function `iceTea_lang_Math___atan':
Math.c:(.text.iceTea_lang_Math___atan+0x2): undefined reference to `atan'
microej/lib/microejruntime.a(iceTea_lang_Math.o): In function `iceTea_lang_Math___atan2':
Math.c:(.text.iceTea_lang_Math___atan2+0x2): undefined reference to `atan2'
microej/lib/microejruntime.a(iceTea_lang_Math.o): In function `iceTea_lang_Math___log':
Math.c:(.text.iceTea_lang_Math___log+0x2): undefined reference to `log'
microej/lib/microejruntime.a(iceTea_lang_Math.o): In function `iceTea_lang_Math_(...)(long␣
→˓long, *)':
Math.c:(.text.iceTea_lang_Math___exp+0x2): undefined reference to `exp'
microej/lib/microejruntime.a(iceTea_lang_Math.o): In function `iceTea_lang_Math_(char,...
→˓)(int, long)':
Math.c:(.text.iceTea_lang_Math___ceil+0x2): undefined reference to `ceil'
microej/lib/microejruntime.a(iceTea_lang_Math.o): In function `iceTea_lang_Math___floor':
... skip ...

This erroroccursbecause theMath library ismissing. The rule for linking the firmware isdefined in the file makedefs
. Replicating how the libc is managed, the following patch finds the libm.a library and add it at link time:

Listing 10: https://github.com/MicroEJ/FreeRTOS/commit/
a202f43948c41b848ebfbc8c53610028c454b66f

diff --git a/FreeRTOS/Demo/CORTEX_LM3S6965_GCC/makedefs b/FreeRTOS/Demo/CORTEX_LM3S6965_GCC/
→˓makedefs
--- a/FreeRTOS/Demo/CORTEX_LM3S6965_GCC/makedefs
+++ b/FreeRTOS/Demo/CORTEX_LM3S6965_GCC/makedefs
@@ -102,6 +102,11 @@ LIBGCC=${shell ${CC} -mthumb -march=armv6t2 -print-libgcc-file-name}
#
LIBC=${shell ${CC} -mthumb -march=armv6t2 -print-file-name=libc.a}

+#
+# Get the location of libm.a from the GCC front-end.
+#
+LIBM=${shell ${CC} -mthumb -march=armv6t2 -print-file-name=libm.a}

(continues on next page)

9.3. Create a MicroEJ Firmware From Scratch 1315

https://github.com/MicroEJ/FreeRTOS/commit/a202f43948c41b848ebfbc8c53610028c454b66f
https://github.com/MicroEJ/FreeRTOS/commit/a202f43948c41b848ebfbc8c53610028c454b66f

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

+
#
The command for extracting images from the linked executables.
#
@@ -197,12 +202,12 @@ ifeq (${COMPILER}, gcc)

--entry ${ENTRY_${notdir ${@:.axf=}}} \
${LDFLAGSgcc_${notdir ${@:.axf=}}} \
${LDFLAGS} -o ${@} --start-group ${^} \

- '${LIBC}' '${LIBGCC}' --end-group; \
+ '${LIBM}' '${LIBC}' '${LIBGCC}' --end-group; \

fi
@${LD} -T ${SCATTER_${notdir ${@:.axf=}}} \

--entry ${ENTRY_${notdir ${@:.axf=}}} \
${LDFLAGSgcc_${notdir ${@:.axf=}}} \
${LDFLAGS} -o ${@} --start-group ${^} \

- '${LIBC}' '${LIBGCC}' --end-group
+ '${LIBM}' '${LIBC}' '${LIBGCC}' --end-group;

@${OBJCOPY} -O binary ${@} ${@:.axf=.bin}
endif

Rebuild with make . The following error occurs:

CC microej/src/LLMJVM_stub.c
LD gcc/RTOSDemo.axf

/usr/lib/gcc/arm-none-eabi/6.3.1/../../../arm-none-eabi/lib/thumb/libc.a(lib_a-sbrkr.o): In␣
→˓function `_sbrk_r':
/build/newlib-jo3xW1/newlib-2.4.0.20160527/build/arm-none-eabi/thumb/newlib/libc/reent/../../
→˓../../../../newlib/libc/reent/sbrkr.c:58: undefined reference to `_sbrk'
make: *** [makedefs:196: gcc/RTOSDemo.axf] Error 1

Instead of implementing a stub _sbrk function, this tutorial uses the libnosys.a which provides stub implemen-
tation for various functions.

Listing 11: https://github.com/MicroEJ/FreeRTOS/commit/
eb208d846f52c0695c06456b540e412ba96e640a

diff --git a/FreeRTOS/Demo/CORTEX_LM3S6965_GCC/makedefs b/FreeRTOS/Demo/CORTEX_LM3S6965_GCC/
→˓makedefs
--- a/FreeRTOS/Demo/CORTEX_LM3S6965_GCC/makedefs
+++ b/FreeRTOS/Demo/CORTEX_LM3S6965_GCC/makedefs
@@ -107,6 +107,11 @@ LIBC=${shell ${CC} -mthumb -march=armv6t2 -print-file-name=libc.a}
#
LIBM=${shell ${CC} -mthumb -march=armv6t2 -print-file-name=libm.a}

+#
+# Get the location of libnosys.a from the GCC front-end.
+#
+LIBNOSYS=${shell ${CC} -mthumb -march=armv6t2 -print-file-name=libnosys.a}
+
#
The command for extracting images from the linked executables.
#

(continues on next page)

9.3. Create a MicroEJ Firmware From Scratch 1316

https://github.com/MicroEJ/FreeRTOS/commit/eb208d846f52c0695c06456b540e412ba96e640a
https://github.com/MicroEJ/FreeRTOS/commit/eb208d846f52c0695c06456b540e412ba96e640a

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

@@ -202,12 +207,12 @@ ifeq (${COMPILER}, gcc)
--entry ${ENTRY_${notdir ${@:.axf=}}} \
${LDFLAGSgcc_${notdir ${@:.axf=}}} \
${LDFLAGS} -o ${@} --start-group ${^} \

- '${LIBM}' '${LIBC}' '${LIBGCC}' --end-group; \
+ '${LIBNOSYS}' '${LIBM}' '${LIBC}' '${LIBGCC}' --end-group; \

fi
@${LD} -T ${SCATTER_${notdir ${@:.axf=}}} \

--entry ${ENTRY_${notdir ${@:.axf=}}} \
${LDFLAGSgcc_${notdir ${@:.axf=}}} \
${LDFLAGS} -o ${@} --start-group ${^} \

- '${LIBM}' '${LIBC}' '${LIBGCC}' --end-group;
+ '${LIBNOSYS}' '${LIBM}' '${LIBC}' '${LIBGCC}' --end-group;

@${OBJCOPY} -O binary ${@} ${@:.axf=.bin}
endif

Rebuild with make . The following error occurs:

CC microej/src/LLMJVM_stub.c
LD gcc/RTOSDemo.axf

/usr/lib/gcc/arm-none-eabi/6.3.1/../../../arm-none-eabi/lib/thumb/libnosys.a(sbrk.o): In␣
→˓function `_sbrk':
/build/newlib-jo3xW1/newlib-2.4.0.20160527/build/arm-none-eabi/thumb/libgloss/libnosys/../../
→˓../../../libgloss/libnosys/sbrk.c:21: undefined reference to `end'
make: *** [makedefs:201: gcc/RTOSDemo.axf] Error 1

The _sbrk implementation needs the end symbol to be defined. Looking at the implementation, the end symbol
corresponds to the beginning of the C heap. This tutorial uses the end of the .bss segment as the beginning of the
C heap.

Listing 12: https://github.com/MicroEJ/FreeRTOS/commit/
898f2e6cd492616b4ccaabc136cafa76ef038690

diff --git a/FreeRTOS/Demo/CORTEX_LM3S6965_GCC/standalone.ld b/FreeRTOS/Demo/CORTEX_LM3S6965_
→˓GCC/standalone.ld
--- a/FreeRTOS/Demo/CORTEX_LM3S6965_GCC/standalone.ld
+++ b/FreeRTOS/Demo/CORTEX_LM3S6965_GCC/standalone.ld
@@ -64,5 +64,6 @@ SECTIONS

*(.bss)
*(COMMON)
_ebss = .;

+ end = .;
} > SRAM

}

Then rebuild with make . There should be no error. Finally, run the firmware in QEMUwith the following command:

qemu-system-arm -M lm3s6965evb -nographic -kernel gcc/RTOSDemo.bin

Hello, World! printf function is working.
Hello World!
QEMU: Terminated // press Ctrl-a x to end the QEMU session

9.3. Create a MicroEJ Firmware From Scratch 1317

https://chromium.googlesource.com/native_client/nacl-newlib/+/99fc6c167467b41466ec90e8260e9c49cbe3d13c/libgloss/libnosys/sbrk.c
https://github.com/MicroEJ/FreeRTOS/commit/898f2e6cd492616b4ccaabc136cafa76ef038690
https://github.com/MicroEJ/FreeRTOS/commit/898f2e6cd492616b4ccaabc136cafa76ef038690

MicroEJ Documentation, Revision 32bb132e

The first Hello, World! is from the main.c and the second one from the MicroEJ Application.

To make this more obvious:

1. Update the MicroEJ Application to print Hello World! This is my first MicroEJ Application

2. Rebuild the MicroEJ Application

On success, the following message appears in the console:

=============== [Initialization Stage] ===============
Platform connected to BSP location 'C:\Users\user\src\tuto-from-scratch\FreeRTOS\
→˓FreeRTOS\Demo\CORTEX_LM3S6965_GCC' using application option 'deploy.bsp.root.dir'.
=============== [Launching SOAR] ===============

(continues on next page)

9.3. Create a MicroEJ Firmware From Scratch 1318

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

=============== [Launching Link] ===============
=============== [Deployment] ===============
MicroEJ files for the 3rd-party BSP project are generated to 'C:\Users\user\src\tuto-
→˓from-scratch\workspace\HelloWorld\com.mycompany.Main\platform'.
The MicroEJ application (microejapp.o) has been deployed to: 'C:\Users\user\src\tuto-
→˓from-scratch\FreeRTOS\FreeRTOS\Demo\CORTEX_LM3S6965_GCC\microej\lib'.
The MicroEJ platform library (microejruntime.a) has been deployed to: 'C:\Users\user\
→˓src\tuto-from-scratch\FreeRTOS\FreeRTOS\Demo\CORTEX_LM3S6965_GCC\microej\lib'.
The MicroEJ platform header files (*.h) have been deployed to: 'C:\Users\user\src\tuto-
→˓from-scratch\FreeRTOS\FreeRTOS\Demo\CORTEX_LM3S6965_GCC\microej\inc'.
=============== [Completed Successfully] ===============

SUCCESS

3. Then rebuild and run the firmware:

$ make && qemu-system-arm -M lm3s6965evb -nographic -kernel gcc/RTOSDemo.bin

LD gcc/RTOSDemo.axf
Hello, World! printf function is working.
Hello World! This is my first MicroEJ Application
QEMU: Terminated

Congratulations!

At this point of the tutorial:

• The MicroEJ Platform is connected to the BSP (BSP partial connection).

• The MicroEJ Application is deployed within a known location of the BSP (in microej/ folder).

• The FreeRTOS LM3S6965 port:

– provides the minimal Low Level API to run the MicroEJ Application

– compiles and links FreeRTOS with the MicroEJ Application and MicroEJ Runtime

– runs on QEMU

The next steps recommended are:

• Complete the implementation of the Low Level APIs (implement all functions in LLMJVM_impl.h).

• Validate the implementation with the PQT Core.

• Follow theCreateMicroEJ PlatformBuild andRunScripts tutorial to get thisMicroEJ Platform fully automated
for build and execution.

9.3. Create a MicroEJ Firmware From Scratch 1319

https://github.com/MicroEJ/VEEPortQualificationTools/tree/master/tests/core

MicroEJ Documentation, Revision 32bb132e

9.4 Add IAR to MicroEJ SDK Docker Image

This document presents how to create a Dockerfile with MicroEJ SDK version 5.x and Cross-platform Build Tools
for Arm to build a MicroEJ application. You can use this image in your automated CI.

9.4.1 Prerequisites

• A recent version of IAR BXARM and its user licence.

This tutorial was tested with MicroEJ SDK 5.8.1-jdk11 , IAR 9.30.1 , and Docker 24.0.6 .

9.4.2 Create the Dockerfile

Here is our final Dockerfile. We will explain each specific step below.

FROM microej/sdk:5.8.1-jdk11

USER root
SHELL ["/bin/bash", "-c"]

ARG IAR_BXARM_VERSION=9.30.1
ARG IAR_BXARM_PACKAGE="bxarm-$IAR_BXARM_VERSION.deb"

COPY ressources/$IAR_BXARM_PACKAGE /tmp/$IAR_BXARM_PACKAGE
RUN apt-get update && apt-get install sudo libsqlite3-0 libxml2 tzdata dos2unix /
→˓tmp/$IAR_BXARM_PACKAGE -y && \

apt-get clean autoclean autoremove && rm -rf /var/lib/apt/lists/* /tmp/*.deb

ENV PATH="/opt/iarsystems/bxarm/arm/bin/:/opt/iarsystems/bxarm/common/bin/:$PATH"
ENV IAR_LICENSE_SERVER=$IAR_LICENSE_SERVER_IP

Set workdir
WORKDIR ${HOME}

ADD run.sh /run.sh
RUN chmod a+x /run.sh

Good practice, switch back to user.
USER ${user}

ENTRYPOINT ["/run.sh"]

1. In a new directory create a file named Dockerfile .

2. We use MicroEJ SDK base image, they are available on docker hub. In your Dockerfile add this code:

FROM microej/sdk:5.8.1-jdk11

3. Add IAR BXARM deb package in a directory named resources .

4. Add the package info to your Dockerfile (update the version with the one you want to use):

9.4. Add IAR to MicroEJ SDK Docker Image 1320

https://docs.microej.com/en/latest/SDKUserGuide/
https://www.iar.com/products/architectures/arm/iar-build-tools-for-arm/
https://www.iar.com/products/architectures/arm/iar-build-tools-for-arm/
https://hub.docker.com/r/microej/sdk

MicroEJ Documentation, Revision 32bb132e

ARG IAR_BXARM_VERSION=9.30.1
ARG IAR_BXARM_PACKAGE="bxarm-$IAR_BXARM_VERSION.deb"

5. Copy the package to a temporary directory.

COPY ressources/$IAR_BXARM_PACKAGE /tmp/$IAR_BXARM_PACKAGE

6. Install this package along with any others required packages.

RUN apt-get update && apt-get install sudo libsqlite3-0 libxml2 tzdata dos2unix␣
→˓/tmp/$IAR_BXARM_PACKAGE -y && \
apt-get clean autoclean autoremove && rm -rf /var/lib/apt/lists/* /tmp/*.deb

7. Set IAR path and license server address:

ENV PATH="/opt/iarsystems/bxarm/arm/bin/:/opt/iarsystems/bxarm/common/bin/:$PATH
→˓"
ENV IAR_LICENSE_SERVER=$IAR_LICENSE_SERVER_IP

8. Finally create a run.sh script with the following content:

lightlicensemanager setup -s license.iar.public
exec "$@"

9.5 Create MicroEJ Platform Build and Run Scripts

This tutorial describes all the steps to createMicroEJ Platform build and run scripts and shows how to use them.

9.5.1 Intended Audience

The audience for this document is Platform engineers who want to

• validate their MicroEJ Platform using automatedMicroEJ test suites.

• prepare their MicroEJ Platform for automated builds and continuous integration usingMicroEJ Module Man-
ager.

• easeMicroEJ Standalone Application development by simplifying the Firmware build for Java developers.

• configure their MicroEJ Platform with full BSP connection.

9.5.2 Prerequisites

This tutorial is a direct continuation of Create a MicroEJ Firmware From Scratch tutorial. It should have been com-
pleted before starting this one.

9.5. Create MicroEJ Platform Build and Run Scripts 1321

MicroEJ Documentation, Revision 32bb132e

9.5.3 Introduction

Build and Run scripts are normalized entry points to

• build a MicroEJ Firmware linked to the Board Support Package,

• deploy and run the Firmware on a device.

External tools only need to run these scripts without additional knowledge about the toolchain or deployment
tools.

See Build Script File and Run Script File sections for more information about these scripts. Script examples are
provided in Platform Qualification Tools repository.

9.5.4 Overview

In the previous Create a MicroEJ Firmware From Scratch tutorial, the final binary is produced by invoking make in
the FreeRTOS BSP. The command to type is dependant of the toolchain used. The Firmware is then executed in
QEMU but could have been instead flashed to a device with another specific command. This tutorial explain how
to write build and run scripts for these two tasks.

The next sections will

• describe step-by-step how to create the build and run scripts both for unix-like systems (Bash scripts) and
Windows systems (batch files). These scripts automate Firmware build and execution in QEMU as presented
in Create a MicroEJ Firmware From Scratch tutorial.

• show a practical usage of these scripts in a MicroEJ development flow. This will allow to configure a MicroEJ
Standalone Application to build the Firmware in MicroEJ SDK.

Finally, this tutorial describes how to convert theMicroEJ Platform frompartial BSP connection to full BSP connec-
tion.

9.5.5 Create Build and Run Scripts

This section describes how to write build and run scripts.

There are two scripts:

1. build.[sh|bat] which calls the C toolchain to build and link the Firmware file. It also ensures that the
output file is called application.out and is located in the directory fromwhere the script was called.

2. run.[sh|bat] which deploys and runs application.out on the device. In this tutorial, it will only run the
Firmware with QEMU instead of flashing it on real hardware.

Each of these scripts come in two flavors: .sh for unix-like systems, and .bat for Windows systems.

First, create a microej/scripts directory in BSP project:

$ pwd
/mnt/c/Users/user/src/tuto-from-scratch/FreeRTOS/FreeRTOS/Demo/CORTEX_LM3S6965_GCC
$ mkdir microej/scripts

Note: The scripts created in the next sections will be put in this directory.

9.5. Create MicroEJ Platform Build and Run Scripts 1322

https://github.com/MicroEJ/VEEPortQualificationTools/tree/master/framework/platform/scripts

MicroEJ Documentation, Revision 32bb132e

Create build.sh and run.sh Scripts

Warning: Make sure the build and run scripts have the execution permission.

1. Create a file called build.sh in the microej/scripts directory with the following content:

#!/bin/bash

Save application current directory and jump one level above scripts
CURRENT_DIRECTORY=$(pwd)

Move to the directory where the Makefile is
cd $(dirname "$0")/../..

Build the firmware
make

Copy output the the current directory while renaming it
cp gcc/RTOSDemo.bin $CURRENT_DIRECTORY/application.out

Restore application directory
cd $CURRENT_DIRECTORY/

2. Verify that the script successfully built your Firmware and put it in the current directory with the name
application.out .

$ pwd
/mnt/c/Users/user/src/tuto-from-scratch/FreeRTOS/FreeRTOS/Demo/CORTEX_LM3S6965_GCC
$ make clean
$ microej/scripts/build.sh
CC init/startup.c
CC main.c
CC ../../Source/list.c
CC ../../Source/queue.c
CC ../../Source/tasks.c

[..]
130 | __attribute__((always_inline)) static inline uint8_t␣

→˓ucPortCountLeadingZeros(uint32_t ulBitmap)
| ^~~~~~~~~~~~~~~~~

→˓~~~~~~
LD gcc/RTOSDemo.axf

$ ls *.out
application.out

3. Check that application.out successfully runs with QEMU:

$ qemu-system-arm -M lm3s6965evb -nographic -kernel application.out
Hello, World! printf function is working.
Hello World!
QEMU: Terminated // press Ctrl-a x to end the QEMU session

4. Create a file called run.sh in the microej/scripts directory with the following content:

9.5. Create MicroEJ Platform Build and Run Scripts 1323

MicroEJ Documentation, Revision 32bb132e

#!/bin/bash

Add some text to the console before launch
echo -e "\033[0;32m## Start application in QEMU."
echo -e "## Use 'Ctrl-a x' to quit.\e[0m"

Launch application with QEMU
qemu-system-arm -M lm3s6965evb -nographic -kernel application.out

5. We can now run the Firmware we just built with the run.sh script:

$ pwd
/mnt/c/Users/user/src/tuto-from-scratch/FreeRTOS/FreeRTOS/Demo/CORTEX_LM3S6965_GCC
$ microej/scripts/run.sh
Start application in QEMU.
Use 'Ctrl-a x' to quit.
Hello, World! printf function is working.
Hello World!

Note: This script is very simple because our Firmware is just run with QEMU instead of real hardware. To deploy
the Firmware on a device, the script would have to setup and call a flash tool. See for instance the build and run
scripts for Espressif-ESP-WROVER-KIT-V4.1.

Create build.bat and run.bat Scripts

As our toolchain has only be configured for Linux in WSL, we create wrappers that call shell scripts through WSL.
We could also decide to directly invoke QEMU for Windows instead. This is just a implementation choice for this
Platform.

1. Create a file called build.bat in the microej/scripts directory with the following content:

@echo off
SETLOCAL ENABLEEXTENSIONS

REM Reset ERRORLEVEL between multiple run in the same shell
SET ERRORLEVEL=0

REM Save application current directory and jump to scripts directory
SET CURRENT_DIRECTORY=%CD%
CD "%~dp0"

REM Get the script directory in a Unix path format
FOR /F %%i in ('WSL pwd') DO SET SCRIPT_DIRECTORY=%%i

REM Restore application directory
CD %CURRENT_DIRECTORY%

REM Run the bash build script with WSL
WSL %SCRIPT_DIRECTORY%/build.sh

IF %ERRORLEVEL% NEQ 0 (

(continues on next page)

9.5. Create MicroEJ Platform Build and Run Scripts 1324

https://github.com/MicroEJ/Platform-Espressif-ESP-WROVER-KIT-V4.1/blob/1.7.0/ESP32-WROVER-Xtensa-FreeRTOS-bsp/Projects/microej/scripts/build.sh

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

EXIT /B %ERRORLEVEL%
)

2. Calling this script in PowerShell should produce the following result:

PS C:\Users\user\src\tuto-from-scratch\FreeRTOS\FreeRTOS\Demo\CORTEX_LM3S6965_GCC>␣
→˓microej\scripts\build.bat
CC init/startup.c
CC main.c
CC ../../Source/list.c
CC ../../Source/queue.c
CC ../../Source/tasks.c
[...]
CC microej/src/LLMJVM_stub.c
LD gcc/RTOSDemo.axf

Current DIR /mnt/c/Users/user/src/tuto-from-scratch/FreeRTOS/FreeRTOS/Demo/CORTEX_
→˓LM3S6965_GCC/microej/scripts

1 file(s) moved.

Note: This prints the full build output if it is the first build (or a�er a make clean) otherwise it prints make:
Nothing to be done for 'all' .

3. Create a file called run.bat in the microej/scripts directory with the following content:

@echo off
SETLOCAL ENABLEEXTENSIONS

REM Reset ERRORLEVEL between multiple run in the same shell
SET ERRORLEVEL=0

REM Save application current directory and jump to scripts directory
SET CURRENT_DIRECTORY=%CD%
CD "%~dp0"

REM Get the script directory in a Unix path format
FOR /F %%i in ('WSL pwd') DO SET SCRIPT_DIRECTORY=%%i

REM Restore application directory
CD %CURRENT_DIRECTORY%

REM Run the bash run script with WSL
WSL %SCRIPT_DIRECTORY%/run.sh

IF %ERRORLEVEL% NEQ 0 (
EXIT /B %ERRORLEVEL%

)

4. Calling this script in PowerShell should produce the following result:

C:\Users\user\src\tuto-from-scratch\FreeRTOS\FreeRTOS\Demo\CORTEX_LM3S6965_GCC\
→˓application.out

(continues on next page)

9.5. Create MicroEJ Platform Build and Run Scripts 1325

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

1 file(s) copied.
Start application in QEMU.
Use 'Ctrl-a x' to quit.
Hello, World! printf function is working.
Hello World!

9.5.6 Use Build Script in MicroEJ SDK

In this section, we illustrate how build script is used in practice to ease the Firmware build for Java developers in
MicroEJ SDK.

We will configure a MicroEJ Standalone Application to enable full Firmware build (application + BSP + link) when
building the HelloWorld application.

Wewill then configure a full BSP connection. This will remove the need to configure the path of the BSP root direc-
tory as a MicroEJ Standalone Application option. Please refer to BSP connection cases section and BSP connection
options for more details.

Note: Build and run scripts do not require to configure a full BSP connection. This last part has only be added to
allow a MicroEJ Standalone Application project to be built independently from the BSP.

Build Firmware fromMicroEJ SDK

1. Right click on the HelloWorld application project

2. In the menu, select Run As > Run Configurations. . .

3. Select the Configuration tab

4. Select Device > Deploy entry in the configurations menu

5. Check Execute the MicroEJ script (build.bat) at the location known by the 3rd-party BSP project checkbox

9.5. Create MicroEJ Platform Build and Run Scripts 1326

MicroEJ Documentation, Revision 32bb132e

6. Click on the Run button. It should print the following:

=============== [Initialization Stage] ===============
Platform connected to BSP location 'C:\Users\user\src\tuto-from-scratch\FreeRTOS\
→˓FreeRTOS\Demo\CORTEX_LM3S6965_GCC' using application option 'deploy.bsp.root.dir
→˓'.
[INFO] Launching in Evaluation mode. Your UID is 0120202834374C4A.
=============== [Launching SOAR] ===============
=============== [Launching Link] ===============
=============== [Deployment] ===============
MicroEJ files for the 3rd-party BSP project are generated to 'C:\Users\user\src\
→˓tuto-from-scratch\workspace\HelloWorld\com.mycompany.Main\platform'.

FAIL
The following error occurred while executing this line:
C:\Users\user\src\tuto-from-scratch\workspace\lm3s811evb-Platform-CM0_GCC48-0.0.1\
→˓source\scripts\deploy.xml:30: The following error occurred while executing this␣
→˓line:
C:\Users\user\src\tuto-from-scratch\workspace\lm3s811evb-Platform-CM0_GCC48-0.0.1\
→˓source\scripts\deployInBSP.xml:97: The following error occurred while executing␣
→˓this line:
C:\Users\user\src\tuto-from-scratch\workspace\lm3s811evb-Platform-CM0_GCC48-0.0.1\
→˓source\scripts\deployInBSP.xml:260: Option 'deploy.bsp.microejscript' is enabled␣
→˓but this Platform does no define a well-known location. Either update the␣
→˓Platform configuration (option 'deploy.bsp.microejscript.relative.dir' in 'bsp/
→˓bsp.properties') or disable this option.

7. Edit the file bsp/bsp.properties as follow:

9.5. Create MicroEJ Platform Build and Run Scripts 1327

MicroEJ Documentation, Revision 32bb132e

Specify BSP external scripts files ('build.bat' and 'run.bat') parent directory.
This is a '/' separated directory relative to 'bsp.root.dir'.
microejscript.relative.dir=microej/scripts

8. Rebuild your Platform (right-click on the platform configuration project and click on Build Module)

9. Run the HelloWorld launcher once again. This should print the following result:

=============== [Initialization Stage] ===============
Platform connected to BSP location 'C:\Users\user\src\tuto-from-scratch\FreeRTOS\
→˓FreeRTOS\Demo\CORTEX_LM3S6965_GCC' using platform option 'deploy.bsp.root.dir'.
[INFO] Launching in Evaluation mode. Your UID is 0120202834374C4A.===============␣
→˓[Launching SOAR] ===============
=============== [Launching Link] ===============
=============== [Deployment] ===============
MicroEJ files for the 3rd-party BSP project are generated to 'C:\Users\user\
→˓Workspaces_test_fw_tuto\HelloWorld\com.mycompany.Main\platform'.
The MicroEJ application (microejapp.o) has been deployed to: 'C:\Users\user\src\
→˓tuto-from-scratch\FreeRTOS\FreeRTOS\Demo\CORTEX_LM3S6965_GCC\microej\lib'.
The MicroEJ platform library (microejruntime.a) has been deployed to: 'C:\Users\
→˓user\src\tuto-from-scratch\FreeRTOS\FreeRTOS\Demo\CORTEX_LM3S6965_GCC\microej\lib
→˓'.
The MicroEJ platform header files (*.h) have been deployed to: 'C:\Users\user\src\
→˓tuto-from-scratch\FreeRTOS\FreeRTOS\Demo\CORTEX_LM3S6965_GCC\microej\inc'.
Execution of script 'C:\Users\user\src\tuto-from-scratch\FreeRTOS\FreeRTOS\Demo\
→˓CORTEX_LM3S6965_GCC\microej\scripts\build.bat' started...
LD gcc/RTOSDemo.axf
Current DIR /mnt/c/Users/user/Workspaces/_test_fw_tuto/HelloWorld/com.mycompany.
→˓Main
Execution of script 'C:\Users\user\src\tuto-from-scratch\FreeRTOS\FreeRTOS\Demo\
→˓CORTEX_LM3S6965_GCC\microej\scripts\build.bat' done.
=============== [Completed Successfully] ===============

SUCCESS

Reading the traces, we see that the HelloWorld application (microejapp.o) and the MicroEJ Platform library (mi-
croejruntime.a) have been deployed to the suitable BSP location. Then the build.bat script has been executed
to rebuild the BSP and link the Firmware. The output is the application.out binary that can be flashed on the
device (or run on QEMU).

Convert from partial BSP connection to full BSP connection (optional)

In this section, we configure the BSP root directory in the Platform. Such configuration is called full BSP connection:
the MicroEJ Platform includes the BSP, and any MicroEJ Standalone Application can be built against this MicroEJ
Platform without extra configuration.

When launching the HelloWorld application fromMicroEJ SDK, the launcher knows how to find the BSP because
we have configured its path in HelloWorld/build/emb.properties file which is imported in the launcher (this
file has been configured in Create a MicroEJ Firmware From Scratch tutorial).

1. Cut deploy.bsp.root.dir property value from HelloWorld/build/emb.properties file

2. Paste the value in bsp/bsp.properties as follow:

9.5. Create MicroEJ Platform Build and Run Scripts 1328

MicroEJ Documentation, Revision 32bb132e

Specify the BSP root directory. Can use ${project.parent.dir} which target the␣
→˓parent of platform configuration project
For example, '${workspace}/${project.prefix}-bsp' specifies a BSP project beside␣
→˓the '-configuration' project
root.dir=[absolute_path] to FreeRTOS\\FreeRTOS\\Demo\\CORTEX_LM3S811_GCC

3. Rebuild your MicroEJ Platform (right-click on the platform configuration project and click on Build Module
)

The MicroEJ Platform is now fully connected to the BSP.

4. Launch HelloWorld project from Eclipse launcher, it should print the following result:

=============== [Initialization Stage] ===============
Platform connected to BSP location 'C:\Users\user\src\tuto-from-scratch\
→˓FreeRTOS\FreeRTOS\Demo\CORTEX_LM3S6965_GCC' using platform option 'root.
→˓dir' in 'bsp/bsp.properties'.
[INFO] Launching in Evaluation mode. Your UID is 0120202834374C4A.
=============== [Launching SOAR] ===============
=============== [Launching Link] ===============
=============== [Deployment] ===============
MicroEJ files for the 3rd-party BSP project are generated to 'C:\Users\
→˓user\src\tuto-from-scratch\workspace\HelloWorld\com.mycompany.Main\
→˓platform'.
The MicroEJ application (microejapp.o) has been deployed to: 'C:\Users\
→˓user\src\tuto-from-scratch\FreeRTOS\FreeRTOS\Demo\CORTEX_LM3S6965_GCC\
→˓microej\lib'.
The MicroEJ platform library (microejruntime.a) has been deployed to: 'C:\
→˓Users\user\src\tuto-from-scratch\FreeRTOS\FreeRTOS\Demo\CORTEX_LM3S6965_
→˓GCC\microej\lib'.
The MicroEJ platform header files (*.h) have been deployed to: 'C:\Users\
→˓user\src\tuto-from-scratch\FreeRTOS\FreeRTOS\Demo\CORTEX_LM3S6965_GCC\
→˓microej\inc'.
Execution of script 'C:\Users\user\src\tuto-from-scratch\FreeRTOS\FreeRTOS\
→˓Demo\CORTEX_LM3S6965_GCC\microej\scripts\build.bat' started...
LD gcc/RTOSDemo.axf

Current DIR /mnt/c/Users/user/src/tuto-from-scratch/FreeRTOS/FreeRTOS/Demo/
→˓CORTEX_LM3S6965_GCC/microej/scripts
Execution of script 'C:\Users\user\src\tuto-from-scratch\FreeRTOS\FreeRTOS\
→˓Demo\CORTEX_LM3S6965_GC C\microej\scripts\build.bat' done.
=============== [Completed Successfully] ===============

SUCCESS

Note: You can notice the di�erence in the second line of the trace that now says that the
connection is using platform option root.dir' in 'bsp/bsp.properties' instead of
using platform option 'deploy.bsp.root.dir' in the previous launch.

The application launcher does not know anymore where the BSP is located. Nevertheless it still builds
a Firmware ready to be flashed. The link to the BSP is now configured in the MicroEJ Platform. Any
MicroEJ Standalone Application can be built against thisMicroEJ Platformwith noBSP specific option.

9.5. Create MicroEJ Platform Build and Run Scripts 1329

MicroEJ Documentation, Revision 32bb132e

9.5.7 Going Further

• More about build and run scripts in Build Script File and Run Script File sections

• Some build scripts examples from Platform Qualification Tools

• Perform the Run a Test Suite on a Device tutorial to learn how to run an automated testsuite

• Perform the Setup an Automated Build using Jenkins and Artifactory tutorial to learn how to automate the
build of a MicroEJ Platformmodule

9.6 Setup an Automated Build using Jenkins and Artifactory

This tutorial explains how to setup an environment for automating MicroEJ Module build and deployment using
Jenkins, JFrog Artifactory and a Git plateform (you can also use Gitlab or Github for example).

Such environment setup facilitates continuous integration (CI) and continuous delivery (CD), which improves pro-
ductivity across your development ecosystem, by automatically:

• building modules when source code changes

• saving build results

• reproducing builds

• archiving binary modules

The tutorial should take 1 hour to complete.

9.6.1 Intended Audience

The audience for this document is engineers who are in charge of integrating MicroEJ Module Manager (MMM) to
their continuous integration environment.

In addition, this tutorial should be of interest to all developers wishing to understand how MicroEJ works with
headless module builds.

For thosewhoareonly interestedby command linemodulebuild, consider using theMMMCommandLine Interface.

9.6.2 Introduction

The overall build and deployment flow of a module can be summarized as follows:

1. Some event triggers the build process (i.e module source changed, user action, scheduled routine, etc.)

2. The module source code is retrieved from the Source Control System

3. The module dependencies are imported from the Repository Manager

4. The Automation Server then proceeds to building the module

5. If the build is successful, the module binary is deployed to the Repository Manager

9.6. Setup an Automated Build using Jenkins and Artifactory 1330

https://github.com/MicroEJ/VEEPortQualificationTools/tree/master/framework/platform/scripts
https://www.jenkins.io/
https://jfrog.com/artifactory/
https://about.gitea.com/

MicroEJ Documentation, Revision 32bb132e

9.6.3 Prerequisites

• MicroEJ SDK 5 5.8.1 or higher.

• Docker and Docker Compose V2 on Linux, Windows or Mac

• Git 2.x installed, with Git executable in path. We recommend installing Git Bash if your operating system is
Windows (https://gitforwindows.org/).

This tutorial was tested with Jenkins 2.426.1 , Artifactory 7.71.5 and Gitea 1.21.1 .

Note: For SDK versions before 5.4.0, please refer to this MicroEJ Documentation Archive.

9.6.4 Overview

The next sections describe step by step how to setup the build environment and build your first MicroEJ module.

The steps to follow are:

1. Run and setup Jenkins, Artifactory and Gitea

2. Create a simple MicroEJ module (Hello World)

3. Create a new Jenkins job for the Hello World module

4. Build the module

In order to simplify the steps, this tutorial will be performed locally on a single machine.

Artifactory will host MicroEJ modules in 3 repositories:

• microej-module-repository : repository initializedwith pre-built MicroEJmodules, amirror of the Central
Repository

• custom-modules-snapshot : repository where custom snapshot modules will be published

• custom-modules-release : repository where custom release modules will be published

9.6. Setup an Automated Build using Jenkins and Artifactory 1331

https://docs.microej.com/en/latest/SDKUserGuide/
https://docs.docker.com/
https://gitforwindows.org/
https://docs.microej.com/_/downloads/en/20201009/pdf/

MicroEJ Documentation, Revision 32bb132e

9.6.5 Prepare your Docker environment

This section assumes the prerequisites have been properly installed.

1. Create a new directory, inside create a file named docker-compose.yaml and copy this content:

version: '3'
services:
artifactory:
image: releases-docker.jfrog.io/jfrog/artifactory-oss:7.71.5
container_name: artifactory
environment:
- JF_ROUTER_ENTRYPOINTS_EXTERNALPORT=8082

ports:
- 8082:8082 # for router communication
- 8081:8081 # for artifactory communication
- 8085:8085 # for artifactory federation communication

volumes:
- artifactory:/var/opt/jfrog/artifactory
- /etc/localtime:/etc/localtime:ro

restart: always
logging:
driver: json-file
options:
max-size: "50m"
max-file: "10"

ulimits:
nproc: 65535
nofile:
soft: 32000
hard: 40000

gitea:
image: gitea/gitea:1.21.1
container_name: gitea
environment:
- USER_UID=1000
- USER_GID=1000

restart: always
volumes:
- gitea:/data
- /etc/timezone:/etc/timezone:ro
- /etc/localtime:/etc/localtime:ro

ports:
- "3000:3000"
- "222:22"

jenkins:
image: jenkins_master
container_name: jenkins
build:
dockerfile: Dockerfile

restart: always
ports:

(continues on next page)

9.6. Setup an Automated Build using Jenkins and Artifactory 1332

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

- 50000:50000
- 8080:8080

volumes:
- jenkins:/var/jenkins_home
- /var/run/docker.sock:/var/run/docker.sock

links:
- gitea
- artifactory

volumes:
gitea:
artifactory:
jenkins:

2. Create another file named Dockerfile and copy this content:

FROM jenkins/jenkins:2.426.1-lts
USER root
RUN apt-get update -qq \

&& apt-get install -qqy apt-transport-https ca-certificates curl gnupg2␣
→˓software-properties-common
RUN curl -fsSL https://download.docker.com/linux/debian/gpg | apt-key add -
RUN add-apt-repository \

"deb [arch=amd64] https://download.docker.com/linux/debian \
$(lsb_release -cs) \
stable"

RUN apt-get update -qq \
&& apt-get -y install docker-ce

RUN usermod -aG docker jenkins

3. In this directory, launch the command docker compose up -d . A�er a fewmoments you should have three
running containers (named jenkins, gitea and artifactory).

Using docker compose ps will show if containers started properly. Logs can be viewed with docker compose
logs .

9.6.6 Get a Module Repository

A Module Repository is a portable ZIP file that bundles a set of modules for extending the MicroEJ development
environment. Please consult theModule Repository section for more information.

This tutorial uses the MicroEJ Central Repository, which is the Module Repository used by MicroEJ SDK to fetch
dependencies when starting an empty workspace. It bundles Foundation Library APIs and numerous Add-On Li-
braries.

Next step is to download a local copy of this repository:

1. Visit the Central Repository on the MicroEJ Developer website.

2. Navigate to the Production Setup section.

3. Click on the o�line repository link. This will download the Central Repository as a ZIP file.

9.6. Setup an Automated Build using Jenkins and Artifactory 1333

https://developer.microej.com/central-repository/

MicroEJ Documentation, Revision 32bb132e

9.6.7 Setup Artifactory

Configure Artifactory

For demonstration purposes we will allow anonymous users to deploy modules in the repositories:

1. Once Artifactory container is started, go to http://localhost:8082/ .

2. Login to Artifactory for the first time using the default admin account (Username: admin , Password:
password).

3. Skip the installation wizard if it appears.

4. Go to Administration > User Management > Settings .

5. In the User Security Configuration section, check Allow Anonymous Access .

6. Click on Save .

7. Go to Administration > User Management > Permissions .

8. Click on Anything entry (do not check the line), then go to Users tab

9. Click on anonymous andcheck Deploy/Cache permission in the Selected Users Repositories category.

10. Click on Save .

Next steps will involve uploading large files, so we have to increase the file uploadmaximum size accordingly:

1. Go to Administration > Artifactory > General > Settings .

2. In the General Settings section, change the value of File Upload In UI Max Size (MB) to 1024 then click

on Save .

Create Repositories

Wewill now create and configure the repositories. Let’s start with the repository for the future built snapshotmod-
ules:

1. Go to Administration > Repositories > Repositories in the le�menu.

2. Click on Add Repositories > Local Repository

3. Select Maven .

4. Set Repository Key field to custom-modules-snapshot and click on Create Local Repository .

Repeat the same steps for the other repositories with the Repository Key field set to custom-modules-release

and microej-module-repository .

9.6. Setup an Automated Build using Jenkins and Artifactory 1334

MicroEJ Documentation, Revision 32bb132e

Import MicroEJ Repositories

In this section, wewill import MicroEJ repositories into Artifactory repositories tomake themavailable to the build
server.

1. Go to Administration > Artifactory > Import & Export > Repositories .

2. Scroll to the Import Repository from Zip section.

3. As Target Local Repository , select microej-module-repository in the list.

4. Click on Select file and select the MicroEJ module repository zip file (central-repository-[version].
zip) that you downloaded earlier (please refer to section Get a Module Repository).

5. Click Upload . At the end of upload, click on Import . Upload and import may take some time.

Artifactory is nowhosting all requiredMicroEJmodules. Go to Application > Artifactory > Artifacts and check
that the repository microej-module-repository does contain modules as shown in the figure below.

9.6.8 Setup Gitea

Install Gitea

1. Once the Gitea container is started, go to http://localhost:3000/ .

2. Don’t change anything on the Initial Configuration , click on Install Gitea

3. Click on Register account and create one. The first created user become the administrator.

9.6. Setup an Automated Build using Jenkins and Artifactory 1335

MicroEJ Documentation, Revision 32bb132e

9.6.9 Configure Gitea

1. At the top right click on the arrow then New Repository

2. As Repository Name set helloworld , leave the other options as default.

3. Click Create Repository .

9.6.10 Setup Jenkins

Install Jenkins

1. Once Jenkins container is started, go to http://localhost:8080/ .

2. To unlock Jenkins, copy/paste the generated password that has been written in the container log. Click on
Continue .

3. Select option Install suggested plugins and wait for plugins installation.

4. Fill in the Create First Admin User form. Click Save and continue .

5. Click on Save and finish , then on Start using Jenkins .

Configure Jenkins

1. Go to Manage Jenkins > Plugins .

2. Add Docker Pipeline plugin:

1. Go to Available plugins section.

2. Search Docker Pipeline.

3. Install it and restart Jenkins

9.6.11 Build a newModule using Jenkins

Since your environment is now setup, it is time to build your first module from Jenkins and check it has been pub-
lished to Artifactory. Let’s build an “Hello World” Sandboxed Application project.

Create a newMicroEJ Module

In this example,wewill create a very simplemoduleusing theSandboxApplicationbuildtype (build-application
) that we’ll push to a Git repository.

Note: For demonstration purposes, we’ll create a new project and share it on a local Git bare repository. You can
adapt the following sections to use an existing MicroEJ project and your own Git repository.

1. Start MicroEJ SDK.

2. Go to File > New > Sandboxed Application Project .

9.6. Setup an Automated Build using Jenkins and Artifactory 1336

MicroEJ Documentation, Revision 32bb132e

3. Fill in the template fields, set Project name to com.example.hello-world .

4. Click Finish . This will create the project files and structure.

5. Right-click on source folder src/main/java and select New > Package . Set a name to the package and

click Finish .

6. Right-click on the new package and select New > Class . Set Main as name for the class and check
public static void main(String[] args) , then click Finish .

7. Add the line System.out.println("Hello World!"); to the method and save it.

9.6. Setup an Automated Build using Jenkins and Artifactory 1337

MicroEJ Documentation, Revision 32bb132e

8. Locate the project files

1. In the Package Explorer view, right-click on the project then click on Properties .

2. Select Resource menu.

3. Click on the arrow button on line Location to show the project in the system explorer.

Note: For more details about MicroEJ Applications development, refer to the Application Developer Guide.

Upload to your Git repository

Note: We need the IP address of the Docker Bridge Network, here we consider that it’s 172.17.0.1 but you can
check with the command ip addr show docker0 on the Docker host.

1. Open the project directory, create a file named Jenkinsfile and copy this content inside:

pipeline {
agent {

docker {
image 'microej/sdk:5.8.1'
args '-e ACCEPT_MICROEJ_SDK_EULA_V3_1B=YES'

}
}
stages {

stage('Publish') {
steps {

sh 'mmm publish shared -r ivy/ivysettings-artifactory.xml'

(continues on next page)

9.6. Setup an Automated Build using Jenkins and Artifactory 1338

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

}
}

}
}

2. Create a directory named ivy , create a file named ivysettings-artifactory.xml and copy this content
inside:

<?xml version="1.0" encoding="UTF-8"?>
<ivy-settings>

<property name="artifactory.repository.url" value="http://172.17.0.
→˓1:8082/artifactory" override="false"/>

<property name="local.repository.dir" value="${user.home}/.ivy2/
→˓repository/" override="false"/>

<!--
Map MMM resolvers (*.resolver) to custom resolver

Kinds of repositories:
- release: used when publishing a released module.
- snapshot: used when publishing a snapshot module.
- local: used when publishing a snapshot module locally.

-->
<property name="release.resolver" value="modulesReleaseRepository"␣

→˓override="false"/>
<property name="shared.resolver" value="modulesSnapshotRepository"␣

→˓override="false"/>
<property name="local.resolver" value="localRepository" override="false

→˓"/>

<property name="modules.resolver" value="fetchAll" override="false" />
<property name="request.cache.dir" value="${user.home}/.ivy2/cache"␣

→˓override="false"/>
<property name="default.conflict.manager" value="latest-compatible"␣

→˓override="false"/>

<settings defaultResolver="${modules.resolver}" defaultConflictManager="
→˓${default.conflict.manager}" defaultResolveMode="dynamic"/>

<caches defaultCacheDir="${request.cache.dir}"/>

<resolvers>

<url name="modulesReleaseRepository" m2compatible="true">
<artifact pattern="${artifactory.repository.url}/custom-

→˓modules-release/[organization]/[module]/[branch]/[revision]/[artifact]-
→˓[revision](-[classifier]).[ext]" />

<ivy pattern="${artifactory.repository.url}/custom-
→˓modules-release/[organization]/[module]/[branch]/[revision]/ivy-[revision].xml
→˓" />

</url>

(continues on next page)

9.6. Setup an Automated Build using Jenkins and Artifactory 1339

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

<url name="modulesSnapshotRepository" m2compatible="true"␣
→˓checkmodified="true">

<artifact pattern="${artifactory.repository.url}/custom-
→˓modules-snapshot/[organization]/[module]/[branch]/[revision]/[artifact]-
→˓[revision](-[classifier]).[ext]" />

<ivy pattern="${artifactory.repository.url}/custom-
→˓modules-snapshot/[organization]/[module]/[branch]/[revision]/ivy-[revision].
→˓xml" />

</url>

<url name="microejModulesRepository" m2compatible="true">
<artifact pattern="${artifactory.repository.url}/

→˓microej-module-repository/[organization]/[module]/[branch]/[revision]/
→˓[artifact]-[revision](-[classifier]).[ext]" />

<ivy pattern="${artifactory.repository.url}/microej-
→˓module-repository/[organization]/[module]/[branch]/[revision]/ivy-[revision].
→˓xml" />

</url>

<filesystem name="localRepository" m2compatible="true"␣
→˓checkmodified="true">

<artifact pattern="${local.repository.dir}/
→˓[organization]/[module]/[branch]/[revision]/[artifact]-[revision](-
→˓[classifier]).[ext]" />

<ivy pattern="${local.repository.dir}/[organization]/
→˓[module]/[branch]/[revision]/ivy-[revision].xml" />

</filesystem>

<chain name="fetchRelease">
<resolver ref="modulesReleaseRepository"/>
<resolver ref="microejModulesRepository"/>

</chain>

<chain name="fetchSnapshot">
<resolver ref="modulesSnapshotRepository"/>
<resolver ref="fetchRelease"/>

</chain>

<chain name="fetchLocal">
<resolver ref="localRepository"/>
<resolver ref="fetchSnapshot"/>

</chain>

<chain name="fetchAll">
<resolver ref="fetchLocal"/>

</chain>

</resolvers>
</ivy-settings>

This file configures the MicroEJ Module Manager to import and publish modules from the Artifactory repositories
described in this tutorial. Please refer to the Settings File section for more details.

9.6. Setup an Automated Build using Jenkins and Artifactory 1340

MicroEJ Documentation, Revision 32bb132e

Note: At this point, the content of the directory com.example.hello-world should look like the
following:

com.example.hello-world
bin

...
ivy

ivysettings-artifactory.xml
src

...
src-adpgenerated/

...
CHANGELOG.md
Jenkinsfile
LICENSE.txt
README.md
module.ivy

1. Open a terminal from the directory com.example.hello-world and type the following commands:

git init
git checkout -b main
git add *
git commit -m "Add Hello World application"
git remote add origin http://localhost:3000/<admin_user>/helloworld.git
git push -u origin main

Create a New Jenkins Job

Start by creating a new job for building our application.

1. Go to Jenkins dashboard.

2. Click on New Item .

3. Set item name to Hello World .

4. Select Multibranch Pipeline .

5. Validate with Ok button.

6. In General tab set Display Name to Hello World

7. In Branch Sources , click on Add Source > Git .

8. Add Project Repository http://172.17.0.1:3000/<admin_user>/helloworld.git

9.6. Setup an Automated Build using Jenkins and Artifactory 1341

http://172.17.0.1:3000

MicroEJ Documentation, Revision 32bb132e

9. Click on Save .

Build the “Hello World” Application

Let’s run the job!

In Jenkins Hello World dashboard, click on main branch, then click on Build Now .

Note: You can check the build progress by clicking on the build progress bar and showing the Console Output .

At the end of the build, the module is published to http://localhost:8082/artifactory/list/
custom-modules-snapshot/com/example/hello-world/ .

Congratulations!

At this point of the tutorial:

• Artifactory is hosting your module builds and MicroEJ modules.

• Jenkins automates the build process usingMicroEJ Module Manager.

The next recommended step is to adapt MMM/Jenkins/Artifactory configuration to your ecosystem and develop-
ment flow.

9.6.12 Appendix

This section discusses some of the customization options.

Customize Jenkins

Jenkins jobs are highly configurable, following options and values are recommended by MicroEJ, but they can be
customized at your convenience.

In General tab:

1. Check Discard old builds and set Max # of builds to keep value to 15 .

2. Click on Advanced button, and check Block build when upstream project is building .

In Build triggers tab:

9.6. Setup an Automated Build using Jenkins and Artifactory 1342

MicroEJ Documentation, Revision 32bb132e

1. Check Poll SCM , and set a CRON-like value (for example H/30 * * * * to poll SCM for changes every 30
minutes).

In Post-build actions tab:

1. Add post-build action Publish JUnit test result report :

2. Set Test report XMLs to **/target~/test/xml/**/test-report.xml, **/target~/test/xml/**/

*Test.xml .

Note: The error message ‘**/target~/test/xml/**/test-report.xml’ doesn’t match anything: ‘**’
exists but not ‘**/target~/test/xml/**/test-report.xml’ will be displayed since no build has been exe-
cuted yet. These folders will be generated during the build.

3. Check Retain long standard output/error .

4. Check Do not fail the build on empty test results

Customize target~ path

Some systems and toolchains don’t handle long path properly. A workaround for this issue is to move the build
directory (that is, the target~ directory) closer to the root directory.

To change the target~ directory path, set the build option target .

In Advanced , expand Properties text field and set the target property to thepathof your choice. For example:

target=C:/tmp/

9.7 Improve the Quality of Java Code

This tutorial describes some rules and tools aimed at improving the quality of a Java code to simplify its mainte-
nance. It makes up aminimum consistent set of rules which can be applied in any situation, especially on embed-
ded systems where performance and lowmemory footprint matter.

9.7.1 Intended Audience

The audience for this document is engineers who are developing any kind of Java code (application or library).

9.7.2 Readable Code

This section describes rules to get a readable code, in order to facilitate:

• the maintenance of an existing code with multiple developers contributions (e.g. merge conflicts, reviews).

• the landing to a new code base when the same rules are applied across di�erent modules and components.

9.7. Improve the Quality of Java Code 1343

MicroEJ Documentation, Revision 32bb132e

Naming Convention

Naming of Java elements (package, class, method, field and local) follows the Camel Case convention.

• Package names are written fully in lower case (no underscore).

• Package names are singular (e.g. ej.animal instead of ej.animals).

• Class names are written in upper camel case.

• Interfaces are named in the same way as classes (see below).

• Method and instance field names are written in lower camel case.

• Static field names are written in lower camel case.

• Constant names are written in fully upper case with underscore as word separator.

• Enum constant names are written in fully upper case with underscores as word separators.

• Local (and parameter) names are written in lower camel case.

• When a name contains an acronym, capitalize only the first letter of the acronym (e.g. for a local with the
HTTP acronym, use myHttpContext instead of myHTTPContext).

It is also recommended to use full words instead of abbreviations (e.g. MyProxyReference instead of MyProxyRef
).

Interfaces and Subclasses Naming Convention

An Interface is named a�er the feature it exposes. It does not have a I prefix because it hurts readability andmay
cause naming issues when potentially converted to/from an abstract class.

The classes implementing an interface are named a�er the interface and how they implement it. Using Impl su�ix
is not recommended because it does not express the implementation specificity. If there is no specificity, maybe
there is no need to have an interface.

Example: an interface Storage (that allows to load/store data) may have several implementations, such as
StorageFs (on a file system), StorageDb (on a database), StorageRam (volatile storage in RAM).

Visibility

Here is a list of the usage of each Java element visibility:

• public : API.

• protected : API for subclasses.

• package : component intern API (collaboration inside a package).

• private : internal structure, cache, lazy, etc.

By default, all instance fields must be private.

Package visibility can be used by writing the comment /* package */ in place of the modifier.

9.7. Improve the Quality of Java Code 1344

https://en.wikipedia.org/wiki/Camel_case

MicroEJ Documentation, Revision 32bb132e

Javadoc

Javadoc comments convention is based on the o�icial documentation.

Note: Javadoc is written in HTML format and doesn’t accept XHTML format: tagsmust not be closed. For example,
use only a <p> between two paragraphs.

Here is a list of the rules to follow when writing Javadoc:

• All APIs (see Visibility) must have a full Javadoc (classes, methods, and fields).

• Add a dot at the end of all phrases.

• Add @since tag when introducing a new API.

• Do not hesitate to use links to help the user to navigate in the API (@see , @link).

• Use the @code tag in the following cases:

– For keywords (e.g. {@code null} or {@code true}).

– For names and types (e.g. {@code x} or {@code Integer}).

– For code example (e.g. {@code new Integer(Integer.parseInt(s))}).

Here is a list of additional rules for methods:

• The first sentence starts with the third person (as if there is This method before).

• All parameters and returned values must be described.

• Put as much as possible information in the description, keep @param and @return minimal.

• Start @param with a lower case and usually with the or a.

• Start @return with a lower case as if the sentence starts with Returns.

• Avoid naming parameters anywhere other than in @param . If the parameter is renamed a�erward, the com-
ment is not changed automatically. Prefer using the given xxx.

Code Convention

O�icial documentation: https://www.oracle.com/java/technologies/javase/codeconventions-introduction.html

Class Declaration

The parts of a class or interface declaration must appear in the order suggested by the Code Convention for the
Java Programming Language:

• Constants.

• Class (static) fields.

• Instance fields.

• Constructors

• Methods

9.7. Improve the Quality of Java Code 1345

https://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
https://www.oracle.com/java/technologies/javase/codeconventions-introduction.html

MicroEJ Documentation, Revision 32bb132e

Fields Order

For a better readability, the fields (class and instance) must be ordered by scope:

1. public

2. protected

3. package

4. private

Methods Order

It is recommended to group related methods together. It helps for maintenance:

• when searching for a bug on a specific feature,

• when refactoring a class into several ones.

Modifiers Order

Classandmembermodifiers,whenpresent, appear in theorder recommendedby theJavaLanguageSpecification:

public protected private abstract default static final transient volatile synchronized native
strictfp

Code Style and Formatting

MicroEJ defines a formatting profile for .java files, which is automatically set up when creating a new Module
Project Skeleton.

Note: MicroEJ SDK automatically applies formatting when a .java file is saved. It is also possible to manually
apply formatting on specific files:

• In Package Explorer , select the desired files, folders or projects,

• then go to Source > Format . The processed files must not have any warning or error.

Here is the list of formatting rules included in this profile:

• Indentation is done with 1 tab.

• Braces are mandatory with if , else , for , do , and while statements, even when the body is empty or
contains only a single statement.

• Braces follow the Kernighan and Ritchie style (Egyptian brackets) described below:

– No line break before the opening brace.

– Line break a�er the opening brace.

– Line break before the closing brace.

– Line break a�er the closing brace, only if that brace terminates a statement or terminates the body of a
method, constructor, or named class. For example, there is no line break a�er the brace if it is followed
by else or a comma.

9.7. Improve the Quality of Java Code 1346

MicroEJ Documentation, Revision 32bb132e

• One statement per line.

• Let the formatter automatically wraps your code when a statement needs to be wrapped.

Here is a list of additional formatting rules that are not automatically applied:

• Avoid committing commented code (other than to explain an optimization).

• All methods of an interface are public. There is no need to specify the visibility (easier to read).

Note: Most of these rules are checked by Code Analysis with SonarQube™.

9.7.3 Best Practices

This sectiondescribes rulesmadeof best practices andwell-known restrictions of the JavaProgramming Language
andmore generally Object Oriented paradigm.

Common Pitfalls

• Object.equals(Object) and Object.hashCode() methods must be overridden in pairs. See Equals and Hash-
code.

• Do not assign fields in field declaration but in the constructor.

• Do not use non-final method inside the constructor.

• Do not overburden the constructor with logic.

• Do not directly store an array given by parameter.

• Do not directly return an internal array.

• Save object reference from a field to a local before using it (see Local Extraction).

Simplify Maintenance

• Extract constants instead of using magic numbers.

• Use parenthesis for complex operation series; it simplifies the understanding of operator priorities.

• Write short lines. This can be achieved by extracting locals (see Local Extraction).

• Use a limited number of parameters in methods (or perhaps a new type is needed).

• Create small methods with little complexity. When amethod gets too complex, it should be split.

• Use + operator only for single-line string concatenation. Use an explicit StringBuilder otherwise.

• Use component-oriented architecture to separate concerns. If a class is intended to be instantiated using
Class.newInstance(), add a default constructor (without parameters).

9.7. Improve the Quality of Java Code 1347

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Object.html#equals-java.lang.Object-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Object.html#hashCode--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/StringBuilder.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#newInstance--

MicroEJ Documentation, Revision 32bb132e

Basic Optimizations

• Avoid explicitly initializing fields to 0 or null , because they are zero-initialized by the runtime. A //VM_DONE
comment can be written to understand the optimization.

• The switch/case statements are generated by the Java compiler in twoways depending on the cases density.
Prefer declaring consecutive cases (table_switch) for performance (O(1)) and slightly smaller codememory
footprint instead of lookup_switch (O(log N)).

• Avoid using built-in thread safe types (Vector, Hashtable, StringBu�er, etc.). Usually synchronization has to
be done at a higher level.

• Avoid serializing/deserializing data from byte arrays using manual bitwise operations, use ByteArray utility
methods instead.

Local Extraction

Local extraction consists of storing the result of an expression before using it, for example:

Object myLocale = this.myField;
if (myLocale != null) {

myLocale.myMethod();
}

It improves the Java code in many ways:

• self documentation: gives a name to a computed result.

• performance andmemory footprint: avoids repeated access to same elements and extract loop invariants.

• thread safety: helps to avoid synchronization issues or falling into unwanted race conditions.

• code pattern detection: helps automated tools such as Null Analysis.

Equals and Hashcode

The purpose of these methods is to uniquely and consistently identify objects. The most common use of these
methods is to compare instances in collections (list or set elements, map keys, etc.).

TheObject.equals(Object)method implements an equivalence relation (defined in the Javadoc)with the following
properties:

• It is reflexive: for any reference value x, x.equals(x) must return true .

• It is symmetric: for any reference values x and y, x.equals(y) must return true if and only if y.equals(x)
returns true .

• It is transitive: for any reference values x, y, and z, if x.equals(y) returns true and y.equals(z) returns
true , then x.equals(z) must return true .

• It is consistent: for any reference values x and y, multiple invocations of x.equals(y) consistently return
true or consistently return false , provided no information used in equals comparisons on the object is
modified.

• For any non-null reference value x, x.equals(null) must return false .

Avoid overriding the equals(Object) method in a subclass of a class that already overrides it; it could break the
contract above. See E�ective Java book by Joshua Bloch for more information.

9.7. Improve the Quality of Java Code 1348

https://repository.microej.com/javadoc/microej_5.x/apis/java/util/Vector.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/Hashtable.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/StringBuffer.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/ByteArray.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Object.html#equals-java.lang.Object-

MicroEJ Documentation, Revision 32bb132e

If the equals(Object) method is implemented, the hashCode() method must also be implemented. The
hashCode() method follows these rules (defined in the Javadoc):

• It must consistently return the same integer when invoked several times.

• If two objects are equal according to the equals(Object) method, then calling the hashCode() method on
each of the two objects must produce the same integer result.

• In the same way, it should return distinct integers for distinct objects.

The equals(Object) method is written that way:

• Compare the argument with this using the == operator. If both are equals, return true . This test is for
performance purposes, so it is optional andmay be removed if the object has a few fields.

• Use an instanceof to check if the argument has the correct type. If not, return false . This check also
validates that the argument is not null.

• Cast the argument to the correct type.

• For each field, check if that field is equal to the same field in the casted argument. Return true if all fields
are equal, false otherwise.

@Override
public boolean equals(Object o) {
if (o == this) {
return true;

}
if (!(o instanceof MyClass)) {
return false;

}
MyClass other = (MyClass)o;
return field1 == other.field1 &&
(field2 == null ? other.field2 == null : field2.equals(other.field2));

}

The Object.hashCode() method is written that way:

• Choose a prime number.

• Create a result local, whatever the value (usually the prime number).

• For each field, multiply the previous result with the prime plus the hash code of the field and store it as the
result.

• Return the result.

Depending on its type, the hash code of a field is:

• Boolean: (f ? 0 : 1) .

• Byte, char, short, int: (int) f) .

• Long: (int)(f ^ (f >>> 32)) .

• Float: Float.floatToIntBits(f) .

• Double: Double.doubleToLongBits(f) and the same as for a long.

• Object: (f == null ? 0 : f.hashCode()) .

• Array: add the hash codes of all its elements (depending on their type).

9.7. Improve the Quality of Java Code 1349

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Object.html#hashCode--

MicroEJ Documentation, Revision 32bb132e

private static final int PRIME = 31;

@Override
public int hashCode() {
int result = PRIME;
result = PRIME * result + field1;
result = PRIME * result + (field2 == null ? 0 : field2.hashCode());
return result;

}

9.7.4 Related Tools

This section points to tools aimed at helping to improve code quality.

Unit Testing

Here is a list of rules when writing tests (see Test Suite with JUnit):

• Prefer black-box tests (with a maximum coverage).

• Here is the test packages naming convention:

– Su�ix package with .test for black-box tests.

– Use the same package for white-box tests (allow to use classes with package visibility).

Code Analysis with SonarQube™

SonarQube is an open source platform for continuous inspection of code quality. SonarQube o�ers reports on
duplicated code, coding standards, unit tests, code coverage, code complexity, potential bugs, comments, and
architecture.

To set it uponyourMicroEJapplicationproject, please refer to this documentation. It describes the following steps:

• How to run a SonarQube server locally.

• How to run an analysis using a dedicated script.

• How to run an analysis during a module build.

9.8 Optimize the Memory Footprint of an Application

This tutorial explains how to analyze the memory footprint of an application and provides a set of common rules
aimed at optimizing both ROM and RAM footprint.

9.8. Optimize the Memory Footprint of an Application 1350

https://github.com/MicroEJ/ExampleTool-Sonar

MicroEJ Documentation, Revision 32bb132e

9.8.1 Intended Audience

The audience for this document is Java engineers and Firmware integrators who are going to execute a MicroEJ
Application on amemory-constrained device.

9.8.2 Introduction

Usually, the application development is already startedwhen the developer starts thinking about itsmemory foot-
print. Before jumping into code optimizations, it is recommended to list every area of improvement and estimate
for each area howmuchmemory can be saved and howmuch e�ort it requires.

Without performing the memory analysis first, the developer might start working on a minor optimization that
takes a lot of e�ort for little improvements. In contrast, he could work on amajor optimization, allowing faster and
bigger improvements. Moreover, each optimization described herea�er may allow significant memory savings for
an application while it may not be relevant for another application.

9.8.3 How to Analyze the Footprint of an Application

This section explains the process of analyzing the footprint of a MicroEJ Application and the tools used during the
analysis.

Suggested footprint analysis process:

1. Build the MicroEJ Application

2. Analyze SOAR.map with theMemory Map Analyzer

3. Analyze soar/*.xml with an XML editor

4. Link the MicroEJ Application with the BSP

5. Analyze the map file generated by the third-party linker with a text editor

Footprint analysis tools:

• The Memory Map Analyzer allows to analyze the memory consumption of di�erent features in the RAM and
ROM.

• TheHeapDumper&HeapAnalyzer allow tounderstand the contents of the Java heap and findproblems such
as memory leaks.

• The API Dependency Discoverer allows to analyze a piece of code to detect all its dependencies.

How to Analyze the Files Generated by the MicroEJ Linker

TheMicroEJ Application linker generates files useful for footprint analysis, such as the SOARmap file and the SOAR
information file. To understand how to read these files, please refer to the SOAR Output Files documentation.

9.8. Optimize the Memory Footprint of an Application 1351

https://github.com/MicroEJ/Tool-DependencyDiscoverer

MicroEJ Documentation, Revision 32bb132e

How to Analyze a Map File Generated by a Third-Party Linker

A <firmware>.map file is generated by the C toolchain a�er linking the MicroEJ Application with the BSP. This
section explains how amap file generated by GCC is structured and how to browse it. The structure is not the same
on every compiler, but it is o�en similar.

File Structure

This file is composed of 5 parts:

• Archive member included to satisfy reference by file . Each entry contains two lines. The first line
contains the referenced archive file location and the compilation unit. The second line contains the compi-
lation unit referencing the archive and the symbol called.

• Allocating common symbols . Each entry contains the name of a global variable, its size, and the compila-
tion unit where it is defined.

• Discarded input sections . Each entry contains the name and the size of a section that has not been
embedded in the firmware.

• Memory Configuration . Each entry contains the name of amemory, its address, its size, and its attributes.

• Linker script and memory map . Each entry contains a linewith the nameand compilation unit of a section
and one line per symbol defined in this section. Each of these lines contains the name, the address, and the
size of the symbol.

Finding the Size of a Section or Symbol

For example, to know the thread stacks’ size, search for the .bss.vm.stacks.java section in the Linker script
and memory map part. The size associated with the compilation unit is the size used by the thread stacks.

The following snippet shows that the .bss.vm.stacks.java section takes 0x800 bytes.

.bss.vm.stacks.java
0x20014070 0x800 ..\..\..\..\..\..\..\.microej\CM4hardfp_GCC48\

→˓application\microejapp.o
0x20014070 __icetea___6bss_6vm_6stacks_6java$$Base
0x20014870 __icetea___6bss_6vm_6stacks_6java$$Limit

See Core Engine Link documentation for more information on MicroEJ Core Engine sections.

9.8.4 How to Reduce the Image Size of an Application

Generic coding rules can be found in the following tutorial: Improve the Quality of Java Code.

This section provides additional coding rules and good practices to reduce the image size (ROM) of an application.

9.8. Optimize the Memory Footprint of an Application 1352

MicroEJ Documentation, Revision 32bb132e

Application Resources

Resources such as images and fonts take a lot of memory. For every .list file, make sure that it does not embed
any unused resource.

Only resources declared in a .list file will be embedded. Other resources available in the application classpath
will not be embedded and will not have an impact on the application footprint.

Fonts

Default Font

By default, in aMicroEJ Platform configuration project, a so-called system font is declared in the microui.xml file.

When generating the MicroEJ Platform, this file is copied from the configuration project to the actual MicroEJ Plat-
form project. It will later be converted to binary format and linked with your MicroEJ Application, even if you use
fonts di�erent from the system font.

Therefore, you can comment the system font from the microui.xml file to reduce the ROM footprint of your Mi-
croEJ Application if this one does not rely on the system font. Note that you will need to rebuild the MicroEJ Plat-
form and then the application to benefit from the footprint reduction.

See the Display Element section of the Static Initialization documentation for more information on system fonts.

Character Ranges

When creating a font, you can reduce the list of characters embedded in the font at several development stages:

• On font creation: see the Removing Unused Characters section of Font Designer documentation.

• On application build: see the Fonts section ofMicroEJ Classpath documentation.

Pixel Transparency

You can also make sure that the BPP encoding used to achieve transparency for your fonts do not exceed the fol-
lowing values:

• The pixel depth of your display device.

• The required alpha level for a good rendering of your font in the application.

See the Fonts section ofMicroEJ Classpath documentation for more information on how to achieve that.

External Storage

To save storage on internal flash, you can access fonts from an external storage device.

See the External Resources section of the Font Generator documentation for more information on how to achieve
that.

9.8. Optimize the Memory Footprint of an Application 1353

MicroEJ Documentation, Revision 32bb132e

Internationalization Data

Implementation

MicroEJ provides the Native Language Support (NLS) library to handle internationalization.

See https://github.com/MicroEJ/Example-NLS for an example of the use of the NLS library.

External Storage

The default NLS implementation fetches text resources from internal flash, but you can replace it with your own
implementation to fetch them from another location.

See External Resources Loader documentation for additional information on external resources management.

Images

Encoding

If you are tight on ROM but have enough RAM and CPU power to decode PNG images on the fly, consider storing
your images as PNG resources. If you are in the opposite configuration (lots of ROM, but little RAM and CPU power),
consider storing your images in raw format.

See Image Generator documentation for more information on how to achieve that.

Color Depth (BPP)

Make sure to use images with a color depth not exceeding the one of your display to avoid the following issues:

• Waste of memory.

• Di�erences between the rendering on the target device and the original image resource.

External Storage

To save storage on internal flash, the application can access the images from an external storage device.

See External Resources Loader documentation for more information on how to achieve that.

Application Code

The following application code guidelines are recommended in order to minimize the size of the application:

• Check libraries versions and changelogs regularly. Latest versions may bemore optimized.

• Avoid manipulating String objects:

– For example, prefer using integers to represent IDs.

– Avoid overridingObject.toString() for debugging purposes. Thismethodwill always be embedded even
if it is not called explicitly.

9.8. Optimize the Memory Footprint of an Application 1354

https://github.com/MicroEJ/Example-NLS
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/String.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Object.html#toString--

MicroEJ Documentation, Revision 32bb132e

– Avoid using the logging library or System.out.println() , use the trace library or themessage library
instead. The logging library uses strings, while the trace and message libraries use integer-based error
codes.

– Avoid using the string concatenation operator (+), use an explicit StringBuilder instead. The code gen-
erated by the + operator is not optimal and is bigger than when usingmanual StringBuilder opera-
tions.

• Avoid manipulating wrappers such as Integer and Long objects, use primitive types instead. Such objects
have to be allocated in Java heapmemory and require additional code for boxing and unboxing.

• Avoid declaring Java Enumerations (enum), declare compile-time constants of primitives types instead (e.g.
static final int I = 0;). TheJavacompiler createsanEnumobject in theJavaheap for eachenumeration
item, as well as complex class initialization code.

• Avoid using the service library, use singletons or Constants.getClass() instead. The service library requires
embedding class reflection methods and the type names of both interfaces and implementations.

• Avoid using the JavaCollections Framework. ThisOpenJDK standard library has not beendesigned formem-
ory constrained devices.

– Use raw arrays instead of List objects. The ArrayTools class provides utility methods for common array
operations.

– Use PackedMap objects instead of Map objects. It provides similar APIs and features with lower Java
heap usage.

• Use ej.bon.Timer instead of deprecated java.util.Timer . When both class are used, almost all the code is
embedded twice.

• Use BON constants in the following cases if possible:

– whenwriting debug code or optional code, use the if (Constants.getBoolean()) { ... } pattern.
That way, the optional code will not be embedded in the production firmware if the constant is set to
false .

– replace theuseofSystemPropertiesbyBONconstantswhenbothkeysandvaluesareknownat compile-
time. System Properties should be reserved for runtime lookup. Each property requires embedding its
key and its value as intern strings.

• Check for useless or duplicate synchronization operations in call stacks, in order reduce the usage of
synchronized statements. Each statement generates additional code to acquire and release the monitor.

• Avoid declaring exit statements (break , continue , throw or return) that jump out of a synchronized
block. At each exit point, additional code is generated to release the monitor properly.

• Avoid declaring exit statements (break , continue , throw or return) that jump out of a try/finally
block. At each exit point, the code of the finally block is generated (duplicated). This also applies on every
try-with-resources block since a finally block is generated to close the resource properly.

• Avoid overridingObject.equals(Object) andObject.hashCode(), use == operator instead if it is su�icient. The
correct implementation of these methods requires significant code.

• Avoid calling equals() and hashCode() methods directly on Object references. Otherwise, the method
of every embedded class which overrides the method will be embedded.

• Avoid creating inlined anonymous objects (such as new Runnable() { ... } objects), implement the
interface in a existing class instead. Indeed, a new class is created for each inlined object. Moreover, each
enclosed final variable is added as a field of this anonymous class.

• Avoid accessing a private field of a nested class. The Java compiler will generate a dedicatedmethod instead
of a direct field access. This method is called synthetic, and is identified by its name prefix: access$.

9.8. Optimize the Memory Footprint of an Application 1355

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/StringBuilder.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Integer.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Long.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Enum.html
https://repository.microej.com/modules/ej/library/runtime/service/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Constants.html#getClass-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/List.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/basictool/ArrayTools.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/basictool/map/PackedMap.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/Map.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Timer.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Object.html#equals-java.lang.Object-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Object.html#hashCode--

MicroEJ Documentation, Revision 32bb132e

• Replace constant arrays and objects initialization in static final fields by immutables objects. Indeed,
initializing objects dynamically generates code which takes significant ROM and requires execution time.

• Check if some features available in so�ware libraries are not already provided by the device hardware. For
example, avoid using java.util.Calendar (full Gregorian calendar implementation) if the application only re-
quires basic date manipulation provided by the internal real-time clock (RTC).

MicroEJ Platform Configuration

The following configuration guidelines are recommended in order to minimize the size of the application:

• Check MicroEJ Architecture and Packs versions and changelogs regularly. Latest versionsmay bemore opti-
mized.

• Configure the Platform to use the tiny capability of the MicroEJ Core Engine. It reduces application code size
by ~20%, provided that the application code size is lower than 256KB (resources excluded).

• Disable unnecessarymodules in the .platform file. For example, disable the Image PNG Decoder module
if the application does not load PNG images at runtime.

• Don’t embed unnecessary pixel conversion algorithms. This can save up to ~8KB of code size but it requires
knowing the format of the resources used in the application.

• Select your embeddedC compilation toolchainwith care, prefer onewhichwill allow lowROM footprintwith
optimal performance. Check the compiler options:

– Check documentation for available optimization options (-Os onGCC). These options can also be over-
ridden per source file.

– Separate each function and data resource in a dedicated section (-ffunction-sections
-fdata-sections on GCC).

• Check the linker optimization options. The linker command line can be found in the project settings, and it
may be printed during link.

– Only embed necessary sections (--gc-sections option on GCC/LD).

– Some functions, such as the printf function, can be configured to only implement a subset of the
public API (for example, remove -u _printf_float option on GCC/LD to disable printing floating
point values).

• In the map file generated by the third-party linker, check that every embedded function is necessary. For
example, hardware timers or HAL components may be initialized in the BSP but not used in the application.
Also, debug functions such as SystemViewmay be disconnected when building the production firmware.

Application Configuration

The following application configuration guidelines are recommended in order to minimize the size of the applica-
tion:

• Disable class names generation by setting the soar.generate.classnames option to false . Class names
are only required when using Java reflection. In such case, the name of a specific class will be embedded
only if is explicitly required. See Stripping Class Names from an Application section for more information.

• Remove UTF-8 encoding support by setting the cldc.encoding.utf8.included option to false . The
default encoding (ISO-8859-1) is enough for most applications.

• Remove SecurityManager checks by setting the com.microej.library.edc.securitymanager.enabled
option to false . This feature is only useful for Multi-Sandbox firmwares.

For more information on how to set an option, please refer to the Defining an Option with SDK 5 or lower section.

9.8. Optimize the Memory Footprint of an Application 1356

https://repository.microej.com/javadoc/microej_5.x/apis/java/util/Calendar.html

MicroEJ Documentation, Revision 32bb132e

Stripping Class Names from an Application

By default, when a Java class is used, its name is embedded too. A class is used when one of its methods is called,
for example. Embedding the name of every class is convenient when starting a new MicroEJ Application, but it is
rarely necessary and takes a lot of ROM. This section explains how to embed only the required class names of an
application.

Removing All Class Names

First, the default behavior is inverted by defining the Application option soar.generate.classnames to false .

For more information on how to set an option, please refer to the Defining an Option with SDK 5 or lower section.

Listing Required Class Names

Some class namesmay be required by an application to work properly. These class namesmust be explicitly spec-
ified in a *.types.list file.

The code of the application must be checked for all uses of the Class.forName(), Class.getName() and
Class.getSimpleName() methods. For each of these method calls, if the class name if absolutely required and can
not be known at compile-time, add it to a *.types.list file. Otherwise, remove the use of the class name.

The following sections illustrates this on concrete use cases.

Case of Service Library

The ej.service.ServiceLoader class of the service library is a dependency injection facility. It can be used to dynam-
ically retrieve the implementation of a service.

The assignment between a service API and its implementation is done in *.properties.list files. Both the ser-
vice class name and the implementation class namemust be embedded (i.e., added in a *.types.list file).

For example:

example.properties.list
com.example.MyService=com.example.MyServiceImpl

example.types.list
com.example.MyService
com.example.MyServiceImpl

Case of Properties Loading

Some propertiesmay be loaded by using the name of a class to determine the full name of the property. For exam-
ple:

Integer.getInteger(MyClass.class.getName() + ".myproperty");

In this case, it can be replaced with the actual string. For example:

Integer.getInteger("com.example.MyClass.myproperty");

9.8. Optimize the Memory Footprint of an Application 1357

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#forName-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#getName--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Class.html#getSimpleName--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/service/ServiceLoader.html
https://repository.microej.com/modules/ej/library/runtime/service/

MicroEJ Documentation, Revision 32bb132e

Case of Logger and Other Debugging Facilities

Logging mechanisms usually display the name of the classes in traces. It is not necessary to embed these class
names. The Stack Trace Reader can decipher the output.

9.8.5 How to Reduce the Runtime Size of an Application

You can find generic coding rules in the following tutorial: Improve the Quality of Java Code.

This section provides additional coding rules and good practices in order to reduce the runtime size (RAM) of an
application.

Application Code

The following application code guidelines are recommended in order to minimize the size of the application:

• Avoidusing thedefault constructorof collectionobjects, use constructors that allow to set the initial capacity.
For example, use the ArrayList(int initialCapacity) constructor instead of the default one which will allocate
space for ten elements.

• Adjust the type of int fields (32 bits) according to the expected range of values being stored (byte for 8 bits
signed integers, short for 16 bits signed integers, char for 16 bits unsigned integers).

• When designing a generic and reusable component, allow the user to configure the size of any bu�er allo-
cated internally (either at runtime using a constructor parameter, or globally using a BON constant). That
way, the user can select the optimal bu�er size depending on his use-case and avoid wasting memory.

• Avoidallocating immortal arrays to call nativemethods, use regular arrays instead. Immortal arrays arenever
reclaimed and they are not necessary anymore when calling a native method.

• Reduce themaximumnumber of parallel threads. Each thread require a dedicated internal structure and VM
stack blocks.

– Avoid creating threads on the fly for asynchronous execution, use shared thread instances instead
(ej.bon.Timer, Executor, MicroUI.callSerially(Runnable), . . .).

• When designing Graphical User Interface:

– Avoidcreatingmutable images (Bu�eredImage instances) todraw in themand render them later, render
graphics directly on the display instead. Mutable images require allocating a lot of memory from the
images heap.

– Make sure that your Widget hierarchy is as flat as possible (avoid any unnecessary Container). Deep
widget hierarchies take more memory and can reduce performance.

MicroEJ Platform Configuration

The following configuration guidelines are recommended in order tominimize the runtime size of the application:

• Check the size of the stack of each RTOS task. For example, 1.0KB may be enough for the MicroJVM task but
it can be increased to allow deep native calls. See Debugging Stack Overflows section for more information.

• Check the size of the heap allocated by the RTOS (for example, configTOTAL_HEAP_SIZE for FreeRTOS).

• Check that the size of the back bu�er matches the size of the display. Use a partial bu�er if the back bu�er
does not fit in the RAM.

9.8. Optimize the Memory Footprint of an Application 1358

https://repository.microej.com/javadoc/microej_5.x/apis/java/util/ArrayList.html#ArrayList-int-
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/ArrayList.html#ArrayList--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Timer.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/concurrent/Executor.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/MicroUI.html#callSerially-java.lang.Runnable-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/BufferedImage.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Container.html

MicroEJ Documentation, Revision 32bb132e

Debugging Stack Overflows

If the size you allocate for a given RTOS task is too small, a stack overflowwill occur. To be aware of stack overflows,
proceed with the following steps when using FreeRTOS:

1. Enable the stack overflow check in FreeRTOS.h :

#define configCHECK_FOR_STACK_OVERFLOW 1

2. Define the hook function in any file of your project (main.c for example):

void vApplicationStackOverflowHook(TaskHandle_t xTask, signed char *pcTaskName) { }

3. Add a new breakpoint inside this function

4. When a stack overflow occurs, the execution will stop at this breakpoint

For further information, please refer to the FreeRTOS documentation.

Application Configuration

The following application configuration guidelines are recommended in order to minimize the size of the applica-
tion.

For more information on how to set an option, please refer to the Defining an Option with SDK 5 or lower documen-
tation.

Java Heap and Immortals Heap

• Configure the immortals heap option to be as small as possible. You can get the minimum value by calling
Immortals.freeMemory() a�er the creation of all the immortal objects.

• Configure the Java heap option to fit the needs of the application. You can get it by using the Heap Usage
Monitoring Tool.

Thread Stacks

• Configure themaximum number of threads option. This number can be known accurately by counting in the
code how many Thread and Timer objects may run concurrently. You can call Thread.getAllStackTraces()
or Thread.activeCount() to knowwhat threads are running at a given moment.

• Configure the number of allocated thread stack blocks option. This can be done empirically by startingwith a
low number of blocks and increasing this number as long as the application throws a StackOverflowError
.

• Configure the maximum number of blocks per thread option. The best choice is to set it to the number of
blocks required by the most greedy thread. Another acceptable option is to set it to the same value as the
total number of allocated blocks.

• Configure the maximum number of monitors per thread option. This number can be known accurately by
counting the number of concurrent synchronized blocks. This can also be done empirically by starting
with a low number of monitors and increasing this number as long as no exception occurs. Either way, it is
recommended to set a slightly higher value than calculated.

9.8. Optimize the Memory Footprint of an Application 1359

https://www.freertos.org/Stacks-and-stack-overflow-checking.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Immortals.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Thread.html#getAllStackTraces--
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Thread.html#activeCount--

MicroEJ Documentation, Revision 32bb132e

VM Dump

The LLMJVM_dump() function declared in LLMJVM.h may be called to print information on alive threads such as
their current andmaximum stack block usage. This functionmay be called from the application by exposing it in a
native function. See Dump the States of the Core Engine section for usage.

More specifically, the Peak java threads count valueprinted in thedumpcanbeused to configure themaximum
number of threads. The max_java_stack and current_java_stack values printed for each thread can be used
to configure the number of stack blocks.

MicroUI Images Heap

• Configure the images heap to be as small as possible. You can compute the optimal size empirically. It can
also be calculated accurately by adding the size of every image that may be stored in the images heap at
a given moment. One way of doing this is to inspect every occurrence of Bu�eredImage() allocations and
ResourceImage usage of loadImage() methods.

9.9 Explore Data Serialization Formats

This tutorial highlights some data serialization formats that are provided on MicroEJ Central Repository and their
usage through basic code samples.

9.9.1 Intended Audience

The audience for this document is Application engineers who want to implement data serialization. In addition,
this tutorial should be of interest to so�ware architectswho are looking for a suitable data format for their use case.

9.9.2 XML

XML (EXtensibleMarkup Language) is used to describe data and text. It allows flexible development of user-defined
document types. The format is robust, non-proprietary, persistent and is verifiable for storage and transmission.
To parse this data format, the XMLPull parser KXmlParser from the Java community has been integrated toMicroEJ
Central Repository.

XMLModule

The XML Module must be added to themodule.ivy of the MicroEJ Application project to use the KXML library.

<dependency org="org.kxml2" name="kxml2" rev="2.3.2"/>

9.9. Explore Data Serialization Formats 1360

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/BufferedImage.html#BufferedImage-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/ResourceImage.html
https://en.wikipedia.org/wiki/XML
http://kxml.org/
https://repository.microej.com/modules/org/kxml2/kxml2/

MicroEJ Documentation, Revision 32bb132e

Example Of Use

An example is available at https://github.com/MicroEJ/Example-XML. It presents how to use XML data exchange
for your MicroEJ Application. It also details how to use the KXmlParser module.

The example parses a short poemwritten in XML and prints the result on the standard output. The project can run
on any MicroEJ Platform (no external dependencies).

<?xml version="1.0" encoding="UTF-8"?>
<poem xmlns="http://www.megginson.com/ns/exp/poetry">

<title>Roses are Red</title>
<l>Roses are red,</l>
<l>Violets are blue;</l>
<l>Sugar is sweet,</l>
<l>And I love you.</l>

</poem>

Running the ReadPoem Java application should print the following trace :

=============== [Initialization Stage] ===============
=============== [Launching on Simulator] ===============
Roses are Red

Roses are red,
Violets are blue;
Sugar is sweet,
And I love you.

=============== [Completed Successfully] ===============

SUCCESS

Running MyXmlPullApp gives more details on the XML parsing and should print this trace :

=============== [Initialization Stage] ===============
=============== [Launching on Simulator] ===============
parser implementation class is class org.kxml2.io.KXmlParser
Parsing simple sample XML
Start document
Start element: {http://www.megginson.com/ns/exp/poetry}poem
Characters: "\n"
Start element: {http://www.megginson.com/ns/exp/poetry}title
Characters: "Roses are Red"
End element: {http://www.megginson.com/ns/exp/poetry}title
Characters: "\n"
Start element: {http://www.megginson.com/ns/exp/poetry}l
Characters: "Roses are red,"
End element: {http://www.megginson.com/ns/exp/poetry}l
Characters: "\n"
Start element: {http://www.megginson.com/ns/exp/poetry}l
Characters: "Violets are blue;"
End element: {http://www.megginson.com/ns/exp/poetry}l
Characters: "\n"

(continues on next page)

9.9. Explore Data Serialization Formats 1361

https://github.com/MicroEJ/Example-XML
http://kxml.org/

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

Start element: {http://www.megginson.com/ns/exp/poetry}l
Characters: "Sugar is sweet,"
End element: {http://www.megginson.com/ns/exp/poetry}l
Characters: "\n"
Start element: {http://www.megginson.com/ns/exp/poetry}l
Characters: "And I love you."
End element: {http://www.megginson.com/ns/exp/poetry}l
Characters: "\n"
End element: {http://www.megginson.com/ns/exp/poetry}poem
=============== [Completed Successfully] ===============

SUCCESS

9.9.3 JSON

As described on the JSON o�icial site, JSON (JavaScript Object Notation) is a lightweight data-interchange format.
It is widely used in many applications such as:

• as a mean of data serialization for lightweight web services such as REST

• for server interrogation in Ajax to build dynamic webpages

• or even databases.

JSON is easily readable by humans compared to XML. To parse this data format, several JSON parsers are available
on the o�icial JSON page, such as JSONME, which has been integrated to MicroEJ Central Repository.

JSONModule

The JSONModule must be added to themodule.ivy of the MicroEJ Application project to use the JSON library.

<dependency org="org.json.me" name="json" rev="1.3.0"/>

The instantiation anduseof theparser is pretty straightforward. First youneed to get the JSONcontent as a String
, and then create a JSONObject instance with the string. If the string content is a valid JSON content, you should
have an workable JSONObject to browse.

Example Of Use

In the following example we will parse this JSON file that represents a simple abstraction of a file menu:

{
"menu": {

"id": "file",
"value": "File",
"popup": {

"menuitem": [
{"value": "New", "onclick": "CreateNewDoc()"},
{"value": "Open", "onclick": "OpenDoc()"},
{"value": "Close", "onclick": "CloseDoc()"}

]

(continues on next page)

9.9. Explore Data Serialization Formats 1362

http://json.org/
http://json.org/
https://repository.microej.com/modules/org/json/me/json/
https://repository.microej.com/javadoc/microej_5.x/apis/org/json/me/JSONObject.html
https://repository.microej.com/javadoc/microej_5.x/apis/org/json/me/JSONObject.html

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

}
}

}

First, we need to include this file in our project by adding it to the src/main/resources folder and creating a .
resources.list properties file to declare this resource for our application to be able to retrieve it (see Resources
for more details).

This .resources.list file (here named json.resources.list) should contain the path to our JSON file as such
:

resources/menu.json

The example below will parse the file, browse the resulting data structure (org.json.me.JSONObject) and print
the value of the menuitem JSON array.

package com.microej.examples.json;

import java.io.DataInputStream;
import java.io.IOException;

import org.json.me.JSONArray;
import org.json.me.JSONException;
import org.json.me.JSONObject;

/**
* This example uses the org.json.me parser provided by json.org to parse and
* browse a JSON content.
*
* The JSON content is simple abstraction of a file menu as provided here:
* http://www.json.org/example.html
*
* The example then tries to list all the 'menuitem's available in the popup
* menu. It is assumed the user knows the menu JSON file structure.
*
*/
public class MyJSONExample {

public static void main(String[] args) {

// get back an input stream from the resource that represents the JSON
// content
DataInputStream dis = new DataInputStream(

(continues on next page)

9.9. Explore Data Serialization Formats 1363

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

MyJSONExample.class.getResourceAsStream("/resources/menu.json
→˓"));

byte[] bytes = null;

try {

// assume the available returns the whole content of the resource
bytes = new byte[dis.available()];

dis.readFully(bytes);

} catch (IOException e1) {
// something went wrong
e1.printStackTrace();
return;

}

try {

// create the data structure to exploit the content
// the string is created assuming default encoding
JSONObject jsono = new JSONObject(new String(bytes));

// get the JSONObject named "menu" from the root JSONObject
JSONObject o = jsono.getJSONObject("menu");

o = o.getJSONObject("popup");

JSONArray a = o.getJSONArray("menuitem");

System.out.println("The menuitem content of popup menu is:");
System.out.println(a.toString());

} catch (JSONException e) {
// a getJSONObject() or a getJSONArray() failed
// or the parsing failed
e.printStackTrace();

}

}

}

The execution of this example on the MicroEJ Simulator should print the following trace:

=============== [Initialization Stage] ===============
=============== [Launching Simulator] ===============
The menuitem content of popup menu is:
[{"value":"New","onclick":"CreateNewDoc()"},{"value":"Open","onclick":"OpenDoc()"},{"value":
→˓"Close","onclick":"CloseDoc()"}]
=============== [Completed Successfully] ===============

(continues on next page)

9.9. Explore Data Serialization Formats 1364

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

SUCCESS

9.9.4 CBOR

TheCBOR(ConciseBinaryObjectRepresentation)binarydata serialization format is a lightweightdata-interchange
format similar to JSON but with a smaller footprint, making it very practical for embedded applications, though its
messages are o�en less easily readable by humans.

CBORModule

The CBOR Module must be added to themodule.ivy of the MicroEJ Application project to use the CBOR library.

<dependency org="ej.library.iot" name="cbor" rev="1.1.0"/>

Example Of Use

An example is available at https://github.com/MicroEJ/Example-IOT/tree/master/cbor. It shows how to use the
CBOR library in your MicroEJ Application by encoding some data and reading it back, printing it on the standard
output both as a rawbyte string and in a JSON-like format. You can use tools like cbor.me to convert the byte string
output to a JSON format and check that itmatches the encoded data. The project can run on anyMicroEJ Platform
(no external dependencies).

The execution of this example on the MicroEJ Simulator should print the following trace:

=============== [Initialization Stage] ===============
=============== [Launching on Simulator] ===============
CBOR data string :␣
→˓a1646d656e75a36269646466696c656576616c75656446696c6565706f707570a1686d656e756974656d83a26576616c7565634e6577676f6e636c69636b6e4372656174654e6577446f632829a26576616c7565644f70656e676f6e636c69636b694f70656e446f632829a26576616c756565436c6f7365676f6e636c69636b6a436c6f7365446f632829
Data content :
{

"menu" : {
"id" : "file",
"value" : "File",
"popup" : {

"menuitem" : [{
"value" : "New",
"onclick" : "CreateNewDoc()"

}, {
"value" : "Open",
"onclick" : "OpenDoc()"

}, {
"value" : "Close",
"onclick" : "CloseDoc()"

}]
}

}
}
=============== [Completed Successfully] ===============

9.9. Explore Data Serialization Formats 1365

https://cbor.io/
https://repository.microej.com/modules/ej/library/iot/cbor/
https://github.com/MicroEJ/Example-IOT/tree/master/cbor

MicroEJ Documentation, Revision 32bb132e

Another example showing how to use the JSONmodule alongwith the CBORmodule to convert data from JSON to
CBOR is available here : https://github.com/MicroEJ/Example-IOT/tree/master/cbor-json.

The execution of this example on the MicroEJ Simulator should print the following trace:

Initial data (271 bytes) = {"menu":{"value":"File","id":"file","popup":{"menuitem":[{"value":
→˓"New","onclick":"CreateNewDoc()"},{"value":"Open","onclick":"OpenDoc()"},{"value":"Close",
→˓"onclick":"CloseDoc()"}]}}}
Data serialized (139 bytes)
Data deserialized = {menu={value=File, id=file, popup={menuitem=[{value=New,␣
→˓onclick=CreateNewDoc()}, {value=Open, onclick=OpenDoc()}, {value=Close, onclick=CloseDoc()}
→˓]}}}

9.10 Instrument Java Code for Logging

This document explains how to add logging and tracing to MicroEJ applications and libraries with three di�erent
solutions. The aim is to help developers to report precise execution context for further debugging andmonitoring.

9.10.1 Intended Audience

The audience for this document is application developers who are looking for ways to add logging to their MicroEJ
applications and libraries.

It should also be of interest to Firmware engineers how are looking for adjusting the log level while keeping low
memory footprint and good performances.

9.10.2 Introduction

One straightforward way to add logs in Java code is to use the Java basic print methods: System.out.println(. . .).

However, this is not desirable when writing production-grade code, where it should be possible to adjust the log
level:

• without having to change the original source code,

• at build-time or at runtime, as application logging will a�ect memory footprint and performances

9.10.3 Overview

In this tutorial, we will describe 3 ways for logging data:

• Using Trace library: a real-time event recording library designed for performance and interaction analysis.

• Using Message library: a lightweight and simple logging library.

• Using Logging library: a complete and highly configurable standard logging library.

Through this tutorial, we will illustrate the usage of each library by instrumenting the following code snippet:

public class Main {

enum ApplicationState {
INSTALLED, STARTED, STOPPED, UNINSTALLED

(continues on next page)

9.10. Instrument Java Code for Logging 1366

https://github.com/MicroEJ/Example-IOT/tree/master/cbor-json
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#out
https://repository.microej.com/modules/ej/api/trace
https://repository.microej.com/modules/ej/library/runtime/message/
https://repository.microej.com/modules/ej/library/eclasspath/logging/

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

}

private static ApplicationState currentState;
private static ApplicationState previousState;

public static void main(String[] args) {
currentState = ApplicationState.UNINSTALLED;
switchState(ApplicationState.INSTALLED);

}

public static void switchState(ApplicationState newState) {
previousState = currentState;
currentState = newState;

}
}

Finally, the last section describes some techniques to remove logging related code in order to reduce the memory
footprint.

9.10.4 Log with the Trace Library

The ej.api.trace Trace library provides a way of tracing integer events. Its features and principles are described
in the Event Tracing section.

Here is a short example of how to use this library to log the entry/exit of the switchState() method:

1. Add the following dependency to the module.ivy :

<dependency org="ej.api" name="trace" rev="1.1.0"/>

2. Start by initializing a Tracer object:

private static final Tracer tracer = new Tracer("Application", 100);

In this case, Application identifies a category of events that defines a maximum of 100 di�erent event
types.

3. Next, start trace recording:

public static void main(String[] args) {
Tracer.startTrace();

currentState = ApplicationState.UNINSTALLED;
switchState(ApplicationState.INSTALLED);

}

4. Use the methods Tracer.recordEvent(. . .) and Tracer.recordEventEnd(. . .) to record the entry/exit events in
the method:

private static final int EVENT_ID = 0;

public static void switchState(ApplicationState newState) {
tracer.recordEvent(EVENT_ID);

(continues on next page)

9.10. Instrument Java Code for Logging 1367

https://repository.microej.com/modules/ej/api/trace
https://repository.microej.com/javadoc/microej_5.x/apis/ej/trace/Tracer.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/trace/Tracer.html#recordEvent-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/trace/Tracer.html#recordEventEnd-int-

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

previousState = currentState;
currentState = newState;

tracer.recordEventEnd(EVENT_ID);
}

The Tracer object records the entry/exit of method switchState with event ID 0 .

5. Finally, to enable the MicroEJ Core Engine trace system, set the core.trace.enabled option to true . This
can be done from a launch configuration: check Runtime > Enable execution traces option.

This produces the following output:

[TRACE: Application] Event 0x0()
[TRACE: Application] Event End 0x0()

Note: The default Platform implementation of the Trace library prints the events to the console. See Platform
Implementation for other available implementations such as SystemView tool.

9.10.5 Log with the Message Library

The ej.library.runtime.message Message library was designed to enable logging while minimizing RAM/ROM
footprint and CPU usage. For that, logs are based on message identifiers, which are stored on integers instead of
using of constant Strings. In addition to a message identifier, the category of the message allows the user to find
the corresponding error/warning/info description. An external documentationmust bemaintained to describe all
message identifiers and their expected arguments for each category.

Principles:

• TheMessageLogger type allows for loggingmessages solely based on integers that identify themessage con-
tent.

9.10. Instrument Java Code for Logging 1368

https://repository.microej.com/javadoc/microej_5.x/apis/ej/trace/Tracer.html
https://repository.microej.com/modules/ej/api/trace
https://repository.microej.com/modules/ej/library/runtime/message/
https://repository.microej.com/javadoc/microej_5.x/apis/ej/util/message/MessageLogger.html

MicroEJ Documentation, Revision 32bb132e

• Log a message by using methods MessageLogger.log(. . .) methods, by specifying the log level, the message
category, and themessage identifier. Use optional arguments to add any useful information to the log, such
as a Throwable or contextual data.

• Log levels are very similar to those of the Logging library. The class ej.util.message.Level lists the available
levels.

• Loggers rely on the MessageBuilder type for message creation. The messages built by the BasicMessage-
Builder follow this pattern: [category]:[LEVEL]=[id] . The builder appends the specified Object argu-
ments (if any) separated by spaces, then the full stack trace of the Throwable argument (if any).

• The FilterMessageLogger allows to filter messages actually logged based on a threshold level (defaults to
INFO). The threshold level can be modified dynamically with FilterMessageLogger.setLevel(). Use the sys-
tem FilterMessageLogger.INSTANCE or create a new logger to configure the level of loggedmessages per
instance.

Here is a short example of how to use this library to log the entry/exit of the switchState() method:

1. To use this library, add this dependency line in the module.ivy :

<dependency org="ej.library.runtime" name="message" rev="2.1.0"/>

2. Call the message API to log some info:

private static final String LOG_CATEGORY = "Application";

private static final int LOG_ID = 2;

public static void switchState(ApplicationState newState) {
previousState = currentState;
currentState = newState;

FilterMessageLogger.INSTANCE.log(Level.INFO, LOG_CATEGORY, LOG_ID, previousState,␣
→˓currentState);
}

This produces the following output:

Application:I=2 UNINSTALLED INSTALLED

9.10.6 Log with the Logging Library

The ej.library.eclasspath.logging Logging library implements a subset of the standard Java java.util.logging
package and follows the same principles:

• There is one instance of LogManager by application that manages the hierarchy of loggers.

• Findor create Logger objects using themethodLogger.getLogger(String). If a logger has alreadybeen created
with the same name, this logger is returned, otherwise a new logger is created.

• Each Logger created with this method is registered in the LogManager and can be retrieved using its String
ID .

• A minimum level can be set to a Logger so that only messages that have at least this level are logged. The
class java.util.logging.Level lists the available standard levels.

• The Logger API provides multiple methods for logging:

9.10. Instrument Java Code for Logging 1369

https://repository.microej.com/javadoc/microej_5.x/apis/ej/util/message/MessageLogger.html#log-char-java.lang.String-int-java.lang.Throwable-java.lang.Object...-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Throwable.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/util/message/Level.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/util/message/MessageBuilder.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/util/message/basic/BasicMessageBuilder.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/util/message/basic/BasicMessageBuilder.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Object.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Throwable.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/util/message/basic/FilterMessageLogger.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/util/message/basic/FilterMessageLogger.html#setLevel-char-
https://repository.microej.com/modules/ej/library/eclasspath/logging/
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/logging/package-summary.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/logging/LogManager.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/logging/Logger.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/logging/Logger.html#getLogger-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/logging/Logger.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/logging/Logger.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/logging/Level.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/logging/Logger.html

MicroEJ Documentation, Revision 32bb132e

– log(. . .) methods that send a LogRecord to the registered Handler instances. The LogRecord object
wraps the String message and the log level.

– Log level-specific methods, like severe(String msg), that call the aforementioned log(...) method
with the correct level.

• The library defines a default Handler implementation, called DefaultHandler, that prints the message of the
LogRecord on the standard error output stream. It also prints the stack trace of the Throwable associated
with the LogRecord if there is one.

Here is a short example of how to use this library to log the entry/exit of the switchState() method:

1. Add the following dependency to the module.ivy :

<dependency org="ej.library.eclasspath" name="logging" rev="1.1.0"/>

2. Call the logging API to log some info text:

public static void switchState(ApplicationState newState) {
previousState = currentState;
currentState = newState;

Logger logger = Logger.getLogger(Main.class.getName());
logger.log(Level.INFO, "The application state has changed from " + previousState.

→˓toString() + " to "
+ currentState.toString() + ".");

}

This produces the following output:

main INFO: The application state has changed from UNINSTALLED to INSTALLED.

Note: Unlike the two other libraries discussed here, the Logging library is entirely based on Strings (log IDs and
messages). String operations can lead to performance issues and String objects use significant ROM space. When
possible, prefer using a logging solution that uses primitive types over Strings.

9.10.7 Remove Logging Related Code

This section describes some techniques to remove logging related code, which saves memory footprint when log-
ging is disabled at runtime. This is typically useful whenbuilding two Firmware flavors: one for production and one
for debug.

Wrapwith a Constant If Statement

A boolean constant declared in an if statement can be used to fully remove portions of code. When this boolean
constant is detected to be false , the wrapped code becomes unreachable and is not embedded.

Note: More information about the usage of constants and if code removal can be found in the Classpath section.

1. Let’s consider a constant com.mycompany.logging declared as false in a resource file named example.
constants.list .

9.10. Instrument Java Code for Logging 1370

https://repository.microej.com/javadoc/microej_5.x/apis/java/util/logging/Logger.html#log-java.util.logging.Level-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/logging/LogRecord.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/logging/Handler.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/logging/LogRecord.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/logging/Logger.html#severe-java.lang.String-
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/logging/Handler.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/util/logging/handler/DefaultHandler.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/logging/LogRecord.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Throwable.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/logging/LogRecord.html
https://repository.microej.com/modules/ej/library/eclasspath/logging/

MicroEJ Documentation, Revision 32bb132e

2. Wrap the log code by an if statement, as follows:

private static final String LOG_PROPERTY = "com.mycompany.logging";

public static void switchState(ApplicationState newState) {
previousState = currentState;
currentState = newState;

if (Constants.getBoolean(LOG_PROPERTY)) {
Logger logger = Logger.getLogger(Main.class.getName());
logger.log(Level.INFO, "The application state has changed from " + previousState.

→˓toString() + " to "
+ currentState.toString() + ".");

}
}

When using the Trace API (Trace), you can use the Tracer.TRACE_ENABLED_CONSTANT_PROPERTY constant that
represents the value of the core.trace.enabled option.

Follow the same principle as before:

private static final int EVENT_ID = 0;

public static void switchState(ApplicationState newState) {
if (Constants.getBoolean(Tracer.TRACE_ENABLED_CONSTANT_PROPERTY)) {

tracer.recordEvent(EVENT_ID);
}

previousState = currentState;
currentState = newState;

if (Constants.getBoolean(Tracer.TRACE_ENABLED_CONSTANT_PROPERTY)) {
tracer.recordEventEnd(EVENT_ID);

(continues on next page)

9.10. Instrument Java Code for Logging 1371

https://repository.microej.com/javadoc/microej_5.x/apis/ej/trace/Tracer.html#TRACE_ENABLED_CONSTANT_PROPERTY

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

}
}

Shrink Code Using ProGuard

ProGuard is a tool that shrinks, optimizes, and obfuscates Java code.

It optimizes bytecode as well as it detects and removes unused instructions. Therefore it can be used to remove
log messages in a production binary.

A dedicated How-To is available at https://github.com/MicroEJ/How-To/tree/master/Proguard-Get-Started. It de-
scribes how to configure ProGuard to remove elements of code from the Logging library.

9.11 Run a Test Suite on a Device

This tutorial describes all the steps to configure and run a VEE Port Test Suite on a device using the Platform Quali-
fication Tools.

In this tutorial, the target device is the Espressif ESP32-WROVER-KIT V4.1 board and the Filesystem Test Suite for FS
module will be used as an example.

The tutorial should take 1 hour to complete (excluding the Platform Getting Started setup).

9.11.1 Intended Audience and Scope

The audience for this document is so�ware engineers who want to validate an Abstraction Layer implementation
or understand how to automatically run a MicroEJ Test Suite on their device.

The following topics are out of the scope of this tutorial:

• How to write test cases and package a Test Suite module. See Test Suite with JUnit for this topic.

• How to create a new Foundation Library. See the Foundation Library Getting Started to learn more about
creating custom Foundation Library.

9.11.2 Prerequisites

This tutorial assumes the following:

• Good knowledge of theMicroEJ Glossary.

• Tutorial Understand How to Build a Firmware and its Dependencies has been followed.

• MicroEJ SDK distribution 20.07 or more (see SDK Version).

• TheWROVER Platform has been properly setup (i.e., it can be used to generate aMono-Sandbox Executable).

The explanation can be adapted to run the test suite on any other MicroEJ Platform providing:

• An implementation of LLFS: File System version 1.0.2 in com.microej.pack#fs-4.0.3.

• A partial or full BSP Connection.

9.11. Run a Test Suite on a Device 1372

https://www.guardsquare.com/en/products/proguard
https://github.com/MicroEJ/How-To/tree/master/Proguard-Get-Started
https://repository.microej.com/modules/ej/library/eclasspath/logging/
https://github.com/MicroEJ/VEEPortQualificationTools
https://github.com/MicroEJ/VEEPortQualificationTools
https://github.com/MicroEJ/How-To/tree/1.8.3/FoundationLibrary-Get-Started
https://github.com/MicroEJ/Platform-Espressif-ESP-WROVER-KIT-V4.1/tree/1.6.2
https://repository.microej.com/modules/com/microej/pack/fs/4.0.3/

MicroEJ Documentation, Revision 32bb132e

Note: This tutorial can also be adapted to run other test suites in addition to the Filesystem Test Suite presented
here.

9.11.3 Introduction

This tutorial presents a local setup of the VEE Port Test Suite for the FS Foundation Library on a concrete device (not
on Simulator).

In essence, a Foundation Library provides an API to be used by an Application or an Add-On Library.

Fig. 1: MicroEJ Foundation Libraries, Add-On Libraries and MicroEJ Application

For example, the Java file system API java.io.File is provided by the MicroEJ Foundation Library named FS. The
Abstraction Layer of each Foundation API must be implemented in C in the Board Support Package. The Test Suite
is used to validate the C code implementation of the Abstraction Layer.

9.11.4 Import the Test Suite

Follow these steps to import the Filesystem Test Suite into the workspace from the Platform Qualification Tools:

• Clone or download the Platform Qualitification Tools project 2.3.0.

• Select File > Import. . . .

• Select Existing Projects into Workspace .

• Set Select the root directory to the directory tests/fs in the Platform Qualification Tools fetched in the
previous step.

• Ensure Copy projects into workspace is checked.

• Click on Finish .

The project java-testsuite-fs should now be available in the workspace.

9.11. Run a Test Suite on a Device 1373

https://repository.microej.com/javadoc/microej_5.x/apis/java/io/File.html
https://repository.microej.com/modules/com/microej/pack/fs/
https://github.com/MicroEJ/VEEPortQualificationTools/blob/2.3.0/tests/fs
https://github.com/MicroEJ/VEEPortQualificationTools/releases/tag/2.3.0

MicroEJ Documentation, Revision 32bb132e

9.11.5 Configure the Test Suite

Select the Test Suite Version

For a givenFoundationLibrary version, a specific Test Suite version shouldbeused to validate theAbstractionLayer
implementation. Please refer to Test Suite Versioning to determine the correct Test Suite version to use.

On theWROVERPlatform, theFSTestSuite version touse is specified in {PLATFORM}-configuration/testsuites/
fs/README.md . The Test Suite version must be set in the module.ivy of the java-testsuite-fs project (e.g.
java-testsuite-fs/module.ivy). For example:

<dependency org="com.microej.pack.fs" name="fs-testsuite" rev="3.0.3"/>

Configure the Platform BSP Connection

Several properties must be defined depending on the type of BSP Connection used by the MicroEJ Platform.

For aMicroEJ Application, these properties are set using the launcher of the application. For a Test Suite, the prop-
erties are defined in a file named config.properties in the root folder of the Test Suite. For example, see this
example of config.properties file.

See BSP Connection for an explanation of the properties. See the comments in the file for a details description
of each properties. The microej.testsuite.properties.deploy.* and target.platform.dir properties are
required.

Configure Execution Trace Redirection

When the Test Suite is executed, the Test Suite Enginemust read the trace to determine the result of the execution.
To do that, we will use the Serial to Socket Transmitter tool to redirect the execution traces dumped to a COM port.

The WROVER platform used in this tutorial is particular because the UART port is already used to flash the device.
Thus, a separate UART port must be used for the trace output.

This platform defines the option microej.testsuite.properties.debug.traces.uart to redirect traces from
standard input to UART.

9.11. Run a Test Suite on a Device 1374

https://github.com/MicroEJ/VEEPortQualificationTools/blob/2.3.0/tests/fs/java/java-testsuite-fs/config.properties.tpl

MicroEJ Documentation, Revision 32bb132e

See the Testsuite Configuration section of the WROVER Platform documentation for more details.

Start Serial To Socket

The Serial to Socket Transmitter tool can be configured to listen on a particular COMport and redirect the output on
a local socket. Theproperties microej.testsuite.properties.testsuite.trace.ip and microej.testsuite.
properties.testsuite.trace.port must be configured.

Follow these steps to create a launcher for Serial To Socket Transmitter:

• Select Run > Run Configurations. . . .

• Right-click on MicroEJ Tool > New .

• In the Execution tab:

– Set Name to Serial To Socket Transmitter .

– Select a MicroEJ Platform available in the workspace in Target > Platform .

– Select Serial To Socket Transmitter in Execution > Settings .

– Set the Output folder to the workspace.

• In the Configuration tab:

– Set the correct COM port and baudrate for the device in Serial Options .

9.11. Run a Test Suite on a Device 1375

https://github.com/MicroEJ/Platform-Espressif-ESP-WROVER-KIT-V4.1/tree/1.6.2

MicroEJ Documentation, Revision 32bb132e

– Set a valid port number in Server Options > Port . This port is the same as the one set in config.

properties as microej.testsuite.properties.testsuite.trace.port .

Configure the Test Suite Specific Options

Depending on the Test Suite and the specificities of the device, various properties may be required
and adjusted. See the file validation/microej-testsuite-common.properties (for example
https://github.com/MicroEJ/VEEPortQualificationTools/blob/2.3.0/tests/fs/java/java-testsuite-fs/validation/
microej-testsuite-common.properties) and the README of the Test Suite for a description of each property.

On the WROVER Platform, the configuration files config.properties and microej-testsuite-common.
properties are provided in {PLATFORM}-configuration/testsuites/fs/ .

In config.properties , the property target.platform.dir must be set to the absolute path to the platform. For
example C:/P0065_ESP32-WROVER-Platform/ESP32-WROVER-Xtensa-FreeRTOS-platform/source .

9.11.6 Run the Test Suite

To run the Test Suite, right click on the Test Suite module and select Build Module .

9.11.7 Configure the Tests to Run

It is possible to exclude some tests from being executed by the Test Suite Engine.

To speed-up the execution, let’s configure it to run only a small set of tests. In the following example, only the
classes that match TestFilePermission are executed. This configuration goes into the file config.properties
in the folder of the test suite.

Comma separated list of patterns of files that must be included
test.run.includes.pattern=**/Test*.class
test.run.includes.pattern=**/TestFilePermission*.class
Comma separated list of patterns of files that must be excluded (defaults to inner classes)
test.run.excludes.pattern=**/*$*.class

Several reasons might explain why to exclude some tests:

• Iterative development. Test only the Abstraction Layer that is currently being developed. The full Test Suite
must still be executed to validate the complete implementation.

• Known bugs in the Foundation Library. The latest version of the Test Suite for a given Foundation Library
might contain regression tests or tests for new features. If the MicroEJ Platform doesn’t use the latest Foun-
dation Library, then it can be necessary to exclude the new tests.

• Known bugs in the Foundation Library implementation. The project might have specific requirements
that prevent a fully compliant implementation of the Foundation Library.

9.11. Run a Test Suite on a Device 1376

https://github.com/MicroEJ/VEEPortQualificationTools/blob/2.3.0/tests/fs/java/java-testsuite-fs/validation/microej-testsuite-common.properties
https://github.com/MicroEJ/VEEPortQualificationTools/blob/2.3.0/tests/fs/java/java-testsuite-fs/validation/microej-testsuite-common.properties

MicroEJ Documentation, Revision 32bb132e

9.11.8 Examine the Test Suite Report

Once the Test Suite is completed, open the HTML Test Suite Report stored in java-testsuite-fs/target~/test/
html/test/junit-noframes.html .

At the beginning of the file, a summary is displayed. Below, all execution traces for each test executed are available.

If necessary, the binaries produced and ran on the device by the Test Suite Engine are available in target~/test/
xml/<TIMESTAMP>/bin/<FULLY-QUALIFIED-CLASSNAME>/application.out .

The following image shows the test suite report fully passed:

9.12 Implement a Blocking Java Native Method with SNI

This tutorial describes the good practices to follow when implementing a blocking native method in C. A native
method is a method declared in Java with the native keyword and implemented in C using the Simple Native
Interface (SNI).

9.12.1 Intended Audience

The audience for this document is Platform developers who want to implement Abstraction Layer interfaces.

9.12.2 Prerequisites

The following document assumes the reader already has a setup ready to run aMicroEJ Standalone Application on
a target device.

The following document also assumes the reader is familiar with the Simple Native Interface (SNI) mechanism.
If not, the CallingCFromJava GitHub example shows the minimum steps required to create a Java program that
makes a call to a C function via SNI.

9.12. Implement a Blocking Java Native Method with SNI 1377

https://github.com/MicroEJ/Example-Standalone-Java-C-Interface/tree/master/CallingCFromJava/

MicroEJ Documentation, Revision 32bb132e

9.12.3 Overview

The MicroEJ Core Engine implements a green thread architecture with all the Java threads executed within one
single RTOS/OS task. Thus, it embeds its own scheduler that controls the execution of the Java threads. With such
an architecture, the MicroEJ Core Engine cannot preempt a Java thread that executes a native method. Therefore
a blocking native method will prevent the execution of other Java threads. To mitigate the contention, a native
methodmust explicitly yield its current use of the processor.

This tutorial will explain how to use SNI to implement a blocking Java native method without blocking the execu-
tion of other Java threads.

9.12.4 Requirements

A MicroEJ Platform with (at least):

• EDC-1.3.

• SNI-1.4.

9.12.5 Example Code

Let’s start with a MicroEJ Standalone Application that calls a blocking Java method implemented in C.

The following example waits for a button event and prints the index of the pressed button.

The MicroEJ Application code:

package example;

public class NativeCCallExample {

public static void main(String[] args) {

while (true) {
System.out.println("Waiting for a button event...");
int buttonIndex = waitButton();
System.out.println("Button pressed: " + buttonIndex);

}
}

public static native int waitButton();
}

The C implementation of the waitButton() native has beenwritten in pseudo-code. It should be adapted accord-
ing to the BSP of the target board.

#include "semaphore.h"
#include "sni.h"

static int pressed_button_index;
static Semaphore button_semaphore;

void button_init(){
button_semaphore = SemaphoreCreateBinary();

(continues on next page)

9.12. Implement a Blocking Java Native Method with SNI 1378

https://repository.microej.com/modules/ej/api/edc/
https://repository.microej.com/modules/ej/api/sni/

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

}

jint Java_example_NativeCCallExample_waitButton(){
// Wait for a button event
semaphoreTake(button_semaphore);
return pressed_button_index;

}

/** Interrupt request handler called when a button is pressed. */
int buttonIRQ(int button_index){

pressed_button_index = button_index;
semaphoreGiveFromISR(button_semaphore);

}

Application Behavior

In this example, the execution of the waitButton() native method will block until a button is pressed. In other
words, while Java_example_NativeCCallExample_waitButton() has not returned, no other Java thread can be
scheduled.

This is because the native function is called in the same RTOS/OS task as the Java application.

This schematic explains what is going on:

9.12. Implement a Blocking Java Native Method with SNI 1379

MicroEJ Documentation, Revision 32bb132e

9.12.6 Implement a Non-Blocking Method

This section will explain how to update the example code to make a non-blocking method.

Here is a summary of what will be done in C:

• Signal the MicroEJ Core Engine to suspend the current thread when the native function returns.

• Remove the blocking operations from the native function so that it returns immediately.

• Implement a callback function that returns the index of the pressed button.

• Register this callback function in the MicroEJ Core Engine to call it when the Java thread is resumed.

• Resume the Java thread when a button is pressed.

This schematic summarizes the steps described above:

Update the C Native Function Implementation

Step 1: Update the C Native Function

The Java_example_NativeCCallExample_waitButton() function will now suspend the current Java thread. It
will also store the information required to resume it and return the index of the pressed button.

The SNI functions used in this example are defined in sni.h . See this header file for a more detailed description
of the API.

• Store the ID of the Java thread that called the function. This ID should be stored in a global variable. It is used
to resume the Java thread when a button is pressed.

java_thread_id = SNI_getCurrentJavaThreadID();

9.12. Implement a Blocking Java Native Method with SNI 1380

MicroEJ Documentation, Revision 32bb132e

• Signal the MicroEJ Core Engine to suspend the current Java thread and specify the callback function to be
called when the thread is resumed. Let’s call the callback function waitButton_callback() .

SNI_suspendCurrentJavaThreadWithCallback(0, (SNI_callback)waitButton_callback, NULL);

The function SNI_suspendCurrentJavaThreadWithCallback() returns immediately. The current thread is actu-
ally suspended when the native function returns.

The value returnedby the Java_example_NativeCCallExample_waitButton() doesn’tmatter anymore. The call-
back function will be in charge of returning the value.

The updated Java_example_NativeCCallExample_waitButton() function should look like this:

static int32_t java_thread_id;

jint Java_example_NativeCCallExample_waitButton(){

java_thread_id = SNI_getCurrentJavaThreadID();

SNI_suspendCurrentJavaThreadWithCallback(0, (SNI_callback)waitButton_callback, NULL);

return SNI_IGNORED_RETURNED_VALUE; // Returned value not used
}

Step 2: Update the Button Interrupt Function

The role of the button interrupt is now to resume the Java thread when a button event occurs. Update it this way:

int buttonIRQ(int button_index){
SNI_resumeJavaThreadWithArg(java_thread_id, (void*)button_index);

}

The button’s index is passed to the function SNI_resumeJavaThreadWithArg() so that the callback retrieves it
when the thread is resumed.

Step 3: Implement the Callback Function

The callback function must have the same signature as the SNI native (same parameters and return type): jint
waitButton_callback() .

The callback function is automatically called by the Java thread when it is resumed. Use the
SNI_getCallbackArgs() function to retrieve the arguments that was previously given to the
SNI_suspendCurrentJavaThreadWithCallback() or SNI_resumeJavaThreadWithArg() functions.

jint waitButton_callback()
{

int button_index;
SNI_getCallbackArgs(NULL, (void*)&button_index);
return (jint)button_index; // Actual value returned to Java

}

9.12. Implement a Blocking Java Native Method with SNI 1381

MicroEJ Documentation, Revision 32bb132e

Application Behavior

In this configuration, calling the native method waitButton() will still return only when a button is pressed, but
it will not prevent other Java threads from being scheduled.

9.13 Discover Embedded Debugging Techniques

This tutorial describes the available tools provided to developers to debug an application. It also presents debug-
ging methods applied to two concrete uses cases (GUI application freeze and HardFault).

1. Debugging Tools

2. Use Case 1: Debugging a GUI Application Freeze

3. Use Case 2: Debugging a HardFault

9.13.1 Intended Audience

The audience for this document is engineers who want to learn about the tools available to debug embedded ap-
plications.

In addition, the Use Case 1: Debugging a GUI Application Freeze is particularly relevant for Application engineers.
Whereas the Use Case 2: Debugging a HardFault is more relevant for Firmware engineers.

9.13.2 Debugging Tools

This section presents an overview of the main tools available to debug an embedded application. Please refer to
the developer guides for the complete reference (Application Developer Guide, VEE Porting Guide, Kernel Developer
Guide).

• Events Tracing and Logging

• Runtime State Dump

• Memory Inspection

• Platform Qualification

• Simulator Debugger

• Static Analysis Tools

• GUI Debugging Tools

Events Tracing and Logging

When an application has issues, the first step is to understand what is happening inside the system.

• The Trace Library is a real-time event recording library. Use it to trace the beginning and the ending of events.

private static final int EVENT_ID = 0;

public static void switchState(ApplicationState newState) {
tracer.recordEvent(EVENT_ID);

(continues on next page)

9.13. Discover Embedded Debugging Techniques 1382

https://repository.microej.com/javadoc/microej_5.x/apis/ej/trace/Tracer.html

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

previousState = currentState;
currentState = newState;

tracer.recordEventEnd(EVENT_ID);
}

This API is most useful with the SystemView Event tracer to visualize the timeline of events.

• The Message Library is a small RAM/ROM/CPU footprint API to log errors, warnings, andmisc information.

private static final String LOG_CATEGORY = "Application";

private static final int LOG_ID = 2;

public static void switchState(ApplicationState newState) {
previousState = currentState;
currentState = newState;

BasicMessageLogger.INSTANCE.log(Level.INFO, LOG_CATEGORY, LOG_ID,␣
→˓previousState, currentState);
}

• The Logging Library implements a subset of the standard Java java.util.logging .

public static void switchState(ApplicationState newState) {
previousState = currentState;
currentState = newState;

(continues on next page)

9.13. Discover Embedded Debugging Techniques 1383

https://repository.microej.com/javadoc/microej_5.x/apis/ej/util/message/basic/BasicMessageLogger.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/util/logging/Logger.html

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

Logger logger = Logger.getLogger(Main.class.getName());
logger.log(Level.INFO, "The application state has changed from " +␣

→˓previousState.toString() + " to "
+ currentState.toString() + ".");

}

Please refer to the tutorial Instrument Java Code for Logging for a comparison of these libraries.

Runtime State Dump

• Output information on the standard output System.out and use the Stack Trace Reader to read and decode
the MicroEJ stack traces.

• The Core Engine VM dump is a low-level API to display the state of the MicroEJ Runtime and the MicroEJ
threads (name, priority, stack trace, etc.)

=================================== VM Dump ====================================
Java threads count: 3

(continues on next page)

9.13. Discover Embedded Debugging Techniques 1384

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/System.html#out

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

Peak java threads count: 3
Total created java threads: 3
Last executed native function: 0x90035E3D
Last executed external hook function: 0x00000000
State: running
--
Java Thread[1026]
name="main" prio=5 state=RUNNING max_java_stack=456 current_java_stack=184

java.lang.MainThread@0xC0083C7C:
at (native) [0x90003F65]
at com.microej.demo.widget.main.MainPage.getContentWidget(MainPage.java:95)

Object References:
- com.microej.demo.widget.main.MainPage@0xC00834E0
- com.microej.demo.widget.main.MainPage$1@0xC0082184
- java.lang.Thread@0xC0082194
- java.lang.Thread@0xC0082194

at com.microej.demo.widget.common.Navigation.createRootWidget(Navigation.
→˓java:104)

Object References:
- com.microej.demo.widget.main.MainPage@0xC00834E0

at com.microej.demo.widget.common.Navigation.createDesktop(Navigation.
→˓java:88)

Object References:
- com.microej.demo.widget.main.MainPage@0xC00834E0
- ej.mwt.stylesheet.CachedStylesheet@0xC00821DC

at com.microej.demo.widget.common.Navigation.main(Navigation.java:40)
Object References:

- com.microej.demo.widget.main.MainPage@0xC00834E0
at java.lang.MainThread.run(Thread.java:855)

Object References:
- java.lang.MainThread@0xC0083C7C

at java.lang.Thread.runWrapper(Thread.java:464)
Object References:

- java.lang.MainThread@0xC0083C7C
at java.lang.Thread.callWrapper(Thread.java:449)

--
Java Thread[1281]
name="UIPump" prio=5 state=WAITING timeout(ms)=INF max_java_stack=120 current_
→˓java_stack=117
external event: status=waiting

java.lang.Thread@0xC0083628:
at ej.microui.MicroUIPump.read(Unknown Source)

Object References:
- ej.microui.display.DisplayPump@0xC0083640

at ej.microui.MicroUIPump.run(MicroUIPump.java:176)
Object References:

- ej.microui.display.DisplayPump@0xC0083640
at java.lang.Thread.run(Thread.java:311)

Object References:
- java.lang.Thread@0xC0083628

(continues on next page)

9.13. Discover Embedded Debugging Techniques 1385

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

at java.lang.Thread.runWrapper(Thread.java:464)
Object References:

- java.lang.Thread@0xC0083628
at java.lang.Thread.callWrapper(Thread.java:449)

--
Java Thread[1536]
name="Thread1" prio=5 state=READY max_java_stack=60 current_java_stack=57

java.lang.Thread@0xC0082194:
at java.lang.Thread.runWrapper(Unknown Source)

Object References:
- java.lang.Thread@0xC0082194

at java.lang.Thread.callWrapper(Thread.java:449)
==

============================== Garbage Collector ===============================
State: Stopped
Last analyzed object: null
Total memory: 15500
Current allocated memory: 7068
Current free memory: 8432
Allocated memory after last GC: 0
Free memory after last GC: 15500
==

=============================== Native Resources ===============================
Id CloseFunc Owner Description
--
==

Memory Inspection

Memory issues such asmemory corruption andmemory leaks can be hard to troubleshoot. However, the following
tools are available to address these issues:

• Check the internal structure integrity of theMicroJvm virtualmachinewith the LLMJVM_checkIntegrity API to
detect memory corruptions in native functions.

• Use the Heap Usage Monitoring Tool to estimate the heap requirements of an application.

• The Heap Dumper & Heap Analyzer tools analyze the content of the heap. They are helpful to detect memory
leaks and look for optimization of the heap usage.

9.13. Discover Embedded Debugging Techniques 1386

MicroEJ Documentation, Revision 32bb132e

Platform Qualification

ThePlatformQualification Tools (PQT) project provides the tools required to validate each component of aMicroEJ
Platform. A�er porting or adding a feature to a MicroEJ Platform, it is necessary to validate its integration.

The project is available on GitHub: https://github.com/MicroEJ/VEEPortQualificationTools

9.13. Discover Embedded Debugging Techniques 1387

https://github.com/MicroEJ/VEEPortQualificationTools

MicroEJ Documentation, Revision 32bb132e

Fig. 2: Platform Qualification Overview

Please refer to the VEE Port Qualification documentation for more information.

Simulator Debugger

• Debug an Application on Simulator, add breakpoints, inspect stack frame, use step-by-step, etc.

9.13. Discover Embedded Debugging Techniques 1388

MicroEJ Documentation, Revision 32bb132e

• Configure the libraries’ sources location to View library as sources in the debugger.

Static Analysis Tools

Static analysis tools are helpful allies to prevent several classes of bugs.

• SonarQube™ provides reports on duplicated code, coding standards, unit tests, code coverage, code com-
plexity, potential bugs, comments, and architecture.

• Use the Null Analysis tool to detect and prevent NullPointerException, one of the most common causes of
runtime failure of Java programs.

GUI Debugging Tools

• The Widget Library provides several Debug Utilities to investigate and troubleshoot GUI applications. For
example, it is possible to print the type and bounds of each widget in the hierarchy of a widget:

Scroll: 0,0 480x272 (absolute: 0,0)
+--ScrollableList: 0,0 480x272 (absolute: 0,0)
| +--Label: 0,0 480x50 (absolute: 0,0)
| +--Dock: 0,50 480x50 (absolute: 0,50)
| | +--ImageWidget: 0,0 70x50 (absolute: 0,50)
| | +--Label: 70,0 202x50 (absolute: 70,50)
| +--Label: 0,100 480x50 (absolute: 0,100)

• MicroUI Event Bu�er provides an API to store and dump the events received:

============================== MicroUI FIFO Dump ===============================
---------------------------------- Old Events ----------------------------------

(continues on next page)

9.13. Discover Embedded Debugging Techniques 1389

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/NullPointerException.html

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

[27: 0x00000000] garbage
[28: 0x00000000] garbage
[...]
[99: 0x00000000] garbage
[00: 0x08000000] Display SHOW Displayable (Displayable index = 0)
[01: 0x00000008] Command HELP (event generator 0)
[02: 0x0d000000] Display REPAINT Displayable (Displayable index = 0)
[03: 0x07030000] Input event: Pointer pressed (event generator 3)
[04: 0x009f0063] at 159,99 (absolute)
[05: 0x07030600] Input event: Pointer moved (event generator 3)
[06: 0x00aa0064] at 170,100 (absolute)
[07: 0x02030700] Pointer dragged (event generator 3)
[08: 0x0d000000] Display REPAINT Displayable (Displayable index = 0)
[09: 0x07030600] Input event: Pointer moved (event generator 3)
[10: 0x00b30066] at 179,102 (absolute)
[11: 0x02030700] Pointer dragged (event generator 3)
[12: 0x0d000000] Display REPAINT Displayable (Displayable index = 0)
[13: 0x07030600] Input event: Pointer moved (event generator 3)
[14: 0x00c50067] at 197,103 (absolute)
[15: 0x02030700] Pointer dragged (event generator 3)
[16: 0x0d000000] Display REPAINT Displayable (Displayable index = 0)
[17: 0x07030600] Input event: Pointer moved (event generator 3)
[18: 0x00d00066] at 208,102 (absolute)
[19: 0x02030700] Pointer dragged (event generator 3)
[20: 0x0d000000] Display REPAINT Displayable (Displayable index = 0)
[21: 0x07030100] Input event: Pointer released (event generator 3)
[22: 0x00000000] at 0,0 (absolute)
[23: 0x00000008] Command HELP (event generator 0)
---------------------------------- New Events ----------------------------------
[24: 0x0d000000] Display REPAINT Displayable (Displayable index = 0)
[25: 0x07030000] Input event: Pointer pressed (event generator 3)
[26: 0x002a0029] at 42,41 (absolute)
--------------------------- New Events' Java objects ---------------------------
[java/lang/Object[2]@0xC000FD1C
[0] com/microej/examples/microui/mvc/MVCDisplayable@0xC000BAC0
[1] null
==

• MicroUI can log several actions, which can be viewed in SystemView. Please refer to Debug Traces for more
information.

Fig. 3: MicroUI Traces displayed in SystemView

9.13. Discover Embedded Debugging Techniques 1390

MicroEJ Documentation, Revision 32bb132e

• Make sure tounderstandMWTConcepts, especially the relationsbetween the rendering, the lay-out the event
dispatch and the states of desktop and widget.

• For UI2 and former versions, please refer to MicroUI and multithreading for a description of the threading
model.

9.13.3 Use Case 1: Debugging a GUI Application Freeze

When an application User Interface freezes and becomes unresponsive, in most cases, one of the following condi-
tions applies:

• An unrecoverable system failure occurred, like a HardFault, and the RTOS tasks are not scheduled anymore.

• The RTOS task that runs the Core Engine is never given CPU time (suspended or blocked).

• The RTOS task that runs the Core Engine is executing never-ending native code (infinite loop in native imple-
mentation for example).

• A Java method executes a long-running operation in the MicroUI thread (also called Display Pump thread).

• The application code is unable to receive or process user input events.

The following sections explain how to instrument the code to locate the issue when the UI freeze occurs. The steps
followed are:

1. Check if the RTOS properly schedules the Core Engine task.

2. Check if the Core Engine properly schedules all Java threads.

3. Check if the Core Engine properly schedules the MicroUI thread.

4. Check if Input Events are properly processed.

Note:

• The checks of the schedulers are possible with SystemView andMicroUI Debug Traces.

• The Input Events check is possible with the LLUI_INPUT_dump API.

Check RTOS Tasks Scheduling

Let’s start at low level by figuring out if the RTOS is scheduling tasks correctly. If possible, use a debugger or Sys-
temView; if not, use the heartbeat task described below.

The following flow chart summarizes the investigation steps with a heartbeat task:

9.13. Discover Embedded Debugging Techniques 1391

https://forum.microej.com/t/gui-microui-and-multithreading/652

MicroEJ Documentation, Revision 32bb132e

(1) Make one of the RTOS tasks acts like a heartbeat: create a dedicated task and make it report in some way at
a regular pace (print a message on standard output, blink an LED, use SystemView, etc.). Set the heartbeat task
priority to the same priority as the Core Engine task.

(2) In this configuration, if theheartbeat is still runningwhen theUI freezeoccurs,wecangoastep furtherandcheck
whether the Core Engine is still scheduling Java threads or not. See next section Check Java Threads Scheduling.

(3) If the heartbeat doesn’t run when the UI freeze occurs, set the heartbeat task priority to the maximum priority.

Warning: Some RTOS use a task to schedule the RTOS timers. The heartbeat task priority must be lower than
the RTOS timers priority.

(4) In this configuration, if the heartbeat is still runningwhen theUI freeze occurs, then an RTOS taskwith a priority
higher than theCore Engine task keeps using the CPU.Use the RTOS specific tools to identifywhat is the faulty task.

(5) If the heartbeat doesn’t runwhen theUI freeze occurs, then theRTOS scheduler is not scheduling anything. This
can be caused by an RTOS timer task or an interrupt handler that never returns, or a crash of the RTOS scheduler.

Check Java Threads Scheduling

As a reminder, the threadingmodel implemented by Core Engine is called green thread: it defines amulti-threaded
environment without relying on any native RTOS capabilities. Therefore, all Java threads run in a single RTOS task.
For more details, please refer to the MicroEJ Core Engine section. A quick way to check if the Java threads are
scheduled correctly is, here again, tomake one of the threads print a heartbeatmessage. Copy/paste the following
snippet in the main() method of the application:

TimerTask task = new TimerTask() {

@Override
public void run() {

System.out.println("Alive");
}

};
Timer timer = new Timer();
timer.schedule(task, 10_000, 10_000);

This code creates a new Java thread that will print the message Alive on the standard output every 10 seconds.

9.13. Discover Embedded Debugging Techniques 1392

MicroEJ Documentation, Revision 32bb132e

Assuming no one canceled the Timer , if the Alive printouts stop when the UI freeze occurs, then it can mean
that:

• The Core Engine stopped scheduling the Java threads.

• Or that one or more threads with a higher priority prevent the threads with a lower priority from running.

Here are a few suggestions:

• Ensure no Java threads with a high priority prevent the scheduling of the other Java threads. For example,
convert the above example with a dedicated thread with the highest priority:

Thread thread = new Thread(new Runnable() {

@Override
public void run() {

while (true) {
try {

Thread.sleep(10_000);
System.out.println("Alive");

} catch (InterruptedException e) {
e.printStackTrace();

}
}

}
});
thread.setPriority(Thread.MAX_PRIORITY);
thread.start();

• TheRTOS task that runs theCoreEnginemight be suspendedorblocked. Check if someAPI call is suspending
the task or if a shared resource could be blocking it.

• When a Java native method is called, it calls its C counterpart function in the RTOS task that runs the Core
Engine. While the C function is running, no other Java methods can run because the Core Engine waits for
the C function to finish. Consequently, no Java thread can ever run again if the C function never returns.
Therefore, spot any suspect native functions and trace every entry/exit to detect faulty code.

Please refer to Implementation Details if you encounter issues when implementing the heartbeat.

Check UI Thread Liveness

Now,what if the Alive heartbeat runswhile theUI is frozen? Java threads are getting scheduled, but theUI thread
(also called Display Pump thread) does not process display events.

Let’s make the heartbeat snippet above execute in the UI thread. Simply wraps the System.out.
println("Alive") with a callSerially():

TimerTask task = new TimerTask() {

@Override
public void run() {

System.out.println("TimerTask Alive");
MicroUI.callSerially(new Runnable() {

@Override
public void run() {

(continues on next page)

9.13. Discover Embedded Debugging Techniques 1393

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/MicroUI.html#callSerially-java.lang.Runnable-

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

System.out.println("UI Alive");
}

});
}

@Override
public void uncaughtException(Timer timer, Throwable e) {

// Default implementation of this method would cancel the task.
// Let's just ignore uncaught exceptions for debug purposes.
e.printStackTrace();

}
};
Timer timer = new Timer();
timer.schedule(task, 10_000, 10_000);

In case this snippet prints TimerTask Alive but not UI alive when the freeze occurs, then there are a few
options:

• The application might be processing a long operation in the UI thread, for example:

– infinite/indeterminate loops

– network/database access

– heavy computations

– Thread.sleep()/Object.wait()

– SNI_suspendCurrentJavaThread() in native call

When doing so, any other UI-related operation will not be processed until completion, leading the display
to be unresponsive. Any code that runs in the UI thread might be responsible. Look for code executed as a
result of calls to:

– repaint() : code in renderContent()

– revalidate() / revalidateSubTree() : code in validateContent() and setBoundsContent()

– handleEvent()

– callSerially(): code wrapped in such calls will be executed in the UI thread

• The UI thread has terminated.

As a general rule, avoid running extended operations in the UI thread, follow the general pattern and use a dedi-
cated thread/executor instead:

ExecutorService executorService = ServiceLoaderFactory.getServiceLoader().
→˓getService(ExecutorService.class, SingleThreadExecutor.class);
executorService.execute(new Runnable() {

@Override
public void run() {

// (... long non-UI operation ...)

// optional: update the UI upon completion
Display.getDefaultDisplay().callSerially(new Runnable() {

(continues on next page)

9.13. Discover Embedded Debugging Techniques 1394

https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Thread.html#sleep-long-
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Object.html#wait--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#renderContent-ej.microui.display.GraphicsContext-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#handleEvent-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/MicroUI.html#callSerially-java.lang.Runnable-

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

@Override
public void run() {

// update display code (will be executed in UI thread)
}

});
}

});

Check Input Events Processing

Another case worth looking at is whether the application is processing user input events as it should. The UI may
look “frozen” only because it doesn’t react to input events. Replace the desktop instancewith the one below to log
all user inputs.

Desktop desktop = new Desktop() {

@Override
public EventHandler getController() {

EventHandler controller = super.getController();
return new EventHandler() {
@Override

public boolean handleEvent(int event) {
System.out.println("Desktop.handleEvent() received event of type " + Event.

→˓getType(event));
return controller.handleEvent(event);
}

};
}

};

It is also possible to display the content of MicroUI Event Bu�er with the LLUI_INPUT_IMPL_log_XXX API. Please
refer to the Event Bu�er documentation for more information.

Implementation Details

Java Threads Creation

The number of threads in the MicroEJ Application must be su�icient to support the creation of additional threads
when using Timer and Thread. The number of available threads can be updated in the launch configuration of the
application (see Option(text): Number of threads).

If it is not possible to increase the number of available threads (for example, because the memory is full), try to
reuse another thread but not the UI thread.

9.13. Discover Embedded Debugging Techniques 1395

https://repository.microej.com/javadoc/microej_5.x/apis/ej/bon/Timer.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/Thread.html

MicroEJ Documentation, Revision 32bb132e

UART Not Available

If the UART output is not available, use another method to signal that the heartbeat task is running (e.g., blink an
LED, use SystemView).

9.13.4 Use Case 2: Debugging a HardFault

When the application crashes, it can result from a HardFault triggered by the MCU.

The following sections explain:

1. What are exceptions, HardFaults, and the exception handler.

2. What to do in case of Memory Corruptions.

3. What to do when a HardFault occurs.

Useful Resources

• IAR System: Debugging a HardFault on Cortex-M https://www.iar.com/knowledge/support/technical-notes/
debugger/debugging-a-hardfault-on-cortex-m/

• ESP-IDF Programming Guide: Fatal Errors https://docs.espressif.com/projects/esp-idf/en/latest/esp32/
api-guides/fatal-errors.html

• Using Cortex-M3/M4/M7 Fault Exceptions MDK Tutorial http://www.keil.com/appnotes/files/apnt209.pdf

Exceptions, HardFaults And Exception Handler

From ARM Architecture Reference Manual

An exception causes the processor to suspend program execution to handle an event, such as an ex-
ternally generated interrupt or an attempt to execute an undefined instruction. Exceptions can be gen-
erated by internal and external sources. Normally, when an exception is taken, the processor state
is preserved immediately, before handling the exception. This means that, when the event has been
handled, the original state can be restored and program execution resumed from the point where the
exception was taken.

For example, an IRQ request is an exception that can be recovered by handling the hardware request properly.
On the other hand, an Undefined Instruction exception suggests a more severe system failure that might not be
recoverable.

The exceptions that cannot be recovered are namedHardFaults.

From ARM Architecture Reference Manual

When an exception is taken, processor execution is forced to an address that corresponds to the type
of exception. This address is called the exception vector for that exception.

The code pointed by the exception vector is named exception handler. Therefore, a dedicated exception handler
can be configured for all exceptions, including HardFaults.

Possible exceptions can be:

• Data Abort exception (access to unknown address)

• Undefined Instruction exception (execute code that is not valid)

• . . .

9.13. Discover Embedded Debugging Techniques 1396

https://www.iar.com/knowledge/support/technical-notes/debugger/debugging-a-hardfault-on-cortex-m/
https://www.iar.com/knowledge/support/technical-notes/debugger/debugging-a-hardfault-on-cortex-m/
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/fatal-errors.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/fatal-errors.html
http://www.keil.com/appnotes/files/apnt209.pdf

MicroEJ Documentation, Revision 32bb132e

Check the hardware documentation for the complete list of exceptions.

What To Do In Exception Handlers?

For all HardFault handlers, the following data are available andmust be printed:

• Name and value of all registers available

• Name of the handler

• Address of the failing instruction

Optionally:

• Content of the stack

• Call function LLMJVM_dump (from LLMJVM.h) to display the VM state (seeDump the States of the Core Engine)

Refer to the architecture documentation for how to configure the exception interrupt vector.

Memory Protection Unit (MPU)

A Memory Protection Unit (MPU) is a hardware unit that provides memory protection. An MPU allows privileged
so�ware to define memory regions and their policy. The policy describes who can access the memory.

For example, configure the heap and stack of a task to be accessible from the task itself only. The MPU generates
an exception if another task or a device driver attempts to access the memory region.

If applicable, configure the MPU should to protect the application.

• Check the RTOS documentation if it supports MPU.

For example, FreeRTOS includes FreeRTOS-MPU https://www.freertos.org/
FreeRTOS-MPU-memory-protection-unit.html.

• Configure the MPU to configure the access to the JVM heap and stack to prevent any other native threads
from altering this area. Refer to this section for the list of section names defined by the MicroEJ Core Engine.

Memory Corruption

Memory corruption can result in the following symptoms:

• The address of the failing instruction is in a data section.

• The trace is incomplete or incorrect.

• The address of the failing instruction is located in the Garbage Collector (GC).

The cause(s) of a memory corruption can be:

• A native (C) function has a bug and writes to an incorrect memory location

• A native stack overflow

• A native heap overflow

• A device incorrectly initialized or misconfigured.

• . . .

When the HardFault occurs in the MicroJVM task, the VM task heap or stack may be corrupted. Add
LLMJVM_checkIntegrity call in checkpoints of the BSP code to identify the timeslot of the memory corruption.
Typically, you can check a native with:

9.13. Discover Embedded Debugging Techniques 1397

https://www.freertos.org/FreeRTOS-MPU-memory-protection-unit.html
https://www.freertos.org/FreeRTOS-MPU-memory-protection-unit.html

MicroEJ Documentation, Revision 32bb132e

void Java_com_mycompany_MyClass_myNativeFunction(void) {
int32_t crcBefore = LLMJVM_checkIntegrity();
myNativeFunctionDo();
int32_t crcAfter = LLMJVM_checkIntegrity();
if(crcBefore != crcAfter){

// Corrupted memory in MicroJVM virtual machine internal structures
while(1);

}
}

Investigation

Determine which memory regions are a�ected and determine which components are responsible for the corrup-
tion.

• List all the memories available and their specifics:

– Access mode (addressable, DMA, . . .)

– Cachemechanism? L1, L2

• Is low-power enabled for CPU and peripherals? Is the memory disabled/changed to save power?

• Get the memory layout of the project:

– What are the code sections for the BSP and the Application?

– Where are the BSP stack and heap? What about the Application stack and heap?

– Where is the Java immortals heap?

– Where are the Java strings?

– Where is the MicroEJ UI bu�er?

– Besides the Java immortals, what are the other intersection point between the Java application and
the BSP? (e.g., a temporary RAM bu�er for JPEG decoder).

– Please refer to the Core Engine Link section to locate the Application sections, and to the Standalone
Application Options for their sizes.

• Implement a CRC of the hot sections when entering/leaving all natives. Hot Sections are memory sections
used by both Java code and native code (e.g., C or ASM).

• Move the C stack at the beginning of the memory to trigger a crash when it overflows (instead of corrupting
the memory).

When a HardFault Occurs

Extract Information and Coredump

Attach an embedded debugger and get the following information:

• stack traces and registers information for each stack frame

• memory information

– the whole memory, if possible

– otherwise, get the hot sections

9.13. Discover Embedded Debugging Techniques 1398

MicroEJ Documentation, Revision 32bb132e

* BSP and Java heap and stack

* UI bu�er

* immortals heap

* sections where the Java application and BSP are working together

• Trigger VM Dump From Debugger

• Check which function is located at the address inside the PC register.

– It can be done either in Debugmode or by searching inside the generated .map file.

Memory Dump Analysis

• Run the Heap Dumper to check the application heap has not been corrupted.

• Make sure thenative stack is not full (usually, there shall have the remaining initializationpatterns inmemory
on top of the stack, such as 0xDEADBEEF)

Trigger a VM Dump

LLMJVM_dump function is provided by LLMJVM.h . This function prints the VM state. Data printed in the VM state
are:

• List of Java threads

• Stack trace for each thread

See this section to learn more about LLMJVM_dump .

9.14 Get Started With GUI

9.14.1 Setup your Environment

Prerequisites

TheMICROEJ SDKmust be installed. Please check theMICROEJ SDK requirements.

Download and Install

1. Download the installer package corresponding to your host computer OS: Download MicroEJ SDK.

2. Unzip the downloaded installer package if needed and execute the installer.

9.14. Get Started With GUI 1399

https://repository.microej.com/packages/SDK/

MicroEJ Documentation, Revision 32bb132e

Start the IDE for the First Time

1. Start MICROEJ SDK and select a workspace.

Note: If you are not familiar with Eclipse workspaces, select the default and press OK.

2. Select the MICROEJ repository.

Note: If you are not familiar with MICROEJ repositories, select the default and press OK.

Prepare VEE Port Sources

1. Get the VEE Port sources from GitHub for STM32F7508-DK, open a terminal on your workstation and run the
following commands:

git clone --recursive https://github.com/MicroEJ/VEEPort-STMicroelectronics-
→˓STM32F7508-DK.git
cd VEEPort-STMicroelectronics-STM32F7508-DK
git checkout tags/2.2.0

2. Follow the README to import the VEE Port sources, activate your license and build your VEE Port, in the VEE
Port Setup section.

3. Once all the steps of the VEE Port setup are done, a new Java project can be created.

Create a New Project

Go to File > New > Standalone Application Project :

9.14. Get Started With GUI 1400

MicroEJ Documentation, Revision 32bb132e

The project structure should look like this:

9.14. Get Started With GUI 1401

MicroEJ Documentation, Revision 32bb132e

Featured Project: Widget Demo

You can have a look at the widget demo project, which contains multiple samples of widgets and usage.

• Widget Demo GitHub Repository

Next step: Starting MicroUI

9.14.2 Starting MicroUI

1. To get started, firstweneed to addMicroUI, a Foundation Library that provides anAbstraction Layer to access
the low-level UI inputs and outputs.

2. Look for module.ivy , and replace dependencies with the following:

<dependencies>
<dependency org="ej.api" name="microui" rev="3.4.1"/>

</dependencies>

Note: There’s no need to add EDC as a dependency. It will be automatically resolvedwith the correct version
(as a dependency of the MicroUI library).

3. This call initializes theMicroUI frameworkandstarts theUI Thread,whichmanages theuser input anddisplay
events.

public static void main(String[] args) {
MicroUI.start();

}

9.14. Get Started With GUI 1402

https://github.com/MicroEJ/Demo-Widget
https://repository.microej.com/modules/ej/api/microui/

MicroEJ Documentation, Revision 32bb132e

Note: MicroUI has to be started before any UI operations.

4. To run your code on the Simulator, le� click on the Project Go To Run > Run As > MicroEJ Application .

Note: If you have several VEE Ports you will be asked which to use.

Widgets

1. Thewidget library provides a collectionof commonwidgets and containers. It is basedonMWT, a base library
that defines core type graphical elements for designing rich graphical user interface embedded applications.

2. Look for module.ivy , and replace dependencies with the following:

<dependencies>
<dependency org="ej.library.ui" name="widget" rev="5.0.0" />

</dependencies>

Note: There’s no need to add MWT or MicroUI, as both are dependencies of the Widget library. They will be
automatically resolved with the correct version.

9.14. Get Started With GUI 1403

https://repository.microej.com/modules/ej/library/ui/widget/

MicroEJ Documentation, Revision 32bb132e

Desktop Usage

1. A desktop is the top-level object that can be displayed on a Display. It may contain awidget, and atmost one
desktop is shown on a Display at any given time.

2. Desktop automatically triggers the layout and rendering phases for itself and its children.

public static void main(String[] args) {
MicroUI.start();

Desktop desktop = new Desktop();
desktop.requestShow();

}

Displaying a Label

1. To add a label, just instantiate a Label object and add it to the desktop as the root widget.

public static void main(String[] args) {
MicroUI.start();
Desktop desktop = new Desktop();

Label label = new Label("Hello World");
desktop.setWidget(label);

desktop.requestShow();
}

2. To run the code go to the Main.java file and right click it, hover over Run As and select
MicroEJ Application .

9.14. Get Started With GUI 1404

https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/basic/Label.html

MicroEJ Documentation, Revision 32bb132e

9.14. Get Started With GUI 1405

MicroEJ Documentation, Revision 32bb132e

Next step: Basic Drawing on Screen

9.14.3 Basic Drawing on Screen

• Wehave seen a basic use of theMWTandwidgets libraries. Before going further let’s see how towrite directly
on a display using both Displayable and GraphicsContext classes.

• A Displayable represents what can be shown on a screen, a GraphicsContext provides access to amodifiable
(readable and writable) pixel bu�er to be associated with an Image or a Displayable.

• It is then possible to have access to a drawable interface that represents a pixelated version of the Display.

public static void main(String[] args){
MicroUI.start();
Displayable myDisplayable = new Displayable() {

@Override
protected void render(GraphicsContext g) {

// Draws a yellow line.
g.setColor(Colors.YELLOW);
Painter.drawLine(g, 0, 0, 100, 50);

}

@Override
public boolean handleEvent(int event) {

return false;
}

};

(continues on next page)

9.14. Get Started With GUI 1406

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

Display.getDisplay().requestShow(myDisplayable);
}

• This draws a line from the coordinates of the display (0,0) to (100,50) .

Drawing Basic Shapes

• The Painter class contains several primitives to draw geometric objects.

• The code below draws each component with the selected color (yellow, purple, green).

• The drawLine() method uses the starting and finishing point with x and y coordinates.

• Fill rectangle and ellipse methods use x and y coordinates and also width and height.

• Draw circle uses x and y and a diameter.

g.setColor(Colors.YELLOW);
Painter.drawLine(g, 0, 0, 100, 50);

g.setColor(Colors.PURPLE);
Painter.fillRectangle(g, 10, 20, 100, 20);
Painter.fillEllipse(g, 120, 50, 20, 100);

g.setColor(Colors.GREEN);
Painter.drawCircle(g, 50, 50, 100);

9.14. Get Started With GUI 1407

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Painter.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Painter.html#drawLine-ej.microui.display.GraphicsContext-int-int-int-int-

MicroEJ Documentation, Revision 32bb132e

Drawing Images

• The Painter class contains several primitives to draw images.

Image image = Image.getImage("/images/microej_logo.png");
// Draws the image at x,y coordinates (150, 50).
Painter.drawImage(g, image, 150, 50);

9.14. Get Started With GUI 1408

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Painter.html

MicroEJ Documentation, Revision 32bb132e

Drawing Thick Shapes

• The ShapePainter class o�ers a set of primitives to render thick shapes with or without anti-aliasing.

• The code below shows how to draw a thick faded line.

// Draws a thick yellow line.
g.setColor(Colors.YELLOW);
ShapePainter.drawThickFadedLine(g, 20, 20, 100, 80, 10, 6, Cap.ROUNDED, Cap.
→˓PERPENDICULAR);

// Draws a thick green circle.
g.setColor(Colors.GREEN);
ShapePainter.drawThickFadedCircle(g, 130, 20, 100, 20, 2);

9.14. Get Started With GUI 1409

https://repository.microej.com/javadoc/microej_5.x/apis/ej/drawing/ShapePainter.html

MicroEJ Documentation, Revision 32bb132e

Next step: Animation

9.14.4 Animation

Animations can be used to make the GUI more appealing andmore lively.

MWT provides a framework to create fluid animations. The principle is as follow:

• make a step of all the running animations (with a probable new rendering of some widgets),

• wait for the display to be flushed,

• do it again.

The goals are:

• doing animations as fast as possible (considering the complexity of the drawings and the hardware capabil-
ities),

• synchronizing all the running animations and avoiding glitches.

9.14. Get Started With GUI 1410

MicroEJ Documentation, Revision 32bb132e

Usage

• An animation can be created by implementing the Animation interface and its tick() method.

• The tick() method is called for each step of the animation.

• Every time the method is called, the widget should be re-rendered.

• The animation can be stopped by returning false .

Animation labelAnimation = new Animation() {

int tick = 0;

@Override
public boolean tick(long currentTimeMillis) {

label.setText(Integer.toString(tick++));
label.requestRender();
return true;

}
};
Animator animator = new Animator();
animator.startAnimation(labelAnimation);

• The code above updates the label text everytime it is called:

• The final code looks like this:

public static void main(String[] args) {
MicroUI.start();

(continues on next page)

9.14. Get Started With GUI 1411

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/animation/Animation.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/animation/Animation.html#tick-long-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/animation/Animation.html#tick-long-

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

Desktop desktop = new Desktop();
final Label label = new Label("hello");

Flow flow = new Flow(LayoutOrientation.VERTICAL);
flow.addChild(label);

Animation labelAnimation = new Animation() {

int tick = 0;

@Override
public boolean tick(long currentTimeMillis) {

label.setText(Integer.toString(this.tick++));
label.requestRender();
return true;

}
};
Animator animator = new Animator();
animator.startAnimation(labelAnimation);

desktop.setWidget(flow);
desktop.requestShow();

}

Next step: Creating Widgets

9.14.5 Creating Widgets

• To create a widget, we need to create a class that extends the Widget superclass.

• In this example, we are going to create a simple progress bar.

• So create a MyProgressBarWidget class extending Widget.

Note: The computeContentOptimalSize() and renderContent() methods must be overridden:

public class MyProgressBarWidget extends Widget {
@Override
protected void computeContentOptimalSize(Size size) {

// TODO Auto-generated method stub
}

@Override
protected void renderContent(GraphicsContext g, int contentWidth, int contentHeight) {

// TODO Auto-generated method stub
}

}

9.14. Get Started With GUI 1412

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#computeContentOptimalSize-ej.mwt.util.Size-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#renderContent-ej.microui.display.GraphicsContext-int-int-

MicroEJ Documentation, Revision 32bb132e

Setting Up

• Let’s use a progress bar with a fixed size:

protected void computeContentOptimalSize(Size size) {
size.setSize(200,50);

}

• Then, let’s create the progress bar, first, it is important to add a progress value:

private float progressValue;

• Now, let’s render the progress bar:

protected void renderContent(GraphicsContext g, int contentWidth, int contentHeight) {
// Draws the remaining bar: a 1 px thick grey line, with 1px of fading.
g.setColor(Colors.SILVER);
int halfHeight = contentHeight / 2;
ShapePainter.drawThickFadedLine(g, 0, halfHeight, contentWidth, halfHeight, 1, 1,␣

→˓Cap.ROUNDED, Cap.ROUNDED);

// Draws the progress bar: a 3 px thick blue line, with 1px of fading.
g.setColor(Colors.NAVY);
int barWidth = (int) (contentWidth * this.progressValue);
ShapePainter.drawThickFadedLine(g, 0, halfHeight, barWidth, halfHeight, 3, 1, Cap.

→˓ROUNDED, Cap.ROUNDED);
}

• Finally, let’s create a method to set the progress on the progress bar:

public void setProgress(float progress) {
this.progressValue = progress;

}

Using with Animator

• Using the codemade in the previous Animation tutorial, doing themodifications below, it is now possible to
see the progress bar animated:

public static void main(String[] args) {
MicroUI.start();
Desktop desktop = new Desktop();
final MyProgressBarWidget progressBar = new MyProgressBarWidget();
Flow flow = new Flow(LayoutOrientation.VERTICAL);
flow.addChild(progressBar);

Animation progressBarAnimation = new Animation() {

float progress;

@Override
public boolean tick(long currentTimeMillis) {

this.progress += 0.001f;

(continues on next page)

9.14. Get Started With GUI 1413

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

progressBar.setProgress(this.progress);
progressBar.requestRender();
return true;

}
};
Animator animator = desktop.getAnimator();
animator.startAnimation(progressBarAnimation);
desktop.setWidget(flow);
desktop.requestShow();

}

Next step: Using Layouts

9.14.6 Using Layouts

The lay out process determines the position and size of the widgets. It depends on:

• The layout of the containers: how the children are arranged within the containers.

• The widgets content size: the size needed by the widgets for optimal display.

This process is started automatically when the desktop is shown. It can also be triggered programmatically.

9.14. Get Started With GUI 1414

MicroEJ Documentation, Revision 32bb132e

Using a Flow Layout

The flow layout lays out any number of children horizontally or vertically, usingmultiple rows if necessary depend-
ing on the size of each child widget.

Creating a flow layout:

• First, instantiate a Flow container, then add two Label objets to this container.

• Finally, add the Flow container to the Desktop.

public static void main(String[] args) {
MicroUI.start();
Desktop desktop = new Desktop();
Label label = new Label("Hello World");
Label secondLabel = new Label("Hello World 2");

Flow flowContainer = new Flow(LayoutOrientation.HORIZONTAL);
flowContainer.addChild(label);
flowContainer.addChild(secondLabel);

desktop.setWidget(flowContainer);
desktop.requestShow();

}

Both of the labels will share the screen:

9.14. Get Started With GUI 1415

https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/container/Flow.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/basic/Label.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/container/Flow.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Desktop.html

MicroEJ Documentation, Revision 32bb132e

Using a Canvas

A canvas lays out any number of children freely.

To add a widget to a Canvas, specify its position and size.

Note: Using Widget.NO_CONSTRAINT sets the width and height to the optimal size of the widget.

public static void main(String[] args) {
MicroUI.start();
Desktop desktop = new Desktop();
Label label = new Label("Hello World");
Label label2 = new Label("Hello World 2");

Canvas canvas = new Canvas();
canvas.addChild(label, 0, 0, Widget.NO_CONSTRAINT, Widget.NO_CONSTRAINT);
canvas.addChild(label2, 15, 15, Widget.NO_CONSTRAINT, Widget.NO_CONSTRAINT);

desktop.setWidget(canvas);
desktop.requestShow();

}

9.14. Get Started With GUI 1416

https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/container/Canvas.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#NO_CONSTRAINT

MicroEJ Documentation, Revision 32bb132e

Next step: Style

9.14.7 Style

Instances of Desktop,Widget, andContainer classes are semantic elements of theGUI, describing the structure and
meaning of the content.

The Style API (ej.mwt.style) defines style options for widgets, allowing for a clear separation of the core structure
(content) and the design aspects (colors, fonts, spacing, background, etc.).

Note: Some of the attributes are inspired by CSS, like Background, Border, Color, Dimension, Font, Alignment,
Margin/Padding. And the CascadingStylesheet manages the order of the selectors (with their specificity), the cas-
cading, etc.

Selectors

Selectors determine the widget(s) to which a style applies. There are three main types of selectors:

• Simple selectors (based on type or class),

• State Selectors (based on state or position),

• Combinators (based on relationships or conditions).

Note: More of this will be presented in the Advanced Styling step.

9.14. Get Started With GUI 1417

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Desktop.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Container.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/package-summary.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/stylesheet/cascading/CascadingStylesheet.html

MicroEJ Documentation, Revision 32bb132e

Usage

• With a CascadingStylesheet, we can define a style for all labels using a TypeSelector:

CascadingStylesheet stylesheet = new CascadingStylesheet();
EditableStyle style = stylesheet.getSelectorStyle(new TypeSelector(Label.class));

• We can now change the style object options. In this sample, we change the base color to red and adding a
black rectangular border of 1px thickness.

style.setColor(Colors.RED);
style.setBorder(new RectangularBorder(Colors.BLACK, 1));

• For these options to take e�ect, bind the stylesheet to the desktop.

desktop.setStylesheet(stylesheet);

• The final code looks like this:

public static void main(String[] args) {
MicroUI.start();
Desktop desktop = new Desktop();
Label label = new Label("Hello World");
Label label2 = new Label("Hello World 2");

Canvas canvas = new Canvas();
canvas.addChild(label, 0, 0, Widget.NO_CONSTRAINT, Widget.NO_CONSTRAINT);
canvas.addChild(label2, 0, 15, Widget.NO_CONSTRAINT, Widget.NO_CONSTRAINT);

CascadingStylesheet stylesheet = new CascadingStylesheet();
EditableStyle style = stylesheet.getSelectorStyle(new TypeSelector(Label.class));
style.setColor(Colors.RED);
style.setBorder(new RectangularBorder(Colors.BLACK, 1));

desktop.setStylesheet(stylesheet);
desktop.setWidget(canvas);
desktop.requestShow();

}

9.14. Get Started With GUI 1418

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/stylesheet/cascading/CascadingStylesheet.html

MicroEJ Documentation, Revision 32bb132e

Padding and Margin

• Using margin and padding is pretty simple. Adding margin is as follows:

style.setMargin(new UniformOutline(4));

9.14. Get Started With GUI 1419

MicroEJ Documentation, Revision 32bb132e

• Setting an oversized margin looks like this:

style.setMargin(new UniformOutline(10));

9.14. Get Started With GUI 1420

MicroEJ Documentation, Revision 32bb132e

• Adding padding:

style.setPadding(new UniformOutline(2));

• Oversizing the padding (the widgets ovelap each other because we use a canvas with fixed positions):

style.setPadding(new UniformOutline(15));

9.14. Get Started With GUI 1421

MicroEJ Documentation, Revision 32bb132e

Next step: Images

9.14.8 Images

Adding Images

• Create two packages in the Resources folder, one named list and another named images .

• Create an images list file, and add it to the list package (myapp.images.list).

• Save the following image to the images package:

• The structure looks like this:

9.14. Get Started With GUI 1422

MicroEJ Documentation, Revision 32bb132e

• Then go to the myapp.images.list and add the image file:

/images/microej_logo.png:ARGB4444

• The image declaration in the .list file follows this pattern:

path:format

• path is the path to the image file, relative to the resources folder.

• format specifies how the image will be embedded in the application.

Note: The ARGB4444mode is used here because the image has transparency, more info in the Images section.

Displaying an Image

• To display this image, first create an instance of the widget ImageWidget, specifying the path to the image in
the constructor:

ImageWidget image = new ImageWidget("/images/microej_logo.png");

• Add the widget to the canvas container by adding this line:

canvas.addChild(image, 0, 30, Widget.NO_CONSTRAINT, Widget.NO_CONSTRAINT);

• The final code looks like this:

public static void main(String[] args) {
MicroUI.start();
Desktop desktop = new Desktop();
Label label = new Label("Hello World");
Label label2 = new Label("Hello World 2");

Canvas canvas = new Canvas();
canvas.addChild(label, 0, 0, Widget.NO_CONSTRAINT, Widget.NO_CONSTRAINT);
canvas.addChild(label2, 0, 15, Widget.NO_CONSTRAINT, Widget.NO_CONSTRAINT);

ImageWidget image = new ImageWidget("/images/microej_logo.png");
canvas.addChild(image, 0, 30, Widget.NO_CONSTRAINT, Widget.NO_CONSTRAINT);

CascadingStylesheet css = new CascadingStylesheet();
EditableStyle style = css.getSelectorStyle(new TypeSelector(Label.class));
style.setColor(Colors.RED);
style.setBorder(new RectangularBorder(Colors.BLACK, 1));

desktop.setStylesheet(css);

(continues on next page)

9.14. Get Started With GUI 1423

https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/basic/ImageWidget.html

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

desktop.setWidget(canvas);
desktop.requestShow();

}

Next step: Advanced Styling

9.14.9 Advanced Styling

Using Images in Stylesheet

• Let’s add a button to the application, with the MicroEJ logo as background.

• Since this background will apply to a specific button, introduce a new class selector that will select this but-
ton.

Class Selector

• Just like a class in CSS, it associates to every element that is from the same class.

• Define a class for the button as follows:

private static final int BUTTON = 600;

• Bind the class BUTTON to the button widget:

Button button = new Button("Click ME");
button.addClassSelector(BUTTON);

9.14. Get Started With GUI 1424

MicroEJ Documentation, Revision 32bb132e

• Retrieve the style for this class from the stylesheet and edit the attributes:

EditableStyle style = css.getSelectorStyle(new ClassSelector(BUTTON));

• Finally, lets add an Image Background to this Button:

style.setBackground(new ImageBackground(Image.getImage("/images/microej_logo.png")));

• And the result should be as follows:

public class Main {
private static final int BUTTON = 600;

public static void main(String[] args) {
MicroUI.start();
Desktop desktop = new Desktop();
Button button = new Button("Click ME");
button.addClassSelector(BUTTON);

Flow flow = new Flow(LayoutOrientation.VERTICAL);
flow.addChild(button);

CascadingStylesheet css = new CascadingStylesheet();
EditableStyle style = css.getSelectorStyle(new ClassSelector(BUTTON));
style.setBackground(new ImageBackground(Image.getImage("/images/microej_logo.png

→˓")));

desktop.setStylesheet(css);
desktop.setWidget(flow);
desktop.requestShow();

}
}

9.14. Get Started With GUI 1425

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/background/ImageBackground.html

MicroEJ Documentation, Revision 32bb132e

Combinator and Conditional Style

• It is possible to combine two or more selectors using combinators.

• In this example the active state of the button will turn the text blue.

CascadingStylesheet css = new CascadingStylesheet();
Selector buttonSelector = new ClassSelector(BUTTON);
EditableStyle style = css.getSelectorStyle(buttonSelector);
style.setBackground(new ImageBackground(Image.getImage("/images/microej_logo.png")));
Selector activeSelector = new StateSelector(Button.ACTIVE);
EditableStyle styleActive = css.getSelectorStyle(new AndCombinator(buttonSelector,␣
→˓activeSelector));
styleActive.setColor(Colors.BLUE);

• The class selector for the button has been extracted as a locale to be combined with the button active state
selector.

9.14. Get Started With GUI 1426

MicroEJ Documentation, Revision 32bb132e

Next step: Event Handling

9.14.10 Event Handling

MicroUI generates integer-based events that encode the low-level input type and some data. The application can
handle these events in the handleEvent() method.

The handleEvent Method

• Every class that extends Widget inherits the handleEvent() method.

• Add custom event handling by overriding the handleEvent() method of a widget.

• As an example, here is the event handling of the Button class:

@Override
public boolean handleEvent(int event) {

int type = Event.getType(event);
if (type == Pointer.EVENT_TYPE) {

int action = Pointer.getAction(event);
if (action == Pointer.PRESSED) {

setPressed(true);
} else if (action == Pointer.RELEASED) {

setPressed(false);
handleClick();
return true;

(continues on next page)

9.14. Get Started With GUI 1427

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#handleEvent-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#handleEvent-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#handleEvent-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/basic/Button.html

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

}
} else if (type == DesktopEventGenerator.EVENT_TYPE) {

int action = DesktopEventGenerator.getAction(event);
if (action == PointerEventDispatcher.EXITED) {

setPressed(false);
}

}
return super.handleEvent(event);

}

• It’s important to note that only widgets that are “enabled”will receive input events. One can enable awidget
by calling setEnabled(true).

• In the Button class, the click triggers an action defined by the registered OnClickListener.

Using Events with Buttons

As an example of usage of the Button class we reuse the code created in the previous step, and add a simple action
to the button by adding a OnClickListener.

button.setOnClickListener(new OnClickListener() {
@Override
public void onClick() {

System.out.println("Clicked!");
}

});

When running the modified sample, this is shown in the console:

=============== [Initialization Stage] ===============
=============== [Converting fonts] ===============
=============== [Converting images] ===============
=============== [Launching on Simulator] ===============
Clicked!
Clicked!
Clicked!
Clicked!
Clicked!

Next step: Fonts

9.14.11 Fonts

• Fonts are graphical resources that can be accessed with a call to ej.microui.display.Font.getFont(). To be
displayed, these fonts have to be converted at build-time from their source format to the display raw format
by the font generator tool.

• Fonts, just like images, must be declared in a *.fonts.list file.

9.14. Get Started With GUI 1428

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#setEnabled-boolean-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/basic/Button.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/basic/OnClickListener.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/basic/OnClickListener.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Font.html#getFont-java.lang.String-

MicroEJ Documentation, Revision 32bb132e

Creating a font

• To create a font, go to the package you want to store your fonts in, usually Resources > fonts .

• Then Right-Click > New > Other > MicroEJ > MicroEJ Font :

• Then, type the name of the font:

9.14. Get Started With GUI 1429

MicroEJ Documentation, Revision 32bb132e

• Click on Finish , the following window opens:

9.14. Get Started With GUI 1430

MicroEJ Documentation, Revision 32bb132e

Note: It is important to have the font that you want already installed on your system.

• To import characters from a system font, click on Import. . . and the following opens:

9.14. Get Started With GUI 1431

MicroEJ Documentation, Revision 32bb132e

• Click on Next and then select the font to use as shown below:

9.14. Get Started With GUI 1432

MicroEJ Documentation, Revision 32bb132e

Note: If using a latin based alphabet, just leave the settings as they are and click on Finish , don’t forget to
adjust the height and baseline of the font.

• Click Finish and save the file. The font is imported in the .ejf file.

• Then just add the font to a myapp.fonts.list file in the src/main/resources source folder of your appli-
cation:

/fonts/NewFont.ejf

• More info in the Fonts section.

9.14. Get Started With GUI 1433

MicroEJ Documentation, Revision 32bb132e

Adding the Font to a Label

To add the font, choose the font in the StyleSheet:

public static void main(String[] args) {
MicroUI.start();
Desktop desktop = new Desktop();
Flow flow = new Flow(LayoutOrientation.VERTICAL);
Label label = new Label("Hello World");
Font font = Font.getFont("/fonts/NewFont.ejf");
CascadingStylesheet css = new CascadingStylesheet();
EditableStyle style = css.getSelectorStyle(new ClassSelector(BUTTON));
flow.addChild(label);
style.setFont(font);
desktop.setStylesheet(css);
desktop.setWidget(flow);
desktop.requestShow();

}

Note: Don’t forget to set the stylesheet to the desktop.

Next step: Scroll List

9.14. Get Started With GUI 1434

MicroEJ Documentation, Revision 32bb132e

9.14.12 Scroll List

List

• A list is a container that lays out its children one a�er the other in a single column or row depending on its
orientation.

• The size of each widget is set proportionally to its optimal size and the available size.

• Naturally, it shows some issues if the list contains too many components.

• Adding 45 items to a list shows the following result:

public static void main(String[] args) {
MicroUI.start();
Desktop desktop = new Desktop();

List list = new List(LayoutOrientation.VERTICAL);
for (int i = 0; i < 45; i++) {

Label label = new Label("Label" + i);
list.addChild(label);

}

desktop.setWidget(list);
desktop.requestShow();

}

• To be able to see all the items, the list must be bigger than the display. So it needs to be included in another
container that is able to scroll it.

9.14. Get Started With GUI 1435

MicroEJ Documentation, Revision 32bb132e

Scrollable List

• A simple way to see all the items correctly and scroll the list is to include it in a Scroll container:

public static void main(String[] args) {
MicroUI.start();
Desktop desktop = new Desktop();
List list = new List(LayoutOrientation.VERTICAL);
for (int i = 0; i < 45; i++) {

Label item = new Label("Label" + i);
list.addChild(item);

}
CascadingStylesheet css = new CascadingStylesheet();
Scroll scroll = new Scroll(LayoutOrientation.VERTICAL);
scroll.setChild(list);
desktop.setStylesheet(css);
desktop.setWidget(scroll);
desktop.requestShow();

}

• The list can be optimized for the scroll (to exclude the items that are outside the visible area). A scrollable list
is available at Widget Demo.

• It can be copied in the project and replace the list:

public static void main(String[] args) {
MicroUI.start();
Desktop desktop = new Desktop();
ScrollableList list = new ScrollableList(LayoutOrientation.VERTICAL);

(continues on next page)

9.14. Get Started With GUI 1436

https://github.com/MicroEJ/Demo-Widget/blob/master/com.microej.demo.widget/src/main/java/com/microej/demo/widget/common/scroll/ScrollableList.java

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

for (int i = 0; i < 45; i++) {
Label label = new Label("Label" + i);
list.addChild(label);

}
CascadingStylesheet css = new CascadingStylesheet();
Scroll scroll = new Scroll(LayoutOrientation.VERTICAL);
scroll.setChild(list);
desktop.setStylesheet(css);
desktop.setWidget(scroll);
desktop.requestShow();

}

Next step: Creating a Contact List using Scroll List

9.14.13 Creating a Contact List using Scroll List

Creating the Contact Widget

• As explained in Creating Widgets, it is possible to create our own widget by just extending the Widget class.

• First, let’s create a constructor with all the things that we are going to need for this.

public ContactWidget(String contactName, Image image) {
this.contactName = contactName;
this.image = image;

}

• Then, overriding the two abstract methods of Widget

@Override
protected void computeContentOptimalSize(Size size) {

Font f = getStyle().getFont();
int height = Math.max(f.getHeight(), this.image.getHeight());
int stringWidth = f.stringWidth(this.contactName);
int width = stringWidth + this.image.getWidth();
size.setSize(width, height);

}

@Override
protected void renderContent(GraphicsContext g, int contentWidth, int contentHeight) {

g.setColor(Colors.BLACK);
Painter.drawImage(g, this.image, 0, 0);
int cornerEllipseSize = contentHeight / 2;
int imageWidth = this.image.getWidth();
int imageHeight = this.image.getHeight();
Painter.drawRoundedRectangle(g, 0, 0, imageWidth, imageHeight, cornerEllipseSize,␣

→˓cornerEllipseSize);
Painter.drawString(g, this.contactName, getStyle().getFont(), imageWidth + 2,␣

→˓contentHeight / 3);
}

• Then, simply replace the children in the List used in the last step:

9.14. Get Started With GUI 1437

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html

MicroEJ Documentation, Revision 32bb132e

for (int i = 0; i < 45; i++) {
list.addChild(new ContactWidget("Label" + i, Image.getImage("/images/microej_logo.png

→˓")));
}

• The class is as follows:

public class ContactWidget extends Widget {

private String contactName;
private Image image;

public ContactWidget(String contactName, Image image) {
this.contactName = contactName;
this.image = image;

}

@Override
protected void computeContentOptimalSize(Size size) {

Font f = getStyle().getFont();
int height = Math.max(f.getHeight(), this.image.getHeight());
int stringWidth = f.stringWidth(this.contactName);
int width = stringWidth + this.image.getWidth();
size.setSize(width, height);

}

@Override
protected void renderContent(GraphicsContext g, int contentWidth, int contentHeight)

→˓{
g.setColor(Colors.BLACK);
Painter.drawImage(g, this.image, 0, 0);
int cornerEllipseSize = contentHeight / 2;
int imageWidth = this.image.getWidth();
int imageHeight = this.image.getHeight();
Painter.drawRoundedRectangle(g, 0, 0, imageWidth, imageHeight, cornerEllipseSize,␣

→˓cornerEllipseSize);
Painter.drawString(g, this.contactName, getStyle().getFont(), imageWidth + 2,␣

→˓contentHeight / 3);
}

}

9.14. Get Started With GUI 1438

MicroEJ Documentation, Revision 32bb132e

Next step: Internationalization

9.14.14 Internationalization

Using PO Files

• PO files are a good way to handle Internationalization.

• Documentation is available here.

• In this example, let’s create two PO files for two di�erent languages(English and Portuguese) and add them
to resources/nls.

Labels_en_US.po :

msgid ""
msgstr ""
"Language: en_US\n"
"Language-Team: English\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=UTF-8\n"

msgid "Label1"
msgstr "My label 1"

msgid "Label2"
msgstr "My label 2"

Labels_pt_BR.po :

9.14. Get Started With GUI 1439

https://www.gnu.org/software/gettext/manual/gettext.html#PO-Files

MicroEJ Documentation, Revision 32bb132e

msgid ""
msgstr ""
"Language: pt_BR\n"
"Language-Team: Portuguese\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=UTF-8\n"

msgid "Label1"
msgstr "Minha label 1"

msgid "Label2"
msgstr "Minha label 2"

• These PO files have to be converted to be usable by the application.

• In order to let the build system knowwhich PO files to process, theymust be referenced inMicroEJ Classpath
using a myapp.nls.list file.

Configuring NLS in MicroEJ

• First add those two dependencies to the module.ivy of your projet:

<dependency org="ej.library.runtime" name="nls" rev="4.0.0"/>
<dependency org="com.microej.library.runtime" name="binary-nls" rev="3.0.0"/>

• Then, let’s create a myapp.nls.list file, and put it in the src/main/resources/list folder. The file looks like
this:

com.mycompany.myapp.generated.Labels

Note: For each line, PO files whose name starts with the interface name (Labels in the example) are re-
trieved from the MicroEJ Classpath and used to generate:

– a Java interface with the given fully qualified name, containing a field for each msgid of the PO files.

– a NLS binary file containing the translations.

Usage

• Import the interface set in the myapp.nls.list file:

import com.mycompany.myapp.generated.Labels;

• Print the available locales:

for (String locale : Labels.NLS.getAvailableLocales()) {
System.out.println(locale);

}

• Print the current locale:

9.14. Get Started With GUI 1440

MicroEJ Documentation, Revision 32bb132e

System.out.println(Labels.NLS.getCurrentLocale());

• Change the current locale:

Labels.NLS.setCurrentLocale("pt_BR");

• Finally, put a message from NLS in a label. The code looks like this:

public static void main(String[] args) {
MicroUI.start();
Desktop desktop = new Desktop();
Labels.NLS.setCurrentLocale("pt_BR");
// For english locale uncomment the line below and comment the pt_BR locale setter␣

→˓call.
// Labels.NLS.setCurrentLocale("en_US");
Label label = new Label(Labels.NLS.getMessage(Labels.Label1));
desktop.setWidget(label);
desktop.requestShow();

}

• The result looks like this:

• Setting the locale to “en_US” the result is as follows:

9.14. Get Started With GUI 1441

MicroEJ Documentation, Revision 32bb132e

Loading Translations as an External Resource

When building the Application or running it on Simulator, the Resource Bu�er Generator is executed.

A resource containing translations is generated. This resource can be loaded as external resource in order to be
loaded from an external memory (e.g. from a FileSystem).

Note: This mode requires to setup the External Resources Loader in the VEE Port.

Follow the steps below to declare translations as external resources:

• Add a myapp.nls.externresources.list file in the src/main/resources/list folder,

• Add the following path inside the file:

/com/mycompany/myapp/generated/Labels.nls

This path can be found in src-adpgenerated/binarynls/java/com/mycompany/myapp/generated/
Labels.nls.resources.list

• Build the application for the target,

• Open the SOAR.map file to check that the resource is not embedded anymore in the application binary. The
xxx_Labels.nls line should not appear anymore in the ApplicationResources section.

• The resource containing translations is now located in the com.mycompany.myapp.Main/
externalResources folder. This resource must be embedded on the target and loaded using the
External Resources Loader.

9.14. Get Started With GUI 1442

MicroEJ Documentation, Revision 32bb132e

A simple implementation of the External Resources Loader is available on GitHub: Example-
ExternalResourceLoader.

9.15 How to Validate GUIs

This document explains how to validate Graphical User Interfaces. It describes common pitfalls that can a�ect GUI
performances, provides tools that allow to detect performance issues and how to solve them, and finally o�ers
ways to test GUIs automatically.

9.15.1 Implementing GUIs E�iciently

Before usingmore advanced UI debugging techniques, the global application code quality should be reviewed. An
overall good code quality will help to get good UI performances. It will help to get more e�icient code and allow
easier debugging andmaintenance.

Documents and Tools to Improve Application Code Quality

Here is a list of documents or tools that help to improve the quality of application code:

• The Improve the Quality of Java Code tutorial explains how to improve the Quality of Java Code.

• The Get Started With GUI tutorial provides guidelines to start developing an e�icient GUI.

• The SonarQube™ source code quality analyzer allows to analyze an Application or Library code quality.

Using Recent Versions of UI Libraries

Using the latest UI libraries (MicroUI, MWT, Widget, etc.) available may solve some performance issues. The most
recent UI libraries fix some bugs that may a�ect performance and they provide tools and libraries that allow to
implement more performant UIs.

Memory Management

The Java management of memory may a�ect UI performances:

• Toomuchmemory allocation/deallocation for UI resources (Images, Fonts).

• Toomuchobject instantiationwill lead to a big Java heap size. In someuse cases, the garbage collectionmay
lead to the UI slowing down.

To avoid those pitfalls:

• Calibrate the memories (Java heap, Images heap, etc.).

• Uses memory debugging tools:

– Optimize Memory Footprint tutorial.

– Memory inspection tools.

– Heap Analyzer.

9.15. How to Validate GUIs 1443

https://github.com/MicroEJ/Example-ExternalResourceLoader
https://github.com/MicroEJ/Example-ExternalResourceLoader
https://github.com/MicroEJ/ExampleTool-Sonar

MicroEJ Documentation, Revision 32bb132e

Format of UI Resources

One crucial aspect of optimizing an application is choosing the right image formats. Images can have a significant
impact on an app’s performance and memory usage. Therefore, selecting the best image format is essential. It
helps reduce memory usage, speed up the app, and improve its overall performance.

MicroUI manages two kind of images, mutable and immutable images.

Mutable images are graphical resources that can be created and modified at runtime. The application can draw
into such images. More information about mutable images can be found here.

As their name suggests, immutable images can not bemodified. They are themost commonly used kind of images,
this section will focus on them.

Decoding Immutable Images

Immutable images can be converted for display either during the build-time process, using the Image Generator,
or at run-time, utilizing the appropriate decoder library.

The decision between these two approaches depends on the project’s specific requirements. Decoding at run-
time is a good choicewhen storage space is limited and o�ers greater flexibility. However, itmay requiremore pro-
cessing power and result in slower performance. Conversely, decoding at build time reduces the computational
workload during run-time and is well-suited for devices with stringent performance demands, though it usually
require more storage and it may sacrifice some flexibility in the process.

Format of Immutable Images

There aremultiple output formats that can be used to convert the images, you can find themhere: Output Formats.

Choosing the right output format is important to get the best performance:

• For opaque images, choose a format that has no transparency, RGB565 is usually su�icient.

• For a pictogram to colorize A4 is usually su�icient. The image can be colorized at runtime.

• The image format can be compressed, see Compressed Output Formats

The expected result of each format can be seen here: Formats expected result

Images Heap

Mutable images and immutable images decoded at runtime require some memory to be used. Please go to the
Images Heap section for more information.

9.15.2 Benchmarking GUIs

The process of rendering a frame of the UI consists of several parts:

• Drawing of the UI:

– MWT processing (layout of widgets and widget rendering process).

– Drawing of the UI (MicroUI drawing method execution).

• Display flush.

• (depends on the UI port) Backbu�er copy, see Display Bu�er Modes.

9.15. How to Validate GUIs 1444

MicroEJ Documentation, Revision 32bb132e

Some tools are available to identify which part of this process a�ect the most the GUI performance.

SystemView

The SystemView tool can be used to trace the UI actions (drawings, flush, etc.) and detect which ones are themost
time-consuming. The documentation of SystemView is available here. The MicroUI traces should be configured
in SystemView in order to see the UI actions performed, it can be done by following this documentation. Custom
traces can be added and logged from the Java application to record specific actions.

MicroUI Flush Visualizer

A perfect application has 100%of its display area drawn. This is the total area covered by the sumof the area drawn
by the drawing operations. A value of 200% indicates the area drawn is equivalent to twice the surface of the entire
display. A total area drawnbetween 100% to 200% is the norm in practice becausewidgets o�en overlap. However,
if the total area drawn is bigger than 200%, that means that the total surface of the display was drawn more than
twice, meaning that a lot of time could be spent drawing things that are never shown.

The MicroUI Flush Visualizer tool can be used to investigate potential performance bottlenecks in UI applications
running on the Simulator by showing the pixel surface drawn between two MicroUI frame bu�er flushes.

The documentation of MicroUI Flush Visualizer is available here.

9.15.3 Debugging GUIs

High-level Debugging and Optimizations

This section provides insights into common issues a�ecting performances on the high-level side. The following
advices will help reduce the MWT processing and drawing time.

Widget Hierarchy and Layout

Keeping the widget hierarchy as simple as possible will help to reduce the “MWT processing” part time. Improving
thewidget hierarchy designmayhelp reduce the number ofwidgets or the number of them that are renderedwhen
a certain part of the UI is updated.

Here are tools that allow to detect issues with the widget hierarchy:

• Widget debug utilities provides tools to visualize the widget tree, count the numbers of widgets or see their
bounds.

• MWT bounds highlighting allows to visualize the bounds of the widgets, it is useful to detect overlapping
widgets.

9.15. How to Validate GUIs 1445

MicroEJ Documentation, Revision 32bb132e

Bad Use of requestRender and requestLayout

The requestRender method requests a render of the widget on the display.

The requestLayout method requests a layout of all thewidgets in the sub-hierarchy of thiswidget. It will compute
the size and position of the widgets as setting their styles. requestLayout will trigger a render request a�er the
layout.

A common mistake is to call requestRender just a�er a requestLayout . This will trigger two renders and thus
a�ect the UI performances.

Another common issue is to request a layout where a render request would have been enough. If the size, position
or style of the widgets didn’t change requestRender is enough, requestLayout would have a longer processing
time. This is especially true for animation where we want each frame to be processed as fast as possible.

Documentation about rendering and layout is available here.

Animations Implementation

There are a few implementations possible for animations with MicroEJ. The way widgets are animated should be
chosen according to the use case and the limitation of the hardware.

Animator

The MWT’s Animator allows to execute animations as fast as possible, it waits for the low-level screen flush to be
done and directly triggers a new render. Thus the Animator will give the best framerate possible but will also con-
sume a lot of CPU processing time.

TimerTask

A TimerTask can be used to execute an animation at a fixed framerate. This technique is very useful to set a fixed
period for the animation but will cause issues if the time to render a frame is longer than that period, this will lead
to missed frames. Some frames can take longer to render if their content is more complex or if the CPU is already
used by another non-UI thread.

The framerate set when using a TimerTask for animation should be defined wisely, the time to render frames and
the CPU utilization should be taken into consideration.

Animator and TimerTaskmix

A mix of the Animator and TimeTask approaches could be implemented in order to set a fixed framerate but also
to rely on the screen flush.

9.15. How to Validate GUIs 1446

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/animation/Animator.html

MicroEJ Documentation, Revision 32bb132e

Hardware and Low-level Debugging and Optimizations

This section provides insights into the main spots to check regarding the low-level and the hardware.

Please see the VEE Porting Guide Graphical User Interface documentation for more information about the UI port.

At Project Level

Compiling Optimization Options

The project should be configured to bring the best performanceswith compiling optimization options correctly set
up.

RTOS Tasks Environment

The priority of the UI task should be set high enough to avoid too many preemptions that may induce bad UI per-
formances.

Another point that should be taken into consideration is the amount of other tasks that are running at the same
time as the UI task. The total workloadmay be too high for the CPU, therefore, the UI task cannot get access to the
required amount of computing power.

At Hardware Level

Hardware Capabilities

MCUs and SoCsmay have access to various hardware IPs to speed up the UI. The UI port should exploit all of them
to get the best performance. First of all, the GPU should be used if it is available on the system. Then, driving a
display implies intensive memory usage, a DMA should be used whenever it’s possible.

For example, during the back copy if the flush policy is in switchmode or during your flush if your display is driven
through SPI (if there is a DMA dedicated to the SPI port). For more information about the flush policy, please read
our documentation about Display.

Hardware Configuration

Each of the hardware components such as SPI, DMA or LCD controller must be configured to bring the best per-
formances achievable. This implies to read carefully the datasheet of the MCU and the display and determine for
example the best frequency and communication mode possible.

Another example of configurationwith DMAs, a DMA has o�en a burstmode to transfer data, the UI port should use
this mode to maximize performance.

9.15. How to Validate GUIs 1447

MicroEJ Documentation, Revision 32bb132e

Bu�ers Location in Memory

An important step during the development of the UI integration is the memory location of the bu�ers that will
use the GUI to draw to the display. In an MCU, there may be di�erent types of RAM available that have di�erent
properties in terms of quantity and speed. The fastest RAM should be chosen for the bu�ers if its size allows it.

Flush Policy

As described in the Display page, there are several flush policies that can be implemented. The best flush policy
should be selected according to the hardware capabilities. Generally, the best flush policy is the switch mode.

9.15.4 Testing GUIs

Before applying UI debugging or optimization techniques, the application behaviour should be tested. There are
di�erent ways of doing this.

Test a GUI Application with a So�ware Robot

It is possible to test the GUI of an application via robotic process automation (RPA). Robot tests mimic the human
user behavior in the GUI and can help detect various errors by automating behavior which otherwise would cost
too much e�ort and/or time to execute manually.

Here are the steps required to use a robot in the MicroEJ environment:

• Record the robot input events

– For this, you need a simple EventHandlerwhich intercepts incoming events, for example fromaPointer,
then passes them on to the real event handler.

• Start the usage of the new ‘Watcher’ logic a�er the UI has started

– With this, the watching of the Pointer envents is initiated for the whole application.

• Create a Robot

– The robot is a simple class which uses its own Pointer tomove and press at the coordinates it has been
instructed.

– The robot should have a method which starts a series of instructions to move the Pointer.

• Execute the Robot method containing the instructions

– The intercepting Event Handling will record and for example log the input.

This simple way of automating GUI actions can be used to carry out real use cases and evaluate the results.

The How to test a GUI application with a (so�ware) robot tutorial provides detailed insight into this topic.

9.15. How to Validate GUIs 1448

MicroEJ Documentation, Revision 32bb132e

Test a GUI Application with the Test Automation Tool

To execute regression tests automatically and monitor minor changes in a GUI, you can use the Test Automation
Tool. The Test Automation Tool allows to automatically test UIs.

The tool comparison functionality can be integrated with JUnit tests.

For detailed information about the tool usage, please check the README in the repository.

9.16 How to Test a GUI Application with a (So�ware) Robot

This document presents how to test a GUI application with a so�ware robot for robotic process automation (RPA).

Robot tests and traditional unit tests are di�erent but both are useful. Traditional unit tests validate the systems
through calls to the API (internal or external). Robot tests validate the systems by mimicking the human user be-
havior directly in the GUI. The robot implementation proposed here targets the following errors detection:

• OutOfMemory

• StackOverflow

• MEJ32 and platform libraries error

• Widget sequence validation

The following document covers:

• Recording human touch events on the simulator or on the embedded platform

• Running recorded events on the simulator or on the embedded platform

The following document does not cover:

• The display rendering validation (this can be done using the Test Automation Tool)

• Integration of the robot into an automatic JUnit test suite

We will now present the basic architecture and code required to create and to run a robot within a MicroEJ appli-
cation on the simulator and embedded platform.

In the following sections, we assume the MicroEJ VEE Port has a display interface and a touch controller.

9.16.1 Overview

The robot creation process is twofold. First, we have to record and store the human user events. Second, we have
to play them back with the robot.

9.16.2 Record the Scenario

The first step is to record the human user events.

Here is the code of the EventRecorder class that should be added to our application’s project:

import ej.annotation.Nullable;
import ej.microui.event.Event;
import ej.microui.event.generator.Buttons;
import ej.microui.event.generator.Pointer;

(continues on next page)

9.16. How to Test a GUI Application with a (So�ware) Robot 1449

https://github.com/MicroEJ/Tool-UITestAutomation
https://github.com/MicroEJ/Tool-UITestAutomation/blob/master/TestAutomationTool/README.md
https://github.com/MicroEJ/Tool-UITestAutomation

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

/**
* Records events.
*/
public class EventRecorder {

private long lastEventTime;

/**
* Creates an event recorder.
*/
public EventRecorder() {
this.lastEventTime = -1;

}

/**
* Records an event.
*
* @param event
* the event to record.
*/
public void recordEvent(int event) {
String command = getEventCommand(event);
if (command != null) {

long currentTime = System.currentTimeMillis();
if (this.lastEventTime == -1) {
this.lastEventTime = currentTime;

}

long delta = currentTime - this.lastEventTime;
if (delta > 0) {

System.out.println(getPauseCommand(delta));
}

System.out.println(command);

this.lastEventTime = currentTime;
}

}

@SuppressWarnings("nls")
private static @Nullable String getEventCommand(int event) {
if (Event.getType(event) == Pointer.EVENT_TYPE) {

Pointer pointer = (Pointer) Event.getGenerator(event);
switch (Pointer.getAction(event)) {
case Pointer.PRESSED:
return "robot.press(" + pointer.getX() + ", " + pointer.getY() + ");";

case Pointer.MOVED:
case Pointer.DRAGGED:
return "robot.move(" + pointer.getX() + ", " + pointer.getY() + ");";

case Buttons.RELEASED:
return "robot.release(" + pointer.getX() + ", " + pointer.getY() + ");";

default:
(continues on next page)

9.16. How to Test a GUI Application with a (So�ware) Robot 1450

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

return null;
}

} else if (Event.getType(event) == Buttons.EVENT_TYPE) {
if (Buttons.getAction(event) == Buttons.RELEASED) {

return "robot.button();";
} else {

return null;
}

} else {
return null;

}
}

@SuppressWarnings("nls")
private static @Nullable String getPauseCommand(long delay) {
return "robot.pause(" + delay + ");";

}
}

This code records all pressed, moved, dragged and released events as well as the time between each event (we
want to play our robot at the same speed as the human). EventRecorder outputs the commands on the standard
output. More on this a bit later.

Set Up the Event Recorder

The events have to be recorded from the application’s desktop’s EventDispatcher . Here is how to override it:

final EventRecorder eventRecorder = new EventRecorder();

Desktop desktop = new Desktop() {

@Override
protected EventDispatcher createEventDispatcher() {
return new PointerEventDispatcher(this) {

@Override
public boolean dispatchEvent(int event) {
eventRecorder.recordEvent(event);

return super.dispatchEvent(event);
}

};
}

};

When runnning the application, the EventDispatcher will now record the events and then redirect them to its
parent dispatchEvent so they can bemanaged normally by the application.

9.16. How to Test a GUI Application with a (So�ware) Robot 1451

MicroEJ Documentation, Revision 32bb132e

9.16.3 Set Up the Scenario Player

As we now have recorded our scenario we have to play it. For that we have to add the EventPlayer to our project:

/**
* Plays events.
*/
public class EventPlayer {

@Nullable
private final Pointer pointer;
@Nullable
private final Buttons buttons;

/**
* Creates a robot.
*/
public EventPlayer() {
this.pointer = EventGenerator.get(Pointer.class, 0);
this.buttons = EventGenerator.get(Buttons.class, 1);

}

/**
* Pauses before the next action.
*
* @param delay
* the delay to pause.
*/
public void pause(long delay) {
ThreadUtils.sleep(delay);

}

/**
* Generates a press event.
*
* @param x
* the x coordinate of the pointer.
* @param y
* the y coordinate of the pointer.
*/
public void press(int x, int y) {
if (null != this.pointer) {

this.pointer.reset(x, y);
}
if (null != this.pointer) {

this.pointer.send(Pointer.PRESSED, 0);
}

}

/**
* Generates a move event.
*
* @param x

(continues on next page)

9.16. How to Test a GUI Application with a (So�ware) Robot 1452

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

* the x coordinate of the pointer.
* @param y
* the y coordinate of the pointer.
*/
public void move(int x, int y) {
if (null != this.pointer) {

this.pointer.move(x, y);
}

}

/**
* Generates a release event.
*
* @param x
* the x coordinate of the pointer.
* @param y
* the y coordinate of the pointer.
*/
public void release(int x, int y) {
if (null != this.pointer) {

this.pointer.reset(x, y);
}
if (null != this.pointer) {

this.pointer.send(Pointer.RELEASED, 0);
}

}

/**
* Generates a button event.
*/
public void button() {
if (null != this.buttons) {

this.buttons.send(Buttons.RELEASED, 0);
}

}
}

EventPlayer will play events using the EventGenerator .

We will now extend EventPlayer in order to play a specific scenario:

/**
* Robot scenario which reproduces the recorded human user events .
*/
public class NavigationScenario extends EventPlayer implements Runnable {

@Override
public void run() {
press(344, 177);
pause(885);
release(344, 177);
pause(359);

(continues on next page)

9.16. How to Test a GUI Application with a (So�ware) Robot 1453

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

press(184, 192);
pause(34);
move(185, 192);
pause(24);
move(188, 192);
pause(23);
move(191, 192);
pause(24);
move(196, 192);
pause(21);
move(206, 191);

}
}

The run method from the code above already contains recorded events, you will have to replace it by the
EventRecorder output you get when recording the events.

9.16.4 Run the Scenario

Wewill now create a task that will run the scenario:

/**
* A robot task is able to run a given scenario.
*/
public class RobotTask {

private boolean running;

/**
* Creates a demo robot.
*/
public RobotTask() {
this.running = false;

}

/**
* Starts the given scenario.
*
* @param scenario
* the scenario to run.
*/
public void startScenario(final Runnable scenario) {
if (!this.running) {
this.running = true;

new Thread() {
@Override
public void run() {
scenario.run();
RobotTask.this.running = false;

(continues on next page)

9.16. How to Test a GUI Application with a (So�ware) Robot 1454

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

}
}.start();

}
}

/**
* Returns whether the robot is currently running.
*
* @return <code>true</code> if the robot is running, false otherwise</code>.
*/
public boolean isRunning() {
return this.running;

}
}

You can now start the RobotTask in your application:

RobotTask robot = new RobotTask();
robot.startScenario(new NavigationScenario());

Then, launch your application: the recorded scenario is now re-played, well done!

9.17 How to Detect Text Overflow

Widgets that display a textmay experience text overflowwhen the strings are too long to fit into the available area.
It can be the case, for example, in applications that support multiple languages because widgets have to deal with
texts of di�erent lengths.

This document presents a solution to detect such text overflows.

9.17.1 Instrumenting the Widget

The goal is to check whether the text to be displayed is within the content bounds of the widget. A way to test this
is to extend or modify the widget. In this article, the widget MyLabel will extend the type Label from the Widget
library, which displays a text:

import ej.widget.basic.Label;

public class MyLabel extends Label {

public MyLabel(String text) {
super(text);

}
}

9.17. How to Detect Text Overflow 1455

https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/basic/Label.html

MicroEJ Documentation, Revision 32bb132e

9.17.2 Overriding the onLaidOut() Method

Once the position and size of a wigdet are set during the lay out process, the onLaidOut() method is called to notify
the widget. Overriding onLaidOut() of class MyLabel is a good place to check whether the text overflows or not.

For example, the following snippet compares the text width with the available width: it will print a message if an
overflow is detected.

@Override
protected void onLaidOut() {

super.onLaidOut();

// compute the width of the text with the specified font
final Font font = getStyle().getFont();
final String text = getText();
final int textWidth = font.stringWidth(text);

// compare to the width available for the content of the widget
final int contentWidth = getContentBounds().getWidth();
if (textWidth > contentWidth) {

System.out.println("Overflow detected:\n > Text: \"" + text + "\"\n > Width = " +␣
→˓textWidth + " px (available: " + contentWidth + " px)");

}
}

9.17.3 Testing

Here is a case where the widget size is set manually to be a little shorter than the text width:

public static void main(String[] args) {
MicroUI.start();
Desktop desktop = new Desktop();
Canvas canvas = new Canvas();
// add a label with an arbitrary fixed width of 25 pixels (which is too short)
canvas.addChild(new MyLabel("Some text"), 20, 20, 25, 10);
desktop.setWidget(canvas);
desktop.requestShow();

}

The text is cropped and the console logs that a text overflow has been detected:

=============== [Initialization Stage] ===============
=============== [Converting fonts] ===============
=============== [Converting images] ===============

(continues on next page)

9.17. How to Detect Text Overflow 1456

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#onLaidOut--
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html#onLaidOut--

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

=============== [Launching on Simulator] ===============
Overflow detected:
> Text: "Some text"
> Width = 47 px (available: 25 px)

9.17.4 Improving the Detection

To ease the correction process, it is best to add some additional debug information to locate the issue. Let’s extract
the text overflow detection into a helper class, so that it is available for all classes across the application.

The following snippet:

• extracts the text overflow detection into the class MyTextHelper .

• prints the part of the text that is displayed.

• prints the path to the widget in the widget tree to help the tester locate the a�ected widget in the GUI.

public class MyLabel extends Label {

public MyLabel(String text) {
super(text);

}

@Override
protected void onLaidOut() {

super.onLaidOut();

final Font font = getStyle().getFont();
final String text = getText();
MyTextHelper.checkTextOverflow(this, text, font);

}
}

public class MyTextHelper {

/**
* Checks whether the given text overflows for the specified widget and font. In the case␣

→˓where an overflow is
* detected, the method prints a message that details the error.
*
* @param widget
* the widget that displays the text.
* @param text
* the text to display.
* @param font
* the font used for drawing the text.
*/
public static void checkTextOverflow(final Widget widget, final String text, final Font␣

→˓font) {
final int textWidth = font.stringWidth(text);
final int contentWidth = widget.getContentBounds().getWidth();

(continues on next page)

9.17. How to Detect Text Overflow 1457

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

if (textWidth > contentWidth) {
String displayedText = buildDisplayedText(text, font, contentWidth);
String widgetPath = buildWidgetPath(widget);
System.out.println(

"Overflow detected:\n > Text: \"" + text + "\"\n > Width = " + textWidth␣
→˓+ " px (available: "

+ contentWidth + " px) \n > Displayed: \"" + displayedText + "\"\
→˓n > Path : " + widgetPath);

}
}

private static String buildDisplayedText(String text, Font font, int width) {
for (int i = text.length() - 1; i > 0; i--) {

if (font.substringWidth(text, 0, i) <= width) {
return text.substring(0, i);

}
}

return "";
}

private static String buildWidgetPath(Widget widget) {
StringBuilder builder = new StringBuilder();

Widget ancestor = widget;
do {

builder.insert(0, " > " + ancestor.getClass().getSimpleName());
ancestor = ancestor.getParent();

} while (ancestor != null);
builder.insert(0, widget.getDesktop().getClass().getSimpleName());

return builder.toString();
}

}

When the application is launched again, the console showsmore information about the text overflow:

=============== [Initialization Stage] ===============
=============== [Converting fonts] ===============
=============== [Converting images] ===============
=============== [Launching on Simulator] ===============
Overflow detected:
> Text: "Some text"
> Width = 47 px (available: 25 px)
> Displayed: "Some"
> Path : Desktop > Canvas > MyLabel

To keep control over the extra verbosity and code size, one option is to use BON constants to enable/disable this
debug code at will. In the following snippet, when the constant com.mycompany.check.text.overflow is set to
false , the debug code will not be embedded in the application.

public static void checkTextOverflow(final Widget widget, final String text, final Font␣

(continues on next page)

9.17. How to Detect Text Overflow 1458

MicroEJ Documentation, Revision 32bb132e

(continued from previous page)

→˓font) {
if (Constants.getBoolean("com.mycompany.check.text.overflow")) {

final int textWidth = font.stringWidth(text);
final int contentWidth = widget.getContentBounds().getWidth();

if (textWidth > contentWidth) {
String displayedText = buildDisplayedText(text, font, contentWidth);
String widgetPath = buildWidgetPath(widget);
System.out.println(

"Overflow detected:\n > Text: \"" + text + "\"\n > Width = " + textWidth␣
→˓+ " px (available: "

+ contentWidth + " px) \n > Displayed: \"" + displayedText + "\"\
→˓n > Path : " + widgetPath);

}
}

}

9.18 How to Add Emojis to a Vector Font

MicroVG supports the drawing of multicolor fonts that use the COLR/CPAL tables to define multi-layered glyphs.
Multicolor fonts are mainly used for providing a set of colorful emojis in messaging applications. However, emojis
fonts usually do not contain many characters other than emojis, which requires applications to use multiple fonts
to handle all use cases.

One solution tominimize the number of fonts used by an application is to add emojis to another font (i.e., combine
fonts into one). This article shows how to achieve this using FontLab, a third-party font editor.

Note: FontLab is not a free so�ware (it has a 30-days trial period). Tests with other tools, including free solutions,
were unsuccessful in this very specific task (e.g. FontTools, FontForge which are great tools for font editing).

9.18.1 Intended Audience

The audience for this document is Application engineers who want to use Vector Fonts in their applications.

In addition, this tutorial should be of interest to all developers wishing to familiarize themselves with the vector
features ofMicroVG.

9.18.2 Prerequisites

• Windows 10 (and higher) or macOS 10.14 (and higher),

• An COLR/CPAL emoji font (e.g., Segoe UI Emoji),

• A target font (i.e., a TTF/OTF font to append emojis to).

9.18. How to Add Emojis to a Vector Font 1459

https://github.com/fonttools/fonttools
https://fontforge.org/

MicroEJ Documentation, Revision 32bb132e

9.18.3 Append the Emoji Glyphs

1. Download and install FontLab.

2. In FontLab, go to File > Export Profiles. . . .

3. Create a new Export Profile (the + button on the bottom-le�).

4. Edit the new profile to match the configuration below in menu Export color font files :

5. Click on OK to close the Export Profiles window.

6. Open the emoji font: go to File > Open Fonts. . . and browse to the font file.

7. Open the target font.

8. Select a range of glyphs in the emoji font and select Edit > Copy Glyphs :

9.18. How to Add Emojis to a Vector Font 1460

https://www.fontlab.com/font-editor/fontlab/

MicroEJ Documentation, Revision 32bb132e

9. Select the target font and append the copied glyphs: go to Edit > Append Glyphs .

10. Check that the glyphs have been added to the target font:

11. To save the changes, go to File > Export Font As. . . .

12. In the Export Font dialog, select the new Export Profile (with COLR/CPAL support) and Destination .

13. Click Export .

The exported font can then be used in an application, as described in the Application Developer Guide.

This procedure can also be used to add non-emoji glyphs to a font.

Warning: There are multiple ways of implementing emojis in fonts. The four main formats are COLR/CPAL
(Microso�), CBDT/CBLC (Google), SVG (Adobe/Firefox) and sbix (Apple). Each format uses custom tables in fonts
to describe the emoji glyphs. MicroVG supports COLR/CPAL tables and this article only applies to this case. See
this section for more details about color emojis support with MicroVG.

9.18. How to Add Emojis to a Vector Font 1461

CHAPTER

TEN

GET SUPPORT

If any questions, the best starting point is to consult the MicroEJ Forum. Feel free to create a new topic if there is
no relevant content for your issue. MicroEJ Corp. engineers are listening to the forum activity, so you can expect to
get a quick reply.

Otherwise, you can contact our support team.

In both cases, please provide as much information as possible on your installed environment (the table below is
an example):

Delivery Name
MicroEJ SDK Distribution 20.07 / Version 5.2.0 (see SDK Version)
MicroEJ Architecture ARM Cortex-M4 / IAR / Evaluation | Production (see MicroEJ Architecture)

version XYZ
Module Repository https://repository.microej.com/packages/repository/2.5.0/microej-5_

0-2.5.0.zip (see Central Repository)
C compiler IAR 8.40.1
Host Operating System Windows 10 (see System Requirements)

1462

https://forum.microej.com/
https://www.microej.com/contact/#form_2
https://repository.microej.com/packages/repository/2.5.0/microej-5_0-2.5.0.zip
https://repository.microej.com/packages/repository/2.5.0/microej-5_0-2.5.0.zip

CHAPTER

ELEVEN

ABOUTMICROEJ

MicroEJ’smission is todemocratizevirtualizationandObjectOrientedProgramming (OOP) to theembeddedworld.
These two technologies, widely used in computers and smartphones, radically simplifies how device so�ware is
built, from prototyping to hardware choice, by integrating simulation, systemic so�ware reuse, modularity, agility,
continuous integration, automated testing and so�ware component update in the development process.

The virtualized environment provided by MICROEJ VEE on-device platform allows for so�ware development on
virtual devices, exact “virtual twins” of real electronic configurations. Since several configurations can be tested
and evaluated within days, it is therefore much easier to build several prototypes while capitalizing on the code
that has already been built as “ready-to-use” binary so�ware assets.

MicroEJalsoo�ersan integrateddevelopmentenvironment, calledMICROEJSDK,whichprovidesoneof thewidest
rangesof standardand specialized tools and libraries,making it possible to easily developapplications implement-
ing IoT connectivity, graphical interfaces, security, and real-time processing of data (Edge Computing).

Browse this documentation to discover MicroEJ technology, learn about application and platform development,
and begin your coding journey thanks to a comprehensive range of dedicated tutorials.

For more information about MicroEJ, go to: https://www.microej.com/.

1463

https://www.microej.com/

INDEX

A
Abstraction Layer, 2
Add-On Library, 2
Application, 2
Architecture, 2

C
Core Engine, also named "MEJ32", 2

E
Executable, 2

F
Foundation Library, 3

M
MICROEJ SDK, 3
MICROEJ VEE, 3
Mock, 3
Module Manager, 3

S
Simulator, 3

V
VEE Port, 3
Virtual Device, 3

1464

	MicroEJ Glossary
	Overview
	Getting Started
	MICROEJ VEE
	MICROEJ SDK

	SDK 5 User Guide
	Installation
	Install Latest SDK Distribution
	Download SDK Distribution
	Check JDK Version
	Install SDK Distribution

	Update SDK Version
	Install Other SDK Distributions
	Install Portable SDK Distribution
	Install SDK Distribution 21.11
	Download SDK Distribution
	Check JDK Version
	Install SDK Distribution

	System Requirements
	Get JDK

	Troubleshooting
	Incompatible Default Java Version
	Windows Specifics
	Linux Specifics
	MacOS Specifics

	Licenses
	SDK EULA
	License Manager Overview
	License Check
	Evaluation Licenses
	Get your Machine UID
	Request your Activation Key
	Install the License Key
	Troubleshooting
	Unable to add an Evaluation license key in the SDK
	Machine UID has changed

	Production Licenses
	Request your Activation Key
	Activate your USB Dongle
	Check Activation
	Check Activation in the SDK
	Check Activation with the Command Line Tool

	USB Dongle on GNU/Linux
	USB Dongle with Docker on Linux
	USB Dongle with WSL
	Troubleshooting
	Windows Troubleshooting
	VirtualBox Troubleshooting
	WSL Troubleshooting

	Dongle not detected in the licenses screen
	Remote USB Dongle Connection

	Standalone Application
	Platform Import
	Source Platform Import
	Import from Folder
	Import from Zip File
	Platform Build

	Binary Platform Import

	Build and Run an Application
	Create a MicroEJ Standalone Application
	Run on the Simulator
	Run on the Device
	Build the Application
	Build the Executable File

	MicroEJ Launch
	Main Tab
	Execution Tab
	Configuration Tab
	JRE Tab
	Source Tab
	Common Tab

	Sandboxed Application
	Create a First Application
	Entry Point
	Configuration
	SSL Certificate
	Module Descriptor

	Run on the Simulator
	From the SDK
	Run Multiple Sandboxed Applications

	From the Command Line Interface

	Run on the Device
	Local Deployment
	Remote Deployment

	Module Repository
	Create a Repository Project
	Configure Resolver for Input Modules
	Configure Consistency Check
	Advanced Options
	Include Modules
	Include a Single Module
	Include a Module Repository

	Generate Javadoc
	Build the Repository
	Use the Offline Repository

	Platform Selection
	Module Natures
	Add-On Library
	Add-On Processor
	Foundation Library API
	Foundation Library Implementation
	Kernel Application
	Meta Build
	Mock
	Module Repository
	Runtime Environment
	Sandboxed Application
	Standalone Application
	Studio Rebranding
	Natures Plugins
	Java Compilation
	Platform Loader
	Javadoc
	Test Suite
	J2SE Unit Tests
	Artifact Checker

	Global Build Options

	Debug an Application
	Debug on Simulator
	Debug on Device
	Get Library Sources
	Add-On Library Sources
	Foundation Library Sources

	Development Tools
	Test Suite with JUnit
	Principle
	JUnit Compliance
	Setup a Platform for Tests
	Execution in SDK
	Execution during module build

	Setup a Project with a JUnit Test Case
	Build and Run a JUnit Test Suite
	Test Suite Reports
	Configure the Execution on your Device
	Advanced Configurations
	Autogenerated Test Classes
	JUnit Test Case to MicroEJ Test Case
	Test Suite Options (SDK 5 only)
	Test Specific Options

	Stack Trace Reader
	Principle
	Functional Description
	Dependencies
	Installation
	Use (Standalone Application)
	Use (Sandboxed Application)
	Stack Trace Reader Options
	Category: Stack Trace Reader
	Group: Application
	Option(browse): Executable file
	Option(list): Additional object files
	Group: “Trace port” interface for Eclipse
	Option(combo): Connection type
	Option(text): Port
	Option(combo): Baudrate
	Option(text): Port
	Option(text): Address
	Option(browse): Stack trace file

	Code Coverage Analyzer
	Principle
	Functional Description
	Dependencies
	Installation
	Use
	Category: Code Coverage
	Option(browse): *.cc files folder
	Group: Classes filter
	Option(list): Includes
	Option(list): Excludes

	Heap Dumper & Heap Analyzer
	Introduction
	The Heap
	Heap Dump
	Heap Analyzer Tools

	Heap Dumper
	Category: Heap Dumper
	Group: Application
	Option(browse): Executable file
	Option(list): Feature files
	Group: Memory
	Option(browse): Heap memory file
	Option(list): Memory files
	Group: Output
	Option(text): Heap file name

	Heap Viewer
	Outline View
	Instance Browser View
	Heap Usage Tab
	Dominator Tree Tab
	Leak Suspects Tab

	Progressive Heap Usage
	Compare Heap Dumps
	Instance Fields Comparison View

	Serial to Socket Transmitter
	Principle
	Installation
	Use
	Category: Serial to Socket
	Group: Serial Options
	Option(text): Port
	Option(combo): Baudrate
	Group: Server Options
	Option(text): Port

	Memory Map Analyzer
	Principle
	Functional Description
	Dependencies
	Installation
	Use

	Null Analysis
	Principle
	Java Code Annotation
	Module Project Configuration
	Requirements
	Project configuration

	MicroEJ Libraries
	Advanced Use
	Troubleshooting
	The project cannot build anymore after Null Analysis setup

	IDE
	Startup
	Resolve Dependencies in Workspace
	Resolve Foundation Libraries in Workspace
	Resolve Front Panel in Workspace

	SDK Version
	MicroEJ Module Manager
	Introduction
	Specification
	Module Project Skeleton
	Module Description File
	Enable MMM Semantic
	Module Dependencies
	Dependency Matching Rule
	Dependency Visibility

	Build Options
	Automatic Update Before Resolution

	SDK Configuration
	Preferences Page
	Settings File
	Options
	Resolution Logs

	Module Build
	Build Kit
	Command Line Interface
	Usage
	Shared configuration
	Commands

	Build System Options
	Meta Build
	Meta Build creation
	Meta Build configuration

	Troubleshooting
	Unresolved Dependency
	Invalid Certificate
	Target “simulator:run” does not exist

	Former SDK Versions (lower than 5.2.0)
	New MicroEJ Module Project
	Preferences Pages
	Ivy Preferences Page
	Easyant Preferences Page

	Build Kit

	Former SDK Versions (from 5.2.0 to 5.3.x)
	Build Kit

	Release Notes
	SDK Distribution Changelog
	[24.01] - 2024-01-31
	[23.07] - 2023-07-03
	[23.02] - 2022-02-28
	[22.06] - 2022-06-29
	[21.11] - 2021-11-15
	[21.03] - 2021-03-25
	[20.12] - 2020-12-11
	[20.10] - 2020-10-30
	[20.07] - 2020-07-28
	[19.05] - 2019-05-17
	[19.02] - 2019-02-22

	SDK Changelog
	[5.8.2] - 2024-01-31
	General
	MicroEJ Module Manager
	General
	Build Types

	[5.8.1] - 2023-09-19
	General
	MicroEJ Module Manager
	General
	Build Types
	Skeletons

	[5.8.0] - 2023-07-03
	General
	MicroEJ Module Manager
	General
	Build Types
	Skeletons

	[5.7.0] - 2023-02-27
	General
	MicroEJ Module Manager
	General
	Build Types
	Skeletons

	[5.6.2] - 2022-08-31
	General
	MicroEJ Module Manager
	General
	Skeletons

	[5.6.1] - 2022-07-08
	General

	[5.6.0] - 2022-06-29
	General
	MicroEJ Module Manager
	General
	Build Types
	Build Plugins
	Skeletons

	[5.5.3] - 2022-05-03
	MicroEJ Module Manager

	[5.5.2] - 2021-12-22
	General
	MicroEJ Module Manager
	Build Plugins

	[5.5.1] - 2021-12-02
	General

	[5.5.0] - 2021-11-15
	General
	MicroEJ Module Manager

	[5.4.1] - 2021-04-16
	MicroEJ Module Manager

	[5.4.0] - 2021-03-25
	Known Issues
	General
	MicroEJ Module Manager
	General
	Build Types
	Build Plugins
	Skeletons

	[5.3.1] - 2020-12-11
	General
	MicroEJ Module Manager
	Build Plugins
	Skeletons

	[5.3.0] - 2020-10-30
	Known Issues
	General
	MicroEJ Module Manager
	General
	Build Types
	Skeletons

	[5.2.0] - 2020-07-28
	General
	MicroEJ Module Manager
	General
	Build Types
	Build Plugins
	Skeletons

	Misc

	[5.1.2] - 2020-03-09
	MicroEJ Module Manager

	[5.1.1] - 2019-09-26
	General

	[5.1.0] - 2019-05-17
	General
	MicroEJ Module Manager
	Build Plugins
	Build Types
	Skeletons

	[5.0.1] - 2019-02-14
	General
	MicroEJ Module Manager
	Build Plugins
	Build Types
	Skeletons

	Build Types per SDK
	Migration Notes
	From 5.2.x to 5.3.x or more
	Workspace migration warning

	From 5.1.x to 5.2.x
	Enable New Wizards Shortcuts in MicroEJ Perspective
	Re-enable the Ivy Preferences Pages (Advanced Use)

	From 4.1.x to 5.x
	Wadapps Application Update
	MicroEJ Module Manager Update
	Meta build Project Update

	SDK 6 User Guide
	Getting Started
	NXP
	i.MX RT595 Evaluation Kit
	Prerequisites
	Environment Setup
	Install MICROEJ SDK 6
	Get Demo-Wearable-VG

	Set up the Application on your IDE
	Import the Project

	Accept the MICROEJ SDK EULA
	Run an Application on the Virtual Device
	Well done !
	Run an Application on i.MX RT595 Evaluation Kit
	Environment Setup
	Install the C Toolchain
	Install GNU ARM Embedded Toolchain
	Install CMake
	Install Make
	Install the Flashing Tool
	Hardware Setup
	Build the Executable for i.MX RT595 Evaluation Kit
	Flash the Application on the i.MX RT595 Evaluation Kit

	Modify the Java Application

	i.MX RT1170 Evaluation Kit
	Prerequisites
	Environment Setup
	Install MICROEJ SDK 6

	Set up the Application on your IDE
	Import the Project

	Accept the MICROEJ SDK EULA
	Run an Application on the Virtual Device
	Well done !
	Run an Application on i.MX RT1170 Evaluation Kit
	Environment Setup
	Install the C Toolchain
	Install GNU ARM Embedded Toolchain
	Install CMake
	Install Make
	Install the Flashing Tool
	Hardware Setup
	Build the Executable for i.MX RT1170 Evaluation Kit
	Flash the Application on the i.MX RT1170 Evaluation Kit

	Modify the Java Application

	STMicroelectronics
	STM32F7508-DK Evaluation Kit
	Prerequisites
	Environment Setup
	Install MICROEJ SDK 6

	Set up the Application on your IDE
	Import the Project

	Accept the MICROEJ SDK EULA
	Run an Application on the Virtual Device
	Well done !
	Run an Application on STM32F7508-DK Evaluation Kit
	Environment Setup
	Install the STM32CubeIDE software
	Hardware Setup
	Build the Executable for the STM32F7508-DK Evaluation Kit
	Flash the Application on the STM32F7508-DK Evaluation Kit

	Modify the Java Application

	Installation
	System Requirements
	Check your JDK version
	Install Gradle
	Configure Repositories
	Install the IDE
	Install the IDE Plugin

	Licenses
	SDK EULA
	License Manager Overview
	License Check
	SDK EULA Acceptation
	Evaluation Licenses
	Get your Machine UID
	Request your Activation Key
	Install the License Key
	Troubleshooting
	Machine UID has changed

	Production Licenses
	Request your Activation Key
	Activate your USB Dongle
	Check Activation
	USB Dongle on GNU/Linux
	USB Dongle with Docker on Linux
	USB Dongle with WSL
	Troubleshooting
	Windows Troubleshooting
	VirtualBox Troubleshooting
	WSL Troubleshooting

	Remote USB Dongle Connection

	Scope and Limitations
	Create a Project
	Configure a Project
	Application Project
	Add-On Library Project
	Mock
	J2SE Library Project

	Create a subproject in an existing project
	Gradle Wrapper

	Import a Project
	Select a VEE Port
	Using a Module Dependency
	Using a Local VEE Port Directory
	Using a Local VEE Port Archive

	Run on Simulator
	Verbose Mode
	Debug on Simulator
	Generate Code Coverage
	Generate Heap Dump

	Build an Executable
	Run on Device
	Select a Kernel
	Using a Module Dependency
	Using a Local Kernel

	Build a Feature file
	Build a Virtual Device
	Add a Pre-Installed Application in a Virtual Device
	Add a Kernel API in a Virtual Device

	Add a Dependency
	Configurations
	Version
	Dependencies Repositories

	Test a Project
	JUnit Compliance
	Gradle Integration
	Test on Simulator
	Configure the Testsuite
	Create a Test Class
	Setup a VEE Port
	Execute the Tests
	Filter the Tests

	Test on Device
	Test on J2SE VM
	Test Suite Reports
	Mixing tests
	Mixing tests on the Simulator and on a device
	Mixing tests on the Simulator and on a J2SE VM

	Configure the Testsuite Engine
	Inject Application Options
	Inject Application Options Globally
	Inject Application Options For a Specific Test

	Publish a Project
	Development Tools
	Stack Trace Reader
	Principle
	Functional Description
	Use (Standalone Application)
	Options
	Option: Executable file
	Option: Additional object files
	Option: Connection type
	Option: Port
	Option: Baudrate
	Option: Port
	Option: Address
	Option: Stack trace file

	Code Coverage Analyzer
	Principle
	Functional Description
	Dependencies
	Installation
	Use
	Options
	Option: *.cc files folder
	Option: Source Folders
	Option: HTML Dir
	Option: Includes
	Option: Excludes

	Memory Map Analyzer
	Principle
	Use

	Heap Dumper & Heap Analyzer
	Introduction
	The Heap
	Heap Dump
	Heap Analyzer Tools

	Heap Dumper
	Simulator
	Device
	Retrieve the .hex file from the device
	Extract the Heap dump from the .hex file

	Heap Viewer
	Outline View
	Instance Browser View
	Heap Usage Tab
	Dominator Tree Tab
	Leak Suspects Tab
	Progressive Heap Usage
	Compare Heap Dumps
	Instance Fields Comparison View

	Font Designer
	Principle
	Functional Description
	Font Management
	Create a MicroEJ Font
	Edit a MicroEJ Font
	Main Properties
	Font Height
	Font Width: Proportional and Monospace Fonts
	Baseline
	Space Character
	Styles
	Identifiers
	Character List
	Import from System Font
	Import from Images
	Character Editor
	Working With Anti-Aliased Fonts
	Previewing a Font
	Removing Unused Characters

	Use a MicroEJ Font

	Dependencies
	Installation
	Use

	Local Deployment Socket
	Principle
	Functional Description
	Use
	Options
	Option: Application Feature Class
	Option: Server Host
	Option: Server Port
	Option: Timeout
	Option: Use Storage

	Null Analysis
	Principle
	Java Code Annotation
	IDE Configuration
	Requirements
	Project configuration

	MicroEJ Libraries

	Manage Versioning
	Manage Resolution Conflicts
	Migrate an MMM Project
	Project structure
	Build Descriptor File
	Build Type
	Module Information
	Configuration
	Dependencies
	Example

	Build Scripts

	Module Natures
	Add-On Library
	Application
	J2SE Library
	Tasks
	adp
	loadVee
	loadApplicationConfiguration
	runOnSimulator
	loadTestApplicationConfiguration
	checkModule
	loadExecutableConfiguration
	buildExecutable
	buildWPK
	buildVirtualDevice
	loadKernelExecutable
	loadFeatureConfiguration
	buildFeature
	runOnDevice

	Global Properties

	Troubleshooting
	Java Compiler Version Issue
	Unresolved Dependency
	Invalid SSL Certificate
	Failing Resolution in adp Task
	Missing Version for Publication
	Fail to load a VEE Port as dependency
	Slow Build because of File System Watching
	Missing Tasks in the Gradle view of Android Studio

	Tutorials
	Branding an Eclipse IDE
	Install Eclipse and the MicroEJ Plugin
	Create the Project
	Configure the Product
	Advanced Options
	Export the Product

	Creating and Using an Offline Repository
	Offline Repository for the Gradle Plugins
	Offline Repository for the Modules
	Download an existing online repository
	Custom Offline Repository
	Use an Offline Modules Repository

	How-to Guides
	How To Define a Specific Java Home for Gradle
	How To Pass a Property to Project Build Script
	How To Skip a Gradle Task
	Skip the task only

	How To Automatically reload a Gradle project
	How To Add a Repository
	How To Add a Modules Repository
	How To Add a Plugins Repository

	How To Resolve Dependencies in the IDE
	Dependencies Between Subprojects of a Multi-Project

	How to Install MicroEJ Plugin Snapshot Version on Android Studio or IntelliJ IDEA
	How To Build a Project
	How To Build an Executable With Multiple VEE Ports
	How To Create a Custom Configuration in the IDE

	Appendices
	Virtual Device
	Structure

	Dependencies Configurations
	Publication Variants
	microejWPK
	microejExecutable
	microejExecutableBuildFiles
	microejVirtualDevice

	Changelog
	[0.15.0] - 2024-01-26
	Added
	Changed
	Fixed
	Removed

	[0.14.0] - 2024-01-03
	Added
	Changed
	Fixed

	[0.13.0] - 2023-11-10
	Added
	Fixed

	[0.12.1] - 2023-10-16
	Fixed

	[0.12.0] - 2023-10-13
	Added
	Changed
	Fixed

	[0.11.1] - 2023-09-22
	Fixed

	[0.11.0] - 2023-09-22
	Changed

	[0.10.0] - 2023-09-13
	Added
	Fixed

	[0.9.0] - 2023-09-01
	Added
	Changed
	Fixed

	[0.8.0] - 2023-07-13
	Added
	Fixed

	[0.7.0] - 2023-06-26
	Added
	Changed

	[0.6.0] - 2023-05-30
	Added
	Changed
	Fixed

	[0.5.0] - 2023-03-24
	Added
	Changed

	[0.4.0] - 2023-01-27
	Added
	Changed
	Fixed

	[0.3.0] - 2022-12-09
	Added
	Changed
	Fixed

	[0.2.0] - 2022-05-17
	Changed

	[0.1.0] - 2022-05-03
	Added
	Fixed

	Migration Notes
	From 0.14.0 to 0.15.0
	Unification of VEE dependency declaration

	From 0.11.1 to 0.12.0
	Use of File Dependencies to Define a Local VEE Port or a Kernel Executable

	From 0.10.0 to 0.11.0
	Gradle mechanism usage for Multiple VEE Ports Support

	From 0.8.0 to 0.9.0
	Merge of the veePortDirs and veePortFiles properties

	Application Developer Guide
	Introduction
	MicroEJ Runtime
	Language
	Core Libraries
	Embedded Device Configuration (EDC)
	Beyond Profile (BON)
	Simple Native Interface (SNI)
	Kernel & Features (KF)

	Scheduler
	Garbage Collector
	Limitations
	Primitive Types

	SOAR
	Java Symbols Encoding
	Class Initialization Code
	Method Devirtualization
	Method Inlining
	Binary Code Verifier

	SOAR Output Files
	Launch Output Folder
	Published Module Files
	The SOAR Map File
	The SOAR Information File

	Virtual Device
	MicroEJ Classpath
	Application Classpath
	Classpath Load Model
	Classpath Elements
	Application Entry Points
	Types
	Resources
	Immutable Objects
	System Properties
	Constants

	Application Resources
	Standalone Application
	Introduction
	Standalone Application Options
	Defining an Option with SDK 6
	Defining an Option with SDK 5 or lower
	Using a Launcher
	Using a Properties File
	Generating a Properties File

	Category: Runtime
	Group: Types
	Option(checkbox): Embed all type names

	Group: Assertions
	Option(checkbox): Execute assertions on Simulator
	Option(checkbox): Execute assertions on Device

	Group: Trace
	Option(checkbox): Enable execution traces
	Option(checkbox): Start execution traces automatically

	Category: Memory
	Group: Heaps
	Option(text): Java heap size (in bytes)
	Option(text): Immortal heap size (in bytes)

	Group: Threads
	Option(text): Number of threads
	Option(text): Number of blocks in pool
	Option(text): Block size (in bytes)
	Option(text): Maximum size of thread stack (in blocks)

	Category: Simulator
	Group: Options
	Option(checkbox): Use target characteristics
	Option(text): Slowing factor (0 means disabled)

	Group: HIL Connection
	Option(checkbox): Specify a port
	Option(text): Port
	Option(text): Timeout (s)
	Option(text): Maximum frame size (bytes)

	Group: Shielded Plug server configuration
	Option(text): Server socket port

	Group: Advanced Simulation Options
	Option: Objects Heap Size
	Option: System Chars Size
	Option: Application Chars Size
	Option: Methods Size
	Option: Thread Stack Size
	Option: Icetea Heap End
	Option: Symbol Table Size

	Category: Code Coverage
	Group: Code Coverage
	Option(checkbox): Activate code coverage analysis
	Option(text): Saving coverage information period (in sec.)

	Category: Debug
	Group: Remote Debug
	Option(text): Debug port

	Category: Heap Dumper
	Group: Heap Inspection
	Option(checkbox): Activate heap dumper

	Category: Logs
	Group: Logs
	Option(checkbox): system
	Option(checkbox): thread
	Option(checkbox): monitoring
	Option(checkbox): memory
	Option(checkbox): schedule
	Option(checkbox): monitors
	Option(text): period (in sec.)

	Category: Mock
	Group: Debug
	Option(checkbox): Enable Mock debug
	Option(text): Port

	Category: Kernel
	Group: Kernel UID
	Option(checkbox): Enable
	Option(text): UID

	Category: Libraries
	Category: EDC
	Group: Java System.out
	Option(checkbox): Use a custom Java output stream
	Option(text): Class

	Group: Runtime options
	Option(checkbox): Embed UTF-8 encoding
	Option(checkbox): Enable SecurityManager checks

	Category: Shielded Plug
	Group: Shielded Plug configuration
	Option(browse): Database definition

	Category: External Resources Loader
	Group: External Resources Loader
	Option(browse):

	Category: Device
	Category: Core Engine
	Group: Memory
	Option(text): Maximum number of monitors per thread
	Option(text): Maximum number of frames dumpers on OutOfMemoryError
	Option(checkbox): Enable Java heap usage monitoring
	Option(text): Java heap initial size

	Group: SOAR
	Option(checkbox): Enable Bytecode Verifier

	Group: Garbage Collector
	Option(text): GC mark stack size

	Category: Kernel
	Group: Threads
	Option(text): Maximum number of threads per Feature
	Option(text): Feature stop timeout
	Group: Features Installation
	Option(text): Maximum number of installed Features
	Option(text): Code chunk size
	Option(text): InputStream transfer buffer size
	Option(text): Maximum number of relocations applied simultaneously
	Group: Feature Portability Control
	Option(checkbox): Enable Feature Portability Control
	Option(browse): Kernel Metadata File

	Category: Watchdog
	Option(checkbox): Enable watchdog support
	Group: Watchdog
	Option(text):

	Category: Deploy
	Group: Configuration
	Option(checkbox): Deploy the Application (microejapp.o) at a location known by the 3rd-party BSP project.
	Option(browse):
	Option(checkbox): Deploy the Architecture library (microejruntime.a) at a location known by the 3rd-party BSP project.
	Option(browse):
	Option(checkbox): Deploy the Abstraction Layer header files (*.h) at a location known by the 3rd-party BSP project.
	Option(browse):
	Option(checkbox): Execute the MicroEJ build script (build.bat) at a location known by the 3rd-party BSP project.
	Option(browse):
	Option(browse):

	Category: Feature
	Group: Build
	Option(text): Output Name
	Option(browse): Kernel

	Sandboxed Application
	Fundamental Concepts
	Shared Interfaces
	Principle
	Shared Interface Usage
	Define the Shared Interface
	Define the Java Interface
	Implement the Proxy Class
	Register the Shared Interface

	Use the Shared Interface at Runtime
	Projects Structure
	Create and Share an instance of a Shared Interface
	Retrieve and Use a Proxy of a Shared Interface Instance

	Transferable Types
	Implementing the Proxy Class

	Character Encoding
	Default Encoding
	UTF-8 Encoding
	Custom Encoding
	Console Output
	Set Encoding in MicroEJ SDK Console

	Limitations
	GitHub Repositories
	Repository Import
	MicroEJ GitHub Badges

	Module Repositories
	Central Repository
	Use
	Licensing
	Changelog
	Javadoc

	Developer Repository
	Use
	Licensing
	Changelog
	Javadoc
	Community

	Content Organization

	Libraries
	Graphical User Interface
	MicroUI
	Usage
	Drawing Logs
	Usage Overview
	Default Behavior
	Explicit Checks
	Configuration
	Available Constants

	Images
	Immutable Images
	Overview
	Configuration File
	Unspecified Output Format
	Display Output Format
	Standard Output Formats
	Grayscale Output Formats
	Compressed Output Formats
	Expected Result
	Usage Advice
	Caching Generated Images
	External Images
	Image Generator Error Messages
	Mutable Images
	Overview
	Display Format
	Other Formats
	Images Heap

	Fonts
	Overview
	Configuration File
	Font Range
	Custom Range
	Known Range
	Transparency
	External Fonts
	Font Generator Error Messages
	Default Character
	Caching Generated Fonts

	Application Options
	Category: Libraries
	Category: MicroUI
	Group: Memory
	Option(text): Pump events (inputs and display) queue size (in number of events)
	Option(combo): Pump events thread priority
	Option(text): Images heap size (in bytes)
	Category: Font
	Group: Fonts to Process
	Option(checkbox): Activate the font pre-processing step
	Option(checkbox): Define an explicit list file
	Option(browse):
	Category: Image
	Group: Images to Process
	Option(checkbox): Activate the image pre-processing step
	Option(checkbox): Define an explicit list file
	Option(browse):

	Debug Traces
	Trace format
	Trace identifiers
	SystemView Integration

	Error Messages
	Migration Guide
	From 12.x to 13.x
	From 10.x to 12.x
	From 9.x to 10.x

	MicroVG
	Usage
	Path
	Path Creation
	Path Drawing
	Fill Path With Graphics Context Color
	Fill Path With a Linear Gradient
	Fill Type
	Opacity and Blending Mode

	Matrix
	Translation
	Rotation
	Scale
	Concatenate Matrixes

	Linear Gradient
	Vector Fonts
	Overview
	Loading a Font File
	Text String Drawing
	Text Color
	Text Transformations
	Letter Spacing
	Colored Emojis
	Metrics and Text Positioning
	Drawing a Text on a Circle
	Complex Text Layout
	Text Measurement and Positioning
	Bidirectional Text
	Limitations
	External Fonts

	Vector Images
	Overview
	Supported Input Files
	Drawing Images
	Drawing and Transforming Images
	Drawing With Opacity
	Color Filtering
	Animated Vector Images
	Supported animations
	TranslateX and TranslateY
	TranslateXY over a path
	ScaleX and ScaleY
	Rotate
	Morphing
	Color and Opacity
	Easing Interpolators
	External Images
	Caching Generated Images
	Limitations / Supported Features
	Android Vector Drawable
	SVG

	Debug Traces
	Trace format
	Trace identifiers
	SystemView Integration

	Android Vector Drawable Loader
	Overview
	Supported Format
	Loading a Vector Drawable
	Limitations
	Advanced
	Make a Vector Drawable compatible with the library
	Convert a SVG into a compatible Vector Drawable
	Memory Usage
	Simplify the Path Data
	Monitor the Number of Path Commands
	Troubleshooting
	The Image Cannot Be Parsed

	MWT (Micro Widget Toolkit)
	Usage
	Concepts
	Graphical Elements
	Widget
	Container
	Desktop
	Rendering
	Render Policy
	Lay Out
	Rendering Pipeline
	Event Dispatch
	Pointer Event Dispatcher
	Style
	Dimension
	Alignment
	Outlines
	Background
	Color
	Font
	Extra fields
	Stylesheet
	Animations
	Partial buffer considerations
	Desktop and widget states

	How to Create a Widget
	Implementing the mandatory methods
	Computing the optimal size of the widget
	Rendering the content of the widget
	Handling events
	Consuming events
	Listening to the life-cycle hooks

	How to Create a Container
	Implementing the mandatory methods
	Computing the optimal size of the container
	Laying out the children of the container
	Managing the visibility of the children of the container
	Providing APIs to change the children list of the container

	How to Animate a Widget
	Starting and stopping the animation
	Performing an animation step

	How to Define an Outline or Border
	Applying the outline on an outlineable object
	Applying the outline on a graphics context

	How to Define a Background
	Informing whether the background is transparent
	Applying the background on a graphics context

	How to Create a Desktop Event Dispatcher
	Dispatching the events to the widgets
	Initializing and disposing the dispatcher

	How to Define an Extra Style Field
	Defining an extra field ID
	Setting an extra field in the stylesheet
	Getting an extra field during rendering

	How to Use the Overlap Render Policy
	Making Widgets Overlap
	Requesting a New Render
	Using the OverlapRenderPolicy

	How to Debug
	Highlighting the Bounds of the Widgets
	Monitoring the Render Operations
	Monitoring the Animators

	MWT Examples
	Source
	Run the Examples
	Provided Examples
	Attribute Selectors
	Buffered Image Pool
	Context-Sensitive Container
	Drag’n’Drop
	Focus
	Immutable Stylesheet
	Lazy Stylesheet
	Masking Grid
	MVC
	Popup
	Remove Widget
	Slide Container
	Stack Container
	Stashing Grid
	Theming and Branding
	Transition
	Virtual Watch

	Widgets
	Usage
	Provided Widgets
	Color Utilities
	Debug Utilities
	Print the Hierarchy of Widgets
	Print the Path to a Widget
	Count the Number of Widgets or Containers
	Count the Maximum Depth of a Hierarchy
	Print the Bounds of a Widget
	Print the bounds of all the widgets in a hierarchy

	Widget Demo
	Source
	Provided Widgets

	Simulation
	Front Panel Options
	Flush Visualizer
	Presentation
	Installation
	Usage
	Limitations
	Examples

	Refresh Strategy Highlighting
	Presentation
	Drawn Region(s)
	Restored Region(s)
	Dirty Region(s)
	Combining Highlightings

	Front Panel Tips
	Pixel Accurate Display: Window scaling
	Zoom on pixelated view for checking custom drawings
	Take screenshots of the simulated display
	Visual Testing
	Compare screenshots with Figma frames
	Keep the Front Panel always on top

	Native Language Support
	Introduction
	Principle
	Localization Source Files
	NLS List Files
	Usage
	Plural Forms
	Dealing With Missing Translations

	BinaryNLS Resource Generation
	Limitations
	NLS External Loader Tool
	Installation
	Usage
	Troubleshooting
	java.io.IOException: NLS-PO:S=4

	Crowdin

	Networking
	Foundation Libraries
	Add-On Libraries
	IoT Libraries
	Data Serialization Libraries
	Cloud Agent Libraries

	HOKA Web Server
	Intended Audience
	Getting Started
	Routes Mapping
	Path Parameters
	Splat Parameters

	Request
	Body Parsers
	Cookies

	Response
	MIME Types

	Halt Request Processing Chain
	Filters
	Before
	After

	Error Handling
	Not Found Error
	Internal Server Error
	Exception Mapping

	Static Files
	Web Server Configuration
	Trailing Slash Matching
	Development Mode
	Generate Server Self Signed Key and Certificate for HOKA WebServer TLS
	Generate Root CA Key & Certificate
	Generate HOKA Server Private Key
	Generate HOKA Server Self Signed Public Key
	Convert HOKA Private Key to DER Format

	Handle Encoding
	Content And Transfer Encoding
	Request And Response Encoding
	URL Encoding

	Session
	HOKA Configuration

	Bluetooth
	Bluetooth API Library
	Introduction
	Usage
	Basic Knowledge and APIs
	Connection APIs
	Pairing APIs
	GATT Services APIs
	Classes Summary

	Use-Cases
	Achieving Maximum Throughput

	Bluetooth Utility Library
	Introduction
	Usage
	Classes Summary

	Date and Time
	Introduction
	Overview
	Usage
	Examples
	Instant
	LocalDate
	LocalTime
	LocalDateTime
	Duration
	Period

	Time Zone Support
	Migration Guide
	Displaying the Current Date
	Calculating a Timestamp from a Date
	Calculating Date and Time Differences
	Calculating the Day of the Week
	Handling Time Zones

	Restrictions
	Static Interface Methods

	Event Queue
	Principle
	Functional Description
	Overview
	Architecture
	Event format
	Event Queue listener
	Standard event
	Offer the event
	From C API
	From Java API
	Handle the event

	Extended event
	Data Alignment
	Offer the event
	From C API
	From Java API
	Handle the event

	Mock the Event Queue

	Use

	JavaScript
	Getting Started
	Sources Management
	JavaScript Sources Location
	JavaScript Sources Load Order
	JavaScript Sources Load Scope
	JavaScript Sources Processing

	Examples
	Simple Application
	Use a Java API in JavaScript
	Create a JavaScript API from Java

	API
	Built-in Objects
	Array
	Boolean
	Date
	Error
	Function
	Global
	JSON
	Math
	Number
	Object
	Regex
	String

	Host Objects
	Global
	setTimeout(function[, delay, arg1, arg2, …])
	setInterval(function[, delay, arg1, arg2, …])
	clearTimeout(timer)
	clearInterval(timer)
	print([arg1, arg2, …])

	Communication Between Java and JS
	JavaScript Engine
	Calling Java from JavaScript
	Import Java Types from JavaScript
	Implement JavaScript Functions in Java

	Calling JavaScript from Java
	Passing Values Between JavaScript and Java

	Tests
	Limitations
	Unsupported Directives
	Unsupported Statements
	Unsupported Built-in Objects

	Troubleshooting
	Compilation error cannot be resolved to a type in FFI class

	Internals
	JavaScript Sources Processing
	Foreign Function Interface

	Development Tools
	Event Tracing
	Description
	Event Recording
	Java API Usage
	Platform Implementation
	Advanced Event Tracing

	VEE Debugger Proxy
	Principle
	Debugging Executable for Linux or QNX target
	Generate a Core Dump File using GDB
	Run the VEE Debugger Proxy

	Debugging Executable for MCU target
	Generate VEE memory dump script for IAR (IAR8 or IAR9) or GDB debugger
	Dump the memory of the running Executable
	With IAR Debugger
	With GNU Debugger (GDB)

	Start the VEE Debugger Proxy

	VEE Debugger Proxy Options Summary
	Troubleshooting

	Dependency Discoverer
	Introduction
	Installation
	Use

	MicroEJ Linker
	Overview
	ELF Overview
	Linking Process
	Linker Specific Configuration File Specification
	Description
	File Fragments
	Symbols and Sections
	Memory Layout
	Tags Specification
	Expressions

	Auto-generated Sections
	Execution
	Error Messages
	Map File Interpretor

	MicroEJ Test Suite Engine
	Introduction
	Using the MicroEJ Test Suite Ant Tasks
	The testsuite Task
	The javaTestsuite Task
	The htmlReport Task

	Using the Trace Analyzer
	The TraceAnalyzer Tasks Options
	The FileTraceAnalyzer Task Options
	The SerialTraceAnalyzer Task Options

	Appendix
	Specific Custom Properties

	Heap Usage Monitoring
	Introduction
	Heap Usage Introspection
	Automatic Heap Usage Monitoring
	Heap Usage Analysis

	VEE Porting Guide
	Introduction
	Scope
	Intended Audience

	MicroEJ Platform
	Introduction
	Build Process
	Concepts
	MicroEJ Platform Configuration
	Modules
	Low Level API Pattern
	Principle
	Multiple Implementations and Instances

	MicroEJ Architecture
	Naming Convention
	Architectures Changelog
	Notation
	[8.1.0] - 2023-12-22
	Core Engine
	Foundation Libraries
	Integration
	Simulator
	SOAR
	Tools

	[8.0.0] - 2023-06-27
	Core Engine
	Foundation Libraries
	Integration
	Simulator
	SOAR
	Tools

	[7.20.1] - 2023-04-10
	Foundation Libraries

	[7.20.0] - 2023-04-04
	Known Issues
	Core Engine
	Foundation Libraries

	[7.19.0] - 2023-02-16
	Known Issues
	Core Engine
	Tools

	[7.18.1] - 2022-10-26
	Integration

	[7.18.0] - 2022-09-14
	Integration
	SOAR

	[7.17.0] - 2022-06-13
	Core Engine
	Foundation Libraries
	Integration
	Simulator
	SOAR

	[7.16.3] - 2022-04-06
	Core Engine

	[7.16.2] - 2021-11-10
	Core Engine

	[7.16.1] - 2021-07-16
	Core Engine

	[7.16.0] - 2021-06-24
	Known Issues
	Notes
	Core Engine
	Foundation Libraries
	Integration
	Simulator
	SOAR
	Tools

	[7.15.1] - 2021-02-19
	SOAR

	[7.15.0] - 2020-12-17
	Core Engine
	Foundation Libraries
	Integration
	SOAR
	Tools

	[7.14.1] - 2020-11-30
	Core Engine
	Tools

	[7.14.0] - 2020-09-25
	Notes
	Foundation Libraries
	Integration
	SOAR
	Tools

	[7.13.3] - 2020-09-18
	Core Engine
	Simulator
	Tools

	[7.13.2] - 2020-08-14
	Core Engine
	Tools

	[7.13.1] - 2020-07-20
	Core Engine

	[7.13.0] - 2020-07-03
	Core Engine
	Foundation Libraries
	Integration
	Simulator
	SOAR
	Tools

	[7.12.0] - 2019-10-16
	Core Engine
	Foundation Libraries
	Simulator
	SOAR
	Tools

	[7.11.0] - 2019-06-24
	Important Notes
	Known Issues
	Core Engine
	Foundation Libraries
	Integration
	Simulator
	SOAR
	Tools

	[7.10.1] - 2019-04-03
	Simulator

	[7.10.0] - 2019-03-29
	Core Engine
	Foundation Libraries
	Integration
	Simulator
	Tools

	[7.9.1] - 2019-01-08
	Tools

	[7.9.0] - 2018-09-20
	Core Engine
	SOAR

	[7.8.0] - 2018-08-01
	Tools

	[7.7.0] - 2018-07-19
	Core Engine
	SOAR
	Tools

	[7.6.0] - 2018-06-29
	Foundation Libraries

	[7.5.0] - 2018-06-15
	[7.4.0] - 2018-06-13
	Core Engine
	Foundation Libraries
	Simulator
	SOAR
	Tools

	[7.3.0] - 2018-03-07
	Simulator

	[7.2.0] - 2018-03-02
	Core Engine
	Simulator

	[7.1.2] - 2018-02-02
	SOAR

	[maintenance/6.18.0] - 2017-12-15
	Core Engine
	Simulator
	Tools

	[7.1.1] - 2017-12-08
	Tools

	[7.1.0] - 2017-12-08
	Core Engine
	Integration
	SOAR
	Tools

	[7.0.0] - 2017-11-07
	Core Engine
	Foundation Libraries

	[6.17.2] - 2017-10-26
	Simulator

	[6.17.1] - 2017-10-25
	Core Engine

	[6.17.0] - 2017-10-10
	Tools

	[6.16.0] - 2017-09-27
	Core Engine

	[6.15.0] - 2017-09-12
	Core Engine
	Foundation Libraries
	SOAR

	[6.14.2] - 2017-08-24
	Tools

	[6.14.1] - 2017-08-02
	Simulator
	Foundation Libraries
	Tools

	[6.13.0] - 2017-07-21
	Core Engine
	Foundation Libraries
	SOAR
	Tools

	[6.12.0] - 2017-07-07
	Core Engine
	Tools
	Simulator

	[6.11.0] - 2017-06-13
	Integration

	[6.11.0-beta1] - 2017-06-02
	Core Engine
	Foundation Libraries

	[6.10.0] - 2017-06-02
	Core Engine

	[6.9.2] - 2017-06-02
	Integration

	[6.9.1] - 2017-05-29
	SOAR

	[6.9.0] - 2017-03-15

	Release Notes
	Foundation Libraries

	MicroEJ Packs
	Overview
	Naming Convention
	Architecture Specific Pack
	Generic Pack
	Legacy Generic Pack

	Platform Creation
	Architecture Selection
	Platform Configuration
	Pack Import
	Platform Build
	Platform Module Configuration
	Platform Customization
	Platform Publication
	BSP Connection
	Principle
	Options
	Build Script File
	Run Script File

	Platform API Documentation
	Link-Time Option

	VEE Port Qualification
	Introduction
	VEE Port Qualification Tools Overview
	VEE Port Test Suite
	Create a VEE Port Test Suite
	Create the Test Suite Module
	Create the Test Suite Module Project
	Configure the Test Suite Module Project
	Create a New Test Case
	Build the Test Suite Module

	Create the Test Suite Runner
	Create the Test Suite Runner Project
	Configure and Run the Test Suite

	Test Suite Versioning
	Core Engine
	UI Pack
	FS Pack
	BLUETOOTH Pack
	NET Pack
	EVENT QUEUE Pack

	Core Engine
	Block Diagram
	Link Flow
	Architecture
	Capabilities
	Implementation
	Initialization
	Scheduling
	Idle Mode
	Time
	Error Codes
	Example
	Restart the Core Engine
	Dump the States of the Core Engine
	Dump The State Of All MicroEJ Threads From A Fault Handler
	Trigger VM Dump From Debugger

	Check Internal Structure Integrity

	Generic Output
	Link
	Dependencies
	Installation
	Abstraction Layer
	Memory Considerations
	Use

	Advanced Event Tracing
	Principle
	Platforms using GNU LD linker
	Platforms using IAR ILINK linker

	Multi-Sandbox
	Principle
	Functional Description
	Memory Considerations
	Dependencies
	Installation
	Use
	Feature Installation
	Introduction
	Installation Flow
	Feature Persistency
	Advanced Options
	Code Chunk Size
	InputStream Transfer Buffer Size
	Relocation Process Yield

	Determining the Amount of Required Memory
	In-Place Installation

	RAM Control

	Tiny-Sandbox
	Principle
	Installation
	Limitations

	Native Interface Mechanisms
	Simple Native Interface (SNI)
	Principle
	Functional Description
	Example
	Synchronization
	Dependencies
	Installation
	Use

	Shielded Plug (SP)
	Principle
	Functional Description
	Shielded Plug Compiler
	Example
	Database Description
	Java Code
	C Code

	Dependencies
	Installation
	Use

	MicroEJ Java H
	Principle
	Functional Description
	Dependencies
	Installation
	Use

	External Resources Loader
	Functional Description
	Implementations
	Open a Resource
	Resource Identifier
	Resource Offset
	Resource Inside the CPU Address Space Range

	External Resources Folder
	Dependencies
	Installation
	Use

	Serial Communications
	ECOM
	Principle
	Functional Description
	Device Management API
	Dependencies
	Installation
	Use

	ECOM Comm
	Principle
	Functional Description
	Component Architecture
	Comm Port Identifier
	Application Port Mapping
	Opening Sequence

	Dynamic Connections
	Java API
	Driver API
	The Buffered Comm Stream
	The Custom Comm Stream

	BSP File
	XML File
	ECOM Comm Mock
	Dependencies
	Installation
	Use

	Graphical User Interface
	Principle
	UI Port
	UI Port Configuration
	Principle
	UI Pack Selection
	UI Pack Modules
	Module MicroUI
	Module LEDs
	Modules Image Decoders
	Module Image Generator
	Module Font Generator
	Module Display
	Size
	Pixel Format
	Constraints
	Configuration

	VEE Port Build

	Simulation
	Principle
	Project Extension
	LEDs
	Buttons
	Widget Button Code
	Application Code
	Button to Command Event

	Touch Panel
	Display
	Build

	BSP Port
	Principle
	MicroUI C Module
	LEDs
	Inputs
	Display
	Display: LCD Constraints
	Display: Optional Features
	Test Suite

	GPU Port
	Principle
	Existing C Modules
	Port a GPU
	Drawing Function
	Fallback

	Image Constraints
	Address Alignment
	Stride (Compile-time Images)
	Stride (Runtime Images)

	Test Suite

	MicroUI
	Principle
	Architecture
	Library ej.api.Drawing
	Thread
	Principle
	Role
	Memory
	Exceptions

	Native Calls
	Antialiasing
	Images
	Fonts

	Installation
	Use

	Static Initialization
	Principle
	Functional Description
	XML File
	XML File Example
	Dependencies
	Installation
	Use

	Abstraction Layer API
	Principle
	Embedded VEE Port
	Simulator

	LED
	Principle
	Functional Description
	Abstraction Layer API
	Typical Implementation
	Dependencies
	Installation
	Use

	Input
	Principle
	Functional Description
	Driver Listener
	Static Initialization
	Standard Event Generators
	Generic Event Generators
	Abstraction Layer API
	Typical Implementation
	LLUI_INPUT_impl.c
	buttons_helper.c
	touch_helper.c
	event_generator.c

	Event Buffer
	Dependencies
	Installation
	Use

	Display
	Principle
	Chapters Organization
	Display Configuration
	Display Connection
	Serial
	Parallel

	Buffer Policy
	Overview
	Decision Tree
	Serial Connection
	Parallel Connection
	Chapter Sum-up

	Swap Double Buffer (parallel)
	Swap Triple Buffer (parallel)
	Direct Buffer (parallel)
	Single Buffer
	Serial Connection
	Parallel Connection

	Copy and Swap Buffer
	Serial Connection
	Parallel Connection

	Partial Buffer
	Workflow
	Dual Partial Buffer
	Application Limitations
	Implementation Example

	Pixel Structure
	Principle
	Standard
	Driver-Specific

	CLUT
	Color Conversion
	Alpha Blending

	Memory Layout
	Byte Layout
	Display Synchronization
	Overview
	Tearing Signal
	Additional Buffer
	Time Sum-up

	Abstraction Layer API
	Overview
	Display Size
	Semaphores
	Required Abstraction Layer API
	Optional Abstraction Layer API
	Painter Abstraction Layer API
	Graphics Engine API

	Typical Implementations
	Common Functions
	Direct Policy
	Serial Display
	Parallel Display: Copy Policy (Tearing Disabled)
	Parallel Display: Copy Policy (Tearing Enabled)
	Parallel Display: Swap Policy

	Dependencies
	Installation
	Use

	Buffer Refresh Strategy
	Overview
	Timeline
	Basic Principle
	Additional Hooks
	Implicit Region
	Explicit Region
	Flush vs Refresh

	Strategies
	Strategy: Single
	Principle
	Behavior
	Use

	Strategy: Predraw
	Principle
	Behavior
	Read the Display
	Use (Swap Double Buffer)
	Use (Swap Triple Buffer)
	Use (Copy and Swap Buffer)

	Strategy: Default
	Principle
	Behavior
	Use

	Strategy: Custom
	Principle
	Behavior
	Use

	Strategy: Legacy
	Principle
	Behavior
	Use

	MicroUI C Module
	Principle
	Options
	Weak Functions
	Debug Traces

	Simulation
	Principle
	Usage
	Available Implementations
	Custom Implementation

	Drawings
	Abstraction Layer
	Destination Format
	Graphics Engine Software Algorithms
	MicroUI C Module
	Principle
	Default Implementation
	Custom Implementation
	GPU Synchronization
	Extended C Modules

	Simulation
	Principle
	Default Implementation
	Custom Implementation

	Custom Drawing
	Principle
	Application Method
	BSP Implementation
	Simulation

	Drawing Logs
	Usage Overview
	Available Constants
	Embedded Targets
	Simulator

	Images
	Overview
	Principle
	Functional Description
	Dependencies

	Image Format
	MicroEJ Format: Display
	MicroEJ Format: Standard
	MicroEJ Format: Grayscale
	MicroEJ Format: RLE Compressed
	MicroEJ Format: Custom
	Binary Format
	Original Input Format
	GPU Format Support

	Image Generator
	Principle
	Functional Description
	Structure
	Standalone Mode
	Extended Mode
	Advanced: Test the Extension Project

	Service Image Loader
	MicroUIRawImageGeneratorExtension
	ImageReaderSpi

	Customize MicroEJ Standard Format
	VEE Port MicroEJ Custom Format
	VEE Port Binary Format
	Configuration File
	Linker File
	External Resources
	Installation
	Use

	Image Loader
	Principle
	Functional Description
	Images Heap
	External Resource
	Principle
	Configuration File
	Process
	Simulation

	Image in MicroEJ Format
	Encoded Image
	Installation
	Use

	Image Renderer
	Principle
	Functional Description
	Destination Format
	Input Formats
	Standard
	Custom

	MicroUI C Module
	Principle
	Standard Formats Only (Default)
	Custom Format Support

	Simulation
	Principle
	Standard Formats Only (Default Implementation)
	Custom Format Support

	Image Pixel Conversion
	Overview
	Functions
	Linker File

	Installation
	Use

	Buffered Image
	Overview
	Drawer
	Formats
	Display
	Standard
	Custom

	MicroUI C Module
	Drawer
	Single Format Implementation (Default Implementation)
	Multiple Formats Implementation
	Custom Format
	Image Creation
	Overview
	Single Format Implementation
	Multiple Formats Implementation
	Display and Standard Image
	Custom Image
	Image Closing
	Single Format Implementation
	Multiple Formats Implementation
	Display and Standard Image
	Custom Image
	Draw into the Image: Display Format
	Overview
	Single Format Implementation
	Multiple Formats Implementation
	Draw into the Image: Non-Display Format
	Draw the Image: Single Format Implementation
	Draw the Image: Multiple Formats Implementation
	Extended C Modules

	Simulation
	Drawer
	Image Creation
	Draw into the Image: Non-Display Format
	Draw the Image: Multiple Formats Implementation

	Dependencies
	Installation
	Use

	Fonts
	Overview
	Principle
	Functional Description
	Dependencies

	Font Characteristics
	Font Format
	Pixel Transparency
	Language
	Supported Languages
	Arabic Support

	Font Generator
	Principle
	Functional Description
	Pixel Transparency
	Configuration File
	External Resources
	Installation
	Use

	Font Loader
	Principle
	External Resources
	Memory Management
	Configuration File
	Process
	Simulation
	Backward Compatibility

	Installation
	Use

	Font Renderer
	Principle
	Functional Description
	Installation
	Use

	C Modules
	Principle
	UI Pack
	C Module: MicroUI
	Drawings
	Overview
	Files
	Usage

	Images Heap
	Overview
	Files
	Usage

	Events Logger
	Overview
	Files
	Usage (to enable the events logger)

	Buffer Refresh Strategy
	Overview
	Files
	Usage

	C Module: MicroUI Over DMA2D
	Overview
	Files
	Usage
	Drawings
	Cache
	Usage

	Buffer Refresh Strategy “Predraw”
	Usage
	Example of Implementation

	Buffer Refresh Strategy “Single”
	Usage
	Example of Implementation

	Buffer Refresh Strategy “Legacy”
	Usage
	Example of Implementation

	C Module: MicroUI Over VGLite
	Overview
	Files
	Usage
	Options
	Drawings
	Compatibility With MCU i.MX RT595
	UI Pack 13
	UI Pack 14

	C Module: MicroUI Over NemaGFX
	Overview
	Files
	Usage
	Implementation
	Options
	Drawings

	Compatibility

	Simulation
	Principle
	Module Dependencies
	MicroUI Implementation
	Display Widget
	Features
	Refresh Rate
	Flush Time
	Non-rectangular Display

	Inputs Extensions
	Heap Simulation
	Image Decoders
	Generic Image Decoders
	Custom Image Decoders

	Drawings
	Image Rendering
	Buffered Image
	Classpath
	Dependencies
	Installation
	Use

	Release Notes
	MicroEJ Architecture Compatibility Version
	Standard Versions
	Maintenance Versions

	Foundation Libraries
	Abstraction Layer Interface
	Display
	Input
	LED

	Front Panel API
	Image Generator API
	C Modules
	MicroUI C Module
	Extended C Modules

	Changelog
	14.0.0 (2024-02-14)
	MicroUI
	Front Panel
	LLAPIs
	C Module MicroUI
	C Module DMA2D
	C Module VGLite
	C Module NemaGFX

	13.7.2 (2023-12-21)
	MicroUI
	C Module NemaGFX

	13.7.0 (2023-10-23)
	MicroUI
	Front Panel
	Image Generator
	Font Generator
	C Module MicroUI
	C Module DMA2D
	C Module VGLite
	C Module NemaGFX

	[13.6.2] (2023-09-20)
	Image Generator
	Font Generator
	C Module VGLite

	[13.6.1] (2023-07-26)
	MicroUI

	[13.6.0] (2023-07-17)
	MicroUI
	Front Panel
	Image Generator
	Font Generator
	C Module VGLite
	C Module NemaGFX

	[13.5.1] (2023-06-08)
	MicroUI
	Front Panel
	C Module VGLite

	[13.5.0] (2023-05-03)
	MicroUI
	Drawing
	Front Panel
	Image Generator
	LLAPIs
	C Module MicroUI
	C Module DMA2D
	C Module VGLite

	[13.4.1] (2023-02-06)
	Drawing
	Front Panel
	Image Generator
	C Module VGLite

	[13.4.0] - 2022-12-13
	MicroUI
	Front Panel
	Image Generator
	Font Generator
	C Module MicroUI
	C Module DMA2D
	C Module VGLite

	[13.3.1] - 2022-09-09
	Image Generator

	[13.3.0] - 2022-09-02
	MicroUI
	Front Panel
	Image Generator
	LLAPIs
	C Module MicroUI
	C Module DMA2D for UI Pack 13.2.0 (maintenance)
	C Module DMA2D for UI Pack 13.3.0
	C Module VGLite

	[13.2.0] - 2022-05-05
	Integration
	MicroUI
	Drawing
	Front Panel
	Image Generator
	LLAPIs
	C Module DMA2D
	C Module VGLite
	BSP

	[13.1.0] - 2021-08-03
	MicroUI API
	MicroUI Implementation
	Drawing Implementation
	Front Panel
	LLAPIs
	C Module MicroUI

	[13.0.7] - 2021-07-30
	MicroUI Implementation
	Misc

	[13.0.6] - 2021-03-29
	LLAPIs

	[13.0.5] - 2021-03-08
	MicroUI Implementation
	Front Panel

	[13.0.4] - 2021-01-15
	MicroUI API
	MicroUI Implementation
	Drawing Implementation
	Image Generator

	[13.0.3] - 2020-12-03
	MicroUI API
	MicroUI Implementation
	C Module MicroUI
	C Module DMA2D

	[13.0.2] - 2020-10-02
	C Module DMA2D

	[13.0.1] - 2020-09-22
	MicroUI API
	MicroUI Implementation
	Front Panel
	Image Generator
	LLAPIs
	C Module MicroUI
	C Module DMA2D

	[13.0.0] - 2020-07-30
	Architecture
	MicroUI API
	MicroUI Implementation
	Front Panel
	Image Generator
	Font Generator
	LLAPIs
	C Modules

	[12.1.5] - 2020-10-02
	[12.1.4] - 2020-03-10
	MicroUI Implementation

	[12.1.3] - 2020-02-24
	MicroUI Implementation

	[12.1.2] - 2019-12-09
	MicroUI Implementation

	[12.1.1] - 2019-10-29
	MicroUI Implementation

	[(maint) 8.0.0] - 2019-10-18
	Architecture
	MicroUI Implementation

	[12.1.0] - 2019-10-16
	MicroUI API
	MicroUI Implementation

	[12.0.2] - 2019-09-23
	MicroUI Implementation

	[12.0.1] - 2019-07-25
	MicroUI Implementation
	Front Panel

	[12.0.0] - 2019-06-24
	Architecture
	MicroUI Implementation
	Front Panel
	Front Panel Plugin

	[11.2.0] - 2019-02-01
	MicroUI Implementation
	Tools

	[11.1.2] - 2018-08-10
	MicroUI Implementation

	[11.1.1] - 2018-08-02
	[11.1.0] - 2018-07-27
	MicroUI API
	MicroUI Implementation

	[11.0.1] - 2018-06-05
	MicroUI Implementation

	[10.0.2] - 2018-02-15
	MicroUI Implementation

	[11.0.0] - 2018-02-02
	Architecture
	MicroUI Implementation

	[10.0.1] - 2018-01-03
	MicroUI Implementation

	[10.0.0] - 2017-12-22
	Architecture
	MicroUI Implementation
	Front Panel
	Misc

	[9.4.1] - 2017-11-24
	Image Generator

	[9.4.0] - 2017-11-23
	MicroUI Implementation

	[9.3.1] - 2017-09-28
	MicroUI Implementation

	[9.3.0] - 2017-08-24
	MicroUI Implementation
	Front Panel

	[9.2.1] - 2017-08-14
	Front Panel

	[9.2.0] - 2017-07-21
	Architecture
	MicroUI API
	MicroUI Implementation
	Image Generator
	Misc

	[9.0.2] - 2017-04-21
	MicroUI Implementation
	Image Generator

	[9.1.2] - 2017-03-16
	MicroUI API
	MicroUI Implementation
	Image Generator

	[9.0.1] - 2017-03-13
	MicroUI Implementation
	Front Panel
	Front Panel Plugin

	[9.1.1] - 2017-02-14
	Misc

	[9.1.0] - 2017-02-13
	Architecture
	MicroUI API
	MicroUI Implementation
	Front Panel
	Front Panel Plugin

	[9.0.0] - 2017-02-02
	MicroUI API
	MicroUI Implementation
	MWT
	Front Panel
	Tools
	Misc

	[8.1.0] - 2016-12-24
	MicroUI Implementation
	MWT
	Front Panel

	[8.0.0] - 2016-11-17
	Architecture
	MicroUI Implementation
	MWT
	Front Panel

	[7.4.7] - 2016-06-14
	MicroUI Implementation
	Front Panel

	[7.4.2] - 2016-05-25
	MicroUI Implementation

	[7.4.1] - 2016-05-10
	MicroUI Implementation

	[7.4.0] - 2016-04-29
	MicroUI Implementation
	Front Panel

	[7.3.0] - 2016-04-25
	MicroUI Implementation

	[7.2.1] - 2016-04-18
	Misc

	[7.2.0] - 2016-04-05
	Tools

	[7.1.0] - 2016-03-02
	MicroUI Implementation

	[7.0.0] - 2016-01-20
	Misc

	[6.0.1] - 2015-12-17
	MicroUI Implementation

	[6.0.0] - 2015-11-12
	MicroUI Implementation

	Migration Guide
	From 13.7.x to 14.0.0
	Front Panel
	BSP Without GPU
	BSP with DMA2D
	BSP with VGLite
	BSP with NemaGFX

	From 13.6.x to 13.7.2
	Front Panel
	BSP without GPU
	BSP with DMA2D
	BSP with VGLite
	BSP with NemaGFX

	From 13.5.x to 13.6.2
	Front Panel
	BSP with VGLite
	BSP With MCU i.MX RT595
	BSP with NemaGFX

	From 13.4.x to 13.5.1
	Front Panel
	BSP without GPU
	BSP with DMA2D
	BSP with VGLite

	From 13.3.x to 13.4.1
	BSP without GPU
	BSP with DMA2D
	BSP with VGLite

	From 13.2.x to 13.3.1
	Front Panel
	BSP without GPU
	BSP with DMA2D
	BSP with VGLite

	From 13.1.x to 13.2.0
	Front Panel

	From 13.0.x to 13.1.0
	Front Panel
	BSP without GPU
	BSP with DMA2D

	From 12.x to 13.0.7
	VEE Port Configuration Project
	Hardware Accelerator
	Front Panel
	Front Panel API
	Image Generator
	Image Generator API
	Font
	BSP
	LLAPI
	Custom Native Drawing Functions
	Application

	From 11.x to 12.1.5
	VEE Port Configuration Project
	Front Panel
	Application

	From 10.x to 11.2.0
	VEE Port Configuration Project

	From 9.x to 10.0.2
	VEE Port Configuration Project
	BSP
	Application

	From 8.x to 9.4.1
	VEE Port Configuration Project
	Application

	From 7.x to 8.1.0
	VEE Port Configuration Project
	BSP
	STM32 VEE Ports with DMA2D only

	Vector Graphics
	Principle
	MicroVG
	Principle
	Architecture
	Native Calls
	Installation
	Use

	Abstraction Layer API
	Principle
	Embedded VEE Port
	Simulator

	Matrix
	Principle
	Functional Description
	Abstraction Layer API
	Use

	Path
	Principle
	Functional Description
	Abstraction Layer API
	Use

	Gradient
	Principle
	Functional Description
	Abstraction Layer API
	Use

	Image
	Principle
	Compile-time Image
	Image Generator
	MicroVG Library

	Resource Vector Image
	Filtered Image
	External Memory
	Principle
	Configuration File
	Process
	Simulation

	Buffered Vector Image
	Runtime Image
	Rendering Engine
	Abstraction Layer API
	Simulation
	Use

	Font
	Principle
	Functional Description
	Abstraction Layer API
	External Memory
	Principle
	Configuration File
	Process
	Simulation

	Use

	C Modules
	Principle
	UI Pack & MicroUI C Modules
	Library: Vivante VGLite
	VG Pack
	C Module: MicroVG
	Description
	Dependencies
	Usage

	Library: FreeType
	Description
	Memory Heap Configuration
	Principle

	Library: Harfbuzz
	C Module: MicroVG Over VGLite
	Overview
	Usage

	Compatibility

	Simulation
	Principle
	Installation
	Use

	Release Notes
	UI Pack Compatibility Version
	Foundation Libraries
	C Modules Compatibility Version

	Changelog
	[1.5.0] - 2024-02-15
	UI Pack
	MicroVG
	Front Panel
	LLAPIs
	C Module MicroVG
	C Module VGLite

	[1.4.2] - 2023-11-13
	MicroVG
	Front Panel
	C Module MicroVG
	C Module VGLite

	[1.4.1] - 2023-09-21
	MicroVG
	C Module VGLite

	[1.4.0] - 2023-07-21
	MicroVG
	C Module MicroVG
	C Module VGLite

	[1.3.0] - 2023-05-10
	UI Pack
	MicroVG
	Front Panel
	C Module MicroVG
	C Module VGLite

	[1.2.1] - 2023-02-06
	Front Panel
	C Module VGLite

	[1.2.0] - 2022-12-30
	MicroVG
	Front Panel
	Vector Image Converter
	C Module MicroVG
	C Module VGLite

	[1.1.1] - 2022-09-05
	UI Pack
	MicroVG
	LLAPIs
	C Module MicroVG
	C Module VGLite

	[1.0.1] - 2022-05-16
	MicroVG

	[1.0.0] - 2022-05-13
	UI Pack
	MicroVG

	Migration Guide
	From 1.4.x to 1.5.0
	VEE Port Configuration Project
	BSP with VGLite

	From 1.3.x to 1.4.2
	BSP with VGLite

	From 1.2.x to 1.3.0
	VEE Port Configuration Project
	BSP with VGLite

	Networking
	Principle
	Network Core Engine
	Principle
	Functional Description
	Dependencies
	Installation
	Use

	SSL
	Principle
	Functional Description
	Dependencies
	Installation
	Use

	Network Interfaces Management
	Overview
	Dependencies
	Installation
	Use

	Wi-Fi
	Overview
	Dependencies
	Installation
	Use

	Bluetooth
	Principle
	Functional Description
	Overview
	Dependencies
	Installation
	Use

	Event Queue
	Principle
	Dependencies
	Installation

	File System
	Principle
	Functional Description
	Dependencies
	Installation
	Properties File Template

	Use

	Hardware Abstraction Layer
	Principle
	Functional Description
	Identifier
	Basic Rule
	Generic Rules

	Configuration
	Dependencies
	Installation
	Use

	Device Information
	Principle
	Dependencies
	Installation
	Use

	Security
	Principle
	Dependencies
	Installation
	Use

	Watchdog Timer
	Overview
	Principle
	Mock Implementation
	Dependencies
	Installation
	Use in an Application
	Code example in Java
	Use in C inside the BSP
	Code example in C

	SystemView
	Principle
	References
	Installation
	MicroEJ Core Engine OS Task
	OS Tasks and Java Threads Names
	OS Tasks and Java Threads Priorities
	Use
	Troubleshooting
	SystemView doesn’t see any activity in MicroEJ Tasks
	OVERFLOW Events in SystemView
	RTT Control Block Not Found

	RTT block found by SystemView but no traces displayed
	Bus hardfault when running SystemView without Java Virtual Machine (JVM)
	SystemView for STM32 ST-Link Probe

	Simulation
	Principle
	Functional Description
	Dependencies
	Installation
	Use
	Mock
	Principle
	Functional Description
	Example
	Mocks Design Support
	Interface
	Array Type Arguments
	Blocking Native Methods
	Resource Management
	Synchronous Terminations

	Dependencies
	Installation
	Use
	JavaFX

	Shielded Plug Mock
	General Architecture
	Configuration

	Front Panel Mock
	Principle
	Functional Description
	The Front Panel Project
	Creating a Front Panel Project
	Project Contents

	Module Dependencies
	Front Panel File
	File Content
	Editing Front Panel Files
	Multiple Front Panel Files

	Widget
	Description
	Runtime
	Example
	Empty Widget
	Input Device Filters

	Installation
	Advanced: Test the Front Panel Project

	Use

	Bluetooth Mock
	Overview
	Requirements
	Usage
	Controller Setup
	Network Setup
	Simulation

	Troubleshooting
	Network Setup Errors
	I can’t find the “BLE-Mock-Controller-[hexa device id]” access point
	I want to override the network configuration
	“Invalid parameter type: 0x47 expected 0x53” error

	Simulation Errors
	Error during the simulation: mock could not connect to controller

	Appendices
	Low Level API
	LLMJVM: MicroEJ Core Engine
	Naming Convention
	Header Files

	LLKERNEL: Multi-Sandbox
	Naming Convention
	Header Files

	LLSP: Shielded Plug
	Naming Convention
	Header Files

	LLEXT_RES: External Resources Loader
	Principle
	Naming Convention
	Header Files

	LLCOMM: Serial Communications
	Naming Convention
	Header Files

	LLUI_INPUT: Input
	Implementation
	Sending Events
	Event Buffer

	LLUI_DISPLAY: Display
	Principle & Naming Convention
	Initialization
	Image Heap
	External Font Heap
	Flush and Synchronization
	Display Characteristics
	Contrast
	BackLight
	Color Conversions
	CLUT
	Image Decoders

	LLUI_LED: LEDs
	Principle
	Naming Convention
	Initialization

	LLVG: VectorGraphics
	Principle
	Naming Convention
	Initialization

	LLVG_MATRIX: Matrix
	Principle
	Naming Convention
	Implementation

	LLVG_PATH: Vector Path
	Principle
	Naming Convention
	Creation
	Drawing

	LLVG_GRADIENT: Vector Linear Gradient
	Principle
	Naming Convention
	Implementation

	LLVG_FONT: Vector Font
	Principle
	Naming Convention
	Initialization
	Font Characteristics
	Drawing

	LLNET: Network
	Naming Convention
	Header Files

	LLNET_SSL: SSL
	Naming Convention
	Header Files

	LLECOM_NETWORK: Network Interfaces
	Naming Convention
	Header Files

	LLECOM_WIFI: Wi-Fi Management
	Naming Convention
	Header Files

	LLBLUETOOTH: Bluetooth
	Naming Convention
	Header Files

	LLEVENT: Event Queue
	Naming Convention
	Header Files

	LLFS: File System
	Naming Convention
	Header Files

	LLHAL: Hardware Abstraction Layer
	Naming Convention
	Header Files

	LLDEVICE: Device Information
	Naming Convention
	Header Files

	LLWATCHDOG_TIMER: Watchdog Timer
	Naming Convention
	Header Files

	LLSEC: Security
	Naming Convention
	Header Files

	MicroEJ Foundation Libraries
	EDC
	Error Messages
	Exit Codes

	SNI
	Error Messages

	KF
	Definitions
	Feature Definition Files
	Kernel Definition Files
	Kernel API Files
	Access Error Codes

	ECOM
	Error Messages

	ECOM Comm
	Error Messages

	MicroUI
	Error Messages

	FS
	Error Messages

	Net
	Error Messages

	SSL
	Error Messages

	Tools Options and Error Codes
	Immutable Files Related Error Messages
	SNI
	SP Compiler
	Options
	Error Messages

	NLS Immutables Creator
	MicroUI Static Initializer
	Inputs
	Display

	Front Panel
	FP File
	XML Schema
	File Specification

	HIL Engine
	Heap Dumping
	XML Schema
	File Specification

	Architectures MCU / Compiler
	Principle
	Supported MicroEJ Core Engine Capabilities by Architecture Matrix
	ARM Cortex-M0
	ARM Cortex-M4
	ARM Cortex-M7
	ARMv7A (ARMv7-A without integer division extension: Cortex-A5/Cortex-A8/Cortex-A9)
	ARMv7VE (ARMv7-A with integer division extension: Cortex-A7/Cortex-A15)
	ESP32
	IAR Linker Specific Options
	--no_range_reservations
	--diag_suppress=Lp029

	GNU LD Specific Options
	--start-group --end-group

	ARM Linker Specific Options
	Fix Unexpected Undefined Symbol
	Link the SOAR Debug Section

	Former Platform Migration
	Create an Architecture Repository
	Import the Former Platform Sources
	Install the Platform Configuration Additions
	Update the Front Panel Configuration
	Configure the BSP Connection
	Add the Build and Run Scripts
	Use the Platform in Module Projects
	Going further

	Architecture 8.0.0 Migration
	Migrate Core Engine Capability Configuration
	Mono-Sandbox
	Multi-Sandbox
	Tiny-Sandbox

	Migrate Your LLKERNEL Implementation

	Architecture 7.x Migration
	Update Platform Configuration Additions
	Update BSP with new Sections Names
	Remove LLBSP_IMPL_isInReadOnlyMemory
	Migrate Built-in Modules
	Migrate Device Module
	Migrate ECOM-COMM Module

	Migrate Your LLKERNEL Implementation
	Migrate Trace C Library Usage
	Migrate Legacy System Properties Files

	Kernel Developer Guide
	Overview
	Introduction
	Terms and Definitions
	Overall Architecture
	Input and Output Artifacts
	Kernel Build Flow
	Kernel Implementation Libraries

	Kernel & Features Specification
	Getting Started
	Kernel Creation
	Create a new Project
	Configure a VEE Port
	Build the Executable and Virtual Device
	Expose APIs
	Implement a Security Policy
	Enable the Security Management
	Implement your Security Policy

	Add Pre-installed Applications
	Build the Executable in the Workspace
	Kernel Application Configuration
	Module Configuration
	Build Options
	Build only a Virtual Device with a pre-existing Kernel

	Kernel APIs
	Kernel API Definition
	Writing Kernel APIs
	Default Kernel APIs Derivation
	Kernel API Generator
	Category: Kernel API Generator
	Group: Classpath
	Option(list):
	Group: Types Filters
	Option(text): Includes Patterns
	Option(text): Excludes Patterns

	Runtime Environment
	Principle
	Create a new Runtime Environment Module
	Kernel APIs as Dependencies
	Kernel APIs as Project File
	Add Add-On Processors

	Use a Runtime Environment in an Application
	Extend a Runtime Environment

	Kernel UID
	Sandboxed Application Lifecycle
	Kernel and Features Communication
	Shared Services
	Communication between Features
	Register a Service
	Get a Service

	Communication between Kernel and Feature
	Register a Service
	Get a Service

	Implement a Registry
	Kernel Types Converter

	Multi-Sandbox Enabled Libraries
	Manage Internal Global State
	Declare a Static Field Local to the Feature
	Allow a Field Assignment in Kernel Mode
	Use Existing Multi-Sandbox Enabled Data Structures

	Implement a Security Manager Permission Check
	Known Foundation Libraries Behavior
	MicroUI
	Physical Display Ownership
	Automatically Reclaimed Resources

	BON
	Kernel Timer
	Automatically Reclaimed Resources

	ECOM
	ECOM-COMM
	FS
	NET
	SSL

	Setup a KF Test Suite
	Enable the Test Suite
	Add a KF Test
	KF Test Suite Options

	Kernel Linking
	Link Flow
	Kernel Metadata Generation
	Feature Portability Control
	Principle
	Enable
	Portability Rules

	Application Linking
	SOAR Build Phases
	Feature Build Off Board
	Feature Build On Device
	General Workflow
	Implement the Kernel

	FSO Compatibility
	Feature Portability

	VEE Wear User Guide
	Android Compatibility Kit
	Overview
	Workflow
	Software Architecture
	Available APIs and Features

	Installation
	JDK Version
	Configure Repositories

	Project Setup
	Create or Import an Android project
	Create or Import a MicroEJ Application
	Configure the Android Application
	Start the MicroEJ Application
	Run on MicroEJ VEE and Android

	VEE Port
	VEE Port Configuration
	MicroEJ Android Packs
	Custom Android Packs
	Setting Android SDK Environment Variable
	Creating the Android Pack Module
	Compiling against Android SDK
	Implementing the Android mock
	Using the Android Pack in the VEE Port

	iOS Compatibility Kit
	Software Architecture
	Workflow
	Evaluation

	Offloading
	Solution
	One Code, Two Targets
	Offloading Framework

	Evaluation

	Tutorials
	Understand How to Build a Firmware and its Dependencies
	The Components
	Architecture
	Platform Sources
	Application
	C Toolchain (GCC, KEIL, IAR, …)
	Module Repository
	Dependencies Between Components

	How to Build
	Build a Platform
	Build a Firmware
	Dependencies Between Processes

	Create a MicroEJ Platform for a Custom Device
	Introduction
	A MicroEJ Platform Project is already available for the same MCU/RTOS/C Compiler
	Platform
	BSP
	Simulator

	A MicroEJ Platform Project is not available for the same MCU/RTOS/C Compiler
	MCU
	RTOS
	C Compiler

	Platform Validation
	Further Assistance Needed

	Create a MicroEJ Firmware From Scratch
	Intended Audience
	Introduction
	Prerequisites
	Overview
	Setup the Development Environment
	Get Running BSP
	FreeRTOS Hello World
	Create a MicroEJ Platform
	Import the MicroEJ Architecture
	Install an Evaluation License
	Create the MicroEJ Platform
	Setup the MicroEJ Platform

	Create MicroEJ Application HelloWorld
	Configure BSP Connection in MicroEJ Application
	MicroEJ and FreeRTOS Integration
	Minimal Low Level APIs
	Invoke MicroEJ Core Engine
	Build and Link the Firmware with the MicroEJ Runtime and MicroEJ Application

	Add IAR to MicroEJ SDK Docker Image
	Prerequisites
	Create the Dockerfile

	Create MicroEJ Platform Build and Run Scripts
	Intended Audience
	Prerequisites
	Introduction
	Overview
	Create Build and Run Scripts
	Create build.sh and run.sh Scripts
	Create build.bat and run.bat Scripts

	Use Build Script in MicroEJ SDK
	Build Firmware from MicroEJ SDK
	Convert from partial BSP connection to full BSP connection (optional)

	Going Further

	Setup an Automated Build using Jenkins and Artifactory
	Intended Audience
	Introduction
	Prerequisites
	Overview
	Prepare your Docker environment
	Get a Module Repository
	Setup Artifactory
	Configure Artifactory
	Create Repositories
	Import MicroEJ Repositories

	Setup Gitea
	Install Gitea

	Configure Gitea
	Setup Jenkins
	Install Jenkins
	Configure Jenkins

	Build a new Module using Jenkins
	Create a new MicroEJ Module
	Upload to your Git repository
	Create a New Jenkins Job
	Build the “Hello World” Application

	Appendix
	Customize Jenkins
	Customize target~ path

	Improve the Quality of Java Code
	Intended Audience
	Readable Code
	Naming Convention
	Interfaces and Subclasses Naming Convention

	Visibility
	Javadoc
	Code Convention
	Class Declaration
	Fields Order
	Methods Order
	Modifiers Order

	Code Style and Formatting

	Best Practices
	Common Pitfalls
	Simplify Maintenance
	Basic Optimizations
	Local Extraction
	Equals and Hashcode

	Related Tools
	Unit Testing
	Code Analysis with SonarQube™

	Optimize the Memory Footprint of an Application
	Intended Audience
	Introduction
	How to Analyze the Footprint of an Application
	How to Analyze the Files Generated by the MicroEJ Linker
	How to Analyze a Map File Generated by a Third-Party Linker
	File Structure
	Finding the Size of a Section or Symbol

	How to Reduce the Image Size of an Application
	Application Resources
	Fonts
	Default Font
	Character Ranges
	Pixel Transparency
	External Storage

	Internationalization Data
	Implementation
	External Storage

	Images
	Encoding
	Color Depth (BPP)
	External Storage

	Application Code
	MicroEJ Platform Configuration
	Application Configuration
	Stripping Class Names from an Application
	Removing All Class Names
	Listing Required Class Names
	Case of Service Library
	Case of Properties Loading
	Case of Logger and Other Debugging Facilities

	How to Reduce the Runtime Size of an Application
	Application Code
	MicroEJ Platform Configuration
	Debugging Stack Overflows

	Application Configuration
	Java Heap and Immortals Heap
	Thread Stacks
	VM Dump

	MicroUI Images Heap

	Explore Data Serialization Formats
	Intended Audience
	XML
	XML Module
	Example Of Use

	JSON
	JSON Module
	Example Of Use

	CBOR
	CBOR Module
	Example Of Use

	Instrument Java Code for Logging
	Intended Audience
	Introduction
	Overview
	Log with the Trace Library
	Log with the Message Library
	Log with the Logging Library
	Remove Logging Related Code
	Wrap with a Constant If Statement
	Shrink Code Using ProGuard

	Run a Test Suite on a Device
	Intended Audience and Scope
	Prerequisites
	Introduction
	Import the Test Suite
	Configure the Test Suite
	Select the Test Suite Version
	Configure the Platform BSP Connection
	Configure Execution Trace Redirection
	Start Serial To Socket
	Configure the Test Suite Specific Options

	Run the Test Suite
	Configure the Tests to Run
	Examine the Test Suite Report

	Implement a Blocking Java Native Method with SNI
	Intended Audience
	Prerequisites
	Overview
	Requirements
	Example Code
	Application Behavior

	Implement a Non-Blocking Method
	Update the C Native Function Implementation
	Step 1: Update the C Native Function
	Step 2: Update the Button Interrupt Function
	Step 3: Implement the Callback Function

	Application Behavior

	Discover Embedded Debugging Techniques
	Intended Audience
	Debugging Tools
	Events Tracing and Logging
	Runtime State Dump
	Memory Inspection
	Platform Qualification
	Simulator Debugger
	Static Analysis Tools
	GUI Debugging Tools

	Use Case 1: Debugging a GUI Application Freeze
	Check RTOS Tasks Scheduling
	Check Java Threads Scheduling
	Check UI Thread Liveness
	Check Input Events Processing
	Implementation Details
	Java Threads Creation
	UART Not Available

	Use Case 2: Debugging a HardFault
	Useful Resources
	Exceptions, HardFaults And Exception Handler
	What To Do In Exception Handlers?
	Memory Protection Unit (MPU)
	Memory Corruption
	Investigation
	When a HardFault Occurs
	Extract Information and Coredump

	Memory Dump Analysis
	Trigger a VM Dump

	Get Started With GUI
	Setup your Environment
	Prerequisites
	Download and Install
	Start the IDE for the First Time
	Prepare VEE Port Sources
	Create a New Project
	Featured Project: Widget Demo

	Starting MicroUI
	Widgets
	Desktop Usage
	Displaying a Label

	Basic Drawing on Screen
	Drawing Basic Shapes
	Drawing Images
	Drawing Thick Shapes

	Animation
	Usage

	Creating Widgets
	Setting Up
	Using with Animator

	Using Layouts
	Using a Flow Layout
	Using a Canvas

	Style
	Selectors
	Usage
	Padding and Margin

	Images
	Adding Images
	Displaying an Image

	Advanced Styling
	Using Images in Stylesheet
	Class Selector
	Combinator and Conditional Style

	Event Handling
	The handleEvent Method
	Using Events with Buttons

	Fonts
	Creating a font
	Adding the Font to a Label

	Scroll List
	List
	Scrollable List

	Creating a Contact List using Scroll List
	Creating the Contact Widget

	Internationalization
	Using PO Files
	Configuring NLS in MicroEJ
	Usage
	Loading Translations as an External Resource

	How to Validate GUIs
	Implementing GUIs Efficiently
	Documents and Tools to Improve Application Code Quality
	Using Recent Versions of UI Libraries
	Memory Management
	Format of UI Resources
	Decoding Immutable Images
	Format of Immutable Images
	Images Heap

	Benchmarking GUIs
	SystemView
	MicroUI Flush Visualizer

	Debugging GUIs
	High-level Debugging and Optimizations
	Widget Hierarchy and Layout
	Bad Use of requestRender and requestLayout
	Animations Implementation
	Animator
	TimerTask
	Animator and TimerTask mix

	Hardware and Low-level Debugging and Optimizations
	At Project Level
	Compiling Optimization Options
	RTOS Tasks Environment

	At Hardware Level
	Hardware Capabilities
	Hardware Configuration
	Buffers Location in Memory

	Flush Policy

	Testing GUIs
	Test a GUI Application with a Software Robot
	Test a GUI Application with the Test Automation Tool

	How to Test a GUI Application with a (Software) Robot
	Overview
	Record the Scenario
	Set Up the Event Recorder

	Set Up the Scenario Player
	Run the Scenario

	How to Detect Text Overflow
	Instrumenting the Widget
	Overriding the onLaidOut() Method
	Testing
	Improving the Detection

	How to Add Emojis to a Vector Font
	Intended Audience
	Prerequisites
	Append the Emoji Glyphs

	Get Support
	About MicroEJ
	Index

